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Visual Learning in Limited-Label Regime

Yanbei Chen

Abstract

Deep learning algorithms and architectures have greatly advanced the state-of-the-art in a
wide variety of computer vision tasks, such as object recognition and image retrieval. To achieve
human- or even super-human-level performance in most visual recognition tasks, large collec-
tions of labelled data are generally required to formulate meaningful supervision signals for
model training. The standard supervised learning paradigm, however, is undesired in several per-
spectives. First, constructing large-scale labelled datasets not only requires exhaustive manual
annotation efforts, but may also be legally prohibited. Second, deep neural networks trained with
full label supervision upon a limited amount of labelled data are weak at generalising to new
unseen data captured from a different data distribution. This thesis targets at solving the critical
problem of lacking sufficient label annotations in deep learning. More specifically, we inves-
tigate four different deep learning paradigms in limited-label regime, including close-set semi-
supervised learning, open-set semi-supervised learning, open-set cross-domain learning, and
unsupervised learning. The former two paradigms are explored in visual classification, which
aims to recognise different categories in the images; while the latter two paradigms are studied in
visual search – particularly in person re-identification – which targets at discriminating different
but similar persons in a finer-grained manner and can be extended to the discrimination of other
objects of high visual similarities. We detail our studies of these paradigms as follows.

Chapter 3: Close-Set Semi-Supervised Learning (Figure 1 (I)) is a fundamental semi-supervised
learning paradigm that aims to learn from a small set of labelled data and a large set of unlabelled
data, where the two sets are assumed to lie in the same label space. To address this problem, ex-
isting semi-supervised deep learning methods often rely on the up-to-date “network-in-training”
to formulate the semi-supervised learning objective, which ignores both the disriminative fea-
ture representation and the model inference uncertainty revealed by the network in the preceding
learning iterations, referred to as the memory of model learning. In this work, we proposed to
augment the deep neural network with a lightweight memory mechanism [Chen et al., 2018b],
which captures the underlying manifold structure of the labelled data at the per-class level, and
further imposes auxiliary unsupervised constraints to fit the unlabelled data towards the under-
lying manifolds. This work established a simple yet efficient close-set semi-supervised deep
learning scheme to boost model generalisation in visual classification by learning from sparsely
labelled data and abundant unlabelled data.

Chapter 4: Open-Set Semi-Supervised Learning (Figure 1 (II)) further explores the potential
of learning from abundant noisy unlabelled data, While existing SSL methods artificially assume
that small labelled data and large unlabelled data are drawn from the same class distribution, we
consider a more realistic and uncurated open-set semi-supervised learning paradigm. Consider-
ing visual data is always growing in many visual recognition tasks, it is therefore implausible to
pre-define a fixed label space for the unlabelled data in advance. To investigate this new chal-
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Figure 1: An overview of the main studies in this thesis, which covers four different deep learning
paradigms in the limited-label regime, including (I) close-set semi-supervised learning (Chap-
ter 3), (II) open-set semi-supervised learning (Chapter 4), (III) open-set cross-domain learning
(Chapter 5), and (IV) unsupervised learning (Chapter 6). Each chapter studies a specific deep
learning paradigm that requires to propagate, selectively propagate, transfer, or discover label
information for model optimisation, so as to minimise the manual efforts for label annotations.
While the former two paradigms focus on semi-supervised learning for visual classification, i.e.
recognising different visual categories; the latter two paradigms focus on semi-supervised and
unsupervised learning for visual search, i.e. discriminating different instances such as persons.

lenging learning paradigm, we established the first systematic work to tackle the open-set semi-
supervised learning problem in visual classification by a novel approach: uncertainty-aware self-
distillation [Chen et al., 2020b], which selectively propagates the soft label assignments on the
unlabelled visual data for model optimisation. Built upon an accumulative ensembling strategy,
our approach can jointly capture the model uncertainty to discard out-of-distribution samples,
and propagate less overconfident label assignments on the unlabelled data to avoid catastrophic
error propagation. As one of the pioneers to explore this learning paradigm, this work opens up
new avenues for research in more realistic semi-supervised learning scenarios.

Chapter 5: Open-Set Cross-Domain Learning (Figure 1 (III)) is a challenging semi-supervised
learning paradigm of great practical value. When training a visual recognition model in an operat-
ing visual environment (i.e. source domain, such as the laboratory, simulation, or known scene),
and then deploying it to unknown real-world scenes (i.e. target domain), it is likely that the
model would fail to generalise well in the unseen visual target domain, especially when the tar-
get domain data comes from a disjoint label space with heterogeneous domain drift. Unlike prior
works in domain adaptation that mostly consider a shared label space across two domains, we
studied the more demanding open-set domain adaptation problem, where both label spaces and
domains are disjoint across the labelled and unlabelled datasets. To learn from these heteroge-
neous datasets, we designed a novel domain context rendering scheme for open-set cross-domain
learning in visual search [Chen et al., 2019a] – particularly for person re-identification, i.e. a re-
alistic testbed to evaluate the representational power of fine-grained discrimination among very
similar instances. Our key idea is to transfer the source identity labels into diverse target domain
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contexts. Our approach enables the generation of an abundant amount of synthetic training data
that selectively blend label information from source domain and context information from target
domain. By training upon such synthetic data, our model can learn a more identity-discriminative
and context-invariant representation for effective visual search in the target domain. This work
sets a new state-of-the-art in cross-domain person re-identification and provides a novel and
generic solution for open-set domain adaptation.

Chapter 6: Unsupervised Learning (Figure 1 (IV)) considers the learning scenario with none
labelled data. In this work, we explore unsupervised learning in visual search, particularly for
person re-identification, a realistic testbed to study unsupervised learning, where person identity
labels are generally very difficult to acquire over a wide surveillance space [Chen et al., 2018a].
In contrast to existing methods in person re-identification that requires exhaustive manual efforts
for labelling cross-view pairwise data, we aims to learn visual representations without using any
manual labels. Our generic rationale is to formulate auxiliary supervision signals that learn to
uncover the underlying data distribution, consequently grouping the visual data in a meaningful
and structural way. To learn from the unlabelled data in a fully unsupervised manner, we pro-
posed a novel deep association learning scheme to uncover the underlying data-to-data associa-
tion. Specifically, two unsupervised constraints – temporal consistency and cycle consistency –
are formulated upon neighbourhood consistency to progressively associate visual features within
and across video sequences of tracked persons. This work sets the new state-of-the-art in video-
based unsupervised person re-identification and advances the automatic exploitation of video
data in real-world surveillance.

In summary, the goal of all these studies is to build efficient and scalable visual learning
models in the limited-label regime, which empower to learn more powerful and reliable rep-
resentations from complex unlabelled visual data and consequently learn more powerful visual
representations to facilitate better visual recognition and visual search.
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Chapter 1

Introduction

Deep learning algorithms and architectures [LeCun et al., 2015; Goodfellow et al., 2016] have

greatly advanced the state-of-the-art in the computer vision community. Built upon multiple lev-

els of non-linear mathematic operations, deep models can learn meaningful data representations

in an increasingly order of abstraction, by training upon a tremendous amount of annotated visual

data. The powerful representation learning capability has greatly altered the precedent mindset

of engineering hand-crafted visual features. Nowadays, deep learning has replaced feature engi-

neering, notably providing more successful solutions to tackle all sorts of computer vision tasks,

such as object recognition [Krizhevsky et al., 2012], retrieval [Schroff et al., 2015], detection

[Ren et al., 2015], and segmentation [Chen et al., 2017a].

However, to achieve humanlike or even superhuman performance in most computer vision

tasks, the first and foremost preparation is to collect a large volume of visual data with rich label

annotations for supervised training through gradient descent [Rumelhart et al., 1985]. Although

supervised deep learning paradigm is effective at absorbing and memorising visual data at a

scale that is much larger, faster and better than human, it is undesired in several aspects: First,

constructing large-scale labelled datasets requires prohibitively expensive manual annotation ef-

forts; Second, deep neural networks trained with limited labelled training data do not scale and

generalise well to test data collected from an unseen distribution.

In this thesis, we research various deep learning paradigms in the limited-label regime – when

label annotations are very sparse or even unavailable in the training set. As unlabelled training

data could exhibit different properties subjected to distributional discrepancy or the unavailabil-
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Figure 1.1: An illustration of supervised, semi-supervised and unsupervised deep learning.

ity of labelled data, we study four different learning paradigms that consider unlabelled data

are provided under different conditions, where there exist label mismatch and (or) domain drift

between the labelled and unlabelled sets, or none labelled data is available. As opposed to super-

vised learning that requires large collections of labelled data to formulate supervised objective

for model optimisation (Figure 1.1 (a)), semi-supervised and unsupervised learning (Figure 1.1

(b)(c)) could alleviate the requirement of exhaustive manual annotations by learning from unla-

belled data based on unsupervised objective to fit the model towards the underlying structures in

visual data. Undoubtedly, the latter paradigms are more promising to cope with the complexity

and uncertainty of the fast-growing collections of visual data in this ever-changing digital era.

To explore semi-supervised and unsupervised learning paradigms, we target at two basic and

critical computer vision tasks, namely visual classification and visual search, both of which are

especially driven by effective visual representation learning. Before delving into our formulated

deep learning paradigms to tackle these two tasks in Section 1.3, we provide basic problem

definitions in Section 1.1 and introduce our application domains in Section 1.2.
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1.1 Basic Problem Definitions

1.1.1 Supervised, Semi-Supervised and Unsupervised Learning

As depicted in Figure 1.1, deep learning algorithms can be grouped into three classes de-

pending on the availability and amount of label annotations in the training set, as defined below.

1. Supervised Learning is the most typical deep learning paradigm that learns a function

f (·) to predict the posterior distribution over a pre-defined set of class label of the labelled

data x: P(y|x) = f (x); while the goal is to ensures samples of the same class have similar

predictive distributions and representations.

2. Semi-Supervised Learning considers to estimate the posterior distribution P(y|x) = f (x)

from the collections of labelled data P(xl,yl) and unlabelled data P(xu,yu). The goal is also

to ensure samples of the same class to have similar representations. However, additional

complexity and uncertainty can be induced if there exist label mismatch and (or) domain

drift between the labelled data and unlabelled data, i.e. P(xl,yl) 6= P(xu,yu).

3. Unsupervised Learning does not utilise any task-related labelled data, but instead learns

a representation h = f (x) that groups unlabelled samples in a meaningful manner.

As various possible types of distributional discrepancy – e.g. label mismatch and (or) domain

drift – may be presented between the labelled data and unlabelled data, semi-supervised learn-

ing (SSL) can be further characterised into different categories, such as close-set and open-set

learning, single-domain and cross-domain learning, which are detailed in the following.

1.1.2 Close-Set and Open-Set Learning

Open-set recognition is considered as opposed to close-set recognition, which account for

unknown classes during testing [Scheirer et al., 2012]. In semi-supervised learning, open-set

versus close-set learning can be defined based on whether there exists label mismatch between

the labelled and unlabelled training data. If the label space of labelled and unlabelled datasets

are denoted as Yl and Yu, close-set and open-set learning can be further defined as below.

1. Close-Set Learning considers the unlabelled training data contains only in-distribution

samples that lie in the known label space, i.e. Yu ⊆ Yl , as Figure 1.2 (a) shows.

2. Open-Set Learning considers the unlabelled training data contains out-of-distribution



24 Chapter 1. Introduction

(b) open-set learning(a) close-set learning

Unlabelled Data Labelled Data

in-distribution data

Labelled/Unlabelled Data

in-distribution data

Labelled Data Unlabelled Data

out-of-distribution data

Labelled Data Unlabelled Data

out-of-distribution data

Figure 1.2: An illustration of close-set and open-set learning.

samples that do not belong to any of the known classes, i.e. Yu−Yu ∩Yl 6= ∅, as Fig-

ure 1.2 (b) shows.

In brief, based on the distributions of label space for labelled data and unlabelled data, one

can easily categorise semi-supervised learning as close-set or open-set. In particular, in open-set

semi-supervised learning, there exists class distribution mismatch between the labelled and unla-

belled data, which is a more challenging learning paradigm as the unlabelled data is contaminated

with out-of-distribution samples from unknown classes.

1.1.3 Single-Domain and Cross-Domain Learning

Besides label mismatch, domain drift can also exist between the labelled and unlabelled

sets, which further categorise semi-supervised learning into with-domain and cross-domain. In

essence, cross-domain semi-supervised learning is one typical scenario in domain adaptation,

where the goal is to tackle the intrinsic distributional drift presented across different visual do-

mains [Saenko et al., 2010; Ganin and Lempitsky, 2015]. Such distributional drift could be com-

monly caused by the cross-domain discrepancy in illumination, viewpoint, resolution, occlusion,

and background clutter induced by different scenes, camera characteristics, times of the day, and

weather conditions. When incorporating additional unlabelled data for semi-supervised learning,

it is therefore essential to consider the potential domain drift between the labelled and unlabelled

datasets. If the data distributions of the source labelled data and target unlabelled data are written

as P(X)s
l and P(X)t

u, single-domain and cross-domain learning can be defined as below.

1. Single-Domain Learning considers the labelled and unlabelled training data share the

same underlying data distribution, i.e. P(X)s
l = P(X)t

u.

2. Cross-Domain Learning considers the labelled and unlabelled training sets are drawn

from different visual domains, with unmatched data distributions, i.e. P(X)s
l 6= P(X)t

u.
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To study different challenges of visual learning in limited-label regime, we consider multiple

types of semi-supervised learning paradigms that may involve label mismatch and domain drift.

We also consider the case of lacking any label annotations in the training data, i.e. unsupervised

learning. These studied paradigms are further detailed in Section 1.3, which all together present a

comprehensive research exploration on how to effectively exploit unlabelled data under different

conditions to learn more generic visual representations.

1.2 Semi-Supervised and Unsupervised Visual Representation Learning

One of the essential groundings to enhance model performance in computer vision tasks lie

in learning more discriminative representations (a.k.a. features) from the visual data. Rather than

rely on human knowledge to design hand-crafted visual features, deep learning methods automate

the feature engineering process by learning representations from a tremendous amount of visual

data. This is achieved by a combination of multiple factors, including designing advanced net-

work architectures [Krizhevsky et al., 2012; He et al., 2016], formulating discriminative learning

constraints [Schroff et al., 2015; Wen et al., 2016], introducing auxiliary regularisation tech-

niques [Krogh and Hertz, 1992; Ioffe and Szegedy, 2015], and training with effective optimisers

[Tieleman and Hinton, 2012; Kingma and Ba, 2014]. To further improve model generalisation

in more complex real-world visual environments, another promising way is to learn from auxil-

iary unlabelled dataset by semi-supervised learning or unsupervised pre-training. By formulating

meaningful unsupervised learning objectives upon the unlabelled training data, more generic vi-

sual representations can be learned to extract the discriminative visual information.

In this thesis, we study semi-supervised and unsupervised visual learning mainly in two

critical vision application domains, including visual classification and visual search, which are

further introduced below to analyse their underlying algorithmic challenges.

1.2.1 Application Domain I: Semi-Supervised Visual Classification

Visual classification is one of the most fundamental tasks in computer vision. Over the last

years, deep learning has significantly advanced the field of visual classification, achieving or

even surpassing human-level performance on various benchmark datasets ranging from simple

digit classification (e.g. MNIST [LeCun et al., 2010], SVHN [Netzer et al., 2011]), to more com-

plex natural object recognition (e.g. CIFAR [Krizhevsky and Hinton, 2009], ImageNet [Deng
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Figure 1.3: An illustration of (a) close-set and (b) open-set semi-supervised learning paradigms
in visual classification.

et al., 2009]) and fine-grained visual categorisation (e.g. Stanford Dogs [Khosla et al., 2011],

Caltech UCSD Birds [Wah et al., 2011]). The task of visual classification can be categorised

as single-label or multi-label classification, i.e. tagging each image with one or multiple labels,

which requires one or multiple label annotations per sample for supervised learning. Accordingly,

human-level performance of deep learning algorithms generally relies heavily on exhaustive hu-

man supervision, i.e. manually annotating the visual data at a sufficient large data scale.

Semi-Supervised Visual Classification. The requirement of tremendous label annotations,

however, could greatly restrict the generalisation of deep learning models, when diverse visual

data with rich label annotations are very expensive or even prohibitive to acquire. Hence, it is

non-trivial to formulate semi-supervised learning paradigm [Chapelle et al., 2009] that can ex-

ploit both labelled and unlabelled visual data to improve model generalisation. In general, semi-

supervised learning objective should fulfil two goals jointly: (1) classifying labelled training data

correctly; while (2) learning to classify the auxiliary unlabelled training data.

Challenges. Algorithmically, semi-supervised visual classification faces a number of chal-

lenges. First, sufficient label annotations are lacking to train a discriminative classifier that could

correctly categorise either unlabelled data or test data. Second, class distribution mismatch may

exist between the labelled and unlabelled data, which indicates the noisy and task-unrelated un-

labelled data could possibly degrade the model performance.

Task Description. Herein, as illustrated in Figure 1.3, to research on solutions for the afore-

mentioned challenges, we study a standard close-set semi-supervised learning paradigm and a

new under-explored open-set semi-supervised learning paradigm in visual classification – while

the former merely considers to tackle the aforementioned first challenge, the latter tackles both

of the challenges jointly. Both learning paradigms are further outlined in Section 1.3.
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1.2.2 Application Domain II: Semi-Supervised and Unsupervised Visual Search

Visual search is another fundamental task in computer vision, which brings great practical

impact to many real-world applications, such as image search on internet [Weyand et al., 2020],

product search in e-commerce [Zhang et al., 2018c; Chen et al., 2020a], face recognition [Schroff

et al., 2015], and person re-identification [Gong et al., 2014] in visual surveillance. Unlike visual

classification that focuses on discriminating a fixed set of visual categories, visual search requires

more fine-grained discrimination between instances, e.g. distinguishing different person identi-

ties across non-overlapping cameras distributed over open surveillance space and time. This

requires to learn a fine-grained visual representation that is both discriminative to task-relevant

essential factors while invariant to task-irrelevant redundant variations.

Semi-Supervised and Unsupervised Visual Search. In visual search, it is more challenging

to acquire fine-grained label annotations at per-instance level. For example, unlike annotating

common objects (e.g. cat and dog) in visual classification that generally relies on common sense,

in order to acquire person identity labels for a large-scale population in visual search, human an-

notators have to memorise all the possible unfamiliar person identities over a wide public space.

This is not only intellectually challenging for annotators, but may also introduce noisy annota-

tions due to inevitable human errors. Therefore, it is necessary to introduce semi-supervised and

unsupervised learning paradigms that could properly address the bottleneck of lacking sufficient

qualified label annotations in visual search.

Challenges. As compared to visual classification, visual search generally does not need to

pre-define a fixed class label space for model training. In fact, at test time, the main goal is to

match the same or similar instances of novel unseen classes in new domain context, rather than

categorise instances of seen classes. This raises several unique challenges in semi-supervised

or unsupervised visual search. First, the class spaces of labelled and unlabelled datasets can

be totally disjoint, since unseen visual data generally belongs to novel classes in visual search.

Second, there may also exist inevitable domain gap between the labelled and unlabelled datasets

collected from different environments. Third, it is sometimes prohibited to collect annotations,

due to high annotations costs and legislation on data privacy.

