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Abstract

Person recognition aims to recognise and track the same individuals over space and time with

subtle identity class information in automatically detected person images captured by uncon-

strained camera views. There are multi-source visual biometrical cues for person identity recog-

nition. Specifically, compared to other widely-used cues that tend to easily change over time and

space, the facial appearance is considered as a more reliable non-intrusive visual cue. Person

recognition, especially the person face recognition, enables a wide range of practical applica-

tions, ranging from law enforcement and information security to business, entertainment and

e-commerce. However, person recognition under realistic application scenarios remains signif-

icantly challenging, mainly due to the usual low resolutions (LR) of the images captured by

low-quality cameras with unconstrained distances between cameras and people. Compared to

the high-resolution (HR) images, the LR person images contain much less fine-grained discrim-

inative details for robust identity recognition. To tackle the challenge of person recognition on

low-resolution imagery data, one effective approach is to utilise the super resolution (SR) meth-

ods to recover or enhance the image details that are beneficial for identity recognition. However,

this thesis reveals that conventional SR models suffer from significant performance drop when

applied to low-quality LR person images, especially the natively captured surveillance facial

images. Moreover, as the SR and identity recognition models advance independently, direct su-

per resolution is less compatible with identity recognition, and hence has minor benefit or even

negative effect for low-resolution person recognition.

To tackle the above problems, this thesis explores person recognition methods with im-

proved generalisation ability to realistic low-quality person images, by adopting dedicated super-

resolution algorithms. More specifically, this thesis addresses the issues for person face recogni-

tion and body recognition in low-resolution images as follows:

Chapter 3 Whilst recent person face recognition techniques have made significant progress

on recognising constrained high-resolution web images, the same cannot be said on natively

unconstrained low-resolution images at large scales. This chapter examines systematically this
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under-studied person face recognition problem, and introduce a novel Complement Super-Resolution

and Identity (CSRI) joint deep learning method with a unified end-to-end network architecture.

The proposed learning mechanism is dedicated to overcome the inherent challenge of genuine

low-resolution, concerning with the absence of HR facial images coupled with native LR faces,

typically required for optimising image super-resolution models. This is realised by transfer-

ring the super-resolving knowledge from good-quality HR web images to the genuine LR facial

data subject to the face identity label constraints of native LR faces in every mini-batch train-

ing. This chapter further constructs a new large-scale dataset TinyFace of native unconstrained

low-resolution face images from selected public datasets. The extensive experiments show that

there is a significant gap between the reported person face recognition performances on popular

benchmarks and the results on TinyFace, and the advantages of the proposed CSRI over a variety

of state-of-the-art face recognition and super-resolution deep models on solving this largely ig-

nored person face recognition scenario. However, the lack of supervision in pixel space leads to

the low-fidelity super-resolved images. which may hinder the further downstream facial analysis

applications.

Chapter 4 Although with a more advanced joint-learning scheme for person face recog-

nition by super resolution (introduced in Chapter 3), by no-means one can claim that the pro-

posed method solves the real-world low-resolution face recognition problem, which remains a

significantly challenging task. In terms of human understanding, when people are faced with a

challenging face identity recognition task, they often make decisions by selecting discriminative

facial features. If a recognition model can be optimised with results that can be explained in

a human-understandable way, such an interpretable model may have the potential to shed light

on discriminative facial features selection for better identity recognition. To achieve this, recog-

nising faces from high-fidelity super-resolved outputs could be a viable approach. However,

existing facial super-resolution methods focus mostly on improving “artificially down-sampled”

low-resolution (LR) imagery. Such SR models, although strong at handling artificial LR images,

often suffer from significant performance drop on genuine LR test data. Previous unsupervised

domain adaptation (UDA) methods address this issue by training a model using unpaired genuine

LR and HR data as well as cycle consistency loss formulation. However, this renders the model

overstretched with two tasks: consistifying the visual characteristics and enhancing the image

resolution. Importantly, this makes the end-to-end model training ineffective due to the difficulty
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of back-propagating gradients through two concatenated CNNs. To solve this problem, in this

chapter, a method that joins the advantages of conventional SR and UDA models is formulated.

Specifically, the optimisations for characteristics consistifying and image super-resolving are

separated and controlled by introducing Characteristic Regularisation (CR) between them. This

task split makes the model training more effective and computationally tractable, and enables the

high-fidelity super resolution process on genuine low-resolution faces.

Chapter 5 Although the facial appearance is a more reliable visual cue for person recogni-

tion, it is often challenging or even impossible to detect the facial region in images captured by

unconstrained low-quality cameras, where the faces can be of extreme poses, blur, distortion, or

even invisible in the human back-view images. In such cases, the person body recognition is

an important aspect for identity recognition and tracking. However, person images captured by

unconstrained surveillance cameras often have low resolutions (LR). This causes the resolution

mismatch problem when matched against the high-resolution (HR) gallery images, negatively

affecting the performance of person body recognition. An effective approach is to leverage im-

age super-resolution (SR) along with body recognition in a joint learning manner. However, this

scheme is limited due to dramatically more difficult gradients backpropagation during training.

This chapter introduces a novel model training regularisation method, called Inter-Task Associa-

tion Critic (INTACT), to address this fundamental problem. Specifically, INTACT discovers the

underlying association knowledge between image SR and person body recognition, and leverages

it as an extra learning constraint for enhancing the compatibility of SR model with person body

recognition in HR image space. This is realised by parameterising the association constraint,

which can be automatically learned from the training data. Extensive experiments validate the

superiority of INTACT over the state-of-the-art approaches on the cross-resolution person body

recognition task using five standard datasets.

Chapter 6 draws conclusions and suggests future works on open questions arising from the

studies of this thesis.
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Chapter 1

Introduction

With the rapid expansion of surveillance multi-camera systems around the world, associating

people over space and time becomes an increasingly significant capability for a wide range of

applications such as public safety, law enforcement and forensic search [57]. Person identity

recognition aims to track the same individuals by the subtle class information in the person

images detected under the unconstrained scenarios. To match the person identities over large

distributed space and time is inherently challenging, and to extract reliable visual cues as identity

information from diverse unconstrained camera views is essential for robust person recognition.

Given its wide-range potential applications in real-world scenarios, person recognition has drawn

growing attention from both academic and industrial researchers. Among the existing visual

biometrics for person identity recognition, such as whole-body [58, 107, 114, 162, 172, 206],

iris [148], gait [158], and fingerprint [128], facial appearance is considered as one of the most

convenient and most reliable non-intrusive visual cues. This is due to one fact that faces, provided

they are visible in captured images, are more stable cues for long-term tracking and tracing,

whereas other visual appearances, e.g. clothes for whole-body cues [58], are easier to change

over space and time.

Person face recognition (FR) has been extensively studied with significant advance in the

literature, and FR based commercial products are increasingly appearing in our daily life, e.g.

web photo-album and online e-payment. However, current FR methods generalise poorly in

recognising faces in realistic noisy and low-quality images captured by unconstrained wide-field

surveillance cameras, which makes the techniques far away from being satisfactory in real-world
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applications. This is because of the lack of sufficient detailed information for identity recognition

in the low-quality inputs, as compared to the high-resolution, high-quality images (Fig. 1.1).

While being critical for public safety and law enforcement applications, person face recogni-

tion in low-quality images is significantly under-studied in comparison to the high-resolution face

recognition task. It is shown in experimental studies [40] that (1) the state-of-the-art FR models

trained on large scale high-quality benchmark datasets generalise poorly to the low-quality face

recognition task on native low-quality surveillance facial images; (2) the performance of face

recognition on artificially synthesised low-resolution images does not well reflect the true chal-

lenges of native surveillance facial images in system deployments; (3) the image super-resolution

models suffer from the lack of pixel-aligned low- and high-resolution native image pairs which

are necessary for model training. To facilitate solving the aforementioned problems and limita-

tions, this thesis focuses on exploring dedicated person face recognition models in low-quality

images captured by realistic unconstrained cameras, especially characterised by native low reso-

lution.

Moreover, although the facial cue plays an essential role in person recognition, in many real-

world scenarios, faces are invisible in the cases of pedestrian back-view images or occlusion.

In such cases, it is much easier to access the whole-body appearance as visual cues for person

recognition. However, in terms of the person body recognition, due to unconstrained distances

between cameras and pedestrians, person images are often captured at various resolutions, while

most existing methods assume that the probe and gallery images have similar and sufficiently

high resolutions. This resolution mismatch issue brings about significant challenges to person

body recognition. Therefore, towards person recognition techniques in real-world applications,

in addition to person face recognition, this thesis also explores the problem of cross-resolution

person body recognition.

1.1 Person Face Recognition in Low-quality Images

1.1.1 Low-Resolution Person Face Recognition by Super Resolution

Face recognition (FR) models have made significant progress on constrained good-quality im-

ages, with reported 99.63% accuracy (1:1 verification) on the LFW benchmark [80] and 99.087%

rank-1 rate (1:N identification with 1,000,000 distractors in the gallery) on the MegaFace chal-

lenge [91]. Surprisingly, this thesis shows systematically that person FR remains a significant
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CASIA MS-Celeb-1M IJB-A LFW MegaFace TinyFace

Figure 1.1: Examples of (Left) constrained high-resolution face images from five popular
benchmarking FR datasets, and (Right) native unconstrained low-resolution face images typi-
cally captured in natural scenes.

challenge on natively unconstrained low-resolution (LR) images – not artificially down-sampled

from high-resolution (HR) images, as typically captured in surveillance videos [40, 240] and un-

constrained (unposed) snapshots from a wide field of view at distance [225, 213]. In particular,

when tested against native low-resolution face images from a newly constructed tiny face dataset,

this thesis reveals that the performances of current state-of-the-art deep learning FR models de-

grade significantly. Fig. 1.1 provides a visual comparison of the low-quality realistic images to

the high-quality web photos.

In general, unconstrained low-resolution FR (LRFR) is severely under-studied versus many

FR models tested on popular benchmarks of HR images, mostly captured either under constrained

viewing conditions or from “posed” photoshoots including passport photo verification for airport

immigration control and identity check in e-banking. Another obstacle for enabling more studies

on LRFR is the lack of large scale native LR face image data both for model training and testing,

rather than artificially down-sampled synthetic data from HR images. To collect sufficient data

for deep learning, it requires to process a large amount of public domain (e.g. from the web) video

and image data generated from a wide range of sources such as social-media, e.g. the MegaFace

dataset [91, 137]. So far, this has only been available for HR and good quality (constrained) web

face images, e.g. widely distributed celebrity images [80, 144, 123].

One potentially effective approach for achieving a robust low-resolution person face recog-

nition model is to adopt image super-resolution (SR). Designed for recovering the finer details

when super-resolving low-resolution images, existing image super-resolution methods may be

beneficial for the low-resolution person recognition problem. However, as at large, the image

recognition and SR studies advance independently, this thesis discovers through extensive exper-

iments that contemporary SR deep learning models bring about very marginal performance bene-



22 Chapter 1. Introduction

fit or even negative effect on person face recognition. The plausible reasons are mainly twofolds.

(1) The inherent lacking of paired HR and their corresponding native LR images. Existing meth-

ods that perform well [45, 92, 99, 103, 238] all assume the provision of pixelwise-aligned LR

and HR image pairs for model training. They are not applicable to learning for super-resolving

unpaired native facial images, i.e., the realistic facial images for person recognition. (2) A sig-

nificant domain gap due to different imaging noise characteristics between native low-resolution

facial images and high-resolution web face photo-shoots. One may construct a SR model trained

on well-conditioned HR web images with perfectly aligned corresponding synthesised (e.g. bicu-

bic downsampling) LR images. However, a model trained by such synthetic LR images do not

capture the unknown and significantly different imaging noise and artifacts inherent to the na-

tive LR images, e.g. sensor noise, compression, non-ideal point spread function, among other

aliasing effects. This domain transfer discrepancy between the training data from one domain

(source) and the test data from a very different domain (target) causes inherent model limitations

for poor performance generalisation among existing SR algorithms. To solve this problem, one

potential solution is to adopt the domain-adaptation strategy with the auxiliary data of artificial

down-sampled web faces for native facial image super-resolution.

This thesis investigates the problem of super resolution for improving the performance of na-

tive low-resolution person face recognition. Extensive experiments show that existing SR models

significantly degrade when applied to native low-resolution faces and can not improve the iden-

tity recognisability. To solve the aforementioned problem, a novel Super-Resolution and Identity

joint learning approach to face recognition in natively LR images is proposed, with a unified

deep learning network architecture. It is designed to improve the model generalisation for low-

resolution face recognition tasks by enhancing the compatibility of image super-resolving and

identity recognition. Compared to directly applying super-resolution algorithms to improve im-

age details without jointly optimising for face discrimination, this method has been shown to be

effective in reducing the negative effect of noisy fidelity for the low-resolution face recognition

task. To overcome the inherent challenge of native low-resolution face recognition concerning

with the absence of HR facial images coupled with native LR faces, typically required for opti-

mising image super-resolution models, a Complement Super-Resolution learning mechanism is

introduced. This is realised by transferring the super-resolving knowledge from good-quality HR

web images to the natively LR facial data subject to the face identity label constraints of native
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LR faces in every mini-batch training.

Given the absence of pixel-aligned high-resolution counterparts as strong supervision signal,

supervised by the high-level facial identity constraint instead, the proposed joint-learning model

design is effective to improve the compatibility of the SR module to identity recognition. How-

ever, it is shown in the qualitative results that the super-resolved outputs from the low-resolution

faces fail to achieve the visual fidelity expected in the high-resolution pixel space. It hinders

the further downstream facial analysis applications by face super resolution, such as expression,

emotion, age, among other attributes analysis. Moreover, an interpretable recognition model

is beneficial to discover more discriminative facial features for better identity recognition. To

achieve this, a high-fidelity super resolution model is needed.

1.1.2 Interpretable Low-Resolution Face Recognition

Although increasing attention is drawn to the low-resolution person face recognition, to recognise

identities from realistic low-resolution imaging data remains a significantly challenging task.

This thesis proposes to adopt the super-resolution algorithms for identity information recovery

from low-resolution images before inputting to a recognition model (Sec. 1.1.1). However, given

the absence of HR facial images coupled with native LR faces, the lack of supervision in pixel

space for the SR models leads to the low-fidelity resolved images.

Given that the pixel-wise alignment is unavailable, this thesis proposes to further constrain

the image-space domain adaptation for SR model, by aligning the imaging characteristics of the

super-resolved faces to natural high-resolution ones.

More specifically, given the lack of pixel-aligned LR and HR image pairs as the supervision

signal for a SR model training, in the literature, unsupervised domain adaptation (UDA) methods

are possible solutions considering genuine LR and natural HR images as two different domains.

UDA techniques have achieved remarkable success [237, 76, 181, 135, 17, 215, 95, 120]. A

representative modelling idea is to exploit cycle consistency loss functions between two unpaired

domains (Fig 1.2(b)) [237, 215, 95]. A CNN is used to map an image from one domain to

the other, which is further mapped back by another CNN. With such an encoder-decoder like

architecture, one can form a reconstruction loss jointly for both CNN models without the need

for paired images in each domain. The two CNN models can be trained end-to-end, inputting an

image and outputting a reconstructed image per domain. This idea has been attempted in [20] for

super-resolving genuine LR facial imagery.
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CNN

(a)Artificial LR HR

CNN

(b)Genuine LR HR

CNN

(c)
Genuine LR Artificial LR

CNN

HR

Figure 1.2: CNN architectures for facial image super-resolution. (a) A CNN is trained to super-
resolve artificial LR facial images that are produced by down-sampling [45, 103]. It is a super-
vised learning method. (b) A CNN learns to adapt a genuine LR facial images into the HR style.
Without LR-HR pairing supervision, a cycle consistency based loss function is often used for
model training [237, 215, 20]. (c) The proposed characteristic regularisation method. The whole
model training is regularised by characteristic consistifying from genuine LR facial images to
artificial LR ones before super-resolved to the HR output. Best viewed in colour.

Using such cycle consistency for unsupervised domain adaptation has several adverse effects.

The reconstruction loss is applicable only to the concatenation of two CNN models. This exacer-

bates the already challenging task of domain adaptation training. In the context of low-resolution

face images for recognition, the genuine LR and HR image domains have significant differences

in both image resolution and imaging conditions. Compared to a single CNN, the depth of a

concatenated CNN-CNN model is effectively doubled. Existing UDA models apply the cycle

consistency loss supervision at the final output of the second CNN, and propagate the supervi-

sion back to the first CNN. This gives rise to extra training difficulties in the form of vanishing

gradients [104, 26]. In addition, jointly training two connected CNN models has to be conducted

very carefully, along with the difficulty of training GAN models [59]. Moreover, the first CNN

(the target model) takes responsibility of both characteristic consistifying and low-to-high reso-

lution mapping, which further increases the model training difficulty dramatically.

This thesis solves the problem of super-resolving genuine LR facial images with high-fidelity

resolved images by formulating a Characteristic Regularisation (CR) method (Fig 1.2(c)). In

contrast to conventional image SR methods, this thesis particularly leverages the unpaired gen-
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uine LR images in order to take into account their characteristics information for facilitating

model optimisation. Unlike cycle consistency based UDA methods, the artificial LR images are

instead leveraged as regularisation target in order to separately learn the tasks of characteristic

consistifying and image super-resolution. Specifically, the multi-task learning is performed, with

the auxiliary task as characteristic consistifying (CC) for transforming genuine LR images into

the artificial LR characteristics, and the main/target task as image SR for super-resolving both reg-

ularised and down-sampled LR images concurrently. Since there is no HR images coupled with

genuine LR images, it is considered to align pixel content in the LR space by down-sampling the

super-resolved images. This avoids the use of cycle consistency and their learning limitations.

To make the super-resolved images with good facial identity information, an unsupervised se-

mantic adaptation loss is formulated by aligning with the face recognition feature distribution of

auxiliary HR images.

The CR method can be understood from two perspectives: (i) As splitting up the whole sys-

tem into a model for image characteristic consistifying and a model for image SR. With the for-

mer model taking the responsibility of solving the characteristic discrepancy, the SR model can

better focus on learning the resolution enhancement. This is in a divide-and-conquer principle.

(ii) As a deeply supervised network [104], providing auxiliary supervision improves accuracy

and convergence speed [179]. In the case of native face super resolution specifically, it allows for

better and more efficient pre-training of SR module using paired artificial LR and HR images,

pre-training of CC module by genuine and artificial LR images, and fast convergence in training

the full CC+SR model.

1.2 Cross-Resolution Person Body Recognition

Person body recognition is an important aspect for identity recognition and tracking, in the cases

of invisible facial appearance in images captured by unconstrained low-quality images, due to

occlusion, back views or extreme distortion. In the literature, person body recognition is an

important computer vision task and draws more and more attention recently, which aims to match

the identity information in the images captured by disjoint surveillance camera views [58]. Most

existing methods assume that the probe and gallery images have similar and sufficiently high

resolutions. However, due to unconstrained distances between cameras and pedestrians, person

images are often captured at various resolutions. This resolution mismatch issue brings about
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Figure 1.3: Illustration of cross-resolution person body recognition. Resolution mismatch be-
tween the low-resolution (LR) query images and the high-resolution (HR) gallery images causes
unaligned feature distributions and finally inferior identity matching performance. One effective
solution is using an image super-resolution (SR) model to enhance the resolution of LR query
images for alleviating the distribution discrepancy with HR gallery images.

significant challenges to re-id. As low-resolution (LR) images contain much less identity detail

information than high-resolution (HR) images, directly matching them across resolutions leads

to substantial performance drop [86, 114]. For example, a standard person re-id model [53] can

suffer up to 19.2% Rank-1 rate drop when applied to cross-resolution person re-id [114].

Existing cross-resolution person body recognition methodologies can be divided into two

groups: (1) Learning resolution-invariant representation [36] and (2) Exploiting image super-

resolution (SR) [86, 195]. This thesis focuses on the second category, since the first category

tends to lose the fine-grained information contained in the HR images. However, directly ap-

plying the multi-task joint learning framework from the second category suffers from ineffective

model training. It is because of the significantly higher difficulty of backpropagating the gradi-

ents through such a cascaded model [26]. As a consequence, as an auxiliary task, the SR module

is less compatible with main task - person recognition.

This thesis proposes a novel regularisation named Inter-Task Association Critic (INTACT),

which is dedicated to improve the compatibility between SR and recognition by an inter-task

association mechanism. It is realised by two parts. In part one, the (unknown) inter-task associa-
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tion constraint is learned from the HR training data. In part two, the learned association module

serves as a critic to supervise the SR learning.

1.3 Contributions

The contributions made in this thesis are summarised as follows:

1. Chapter 3: propose a novel Super-Resolution and Identity joint learning approach to face

recognition in native LR images, with a unified deep network architecture. Unlike most

existing FR methods assuming constrained HR facial images in model training and test, the

proposed approach is specially designed to improve the model generalisation for LR face

recognition tasks by enhancing the compatibility of face enhancement and recognition.

This thesis further creates a large scale face recognition benchmark, named TinyFace, to

facilitate the investigation of natively LR FR at large scales (large gallery population sizes)

in deep learning. All the LR faces in TinyFace are collected from public web data across a

large variety of imaging scenarios, captured under uncontrolled viewing conditions in pose,

illumination, occlusion and background. Beyond artificially down-sampling HR facial

images for LRFR performance test as in previous works, this is the first systematic study

focusing specially on face recognition of native LR web images.

2. Chapter 4: proposes a novel super-resolution (SR) method for genuine low-resolution fa-

cial imagery. It combines the advantages of the existing image SR and unsupervised do-

main adaptation methods by a divide-and-conquer strategy. The proposed Characteristic

Regularisation enables computationally more tractable model training and better model

generalisation capability. A new unsupervised learning loss function is introduced with-

out the limitations of cycle consistency. Extensive experiments are conducted on super-

resolving both genuine and artificial LR facial imagery, with the former sampled from

challenging unconstrained social-media and surveillance videos. The results validate the

superiority of the model over the state-of-the-art image SR and domain adaptation meth-

ods, with high-fidelity resolved facial images.

3. Chapter 5: proposes an idea of leveraging the association between image SR and person

body recognition tasks for solving the under-studied yet significant cross-resolution body

recognition problem. A novel regularisation method, called Inter-Task Association Critic
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(INTACT), is formulated for implementing the proposed inter-task association. INTACT

is established on parameterising the association, and end-to-end trainable. Extensive ex-

periments show the performance advantages of the INTACT over a wide range of state-of-

the-art methods on five person body recognition benchmarks in the cross-resolution person

body recognition problem.

1.4 Thesis Outline

This thesis is organised as follows:

Chapter 2 presents a review on various existing super resolution algorithms, person recogni-

tion with facial and body as biometric cues, existing face and body recognition benchmarks and

models.

Chapter 3 improves the identity recognisability of super resolution for low-resolution per-

son face recognition by introducing a novel Complement Super-Resolution and Identity (CSRI)

joint deep learning method with a unified end-to-end network architecture, based on the idea of

transferring the knowledge from synthetic to native SR. Extensive experiments show that such

SR knowledge transfer model is able to benefit the identity matching performance.

Chapter 4 proposes an interpretable low-resolution face recognition model by formulat-

ing a high-fidelity SR model that joins the advantages of conventional SR and UDA models.

The optimisations for characteristics consistifying and image super-resolving are separated and

controlled by introducing Characteristic Regularisation between them, which makes the model

training more effective and computationally tractable. Extensive evaluations demonstrate the

performance superiority of this method in terms of both fidelity and identity recognisability.

Chapter 5 addresses the resolution mismatch issue for cross-resolution person body recogni-

tion when matched low-resolution person images against the high-resolution gallery images, by

introducing a novel model training regularisation method, called Inter-Task Association Critic, to

effectively leverage image super-resolution along with person body recognition in a joint learn-

ing manner. It is realised by parameterising the association constraint by automatically learning

from the training data. Extensive experiments validate the superiority of INTACT on the cross-

resolution body recognition task.

Chapter 6 provides conclusion and various research problems and directions to be pursued

as further work.



29

Chapter 2

Literature Review

2.1 Person Face Recognition

This section provides a brief review on the existing face recognition algorithms, including models

specially designed for low-resolution faces. This section also discusses super-resolution models

for image fidelity and discriminability enhancement.

2.1.1 General Face Recognition

Early FR methods adopt hand-crafted features (e.g. Color Histogram, LBP, SIFT, Gabor) and

matching model learning (e.g. discriminative margin mining, subspace learning, dictionary based

sparse coding, Bayesian modelling) [10, 28, 1, 24, 223, 117]. They suffer from sub-optimal

recognition generalisation, particularly with significant facial appearance variations, due to weak

representation power (limited and incomplete human domain knowledge for hand-crafted fea-

tures) and lack of end-to-end interaction learning between feature extraction and model infer-

ence.

Recently, deep learning based FR models [182, 96, 159, 144, 199, 122, 113, 73, 198] have

achieved remarkable success. This paradigm benefits from superior network architectures [97,

167, 179, 72] and optimisation algorithms [199, 175, 159]. Deep FR methods naturally address

the limitations of hand-crafted alternatives by jointly learning face representation and matching

model end-to-end. A large set of labelled face images is usually necessary to train the millions

of parameters of deep models. This can be commonly satisfied by large scale web face data col-
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lected and labelled (filtered) from Internet. Consequently, modern FR models are often trained,

evaluated and deployed on web face datasets (Table 3.1 and Table 2.1).

This section gives a brief description of these FR models as follows:

The DeepID2 model [173] is characterised by simultaneously learning face identification and

verification supervision. Identification is to classify a face image into one ID class by softmax

cross-entropy loss [97]. Formally, it predicts the posterior probability ỹi of a face image IIIi over

the ground-truth ID class yi among a total nid distinct training IDs:

p(ỹi = yi|IIIi) =
exp(www>yi

xxxi)

∑
|nid|
k=1 exp(www>k xxxi)

, (2.1)

where xxxi specifies the DeepID2 feature vector of IIIi, and WWW k the prediction parameter of the k-th

ID class. The identification training loss is defined as:

lid =− log
(

p(ỹi = yi|IIIi)
)
. (2.2)

The verification signal encourages the DeepID2 features extracted from the same-ID face images

to be similar so to reduce the intra-person variations. This is achieved by the pairwise contrastive

loss [69]:

lve =


1
2‖xxxi− xxx j‖2

2 if same ID,

1
2 max

(
0,m−‖xxxi− xxx j‖2

2
)2 otherwise.

(2.3)

where m represents the discriminative ID class margin. The final DeepID2 model loss function

is a weighted summation of the above two as:

LDeepID2 = lid +λblnlve, (2.4)

where λbln represents the balancing hyper-parameter. A customised 5-layers CNN is used in the

DeepID2.

The CentreFace model [199] also adopts the softmax cross-entropy loss function (Eqn.

(2.2)) to learn inter-class discrimination. However, it seeks for intra-ID compactness in a class-

wise manner by posing a representation constraint that all face image features be close to the

corresponding ID centre as possible. Learning this class compactness is accomplished by a

centre loss function defined as:

lcentre =
1
2
‖xxxi− cccyi‖2

2, (2.5)

where yi denotes the ID class of face images xxxi and cccyi the up-to-date feature centre of the class

yi. As such, all face images of the same ID are constrained to group together so that the intra-
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person variations can be suppressed. The final loss function is integrated with the identification

supervision as:

LCentreFace = lid +λblnlcentre. (2.6)

Since the feature space is dynamic in the course of training, all class centres are progressively

undated on-the-fly. The CentreFace model is implemented in a 28-layers ResNet architecture

[72].

The FaceNet model [159] sues a triplet loss function [121] to learn a binary-class (positive vs

negative pairs) feature embedding. The triplet loss is to induce a discriminative margin between

positive and negative pairs, defined as:

ltri = max
{

0, α−‖xxxa− xxxn‖2
2 +‖xxxa− xxxp‖2

2
}
,

subject to: (xxxa,xxxp,xxxn) ∈ T ,
(2.7)

where T denotes the set of triplets generated based on ID labels, and α is a pre-fixed margin for

separating positive (xxxa, xxxp) and negative (xxxa, xxxn) training pairs. By doing so, the face images for

one training ID are constrained to populate on an isolated manifold against other IDs by a certain

distance therefore posing a discrimination capability. For fast convergence, it is critical to use

triplets that violate the triplet constraint (Eqn. (2.7)). To achieve this in a scalable manner, hard

positives and negatives are selected within a mini-batch.

The VggFace model [144] considers both identification and triplet training schemes in a

sequential manner. Specifically, the model is trained by a softmax cross-entropy loss (Eqn. (2.2)).

The feature embedding is then learned with a triplet loss (Eqn. (2.7)) where only the last full-

connected layer is updated to implement a discriminative projection. A similar hard sample

mining strategy is applied in the second step for more efficient optimisation. The VggFace adopts

a 16-layers VGG16 CNN [167].

The SphereFace model [122] exploits a newly designed angular margin based softmax loss

function. This loss differs from Euclidean distance based triplet loss (Eqn. (2.7)) by performing

feature discrimination learning in a hyper-sphere manifold. The motivation is that, multi-class

features learned by the identification loss exhibit an intrinsic angular distribution. Formally, the
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Table 2.1: Face verification performance of state-of-the-art FR methods on the LFW challenge.
“∗”: Results from the challenge leaderboard [79]. M: Million.

Feature Representation Method Accuracy (%) Year Training IDs Training Images

Hand Crafted

Joint-Bayes [28] 92.42 2012 2,995 99,773

HD-LBP [29] 95.17 2013 2,995 99,773

TL Joint-Bayes [24] 96.33 2013 2,995 99,773

GaussianFace [125] 98.52 2015 16,598 845,000

Deep Learning

DeepFace [182] 97.35 2014 4,030 4.18M

DeepID [176] 97.45 2014 5,436 87,628

LfS [214] 97.73 2014 10,575 494,414

Fusion [183] 98.37 2015 250,000 7.5M

VggFace [144] 98.95 2015 2,622 2.6M

DeepID2 [173] 99.15 2014 10,177 202,599

CentreFace [199] 99.28 2016 17,189 0.7M

SphereFace [122] 99.42 2017 10,575 494,414

DeepID2+ [177] 99.47 2015 12,000 290,000

FaceNet [159] 99.63 2015 8M 200M

TencentYouTu∗ [184] 99.80 2017 20,000 2M

EasenElectron∗ [48] 99.83 2017 59,000 3.1M

angular softmax loss is formulated as:

lang =− log
( e‖xxxi‖ψ(θyi ,i)

e‖xxxi‖ψ(θyi ,i)+∑ j 6=yi
e‖xxxi‖ψ(θ j,i)

)
,

where ψ(θyi , i) = (−1)k cos(mθyi , i)−2k,

subject to: θyi,i ∈ [
kπ

m
,
(k+1)π

m
], k ∈ [0,m−1],

(2.8)

where θ j,i specifies the angle between normalised identification weight WWW j (‖WWW j‖ = 1) for j-

th class and training sample xxxi, m (m ≥ 2) the pre-set angular margin, and yi the ground-truth

class of xxxi. Specifically, this design manipulates the angular decision boundaries between classes

and enforces a constraint cos(mθyi) > cos(θ j) for any j 6= yi. When m ≥ 2 and θyi ∈ [0, π

m ],

this inequation cos(θyi)> cos(mθyi) holds. Therefore, cos(mθyi) represents a lower boundary of

cos(θyi) with larger m leading to a wider angular inter-class margin. Similar to CentreFace, a

28-layers ResNet CNN is adopted in the SphereFace implementation.

Despite advances in high-resolution FR, it remains unclear how well the state-of-the-art

methods generalise to low-resolution images. Intuitively, low-resolution face recognition is ex-

treme challenging due to two reasons: (1) Low-resolution faces contain much less appearance



2.1. Person Face Recognition 33

details with poorer quality and lower resolution. (2) Deep models are highly domain-specific

and likely yield big performance degradation in cross-domain deployments, especially with large

train-test domain gap, e.g. HR and LR faces. In such cases, transfer learning is challenging

[142]. The scarcity of labelled surveillance data makes the problem even more challenging.

2.1.2 Low-Resolution Person Face Recognition

A challenge of face recognition in real-world applications is rooted in low-resolution (LR) [196].

Generally, existing low-resolution FR methods fall into two categories: (1) image super-resolution

[65, 191, 74, 241, 193], and (2) resolution-invariant learning [41, 105, 202, 150, 161]. The

first category is based on two learning criteria: pixel-level visual fidelity and ID discrimina-

tion. Existing models often focus more on appearance enhancement [65, 191]. Recent studies

[74, 241, 193] attempt to unite the two sub-tasks for more discriminative learning. The second

category aims to learn resolution-invariant features [41, 105] or a cross-resolution structure trans-

formation [202, 150, 161]. The data-driven deep models can be conceptually categorised into this

strategy whenever suitable training data is available for model optimisation.

However, all the existing methods have a number of limitations: (1) Considering small scale

and/or artificial low-resolution face images in the closed-set setting, therefore unable to reflect

the genuine LR face recognition challenge at scales. (2) Relying on hand-crafted features and

linear/shallow model structures with suboptimal generalisation. (3) Requiring pixel-aligned low-

and high-resolution training image pairs, which are unavailable for native low-resolution faces.

In low-resolution imagery face recognition deployments, two typical operational settings ex-

ist. One common setting is LR-to-HR (high-resolution) which aims to match LR probe images

against HR gallery images such as passport or other document photos [14, 15, 161, 16, 150].

This is a widely used approach by Law Enforcement Agencies to matching potential candidates

against a watch-list. On the other hand, there is another operational setting which requires LR-

to-LR imagery face matching when both the probe and the gallery images are LR facial images

[191, 65, 50, 241, 193].

Generally, LR-to-LR face recognition occurs in a less stringent deployment setting at larger

scales when pre-recorded (in a controlled environment) HR facial images of a watch-list do not

exist, nor there is a pre-defined watch-list. In an urban environment, there is no guarantee of

controlled access points to record HR facial images of an average person in unconstrained public

spaces due to the commonly used wide field of view of CCTV surveillance cameras and long
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distances between the cameras and people. In large, public space video surveillance data contain

a very large number of “joe public” without HR facial images pre-enrolled for face recognition.

Video forensic analysis often requires large scale people searching and tracking over distributed

and disjoint large spaces by face recognition of a priori unknown (not enrolled) persons triggered

by a public disturbance, when the only available facial images are from LR CCTV videos. More

recently, a rapid emergence of smart shopping, such as the Amazon Go, Alibaba Hema and

JD 7Fresh supermarkets, also suggests that any face recognition techniques for individualised

customer in-store localisation (track-and-tag) cannot assume unrealistically stringent HR facial

imagery enrollment of every single potential customer if the camera system is to be cost effective.

2.1.3 Person Face Recognition Datasets

An overview of representative face recognition challenges and benchmarks are summarised in

Table 2.2.

Early challenges focus on small-scale constrained scenarios [148, 10, 132, 54, 166, 63, 156],

with neither sufficient appearance variation for robust model training, nor practically solid test

benchmarks. The seminal LFW [80] started to shift the community towards recognising uncon-

strained web faces, followed by even larger face benchmarks, such as CASIA [214], CelebFaces

[175], VGGFace [144], MS-Celeb-1M [66], MegaFace [91] and MegaFace2 [137].

With such large benchmarks, FR accuracy in good quality images has reached an unprece-

dented level, e.g., 99.83% on LFW and 99.80% on MegaFace. However, this dose not scale to

native low-resolution faces captured in unconstrained camera views, due to: (1) Existing datasets

have varying degrees of data selection bias (near-frontal pose, less blur, good illumination); and

(2) Deep methods are often domain-specific (only generalise well to test data similar to training

set). On the other hand, there is a gap of facial images quality between a web photoshot view and

a low-resolution view in-the-wild (Fig. 1.1).

Research on low-resolution face recognition has slightly advanced till recent period. It is

under-studied with a very few benchmarks available. One of the major obstacles is the difficulty

of establishing a large scale surveillance face dataset due to the high cost and limited feasibil-

ity in collecting surveillance faces and exhaustive ID annotation. Even in the FERET dataset,

only simulated (framed) surveillance faces were collected in most cases with carefully controlled

imaging settings, therefore it provides a much better facial image quality than those from native

surveillance videos.
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Table 2.2: Statistics of representative publicly available person face recognition benchmarks.
Celeb: Celebrity.

Challenge Year IDs Images Videos Subject Surv?