Task Description. To tackle the lack of label annotations in visual search, we consider person

re-identification as a special case study (Figure 1.4 (a)), where the goal is to retrieve images or

videos in database to discover the right person in query image or video. In particular, we study
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an open-set cross-domain learning paradigm, which addresses the aforementioned challenges of

learning from auxiliary unlabelled data that lie in the disjoint label space and another domain

(Figure 1.4 (b)). We also study an unsupervised learning paradigm that targets at learning dis-

criminative visual representations without utilising any label annotations (Figure 1.4 (c)). Both

learning paradigms are further outlined in Section 1.3.
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1.3 Contributions and Thesis Outline

All our studied visual learning paradigms share the same goal of learning from unlabelled

data in limited-label regime with minimal human supervision – where little or none labelled data

is provided. As unlabelled visual data may emerge differently in different application scenarios,

it is imperative to uncover the underlying data structure and mine reliable label information for

training. To this end, we introduce various auxiliary supervision signals to propagate, selectively

propagate, transfer, and discover label information to learn from the unlabelled visual data. In

the sequel, contributions on different learning paradigms are further outlined and summarised.

[Chapter 3]: Contribution on Close-Set Semi-Supervised Learning. We tackle the close-

set semi-supervised learning scenario in visual classification, where a small set of labelled data

and a large set of unlabelled data are assumed to share the same class label space. To address

the challenge of propagating label assignments reliably to the unlabelled data, we formulate a

novel lightweight memory module into the network training process [Chen et al., 2018b]. During

training, it captures the underlying manifold structure of labelled data globally, and imposes

unsupervised learning constraints that encourage the model to fit the unlabelled data towards the

underlying manifold. This work contributes a simple yet efficient semi-supervised deep learning

scheme to boost model generalisation by learning effectively from abundant unlabelled data.

[Chapter 4]: Contribution on Open-Set Semi-Supervised Learning. We further explore the

potential of learning from unconstrained unlabelled data without imposing any de facto assump-

tion on the class label space. In particular, we are the first to systematically study and address this

new challenging learning paradigm with a comprehensive benchmark and a novel deep learning

solution in visual classification [Chen et al., 2020b]. We proposed an uncertainty-aware self-

distillation formulation to selectively propagate soft label assignments on the unlabelled data for

model optimisation. Our model formulation can jointly capture the model uncertainty to discard

out-of-distribution samples with low confidence scores, and derive less overconfident label as-

signments on the unlabelled data to avoid catastrophic error propagation. This work opens up

new avenues for research in more realistic semi-supervised learning scenarios.

[Chapter 5]: Contribution on Open-Set Cross-Domain Learning. To avoid the need of col-

lecting a new labelled dataset in an unseen environmental domain, we study an open-set cross-

domain learning paradigm in person re-identification, a realistic testbed in visual search that

requires to tackle the problem of label mismatch and domain drift across the labelled and unla-
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belled data. Specifically, we designed a novel domain context rendering scheme for the task of

cross-domain person re-identification [Chen et al., 2019a]. Built with a dual conditional GAN

framework, our approach is capable of rendering the source identity population into a diverse

range of target domain contexts, consequently leading to a substantial amount of synthetic train-

ing data that cover rich contextual variations in the target domain environments. By training

upon these synthetic data, our model becomes both discriminative to person identities, and more

invariant towards task-irrelevant visual variations in the target domain. This work sets the new

state-of-the-art in cross-domain person re-identification, and provides a generic solution in open-

set domain adaptation.

[Chapter 6]: Contribution on Unsupervised Learning. To learn good visual data representa-

tions without any manual labels, the key challenge is to formulate reliable auxiliary supervision

signals that could uncover the underlying data distribution and group the unlabelled visual data in

a meaningful and structural way. To tackle this challenge, we target at learning a more discrimina-

tive visual representation in an unsupervised manner for the task of person re-identification [Chen

et al., 2018a], which is a realistic testbed to study unsupervised visual search, as large-scale per-

son identity labels are generally very difficult and possibly legally prohibitive to collect. Specif-

ically, we formulated two novel unsupervised learning constraints: temporal consistency and

cycle consistency, both of which incrementally associate the video sequences within and across

camera views to learn discriminative visual representations. The key insight of our approach is to

exploit the neighbourhood consistency that could progressively uncover the underlying data-to-

data association. This work sets the new state-of-the-art in unsupervised person re-identification,

and further advances the scalability and applicability of deep networks in automatic exploitation

of unlabelled data.

[Chapter 7] To conclude this thesis, we further provide a conclusion on semi-supervised and un-

supervised visual representation learning in limited-label regime, and discuss other possibilities

of introducing auxiliary supervision to improve model generalisation. An outline of all chapters

is shown in Figure 1.5.
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Chapter 1 Introduction

Chapter 2 Literature Review

review recent advancement in semi-supervised and unsupervised deep learning
and provide the taxonomy on the relevant learning paradigms

Chapter 3 Semi-Supervised Deep Learning with Memory 

propose a memory module to capture per-class cluster centroids in the feature
space, which propagate probabilistic label assignments on unlabelled samples
according to their proximity to each cluster centroid.

Chapter 4 Open-Set Semi-Supervised Learning by Uncertainty-Aware Self-Distillation 

propose an uncertainty-aware self-distillation model formulation to propagate
ensemble soft label assignments on unlabelled samples, and discard out-of-
distribution samples to avoid catastrophic error propagation

Chapter 5 Open-Set Cross-Domain Learning by Instance-Guided Context Rendering

formulate an instance-guided context rendering scheme to render the source
person identities into the target domain contexts, thus generating a large-scale
synthetic training dataset for open-set domain adaptation

Chapter 7 Conclusion

Chapter 6 Unsupervised Learning by Online Deep Association 

formulate two unsupervised consistency constraints to learn from large-scale
unlabelled video data, namely (1) temporal consistency to associate image
frames to videos, and (2) cycle consistency to associate cross-view videos

Figure 1.5: An outline of all chapters.
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Chapter 2

Literature Review

In this chapter, we review the relevant developments that target at building visual recognition

models without exhaustive human supervision being involved. Specifically, we consider four

different visual learning paradigms in the limited-label regime, as defined next.

1. Close-Set Semi-Supervised Learning aims to learn from sparsely labelled data and large

sized auxiliary unlabelled data, where the two sets are assumed to share the identical class

label space and are supposed to come from the same domain.

2. Open-Set Semi-Supervised Learning considers the sparsely labelled data and large sized

auxiliary unlabelled data do not share the identical label space, i.e. there exists class label

mismatch between the labelled and unlabelled datasets.

3. Cross-Domain Semi-Supervised Learning considers the labelled data and unlabelled

data are drawn from different domains, where the two sets can exhibit both data distri-

butional drift and class label mismatch.

4. Unsupervised Learning aims to learn purely from unlabelled data, without exploiting any

task-related prior knowledge of label annotations for model training.

The ultimate objective of these learning paradigms is to advance the automatic exploitation

of large-scale data with minimal human supervision. As summarised in Table 2.1, although these

paradigms differ in how the training data is provided, they share a common principle in that aux-

iliary unsupervised learning objectives are generally formulated to learn from unlabelled training
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Table 2.1: Comparison of different learning paradigms in the limited-label regime. SSL: semi-
supervised learning; “X”: exist; “×”: not exist; “–”: may or may not exist.

Type of Paradigm Labelled Data Class Label Mismatch Domain Drift

Close-Set SSL X × ×

Open-Set SSL X X –

Cross-Domain SSL X – X

Unsupervised Learning × × ×

data. This is based on the premise that certain intrinsic structure presented in the unlabelled train-

ing set contains the useful information to be further utilised for inferring the underlying unknown

class labels.

In this thesis, we study these semi-supervised and unsupervised learning paradigms in visual

recognition, particularly in the tasks of visual classification and visual search. In the following,

we review related work relevant to these paradigms in computer vision and machine learning,

and discuss how our works differ from the previous state-of-the-art.

2.1 Close-Set Semi-Supervised Learning

Semi-Supervised Learning (SSL) [Zhu, 2005; Chapelle et al., 2009] has been studied for

decades in the machine learning community, thanks to its promising impacts to effectively exploit

large-scale unlabelled data together with sparsely labelled data. SSL is widely explored in various

real-world application domains, such as image search [Fergus et al., 2009], medical data analysis

[Papernot et al., 2017], web-page classification [Blum and Mitchell, 1998], document retrieval

[Nigam and Ghani, 2000], genetics and genomics [Shi and Zhang, 2011; Libbrecht and Noble,

2015]. Existing works in SSL generally impose a close-set assumption in label space, i.e. all

training samples – either labelled or unlabelled – belong to a set of pre-defined class labels.

The generic idea of most existing works in SSL is to assign each unlabelled sample to a class

label based on certain underlying data structure, e.g. manifold structure [Zhou et al., 2004;

Weston et al., 2008], and graph structure [Zhu and Ghahramani, 2002]. Below, we review the

most representative deep learning techniques that address close-set SSL for visual classification,

including consistency regularisation, entropy minimisation and adversarial training.

Consistency regularisation is a class of regularisation techniques that enforce the model out-
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put consistency under variations in input or weight space. To enforce distributional smoothness

under perturbation in input space, stochastic data augmentation [Sajjadi et al., 2016; Laine and

Aila, 2017; Berthelot et al., 2019] or adversarial perturbation [Miyato et al., 2018] can be applied

on the input to generate different transformations. For instance, Π-model [Sajjadi et al., 2016;

Laine and Aila, 2017] encourages invariance in network outputs under random data augmenta-

tion. In virtual adversarial training (VAT) [Miyato et al., 2016, 2018], smoothness constraint is

imposed to enforce the same prediction under virtual adversarial perturbation. To impose predic-

tive consistency under variations in weight space, stochastic perturbation [Rasmus et al., 2015]

or ensembling [Tarvainen and Valpola, 2017; Izmailov et al., 2018] can be adopted to generate

outputs from non-identical models. For instance, Ladder Network [Rasmus et al., 2015] min-

imises a denoising cost derived between a clean forward pass and a noise corrupted forward pass

from the network. Mean-Teacher [Tarvainen and Valpola, 2017] and Stochastic Weight Averag-

ing (SWA) [Athiwaratkun et al., 2019] both apply ensembling through an exponential moving

average (EMA) or equal average strategy in weight space to provide a more stable target for de-

riving a consistency cost. To summarise, an auxiliary consistency regularisation term is generally

introduced to quantify the discrepancy between two predictive probability distributions or net-

work outputs, which can be measured by Kullback-Leibler (KL) divergence or L1/L2-distance.

By minimising such consistency regularisation loss term, the model is enforced to be invariant

towards various data augmentation, perturbation, noisy corruption or ensembling.

Entropy minimisation is a regularisation derived based on the low density separation princi-

ple [Grandvalet and Bengio, 2005; Chapelle et al., 2005], i.e. class decision boundary should be

placed in the low density regions. This is accordant with the cluster assumption or manifold as-

sumption in semi-supervised learning [Zhou et al., 2004; Weston et al., 2008], which hypotheses

data points from the same class are likely to share the same cluster or manifold that is defined

by measuring distances and densities. For deep model optimisation, entropy minimisation can

simply be formulated as a regularisation penalty that minimises the entropy of model prediction

[Lee, 2013; Miyato et al., 2018], which takes effect by enforcing a predictive distribution with

low entropy (i.e. high confidence) to gradually assign each unlabelled sample to a certain class

with highest probability.

Adversarial training can generate adversarial samples along with auxiliary unsupervised

learning signals for semi-supervised deep learning. According to whether the data density is ex-
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plicitly modelled, this line of works can be categorised into two groups: discriminative and gen-

erative approaches. In discriminative adversarial training, as represented by virtual adversarial

training (VAT) [Miyato et al., 2016, 2018], the data density is not explicitly modelled. To generate

adversarial samples, small adversarial perturbations can be added to the inputs, while auxiliary

supervision is imposed to enforce the output consistency under varying adversarial perturbations.

In generative adversarial training, multiple variants of Generative Adversarial Network (GAN)

[Springenberg, 2016; Salimans et al., 2016; Dumoulin et al., 2017; Dai et al., 2017] are proposed

to leverage the joint effort of unsupervised generative modelling and supervised discriminative

training. The generic idea is to utilise fake generated samples from the image generator together

with real samples for semi-supervised learning. For instance, categorical GAN (CatGAN) [Sprin-

genberg, 2016] enforces a certain distribution (i.e. confident prediction with low entropy) on the

real samples and an uncertain distribution (i.e. uniform distribution with high entropy) on the

fake generated samples; while feature matching GAN [Salimans et al., 2016] labels the generated

samples as an additional fake class (K+1) and the real samples as one of the real classes (0∼ K)

to train the discriminator classifier.

Discussion. As summarised in Figure 2.1, existing close-set SSL techniques can roughly be

categorised into three groups. The key principle shared by these techniques is to propagate the

class label assignments on unlabelled data for model optimisation, e.g. assigning soft targets on

the unlabelled data or imposing uniform distributions on the synthetic data generated by GANs.

In Chapter 3, we propose a new SSL approach that is built upon a lightweight memory

mechanism to propagate the class label assignments reliably based on the underlying manifold

structure. Compared to existing SSL techniques, our approach is particularly efficient with (1)

low computation cost, in contrast to adversarial training that requires to generate additional train-

ing data; and (2) low memory footprint, in contrast to most consistency regularisation techniques

that either record a great amount of model predictions or need multiple forward network passes

per iteration during training.

2.2 Open-Set Semi-Supervised Learning

Open-Set Semi-Supervised Learning is first identified as a challenging and understudied

research problem in a realistic evaluation of semi-supervised learning (SSL) algorithms [Oliver

et al., 2018], where existing SSL algorithms are found to degrade significantly when the unla-
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belled training set contains out-of-distribution data, i.e. samples not present as known categories

during training. For the first time, we systematically address this problem by a novel model

formulation that can safely exploit the mixture of in- and out-of-distribution unlabelled training

data [Chen et al., 2020b], which is detailed in Chapter 4. In the following, we review two re-

search mainstreams that are closely related to open-set SSL, including open-set recognition and

out-of-distribution detection.

2.2.1 Open-Set Recognition

Open-set recognition, also known as open-world recognition [Boult et al., 2019], aims to

detect outliers (i.e. unknown categories) while classifying inliers (i.e. known categories) cor-

rectly at test time. This is a more realistic testing scenario compared to close-set recognition, as

test samples are likely associated with noisy labels not present during training [Scheirer et al.,

2012, 2014; Júnior et al., 2017; Bendale and Boult, 2016; Ge et al., 2018]. Along this branch

of research, OpenMax [Bendale and Boult, 2016] and G-OpenMax [Ge et al., 2018] are two

representative deep learning approaches formulated to reject samples of unknown categories.

OpenMax is built upon deep networks and Extreme Value Theory, which fits a Weibull distribu-

tion over the activation values (computed from the penultimate layer of deep networks) of the

positive training data per class, and estimates the Weibull CDF probability for each test sample

to reject the unknown one. G-OpenMax (Generative-OpenMax) is further built upon OpenMax,

which however, additionally introduces a conditional GAN that learns to generate samples con-

ditioned on an additional label of unknown category (K +1), and exploits the generated images

as auxiliary data apart from the data of known categories (0∼ K) to train the network classifier.

2.2.2 Out-of-Distribution Detection

Out-of-distribution (OOD) detection targets at detecting samples lying out-of-distribution

during test time, including samples of unknown categories and adversarial samples [Szegedy

et al., 2014]. Unlike open-set recognition that requires to classify both known and unknown cat-

egories (i.e. multi-class classification), OOD detection mainly needs to distinguish whether the

samples lie in- or out-of-distribution (i.e. binary classification). A naı̈ve deep learning solution is

to retrieve the maximum class probability from a softmax distribution [Hendrycks and Gimpel,

2017] as an indication of confidence (uncertainty) to detect OOD samples, which however, is

likely to fail due to the overconfident tendency of predictions by deep networks [Nguyen et al.,
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2015].

Confidence calibration, accordingly, addresses overconfidence by calibrating in the input,

output, or weight space. As for processing in input space to mitigate overconfidence, small per-

turbation can be added at test time by back-propagating the gradient of the cross-entropy loss

[Liang et al., 2018]. In output space, temperature scaling smooths the predictive distribution and

therefore ameliorates the confidence score [Liang et al., 2018]. In addition, to avoid inference

with overconfident targets, the output can be amended by regressing to multiple dense represen-

tations (i.e. word embeddings) of semantic labels [Shalev et al., 2018]. To constrain the mapping

from input to output space, a uniform distribution can be imposed on the out-of-distribution data

during training by exploiting auxiliary realistic data as outlier exposure [Hendrycks et al., 2019]

or using GAN to generate synthetic data in low-density region [Lee et al., 2018a]. In the weight

space, Bayesian probabilistic approaches – such as Monte Carlo (MC) dropout [Gal and Ghahra-

mani, 2016], and Stochastic Weight Averaging - Gaussian (SWAG) [Maddox et al., 2019], can

sample different weights following certain Gaussian distributions to perform Bayesian model av-

eraging that basically results in more reliable predictive uncertainty. Another way is to ensemble

multiple deep networks by averaging predictions [Lakshminarayanan et al., 2017] or majority

vote [Shalev et al., 2018] to reduce bias and avoid overfitting the training data, which finally

results in less overconfident model prediction.

Discussion. As summarised in Figure 2.2, open-set recognition and out-of-distribution de-

tection (OOD) are two similar tasks aiming at detecting unknown samples at test time – although

they are categorised as two different classification tasks: multi-class classification and binary

classification. Compared to OOD, Open-set recognition is more challenging in the sense that

more categories, including known and unknown ones, should all be correctly classified.

In Chapter 4, we consider a new learning paradigm, i.e. open-set semi-supervised learning

(SSL). Unlike the aforementioned two tasks that focus on recognising unknown samples merely

during testing, our goal is to enable semi-supervised training under the scenario where the la-

belled and unlabelled datasets do not share an identical class label space. This not only requires

to detect unknown samples during training, but also urges for exploiting the unlabelled data in a

reliable manner. Hence, open-set SSL is much more challenging than the standard close-set SSL

due to the more sophisticated underlying class distribution of unlabelled data.
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2.3 Cross-Domain Semi-Supervised Learning

Cross-Domain Semi-Supervised Learning – commonly known as domain adaptation –

aims to transfer the prior knowledge learnt from the labelled source domain to the unlabelled

target domain, as well as to tackle the domain drift between data collected from different do-

mains. This is an essential problem in visual recognition, given that the statistical properties of

visual data are quite sensitive to a wider variety of factors, e.g. illumination, viewpoint, resolu-

tion, occlusion, and background clutter induced by different scenes, camera characteristics, times

of the day, and weather conditions. According to the availability of label annotations in target

domain, domain adaptation strategies can be classified into semi-supervised domain adaptation

and unsupervised domain adaptation – the former assumes the target data is partially labelled,

while the latter considers the target data is completely unlabelled. Based on whether the label

space is shared between domains, domain adaptation paradigms can also be grouped into close-

set domain adaptation and open-set domain adaptation – the former assumes the source and

target data share the same label space, while the latter considers the label space is not identical

across two domains. Below, we review the two more challenging branches of research in domain

adaptation, i.e. unsupervised domain adaptation and open-set domain adaptation.