Yale [10] 1997 15 165 0 Cooperative No

QMUL-MultiView [56] 1998 25 4,450 5 Cooperative No

XM2VTS [132] 1999 295 0 1,180 Cooperative No

Yale B [54] 2001 10 5,760 0 Cooperative No

CMU PIE [166] 2002 68 41,368 0 Cooperative No

Multi-PIE [63] 2010 337 750,000 0 Cooperative No

Morph [151] 2006 13,618 55,134 0 Celeb (Web) No

LFW [80] 2007 5,749 13,233 0 Celeb (Web) No

YouTube [201] 2011 1,595 0 3,425 Celeb (Web) No

WDRef [28] 2012 2,995 99,773 0 Celeb (Web) No

FaceScrub [138] 2014 530 100,000 0 Celeb (Web) No

CASIA [214] 2014 10,575 494,414 0 Celeb (Web) No

CelebFaces [175] 2014 10,177 202,599 0 Celeb (Web) No

IJB-A [96] 2015 500 5,712 2,085 Celeb (Web) No

VGGFace [144] 2015 2,622 2.6M 0 Celeb (Web) No

UMDFaces [8] 2016 8,277 367,888 0 Celeb (Web) No

MS-Celeb-1M [66] 2016 99,892 8,456,240 0 Celeb (Web) No

UMDFaces-Videos [7] 2017 3,107 0 22,075 Celeb (Web) No

IJB-B [200] 2017 1,845 11,754 7,011 Celeb (Web) No

VGGFace2 [22] 2017 9,131 3.31M 0 Celeb (Web) No

MegaFace2 [137] 2017 672,057 4,753,320 0 Non-Celeb (Web) No

FERET [147] 1996 1,199 14,126 0 Cooperative No

FRGC [146] 2004 466+ 50,000+ 0 Cooperative No

CAS-PEAL [52] 2008 1,040 99,594 0 Cooperative No

PaSC [13] 2013 293 9,376 2,802 Cooperative No

SCface [62] 2011 130 4,160 0 Cooperative Yes

COX [81] 2015 1,000 1,000 3,000 Cooperative Yes

EBOLO [108] 2016 Unknown 6,135 0 Cooperative Yes

FaceSurv [68] 2019 252 0 460 Cooperative Yes

UCCS [64] 2017 1,732 14,016+ 0 Uncooperative Yes

SurvFace [40] 2020 15,573 463,507 0 Uncooperative Yes
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A notable recent study introduces the UCCS challenge [64], the current largest public surveil-

lance face dataset, where faces were captured from a long-range distance without subjects’ coop-

eration (unconstrained), with various poses, blurriness and occlusion. This benchmark represents

a relatively realistic surveillance scenario compared to FERET. However, the UCCS images were

captured at high-resolution from a single camera view1, therefore providing significantly more

facial details and less viewing angle variations. Moreover, UCCS is small in size, particularly

the ID numbers (1,732), statistically limited for person face recognition evaluation in the context

of this thesis.

Besides of a brief review of existing high-quality face recognition datasets, specifically,

this section introduces a newly constructed larger scale native surveillance face recognition

dataset, which is targeted for evaluating the state-of-the-art face-recognition models under the ex-

tremely low-quality (i.e., surveillance) imaging conditions, the SurvFace benchmark. It consists

of 463,507 real-world surveillance face images of 15,573 different IDs captured from a diverse

source of public spaces. More specifically, SurvFace explores real-world native surveillance im-

agery from a combination of 17 person body recognition benchmarks which were collected in

different surveillance scenarios across diverse sites and multiple countries (Table 2.3). Fig 2.1

shows some images sampled from the SurvFace dataset.

Figure 2.1: Matched (Left) and unmatched (Right) face image pairs from SurvFace.

With the constructed dataset, a systematic study focusing specially on face recognition in

extremely low-quality imagery is conducted [40]. Some representative general face recognition

methods [199, 144, 122] are evaluated. Specifically, face recognition in low-quality imagery is

compared with web high-quality face recognition. For example, CentreFace achieves Rank-1

1A single Canon 7D camera equipped with a Sigma 800mm F5.6 EX APO DG HSM lens.
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Table 2.3: Person body recognition datasets utilised in constructing the SurvFace challenge.

Person Body Recognition Dataset IDs Detected IDs Bodies Detected Faces Nation

Shinpuhkan [90] 24 24 22,504 6,883 Japan

WARD [129] 30 11 1,436 390 Italy

RAiD [43] 43 43 6,920 3,724 US

CAVIAR4ReID [37] 50 43 1,221 141 Portugal

SARC3D [6] 50 49 200 107 Italy

ETHZ [160] 148 110 8,580 2,681 Switzerland

3DPeS [5] 192 133 1,012 366 Italy

QMUL-GRID [124] 250 242 1,275 287 UK

iLIDS-VID [190] 300 280 43,800 14,181 UK

SDU-VID [119] 300 300 79,058 67,988 China

PRID 450S [153] 450 34 900 34 Austria

VIPeR [61] 632 456 1,264 532 US

CUHK03 [109] 1,467 1,380 28,192 7,911 China

Market-1501 [230] 1,501 1,429 25,261 9,734 China

Duke4ReID [60] 1,852 1,690 46,261 17,575 US

CUHK-SYSU [207] 8,351 6,694 22,724 12,526 China

LPW [171] 4,584 2,655 590,547 318,447 China

Total 20,224 15,573 881,065 463,507 Multiple

29.9% on SurvFace, much inferior to the rate of 65.2% on MegaFace [199], i.e. a 54% (1-

29.9/65.2) performance drop. This indicates that person face recognition in low-quality imagery

is significantly more challenging, especially so when considering that one million distractors are

used to additionally complicate the MegaFace test. It shows that existing general face recognition

models generalise poorly under the low-quality imaging conditions.

Motivated by the above experimental studies, this thesis focus on addressing the limitations

of existing face recognition models in low-quality imagery. Moreover, different from the Surv-

Face dataset, which is captured from the extremely low-quality surveillance scenarios, this thesis

constructs a large-scale low-resolution face datasets collected from public web data across a large

variety of imaging scenarios, for a better comparison to the popular high-quality face recognition

datasets that are also collected from the web source (Sec. 3).
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2.2 Person Body Recognition

This section focuses on the task of surveillance person body recognition (also known as person

re-identification), which aims to track the same individuals by the subtle class information in the

person images detected under the unconstrained scenarios.

2.2.1 General Person Body Recognition

There are an increasing number of studies for person body recognition in the past decade [2, 107,

114, 162, 172, 206, 231, 232, 34, 27, 31, 157]. Many of the existing works focus on address-

ing recognition challenges from variations in background clutter [110], human poses [118], or

occlusion [133] across camera views. Specifically, Xiao et al. [206] propose a pipeline to learn

generic and robust feature representations from multiple datasets to provide abundant data varia-

tions. Chen et al. [31] target to improve the generalisation capability of person recognition model

by ensuring a larger inter-class variation and a smaller intra-class variation during model train-

ing. Saquib et al. [157] learn both the fine and coarse pose information of the person to fuse a

discriminative embedding. Sun et al. [178] employ part-level features to provide fine-grained in-

formation. Researchers incorporate the specific domain knowledge of the whole-body biometric

appearance to boost the person recognition models, such as part information [178], pose [118],

and person recognition specific loss [31].

Moreover, there are extensive efforts on unsupervised learning [107, 106, 204, 32, 127, 115],

domain adaptation [233, 33, 189, 145, 217, 203, 218], weak supervision [239, 131] for minimis-

ing the labelling efforts, and text-image person search [47, 216]. Specifically, the unsupervised

cross-domain person body recognition targets to transfer the identity discriminative knowledge

from a labelled source domain to an unlabelled target domain, by seeking a common feature

space for source-target distribution alignment with discriminative learning constraints, reducing

the domain discrepancy with GANs for domain styles transfer, or unifying the complementary

benefits of synthetic images by GAN and feature discriminative constraints in CNN.

CNN backbone for person body recognition The deep-learning based person body recog-

nition models usually borrow the representative CNN backbones generally designed for image

recognition, such as VGG [167], Inception [179], and ResNet [72]. Recently, more advanced

network structures [235, 34, 111, 178, 51, 188, 165, 170] have been specifically developed for

person body recognition to boost the matching accuracy. Specifically, some networks are de-
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signed to especially exploit the upright body pose [178, 51, 188] by adding auxiliary supervision

signals to features maps pooled horizontally by the last convolutional layer. Attention mecha-

nisms are also employed to focus feature learning on the foreground person regions [165, 170].

Body part-specific CNNs are learned by means of off-the-shelf pose detectors [228, 227]. Some

models branch CNNs to learn representations of global and local image regions [229].

More recently, Zhou et al. [235] learn multi-scale features explicitly at each layer of the net-

works as in a proposed OSNet. As the state-of-the-art person body recognition network structure,

OSNet is utilised as the backbone for the cross-resolution person body recognition in this thesis

(as described in Sec. 5). Specifically, omni-scale features refer to the features of both homo-

geneous ( different spatial scales) and heterogeneous (arbitrary combination of multiple scales)

scales, and a deep person body recognition CNN is designed, termed omni-scale network (OS-

Net), to learn the omni-scale feature. This is achieved by designing a residual block composed of

multiple convolutional streams, each detecting features at a certain scale. More specifically, a uni-

fied aggregation gate is introduced to dynamically fuse multi-scale features with input-dependent

channel-wise weights.

Figure 2.2: (a) Baseline bottleneck. (b) Proposed bottleneck in OSNet [235]. AG: Aggregation
Gate. The first/last 1×1 layers are used to reduce/restore feature dimension.

2.2.2 Cross-resolution Person Body Recognition

However, among the existing person body recognition methods, a largely ignored aspect is that,

persons images from unconstrained surveillance cameras often have varying resolutions, which

would degrade the model performance if not properly handled.

To address the resolution mismatch problem, several cross-resolution person body recog-
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nition methods have been proposed [36, 86, 112, 114, 195]. They are fallen into two groups:

(1) Learning resolution-invariant representation [36, 88, 112] and (2) Exploiting image super-

resolution (SR) [86, 195]. In the first group, Jing et al. [88] propose to learn the mapping be-

tween HR and LR representations by a semi-coupled low-rank dictionary learning model; Li et

al. [112] align the cross-resolution representation with a heterogeneous class mean discrepancy

criterion. Chen et al. [36] learn the resolution-invariant representation by adding an adversarial

loss on the representation features of HR and LR images. A weakness of these methods is that,

such learned representations involve only coarse appearance information sub-optimal for body

recognition. That is because fine-grained details, lacking in LR images but rich in HR images,

are thrown away during learning for an agreement.

The second group of models, designed to exploit image super-resolution, can solve this lim-

itation. Both methods [86, 195] adopt a joint learning strategy of SR and body recognition in a

cascade, integrating identity-matching constraints with SR learning end-to-end. However, this

design suffers from ineffective model training due to significantly higher difficulty of back-

propagating the gradients through such a cascaded heavy model [26, 104]. Recently, Li et

al. [114] combine the resolution-invariant representations with those exacted from resolution-

recovered images, and achieve state-of-the-art performance. However, the above problem re-

mains unsolved. To that end, in this work introduce a novel regularisation based on an inter-task

association mechanism.

2.2.3 Person Body Recognition Datasets

This section provides a brief overview of publicly available datasets for the evaluation of person

body recognition algorithms. Table 2.3 also lists the existing body recognition datasets. Specifi-

cally, this thesis utilises five representative datasets [114, 114, 114, 230, 60] for the evaluation of

the proposed cross-resolution body recognition method, following the existing evaluation setting

of multiple low-resolution (MLR) person body recognition [86, 114] for a better comparison.

Noted that, among them, only the CAVIAR dataset [114] is captured under the real-world cross-

resolution imaging condition and hence provides realistic images of multiple resolutions, i.e.a

genuine MLR dataset for evaluating cross-resolution person body recognition. The other four

synthetic cross-resolution datasets are constructed from the original datasets (CUHK03, VIPeR,

Market-1501, DukeMTMC-reID) as follows: the query images taken from one camera are down-

sampled by a randomly selected downsampling rate r ∈ {2, 3, 4} (i.e.the spatial size of a down-
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sampled image becomes H/r × W/r), while the images taken by the other camera(s) remain

unchanged. The Multiple Low Resolution (MLR) datasets are named as MLR-dataset [86].

The details of the selected evaluation datasets are listed below: The CUHK03 dataset com-

prises 14,097 images of 1,467 identities with 5 different camera views. As [114], the 1,367/100

training/test identity split was used. The VIPeR dataset contains 632 person image pairs captured

by 2 cameras. Following [114], this dataset was randomly divided into two non-overlapping

halves based on the identity labels. Namely, images of a subject belong to either the training or

the test set. The CAVIAR dataset contains 1,220 images of 72 person identities captured by 2

cameras. 22 people who only appear in the closer camera were discarded, and the remaining was

split into two non-overlapping halves in the identity labels as [114]. The Market-1501 dataset

consists of 32,668 images of 1,501 identities captured in 6 camera views. The standard 751/750

training/test identity split was used. The DukeMTMC-reID dataset contains 36,411 images of

1,404 identities captured by 8 cameras. The standard 702/702 training/test identity split was

adopted.

2.3 Biometric Cues for Person Recognition

Among existing person biometric cues, the most commonly used feature is the whole-body cue,

which usually relies on the low-level clothing colour and texture feature, or mid-level attribute-

based features [130]. In the early works that adopt the hand-crafted features for person recog-

nition, the person foreground (body appearance) is segmented from the background [49, 55].

Recently, CNN-based deep learning models have been widely used for person recognition. Such

deep learning models take the person images as inputs and implicitly extract the identity repre-

sentations from foreground whole-body cues globally or partially[58, 107, 114, 162, 172, 206].

In addition to the whole-body cue, there are various visual biometrics based on person appear-

ance are discovered and exploited for person matching, including iris [148], gait [158, 70, 42],

and fingerprint [128].

Specifically, gait information is usually used in multi-shot recognition schemes for video-

based person recognition. Han et al. [70] employ the spatio-temporal gait representation to char-

acterise human walking properties for individual recognition by gait. Lam et al. [100] propose

a gait representation - gait flow image for gait recognition. A following work [186] develop a

temporal template to preserve the s temporal information in a gait sequence. Liu et al. [119]
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incorporate the temporal alignment for gait representations. Recently, deep CNN networks are

employed for similarity learning in gait based person recognition [205, 163]. In terms of identity

recognition with iris cue, Phillips et al. [148] establish the first independent performance bench-

mark for iris recognition technology. A recent work [139] exploit the CNN network to extract

off-the-shelf iris representations. The compactness of deep iris model and the small number of

computing operations are later studied with constrained design in [140].

Compared to the other popular biometric cues for person recognition, face is probably the

most reliable, visually accessible biometric to person identities, especially for the long-term

tracking where clothing colour and other biometrics are easily to change. However, face cue is

much less widely-used than the other cues. It is mainly due to the significant challenge brought

about by the low resolution and pose variations of individuals in typical surveillance footage. Be-

sides, the lack of large-scale surveillance facial identity recognition benchmarks characterised by

realistic low resolution and other unconstrained camera conditions also limit the study of person

recognition with face cue.

2.4 Image Super-Resolution

2.4.1 General Super Resolution

Image Super-Resolution (SR) aims to enhance the resolution and recover the high-resolution

outputs from low-resolution images. SR enables a wide range of practical applications, including

surveillance and security [149, 141] and benefits a variety of downstream tasks [71, 3, 114]. This

is an inherently ill-posed problem, as a low-resolution image can be explained by many different

high-resolution outputs, i.e., multiple solutions could exist for any given low-resolution pixel,

which is an underdetermined inverse problem. Typically, a SR model is trained to constrain the

solution space and the solutions of optimisation-based super-resolution methods is principally

driven by the choice of the objective function [103].

Recently, image super-resolution has rapidly developed thanks primarily to the powerful

modelling capacity of deep models especially the family of CNNs in regressing the pixel-wise

loss (the mean squared error (MSE) loss) between the reconstructed and ground-truth high-

resolution images [211, 44, 46, 102, 220, 92, 93, 98, 180]. Among them, several representative

CNN based SR models are selected for model evaluation in the proposed benchmarks in Sec. 3.

This section gives a brief introduction of the these SR models as follows:
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The SRCNN model [44] is one of the first deep methods achieving remarkable success in

super-resolution. The design is motivated by earlier sparse-coding based methods [212, 94].

By taking the end-to-end learning advantage of neural networks, SRCNN formulates originally

separated components in a unified framework to realise a better mapping function learning. A

mean squared error (MSE) is adopted as the loss function:

lmse = ‖ f (IIIlr;θθθ)− IIIhr‖2
2 (2.9)

where IIIlr and IIIhr denotes coupled low- and high-resolution training images, and f () the to-be-

learned super-resolution function with the parameters denoted by θθθ . This model takes bicubic

interpolated images as input.

The FSRCNN model [46] is an accelerated and more accurate variant of SRCNN [44]. This

is achieved by taking the original low-resolution images as input, designing a deeper hourglass

(shrinking-then-expanding) shaped non-linear mapping module, and adopting a deconvolutional

layer for upscaling the input. The MSR loss function (Eqn. (2.9)) is used for training.

The VDSR model [92] improves over SRCNN [44] by raising the network depth from 3

to 20 convolutional layers. The rational of deeper cascaded network design is to exploit richer

contextual information over large image regions (e.g. 41×41 in pixel) for enhancing high fre-

quency detail inference. To effectively train this model, the residual learning scheme is adopted.

That is, the model is optimised to learn a residual image between the input and ground-truth

high-resolution images. VDSR is supervised by the MSE loss (Eqn. (2.9)).

The DRRN model [180] constructs an even deeper (52-layers) network by jointly exploiting

residual and recursive learning. In particular, except for the global residual learning between the

input and output as VDSR, this method also exploits local residual learning via short-distance

ID branches to mitigate the information loss across all the layers. This leads to a multi-path

structured network module. Inspired by [180], all modules share the parameters and input so

that multiple recursions can be performed in an iterative fashion without increasing the model

parameter size. The MSE loss function (Eqn. (2.9)) is used to supervise in model training.

The LapSRN model [98] consists in a multi-levels of cascaded sub-networks designed to

progressively predict high-resolution reconstructions in a coarse-to-fine fashion. This scheme is

hence contrary to the four one-step reconstruction models above. Same as VDSR and DRRN,

the residual learning scheme is exploited along with an upscaling mapping function to alleviate
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the training difficulty whilst enjoying more discriminative learning. For training, it adopts a

Charbonnier penalty function [18]:

lcpf =
√
‖ f (IIIlr;θθθ)− IIIhr‖2

2 + ε2 (2.10)

where ε (e.g. set to 10−3) is a pre-fixed noise constant. Compared to MST, this loss has a better

potential to suppress training outliers. Each level is supervised concurrently with a separate

loss against the corresponding ground-truth high-resolution images. This multi-loss structure

resembles the benefits of deeply-supervised models [104, 208].