2.3.1 Unsupervised Domain Adaptation

Unsupervised domain adaptation has been intensively studied due to its promising effect

in avoiding the need of labelling target domain data. The generic aim is to learn domain-invariant

feature representations that are immune to the domain discrepancy. To achieve this aim, a wide

variety of deep learning techniques have been explored, as represented by discriminative adver-

sarial training, similarity metrics matching, and image style transfer, which we describe next.

Discriminative adversarial training is one of the most common and effective techniques for

cross-domain distribution matching in latent representation space, which has been shown effec-

tive in domain adaptation [Ganin et al., 2016; Ganin and Lempitsky, 2015; Tzeng et al., 2015,

2017; Volpi et al., 2018; Long et al., 2018; Saito et al., 2018; Zhang et al., 2018b]. In a typical

discriminative adversarial learning framework, a domain discriminator is generally introduced as

a binary classifier to distinguish the domain labels of the features as either source or target; while

a feature generator network is trained to fool the domain discriminator in an adversarial manner

– In Domain Adversarial Neural Network (DANN) [Ganin et al., 2016], a gradient reversal layer
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is introduced upon the feature generator to flip the gradients from the domain discriminator. To

further advance this line of research, variants of improved feature generators and discriminators

are proposed to improve discriminative feature matching. For instance, in Adversarial Discrim-

inative Domain Adaptation (ADDA) [Tzeng et al., 2017], a target feature generate network is

trained to mimic the distribution of the source feature generator network via the minimax game.

In domain-invariant feature augmentation (DIFA) [Volpi et al., 2018], a target feature generator

is trained adversarially to resemble the source features randomly generated from a pre-trained

source feature generator. Besides improving the feature generators, domain discriminators can

also be improved by introducing discriminative information into a class conditional domain dis-

criminator (CDAN) [Long et al., 2018], and using task-specific classifiers as the domain dis-

criminator (MCD) [Saito et al., 2018] or multiple domain discriminators at multi-level inside the

network (CAN) [Zhang et al., 2018b].

Similarity metrics matching imposes the feature distribution alignment constraints between

the source and target domains by minimising the distributional divergence in the high-dimensional

feature space [Tzeng et al., 2014; Long et al., 2015; Sun and Saenko, 2016; Koniusz et al., 2017;

Xie et al., 2018]. This is achieved by introducing regularisation terms that measure the cross-

domain distributional similarity, typically characterised by (1) statistical means – such as maxi-

mum mean discrepancy (MMD) [Long et al., 2015; Tzeng et al., 2014], and centroid alignment

(MSTN) [Xie et al., 2018]; (2) second- or higher-order statistics – such as correlation alignment

(CORAL) [Sun and Saenko, 2016], and within-class scatter alignment (So-HoT) [Koniusz et al.,

2017]. By minimising certain similarity measure of the cross-domain divergence either in a per-

batch [Long et al., 2015; Sun and Saenko, 2016] or per-class [Xie et al., 2018; Koniusz et al.,

2017] manner, the feature encoder is trained to be domain-invariant.

Image style transfer aims to mitigate the domain discrepancy at the pixel-level in a visually

interpretable fashion, particularly handling the low-level domain drift caused by cross-domain

variations in noise, resolution, illumination, and colour. In general, a cross-domain generative

function is learnt to transform the source images into the target domain style [Yoo et al., 2016;

Bousmalis et al., 2017; Shrivastava et al., 2017; Murez et al., 2018; Taigman et al.; Hoffman

et al., 2018; Sankaranarayanan et al., 2018; Chen et al., 2019b]. Pixel-level adaptation could

be more desirable than feature-level adaptation for multiple merits: (1) It provides better visible

interpretability; (2) It maintains better pixel-level appearance details that are crucial for some
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target tasks such as semantic segmentation [Hoffman et al., 2018; Sankaranarayanan et al., 2018;

Chen et al., 2019b]; (3) It can generate abundant synthetic training data without labelling effort;

and (4) It does not impose an unrealistic prior assumption that the target data have to share an

identical label space as the source data. Given all these merits, different GAN models have

been shown effective to learn a real-to-real [Yoo et al., 2016; Hoffman et al., 2018; Chen et al.,

2019b] or synthetic-to-real [Shrivastava et al., 2017; Bousmalis et al., 2017; Sankaranarayanan

et al., 2018] mapping for transforming the image style from one (i.e. source) to another (i.e.

target), with learning objectives imposed to constrain the realism and semantics of the generated

outputs. In particular, to constrain the image style, adversarial loss is commonly imposed to

match the generated images with the target domain images. To preserve the semantic content, a

wide variety of objectives can be introduced, such as content loss imposed at the feature space

by an ImageNet pre-trained model [Gatys et al., 2016], task-specific loss imposed by the source

task model [Hoffman et al., 2018; Chen et al., 2019b], and pixel-level reconstruction loss [Chen

et al., 2019b] or cycle consistency loss [Hoffman et al., 2018] imposed to regularise the network

training.

2.3.2 Open-Set Domain Adaptation

Open-set domain adaptation has attracted increasing research attention very recently [Busto

and Gall; Saito et al.; Baktashmotlagh et al.; Liu et al., 2019]. Unlike most existing works in do-

main adaptation, this line of research considers the target domain contains samples of unknown

categories, as opposed to close-set domain adaptation that assumes all target domain samples

belong to one of the known categories in the source domain. To tackle this challenging task,

two primary objectives are required be fulfilled: (1) detecting the unknown samples, while (2)

improving recognition of the known categories in the target domain.

Open-set adversarial training has been adopted as as an effective deep learning scheme for

open-set domain adaptation [Saito et al.; Liu et al., 2019]. For instance, Adaptation by Back-

propagation considers the unknown classes as an additional category (K + 1) in the classifier,

which is trained to reject unknown target samples and align the known target samples with source

samples through a threshold-driven adversarial learning scheme [Saito et al.]. Separate to Adapt

introduces a set of per-class binary classifiers that learn to reject unknown target samples, while

aligning the target and source data distributions in a weighted adversarial manner that discounts

the degree of alignment according to the probabilities of unknown [Liu et al., 2019].
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Discussion. As summarised in Figure 2.3, a wide variety of deep learning techniques have

been explored to mitigate the domain drift across two domains at either the feature-level or pixel-

level. While feature-level adaptation is generally more efficient to train with less computation

cost when compared to pixel-level adaptation, the latter not only provides better visible inter-

pretability with potentially richer visual data variations, but also does not impose any restrictive

assumption on the target label space, thus facilitating more generic applicability to tackle open-

set domain adaptation or pixel-level domain adaptation tasks such as semantic segmentation.

In Chapter 5, we address a more challenging open-set domain adaptation task, which con-

sider the label spaces of the labelled source domain and unlabelled target domain are completely

disjoint. This differs from existing works in open-set domain adaptation, which assume the label

spaces of two domains are partially overlapped. To mitigate the domain gap in disjoint open-

set domain adaptation, we propose a new instance-guided context rendering scheme to transfer

the source domain label information into different target domain contexts using a novel dual

conditional GAN. Our approach permits to produce abundant synthetic training data with rich

contextual variations for domain-invariant representation learning.

2.4 Unsupervised Learning

Unsupervised Learning in computer vision considers to learning visual representation with-

out exploiting any human-annotated labels. The pre-trained representation can be further trans-

ferred to unseen downstream tasks such as visual classification, detection, segmentation [He

et al., 2020], or be directed deployed for visual tasks such as visual search [Chen et al., 2018a].

The most generic principle shared by existing work is to construct reliable surrogate supervision

signals that avoid using any manual annotation of visual data, which can be formulated through

pretext tasks, discriminative clustering, and generative models.

Pretext tasks refer to tasks not directly related to the core learning task at hand, which

therefore does not require any manual annotation for model training. By designing certain self-

supervised learning objectives at either pixel-level or image-level, discriminative visual represen-

tation can be automatically learnt in a fully unsupervised manner. To formulate self-supervision

at pixel level, pixel-level pretext tasks can be introduced to hallucinate colour values, denoise par-

tial destructed noises, and inpaint missing region per pixel by L1/2 loss or adversarial loss, which

are known as colorization [Zhang et al., 2017], denoising [Vincent et al., 2008], and inpainting
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[Pathak et al., 2016] respectively. To impose self-supervision at image level, image-level pretext

tasks generally targets at forming pseudo labels automatically per image. For instance, certain

transformations can performed on the input image to (1) enforce invariance towards examplar

transformation per image such as translation, rotation, scaling [Dosovitskiy et al.]; (2) classify

the image rotations per image [Gidaris et al.]; (3) classify the patch orderings per image patch

[Doersch et al.]; or (4) construct the training triplet loss based on temporal coherence guaran-

teed with tracking algorithm to discover positive and negative pairs [Wang and Gupta]. Although

these self-supervised learning objectives generally does not align consistently with the target task

learning objective, they permits to learn from contextual visual information that can implicitly

enhance both visual discrimination and invariance, thus providing good model initialisation for

the unseen downstream tasks.

Discriminative clustering has long been used as effective unsupervised machine learning

technique, as most represented by k-means clustering [Coates and Ng, 2012]. The generic idea

of discriminative clustering is to divide data samples into a set of groups so as to reflect the un-

derlying similarity and dissimilarity at the group-level, which can be adopted under deep learning

frameworks (e.g. DeepCluster [Caron et al., a], DeeperCluster [Caron et al., b]) by iteratively

grouping visual features using k-means and using the cluster assignments as pseudo class labels

to train the networks. If one considers each instance as a class (cluster), self-supervision can

be imposed per instance to encourage discrimination among individual instances. For example,

one way of instance-level clustering is known as invariant information clustering [Ji et al., 2019],

which maximises the mutual information between predictions of the original instance and the ran-

domly perturbed instance obtained from data augmentation. Instance discrimination [Wu et al.,

2018] is another way that employs a memory bank to record features of all the training samples,

and uses noise-contrastive estimation [Gutmann and Hyvärinen, 2010] as the learning objective

to ensure each sample is assigned to its own representation in the memory bank with a higher

likelihood. To improve scalability to large dataset of billion-scale, momentum contrast [He et al.,

2020] replaces memory bank in instance discrimination with a dynamic dictionary to enqueue the

recent and dequeue the old mini-batches of samples, which finally permits contrastive learning

by assigning each sample to the most similar representation in the dynamic dictionary.

Generative models [Springenberg, 2016; Donahue et al.; Donahue and Simonyan] offer a new

means of unsupervised learning by explicitly modelling the data distribution, as most represented
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by Generative Adversarial Networks (GANs) [Goodfellow et al.]. Unsupervised visual features

may come at the discriminator-level or generator-level. This is because, GANs not only contains

a discriminator that could provide discriminative visual features to facilitate visual classification;

but also offers an image generator that may serve as a powerful feature encoder to capture the

semantics in its latent space. For instance, deep convolutional generative adversarial networks

(DCGAN) [Radford et al., 2015] exploit the visual features from the convolutional discriminator

to train additional SVM classifiers for visual classification. To exploit features from the gener-

ator, Bidirectional Generative Adversarial Networks (BiGAN) [Donahue et al.] is trained with a

joint discriminator loss to tie the data and latent distribution together, which allows the image

generators to capture semantic variation and offers useful feature representation for classification

with simple One Nearest Neighbours (1NN). To further improve BiGAN, BigBiGAN [Donahue

and Simonyan] adopts more powerful discriminator and generator architectures from BigGAN

[Brock et al.] – together with additional unary discriminator loss to constrain the data or latent

distribution independently, its unsupervised representation learning capability is boosted signifi-

cantly.

Discussion. As summarised in Figure 2.4, existing unsupervised deep learning techniques

can be roughly categorised into three groups. In general, unsupervised penalty can be formulated

at different levels for model optimisation, which consequently can serve as the initialisation for

supervised fine-tuning in various downstream tasks. This suggests an unsupervised pre-training

objective does not necessarily need to be in line with the supervised fine-tuning objective. Un-

supervised pre-training is quite attractive in the sense that generic supervised pre-training on

large-scale labelled dataset such as ImageNet could be potentially avoided.

In Chapter 6, we study a special unsupervised learning scenario where the target task objec-

tive is in line with the unsupervised learning objective. This is typically useful in visual search

tasks, such as person re-identification, where the training and test objectives both aim to match

similar items of the same category based on certain metrics, such as L1 or L2 distance. To tackle

this special unsupervised learning task, we proposed a novel deep association learning scheme

that learns without any label annotations by associating nearest neighbour instances in the feature

space through two types of ranking consistency.
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2.5 Summary

The preceding sections have reviewed and discussed relevant and representative studies in

the machine learning and computer vision literature, which collectively serve as the foundational

knowledge for this thesis. Built upon these related works, this thesis presents four different deep

learning paradigms in the limited-label regime, which however, all differ from the aforemen-

tioned studies in terms of problem formulation and (or) model formulation, as outlined below.

1. [Chapter 3] Semi-supervised deep learning with memory: Semi-supervised deep learn-

ing aims to learn jointly from sparsely labelled data and abundant unlabelled data by a joint

optimisation of supervised and unsupervised learning objectives (Eq. 2.1).

L= Lsupervised +αLunsupervised (2.1)

where α is a hyper-parameter, i.e. a scalar value tuned on the validation set. We intro-

duce a new formulation of unsupervised learning objective based on a memory module,

which propagates the soft assignments on all the data to progressively fit the labelled and

unlabelled data towards the underlying manifold.

2. [Chapter 4] Open-set semi-supervised learning by uncertainty-aware self-distillation:

Open-set semi-supervised learning considers semi-supervised learning under class distri-

bution mismatch, i.e. the labelled data and unlabelled data do not share the same class

label space. This is a new semi-supervised learning problem that has not be effectively

addressed before. To optimise the model without introducing corrupted learning signals,

it is essential to discard the unlabelled data that lie out of distribution by imposing the

unsupervised learning objective selectively (Eq. 2.2).

L= Lsupervised +α(·)Lunsupervised (2.2)

where α(·) is a weighting function defined to discount the importance of the unsupervised

learning objective when an unlabelled sample is likely lying out-of-distribution. We pro-

pose a new model formulation: uncertainty-aware self-distillation. Our model ensembles

all the historic network forward propagated predictions on the fly to derive soft label as-

signments on all the training data, which yields a reliable confidence estimate that could

discard out-of-distribution samples to minimise their negative impact in optimisation.
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3. [Chapter 5] Open-set cross-domain learning by instance-guided context rendering:

Open-set cross-domain semi-supervised learning targets at mitigating the cross-domain

discrepancy between the labelled source data and unlabelled target data, where the two

sets of data do not share the same class space. A domain adaptation model is typically

optimised by a supervised learning objective imposed on the source domain data and an

unsupervised learning objective to minimise the cross-domain discrepancy (Eq. 2.3).

L= Lsupervised +αLcross-domain (2.3)

where α is a hyper-parameter. We introduce a new pixel-level domain adaptation model:

instance-guided context rendering, which transfers the source domain labels into the target

domain contexts by image style transfer. Our model produces abundant synthetic training

data to learn an more expressive representation that is both discriminative to task-relevant

information (i.e. class labels) and invariant to task-irrelevant factors (i.e. contexts).

4. [Chapter 6] Unsupervised learning by online deep association: Unsupervised learning

seeks to learn meaningful representations without relying on any manual annotation. As la-

bel information is missing during training, a discriminative unsupervised model is typically

optimised by preforming and (or) discovering certain pseudo labels that are not necessarily

related to the learning task at hand (Eq. 2.4).

L= Lunsupervised (2.4)

where Lunsupervised may involve multiple unsupervised loss terms formulated to achieve

different objectives. We formulate a new unsupervised learning scheme: deep association

learning, which employs two types of unsupervised consistency constraints to gradually

associate image representation to video representation and associate the video representa-

tions across different views. Our model presents two ways of learning with pseudo labels

either preformed based on certain information or discovered dynamically during training.

In summary, the essential key idea shared by all our works lies at formulating the proper

unsupervised learning objectives that could learn from unlabelled visual data either in a semi-

supervised or unsupervised manner, as summarised in Eq. 2.1, 2.2, 2.3, 2.4. Based on whether

there is labelled data, or whether there is class label mismatch and domain drift between the

labelled and unlabelled datasets (Table 2.1), we introduce different deep learning paradigms and
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review their related works in Section 2.1, 2.2, 2.3, 2.4. We also briefly outline our problem and

model formulations in Section 2.5, which are detailed in the following chapters.
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Chapter 3

Semi-Supervised Deep Learning with Memory

Semi-supervised learning (SSL) aims to boost the model performance by utilising the large

amount of unlabelled data when only a limited amount of labelled data is available [Chapelle

et al., 2009; Zhu, 2005]. It is motivated that unlabelled data are available at large scale but

labelled data are scarce due to high labelling costs. This learning scheme is useful and beneficial

for many applications such as image search [Fergus et al., 2009], web-page classification [Blum

and Mitchell, 1998], document retrieval [Nigam and Ghani, 2000], genomics [Shi and Zhang,

2011], and so forth. In the SSL literature, the most straightforward SSL algorithm is self-training

where the target model is incrementally trained by additional self-labelled data given by the

model’s own predictions with high confidence [Nigam and Ghani, 2000; Blum and Mitchell,

1998; Rosenberg et al., 2005]. This method is prone to error propagation in model learning due

to wrong predictions of high confidence. Other common methods include Transductive SVM

[Joachims, 1999; Chapelle et al., 2005] and graph-based methods [Zhu et al., 2003; Blum et al.,

2004], which, however, are likely to suffer from poor scalability to large-scale unlabelled data

due to inefficient optimisation.

Recently, neural network based SSL methods [Ranzato and Szummer, 2008; Weston et al.,

2008; Lee, 2013; Kingma et al., 2014; Springenberg, 2016; Rasmus et al., 2015; Miyato et al.,

2016; Sajjadi et al., 2016; Maaløe et al., 2016; Haeusser et al., 2017; Tarvainen and Valpola,

2017] start to dominate the progress due to the powerful representation-learning ability of deep

neural networks. A common strategy is to train the deep neural networks by simultaneously op-

timising a standard supervised classification loss on labelled samples along with an additional
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Figure 3.1: Illustration of the memory-assisted semi-supervised deep learning framework that in-
tegrates a deep CNN with an external memory module trained concurrently. The memory module
assimilates the incoming training data on-the-fly and generates an additional unsupervised mem-
ory loss to guide the network learning along with the standard supervised classification loss.

unsupervised loss term imposed on either unlabelled data [Lee, 2013; Salimans et al., 2016; Du-

moulin et al., 2017] or both labelled and unlabelled data [Weston et al., 2008; Rasmus et al.,

2015; Miyato et al., 2016; Laine and Aila, 2017]. These additional loss terms are considered

as unsupervised supervision signals since no ground-truth label is required for loss computa-

tion. For example, Lee [Lee, 2013] utilises the cross-entropy loss computed on the pseudo labels

(the classes with the maximum predicted probability given by the up-to-date network) of unla-

belled samples. Rasmus et al. [Rasmus et al., 2015] adopt the reconstruction loss between one

clean forward propagation and one stochastically-corrupted forward propagation derived for the

same sample. Miyato et al. [Miyato et al., 2016] define the distributional smoothness against

local random perturbation as an unsupervised penalty. Laine et al. [Laine and Aila, 2017] intro-

duce an unsupervised L2 loss to penalise the inconsistency between the network predictions and

the temporally ensembled network predictions. Tarvainen et al. [Tarvainen and Valpola, 2017]

formulate an unsupervised L2 loss to regress the network predictions to the model predictions de-

rived from the Mean Teacher – an ensemble model that keeps an exponential moving average of

model weights during training. Overall, the rationale of these SSL algorithms is to regularise the

network by enforcing smooth and consistent classification boundaries that are robust to random

perturbation [Rasmus et al., 2015; Miyato et al., 2016]; or to enrich the supervision signals by

exploiting the knowledge learned by the network, such as using pseudo labels [Lee, 2013] and

temporally ensembled predictions [Laine and Aila, 2017].

Most of the aforementioned methods typically utilise the up-to-date in-training network to

formulate an additional unsupervised penalty that enables semi-supervised learning. We con-

sider that this kind of deep SSL scheme is sub-optimal, given that the memorising capacity of
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deep networks is often incomplete and insufficiently compartmentalised to represent knowledge

accrued in the past learning iterations. To effectively leverage such knowledge, we introduce

a memory mechanism into the deep network training process to enable semi-supervised learn-

ing from small-sized labelled and large-sized unlabelled training data. Our proposed memory

mechanism is related to the class of learning model memory networks proposed by Weston et

al. [Weston et al., 2014], which allows read and write operation to continually retrieve and up-

date information in the memory. While the vanilla memory networks are formulated to store the

linguistic knowledge and predict answers in a question answering task, our proposed memory

mechanism, on the other hand, stores the continually refreshing class-level feature representa-

tions and network predictions to derive class assignment for the unlabelled samples. In spirit

of the Piaget’s theory on human’s ability of continual learning [Ginsburg and Opper, 1988], we

aim to design a SSL scheme that permits the deep model to additionally learn from its memory

(assimilation) and adjust itself to fit optimally the incoming training data (accommodation) in an

incremental manner. To this end, we formulate a novel memory-assisted semi-supervised deep

learning framework: Memory-Assisted Deep Neural Network (MA-DNN) as illustrated in Fig-

ure 6.1. MA-DNN is characterised by an assimilation-accommodation interaction between the

network and an external memory module.

Augmenting a network with an external memory component is attractive due to its flexible

capability of storing, abstracting and organising the past knowledge into a structural and address-

able form, which have been widely adopted to a variety of challenging tasks such as question

answering [Weston et al., 2014; Sukhbaatar et al., 2015; Miller et al., 2016] and one-shot learn-

ing [Santoro et al., 2016; Kaiser et al., 2017]. As earlier works, Weston et al. [Weston et al.,

2014] propose Memory Networks, which integrate inference components with a memory com-

ponent that can be read and written to remember supporting facts from the past for question

answering. Kaiser et al. [Kaiser et al., 2017] propose a life-long memory module to record net-

work activations of rare events for one-shot learning. Our work is conceptually inspired by these

works, but it is the first attempt to explore the memory mechanism in semi-supervised deep

learning. Besides the basic storage functionality, our memory module induces an assimilation-

accommodation interaction to exploit the memory of model learning and generate an informative

unsupervised memory loss that permits semi-supervised learning.

Specifically, the key to our framework design is two-aspect: (1) the class-level discriminative
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feature representation and the network inference uncertainty are gradually accumulated in an

external memory module; (2) this memorised information is utilised to assimilate the newly

incoming image samples on-the-fly and generate an informative unsupervised memory loss to

guide the network learning jointly with the supervised classification loss.

In summary, our contribution in this work is two-fold:

• We propose to exploit the memory of model learning to enable semi-supervised deep learn-

ing from the sparse labelled and abundant unlabelled training data, whilst fully adopting

the existing end-to-end training process. This is in contrast to most existing deep SSL

methods that typically ignore the memory of model learning.

• We formulate a novel Memory-Assisted Deep Neural Network (MA-DNN) characterised

by a memory mechanism. We introduce an unsupervised memory loss compatible with

the standard supervised classification loss to enable semi-supervised learning. Extensive

comparative experiments demonstrate the advantages of our proposed MA-DNN model

over a wide variety of state-of-the-art semi-supervised deep learning methods.

3.1 Memory-Assisted Deep Neural Network

We consider semi-supervised deep learning in the context of multi-class image classification.

In this context, we have access to a limited amount of labelled image samplesDL = {(IIIi,l,yyyi,l)}nl
i

but an abundant amount of unlabelled image samples DU = {(IIIi,u)}nu
i , where nu � nl . Each

unlabelled image is assumed to belong to one of the same K object categories (classes) Y =

{yyyi}K
i as the labelled data, while their ground-truth labels are not available for training. The

key objective of SSL is to enhance the model performance by learning from the labelled image

dataDL and the additional unlabelled image dataDU simultaneously. To that end, we formulate a

memory-assisted semi-supervised deep learning framework that integrates a deep neural network

with a memory module, We call this Memory-Assisted Deep Neural Network (MA-DNN).

3.1.1 Approach Overview

The overall design of our MA-DNN architecture is depicted in Figure 3.2. The proposed

MA-DNN contains three parts: (1) A deep neural network (Section 3.1.2); (2) A memory mod-

ule designed to record the memory of model learning (Section 3.2); and (3) An assimilation-
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Figure 3.2: An overview of Memory-Assisted Deep Neural Network (MA-DNN) for semi-
supervised deep learning. During training, given (a) sparse labelled and abundant unlabelled
training data, mini-batches of labelled/unlabelled data are feed-forward into (b) the deep CNN
to obtain the up-to-date feature representation xxx and probabilistic prediction ppp for each sample.
Given (c) the updated memory module, memory assimilation induces another multi-class pre-
diction p̂pp (Eq. (3.4)) for each sample via key addressing and value reading. In accommodation,
a memory loss Lm (Eq. (3.7)) is computed from p̂pp and employed as an additional supervision
signal to guide the network learning jointly with the supervised classification loss. At test time,
the memory module is no longer needed, so it does not affect the deployment efficiency.

accommodation interaction mechanism introduced for effectively exploiting the memory to fa-

cilitate the network optimisation in semi-supervised learning (Section 3.2.1).

3.1.2 Network Architecture Selection

The proposed framework aims to work with existing standard deep neural networks. We

select the Convolutional Neural Network (CNN) in this work due to its powerful representation-

learning capability for imagery data. To train a CNN for image classification, the supervised

cross-entropy loss function is usually adopted. During training, given any training sample III, we

feed-forward it through the up-to-date deep network to obtain a feature vector xxx and a multi-class

probabilistic prediction vector ppp over all classes. Specifically, the j-th class posterior probability

of the labelled image sample IIIi as

p(yyy j|xxxi) =
exp(WWW>j xxxi)

∑
|Y|
j=1 exp(WWW>j xxxi)

(3.1)

where xxxi refers to the embedded deep feature representation of IIIi extracted by the deep CNN,

and WWW j is the j-th class prediction function parameter. The cross-entropy loss on IIIi against the

ground-truth class label k is computed as

Lce=−
K

∑
j=1

1[yyy j = k]log
(

p(yyy j|xxxi)
)

(3.2)

Obviously, the cross-entropy loss function is restricted to learn from the labelled samples alone.

To take advantage of the unlabelled training samples, a straightforward way is to utilise the
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predicted labels given by the up-to-date model in training. This, however, may be error-prone and

unreliable given immature label estimations particularly at the beginning of model training. This

presents a catch-22 problem. We overcome this problem by introducing a memory module into

the network training process to progressively estimate more reliable predictions on the unlabelled

data.

3.2 Memory Module

To take advantage of the memorisable information generated in model learning, it is neces-

sary for us to introduce a memory module. We consider two types of memory experienced by

the network-in-training: (1) the class-level feature representation, and (2) the model inference

uncertainty.

To manage these memorisable information, we construct the memory module in a key-value

structure [Miller et al., 2016]. The memory module consists of multiple slots with each slot stor-

ing a symbolic pair of (key, value). In particular, the key embedding is the dynamically updated

feature representation of each class in the feature space. Utilising an univocal representation per

class is based on the assumption that deep feature embeddings of each class can be gradually

learned to distribute around its cluster centroid in the feature space [Wen et al., 2016]. Based

on this assumption, the global feature distribution of all classes is represented by their cluster

centroids in the feature space, whilst these cluster centroids are cumulatively updated as the key

embeddings in a batch-wise manner. On the other hand, the value embedding records the simi-

larly updated multi-class probabilistic prediction w.r.t. each class. Hence, each value embedding

is the accumulated network predictions of samples from the same class that encodes the overall

model inference uncertainty at the class level.

To represent the incrementally evolving feature space and the up-to-date overall model in-

ference uncertainty, memory update is performed every iteration to accomodate the most recent

updates of the network. We only utilise the labelled data for memory update, provided that un-

labelled samples have uncertainty in class assignment and hence potentially induce the risk of

error propagation. Formally, suppose there exist n j labelled image samples {IIIi} from the j-th

class ( j ∈ {1, · · · ,K}) with their feature vectors and probabilistic predictions as {xxxi, pppi}, the j-th
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memory slot (kkk j,vvv j) is cumulatively updated over all the training iterations as follows.
kkk j←kkk j−η∇kkk j

vvv j←
vvv j−η∇vvv j

∑
K
i=1(vvv j,i−η∇vvv j,i)

with


∇kkk j=

∑
n j
i=1(kkk j− xxxi)

1+n j

∇vvv j=
∑

n j
i=1(vvv j− pppi)

1+n j

(3.3)

where η denotes the learning rate (set to η = 0.5 in our experiments). The value embedding

vvv j is normalised to ensure its probability distribution nature. Along the training process, as the

gradients (∇kkk j,∇vvv j) progressively get smaller, the key and value embeddings will become more

reliable to reflect the underlying feature structures and multi-class distributions. To begin the

training process without imposing prior knowledge, we initialise all the key and value embed-

dings to 000 and 1
K · 111 (a uniform probabilistic distribution over K classes), respectively. This

indicates the memorised information is fully discovered by the network during training, with-

out any specific assumption on the problem settings, therefore potentially applicable to different

semi-supervised image classification tasks.

3.2.1 The Assimilation-Accomodation Interaction

Given the updated memory of model learning, we further employ it to enable semi-supervised

deep learning. This is achieved by introducing an assimilation-accomodation interaction mecha-

nism with two operations executed every training iteration: (1) Memory Assimilation: Compute

the memory prediction for each training sample by key addressing and value reading; (2) Accom-

modation: Compute the memory loss to formulate the final semi-supervised learning objective.

We present the details of these operations in the following.

(1) Memory Assimilation. Given the forward propagated image representation xxx and net-

work prediction ppp of the image III, memory assimilation induces another multi-class probabilistic

prediction p̂pp based on the updated memory. We obtain this by key addressing and value read-

ing [Miller et al., 2016]. Specifically, key addressing is to compute the addressing probability

w(mmmi|III), i.e. the probabilistic assignment to each memory slot mmmi = (kkki,vvvi), i∈ {1, · · · ,K}, based

on pairwise similarity w.r.t. each key embedding. In essence, w(mmmi|III) is the cluster assignment

in the feature space. Given the addressing probabilities over all K memory slots, value reading

is then applied to compute the memory prediction p̂pp by taking a weighted sum of all the value

embeddings as follows.

p̂pp =
K

∑
i=1

w(mmmi|III) vvvi (3.4)
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According to label availability, we adopt two addressing strategies. The first is position-

based addressing applied to labelled training samples. Formally, suppose the training sample III

is labelled as the k-th class, the addressing probability is attained based on the position k as

w(mmmi|III) =


1, i = k

0, i 6= k
(3.5)

The second is content-based addressing applied to unlabelled image samples. This strategy

computes the addressing probability based on the pairwise similarity between the image sample

III and the key embeddings kkki as

w(mmmi|III) =
e−dist(xxx,kkki)

∑
K
j=1 e−dist(xxx,kkk j)

(3.6)

where xxx is the extracted feature vector of III and dist() denotes the Euclidean distance. Eq. (3.6)

can be considered as a form of label propagation [Zhu and Ghahramani, 2002] based on the

cluster assumption [Weston et al., 2008; Zhou et al., 2004], in the sense that the probability

mass is distributed according to proximity to each cluster centroid in the feature space. That is,

probabilistic assignments are computed based on cluster memberships.

(2) Accommodation. This operation provides the deep network with a memory loss to formulate

the final semi-supervised learning objective such that the network can learn additionally from the

unlabelled data. Specifically, we introduce a memory loss on each training sample xxx as follows.

Lm = H(p̂pp)+max(p̂pp)DKL(ppp||p̂pp) (3.7)

where H() refers to the entropy measure; max() is the maximum function that returns the max-

imal value of the input vector; DKL() is the Kullback-Leibler (KL) divergence. Both H() and

DKL() can be computed without ground-truth labels and thus applicable to semi-supervised learn-

ing. The two loss terms in Eq. (3.7) are named as the Model Entropy (ME) loss and the Memory-

Network Divergence (MND) loss, as explained below.

(i) The Model Entropy (ME) loss term H(p̂pp) is formally computed as

H(p̂pp) =−∑
K
j=1 p̂pp( j) log p̂pp( j) (3.8)

which quantifies the amount of information encoded in p̂pp. From the information-theoretic per-

spective, the entropy reflects the overall model inference uncertainty. A high entropy on a la-

belled image sample indicates that p̂pp is an ambiguous multimodal probability distribution, which
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corresponds to the retrieved value embedding of a specific class. This indicates that the network

cannot well distinguish between this class and the other classes, which is resulted from assigning

inconsistent probabilistic predictions to image samples within the same class. On the other hand,

a high entropy on an unlabelled sample suggests the severe class distribution overlap between

different classes in the feature space. This is because the unlabelled sample cannot be assigned

to a certain class with high probability. Therefore, minimising the model entropy H is equivalent

to reducing class distribution overlap in the feature space and penalising inconsistent network

predictions at the class level, which is essentially motivated by the entropy minimisation princi-

ple [Grandvalet and Bengio, 2005]. It is worth mentioning that minimising H(p̂pp) differs from

minimising H(ppp). While the latter blindly enforces a confident model prediction on the samples,

the former encourages the sample to assign to its most similar class in the feature space with

higher similarity.

(ii) The Memory-Network Divergence (MND) loss term DKL(ppp||p̂pp) is computed between the

network prediction ppp and the memory prediction p̂pp as follows.

DKL(ppp||p̂pp) = ∑
K
j=1 ppp( j) log

ppp( j)
p̂pp( j)

(3.9)

DKL(ppp||p̂pp) is a non-negative penalty that measures the discrepancy between two distributions:

ppp and p̂pp. It represents the additional information encoded in ppp compared to p̂pp in information

theory. Minimising this KL divergence prevents the network prediction from overly deviating

from the probabilistic distribution derived from the memory module. When DKL(ppp||p̂pp)→ 0,

it indicates the network predictions match well with its memory predictions. Additionally, we

also impose a dynamic weight: max(p̂pp), the maximum probability value of p̂pp, to discount the

importance of DKL() when given an ambiguous memory prediction (multimodal probability dis-

tribution). Hence, ppp is encouraged to match with p̂pp only when p̂pp corresponds to a confident

memory prediction (peaked probability distribution).

The final semi-supervised learning objective function is formulated by merging Eq. (3.7)

and Eq. (3.2) as follows.

L= Lce +λLm (3.10)

where λ is a hyper-parameter that is set to 1 to ensure equivalent importance of two loss terms

during training.

Remark. The fundamental role of memory module is to record the class-level feature representa-

tions and model inference uncertainty, such that labels can be propagated from the known feature
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distribution to the unlabelled samples. In essence, a Gaussian assumption is implicitly imposed,

where the key embedding can be considered as the estimated mean of the Gaussian distribution

while the value embedding reflect the uncertainty of the estimated mean. As the network weights

are constantly updated, it is also essential to constantly update the estimated per-class mean and

uncertainty to capture the updated underlying feature distributions.

3.2.2 Model Training

The proposed MA-DNN is trained by standard Stochastic Gradient Descent algorithm in an

end-to-end manner. The algorithmic overview of model training is summarised in Algorithm 1.

Algorithm 1 Memory-Assisted Semi-Supervised Deep Learning.

Input: Labelled data DL and unlabelled data DU .

Output: A deep CNN model for classification.

for t = 1 to max iter do

Sampling a mini-batch of labelled & unlabelled data.

Network forward propagation (samples feed-forward).

Memory update (Eq. (3.3)).

Network supervised loss computation (Eq. (3.2)).

Memory assimilation (Eq. (3.4)) and accommodation (Eq. (3.7)).

Network update by back-propagation (Eq. (6.7)).

end for

3.3 Discussion

Whilst sharing the generic spirit of introducing an unsupervised penalty as prior works in

semi-supervised learning [Lee, 2013; Salimans et al., 2016; Dumoulin et al., 2017; Weston et al.,

2008; Rasmus et al., 2015; Miyato et al., 2016; Laine and Aila, 2017], our method is novel in a

number of fundamental ways: (I) Exploiting the memory of model learning: Instead of relying

on the incomplete knowledge of a single up-to-date network to derive the additional loss [Lee,

2013], we employ a memory module to compute a memory loss based on the cumulative class-

level feature representation and model inference uncertainty aggregated all through the preceding

training iterations. (II) Low computational cost: Only one network forward propagation is re-

quired to derive the additional loss term for the network by utilising a memory mechanism, as
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opposed to more than one forward propagations required by other models [Rasmus et al., 2015;

Miyato et al., 2016]. (III) Low consumption of memory footprint: Instead of storing all the pre-

dictions of all training samples in a large mapped file [Laine and Aila, 2017], our online updated

memory module consumes very limited memory footprint, therefore potentially more scalable to

training data of larger scale.

3.4 Experiments

We validate the effectiveness of MA-DNN on three widely adopted image classification

benchmark datasets, with comparison to other state-of-the-art methods in Section 3.4.2 and ab-

lation studies in Section 3.4.2.

3.4.1 Evaluation on Semi-Supervised Classification Benchmarks

Datasets. To evaluate our proposed MA-DNN, we select three widely adopted image classifica-

tion benchmark datasets as detailed in the following.

(1) SVHN [Netzer et al., 2011]: A Street View House Numbers dataset including 10 classes

(0∼9) of coloured digit images from Google Street View. The classification task is to recognise

the central digit of each image. We use the format-2 version that provides cropped images sized

at 32×32, and the standard 73,257/26,032 training/test data split.

(2) CIFAR10 [Krizhevsky and Hinton, 2009]: A natural images dataset containing 50,000/10,000

training/test image samples from 10 object classes. Each class has 6,000 images with size 32×32.

(3) CIFAR100 [Krizhevsky and Hinton, 2009]: A dataset (with same image size as CIFAR10)

containing 50,000/10,000 training/test images from 100 more fine-grained classes with subtle

inter-class visual discrepancy.

Experimental Protocol. Following the standard semi-supervised classification protocol [Kingma

et al., 2014; Rasmus et al., 2015; Springenberg, 2016; Miyato et al., 2016], we randomly divide

the training data into a small labelled set and a large unlabelled set. The number of labelled

training images is 1,000/4,000/10,000 on SVHN/CIFAR10/CIFAR100 respectively, with the re-

maining 72,257/46,000/40,000 images as unlabelled training data. We adopt the common clas-

sification error rate as model performance measure, and report the average error rate over 10

random data splits.