A performance summary of six representative deep super-resolution models is given on five

popular benchmarks in Table 2.4, where the peak signal-to-noise ratio (PSNR) is the most widely-

used reconstruction quality measurement metric for super resolution. PSNR is defined as follows:

PSNR = 10log(L2/(1/N
N

∑
i=1

(IIIhr(i)− f (IIIlr)(i))2)) (2.11)

where L refers to the maximum pixel value, and I, Î are the ground-truth and reconstructed im-

ages with N pixels, respectively. Generally, as a pixel-level metric, PSNR only measures the

differences between corresponding pixels instead of visual perception. Therefore, CNN models

supervised by MSE loss that favours the PSNR metric often tend to suffer from poor perfor-

mance in representing the reconstruction quality in real scenes, which is often related to human

perceptions, and the downstream tasks like low-resolution object recognition in real-world ap-

plications. However, due to the lack of completely accurate perceptual metrics, PSNR is still

currently the popular evaluation metric for SR. Moreover, the commonly-used super-resolution

benchmarks generate the low-resolution images simply by imresize function with default settings

in MATLAB (i.e., bicubic interpolation). Such benchmarks lack of realistic distracting artifacts,

e.g. noises, motion blurriness, imaging compression, non-ideal point spread function, and other

aliasing effects, that the native low-resolution person images captured from in-the-wild scenes,

such as surveillance and social events [226, 40], usually contain, which is the focus of this thesis.

Therefore, the “ideal” benchmarks with high-low resolution paired images and the benchmark-

ing results do not ensure the superior performance of the evaluated existing state-of-the-art SR

models in the context of unconstrained low-resolution person images.

Recently, to match the fidelity of the resolved faces expected at higher resolution, Generative

Adversarial Networks (GANs) based image SR models [35, 103, 155, 219, 85, 11, 3, 143, 209]

have been introduced which additionally exploit an unsupervised adversarial learning loss on top
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Table 2.4: The performance summary of state-of-the-art image super-resolution methods on six
popular benchmarks. None of these benchmarks are designed for FR due to their development
independence. Metric: Peak Signal-to-Noise Ratio (PSNR), higher is better.

Model Scale Set5 Set14 B100 URGAN MANGA

Bicubic 2 33.65 30.34 29.56 26.88 30.84

SRCNN [44] 2 36.65 32.29 31.36 29.52 35.72

FSRCNN [46] 2 36.99 32.73 31.51 29.87 36.62

VDSR [92] 2 37.53 33.03 31.90 30.76 -

DRCN [93] 2 37.63 32.98 31.85 30.76 37.57

LapSRN [98] 2 37.52 33.08 31.80 30.41 37.27

DRRN [180] 2 37.74 33.23 32.05 31.23 -

Bicubic 4 28.42 26.10 25.96 23.15 24.92

SRCNN [44] 4 30.49 27.61 26.91 24.53 27.66

FSRCNN [46] 4 30.71 27.70 26.97 24.61 27.89

VDSR [92] 4 31.35 28.01 27.29 25.18 -

DRCN [93] 4 31.53 28.04 27.24 25.14 28.97

LapSRN [98] 4 31.54 28.19 27.32 25.21 29.09

DRRN [180] 4 31.68 28.21 27.38 25.44 -

Bicubic 8 24.39 23.19 23.67 20.74 21.47

SRCNN [44] 8 25.33 23.85 24.13 21.29 22.37

FSRCNN [46] 8 25.41 23.93 24.21 21.32 22.39

LapSRN [98] 8 26.14 24.44 24.54 21.81 23.39
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of the conventional MSE loss. These GAN methods often produce more photo-realistic and visu-

ally appealing images. Specifically, a GAN based SR model consists of a generator performing

high-resolution image reconstruction from the low-resolution inputs, and a discriminator taking

inputs the super-resolved images and high-resolution and determine whether the inputs are the

high-resolution images or not. The generator and discriminator are trained alternatively, targeting

to a generator that can generate more realistic images to fool the discriminator. Ledig et al. [103]

firstly propose a GAN based SR model by exploiting an adversarial loss on top of the MSE loss

as follows:

Lgan = Exh [logD(xh)]+Exl [log
(
1−D(G(xl))] (2.12)

where xl indicates the LR input, and xh is the corresponding HR counterpart. More specifically,

the generator G tries to minimise the objective value against an adversarial discriminator D that

instead tries to maximise the value. The optimal solution is obtained as:

G∗ = arg min
G

max
D
Lgan. (2.13)

Such adversarial loss is later adopted by a variety of SR models [155, 35, 219, 85, 143, 209].

Currently, GAN training is still unstable. Although with more and more studies on GAN training

stabilising [134], it remains an open research problem that how to correctly integrate and train

the GANs into SR models.

2.4.2 Super-resolution for genuine imagery

Although with the rapid development of super resolution, the pairwise supervised learning, that

most of the existing SR models rely on, becomes infeasible when there is no such pairwise HR-

LR training data, e.g. native poor quality facial imagery data from in-the-wild social media

and surveillance videos. Existing works consider mostly an artificial image SR problem where

the LR images are synthesised by some pre-defined down-sampling processes that nevertheless

retain essentially the same noise characteristics as their corresponding HR images, rather than

super-resolving target native LR images of unknown and significantly different noise properties

as compared to unpaired good quality source HR images. The latter is a much harder problem.

There are a few recent attempts on resolving genuine image SR [19, 20, 38, 40, 164]. In

particular, Shocher et al. [164] learn an image-specific CNN model for each test time based on the

internal image statistics. Whilst addressing the problem of pairwise training data limitation, this

method is computationally expensive from on-the-fly per test image model learning, even with
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small (compact) neural networks. Zhou et al. [236] propose a kernel modelling super-resolution

network that incorporates blur-kernel modelling in the training, where the constructed realistic

blur kernels are generated by a generative adversarial network (GAN). However, the generated

blur-kernels can be limited to model the realistic scenarios with low-quality images degraded by

multiple artifacts, including blur, noise, imaging compression, non-ideal point spread function,

and other aliasing effects, especially in surveillance.

Bulat and Tzimiropoulos [19] develop an end-to-end adversarial learning method for both

face SR and alignment with the main idea that jointly detecting landmarks provides global struc-

tural guidance to the super-resolution process. This method is however sensitive to alignment

errors. Bulat et al. [20] utilise the external training pairs, where the LR inputs are gener-

ated by simulating the real-world image degradation instead of simply down-sampling. This

method presents an effective attempt on genuine LR image enhancement. However, it suffers

from an issue of model input discrepancy between training (simulated genuine LR images) and

test (genuine LR images). On the other hand, unsupervised domain adaptation (UDA) models

[237, 215, 95] also offer a potential solution for genuine LR image super-resolution. This ap-

proach often uses some cycle consistency based loss function for model optimisation, which un-

favourably makes the training difficult and ineffective. To tackle the absence of pixel-alignment

between LR and HR training images, Cheng et al. [38, 40] explore facial identity information

to constrain the learning of a SR model. However, this semantic regularisation fails to yield

appealing visual quality.

In contrast to all the existing solutions, this thesis formulates a unified method that enjoy the

strengths of both conventional SR and UDA methods in a principled manner (Sec. 4). In par-

ticular, the model separates the image characteristic consistifying (adaptation) and image super-

resolution tasks by characteristic regularisation. Importantly, this makes the model training more

effective and computationally more tractable, leading to superior model generalisation capability.

2.4.3 Face Image Super-resolution

As an important domain-specific super-resolution, face image super resolution (face hallucina-

tion) is dedicated to the fidelity restoration of facial appearance by particularly exploiting face

specific information such as facial part structure prior [4, 192, 25, 116, 84, 87, 238, 21, 222]. A

classic approach to hallucination is transferring the high-frequency details and structure infor-

mation from exemplar high-resolution images based on the global and/or local cross-resolution
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relationship. Specifically, the Super-FAN [19] utilises FAN to constrain the alignment of facial

landmarks by end-to-end multi-task learning. And the FSRNet [35] exploits both facial landmark

heatmap and face parsing maps as prior constraints. Besides of the structure information, another

way is to utilise the face attribute or identity information, e.g., to constrain the recovered face im-

ages to have the identical face-related attributes to ground truth. For example, the CBN [238]

exploits the facial prior by alternately optimising super resolution and dense correspondence field

estimation. The SICNN [224], adopts a super-identity loss function to recover the real identity

during super resolution.

Besides of the explicit facial priors used in face super resolution, there are some methods im-

plicitly adopt the facial structure information, especially for noise and low-quality inputs where

the facial structure alignment is unavailable. The TDN [221] incorporates spatial transformer

networks [82] to tackle the face unalignment problem. The following work TDAE [222] adopts a

decoder-encoder-decoder framework to first upsample and denoise the low-resolution inputs be-

fore super resolution with facial alignment. Yang et al. [210] propose to decompose face images

into facial components and background, retrieve adequate HR exemplars in external datasets by

component landmarks, and fuse them to complete HR faces with generic SR for background

pixels.

In addition to the face super resolution models supervised by pixel-wise loss and explicit or

implicit facial priors, similar to the GAN based SR models, researchers also adopt the adversarial

loss to model the global facial structure information from the target data distribution (i.e., realistic

high-resolution face images) [220, 209, 219]. Moreover, researchers also improve face super

resolution from other perspectives. Motivated by the human attention shifting mechanism [136],

the attention-aware face super resolution [21] adopt the deep reenforcement learning to discover

attention face patches for local enhancement, and thus fully exploits the global interdependency

of face images.

However, this mapping relationship is typically learned from aligned low- and high-resolution

image pairs. To exploit super resolution for genuine face images without paired supervision, re-

searchers have made a few attempts [20] based on unsupervised domain adaption algorithms [237,

215, 95], which is however difficult to train and ineffective. Moreover, existing methods often

require noise-free input images and assume stringent part detection and dense correspondence

alignment, otherwise artifacts can be easily introduced in hallucination. These requirements
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may significantly restrict their usability to the low-resolution surveillance face images due to the

presence of uncontrolled noise and poor quality, as well as the lack of aligned high-resolution

counterparts. So far, how effective contemporary image super-resolution and face hallucination

methods are for the low-resolution surveillance FR challenge remains unclear especially in large

scale deployments. This thesis will carry out the corresponding model investigation and extensive

experimental evaluations later on.

2.4.4 Image Super Resolution for Object Recognition

In typical surveillance scenarios, images are often captured from a long distance or wide angle,

leading to the region of interest to be of a low resolution [241]. Images of low resolution brings

about significant challenges to object recognition given the limited discriminative information

and blur. Super resolution that targets to super resolve the high-resolution details from low-

resolution inputs may provide a potential solution to the low-resolution object recognition task.

The low-resolution object recognition problem has drawn attentions in recent years [30, 38,

126, 154, 193, 224]. Among them, there are some studies that explore how to incorporate image

super resolution techniques for the low-resolution image recognition. Instead of utilising the

super resolved images for object recognition, Wang et al. [193] utilise the super resolution model

as a pre-trained priors to train the recognition model for low-resolution inputs. There are other

studies [38, 224, 39] that unite image SR and object recognition in a multi-task joint-learning

framework, where the low-to-high reconstruction loss used for super resolution is adopted as

auxiliary supervision constraints. Specifically, Zou and Yuen [241] propose one of the first super

resolution models with specific focus on low-resolution object recognition, with a discriminative

constraint for learning features useful for recognition. Singh et al. [169] propose an identity-

aware face super resolution technique for generating a HR image from a given LR input. Later,

Singh et al. [168] propose to adopt the super resolution reconstructed loss in the capsule network

to constrain the capsules of low- and high-resolution images of the same class to be similar.

Image super resolution is also used to address the resolution mismatch problem in cross-

resolution recognition, for example, the cross-resolution person body recognition task [86, 195].

Both methods [86, 195] adopt a joint learning strategy of SR and body recognition in a cascade,

integrating identity-matching constraints with SR learning end-to-end. Recently, Li et al. [114]

combine the resolution-invariant representations with those exacted from resolution-recovered

images, and achieve state-of-the-art performance. Nonetheless, such multi-task designs in joint-
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learning scheme often suffers from the heavy concatenated models and hence ineffective model

training due to significantly higher difficulty of back-propagating the gradients [26, 104]. To that

end, this thesis introduces a novel regularisation based on an inter-task association mechanism

(Sec. 5).

Although with a few works focusing on super resolution for low-resolution recognition, in

large, object recognition and super-resolution advance independently, with both assuming the

availability of high-resolution training data such as high-quality web images. It still remains an

open research problem that how to incorporate super resolution for low-resolution object recog-

nition. Especially in surveillance, high-resolution images are typically scarce or unavailable,

which limits these existing methods to the indirect model transfer learning strategy. Besides of

the problem of recognition-aware super resolution, when the training (synthesised low-resolution

images) and test data (genuine low-resolution images) distributions are very different to each

other (typical in reality for the surveillance facial identity matching since it is rather difficult to

collect pseudo image data with visual quality and distribution sufficiently close to the genuine

surveillance data), this will become a much more challenging super-resolution task.

2.5 Summary

The preceding sections have discussed important studies in the literature in terms of super reso-

lution, face recognition and body recognition, and the super resolution techniques in the context

of low-resolution person recognition. Despite the developments achieved by existing methods,

there remains many limitations and open problems. In the following chapters, novel approaches

are presented to overcome the challenges as outlined below:

1. (Chapter 3) Improve the identity recognisability of super resolution for low-resolution

person face recognition: propose a joint deep learning method with a unified end-to-end

network architecture, based on the idea of transferring the knowledge from synthetic to

native SR. Extensive experiments show that such SR knowledge transfer model is able to

benefit the identity recognition performance.

2. (Chapter 4) Improve the fidelity of the super resolved facial images: formulates a

method that joins the advantages of conventional SR and UDA models. The optimisations

for characteristics consistifying and image super-resolving are separated and controlled by

introducing Characteristic Regularisation between them, which makes the model training
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more effective and computationally tractable. Extensive evaluations demonstrate the per-

formance superiority of this method in terms of both fidelity and identity recognisability.

3. (Chapter 5) Solve the resolution mismatch problem for person body recognition: in-

troduces a novel model training regularisation method to effectively leverage image super-

resolution (SR) along with person body recognition in a joint learning manner. It is realised

by parameterising the association constraint by automatically learning from the training

data. Extensive experiments validate its superiority on the cross-resolution person body

recognition task.
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Chapter 3

Low-Resolution Face Recognition by Super-Resolution

3.1 Introduction

Recognising native low-resolution faces is extremely challenging, given the lack of sufficient vi-

sual information for current deep models to learn expressive feature representations. Designed for

enhancing high-resolution image details, super resolution may be beneficial for this task. How-

ever, directly employing the existing SR models does not benefit the native low-resolution recog-

nition problem. It is mainly because that the existing SR models usually require the pixelwise-

aligned LR and HR image pairs for model training, and hence are trained with synthesised HR-

LR image pairs by down-sampling images, instead of the native facial low-resolution images.

The SR models trained with synthesised LR data suffer from significant performance drop

when applied to the realistic facial images for person recognition. This is due to the significant

domain gap of different imaging noise characteristics between native low-resolution facial im-

ages and high-resolution web face photo-shoots. The SR models trained by synthetic LR images

do not capture the unknown and significantly different imaging noise and artifacts inherent to the

native LR images, e.g. sensor noise, compression, non-ideal point spread function, among other

aliasing effects. This domain transfer discrepancy between the training data from one domain

(source) and the test data from a very different domain (target) causes inherent model limitations

for poor performance generalisation among existing SR algorithms. To solve this problem, one

potential solution is to adopt the domain-adaptation strategy with the auxiliary data of artificial

down-sampled web faces for native facial image super-resolution.
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Specifically, a joint learning scheme is adopted in a unified deep network architecture, spe-

cially dedicated to improve the model generalisation to low-resolution inputs by learning the face

enhancement and recognition in an end-to-end manner. With the jointly optimising, it is effective

to reduce the negative effect of noisy fidelity. A complement learning mechanism is introduced

considering the absence of HR facial images, by transferring the super-resolving knowledge

from the auxiliary artificial super-resolution learning task to the natively LR facial data. Taken

together with joint learning, the proposed method is formulated as Complement Super-Resolution

and Identity joint learning (CSRI).

In the experiments, this chapter benchmarks the performance of four state-of-the-art deep

learning FR models [144, 122, 174, 199] and three super-resolution methods [44, 180, 92] on the

TinyFace dataset. It is observed that the existing deep learning FR models suffer from significant

performance degradation when evaluated on the TinyFace challenge. The results also show the

superiority of the proposed CSRI model over the state-of-the-art methods on the low-resolution

face recognition tasks.

3.2 Methodology

Input	Faces

shared shared

Classification
… …

…

(d)	Super-resolution
sub-network

(f)	Face	recognition	
sub-network

…

(e)	Super-resolution	
output

X
Classification

(c)	Ground-truth	HR	Faces

(a)	Synthetic	LR	
face	images

(b)	Native	LR	
face	images

No	ground-truth	HR	Faces

(e)	Super-resolution	
output

Figure 3.1: An overview of the proposed Complement-Super-Resolution and Identity (CSRI)
joint learning architecture. The CSRI contains two branches: (Orange): Synthetic LR SR-FR
branch; (Blue): Native LR SR-FR branch. The two branches share parameters.

To recognise native low-resolution faces, it is essential to extract identity discriminative fea-

ture representations from LR unconstrained images. To that end, a deep neural network archi-

tecture is proposed for Complement-Super-Resolution and Identity joint learning. This approach

is based on two considerations: (1) Joint learning of Super-Resolution and FR for maximising
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their compatibility and complementary advantages; (2) Complement-Super-Resolution learning

for maximising the model discrimination on native LR face data at the absence of native HR

counterparts in further SR-FR joint learning.

One major challenge in optimising the super resolution component on native low-resolution

faces is that there are no coupled HR images. To address this problem, it is considered to transfer

knowledge from auxiliary HR face data on which LR/HR pairs can be constructed by down-

sampling.

CSRI Overview. Given the CSRI design above, a multi-branch network architecture is consid-

ered (Fig. 3.1). The CSRI contains two branches:

1. A synthetic LR SR-FR branch: For improving the compatibility and complementary ad-

vantages of SR and FR components by jointly learning auxiliary face data with artificially

down-sampled LR/HR pairs (the top stream in Fig. 3.1);

2. A native LR SR-FR branch: For adapting super-resolving information of auxiliary LR/HR

face pairs to the native LR facial imagery domain which lacks the corresponding HR faces

by complement SR-FR learning (the bottom stream in Fig. 3.1).

In this study, the CSRI is instantiated by adopting the VDSR [92] for the SR component and

the CentreFace [199] for the FR component. These CSRI components are detailed as follows.