Implementation Details. We adopt the same 10-layers CNN architecture as [Laine and Aila,



64 Chapter 3. Semi-Supervised Deep Learning with Memory

Methods SVHN CIFAR10 CIFAR100

DGM∗ [Kingma et al., 2014] 36.02 ± 0.10 – –

Γ -model [Rasmus et al., 2015] – 20.40 ± 0.47 –

CatGAN∗ [Springenberg, 2016] – 19.58 ± 0.58 –

VAT [Miyato et al., 2016] 24.63 – –

ADGM∗ [Maaløe et al., 2016] 22.86 – –

SDGM∗ [Maaløe et al., 2016] 16.61 ± 0.24 – –

ImpGAN∗ [Salimans et al., 2016] 8.11 ± 1.3 18.63 ± 2.32 –

ALI∗ [Dumoulin et al., 2017] 7.42 ± 0.65 17.99 ±1.62 –

Π-model [Laine and Aila, 2017] 4.82 ± 0.17 12.36 ± 0.31 39.19 ± 0.36

Temporal Ensembling [Laine and Aila, 2017] 4.42 ± 0.16 12.16 ± 0.24 37.34 ± 0.44

Mean Teacher [Tarvainen and Valpola, 2017] 3.95 ± 0.19 12.31 ± 0.28 –

MA-DNN (Ours) 4.21 ± 0.12 11.91 ± 0.22 34.51 ± 0.61

Table 3.1: Evaluation on semi-supervised image classification benchmarks in comparison to
state-of-the-art methods. Metric: Error rate (%) ± standard deviation, lower is better. “–”
indicates no reported result. “∗” indicates generative models.

2017] (Table 3.2).

Training details. The convolutional neural network used for experiments on SVHN, CIFAR10

and CIFAR100 is detailed in Table 3.2. To train the network, we adopt the stochastic gradient

descent algorithm with Nesterov momentum and set the batch size to 100, the weight decay to

0.0004. To compute the cross-entropy loss, we set a small label-smoothing factor of 0.001 in

each class, such that the network prediction can better encode and reflect the model inference

uncertainty [Pereyra et al., 2017]. The ratio of labelled/unlabelled samples is set to 50%/50%

without tuning, which allows the memory module to receive a sufficient amount of labelled sam-

ples per batch for more reliably capturing the evolving feature space and the up-to-date model

inference uncertainty. We set λ in Eq. 6.7 to 1 to ensure equivalent importance of the supervised

loss and the memory loss.

Learning rate schedule. On CIFAR10 and CIFAR100, the network is trained for 500 epochs

with an initial learning rate of 0.1 and decayed linearly to 0 for the last 250 epochs. On SVHN,

the network is trained for 200 epochs with an initial learning rate of 0.02 and decayed to 0 for

the last 200 epochs.
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Layer Descriptions

Input 32×32 RGB Image

Conv1∼3

3×3 conv, 128 filters, LReLU (alpha=0.1), pad=‘same’

3×3 conv, 128 filters, LReLU (alpha=0.1), pad=‘same’

3×3 conv, 128 filters, LReLU (alpha=0.1), pad=‘same’

Pool1 2×2 max-pooling (dropout p=0.5), pad=‘same’

Conv4∼6

3×3 conv, 256 filters, LReLU (alpha=0.1), pad=‘same’

3×3 conv, 256 filters, LReLU (alpha=0.1), pad=‘same’

3×3 conv, 256 filters, LReLU (alpha=0.1), pad=‘same’

Pool2 2×2 max-pooling (dropout p=0.5), pad=‘same’

Conv7∼9

3×3 conv, 512 filters, LReLU (alpha=0.1), pad=‘valid’

1×1 conv, 256 filters, LReLU (alpha=0.1), pad=‘same’

1×1 conv, 128 filters, LReLU (alpha=0.1), pad=‘same’

Pool3 average-pooling (6×6→ 1)

FC & Output 128→ number of classes (K)→ K-way softmax

Table 3.2: Network architecture. LReLU: LeakyReLU.

Data augmentation. We simply apply translation and colour jittering during training without

any preprocessing prior to training. Additionally, horizontal flipping is applied on CIFAR10/100;

whilst slight rotation is applied on SVHN.

Comparison with state-of-the-art. In Table 3.1, we compare our model to 11 state-of-the-art

competitive methods with their reported results on SVHN, CIFAR10 and CIFAR100. Among all

these methods, Mean Teacher is the only one that slightly outperforms our MA-DNN on the digit

classification task. On the natural image classification tasks, our MA-DNN surpasses the best al-

ternative (Temporal Ensembling) with a margin of 0.25%(12.16-11.91) and 2.83%(37.34-34.51)

on CIFAR10 and CIFAR100 respectively. This indicates the potential performance superiority

of the proposed MA-DNN in semi-supervised deep learning among various competitive semi-

supervised learning algorithms, i.e. either performing on par with or outperforming the state of

the art. Additionally, it can also be observed that MA-DNN outperforms more significantly on

the more challenging dataset CIFAR100 with more fine-grained semantic structures among more

classes. This suggests that the memory loss derived from the memory of model learning can en-
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Methods SVHN CIFAR10 CIFAR100

Full (ME+MND) 4.21 ± 0.12 11.91 ± 0.22 34.51 ± 0.61

W/O ME 4.59 ± 0.11 12.63 ± 0.26 39.93 ± 0.34

W/O MND 6.75 ± 0.40 17.41 ± 0.15 41.90 ± 0.39

Table 3.3: Evaluation on the effect of individual memory loss terms. Metric: Error rate (%) ±
standard deviation, lower is better. ME: Model Entropy; MND: Memory-Network Divergence.

hance more fine-grained class discrimination and separation to facilitate better semi-supervised

learning. Therefore, MA-DNN is potentially more scalable than the other competitors on the

image classification tasks that involve a larger number of classes.

Computational Costs. The per-batch distance computation complexity induced by memory

assimilation and memory update is O
(
NuK

)
and O

(
Nl
)

respectively, where K is the number

of memory slots, Nl , Nu are the numbers of labelled and unlabelled samples in each mini-

batch. For computational efficiency, all the memory operations are implemented as simple matrix

manipulation on GPU with single floating point precision. Overall, MA-DNN is computationally

efficient in a number of ways: (i) Only one network forward propagation is required to compute

the additional supervision signal, as opposed to more than one forward propagations required

by Γ -model, VAT, Π-model and Mean-Teacher. (ii) The consumption of memory footprint is

limited. The memory size of the memory module in MA-DNN is only proportional to the number

of classes; while Temporal Ensembling requires to store the predictions of all samples in a large

mapped file with a memory size proportional to the number of training samples. (iii) Unlike

generative models including DGM, CatGAN, ADGM, SDGM, ImpGAN, and ALI, our MA-

DNN does not need to generate additional synthetic images during training, therefore resulting

in more efficient model training.

3.4.2 Ablation Studies and Further Analysis

Effect of the Memory Loss. We evaluate the individual contribution of two loss terms in

the memory loss formulation (Eq. (3.7)): (1) the Model Entropy (ME) (Eq. (3.8)), and (2) the

Memory-Network Divergence (MND) (Eq. (3.9)). We measure the impact of each loss term by

the performance drop when removing it from the memory loss formulation.

Table 3.3 shows the evaluation results in comparison to the full memory loss formulation.

We have the following observations: (i) Both loss terms bring positive effects to boost the model
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Figure 3.3: Evaluation on the robustness of the MA-DNN on varying number of labelled training
samples. Metric: Error rate, lower is better.

performance. The classification error rates increase when either of the two loss terms is elim-

inated. (ii) The MND term effectively enhance the model performance. Eliminating the MND

term causes performance drop of 2.54%(6.75-4.21), 5.50%(17.41-11.91), 7.39%(41.90-34.51)

on SVHN, CIFAR10, and CIFAR100 respectively. This indicates the effectiveness of encourag-

ing the network predictions to be consistent with reliable memory predictions derived from the

memory of model learning. (iii) The ME term is also effective. Eliminating the ME term causes

performance drop of 0.38%(4.59-4.21), 0.72 %(12.63-11.91), 5.42%(39.93-34.51) on SVHN,

CIFAR10, and CIFAR100 respectively. This suggests the benefit of penalising class distribution

overlap and enhancing class separation, especially when the amount of classes increase – more

classes are harder to be separated. Overall, the evaluation in Table 3.3 demonstrates the comple-

mentary joint benefits of the two loss terms to improve the model performance in semi-supervised

deep learning.

Labelled Training Sample Size. We evaluate the robustness of MA-DNN over varying numbers

of labelled training samples. We conduct this evaluation on SVHN by varying the number of

labelled samples from 73,257 (all training samples are labelled) to 250. As comparison, we adopt

the supervised counterpart CNN-Supervised trained only using the same labelled data without

the memory module. Figure 3.3 shows that as the size of labelled data decreases, the model

performance of CNN-Supervised drops from 61.18% (given 73,257 labelled samples) to 2.89%

(given 250 labelled samples), with a total performance drop of 58.29% in error rate. In contrast,

the performance of MA-DNN degrades only by 5.94%(8.83-2.89). This indicates the proposed

MA-DNN can effectively leverage additional unlabelled data to boost the model performance

when both small-sized labelled and large-sized unlabelled training data are provided.
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Figure 3.4: Visualisation on the evolution of key embeddings (denoted as the black dots) and the
multi-class data distribution (denoted as dots in colours) of (a) labelled data, (b) unlabelled data,
(c) test data from CIFAR10 in the feature space during training. Data projection in 2-D space is
attained by tSNE [Maaten and Hinton, 2008] based on the feature representation extracted on the
same sets of data using the CNN at different training stages.

Evolution of the Memory Module. As aforementioned, the two types of class-level memoris-

able information recorded in the memory module is (1) the class-level feature representation (key

embeddings), and (2) the model inference uncertainty (value embeddings). To understand how

the memory module is updated during training, we visualise the evolution of the key embeddings

and value embeddings in Figure 3.4, 3.5 and qualitatively analyse their effects as below.

Effect of the Key Embeddings. As Figure 3.4 shows, the key embeddings (denoted as the black

dots) are essentially updated as the cluster centroids to capture the global manifold structure in

the feature space. In particular, we have the following observations: (i) Figure 3.4(a) shows

that although the key embeddings are initialised as 0 without imposing prior knowledge, they

are consistently updated to capture the underlying global manifold structure of the labelled data

after training for certain period (50 epochs). (ii) Figure 3.4(b) shows that although there is severe

class distribution overlap in the feature space initially, the class distribution overlap of unlabelled

data tends to be gradually mitigated as the model is trained. (iii) Figure 3.4(c) shows that the

key embeddings also roughly capture the global manifold structure of the unseen test data, even

though the network is not optimised to fit towards the test data distribution. Overall, these obser-

vations are in line with our motivation of recording the accumulatively updated cluster centroids
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Figure 3.5: Visualisation on the evolution of value embeddings on (a) CIFAR10 and (b) CI-
FAR100. In each block, each row corresponds to a per-class value embedding, i.e. a multi-class
probabilistic prediction that encodes the class-level network inference uncertainty at different
epochs during training.

as the key embeddings for deriving the probabilistic assignments on unlabelled samples based

on the cluster assumption. Moreover, the evolution of unlabelled data distribution also qualita-

tively suggests that our memory loss serves to penalise the class distribution overlap and render

the class decision boundaries to lie in the low density region. Note that the 2D visualisation of

high-dimensional data may not perfectly reflect how classes are separated.

Effect of the Value Embeddings. As Figure 3.5 shows, the value embeddings essentially record

the model inference uncertainty at the class level. At the initial training stages, the value embed-

dings reflect much higher inference uncertainty (multimodal distribution with higher entropy),

but progressively reflect much lower inference uncertainty (peaked distribution with lower en-

tropy) as the model is trained. In fact, when removing the value embeddings, the probabilis-

tic assignments on unlabelled samples can become particularly unreliable at the earlier training

stages, which even leads to performance drops of 0.69/1.94/2.78% on SVHN/CIFAR10/100.

Hence, the value embeddings can serve to reflect the class separation in the label space, and

be utilised to smooth the probabilistic assignments with uncertainty for deriving more reliable

memory predictions.

Evolution of Memory Predictions. We visualise the evolution of memory predictions on the un-

labelled samples from CIFAR10 at different training stages in Figure 3.6. It can be observed that

the memory predictions are progressively improving from more uncertain (ambiguous) to more

confident on the unlabelled training samples. This not only demonstrates the good convergence

property of the MA-DNN, but also indicates how the memory loss takes effect in model learn-

ing – (1) penalising class distribution overlap when given uncertain memory predictions at the

earlier training stages while (2) encouraging the network predictions to be consistent with confi-

dent memory predictions, such that the unlabelled data is fitted optimally towards the underlying
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Figure 3.6: Evolution of memory predictions of randomly selected unlabelled samples from
CIFAR10. The Red bar corresponds to the missing ground-truth class.

manifold structure.

3.5 Summary

In this work, we presented a novel Memory-Assisted Deep Neural Network (MA-DNN) to

enable semi-supervised deep learning on sparsely labelled and abundant unlabelled training data.

The MA-DNN is established on the idea of exploiting the memory of model learning to more re-

liably and effectively learn from the unlabelled training data. In particular, we formulated a novel

assimilation-accommodation interaction between the network and an external memory module

capable of facilitating more effective semi-supervised deep learning by imposing a memory loss

derived from the incrementally updated memory module. Extensive comparative evaluations

on three semi-supervised image classification benchmark datasets validate the advantages of the

proposed MA-DNN over a wide range of state-of-the-art methods. We also provided detailed

ablation studies and further analysis to give insights on the model design and performance gains.
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Chapter 4

Open-Set Semi-Supervised Learning by

Uncertainty-Aware Self-Distillation

Recent developments [Kingma et al., 2014; Rasmus et al., 2015; Miyato et al., 2016; Sajjadi

et al., 2016; Laine and Aila, 2017; Tarvainen and Valpola, 2017; Athiwaratkun et al., 2019; Berth-

elot et al., 2019] have pushed the limit of SSL drastically, leading to increasingly generalisable

DNNs. With a substantial fraction of labels discarded, recent advanced methods [Laine and Aila,

2017; Tarvainen and Valpola, 2017; Athiwaratkun et al., 2019] can even approach the perfor-

mance of fully supervised learning. Most of the prior works in semi-supervised learning [Sajjadi

et al., 2016; Laine and Aila, 2017; Tarvainen and Valpola, 2017; Miyato et al., 2018; Chen et al.,

2018b; Athiwaratkun et al., 2019; Wang et al., 2019; Berthelot et al., 2019], however, focus on a

close-set semi-supervised learning setting, where the unlabelled data samples are assumed to lie

in the same label space as the labelled data. The best results on close-set semi-supervised image

classification benchmarks are mostly achieved by consistency regularisation, which generally en-

forces the distributional smoothness under randomisation in input images or model weights. For

instance, Temporal Ensembling [Laine and Aila, 2017], Mean Teacher [Tarvainen and Valpola,

2017] are two representative techniques that keep an exponential moving average (EMA) in out-

put or weight space to derive an unsupervised consistency cost on unlabelled data.

Built upon a de facto artificial assumption that labelled and unlabelled training data are drawn

from an identical class space (i.e. every unlabelled sample must belong to one of the known

classes), existing SSL methods are not practically deployable and scalable in practice. In fact,
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Figure 4.1: (a) In conventional semi-supervised learning, both labelled and unlabelled training
data come from an identical class distribution. (b) In real-world scenario, however, class distri-
bution mismatch often exits between the labelled and unlabelled data.

as illustrated by [Oliver et al., 2018], the model performance of existing representative semi-

supervised learning techniques would degrade significantly when tested in an open-set semi-

supervised learning setting, where there exists class distribution mismatch between the labelled

and unlabelled sets. This is because, unlabelled data are unlikely to be manually purified before-

hand in many real-world applications for meeting the de facto assumption. More probably, unla-

belled data are sampled from a class distribution with an unknown class mismatch rate against the

labelled class distribution. Lacking algorithmic consideration to deal with the class distribution

mismatch between labelled and unlabelled data, state-of-the-art SSL algorithms generally suffer

severe performance degradation when deployed to such realistic settings.

In this work, we investigate the more realistic and under-studied semi-supervised learning

scenario with class distribution mismatch between limited labelled and abundant unlabelled data

sets. In particular, unlike the conventional SSL setting, we consider the unlabelled data is drawn

from a mixture of known and unknown classes (Figure 4.1). This new problem poses a unique

research question mostly ignored in existing SSL literature: How can we maximise the value

of any relevant unlabelled data, given no prior knowledge about whether an unlabelled sample

belongs to a known class?

Compared to conventional SSL, the challenge of realistic SSL is partly due to lacking the

separation of known and unknown classes on the unlabelled training data. Together with the

notorious overconfidence issue of deep neural networks (DNNs) [Nguyen et al., 2015], it is

not surprised that contemporary SSL methods can easily produce corrupted, overconfident un-
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supervised learning signals that incur catastrophic error propagation. For instance, in entropy

minimisation for SSL [Grandvalet and Bengio, 2005; Lee, 2013], model predictions are blindly

enforced to be “confident” (i.e. low-entropy) on unlabelled samples, despite that these samples

may be unrelated to the target learning task at hand. In consistency regularisation [Tarvainen

and Valpola, 2017], the inherent overconfident tendency in DNNs can also reinforce the wrong

class assignments of those irrelevant unlabelled samples to the known classes. Therefore, to ex-

ploit unconstrained unlabelled data effectively, we address this realistic SSL problem based on

two essential algorithmic considerations: (1) self-discover and discard irrelevant unlabelled data

on-the-fly; and (2) formulate reliable learning signals that avoid overconfident class assignments.

Specifically, we formulate a generic and novel SSL deep learning algorithm, named Uncertainty-

Aware Self-Distillation (UASD), which addresses the aforementioned challenge in a systematic

end-to-end formulation. Our model formulation UASD is partially inspired by recent works in

out-of-distribution (OOD) detection – a task of detecting OOD samples. An intuitive approach

in OOD is to identify OOD samples based on confidence scores estimated as the maximum soft-

max probabilities [Hendrycks and Gimpel, 2017]. However, softmax-based confidence estimate

by a single DNN can be problematic, as DNNs generally suffer from overconfidence [Nguyen

et al., 2015], e.g. Feeding random noise to a DNN can give rise to a maximal probability score

over 99.6%. To address this, one line of research focuses on confidence calibration [Liang et al.,

2018; Lee et al., 2018b; DeVries and Taylor, 2018; Hendrycks et al., 2019] to form softer pre-

dictive distributions that encompass uncertainty. Rooted in similar spirit as these prior works,

we consider soft targets can serve as an indicator for OOD detection. In particular, we introduce

a novel simple OOD filter to automatically discard OOD samples on-the-fly by comparing the

confidence scores of training samples to a referential confidence score derived from a validation

set. Compared to existing approaches in OOD detection, our approach does not require heavy

computation cost to train an OOD filter, nor the need of auxiliary OOD training samples.

Besides discarding OOD samples on-the-fly, UASD is also specialised in forming the soft

targets that could further serve as regularisers to empower more robust semi-supervised learning

under class distribution mismatch. Critically, UASD prevents the tendency of overconfidence

in DNN, a fundamental limitation that existing SSL methods commonly suffer – consequently

causing their error propagation and catastrophic degradation in the more realistic SSL setting.