(I) Joint Learning of Super-Resolution and Face Recognition. To adapt the image SR abil-

ity for recognition, a SR-FR joint learning strategy is considered by integrating the output of

SR with the input of FR in the CSRI design so to exploit the intrinsic end-to-end deep learning

advantage. To train this SR-FR joint network, both auxiliary training data with artificially down-

sampled LR/HR face pairs {(IIIalr, IIIahr)} and face identity labels {y} (e.g. CelebA [123]) are used.

Formally, a SR model represents a non-linear mapping function between LR and HR face im-

ages. For SR component optimisation, the pixel-level Mean-Squared Error (MSE) minimisation

criterion is defined as

Lsr = ‖IIIasr− IIIahr‖2
2, (3.1)

where IIIasr denotes the super-resolved face image of IIIalr (Fig. 3.1(a)), and IIIahr denotes the corre-

sponding HR ground-truth image (Fig. 3.1(c)).

Using the MSE loss intrinsically favours the Peak Signal-to-Noise Ratio (PSNR) measure-

ment, rather than the desired low-resolution face recognition performance. This limitation is
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addressed by concurrently imposing the FR criterion in optimising SR. Formally, the perfor-

mance of the FR component is quantified by the softmax Cross-Entropy loss function defined

as:

Lsyn
fr =− log(py), (3.2)

where y is the face identity, and py the prediction probability on class y by the FR component.

The SR-FR joint learning objective is then formulated as:

Lsr-fr = Lsyn
fr +λsrLsr, (3.3)

where λsr is a weighting parameter for the SR loss quantity. λsr=0.003 is set by cross-validation

in the experiments. In doing so, the FR criterion enforces the SR learning to be identity discrim-

inative simultaneously.

(II) Complement-Super-Resolution Learning. Given the SR-FR joint learning as above, the

CSRI model learns to optimise the FR performance on the synthetic (artificially down-sampled)

auxiliary LR face data. This model is likely to be sub-optimal for native LRFR due to the in-

herent visual appearance distribution discrepancy between synthetic and native LR face images

(Fig. 3.5).

To overcome this limitation, the super-resolution and recognition joint learning is further con-

strained towards the native LR data by imposing the native LR face discrimination constraint into

the SR component optimisation. Specifically, the SR and FR components are jointly optimised

using both auxiliary (with LR/HR pairwise images) and native (with only LR images) training

data for adapting the SR component learning towards native LR data. That is, the synthetic and

native LR branches are concurrently optimised with the parameters shared in both SR and FR

components. To enforce the discrimination of labelled native LR faces, the same Cross-Entropy

loss formulation is used.

Overall Loss Function. After combining three complement SR-FR learning loss quantities, the

final CSRI model objective is defined as:

Lcsrl = (Lsyn
fr +Lnat

fr )+λsrLsr, (3.4)

where Lnat
fr and Lsyn

fr measure the identity discrimination constraints on the native and synthetic

LR training data, respectively. With such a joint multi-task (FR and SR) formulation, the SR

optimisation is specifically guided to be more discriminative for the native LR facial imagery

data.
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Model Training and Deployment. The CSRI can be trained by the standard Stochastic Gra-

dient Descent algorithm in an end-to-end manner. As the auxiliary and native LR data sets are

highly imbalanced in size, the CSRI is trained in two steps for improving the model convergence

stability: (1) The synthetic LR SR-FR branch is first pre-trained on a large auxiliary face data

(CelebA [123]). (2) The whole CSRI network is then trained on both auxiliary and native LR

data.

In deployment, the native LR SR-FR branch is utilised to extract the feature vectors for face

image matching with the Euclidean distance metric.

Figure 3.2: Example TinyFace images auto-detected in unconstrained images.

3.3 TinyFace: Low-Resolution Face Recognition Benchmark

3.3.1 Dataset Construction

Low-Resolution Criterion. To create a native LR face dataset, an explicit LR criterion

is needed. As there is no existing standard in the literature, this thesis defines LR faces as

those ≤32×32 pixels by following the tiny object criterion [185]. Existing FR datasets are all

>100×100 pixels (Table 3.1).

Face Image Collection. The TinyFace dataset contains two parts, face images with labelled and

unlabelled identities. The labelled TinyFace images were collected from the publicly available

PIPA [225] and MegaFace2 [137] datasets, both of which provide unconstrained social-media

web face images with large variety in facial expression/pose and imaging conditions. For the

TinyFace to be realistic for LRFR test, this thesis applied the state-of-the-art HR-ResNet101
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model [77] for automatic face detection, rather than manual cropping. Given the detection results,

those faces with spatial extent larger than 32×32 were removed to ensure that all selected faces

are of LR.

Face Image Filtering. To make a valid benchmark, it is necessary to remove the false face

detections. We verified exhaustively every detection, which took approx. 280 person-hours, i.e.

one labeller needs to manually verify detected tiny face images 8 hours/day consistently for a total

of 35 days. Utilising multiple labellers introduces additional tasks of extra consistency checking

across all the verified data by different labellers. After manual verification, all the remaining

PIPA face images were then labelled using the identity classes available in the original data. As

a result, we assembled 15,975 LR face images with 5,139 distinct identity labels, and 153,428

LR faces without identity labels. In total, we obtained 169,403 images of labelled and unlabelled

faces. Fig. 3.2 shows some examples randomly selected from TinyFace.
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Figure 3.3: Distribution of face image height in TinyFace.

Face Image Statistics. Table 3.1 summarises the face image statistics of TinyFace in compari-

son to 9 existing FR benchmarks. Fig. 3.3 shows the distribution of TinyFace height resolution,

ranging from 6 to 32 pixels with the average at 20. In comparison, existing benchmarks contain

face images of ≥100 in average height, a ≥5× higher resolution 1.

3.3.2 Evaluation Protocol

Data Split. To establish an evaluation protocol on the TinyFace dataset, it is necessary to first

define the training and test data partition. Given that both training and test data require labels

with the former for model training and the latter for performance evaluation, we divided the

1The dataset can be downloaded at https://qmul-tinyface.github.io/
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Table 3.1: Statistics of popular FR benchmarks.

Benchmark Mean Height # Identity # Image

LFW [80] 119 5,749 13,233

VGGFace [144] 138 2,622 2.6M

MegaFace [91] 352 530 1M

CASIA [214] 153 10,575 494,414

IJB-A [96] 307 500 5,712

CelebA [123] 212 10,177 202,599

UMDFaces [8] >100 8,277 367,888

MS-Celeb-1M [67] >100 99,892 8,456,240

MegaFace2 [137] 252 672,057 4,753,320

TinyFace (Ours) 20 5,139 169,403

Table 3.2: Data partition and statistics of TinyFace.

Data All Training Set
Test Set

Probe Gallery Match Gallery Distractor

# Identity 5,139 2,570 2,569 2,569 Unknown

# Image 169,403 7,804 3,728 4,443 153,428

5,139 known identities into two halves: one (2,570) for training, the other (2,569) for test. All

the unlabelled distractor face images are also used as test data (Table 3.2).

Face Recognition Task. In order to compare model performances on the MegaFace benchmark

[137], we adopt the same face identification (1:N matching) protocol as the FR task for the

TinyFace. Specifically, the task is to match a given probe face against a gallery set of enrolled

face imagery with the best result being that the gallery image of a true-match is ranked at top-1

of the ranking list. For this protocol, we construct a probe and a gallery set from the test data as

follows: (1) For each test face class of multiple identity labelled images, we randomly assigned

half of the face images to the probe set, and the remaining to the gallery set. (2) We placed all

the unlabelled disctractor images (with unknown identity) into the gallery set for enlarging the

search space therefore presenting a more challenging task, similar to MegaFace [137]. The image

and identity statistics of the probe and gallery sets are summarised in Table 3.2.

Performance Metrics. For FR performance evaluation, we adopt three metrics: the Cumulative
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Matching Characteristic (CMC) curve [96], the Precision-Recall (PR) curve [187], and mean

Average Precision (mAP). Whilst CMC measures the proportion of test probes with the true

match at rank k or better, PR quantifies a trade-off between precision and recall per probe with

the aim to find all true matches in the gallery [83]. To summarise the overall performance, we

adopt the mean Average Precision (mAP), i.e. the mean value of average precision of all per-

probe PR curves.

3.3.3 Training vs Testing Data Size Comparison

TinyFace is the largest native LR web face recognition benchmark (Table 3.1). It is a challenging

task due to very LR face images (5× less than other benchmarks) with large variations in illu-

mination, facial pose/expression, and background clutters. These factors represent more realistic

real-world low-resolution face images for model robustness and effectiveness test.

In terms of training data size, TinyFace is smaller than some existing HR FR model training

datasets, notably the MegaFace2 of 672,057 IDs. It is much more difficult to collect natively

LR face images with label information. Unlike celebrities, there are much less facial images of

known identity labels from the general public available for model training.

In terms of testing data size, on the other hand, the face identification test evaluation offered

by the current largest benchmark MegaFace [91] contains only 530 test face IDs (from FaceScrub

[138]) and 1 million gallery images, whilst TinyFace benchmark consists of 2,569 test IDs and

154,471 gallery images. Moreover, in comparison to LFW benchmark there are 5,749 face IDs

in the LFW designed originally for 1:1 verification test [80], however a much smaller gallery set

of 596 face IDs of LFW were adopted for 1:N matching test (open-set) with 10,090 probe images

of which 596 true-matches (1-shot per ID) and 9,494 distractors [12]. Overall, TinyFace for 1:N

test data has 3∼4× more test IDs than MegaFace and LFW, and 15× more distractors than LFW

1:N test data.

3.4 Experiments

In this section, we presented experimental analysis on TinyFace, the only large scale native LRFR

benchmark, by three sets of evaluations: (1) Evaluation of generic FR methods without consider-

ing the LR challenge. We adopted the state-of-the-art deep learning FR methods (Sec. 3.4.1); (2)

Evaluation of LRFR methods. For this test, we applied super-resolution deep learning techniques
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in addition to the deep learning FR models (Sec. 3.4.2); (3) Component analysis of the proposed

CSRI method (Sec. 3.5).
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Figure 3.4: An overview of training (a) generic FR models and (b) low-resolution FR models
(Independent training of Super-Resulotion (SR) and FR models).

3.4.1 Evaluation of Generic Face Recognition Methods

Table 3.3: Generic FR evaluation on TinyFace (Native LR face images).

Metric (%) Rank-1 Rank-20 Rank-50 mAP

DeepID2 [174] 17.4 25.2 28.3 12.1

SphereFace [122] 22.3 35.5 40.5 16.2

VggFace [144] 30.4 40.4 42.7 23.1

CentreFace [199] 32.1 44.5 48.4 24.6

In this test, four representative deep FR models including DeepID2 [174], VggFace [144],

CentreFace [199] and SphereFace [122] were evaluated. For model optimisation, a given FR

model on the CelebA face data [123] was first trained before fine-tuning on the TinyFace training

set2 (see Fig. 3.4(a)). The parameter settings suggested by the original authors was adopted.

Results. Table 3.3 shows that the FR performance by any model is significantly inferior on

TinyFace than on existing high-resolution FR benchmarks. For example, the best performer

CentreFace yields Rank-1 32.1% on TinyFace versus 65.2% on MegaFace [91], i.e. more than

half performance drop. This suggests that the FR problem is more challenging on natively un-

constrained LR images.

Native vs Synthetic LR Face Images. For more in-depth understanding on native LRFR, we

further compared with the FR performance on synthetic LR face images. For this purpose, we

created a synthetic LR face dataset, which we call SynLR-MF2, using 169,403 HR MegaFace2

2The SphereFace method fails to converge in fine-tuning on TinyFace even with careful parameter
selection. The CelebA-trained SphereFace model was hence deployed .
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Table 3.4: Native (TinyFace) vs. synthetic (SynLR-MF2) LR face recognition.

FR Model Dataset Rank-1 Rank-20 Rank-50 mAP

VggFace [144]
TinyFace 30.4 40.4 42.7 23.1

SynLR-MF2 34.8 46.8 49.4 26.0

CentreFace [199]
TinyFace 32.1 44.5 48.4 24.6

SynLR-MF2 39.2 63.4 70.2 31.4

images [137]. Following the data distribution of TinyFace (Table 3.2), we randomly selected

15,975 images from 5,139 IDs as the labelled test images and further randomly selected 153,428

images from the remaining IDs as the unlabelled distractors. We down-sampled all selected

MegaFace2 images to the average size (20×16) of TinyFace images. To enable a like-for-like

comparison, we made a random data partition on SynLR-MF2 same as TinyFace (see Table 3.2).

Table 3.4 shows that FR on synthetic LR face images is a less challenging task than that

of native LR images, with a Rank-20 model performance advantage of 6.4% (46.8-40.4) by

VggFace and 18.9% (63.4-44.5) by CentreFace. This difference is also visually indicated in the

comparison of native and synthetic LR face images in a variety of illumination/pose and imaging

quality (Fig. 3.5). This demonstrates the importance of TinyFace as a native LRFR benchmark

for testing more realistic real-world FR model performances.

Figure 3.5: Comparison of (left) native LR face images from TinyFace and (right) synthetic LR
face image from SynLR-MF2.

3.4.2 Evaluation of Low-Resolution Face Recognition Methods

In this evaluation, we explored the potential of contemporary super-resolution methods in ad-

dressing the LRFR challenge. To compare with the proposed CSRI model, we selected three rep-

resentative deep learning generic-image SR models (SRCNN [44], VDSR [92] and DRRN [180]),

and one LRFR deep model RPCN [193] (also using SR). We trained these SR models on the

CelebA images [123] (202,599 LR/HR face pairs from 10,177 identities) with the authors sug-
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FR Method Rank-1 Rank-20 Rank-50 mAP

C
en

tr
eF

ac
e No 32.1 44.5 48.4 24.6

SR

SRCNN [44] 28.8 38.6 42.3 21.7

VDSR [92] 26.0 34.5 37.7 19.1

DRRN [180] 29.4 39.4 43.0 22.2
V

gg
Fa

ce

No 30.4 40.4 42.7 23.1

SR

SRCNN [44] 29.6 39.2 41.4 22.7

VDSR [92] 28.8 38.3 40.3 22.1

DRRN [180] 29.4 39.8 41.9 22.4

RPCN [193] 18.6 25.3 27.4 12.9

CSRI (Ours) 44.8 60.4 65.1 36.2

Table 3.5: Native Low-Resolution FR evaluation on TinyFace.
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Figure 3.6: Performance comparison of different methods in CMC curves on the TinyFace
dataset.

gested parameter settings for maximising their performance in the FR task (see Fig. 3.4(b)). We

adopted the CentreFace and VggFace (top-2 FR models, see Table 3.3) for performing FR model

training and test on super-resolved faces generated by any SR model. Since the RPCN integrates

SR with FR in design, we used both CelebA and TinyFace data to train the RPCN for a fair

comparison.

Results. Table 3.5 Fig. 3.6 show that: (1) All SR methods degrade the performance of a

deep learning FR model. One possible explanation is that the artifacts and noise introduced in

super-resolution are likely to hurt the FR model generalisation (see Fig. 3.7). This suggests that

applying SR as a separate process in a simplistic approach to enhancing LRFR does not offer

any benefit, and even is more likely a hindrance. (2) The RPCN yields the worst performance
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Figure 3.7: Examples of super-resolved faces. The enhanced facial feature in the resolved image
is denoted by the red box.

although it was specially designed for LR face recognition. The possible reason is two-fold:

(a) This method exploits the SR as model pre-training by design, which leads to insufficient

FR supervision in the ID label guided model fine-tuning. (b) Adopting a weaker base network

with 3 conv layers. These results suggest that existing methods are ineffective for face recogni-

tion on natively low-resolution images and when the test gallery population size becomes rather

large. (3) The CSRI outperforms significantly all the competitors, e.g. the Rank-1 recognition

performance gain by CSRI over CentreFace is significant at 12.7% (44.8-32.1). This shows the

advantage of the CSRI model design in enabling FR on natively LR face images over existing

generic FR models. However, despite the improvements by the proposed CSRI, due to the lack

of direct supervision in the high-resolution image pixel space, the super-resolved images lack of

the fidelity expected in real high-resolution domain (see Fig. 3.7), which may hinder the further

down-stream tasks, e.g., facial analysis.

3.5 Component Analysis of CSRI

To better understand the CSRI’s performance advantage, the individual model components were

evaluated on the TinyFace benchmark by incrementally introducing individual components of
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the CSRI model.

SR-FR joint learning was examined in comparison to SR-FR independent learning. For fair

comparison, the VDSR [92] and CentreFace [199], which are adopted the components of CSRI,

were used. For SR-FR joint learning, the CSRI synthetic LR SR-FR branch was first trained on

the CelebA data, followed by fine-tuning the FR part on TinyFace training data. Table 3.6 shows

that SR-FR joint learning has a Rank-1 advantage of 10.1% (36.1-26.0) and 4.0% (36.1-32.1)

over SR-FR independent learning and FR only (i.e. CentreFace in Table 3.3), respectively. This

suggests the clear benefit of SR-FR joint learning due to the enhanced compatibility of SR and

FR components obtained by end-to-end concurrent optimisation.

SR-FR Rank-1 Rank-20 Rank-50 mAP

Independent Learning 26.0 34.5 37.7 19.1

Joint Learning 36.1 49.8 54.5 28.2

Table 3.6: Joint vs. independent learning of super-resolution and face recognition.

Complement SR learning was evaluated by comparing the full CSRI with the above SR-FR

joint learning. Table 3.7 shows a Rank-1 boost of 8.7% (44.8-36.1), another significant benefit

from the complement SR learning.

CSR Rank-1 Rank-20 Rank-50 mAP

7 36.1 49.8 54.5 28.2

3 44.8 60.4 65.1 36.2

Table 3.7: Effect of complement super-resolution (CSR) learning.

3.6 Summary

This chapter presents the joint learning of Complement Super-Resolution and face Identity (CSRI)

in an end-to-end trainable neural network architecture. By design, the proposed method differs

significantly from most existing FR methods that assume high-resolution good quality facial im-

agery in both model training and testing, whereas ignoring the more challenging tasks in typical

unconstrained low-resolution web imagery data.