This is achieved by formulating a sequence of ensemble models aggregated accumulatively on-
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Figure 4.2: (a) Approach overview: The predictions from historic stochastic passes on each
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SSL, qt is used for unlabelled training data filtering and uncertainty-aware self-distillation. (b)
Schematic illustration: If a sample is not consistently assigned to a class by an ensemble of
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the-fly for joint Self-Distillation and OOD filtering. Unlike existing SSL methods that derived

their overconfident learning signals based on the de facto assumption, our formulation is aware

of the uncertainty of whether an unlabelled sample likely lies in- or out-of-distribution, and

selectively learns from the unconstrained unlabelled data.

In summary, our contribution is three-fold:

• We study semi-supervised learning under class distribution mismatch – a realistic SSL

scenario largely ignored in existing SSL literature. To our knowledge, this work is the first

attempt to systematically address this new problem.

• We formulate a novel algorithm, Uncertainty-Aware Self-Distillation (UASD), for solving

the unique SSL challenge involved in class distribution mismatch. UASD overcomes the

overconfident issue of DNNs and enables robust SSL under class distribution mismatch.

• We provide extensive benchmarking results in this realistic SSL scenario, including our

proposed UASD and six representative state-of-the-art SSL methods on three image clas-

sification datasets: CIFAR10, CIFAR100 and TinyImageNet. Remarkably, UASD outper-

forms all the strong competitors often by large margins, and demonstrates great potential

to exploit the unconstrained unlabelled data.

4.1 Uncertainty-Aware Self-Distillation

We consider a realistic semi-supervised learning (SSL) scenario with class distribution mis-

match, where we have access to a limited amount of labelled samples Dl = {xi,l,yi}Nl
i=1, and

abundant unlabelled samples Du = {xi,u}Nu
i=1. Each labelled sample xi,l belongs to one of K
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known classes Y = {yk}K
k=1, while any unlabelled sample xi,u is not guaranteed to be one of

these K known classes. The class distribution mismatch proportion between Dl and Du is also

unknown. Our ultimate goal is to exploit useful unlabelled data to boost the learning task at hand.

Compared to conventional SSL [Chapelle et al., 2009], this scenario raises a unique challenge

on how to mitigate the risk of error propagation mostly incurred by overconfidently assigning

out-of-distribution samples to the known classes.

4.1.1 Approach Formulation

To perform SSL under class distribution mismatch, we need to achieve two goals concur-

rently: (1) minimise the negative influence incurred by irrelevant unlabelled data; and (2) max-

imise the exploitation of relevant unlabelled data to improve the target learning task. To this end,

we propose Uncertainty-Aware Self-Distillation (UASDx), a unified SSL algorithmic frame-

work (as shown in Figure 4.2) that jointly perceives data ambiguity with predictive uncertainty,

and produces soft targets as effective regularisers to selectively learn from unlabelled data with

mismatched classes.

4.1.2 On-the-Fly Accumulative Ensemble

To formulate UASD, we exploit the generic model ensemble principle [Schapire, 1990;

Breiman, 2001], with an aim to sufficiently reduce model misspecification and yield soft targets

as regularisers. The rationale is that a committee of models can cover different regions of the

version space [Mitchell, 1982], as different models tend to make predictions and mistakes differ-

ently. Thus, by aggregating predictions from multiple models, we can not only derive smoother

predictive distributions (a.k.a. soft targets) that encompass predictive uncertainty, but also pro-

duce a stronger model that offers richer knowledge beyond the available class label information.

However, training a cumbersome ensemble is computationally expensive. To address this issue,

we construct the ensemble model on-the-fly by an accumulation strategy.

Specifically, we exploit a sequence of ensemble models that accumulatively grows the en-

semble size on-the-fly. Formally, at the t-th epoch we build an ensemble by aggregating all the

historic networks {θ j}t
j=0. Given a sample xi, we derive its ensemble prediction qt(y|xi) by

averaging over all the preceding network predictions:

qt(y|xi) =
1
t

t−1

∑
j=0

p(y|xi;θ j) (4.1)
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where p(y|xi;θ j) denotes the network prediction at the j-th epoch. It is worth noting that, the

stochasticity induced by various data augmentation, batch norm, and network weights in differ-

ent stochastic passes enables building an ensemble out of an increasing amount of models with

diverse decision boundaries. Joining with the training process, we can easily scale up the en-

semble size by modulating the network aggregating frequency. Crucially, averaging all historic

predictions helps to reduce the bias by cancelling out mistaken and overconfident class assign-

ments made by individual networks. This effectively produces smoother ensemble predictive

distributions – a type of soft targets that naturally encompass both the predictive uncertainty

[Lakshminarayanan et al., 2017] and regularities [Hinton et al., 2015] discovered by a very large

ensemble of models.

4.1.3 Unlabelled Training Data Filtering

For robust SSL under class distribution mismatch, we leverage the soft targets qt derived in

Eq. (4.1) as an indicator to discard the potentially irrelevant unlabelled training data. Since qt

reflects the agreement among the historic networks in a frequentist perspective [Dawid, 1982],

its maximal class probability indicates the best consensus a sample is assigned to a specific class.

Accordingly, we define the predictive confidence score on each sample as:

ct(xi) = max(qt(y|xi)) (4.2)

where a lower confidence score ct(xi) reflects higher predictive uncertainty, indicating the sample

is likely to lie out-of-distribution (OOD) and uncorrelated to the core learning task at hand. To

minimise the harmful effect incurred by irrelevant unlabelled samples, we define an OOD filter

to discard the samples with low confidence scores:

f (xi;τt) =


1, if ct(xi)> τt , selected

0, if ct(xi)< τt , rejected
(4.3)

where f (xi;τt) specifies a batch-wise binary sample filtering criterion to select samples for model

learning based upon a confidence threshold τt . The threshold τt is often heuristically set, which

however, is unsuitable in our context, as it depends heavily on the in-training model with high

dynamics. Thus, we dynamically estimate τt in a data-driven manner by using the validation

set (10% of training data) of known classes as reference. Formally, we compute τt as the aver-

age confidence score on the in-distribution validation samples, and refresh τt iteratively per epoch
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during the course of training. It is worth noting that while our aim is to discard out-of-distribution

samples, certain amount of in-distribution samples may also be discarded. This suggests a trade-

off between maximising the usage of unlabelled data and minimising the risk of error propagation

induced by out-of-distribution samples. Since our confidence scores have the less overconfident

tendency owing to ensembling multiple network predictions for each sample, the estimated con-

fidence scores can be better utilised to delimit between the in- and out-of-distribution samples,

thus enabling a better trade-off to incorporate more useful unlabelled data for model training.

4.2 Model Optimisation

To enable semi-supervised learning, we employ the soft target qt to derive a self-supervision

signal, which is imposed as a regulariser to learn additionally from the relevant unlabelled data,

i.e. samples likely to be correlated to the learning task. Specifically, we capitalise the rich infor-

mation encoded in soft targets for model learning, including (1) the regularities among known

classes, and (2) the predictive uncertainty. All such information are discovered by on-the-fly ac-

cumulative ensembling without the need of class labelling. Therefore, the soft targets naturally

serve to propagate soft class assignments on the unlabelled data in an unsupervised manner.

4.2.1 Semi-Supervised Learning Objective

Formally, motivated by the generic distillation principle [Hinton et al., 2015], we consider the

soft targets as a kind of teaching signal and formulate the final SSL objective with uncertainty-

aware self-distillation as:

L=H(ytrue, pθ )+w(t) f (·;τt) ·H(qt , pθ ) (4.4)

where the first term refers to the standard supervised cross-entropy loss, computed between the

network prediction pθ and the ground-truth labels ytrue. The second term is the unsupervised

uncertainty-aware self-distillation loss, computed as the cross-entropy between pθ and the soft

targets qt . The OOD filter f (·;τt) (Eq (4.3)) is aware of uncertainty and used to discard the

potentially irrelevant samples of low confidence scores. In the beginning of training, the soft

targets may not be sufficiently informative due to lacking diversity in ensembling and reliability

in predictions. Thus, for robust model optimisation, we utilise a ramp-up weighting function

w(t) to gradually increase the importance of the self-distillation loss.
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4.2.2 Model Training

An algorithmic overview is summarised in Algorithm 2.

Algorithm 2 Uncertainty-Aware Self-Distillation (UASD)

Require: Labelled data Dl = {xi,l,yi}Nl
i=1. Unlabelled data Du = {xi,u}Nu

i=1.

Require: Trainable neural network θ . Ramp-up weighting function w(t).

for t = 1 to max epoch do

Refresh confidence threshold τt per epoch.

for k = 1 to max iter per epoch do

Forward propagation to accumulate network prediction qt(y|xi) (Eq (4.1)) for every in-batch

sample.

Apply OOD filtering (Eq (4.2), (4.3)).

Update network parameters θ with loss function Eq (4.4).

end for

end for

4.3 Discussion

We consider the failure of existing methods in addressing open-set semi-supervised learning

is caused by their general tendency of producing overconfident class assignments on unlabelled

data, regardless of the underlying class distribution. In fact, they are likely to spread the wrong

class labels to unlabelled samples lying out-of-distribution. To resolve this issue, we propose to

accumulatively aggregate the predictions from a growing amount of networks by equal averag-

ing, thus leading to much softer class assignments for more reliable SSL under class distribution

mismatch. Overall, our approach has several unique merits to benefit SSL under class distribu-

tion mismatch: (I) Instead of computing the ensemble predictions based on exponential moving

average in the logit space as Temporal Ensembling [Laine and Aila, 2017], our ensemble predic-

tions are acquired by accumulative ensembling, which keeps an equal average in the prediction

space to derive less overconfident and softer class assignments. (II) Rather than filtering the un-

labelled data using an OOD detector pre-trained on OOD samples, we leverage the soft targets

as an indicator to discard OOD samples on-the-fly, therefore eschewing the requirement of OOD

training data and additional training cost for an OOD filter. (III) We integrate Self-Distillation
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and OOD filtering in a unified end-to-end training framework, which allows the model to benefit

learning from the unconstrained unlabelled data in a more reliable way.

Our proposed approach is also closely related to knowledge distillation [Hinton et al., 2015],

where the goal is to transfer the knowledge from an ensemble of multiple DNNs into a single

DNN. Typically, a student network is supervised by the soft targets generated by averaging the

network outputs from a cumbersome whole ensemble of teacher networks. Compared to the

ground truth one-hot labels, i.e. hard targets, soft targets are smoother predictive distributions

with higher entropy that encode more information discovered by multiple models. Inspired by the

recently proposed online distillation [Anil et al., 2018; Lan et al., 2018], our approach particularly

aims to exploit the knowledge discovered on-the-fly by accumulating predictions of all historic

stochastic forward passes. This yields soft targets that encode uncertainty for OOD data filtering;

and more importantly, produce less overconfident and softer class assignments on unlabelled data

samples to avoid catastrophic error propagation. Although self-distillation has been proposed

previously by Zhang et al. [Zhang et al., 2019], our model formulation fundamentally differs

from this prior work. In particular, we focus on deriving soft targets that encompass model

inference uncertainty by aggregating predictions from one classifier, while the prior work trains

multiple classifiers at different network layers to obtain the ensemble predictions more efficiently.

Our proposed ensemble strategy is also related to Monte Carlo Dropout [Gal and Ghahra-

mani, 2016] (MC-Dropout), a Bayesian approximation of a well known probabilistic model: the

Gaussian process. However, the ensemble predictions are derived very differently between our

model and the MC-Dropout. In MC-Dropout, ensembled network predictions are derived by

averaging predictions from the same networks under different dropout, which means the differ-

ent networks share very similar model weights. In contract, in our ensemble strategy, networks

from different training iterations are quite diverse, which yield ensembled predictions that are

less prone to be overconfident.

4.4 Experiments

Implementation details. For a comprehensive and fair comparison, our experiments are built

upon the open-source Tensorflow implementation by Oliver et al. [Oliver et al., 2018]. It uses the

standard Wide ResNet [Zagoruyko and Komodakis, 2016], i.e. WRN-28-2, as the base network

and Adam optimiser [Kingma and Ba, 2014] for training. We revise the default 10-dimensional
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Figure 4.3: Experiment results of different SSL methods on CIFAR10 under varying class distri-
bution mismatch proportion. Left (I): Test error rates are reported at the point of lowest valida-
tion error. Right (II): Test error rates are reported as the median of last 20 epochs. Shaded area
indicates the standard deviation over five runs. Tabular results are provided in Table 4.5 and 4.7.
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Figure 4.4: Smoothed learning curves averaged over five runs of different SSL methods on CI-
FAR10. Left/Middle/Right correspond to learning curves under class distribution mismatch
proportion of 0/50/100%.

classification layer to K-dimension, where K is the number of known classes in the labelled data.

Unless stated otherwise, all hyper-parameters, the ramp-up function, and training procedures are

the same as that of [Oliver et al., 2018]. For all comparisons, we report the supervised baseline

results using only labelled data for training. More details of implementation are given in Table

4.2 and 4.3.

Datasets. We use three image classification benchmark datasets. (1) CIFAR10: A natural im-

age dataset with 50,000/10,000 training/test samples from 10 object classes. (2) CIFAR100: A

dataset of 100 fine-grained classes, with the same amount of training/test samples as CIFAR10.

(3) TinyImageNet: A subset of ImageNet [Deng et al., 2009] with 200 classes, each of which has

500/50 training/validation images. For all datasets, we resize the images to 32×32.

Compared methods. We compare our method with six representative state-of-the-art SSL meth-

ods, including (1) pseudo-labels [Lee, 2013], (2) VAT [Miyato et al., 2016], (3) Π-model [Sajjadi

et al., 2016; Laine and Aila, 2017], (4) Temporal Ensembling [Laine and Aila, 2017], (5) Mean-

Teacher [Tarvainen and Valpola, 2017], and (6) SWA [Athiwaratkun et al., 2019]. All these

methods introduce an additional unsupervised supervision signal, originally proposed and tested
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under the conventional SSL setting without class distribution mismatch. To preserve the nature

of these methods, we replicate them following the procedures as [Oliver et al., 2018] – all share

the same network architecture, data augmentation, optimiser and training time. We also compare

all the methods to a baseline that is trained with only labelled data. All the other methods are

trained on the labelled data and unlabelled data with in- and out-of-distribution samples. In all

experiments, we test each method for five runs with a same set of random seeds to choose the

labelled samples. We report the averaged error rate with mean and standard deviation over five

runs.

4.4.1 Evaluation on CIFAR10

Evaluation protocol. To simulate more realistic SSL with class distribution mismatch, we con-

struct the unlabelled data with unknown classes not present in the labelled data. Following [Oliver

et al., 2018], we perform experiments on CIFAR10 for a 6-class classification task, using 400 la-

bels per class. The labelled set contains 6 classes of animals: bird, cat, deer, dog, frog, horse;

while the unlabelled data comes from 4 classes, with a varying class distribution mismatch pro-

portion from 0% to 100%. For instance, for a mismatch proportion of 50%, the unlabelled data

contains classes of airplane, automobile, frog, horse. The test errors are reported on the 6 known

classes. More details about the evaluation protocol are given in Table 4.4.

Evaluation results. Figure 4.3 shows experiment results on CIFAR10, including six SSL meth-

ods and our UASD under varying class distribution mismatch proportion. The two diagrams (left

and right) show the test error rates in two ways: (I) test error rate at the point of the lowest vali-

dation error; (II) median test error rate of last 20 epochs. It can be observed that when increasing

the amount of unlabelled samples from unknown classes, the performance of most state-of-the-

art SSL methods degrade drastically, except SWA [Athiwaratkun et al., 2019], a very recent SSL

method that performs weight averaging during training.

Compared to SWA, UASD surprisingly improves the error rates and suffers much less degra-

dation under high mismatch proportions – which indicates its capability to exploit unlabelled data

in a more reliable way. Moreover, the error rates of UASD stay consistently in two ways of test

error calculation, whilst other methods show more severe performance degradation when report-

ing the median error rate in the last 20 epochs. This means the other methods commonly suffer

unstable degradation at the end of training, while UASD exhibits much more robust convergence.
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Method CIFAR100 TinyImageNet CIFAR100 + TinyImageNet

baseline 39.79±1.19 61.64±0.59 48.31±0.63

pseudo-label 43.30±0.57 62.41±0.57 53.3±0.73

VAT 43.78±1.15 63.75±0.69 50.55±0.55

Π-Model 42.96±0.46 61.79±0.67 53.05±2.21

Temporal Ensembling 41.27±0.76 60.69±0.31 47.88±0.64

Mean-Teacher 40.98±0.98 60.54±0.31 49.67±1.95

SWA 37.66±0.48 57.97±0.42 44.61±0.52

Ours 35.93±0.60 57.15±0.76 42.83±0.25

Table 4.1: Results on CIFAR100 and TinyImageNet averaged over 5 runs. Results with reduction
in error rate compared to baseline are highlighted in bold. Best results are highlighted in red.
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Figure 4.5: Ablative evaluation (test error rates on CIFAR10). Left: Ensemble size analysis.
Right: Loss formulation analysis. Tabular results are provided in Table 4.9 and 4.10.

Learning dynamics analysis. To understand the learning dynamics, we visualise the learning

curves in terms of test error rate during training in Figure 4.4. It is evident that UASD remains

superior learning performance compared to other SSL methods under different class distribution

mismatch proportions, demonstrating more stable convergence and more reduction in error rate.

The relative benefits compared to other SSL methods are more significant under higher class

mismatch proportions, e.g. 50%, 100%. This suggests that UASD does yield more reliable

supervision signals to guarantee the effectiveness and robustness of SSL under class distribution

mismatch.
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4.4.2 Evaluation on CIFAR100 and TinyImageNet

Evaluation protocols. We conduct experiments on CIFAR100 and TinyImageNet to evaluate

SSL under large class distribution mismatch in larger class space, including three settings as

described next.

• On CIFAR100, we use the first half classes (1-50) as labelled classes, and the 25-75 classes

as unlabelled classes, leading to a class distribution mismatch proportion of 50% between

labelled and unlabelled data.

• On TinyImageNet, we use the 1-100 classes as labelled classes and the 50-150 classes as

unlabelled classes, which results in a mismatch proportion of 50%.

• We further test in a cross-dataset scenario using 100 classes from CIFAR100 as the labelled

classes, and 200 classes from TinyImageNet as the unlabelled classes, which gives a mismatch

proportion of 86.5%.

For all experiments in this section, we use 100 labels per class and report the test error rate as

the median of last 20 epochs to reflect the final convergence.

Evaluation results. Table 4.1 shows UASD remains remarkably better than other methods when

learning under large class distribution mismatch in the finer-grained classification tasks on CI-

FAR100 and TinyImageNet. While most SSL methods suffer model degradation, UASD consis-

tently outperforms all of them in all settings. It improves upon the supervised baseline with test

error reduction of 3.86%,4.49%,5.48%. Crucially, it succeeds even when a large class distribu-

tion mismatch proportion (i.e. 86.5%) exists across two datasets (CIFAR100 + TinyImageNet).

This shows the efficacy of UASD in exploiting unconstrained unlabelled data coming from un-

known but related classes, or even unseen distribution of another dataset.

4.4.3 Ablative Analysis

To assess different aspects in our algorithmic formulation, we conduct ablative evaluation by

changing one individual factor at a time whilst keeping others fixed.