It is shown that the proposed CSRI has significant performance advantage on the native low-

resolution face recognition task. Extensive comparative evaluations show the superiority of CSRI
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over a range of state-of-the-art face recognition and super-resolution deep learning methods when

tested on the newly introduced TinyFace benchmark. The more detailed CSRI component anal-

ysis provides further insights on the CSRI model design.
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Chapter 4

Interpretable Low-Resolution Face Recognition

4.1 Introduction

It is an important computer vision task to recover the high-resolution faces from native low-

resolution images, which enables a variety of downstream applications. In addition to recognising

the identity of low-resolution faces, for example, super resolved faces could also benefit the

facial image analysis [182, 23, 9] task. It is significant for many computer vision applications in

business, law enforcement, and public security [142], but the model performance often degrades

significantly when the face image resolution is very low. Chapter 3 explores how to adopt the

domain-adaptation technique to optimise the super resolution model, to benefit the native low-

resolution facial matching. However, the qualitative results show that the resolved images fail to

match the fidelity expected at the higher resolution, which are perceptually unsatisfying and may

hinder the accurate facial analysis.

This chapter aims to resolve high-fidelity faces from the realistic low-resolution images. As

discussed in Chapter 3, existing state-of-the-art image SR models [35, 219, 238] mostly learn

the low-to-high resolution mapping from paired artificial LR and HR images. The artificial LR

images are usually generated by down-sampling the HR counterparts (Fig 1.2(a)). With this

paradigm, existing supervised deep learning models (e.g. CNNs) can be readily applied. How-

ever, this is at a price of poor model generalisation to real-world genuine LR facial images, e.g.

surveillance imagery captured in poor circumstances. This is because genuine LR data have

rather different imaging characteristics from artificial LR images, often coming with additional
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unconstrained motion blur, noise, corruption, and image compression artefacts. (Fig. 4.2). This

causes the distribution discrepancy between training data (artificial LR imagery) and test data

(genuine LR imagery) which attributes to poor model generalisation, also known as the domain

shift problem [142].

Unsupervised domain adaptation (UDA) methods are possible solutions considering genuine

LR and HR images as two different domains. UDA techniques have achieved remarkable success

[237, 76, 181, 135, 17, 215, 95, 120]. A representative modelling idea is to exploit cycle con-

sistency loss functions between two unpaired domains (Fig 1.2(b)) [237, 215, 95]. It is usually

implemented with a Generative Adversarial Network (GAN) - a generator (e.g., a CNN network)

is used to map an image from one domain to the target domain, with a discriminator to distin-

guish the mapped images from the real target images. More specifically in the context of UDA

with cycle consistency loss functions, a CNN is used to map an image from one domain to the

other, which is further mapped back by another CNN. With such an encoder-decoder like archi-

tecture, one can form a reconstruction loss jointly for both CNN models without the need for

paired images in each domain. The two CNN models can be trained end-to-end, inputting an

image and outputting a reconstructed image per domain. This idea has been attempted in [20] for

super-resolving genuine LR facial imagery.

Using such cycle consistency for unsupervised domain adaptation has several adverse effects.

The reconstruction loss is applicable only to the concatenation of two CNN models. This exac-

erbates the already challenging task of domain adaptation training. In the context of native face

super resolution, the genuine LR and HR image domains have significant differences in both im-

age resolution and imaging conditions. Compared to a single CNN, the depth of a concatenated

CNN-CNN model is effectively doubled. Existing UDA models apply the cycle consistency loss

supervision at the final output of the second CNN, and propagate the supervision back to the first

CNN. This gives rise to extra training difficulties in the form of vanishing gradients [104, 26]. In

addition, jointly training two connected CNN models has to be conducted very carefully, along

with the difficulty of training GAN models [59]. Moreover, the first CNN (the target model) takes

responsibility of both characteristic consistifying and low-to-high resolution mapping, which fur-

ther increases the model training difficulty dramatically.

This chapter solves the problem of super-resolving genuine LR facial images with high fi-

delity by formulating a Characteristic Regularisation (CR) method (Fig 1.2(c)). In contrast
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to conventional image SR methods, this model particularly leverages the unpaired genuine LR

images in order to take into account their characteristics information for facilitating model opti-

misation. Unlike cycle consistency based UDA methods, the proposed model instead leverage

the artificial LR images as regularisation target in order to separately learn the tasks of char-

acteristic consistifying and image super-resolution. Specifically, the proposed design performs

multi-task learning with the auxiliary task as characteristic consistifying (CC) for transforming

genuine LR images into the artificial LR characteristics, and the main/target task as image SR

for super-resolving both regularised and down-sampled LR images concurrently. Since there is

no HR images coupled with genuine LR images, it is considered to align pixel content in the

LR space by down-sampling the super-resolved images. This avoids the use of cycle consis-

tency and their learning limitations. To make the super-resolved images with good facial identity

information, an unsupervised semantic adaptation loss is formulated by aligning with the face

recognition feature distribution of auxiliary HR images.

The proposed CR method can be understood from two perspectives: (i) As splitting up the

whole system into a model for image characteristic consistifying and a model for image SR.

With the former model taking the responsibility of solving the characteristic discrepancy, the SR

model can better focus on learning the resolution enhancement. This is in a divide-and-conquer

principle. (ii) As a deeply supervised network [104], providing auxiliary supervision improves

accuracy and convergence speed [179]. In the case of super resolution specifically, it allows for

better and more efficient pre-training of SR module using paired artificial LR and HR images,

pre-training of CC module by genuine and artificial LR images, and fast convergence in training

the full CC+SR model.

4.2 Methodology

The aim is to obtain a super-resolved HR image Isr from an input genuine LR facial image Ilr with

unknown noise characteristics. In real-world applications, there is no access to the corresponding

HR counterparts for Ilr. This prevents the supervised model training of low-to-high resolution

mapping between them. One solution is to leverage auxiliary HR facial image data (which is

the counterparts of the artificially down-sampled LR data) Iahr. Firstly, here is an overview of

existing image SR models before introducing the proposed characteristic regularisation method.



70 Chapter 4. Interpretable Low-Resolution Face Recognition

4.2.1 Facial Image Super-Resolution

Given auxiliary HR facial images Iahr, one can easily generate corresponding LR images Ialr

by down-sampling. With such paired data, a common supervised image SR CNN model can

be optimised by some pixel alignment loss constraint such as the Mean-Squared Error (MSE)

between the resolved and ground-truth images [103]:

Lsr = ‖Iahr−φsr(Ialr))‖2
2. (4.1)

The learned non-linear mapping function φsr can be then applied to super-resolve LR test images

as:

Iasr = φsr(Ialr). (4.2)

This model deployment expects the test data with similar distribution as the artificial LR training

facial images. If feeding genuine LR images, the model may generate much poor results due to

the domain gap problem.

(a)	Characteristic				Consistifying D

?

(c)	Down-samplingPixel-align

Ground-truth	HR

NO	ground-truth

Genuine	LR	

(b)	Super	Resolution

Artificial	LR	

D (d)	Face	Recognition

f

f̂

D

class

Figure 4.1: An overview of the proposed Characteristics Regularisation (CR) approach for
super-resolving genuine LR facial imagery data. The CR model performs multi-task learning.
(a) The auxiliary task is characteristic consistifying in order to transform genuine LR images
into the artificial LR characteristics. (b) The main task is image SR allowing for super-resolving
both regularised and down-sampled artificial LR images concurrently. (c) Due to no paired HR
images, the model aligns pixel content in the LR space by down-sampling the super-resolved
images. (d) To make the super-resolved images with good facial identity information, an unsu-
pervised semantic adaptation loss term is formulated in the adversarial learning spirit, w.r.t. a
supervised face recognition model trained on auxiliary HR images.

4.2.2 Characteristics Regularisation

To address the domain gap in SR, the model takes a divide-and-conquer strategy: first char-

acteristic consistifying, then image super-resolving (Fig.4.1 gives an overview of the proposed

framework). Specifically, a given genuine LR image is first transformed into that with similar

appearance characteristics as artificial LR images. Then, the SR model is able to better per-

form image super-resolving. To that end, the unsupervised GAN learning framework is exploited
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[59]. The objective is to learn a model that can synthesise facial images indistinguishable from

artificial LR data with condition on genuine LR input.

Formally, the Characteristics Regularisation (CR) GAN model consists of a discriminator D

that is optimised to distinguish whether the input is an artificial down-sampled LR or not, and a

characteristics regularisor φcr that transforms a genuine LR input Ilr to fool the discriminator to

classify the transformed φcr(Ilr) as an artificial image. The objective function can be written as:

Lgan = EIalr [logD(Ialr)]+

EIlr [log
(
1−D(φcr(Ilr))],

(4.3)

where the characteristics regularisor φcr tries to minimise the objective value against an adversar-

ial discriminator D that instead tries to maximise the value. The optimal adaptation solution is

obtained as:

G∗ = arg min
φcr

max
D
Lgan. (4.4)

To better connect the characteristics regularisation φcr with the super-resolving φsr module,

an end-to-end training for the auxiliary artificial LR branch is enabled by additionally learning

a mapping from the down-sampled artificial LR images to the transformed pseudo genuine LR

counterparts. More specifically, pseudo genuine LR images are first generated by an inverse

process of CR, i.e. transforming an artificial LR image to fool the discriminator to classify the

transformed φ̃cr(Ialr) as a genuine LR image:

arg min
φ̃cr

max
D̃

EIlr [log D̃(Ilr)]+

EIlr
aux
[log

(
1− D̃(φ̃cr(Ialr))].

(4.5)

This is learned independently. Then, φcr can be jointly optimised by a loss formula as:

Lcr = ||Ialr−φcr(φ̃cr(Ialr))||22 +λLgan, (4.6)

where λ is a weight hyper-parameter. λ = 0.2 is set in the experiment. It was found that this

design improves the stability of end-to-end joint training for φcr and φsr.

4.2.3 Super-Resolving Regulated Images

If the CR module is perfect in characteristic consistifying, the SR module φsr trained on the

auxiliary facial data can be directly applied. However, this is often not the truth in reality. So,

it is helpful to further fine-tune φsr on the regulated data φcr(Ilr). To do this, the model needs
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Figure 4.2: Examples of genuine facial images randomly sampled from TinyFace-s (top) and
LR-DukeMTMC (bottom).

to address the problem of lacking HR supervision. Instead of leveraging the conventional cycle

consistency idea, the model adopts a simple but effective pixel-wise distance constraint. The

intuition is that, a good super-resolved image output, after down-sampling, should be close to

the LR input. By applying this cheap condition, there is no need to access the unknown HR

ground-truth. Formally, this SR loss function is designed for regulated LR images as:

Lcr-sr = || fDS

(
φsr
(
φcr(Ilr)

))
−φcr(Ilr)||22, (4.7)

where fDS refers to the down-sampling function.

4.2.4 Unsupervised Semantic Adaptation

Apart from visual fidelity, the SR output is also required to be semantically meaningful with

good identity information. To this end, an unsupervised semantic adaptation loss term is formed

in the adversarial learning spirit. The idea is to constrain the perceptual feature distribution of

super-resolved facial images by matching the feature statistics of auxiliary HR images Iahr. It is

formally written as:

Lcr-gan = EIahr [logD′(φfr(Iahr))] +

Eφsr(φcr(Ilr))

[
log
(

1−D′
(
φfr
(
φsr(φcr(Ilr))

)))]
,

(4.8)

where φfr is a CentreFace [199] based feature extractor pre-trained with Iahr. This loss is unsu-

pervised without the need for identity labels of genuine LR training images. Compared to image

based GAN loss, it is found more efficient and easier to train in a low-dimension feature space.
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4.2.5 Model Training and Inference

Due to introduction of characteristic regularisation in the middle of the proposed full model,

more effective model training is enabled. It facilitates a two-staged training strategy. In the

first stage, the CNN for image SR is pre-trained on the auxiliary LR-HR paired facial data, the

CentreFace model on HR images, and the CNN for characteristic regularisation and the inverse

CR on unpaired genuine and artificial LR images in parallel. In the second stage, the cascaded

CR and SR CNNs are fine-tuned together on all the training data.

CNN for image super-resolution. The image SR model φsr as [103] is trained by deploying the

pixel-wise MSE loss function (Eq (4.1)). This model training benefits from the normal adversar-

ial loss for achieving better perceptual quality. Other existing image SR methods [92, 45] can be

readily considered in the framework.

CNN for characteristic regularisation. The CNN for characteristic regularisation φcr is trained

by an adversarial loss and a pixel-wise loss jointly (Eq (4.6)).

Full model. In the second stage, both CNN models φsr and φcr are further fine-tuned jointly. The

overall objective loss for training the full model is formulated as:

L= Lsr +λcrLcr +λcr-srLcr-sr +λcr-ganLcr-gan, (4.9)

where λcr,λcr-sr,λcr-gan are the weight parameters of the corresponding loss terms. In the experi-

ment, it is set that λcr = 0.06, λcr-sr = 0.01, λcr-gan = 0.03 by cross-validation.

Model inference. Once trained, the full model is deployed for test, taking a genuine LR facial

image as input, outputting a HR image.

4.3 Experiments

Datasets. For model performance evaluation, two real-world genuine LR facial image datasets

were sampled from web social-media imagery and surveillance videos. Following [20], LR faces

are defined as those with an average size of ≤16×16 pixels. In particular, the web social-media

based real-world face images were collected by assembling LR faces from the People In Photo

Albums (PIPA) benchmark [225]. The extreme distorted facial images were further manually

filtered out, making this dataset a subset of the TinyFace dataset introduced in Chapter 3, called

TinyFace-s. Similarly, LR face images (small faces) were collected from a multi-target multi-

camera tracking benchmark DukeMTMC [152] and built a surveillance video real-world face
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dataset, called LR-DukeMTMC. There are 8,641 and 7,044 face images in TinyFace-s and LR-

DukeMTMC, respectively. All the face images were obtained by deploying the automatic face

detector [78]. Non-face images were manually filtered out. These two new datasets consist of

genuinely real-world LR facial images captured from unconstrained camera views under a large

range of different viewing conditions such as expression, pose, illumination, and background

clutter. Some randomly selected examples are shown in Fig 4.2.

Training and test data. To effectively train a competing model, both real-world genuine LR

images and web auxiliary HR facial images are needed. For the former, 153,440 LR face images

collected from the Wider Face benchmark [213] were used. This dataset offers rich facial images

from a wide variety of social events, with a high degree of variability in scale, pose, lighting,

and background. For the latter, the standard CelebA benchmark with 202,599 HR web facial

images [175] was selected. Such a training set design ensures that each model can be trained

with sufficiently diverse data to minimise the learning bias. For model test, the entire TinyFace-

s and LR-DukeMTMC were utilised. Both datasets present significant test challenges, as they

were drawn from unconstrained and independent data sources with arbitrary and unknown noise.

Performance evaluation metrics. Due to that there are no ground-truth HR data of genuine LR

facial images, it is impossible to conduct pixel based performance evaluation and comparison.

The Frechet Inception Distance (FID) [75] is utilised to assess the quality of resolved face im-

ages, similar to the state-of-the-art method [20]. Specifically, FID is measured by the Frechet

Distance between two multivariate Gaussian distributions.

Implementation details. All the following experiments were performed in Tensorflow. The

residual blocks [72] was used as the backbone unit of the network. In particular, 3 residual

blocks were used in the net for the characteristics regularisation module φcr and φ̃cr, and the

SRGAN (3 groups containing 12/3/2 residual blocks, respectively. Resolution was increased 2

times across each group) [103] was further adapted for the facial SR module φsr. The adversarial

discriminator for φcr and φ̃cr both consist of 6 residual blocks, followed by a fully connected layer.

The adversarial discriminator D′ for semantic adaptation consists of 5 fully connected layers. All

LR images were sized at 16× 16. The scale of real-world facial image super-resolution was 16

(4×4) times, i.e. the output size is 64×64. The learning rate was set to 10−4, the batch size to

16. The SR module (φsr in Fig. 4.1) was pre-trained on CelebA face dataset with down-sampled

artificial LR and HR image pairs for 100 epochs. And the characteristic consistifying module was



4.3. Experiments 75

trained with unpaired genuine and artificial LR images (down-sampled from CelebA dataset) for

130 epochs. The end-to-end full model was jointly trained by 10 epochs.

Dataset TinyFace-s LR-DukeMTMC

VDSR [92] 94.49 229.56

SRGAN [103] 103.85 232.38

FSRNet [35] 117.19 218.30

SICNN [224] 129.23 223.08

CycleGAN [237] 33.62 42.41

CSRI (Chapter 3) 104.68 240.99

LRGAN [20] 29.80 31.20

CR (proposed) 23.09 25.56

Table 4.1: Comparing the image quality on genuine LR facial image super-resolution. Metric:
FID. Lower is better.

4.3.1 Test Genuine Low-Resolution Facial Images

Competitors. To evaluate the effectiveness of CR model for genuine facial image SR, the pro-

posed model was compared with four groups of the state-of-the-art methods including, two

generic image SR models (VDSR [92], SRGAN [103]), one image-to-image translation model

(CycleGAN [237]), two non-genuine face SR model (FSRNet [35] and SICNN [224]), one UDA-

based genuine face SR model (LRGAN [20]), and one facial identity-guided genuine SR model

(CSRI, proposed in Chapter 3). Same as the proposed CR, CycleGAN, LRGAN and CSRI were

trained using genuine LR images, while the others with artificial LR only as they need pixel-

aligned LR and HR training image pairs.

Results. The results of these methods are compared in Table 4.1. There are observations as

follows: (1) The proposed CR model achieves the best FID score among all the competitors,

suggesting the overall performance advantage of the proposed approach on super-resolving gen-

uine LR facial images. (2) Generic image SR methods (VDSR, SRGAN) perform the worst, as

expected, although re-trained by the large-scale CelebA face data with artificial LR and HR im-

age pairs. This is due to the big image characteristics difference between the source artificial LR

and the target genuine LR images. (3) By considering the problem from image-to-image domain

adaptation perspective, CycleGAN is shown to be superior than VDSR and SRGAN models.

This is because of the domain gap problem. However, it is less optimal than modelling explicitly
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genuine LR face images in the SR process, as compared to the two specifically designed gen-

uine LR facial image super-resolution models, CR and LRGAN. This is more so in surveillance

videos (LR-DukeMTMC). (4) With the high-level facial identity constraint, CSRI cannot achieve

satisfactory low-level visual fidelity in the pixel space. (5) Despite modelling facial prior explic-

itly, FSRGAN fails to improve meaningfully over generic SR methods (VDSR, SRGAN). This is

due to the significant domain gap between the genuine and artificial LR facial images, leading to

difficulty in inferring useful facial content and structural prior from the low-quality genuine LR

images. (6) As a state-of-the-art model, LRGAN demonstrates its advantages over other models

by learning explicitly the image degradation process. However, it is clearly outperformed by the

proposed CR model. This suggests the overall performance advantages of the proposed method.

Qualitative evaluation. To conduct visual comparisons between different alternative methods,

SR results of random genuine LR facial images are provided in Fig 4.3 . Overall, the visual ex-

amination is largely consistent with the numerical evaluation. Specifically, existing methods tend

to generate images with severe blurry and artefact either globally (VDSR, SRGAN) or locally

(CycleGAN, LRGAN). In contrast, CR can yield HR facial images with much better fidelity

in most cases. This visually verifies the superiority of the proposed method in super-resolving

genuine LR facial images.

Model complexity. The top-3 models (CR, LRGAN [20], and CycleGAN [237]) are compared

in three aspects: (1) Model parameters: 2.7, 4.0, and 21 million; (2) Training time: 46, 72, and

81 hours; and (3) Per-image inference time: 7.5, 6.6, and 150 ms, using a Tesla P100 GPU.

Therefore, CR is the most compact and most efficient.

4.3.2 Face Recognition on Genuine LR Face Imagery

The benefit of image SR is tested on low-resolution face recognition, on the TinyFace-s dataset.

The CentreFace model trained on the auxiliary HR images and the CMC rank metrics are used.

The results in Table 4.2 show that: (1) Directly using raw LR images leads to very poor recogni-

tion rate, due to lacking fine-grained facial trait details. (2) CR achieves the best performance gain

as compared to all the strong competitors. (3) Interestingly, LRGAN gives a negative recogni-

tion margin, mainly due to introducing more identity-irrelevant enhancement despite good visual

fidelity.
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Figure 4.3: Examples of genuine LR image super-resolution on (top) TinyFace-s and (bottom)
LR-DukeMTMC.
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Dataset Rank-1 (%)

VDSR [92] 25.45

SRGAN [103] 27.00

FSRNet [35] 26.50

SICNN [224] 28.85

CycleGAN [237] 25.12

CSRI (Chapter 3) 29.59

LRGAN [20] 21.99

CR (Ours) 30.53

Raw LR input 24.83

Table 4.2: Face recognition performance on super-resolved genuine LR images from TinyFace-s.
Metric: Rank-1. Higher is better.

Metric PSNR SSIM

VDSR [92] 26.31 0.7918

SRGAN [103] 25.10 0.7873

FSRNet [35] 25.10 0.7234

SICNN [224] 26.10 0.7986

CycleGAN [237] 18.85 0.6061

CSRI (Chapter 3) 25.40 0.7388

LRGAN [20] 21.88 0.6869

CR (Ours) 25.50 0.8184

Table 4.3: Comparison of state-of-the-art methods on artificial LR facial image super-resolution.
Dataset: Helen. Metric: PSNR & SSIM. Higher is better.

4.3.3 Test Artificial Low-Resolution Facial Images

For completeness, model performance was tested in artificial LR facial images as in conventional

SR setting.

Model deployment. By design, the CR model is trained for super-resolving genuine LR facial

imagery. However, it can be flexibly deployed without the characteristic regulation module, when

artificial LR test images are given.

Dataset. In this evaluation the Helen face dataset [101] with 2,330 images was selected. The

artificial LR test images were produced by bicubic down-sampling, as the conventional SR eval-

uation setting.
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Metrics. For performance evaluation, the common Peak Signal-to-Noise Ratio (PSNR) and

structure similarity index (SSIM) [197] were used. This is because, there are ground-truth HR

images for pixel-level assessment in this case.

Results. Table 4.3 compares the performances on normal Helen LR facial images of CR and

state-of-the-art SR methods. It is observed that CR can generate better results than all the com-

petitors except VDSR for the PSNR metric. Interestingly, CR outperforms SRGAN which is

actually the SR module in the proposed network. This implies that the model generalisation for

conventional SR tasks can be improved by the proposed unsupervised SR learning objective (Eq

(4.7)).

4.3.4 Component Analysis and Discussion

A series of model component analysis were conducted for giving insights to the CR performance.

Dataset TinyFace-s LR-DukeMTMC

W/O CR 133.30 190.73

W/ CR 23.09 25.56

Table 4.4: Effect of characteristics regularisation (CR). Metric: FID.

Characteristic regularisation. The effect and benefits of characteristic regularisation (CR) on

model performance was evaluated. It is compared with a baseline which learns the SR module

from genuine and artificial LR images jointly. The baseline model needs to fit heterogeneous

input data distributions. The training loss function is Lbase = Lsr + λcr-srLcr-sr + λcr-ganLcr-gan.

This allows for testing the exact influence of characteristic consistifying. Table 4.4 shows that CR

plays a key role for enabling the model to super-resolve genuine LR facial images. Without CR,

the model fails to properly accommodate the genuine data, partly due to an extreme modelling

difficulty for learning such a cross-characteristics cross-resolution mapping

Dataset TinyFace-s LR-DukeMTMC

FID(G-LR, A-LR) 40.72 86.23

FID(R-LR, A-LR) 19.49 24.32

Table 4.5: Evaluation of the regulated LR images (R-LR). G-LR: Genuine LR images; A-LR:
Artificial LR images.
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The result of characteristic consistifying, i.e. the regulated LR images, was further examined.

To this end, the FID between artificial and regulated LR images was measured, in comparison

to that between artificial and genuine LR images. Table 4.5 shows that although regulated LR

images match significantly better to artificial LR data than their genuine counterparts, the dis-

tribution difference remains. This suggests the necessity of fine-tuning the SR module on the

regulated LR images (the second training stage).

Qualitative results are shown in Fig. 4.4. It is observed that compared to the genuine LR

input, the regulated images have clearer contour of facial components, better lighting conditions

and less blur, i.e. much closer to artificial LR data. This eases the subsequent SR job.

Dataset TinyFace-s LR-DukeMTMC

W/O SR-RI 111.01 113.70

W/ SR-RI 23.09 25.56

Table 4.6: Effect of the super-resolution fine-tuned on the regulated images (SR-RI). Metric:
FID. Lower is better.

Super-resolving regulated images. In the second training stage, the SR module is fine-tuned for

better super-resolving regulated LR images. The effect of this design was evaluated. Table 4.6

shows that the model performance drops noticeably without the proposed SR model fine-tuning

on regulated LR images. This is consistent with the observation in Table 4.5.

Dataset TinyFace-s LR-DukeMTMC

W/O UL 25.30 26.11

W/ UL 23.09 25.56

Table 4.7: Effect of unsupervised loss (UL) for super-resolving regulated images. Metric: FID.
Lower is better.

Recall that an unsupervised SR loss (Eq (4.7)) is introduced for regulated LR images due to

no HR ground-truth. Pixel-wise alignment is considered in LR image space, without the need

for cycle consistency. Its impact on the model performance was tested. Table 4.7 shows that

applying this loss can clearly boost the fidelity quality of resolved faces. Also, it is found that

the design makes the model training more stable. Further qualitative evaluation in Fig 4.5 shows

that the unsupervised SR loss can help reduce the noise and distortion in SR, leading to visually

more appealing results.
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Figure 4.4: Genuine LR vs. regulated LR vs. resolved face images.

4.4 Summary

This chapter presents a Characteristic Regularised (CR) method for super-resolving genuine LR

facial imagery with high fidelity. This differs from most SR studies focusing on artificial LR

images with limited model generalisation on genuine LR data and UDA methods suffering in-

effective training. In comparison, CR possesses the modelling merits of previous SR and UDA

models end-to-end, solves both domain shift and ineffective model training, and simultaneously

takes advantage of rich resolution information from abundant auxiliary training data. Extensive
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Figure 4.5: Visual examination: W/O vs. W/ unsupervised loss (UL) in super-resolving regulated
images.

comparative experiments are conducted on both genuine and artificial LR facial images. The re-

sults show the performance and generalisation advantages of the proposed model over a variety

of state-of-the-art image SR and UDA models. Detailed model component analysis is carried out

for revealing the model formulation insights.
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Chapter 5

Cross-Resolution Person Body Recognition

5.1 Introduction

Most existing methods assume that the probe and gallery images have similar and sufficiently

high resolutions for person body recognition (person re-identification). However, due to uncon-

strained distances between cameras and pedestrians, person images are often captured at var-

ious resolutions. This resolution mismatch issue brings about significant challenges to body

recognition. As low-resolution (LR) images contain much less identity detail information than

high-resolution (HR) images, directly matching them across resolutions leads to substantial per-

formance drop [86, 114]. For example, a standard person body recognition model [53] can suffer

up to 19.2% Rank-1 rate drop when applied to cross-resolution person body recognition [114].

A number of cross-resolution body recognition methods have been developed for address-

ing the resolution mismatch problem [36, 86, 114, 195]. They are generally in two categories:

(1) Learning resolution-invariant representation [36] and (2) Exploiting image super-resolution

(SR) [86, 195]. The first category aims at learning a feature representation space shared by

LR and HR images, but tends to lose fine-grained discriminative details due to being absent in

LR images. The second category can solve this limitation often by adopting a multi-task joint

learning framework which cascades SR and body recognition. However, this design suffers from

ineffective model training due to significantly higher difficulty of backpropagating the gradients

through such a cascaded thus heavier model [26]. As a consequence, the SR model is less com-

patible with person body recognition. Recently, Li et al. [114] combined the two approaches in a
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unified framework for improving cross-resolution body recognition performance, but still leaving

the above problem unsolved.

This chapter addresses this problem by introducing a novel regularisation named Inter-Task

Association Critic (INTACT). INTACT is an inter-task association mechanism that smooths out

two unique tasks in joint learning. In design, it consists of a cascaded multi-task (SR & body

recognition) network and an association critic network. The objective is to enhance the compat-

ibility between SR and body recognition, i.e., super-resolving LR person images in such a way

that the resolved images are suited for the body recognition model to perform identity matching

in the HR image space. This is realised in two parts by INTACT: (I) The (unknown) inter-task

association constraint is parameterised with a dedicated network, which enables it to be learned

directly from the HR training data. (II) Once learned, serving in a critic role the association con-

straint is then applied to supervise the SR model. That means, the SR model training is further

constrained to satisfy the learned inter-task association.

5.2 Methodology

Problem setting This section considers the cross-resolution person body recognition problem.

The model training assumes a set of identity labelled high-resolution (HR) training images D =

{xh,y}. The objective is to learn a person body recognition model that can tackle low-resolution

(LR) query images in matching against a set of HR gallery images at test time.

The potential of image super-resolution (SR) is explored. The intuition is that an effective

SR model should be able to recover the resolution of LR images so that the resolution mismatch

problem between the query and gallery images can be well alleviated. To encourage that the

SR model can generate such HR images that are more effective for person body recognition,

a straightforward approach is to form a joint multi-task learning pipeline by cascading SR and

body recognition sequentially, as exemplified in [86].

5.2.1 Joint Multi-Task Learning

Image super-resolution model To train a SR model, a set of LR-HR image pairs {(xl,xh)}

with pixel alignment are typically used. Often, such pairs are formed by downsampling the HR

training images. Noted that in this chapter, the relatively higher resolution pedestrian images

are captured under the unconstrained imaging conditions (surveillance), that is, both the higher
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resolution and the down-sampled lower resolution counterparts are the genuine images defined in

the previous chapters. Therefore, in this chapter, the low resolution images are simply generated

by down-sampling from the higher resolution pedestrian images. This chapter chooses the

Generative Adversarial Network (GAN) model [59] for SR due to its promising performance

[103].

GAN solves a min-max optimisation problem, where the discriminator D aims to distin-

guish the real HR from super-resolved images, while the generator G aims for generating super-

resolved images that can fool the discriminator. The objective function can be defined as:

Lgan = Exh [logD(xh)]+Exl [log
(
1−D(G(xl))]. (5.1)

More specifically, the generator G tries to minimise the objective value against an adversarial

discriminator D that instead tries to maximise the value. The optimal solution is obtained as:

G∗ = arg min
G

max
D
Lgan. (5.2)

Person body recognition model With the training data D, one can train any existing person

body recognition model (e.g.[235]) by a softmax Cross-Entropy loss function:

Lid =− log(py), (5.3)

where y is the ground-truth person identity of xl , and py the prediction probability on class y.

Joint multi-task learning To build a joint multi-task learning pipeline, one can simply cascade

SR and body recognition by using the output G(xl) of the SR as the input of body recognition

model. The overall objective function is then formulated as:

Lsr = LMSE +λgLgan +λcLid, (5.4)

where LMSE is the pixel-wise content loss, defined as LMSE = ‖xh−G(xl)‖2
2. λg and λc are

weight parameters.

Limitation Despite a good solution for cross-resolution body recognition, this pipeline is in-

trinsically limited. This is due to significantly higher difficulty of backpropagating the gradients

through two cascaded models [26, 104]. As a consequence, the SR model training is not properly

constrained for maximising the person body recognition performance, i.e.the resulted SR model

is not well compatible with the body recognition model.
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Figure 5.1: An overview of the proposed Inter-Task Association Critic (INTACT) method for
cross-resolution person body recognition. Specifically, INTACT aims to recover the resolu-
tion of LR query images in such a way that the super-resolved images can be more accurately
matched against HR gallery images for person body recognition. Joint learning of an image
super-resolution (SR) model and a person body recognition model in a cascaded manner is unsat-
isfactory, due to higher difficulty of backpropagating the gradients through two cascaded models.
INTACT offers a superior solution. The proposed model is trained alternatively in three steps:
(1) Update the discriminator D of a GAN model; (2) Update the inter-task association module
φ between the identity recognition representation fff c and discriminator representation fff d. (3)
Update the generator G of the GAN model, subject to the learned association regularisation on
the identity recognition representation fff ′c and discriminator representation fff ′d of the resolved
images. G: the generator of GAN model; D: the discriminator; C: the person body recognition
model trained with cross-entropy loss.

5.2.2 Inter-Task Association Critic

To address this fundamental limitation, a novel regularisation, Inter-Task Association Critic (IN-

TACT), is introduced. The key idea of INTACT is to exploit the intrinsic association between the

SR and body recognition tasks as an extra optimisation constraint for boosting their joint learning

and enhancing their compatibility. However, it is nontrivial to quantify such inter-task associa-

tion which are typically complex and unknown a priori. To solve this issue, this association is

parameterised using a dedicated network.

Specifically, a dedicated network is leveraged for representing the association from the main

task (i.e.person body recognition) to the auxiliary task (i.e.SR). This forms the core element

of INTACT. During model training, INTACT consists of two parts. In part I, it discovers the
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association using the native HR images. Concretely, it learns the association network residing

between the discriminator and identity classification representations on the HR training images

{xh}. In part II, the learned association is then applied as a regularisation in the SR model train-

ing. Concretely, the discriminator and classification representations extracted from the resolved

images are encouraged to satisfy the association constraint pre-learned from the true HR data.

An overview of the INTACT method is depicted in Fig. 5.1.

Part I: Association Learning With a GAN model, the real-fake judgement task is represented

by the feature activation fff d of the discriminator. For the identity classification task, a large

number of on-the-shelf person body recognition models can be adopted. This chapter exploits a

very recent method presented in [235] for extracting identity classification feature fff c to represent

identity. The body recognition model is trained using HR images xh independently to achieve the

best identity representing power. It is trained one-off, frozen and served as an identity critic for

the following model optimisation.

Given an input LR image xl , the generator (SR model) is expected to output a super-resolved

HR image G(xl) with high identity discrimination. To achieve this, an association constraint φ

between the real-fake discriminator representation fff d and identity classification fff c representa-

tions of the image xh is designed. Then, φ is represented and learned on HR training images xh

with a small network, considering that they are the target the SR images G(xl) need to approach

during training.

Formally, the association is learned as the transformation from the identity recognition fff c to

discriminator fff d representations. This is based on a hypothesis that the identity recognition repre-

sentation, learned from HR training images, contains the information for general high-resolution

distribution (that the real-fake discriminator tries to learn); Whilst the discriminator features are

relatively less informative compared to the identity ones, due to being derived from a simpler

binary classification task (real or fake). Learning such a mapping is thus more sensible. In

particular, we derive an association regularisation as:

Lintact = ||φ( fff c)− fff d||22. (5.5)

It aims to optimise the parameters φ of the association network, using fff c extracted from the body

recognition model and fff d extracted from the discriminator on the HR image xh.

To facilitate learning φ , an additional bridging constraint is further imposed for manipulating

the optimising direction. Specifically, an intermediate latent feature space fff e is isolated from φ
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such that a bridging operation can be implanted with a transform σ of the target fff d, defined as:

Le = ||σ( fff d)− fff e||22, (5.6)

where fff e is obtained in the middle latent space of φ with fff c as input. The bridging module σ is

jointly learned with the association module φ in a combination as:

Lintact-e = Lintact +Le. (5.7)

Part II: Association Regularisation Once the inter-task association network φ is learned as

above, it is treated as a critic to regularise the learning of the SR model (the generator) and the

discriminator in the GAN based multi-task learning network. The learned association is distilled

by similarly coupling the information of discriminator and identity recognition. Particularly, this

distillation loss is in the same form of Eq. (5.5) but applied to the SR images G(xl) as:

Ldis = ||φ( fff ′c)− fff ′d||22, (5.8)

where fff ′c and fff ′d are the corresponding identity and discriminator representations of a single SR

image G(xl) analogue to xh above.

It is worth mentioning that, unlike Eq. (5.5), here the association network φ is fixed to

functionally serve as an external critic in this step. This role is similar in spirit as the ImageNet

pretrained VGG model of the perceptual loss [89]. Using Ldis along with GAN training, the

synthesis of such HR images that respect the same association relation between identity and

fidelity on the genuine HR images is essentially encouraged. This is the key drive behind the

INTACT model that imposes both supervision signals and importantly their interaction in a single

formulation.

Remarks Unlike the de facto multi-task inference using weighted loss summation for inter-

task interaction learning and communicating, the underlying association between two tasks is

discovered as an extra learning constraint. Significantly, once parameterised this association can

be automatically learned from the original training data themselves in a data-driven manner, with-

out any hand-crafting and the need for ad-hoc knowledge. Consequently, the intrinsic conflicts

between two different tasks can be mitigated effectively, benefiting the overall model learning

process towards person identity matching. Moreover, it can be also considered that INTACT

takes a soft integration design that aims to link the underlying objectives between two different

tasks by maximising their positive correlation during training. Consequently, the two learning
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objectives can adaptively collaborate in a unified learning process with a balanced trade-off be-

tween individual and common pursuits.

Algorithm 1 INTACT model training
Input: Training data D = {xl,xh} with identity labels Y .

Output: A person image super-resolution (SR) model.

Initialisation: Training a standard person body recognition model with HR images and the iden-

tity labels.