(I) Ensemble size. As aforementioned, the ensemble size is accumulatively growing on-the-fly,

which results in a very large ensemble in the end of training (e.g. 1000+ on CIFAR10). To evalu-

ate how the ensemble size affects the model performance, we modulate the ensembling frequency

from per epoch to 10 epochs and 100 epochs, which results in an ensemble size of 100+ and 10+.

As Figure 4.5 (left) shows, the smaller ensemble sizes lead to overall worse performance. This
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Figure 4.6: Left: Average confidence score on unlabelled data estimated by mean-teacher, SWA,
UASD under varying mismatch proportion. Right: Histogram of confidence score by SWA,
UASD.
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Figure 4.7: Model robustness under varying magnitude of perturbation on training data (Left)
and test data (Right). Shaded area indicates the standard deviation over five randomly sampled
perturbations.

suggests that ensemble size does matter, and aligns with our motivation of building a stronger en-

semble model out of an increasing number of networks for deriving smoother and more reliable

supervision signals.

(II) Uncertainty-Aware Self-Distillation loss. To evaluate how the loss formulation brings

positive benefits, we conduct three ablative experiments: (1) w/o soft targets, which replaces

soft targets with one-hot hard targets; (2) w/o OOD filter, which removes the OOD filter and

takes all unlabelled data for training; (3) w/o soft + OOD, which uses one-hot hard targets and

removes the OOD filter. Figure 4.5 (right) shows the ablative evaluation on CIFAR10, from

which we analyse in two aspects as follows.

(i) Effect of soft targets in Self-Distillation. When replacing the soft targets qt in Eq.(4.4) as

hard targets, i.e. argmax(qt), we observe the ablative baseline (1) suffers large performance drops

compared to the full model (4). How about learning from all unlabelled data with the soft targets?

We find the performance still keeps in a reasonable range – see ablative baseline (2). This means

that the soft targets yielded by UASD do provide rich information beyond the label supervision,

which enables the network to learn from the unlabelled data in a self-supervised fashion. On one
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side, rather than blindly fitting to overconfident class assignments, the network is encouraged

to align with smoother predictive distributions, thus preserving the predictive uncertainty. On

the other side, the soft targets serve to communicate the regularities of smoother class decision

boundaries discovered by the preceding networks, therefore allowing to distill the knowledge

from a committee of networks.

(ii) Effect of OOD filter. When removing OOD filter, we observe the ablative baseline (2) suffer

consistent performance drops compared to the full model (4). When removing the soft targets

and OOD filter concurrently, we observe the worst performance drops – see ablative baseline (3).

This indicates that discarding irrelevant unlabelled samples is important, and is especially vital

when the unsupervised teaching signals are prone to overconfident, e.g. when using hard targets.

4.4.4 Further Analysis

To further understand why UASD is effective in SSL under class distribution mismatch. We

compare three most competitive SSL methods for a more in-depth analysis, namely, (1) mean-

teacher, (2) SWA and (3) UASD. We analyse in two different aspects as below.

(I) Confidence calibration. We compare the average confidence score (i.e. maximum probabil-

ity) on the unlabelled data, estimated by the teaching signals in the end of training. In Figure 4.6

(left), it is evident that teaching signals given by mean-teacher are most overconfident – with the

same level of high confidence scores under varying class distribution mismatch proportion. In

contrast, confidence scores estimated by SWA, UASD are stratified to reflect uncertainty of the

underlying class distribution. We further compare the histogram of confidence scores by SWA

and UASD in Figure 4.6 (right). It shows UASD can better delimit between data from known

and unknown classes. This indicates UASD yields softer targets (less overconfident), which are

essential to guarantee robust SSL under class distribution mismatch. More analysis of confidence

estimate is given in Figure 4.8.

(II) Model generalisation. To evaluate the model generalisation, we quantify the model robust-

ness as the shifts of training and test error rates by adding perturbations on the networks. This

is based on a well-known finding that convergence to a wider optimum typically leads to better

model generalisation [Keskar et al., 2017; Chaudhari et al., 2017], while the width of optima

can be approximately reflected as the model robustness under small perturbation [Izmailov et al.,

2018]: θ(k, p) = θ + k · p, where p is the perturbation added on the model θ – a direction vector
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with unit length drawn from a uniform distribution. We vary the scaling factor k between [0,5] to

control the magnitude of perturbation. Figure 4.7 shows the model robustness against perturba-

tions lie in an order as UASD>SWA>mean-teacher on both training and test data. This suggests

UASD finds the widest optimum among the three and thus gives better model generalisability.

4.5 Summary

In this work, we systematically studied the more realistic semi-supervised learning (SSL)

under class distribution mismatch, which poses a new challenge of how to maximise the value of

unconstrained unlabelled data. To address this challenge, we proposed Uncertainty-Aware Self-

Distillation (UASD), a novel SSL algorithm that utilises an on-the-fly accumulative ensemble

to produce soft targets for joint Self-Distillation and OOD filtering. UASD consistently outper-

forms six state-of-the-art SSL methods on three image classification datasets. Although UASD

has shown effectiveness in SSL under class distribution mismatch and suggests great value in

practical use, we consider there are still several potential research directions to be further ex-

plored for addressing this new challenge: (1) tackle the class imbalance induced by class distri-

bution mismatch; and (2) integrate class-incremental learning to cope with the unknown classes.

Overall, our new problem setting along with the proposed approach open up many avenues for

future research in SSL.
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Figure 4.8: Average confidence score (i.e. maximum class probability) on unlabelled data, es-
timated by different teaching signals during training under varying class distribution mismatch
proportion (i.e. 0, 25, 50, 75, 100%) on CIFAR10. Most SSL methods are prone to produce
overconfident teaching signals, regardless of the underlying unlabelled class distribution. This
hinders the possibility to be aware of uncertainty, and blindly reinforces the overconfident wrong
class assignments on those irrelevant unlabelled samples. In contrast, UASD produces soft teach-
ing signals that encode higher uncertainty, and exhibits different levels of confidence score that
are clearly stratified to reflect the underlying class distribution mismatch proportions.
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shared

training iterations 500,000

coefficient rampup from 0 util 200,000

learning decay factor 0.2

learning decay at iteration 400,000

supervised baseline

initial learning rate 0.003

pseudo-label

initial learning rate 0.003

max consistency coefficient 1

pseudo-label threshold 0.95

VAT

initial learning rate 0.003

max consistency coefficient 0.3

VAT ε,ξ 6.0, 10−6

Π-Model

initial learning rate 0.0003

Mean-Teacher

initial learning rate 0.0004

max consistency coefficient 8

Exponential moving average decay 0.95

SWA

initial learning rate 0.001

max consistency coefficient 8

weight averaging interval 5,000

UASD

initial learning rate 0.001

max distillation coefficient 1

Table 4.2: Hyperparameter settings, which are inherited from the implementation by Oliver et al.
Oliver et al. [2018], where hyperparameters are tuned on a validation set. An Adam optimiser is
deployed with the same learning rate decay schedule. The following hyperparameters are used
for all experiments. Note: we adopt the same ramp-up function for all methods.
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dataset gaussian noise σ = 0.15 horizontal flip p = 0.5 random translation [−2,+2]

CIFAR10 X X X

CIFAR100 × X X

TinyImageNet × X X

Table 4.3: Data augmentation. Note: ZCA image pre-processing is only applied on CIFAR10.

Dataset p% K Lnum Labelled classes Unlabelled classes

CIFAR10

0

400 6 2,3,4,5,6,7

4,5,6,7

25 0,5,6,7

50 0,1,6,7

75 0,1,8,7

100 0,1,8,9

CIFAR100 50 50 100 0-50 25-75

TinyImageNet 50 100 100 0-100 50-150

CIFAR100 + TinyImageNet 86.5 100 100 CIFAR100 TinyImageNet

Table 4.4: Evaluation protocols of SSL under class mismatch. p%: Class distribution mismatch
proportion among unlabelled data. K: number of known classes in labelled data. Lnum: Labels
per class.
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Class Distribution Mismatch Proportion

Method 0% 25% 25% 50% 100%

baseline 24.03±0.75

pseudo-label 22.37±0.66 24.02±0.86 25.37±0.86 26.11±1.91 26.29±0.71

VAT 20.63±1.77 23.08±0.49 23.78±0.70 25.52±0.84 26.23±0.37

Π-Model 21.56±1.29 24.80±1.32 25.92±1.61 26.43±0.81 26.61±0.79

Temporal Ensembling 21.93±0.43 24.23±0.96 25.66±1.21 26.33±0.56 27.00±1.39

Mean-Teacher 21.68±0.88 24.13±1.22 24.79±1.53 25.90±1.00 26.78±0.38

SWA 21.63±0.38 23.31±0.85 23.70±0.61 23.90±0.85 24.11±0.65

UASD (ours) 20.59±0.51 21.34±0.52 21.88±0.69 22.39±0.48 22.49±0.90

Table 4.5: Evaluation under varying class distribution mismatch proportion on CIFAR10. Test
error rates are reported at the point of lowest validation error. Results with reduction in error rate
compared to supervised learning baseline are highlighted in bold. Best results are highlighted in
red. Statistical significant tests of these methods as compared to the baseline are given in Table
4.6.

Class Distribution Mismatch Proportion

Method 0% 25% 25% 50% 100%

pseudo-label 0.0625 1.0000 0.1250 0.0625 0.0625

VAT 0.0625 0.1250 0.0625 0.0625 0.0625

Π-Model 0.0625 0.2500 0.0625 0.0625 0.0625

Temporal Ensembling 0.0625 0.8125 0.0625 0.0625 0.0625

Mean-Teacher 0.0625 1.0000 0.3125 0.0625 0.0625

SWA 0.0625 0.0625 0.3125 0.0625 0.8125

UASD (ours) 0.0625 0.0625 0.0625 0.0625 0.0625

Table 4.6: Statistical significant tests under varying class distribution mismatch proportion on
CIFAR10, which compare the results of each method to the results of the baseline. Note: results
are the error rates at the point of lowest validation error.



4.5. Summary 91

Class Distribution Mismatch Proportion

Method 0% 25% 25% 50% 100%

baseline 23.82±0.61

pseudo-label 22.70±0.42 24.42±0.87 26.47±1.01 27.82±1.10 28.07±1.01

VAT 23.07±0.49 27.27±1.36 27.45±2.17 28.46±2.62 28.79±1.11

Π-Model 22.97±0.46 26.48±0.66 29.01±2.67 28.19±0.97 29.43±1.88

Temporal Ensembling 22.45±0.59 25.33±0.81 26.94±0.57 27.59±0.62 28.16±0.70

Mean-Teacher 22.09±0.57 25.40±0.41 26.46±0.78 27.83±1.43 29.09±1.44

SWA 21.70±0.34 23.36±0.74 23.83±0.61 24.15±0.90 24.31±0.55

UASD (ours) 20.55±0.41 21.66±0.71 22.01±0.78 22.31±0.65 22.63±0.78

Table 4.7: Evaluation under varying class distribution mismatch proportion on CIFAR10. Test
error rates are reported as the median of last 20 epochs. Results with reduction in error rate
compared to supervised learning baseline are highlighted in bold. Best results are highlighted in
red. Statistical significant tests of these methods as compared to the baseline are given in Table
4.8.

Class Distribution Mismatch Proportion

Method 0% 25% 25% 50% 100%

pseudo-label 0.0625 0.0625 0.0625 0.0625 0.0625

VAT 0.0625 0.0625 0.0625 0.0625 0.0625

Π-Model 0.0625 0.0625 0.0625 0.0625 0.0625

Temporal Ensembling 0.0625 0.0625 0.0625 0.0625 0.0625

Mean-Teacher 0.0625 0.0625 0.0625 0.0625 0.0625

SWA 0.0625 0.1250 1.0000 0.6250 0.0625

UASD (ours) 0.0625 0.0625 0.0625 0.0625 0.0625

Table 4.8: Statistical significant tests under varying class distribution mismatch proportion on
CIFAR10, which compare the results of each method to the results of the baseline. Note: results
are the error rates as the median of last 20 epochs.
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Class Distribution Mismatch Proportion

Method 0% 25% 25% 50% 100%

baseline 23.82±0.61

size 10+ 21.12±0.69 22.64±0.77 23.41±0.56 24.09±0.72 24.68±0.70

size 100+ 20.57±0.39 21.40±0.41 22.59±0.49 22.44±0.70 22.80±0.55

size 1000+ (ours) 20.55±0.41 21.66±0.71 22.01±0.78 22.31±0.65 22.63±0.78

Table 4.9: Evaluation under varying class distribution mismatch proportion on CIFAR10. “size”:
ensemble size. Test error rates are reported as the median of last 20 epochs. Results with reduc-
tion in error rate compared to supervised learning baseline are highlighted in bold. Best results
are highlighted in red.

Class Distribution Mismatch Proportion

Method 0% 25% 25% 50% 100%

baseline 23.82±0.61

w/o both 23.50±0.86 24.78±0.64 25.78±0.57 26.05±0.79 27.43±0.74

w/o soft 21.84±0.53 23.27±0.60 24.67±0.60 24.67±0.82 25.52±0.92

w/o OOD 21.19±0.31 22.34±0.52 22.61±0.99 22.68±0.56 23.11±0.70

Full UASD (ours) 20.55±0.41 21.66±0.71 22.01±0.78 22.31±0.65 22.63±0.78

Table 4.10: Evaluation under varying class distribution mismatch proportion on CIFAR10. “w/o
both”: w/o soft distillation and w/o OOD filter. “w/o soft”: w/o soft distillation. “w/o OOD”: w/o
OOD filter. Test error rates are reported as the median of last 20 epochs. Results with reduction
in error rate compared to supervised learning baseline are highlighted in bold. Best results are
highlighted in red.
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Chapter 5

Open-Set Cross-Domain Learning by Instance-Guided

Context Rendering

Person re-identification (re-id) is a task of re-identifying a query person-of-interest, across

non-overlapping cameras distributed over wide surveillance spaces [Gong et al., 2014]. Since

the surge of deep representation learning, great boosts of re-id performance have been witnessed

in an idealistic closed-world supervised learning testbed [Zheng et al., b; Xiao et al., 2016; Wang

et al., 2016a; Zheng et al., c; Hermans et al., 2017; Chen et al., 2017c; Li et al., 2018; Sun et al.,

b; Chen et al.]: The rank-1 matching rate has reached 93.3% [Chen et al.] on the Market1501

benchmark [Zheng et al., b], as compared to 44.4% in 2015. However, this success relies heav-

ily on an unrealistic assumption that the training and test data have to be drawn from the same

camera network, i.e. the same domain. When deploying such re-id models to new domains,

their performances often degrade significantly, mainly due to the inevitable domain gaps be-

tween datasets collected from independent surveillance camera networks. This weakness greatly

restricts the generalisability of these domain-specific learning methods in real-world deployment,

when manually labelling new identity population becomes prohibitively expensive at large scale.

It is therefore essential to automate the domain-adaptive learnability with more advanced and

robust domain-generic learning models.

The aforementioned problem, known as cross-domain person re-id, is gaining increasing

attention [Peng et al., 2016; Wang et al., 2015; Ma et al., 2015; Wei et al., 2018; Deng et al.,

2018; Wang et al., 2018b; Bak et al., 2018; Zhong et al.; Lin et al., a]. It raises a more challenging
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source labelled domain target unlabelled domain 

synthetic outputs

target domain contexts

…

Cam !Cam "

rendering

GAN

…

Figure 5.1: Motivation illustration. In open surveillance spaces, the contextual variations can be
quite diverse, due to wide-of-the-field imagery and varying times of the day. Our approach learns
to hallucinate the same persons in such diverse surveillance contexts, as if they were captured
from different places and times in the target domain.

open-set unsupervised domain adaptation problem [Busto and Gall; Saito et al.], which requires

to bridge the domain gap between two disjoint identity class spaces. The goal is to learn from

source domain labelled data and target domain unlabelled data synergistically, so as to build more

generalisable re-id model in the test target domain.

The state-of-the-art methods [Wei et al., 2018; Deng et al., 2018; Wang et al., 2018b; Zhong

et al.; Lin et al., a; Bak et al., 2018; Liang et al.] can be categorised into three learning paradigms:

(1) feature-level distribution alignment; (2) image-level style transfer; and (3) hybrid image-level

and feature-level learning. The first paradigm [Wang et al., 2018b; Lin et al., a] generally seeks

a common feature space for source-target distribution alignment with discriminative learning

constraints. The second paradigm [Wei et al., 2018; Deng et al., 2018; Bak et al., 2018; Liang

et al.] reduces the domain gap by employing GAN frameworks to transfer source images into

target domain styles in a holistic manner. The last paradigm [Zhong et al.] unifies the com-

plementary benefits of synthetic images by GAN and feature discriminative constraints in CNN.

However, these existing paradigms all neglect to exploit the rich contextual variations as a poten-

tial domain bridge. In this work, we aim to utilise the contextual information for more effective
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re-id model learning. This is motivated by our observation of complex environmental dynamics

commonly existed in open public scenes (see Figure 5.1) – domain contexts are indeed quite

diverse in surveillance spaces, given that the viewing conditions vary dramatically both within

and across camera views, subjected to camera characteristics, wide-field-of-view imagery, and

varying times of the day. We identify that the common weakness of existing GAN-based re-id

methods lies in the insufficient data diversity – either one or a pre-fixed number of domain styles

are captured in the final outputs. This is mainly caused by the mode collapse problem in GAN:

merely a limited modes are plausibly generated. Our key idea is to rectify the aforementioned

issue of mode collapse by rendering the source persons into diverse domain contexts, such that

a large-scale context augmented synthetic dataset can be generated to train a re-id model in a

supervised manner, without labelling any target domain data.

Specifically, we propose a novel Instance-Guided Context Rendering scheme, which aug-

ments the same source identity population with rich contextual variations reflected in the target

domain. Our approach is unique in several perspectives. First, it effectively exploits abundant

unlabelled target instances as guidance to render the source persons into different target domain

contexts. This essentially captures the image-level domain drift in a more comprehensive way.

Second, rather than optimising two-way mappings heavily with cycle consistency, we learn a

simple one-way mapping through informative supervision signals. Third, compared to previous

GAN-based re-id methods [Wei et al., 2018; Deng et al., 2018], our proposed dual conditional

formulation naturally avoids mode collapse [Bansal et al.] to limited styles, and enables more

diverse outputs. It transfers the same person into more realistic, finer-grained, and richer view-

ing conditions. The contextually more diverse synthetic imagery are ultimately utilised for re-id

model learning to enhance visual invariance towards contextual variations in the target domain.

In summary, our contribution is two-fold:

• We propose a novel Instance-Guided Context Rendering scheme. To our best knowledge,

it is the first attempt in re-id to tackle the image-level domain drift by injecting rich con-

textual information into the image generation process. It effectively augments the same

source person images with diverse target domain contexts to construct a large-scale syn-

thetic training set for re-id model learning in the unlabelled target domain.

• We design a dual conditional generative adversarial network. It effectively exploits abun-

dant unlabelled target instances as contextual guidance to produce more plausible data with
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Figure 5.2: Model overview. We tackle the domain drift at the image level by learning to render
the source person image XXXS into diverse domain contexts explicitly guided by arbitrary target
instances XXXT sampled from the target domain (Section 5.1.2, Section 5.2).

richer cross- and intra-domain contextual variations. We conduct extensive experiments to

validate our model design rationale, and show that our approach not only achieves compet-

itive re-id performance on several re-id benchmarks in the cross-domain setting, but also

generates photo-realistic person images with high fidelity and diversity.