Alternating training (frozen one, and update the others):

for i = 1 to iter do

(1) Update the discriminator with the GAN loss (Eq. (5.2));

(2) Update the association network φ (Eq. (5.7));

(3) Update the generator (SR model) with the SR objective loss (Eq. (5.4)) and distillation loss

(Eq. (5.8)).

end for

5.2.3 Model Training

In model training, the INTACT loss terms are seamlessly integrated with the standard GAN

optimisation with one more step. The whole model remains end-to-end trainable. The entire

training process is summarised in Algorithm 1.

5.3 Experiments

5.3.1 Datasets

This section used five person body recognition benchmarks for evaluations. The CUHK03

dataset comprises 14,097 images of 1,467 identities with 5 different camera views. As [114],

the 1,367/100 training/test identity split was used. The VIPeR dataset contains 632 person im-

age pairs captured by 2 cameras. Following [114], this dataset was randomly divided into two

non-overlapping halves based on the identity labels. Namely, images of a subject belong to either

the training or the test set. The CAVIAR dataset contains 1,220 images of 72 person identities

captured by 2 cameras. 22 people who only appear in the closer camera were discarded, and

the remaining was split into two non-overlapping halves in the identity labels as [114]. The
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Market-1501 dataset consists of 32,668 images of 1,501 identities captured in 6 camera views.

The standard 751/750 training/test identity split was used. The DukeMTMC-reID dataset con-

tains 36,411 images of 1,404 identities captured by 8 cameras. The standard 702/702 training/test

identity split was adopted.

Following [86, 114], this section evaluated the setting of multiple low-resolution (MLR)

person body recognition. Four synthetic and one real-world cross-resolution body recognition

benchmarks were tested. Specifically, for the synthetic cases (Market-1501, CUHK08, VIPeR,

and DukeMTMC), the query images taken from one camera are down-sampled by a randomly

selected downsampling rate r ∈ {2, 3, 4} (i.e.the spatial size of a downsampled image becomes

H/r × W/r), while the images taken by the other camera(s) remain unchanged. The Multiple

Low Resolution (MLR) datasets are named as MLR-dataset. On the other hand, the CAVIAR

dataset provides realistic images of multiple resolutions, i.e.a genuine MLR dataset for evaluating

cross-resolution person body recognition.

5.3.2 Experimental Settings

The proposed INTACT model was evaluated using the cross-resolution person body recognition

setting [86, 114], where the probe set contains LR images whilst the gallery set contains HR

images. The standard single-shot person body recognition setting was adopted, and the average

cumulative match characteristic was used as the evaluation metric.

5.3.3 Implementation Details

All the experiments were performed in PyTorch on a machine with a Tesla P100 GPU. During

training, the varying LR images are generated by randomly down-sampling HR images by r ∈

{2, 3, 4} times. All the LR images were then resized to 256×128×3 for both model training and

deployment. The residual blocks [72] were used as the backbone of the proposed model. For

the SR generator, an encoder-decoder architecture was adopted. Specifically, it consists of 16

residual blocks equally distributed in 8 groups. The resolution drops 16 times from 256×128 to

16×8 pixels (due to the first 4 residual block groups each with a max pooling layer), and then

increases back to 256×128 with the last 4 groups of residual block each with pixel shuffling. The

generator’s architecture is shown in Fig. 5.2. The discriminator is similar as [103]. The person

body recognition network [235] was pre-trained on the HR training data. Once trained, it was

frozen during the training of INTACT.
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Figure 5.2: Architecture of image SR model (GAN’s generator).

The inter-task association network φ was implemented by an encoder-decoder network,

where the intermediate latent feature space fff e is set as the encoder’s output. Both encoder and

decoder contain three FC layers each followed with batch-normalisation, respectively. The di-

mension of the latent feature space was set to 200. The bridging module σ for fff d shares the

same structure to the encoder of φ . The extra overhead introduced by the association network

is marginal, as compared to the standard GAN training cost. Per-iteration cost increase was not

noticed. Actually, it was observed that with INTACT the whole model often converges using

less epochs, leading to a faster training process than the standard multi-task GAN baseline. The

learning rate was set to 1×10−4 for generator G and discriminator D, and 1×10−3 for the asso-

ciation module φ . The mini-batch size was 32. The loss hyper-parameters was set consistently

in all the experiments as: λg = 0.1, λc = 0.3. In practice, these parameters were selected by

balancing their loss value scales to avoid any dominating term in training.

Table 5.1: Cross-resolution person body recognition performance (%). Bold and underlined
numbers indicate top two results, respectively.

Model
MLR-Market-1501 MLR-CUHK03 MLR-VIPeR MLR-DukeMTMC-reID CAVIAR

Rank1 Rank5 Rank10 Rank1 Rank5 Rank10 Rank1 Rank5 Rank10 Rank1 Rank5 Rank10 Rank1 Rank5 Rank10

CamStyle [234] 74.5 88.6 93.0 69.1 89.6 93.9 34.4 56.8 66.6 64.0 78.1 84.4 32.1 72.3 85.9

FD-GAN [53] 79.6 91.6 93.5 73.4 93.8 97.9 39.1 62.1 72.5 67.5 82.0 85.3 33.5 71.4 86.5

SLD2L [88] - - - - - - 20.3 44.0 62.0 - - - 18.4 44.8 61.2

SING [86] 74.4 87.8 91.6 67.7 90.7 94.7 33.5 57.0 66.5 65.2 80.1 84.8 33.5 72.7 89.0

CSR-GAN [195] 76.4 88.5 91.9 71.3 92.1 97.4 37.2 62.3 71.6 67.6 81.4 85.1 34.7 72.5 87.4

JUDEA [112] - - - 26.2 58.0 73.4 26.0 55.1 69.2 - - - 22.0 60.1 80.8

SDF [194] - - - 22.2 48.0 64.0 9.3 38.1 52.4 - - - 14.3 37.5 62.5

RAIN [36] - - - 78.9 97.3 98.7 42.5 68.3 79.6 - - - 42.0 77.3 89.6

CAD [114] 83.7 92.7 95.8 82.1 97.4 98.8 43.1 68.2 77.5 75.6 86.7 89.6 42.8 76.2 91.5

INTACT (Ours) 88.1 95.0 96.9 86.4 97.4 98.5 46.2 73.1 81.6 81.2 90.1 92.8 44.0 81.8 93.9
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5.3.4 Comparisons to State-of-the-Art Methods

The INTACT was compared with a wide range of state-of-the-art body recognition methods,

including (1) Conventional person body recognition models: CamStyle [234] and FD-GAN [53];

(2) Super-resolution based models: SLD2L [88], SING [86], CSR-GAN [195]; (3) Resolution-

invariant representation learning based models: JUDEA [112], SDF [194], RAIN [36]; and (4)

A hybrid method CAD [114] that combines SR and resolution-invariant representation learning.

The results comparisons are shown in Table 5.1. There are the following observations:

(1) INTACT achieves the state-of-the-art performance on all the five datasets, consistently out-

performing the best competitor [114] by up to 6% at Rank-1.

(2) Compared to the SR based cross-resolution person body recognition methods (SLD2L [88],

SING [86], CSR-GAN [195]), INTACT achieves significant improvement, e.g.up to 15.1% Rank-

1 performance boost. This validates that the proposed model can effectively address the inferior

compatibility issue between image SR and person body recognition as suffered by these previous

state-of-the-art methods.

(3) Compared to resolution-invariant representation learning models (JUDEA [112], SDF [194],

RAIN [36]), INTACT achieves the best performance on both the small datasets (MLR-VIPeR

and CAVIAR, which is generally very challenging for deep learning methods due to no sufficient

training data), and the large dataset (MLR-CUHK03), often by a large margin. This suggests that

image SR based methods provide more superior solutions.

(4) Compared to the best competitor [114] that exploits both image SR and resolution-invariant

representation learning, INTACT remains a better method by only using image SR as the core

strategy.

(5) The standard person body recognition models (CamStyle [234] and FD-GAN [53]) suffer

from significant performance drop on MLR person body recognition datasets, as compared to

their reported results on standard HR person body recognition datasets. This shows that the

resolution mismatch problem is typically ignored by most existing body recognition methods.

5.3.5 Inter-Task Association Analysis

A multi-task learning framework was adopted as the base model, where the SR module serves as

a preprocessing step to recover the essential details originally missing in LR images in order to

more accurately match HR gallery images. It is considered that the SR task inherently may be
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Figure 5.3: Examples of recovered images from the test set of MLR-CUHK03 and MLR-
Market1501.

not compatible to the identity matching task, which is the reason why we introduced INTACT as

an explicit regularisation for SR. Here, an experiment was conducted to examine the association

between the two different tasks (image SR & person body recognition) and its effect on the

overall model performance.

Evaluation metrics The pixel-wise SR quality of the recovered images by INTACT was mea-

sured on the MLR-CUHK03 test set. The SSIM and PSNR metrics were used, together with

Rank-1 as person body recognition performance metric.

Competitors INTACT was compared with: (1) Sole SR: the proposed method without person

body recognition constraint, (2) SR+ID: jointly learning image SR and person body recogni-

tion, and (3) four state-of-the-art body recognition models (CycleGAN [237], SING [86], CSR-

GAN [195] and CAD [114]).

Results The performance comparisons in Table 5.2 show the follows observations:

(1) The sole SR module of INTACT (supervised by MSE loss only) achieves the best pixel-wise

SR performance, i.e.the highest PSNR and SSIM scores. This verifies the effectiveness of the SR

generator in the proposed model.

(2) Although the sole SR model achieves the highest PSNR and SSIM performance, its resolved

images yield the worst accuracy for cross-resolution person body recognition. This indicates

that as the low-level image quality metrics, both SSIM and PSNR are unsuited for evaluating
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high-level semantic recognition tasks such as person body recognition in our case.

(3) The models that favour the super-resolution performance do not provide improvements on

cross-resolution person body recognition performance. This suggests that the SR supervision is

not directly relevant to person body recognition.

(4) The SR modules that do benefit the person body recognition task enhance only the identity

matching related details whilst ignores other fine-grained details. This actually produces inferior

pixel-level fidelity.

Several qualitative comparison of the recovered images for visual examination is provided in

Fig. 5.3. Whilst the INTACT notably outperforms all the baselines in numerical evaluation, this

performance difference is however seldom reflected in the low-level image space. This implies

that high-level semantic objective is less interpretive due to high functional complexity of deep

network models.

Table 5.2: Comparison of super-resolution and cross-resolution person body recognition perfor-
mance on the MLR-CUHK03 test set.

Model SSIM PSNR Rank1

CycleGAN [237] 0.55 14.1 62.1

SING [86] 0.65 18.1 67.7

CSR-GAN [195] 0.76 21.5 71.3

CAD [114] 0.73 20.2 82.1

Sole SR 0.82 26.6 23.0

SR + ID 0.77 23.3 82.7

INTACT 0.73 22.8 86.4

5.3.6 Ablation Study

Loss component analysis The INTACT is jointly trained with image SR, person body recog-

nition and the inter-task association loss functions (cf. Eq. (5.7) & (5.8)). This section examines

their performance effects on the MLR-Market-1501 dataset. (Noted that similar ablation study

was also conducted on other MLR datasets and achieved similar results. Here the most typical

case is selected for a simplified comparison. ) Table 5.3 reports the ablation results. It is observed

that:

(1) With identity classification alone, the model achieves the poorest matching performance. This
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verifies that jointly learning the multi-task framework with the standard cascaded SR and person

body recognition model is unsatisfactory.

(2) After adding GAN loss, the model achieves slightly better performance. The plausible reason

is that the adversarial loss helps to align the statistics of resolved images to the native HR data.

However, the improvement is fairly marginal.

(3) Importantly, the proposed association loss brings a significant improvement, verifying the

effectiveness of our regularisation scheme based on the idea of exploiting the underlying inter-

task correlation.

Table 5.3: Loss component analysis of INTACT on MLR-Market-1501. MSE: pixel-wise content
loss, ID: identity classification loss (Eq. (5.3)), Association: our association loss (Eq. (5.7) &
(5.8)).

Supervision Rank1 Rank5 Rank10

MSE+ID 83.7 93.0 95.6

MSE+ID+GAN 84.7 93.9 96.1

MSE+ID+GAN+Association 88.1 95.0 96.9

Association design For the association learning between the discrimination and recognition

representations in INTACT, a recognition-to-discriminator design was adopted. This is based

on a hypothesis that the identity recognition representations learned from the HR images should

contain the desired information of high resolution (that the real-fake HR discriminator tries to

learn); And the real-fake HR discriminator representations, derived by a simple binary classifi-

cation task, are relatively simpler.

This section examines the effect of association design by additionally testing two more for-

mulations: (i) Common space association (Fig. 5.4 (a)), and (ii) Discrimination-to-recognition

association (Fig. 5.4 (b)) which is the inverse of the recognition-to-discriminator design (Fig. 5.4

(c)) adopted in INTACT. Table 5.4 shows that different designs present fairly similar perfor-

mances, and the recognition-to-discriminator is the best choice. This verifies the proposed asso-

ciation strategy.

Bridging constraint To facilitate the training of inter-task association between the discrimina-

tor and identity classification representations, an intermediate latent feature space fe was isolated

from φ to bridge the association target (Eq. (5.6) and (5.7)), implemented by an encoder-decoder

structure. The result in Table 5.5 shows that the introduction of such a bridging constraint helps
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(a) Common-space Association (b) Discriminator-to-Recognition Association

(c) Recognition-to-Discriminator Association (d) Without bridge regularisation
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Figure 5.4: Schematics of different association designs.

Table 5.4: Association designs. R-to-D: from identity recognition representation to discriminator
representation (used in INTACT); D-to-R: the inverse.

Association Space Rank1 Rank5 Rank10

Common Space (a) 84.3 94.0 95.3

D-to-R (b) 83.4 93.5 95.0

R-to-D (c, ours) 88.1 95.0 96.9

to better constrain the associative learning.

Table 5.5: Effect of the bridge constraint (Eq. (5.6)).

Bridge constraint Rank1 Rank5 Rank10

W/O (Fig. 5.4 (d)) 84.3 93.5 95.8

W (Fig. 5.4 (c)) 88.1 95.0 96.9

5.4 Summary

This chapter presents a novel deep learning regularisation, named Inter-Task Association Critic

(INTACT), for solving the under-studied yet important cross-resolution person body recogni-

tion problem. As a generic learning constraint, INTACT is designed specially for improving

the training of existing multi-task (image SR and person body recognition) models, by alleviat-

ing properly the difficulty of gradients backpropagation through two cascaded networks. During

training, INTACT discovers the underlying association knowledge between image SR and person



5.4. Summary 97

body recognition by learning from the HR training data, and uses the self-discovered association

information to further guide the learning behaviour of SR model alternatively. Thus the com-

patibility of SR with body recognition matching can be maximised. This is built up on parame-

terising the inter-task association with a dedicated network. Extensive experimental results have

demonstrated the performance superiority of the proposed model over a wide variety of existing

cross-resolution and standard person body recognition methods on five challenging benchmarks.

Component analysis of the model provides insights into the formulation of INTACT.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis has presented various super resolution (SR) based models for person recognition in

low-quality imagery, with applications to face recognition and person body recognition. The

model optimisation difficulties by low resolution is challenging due to the much less fine-grained

discriminative details for robust identity matching. And conventional SR models fail to enhance

the essential image details beneficial for identity recognition, since direct super resolution is

less compatible with identity matching, and hence has minor benefit or even negative effect for

low-resolution person recognition. Specifically, to solve this problem, in this thesis:

1. In Chapter 3, a novel Complement Super-Resolution and Identity (CSRI) joint deep learn-

ing method with a unified end-to-end network architecture is introduced, to improve the

identity recognisability of super resolution for low-resolution facial matching. This model

is based on knowledge transfer for super resolution towards native LR.

2. Chapter 4 focuses on improving the fidelity of the super resolved facial images to en-

able an interpretable face identity recognition model and more downstream facial analy-

sis tasks. To solve the ineffective training problems by unsupervised domain adaptation

(UDA) adopted by previous unpaired super resolution models, in this chapter, a method

that joins the advantages of conventional SR and UDA models is formulated, where Char-

acteristic Regularisation (CR) is introduced between the SR and UDA to separate and

control their optimisations. Such design makes the model training more effective and
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computationally tractable.

3. Chapter 5 focuses on the person body recognition task, to solve the inherent challenges

by the resolution mismatch problem when the pedestrian images are captured in various

resolutions. This chapter introduces a novel model training regularisation method, called

Inter-Task Association Critic (INTACT) to overcome the gradients backpropagation diffi-

culties in the previous cascaded SR and person body recognition joint-learning schemes.

This is realised by discovering the underlying association knowledge between SR and per-

son body recognition, as an extra learning constraint for enhancing the compatibility of SR

with person body recognition in HR image space.

6.2 Future Work

The potential research directions for future work beyond the proposed methods are summarised

as follows to end this thesis.

1. (Chapter 3) Low-resolution person face recognition by super resolution: The evalua-

tion results show that knowledge transfer for super resolution toward native low resolution

is able to improve the model generalisation ability for realistic low-resolution face recog-

nition. In Chapter 3, the joint-learning scheme is adopted to realise the knowledge transfer

idea. Recently, a variety of works have proposed more advanced transfer learning tech-

niques, e.g., domain adaptation and style transfer. It is an important future effort to explore

more effective transfer learning methods for realistic super resolution and the downstream

low-resolution face recognition task.

2. (Chapter 4) Interpretable low-resolution face recognition: Although the proposed model

make a step towards the high-fidelity and discriminative super resolution for real-world

low-resolution faces, it remains largely unsolved to deal with the extreme challenging

cases, characterised by blur, occlusion and large poses. And the super-resolved faces are

still far from satisfactory for high-accuracy face recognition. It is essential in the future

works to adopt more advanced super resolution models, constrained by more effective

recognition supervision signals. Also, other techniques adopted by broader computer vi-

sion tasks could be explored, e.g., image deblurring, unpaired image translation and zero-

shot learning.
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3. (Chapter 5) Cross-resolution person body recognition: The association between differ-

ent tasks is explored and adopted as an extra constraint to supervise the optimisation in the

multi-task scheme. In addition to solving the resolution mismatch issue for person body

recognition, such design has potentials for dealing with other similar multi-task learning

tasks in computer vision. It would enable wider research applications to further explore its

benefits for other problems or more complicated multi-task frameworks in more general

settings. Besides, it would largely benefit the current extremely challenging low-quality

person recognition task, to enable a multi-source identity recognition system, by combin-

ing the face, body, and other biometric cues automatically. To achieve this, the correlation

among different cues, along with their corresponding convincing scores need to be consid-

ered. The inter-task association technique proposed in Chapter 5 could be further adopted

to learn such inter-cues correlation, considering the representation learning of each cue as

one task in a multi-task system.
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