5.1 Instance-Guided Context Rendering

We consider the problem of unsupervised domain adaptation in person re-id, which aims to

adapt a re-id model learned from a labelled source dataset to an unlabelled target dataset. Our

objective is to learn a generative mapping G that reduces the domain discrepancy by rendering the

same source person images into a diverse range of target domain contexts. As the final synthetic

images are augmented with rich target contexts, a CNN model can simply be fine-tuned upon

these data to enhance its generalisability in the unlabelled target domain.

rendering

Contextual
Guidance

Model Deployment

source labelled data !"

target domain: unlabeled target instances #$

abundant augmented data
!% for CNN training

stage I stage II

source domain pseudo target domain

Figure 5.3: Deployment overview. In deployment, the generator is applied to produce abundant
images XXXG for CNN training (Section 5.2.2).

5.1.1 Approach Overview.

Figure 5.2 illustrates our Instance-Guided Context Rendering scheme. Its main body is a

dual conditional Generative Adversarial Network that takes in a pair of input images from two
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domains for image generation (Section 5.1.2), and learns with informative supervision signals

to render the source persons guided by different target instances (Section 5.2). We named our

Context Rendering Network as CR-GAN for short. For deployment (Figure 5.3), abundant data

augmented with diverse context is exploited for re-id model learning in the pseudo target domain

(Section 5.2.2).

5.1.2 Dual Conditional Image Generator

Dual Conditional Mapping. CR-GAN contains a dual conditional image generator that learns a

one-way mapping to render the source images into desired target contexts by conditioning on two

inputs: a source input XXXS and a target input instance XXXT to guide the context rendering effect.

Formally, this dual conditional mapping is expressed as:

XXXG = G(XXXS,XXXT ) (5.1)

In essence, this dual conditional formulation is designed to fuse information flows from two

domains, such that the same person in source input XXXS can be rendered into the target context

explicitly guided by the target instance XXXT . Overall, the whole mapping is built upon dual-path

encoding and decoding, with a U-Net [Ronneberger et al., 2015] like encoder-decoder network

in between, as detailed below.

Dual-Path Encoding. To enable instance-guided context rendering, we introduce an essential

condition XXXT to exploit abundant target instances as contextual guidance for generation. Con-

cretely, we design a dual-path encoding structure to parameterise information flows from two

domain separately (Figure 5.2) – (1) An identity pathway θS to encode source input XXXS; and (2)

A context pathway θT to encode target input XXXT . Given that our aim is to exploit contextual

information from target domain, we mask the target input XXXT to retain mainly the background

clutter. Specifically, we adopt the off-the-shelf human parsing model LIP-JPPNet [Gong et al.]

to obtain a binary person mask, and apply spatial masking on XXXT to filter out the target person:

XXX ′T = XXXT ◦ (1−MMMT ) (5.2)

where ◦ is the Hadamard product; MMMT is the person mask of input XXXT ; XXX ′T contains mainly the

background clutter. The pre-trained parsing network is kept frozen during training to provide a

rough estimation on where the person is in the image. Since we do not have any groundtruth of

the person masks, is also infeasible to update the parsing network in end-to-end training.
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Through dual-path encoding, information flows from two domains are further fused by depth-

wise concatenation: [θS(XXXS),θT (XXX ′T )], followed with an encoder-decoder network to selectively

blend the visual information from two inputs. We construct the encoder-decoder network as a

U-Net with skip connections to reuse latent representations from the encoder, which enforces

the generator network to selectively preserve low-level visual structures from both conditional

inputs. In particular, the foreground person in XXXS, the background clutter in XXXT should both be

picked by the generator as informative cues for image generation.

Image Generation. Given our aim to render the context in a region-dependent manner – keep

the source person whilst augmenting background content, we employ a context mask to softly

specify the region of contextual changes. Concretely, the generator outputs two parts: (1) A

residual map XXXR to model cross-domain discrepancy; and (2) A context mask XXXC to modulate

per-pixel intensity of context change, both of which are connected by a shortcut connection to

reuse the source person in input XXXS. Such generic masking mechanisms are also adopted in recent

literature, such as face animation [Pumarola et al.], motion manipulation [Zhao et al.]; while

we particularly utilise the context mask to automatically learn the region selection of context

rendering. The final generated output XXXG is the sum of source input XXXS and residual map XXXR

spatially weighted by the context mask XXXC:

XXXG = XXXR ◦XXXC +XXXS ◦ (1−XXXC) (5.3)

The generator is trained end-to-end to generate XXXG with the same person identity as XXXS in the

context guided by XXXT .

5.2 Model Optimisation

The key idea of CR-GAN is to inject context information into image generation. This is

motivated that context variations exist at multi-granularity – not only differ across domains, but

also vary dramatically within and across different camera views. To learn such rich contexts, we

impose four different supervision signals for optimisation, which work synergistically to learn

(a) cross-domain, (b) cross-camera, and (c) inner-camera context variations, whilst (d) retaining

the source identity – illustrated in Figure 5.4 and elaborated below.
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Figure 5.4: Schematic illustration of learning objectives.

5.2.1 Learning Objectives

Adversarial Loss. To mitigate the cross-domain contextual gap, the generator G is trained

against a domain discriminator Dd in an adversarial minimax manner [Goodfellow et al.]:

Ladv=min
G

max
Dd

logDd(XXXT )+log(1−Dd(G(XXXS,XXXT ))) (5.4)

where Ladv aligns the generated data distribution with the target data distribution globally to

reduce the domain gap. That is, Ladv serves as an essential loss term that encourages the generator

G to generate person images similar to the target domain images. We adopt PatchGAN [Isola

et al.] to discriminate stylistic statistics at the scale of patches, hence penalising the distribution

discrepancy in a more structural way.

Camera Loss. To capture the cross-camera context variations induced by camera characteristics

– e.g. colour tones – a camera loss is imposed to constrain the camera styles:

Lcam=−log(p(yc|XXXG)) (5.5)

where yc is camera label of XXXT that can be accessible from the image metadata without manual

annotations. Lcam is derived by a camera discriminator Dcam trained to classify camera labels.

Context Loss. While capturing context variations across domains, cameras, the generator should

also learn the inner-camera context changes with content details. Accordingly, we adopt masked

reconstruction errors to constrain foreground, background similar to input XXXS,XXXT respectively:

Lcon=||(XXXG−XXXS)◦MMMF ||2+||(XXXG−XXXT )◦MMMB||2 (5.6)
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where MMMF ,MMMB are the foreground, background person masks of XXXS extracted by human parsing

model. Lcon particularly encourages to retain the source person, whilst augmenting more diverse

background clutters explicitly guided by arbitrary target instance XXXT from the target domain.

Identity Loss. As the source person identity in input XXXS should be preserved in output XXXG, we

impose an identity classification error to constrain the person identity in XXXG:

Lid=−log(p(y j|XXXG)) (5.7)

where y j is the identity label of XXXS; Lid is derived by an identity discriminator Did – a standard

re-id CNN backbone trained to predict the source person identities.

Overall Objective. CR-GAN is trained with joint optimisation of four losses (Eq. (5.4),(5.5),(5.6)

and (5.7)) for their complementary benefits in constraining the image generation:

LGAN=λadvLadv+λidLid+λcamLcam+λconLcon (5.8)

where λadv,λid,λcam,λcon are hyper-parameters to control the relative importance of each loss.

We set λid=λcam=1, λadv=2, λcon=5 to keep the losses in similar value range.

5.2.2 Model Training and Deployment

CR-GAN is optimised similar to the standard GAN models. For deployment, Did – a stan-

dard backbone ResNet50 [He et al., 2016] – is fine-tuned upon abundant context augmented data

generated by CR-GAN (Figure 5.3). All synthetic data is randomly produced on-the-fly by feed-

ing arbitrary source-target image pairs to CR-GAN, therefore eschewing the need of storing an

extremely large-scale synthetic dataset. After fine-tuning, the backbone network Did is deployed

to extract features for re-id matching in the target domain. The model training is summarised in

Algorithm 3.

Remark. It is worth mentioning that a two-stage training is necessary in our context. If we

integrate generative learning of image generation and discriminative learning of feature repre-

sentation as one-stage end-to-end training, the discriminative re-id network would receive noisy

and corrupted generated person images. The corrupted input images could harm the model and

further lead to its failure in distinguishing different person identities.
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Algorithm 3 Instance-Guided Context Rendering.

I. Initialisation: Pre-train Did ,Dcam with labels.

II. Train the image generator G:

Input: Source dataset DS, target dataset DT .

Output: An image generator G.

for t = 1 to max gan iter do

Feedforward mini-batch of input pairs (XXXS,XXXT ) to G.

Update Dd (Eq. (5.4)) and update G for k times (Eq. (5.8)).

end for

III. Fine-tune Did on synthetic data:

for t = 1 to max cnn iter do

Random context rendering: XXXG = G(XXXS,XXXT ).

Update Did on XXXG using identity label of XXXS.

end for

5.3 Discussion

As compared to existing Unsupervised Domain Adaptation (UDA) techniques that rely on

either feature-level adaptation [Tzeng et al., 2014; Long et al., 2015; Sun and Saenko, 2016;

Ganin et al., 2016; Tzeng et al., 2017; Xie et al., 2018] or image-level adaptation [Bousmalis

et al., 2017; Shrivastava et al., 2017] to mitigate the cross-domain distribution discrepancy, our

approach also learns to transform the image styles, but particularly focuses on enriching the diver-

sity of synthetic images to facilitate more effective domain adaptation in re-id. While comparing

to existing Image-to-Image Translation (I2I) techniques that mainly aims to transform images

from original styles to new styles – as represented by Pix2Pix [Isola et al.], CycleGAN [Zhu

et al.], StarGAN [Choi et al., 2018], MUNIT [Huang et al.] and DRIT [Lee et al., a], our CR-

GAN is especially driven by the goal of diversifying the generated outputs to produce more

synthetic training data for effective domain adaptation.

Overall, our CR-GAN has the following merits to benefit cross-domain re-id model learn-

ing: (I) Instead of controlling the rendering effects with a fixed set of category labels, such as

camera labels, we leverage abundant unlabelled instances XXXT from target domain as contextual

guidance to inject contextual variations. This naturally avoids mode collapse to limited fixed
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styles, and synthesises more diverse target domain contexts for learning a domain-generic re-

id model. (II) Rather than changing the domain contexts holistically, our rendering effects are

region-dependent. In particular, the background clutter is significantly modified with structural

change; while the foreground person is slightly inpainted with colour change to capture the do-

main drift. Such rendering effects effectively retain the source identity, whilst augmenting richer

contexts for re-id model learning in the synthetic pseudo target domain. (III) By fusing two in-

puts through dual-path encoding at the lower layers, the generator network is enforced to learn

the selective preservation of low-level visual structures from both inputs, therefore enhancing the

modelling capacity to produce synthetic training data in higher fidelity and diversity.

It is worth mentioning that our proposed approach can not only be applied for open-set cross-

domain learning in person re-id, but can also generalise to other recognition tasks that require

to tackle the domain gap across two domains with non-overlapping label spaces. As the source

domain label information and the target domain context are merged in the generated synthetic

data, a discriminative recognition model trained upon these data can become both discriminative

to the task-relevant label information and invariant to the task-irrelevant domain variations.

5.4 Experiments

5.4.1 Experimental settings

Implementation Details. To train CR-GAN, we use the Adam solver [Kingma and Ba, 2014]

with a mini-batch size of 32. The learning rate is set to 0.0002 in the first half of training and

linearly decayed to 0 in the second half. To build up the image generator, Instance Normalisation

(IN) [Ulyanov et al., 2017] is used in the U-Net decoder. IN is neither applied in two separate

encoding pathways nor the U-Net encoder, which allows to retain the stylistic information before

decoding. The two pathways for dual condition are parameterised as separate convolutional lay-

ers. To improve the training stability of GAN, we add one additional Gaussian noise layer as the

input layer in the domain discriminator. We employ LSGAN [Mao et al.] as the GAN formulation

and adopt the domain discriminator same as PatchGAN [Isola et al.] to discriminate at the scale

of patches. To stabilise the training, the image generator is updated twice every iteration in the

second half of training. We use the standard ImageNet [Deng et al., 2009] pre-trained ResNet50

as the identity discriminator Did . The camera discriminator Dcam is an extremely lightweight

CNN classifier with 5 layers. More details on network architectures are given in Table 5.9, 5.10
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and 5.11.

Training Procedures. As aforementioned in Algorithm 3, the training process is divided into

three steps. First, for initialisation, we pre-train the identity discriminator (ResNet50), camera

discriminator for 30,000 iterations. Second, we train the image generator, domain discriminator

from scratch for 60,000 iterations. Third, we fine-tune the ResNet50 using synthetic data pro-

duced by the image generator on-the-fly. We only apply random flipping as data augmentation.

After training, the ResNet50 is used as the backbone network to extract feature.

Evaluation Metrics. We adopt several metrics to comprehensively evaluate our model in two

aspects: (1) To evaluate the re-id matching performance, we adopt the standard Cumulative

Match Characteristic (CMC) and mean Average Precision (mAP) as evaluation metrics. We

report results on single-query based on the ranking order of cross-camera pairwise matching dis-

tances computed based on features extracted from the re-id CNN model. (2) To measure the

visual quality of synthesis, we adopt the following two evaluation metrics: (i) LPIPS Distance

(LPIPS) [Zhang et al., 2018a] measures the image translation diversity, which is correlated with

human perceptual similarity. We used the default ImageNet pre-trained AlexNet to extract feature

in evaluation. (ii) Fréchet Inception Distance (FID) [Heusel et al.] measures the image fidelity

by quantifying the distribution discrepancy between generated data and real data. We used the

default ImageNet pre-trained Inception to extract feature in evaluation.

Datasets. We adopt three standard re-id benchmarks for evaluation (Figure 5.5). (1) Mar-

ket1501 [Zheng et al., b] contains 1,501 identities captured by 6 different cameras. The training

set includes 751 identities and 12,936 images. The testing set includes 750 identities, with 3,368

images in the probe set and 19,732 images in the gallery set. (2) DukeMTMCreID [Ristani

et al.; Zheng et al., c] contains 1,404 identities captured by 8 different cameras. The training set

includes 702 identities and 16,522 images. The testing set includes 702 identities, with 2,228

images in the probe set and 17,661 images in the gallery set. (3) CUHK03 [Li et al., d] contains

1,467 identities and 14,097 images in total. We use the auto-detected version.

5.4.2 Ablative Model Evaluation

To validate our model design rationale, we conduct ablative study on two different domain

pairs: Market1501→ DukeMTMCreID, DukeMTMCreID→Market1501.

Effect of Dual Condition. Introducing abundant target instances as contextual guidance is the
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(a) Market1501. (b) DukeMTMCreID. (c) CUHK03.

Figure 5.5: Example images from three re-id benchmarks.

𝑿𝑺

(a) baseline (b) CR-GAN (ours with dual condition)

contextual guidance :
target instances 𝑿𝑻

Guide(w/o dual condition)

Figure 5.6: Qualitative visual evaluation. Given source image XXXS, (a) baseline (w/o dual con-
dition) collapses to uniform context, due to lack of contextual guidance; while (b) CR-GAN
augments the same person with diverse contexts explicitly guided by target instances XXXT .

S→ T Market→Duke Duke→Market

Metrics LPIPS FID LPIPS FID

Source-Target data 0.458 0.330 0.458 0.330

w/o dual condition 0.196 0.065 0.210 0.137

CR-GAN 0.281 0.058 0.269 0.096

Table 5.1: Quantitative visual evaluation on image quality. LPIPS: image perceptual similarity,
higher is better. FID: distribution discrepancy, lower is better. LPIPS / FID in “Source-Target
data” represents the upper bound. Best results are in bold.

key factor that enables an Instance-Guided Context Rendering process. To validate this factor, we

compare our dual conditional mapping (CR-GAN) with an ablative baseline that takes in merely

the source input XXXS (w/o dual condition). Figure 5.6 shows that: (1) Although the baseline

transforms the context, all the generated images collapse to the same context; (2) CR-GAN, on

the contrary, acts as a much stronger data generator to augment the same person with a more

diverse range of domain contexts. This is in line with our visual quantitative results in Table 5.1,

where CR-GAN obtains much higher LPIPS, i.e. more diverse outputs, compared to the baseline.

This shows compellingly the benefit of our dual conditional formulation to exploit abundant



5.4. Experiments 105

S→ T Market→Duke Duke→Market

Metrics (%) R1 mAP R1 mAP

Direct Transfer 36.9 20.5 47.5 20.0

w/o dual cond 43.3 24.8 55.5 27.0

CR-GAN 52.2 30.0 59.6 29.6

w/o dual cond+LMP 48.7 27.6 59.2 28.5

CR-GAN+LMP 56.0 33.3 64.5 33.2

Table 5.2: Ablation study of dual condition in re-id. “Direct Transfer”: CNN trained with only
labelled source data; “w/o dual cond”: without dual condition; LMP: a pooling strategy [Deng
et al., 2018] to reduce noisy signals induced by fake synthetic images at test time.

S→ T Market→Duke Duke→Market

Metrics (%) R1 mAP R1 mAP

w/o identity loss 31.9 15.4 32.8 11.8

w/o camera loss 48.8 28.6 53.6 26.0

w/o context loss 48.5 28.8 57.4 28.7

CR-GAN 52.2 30.0 59.6 29.6

Table 5.3: Ablation study on individual effect of each loss in re-id.

target instances as contextual guidance in the image generation.

To evaluate the benefit of context rendering effects in re-id, we compare CR-GAN with the

ablative baseline. Table 5.2 shows that (1) Introducing our dual conditional formulation signif-

icantly boosts the re-id performance, with improved margins of 8.9% (52.2-43.3) / 4.1% (59.6-

55.5) in R1 on DukeMTMCreID / Market1501. (2) The improvement remains in the use of LMP,

with improved margins of 7.3% (56.0-48.7) / 5.3% (64.5-59.2) in R1. This indicates that re-

id model learning with more contextual variations is indeed helpful to boost the cross-domain

model robustness.

Effect of Different Losses. In addition to the standard adversarial loss, CR-GAN is trained

with three different losses. To validate the necessity of using these losses in re-id, we conduct

ablative comparison by eliminating individual loss from the overall objective. Table 5.3 shows

that: (1) Removing any of the loss leads to undesired performance drop; (2) All losses work

synergistically, with their joint optimisation to achieve the best performance. (3) These results

are in line with our loss design rationale: All losses serve to exploit complementary information

in model optimisation (Figure 5.4), and thus give their desired performance gains to generate
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(a) SPGAN𝑿𝑺 (b) CR-GAN (ours)

Figure 5.7: Qualitative visual evaluation. Given source image XXXS, (a) SPGAN [Deng et al.,
2018] transforms the image into merely one uniform style; while (b) our CR-GAN renders the
source persons into varying contexts: different background clutters, colour tones and lighting
conditions.

better data for re-id model learning.

5.4.3 Analysis on GAN-based Methods

To isolate and analyse the pure effect of image-level domain adaptation in re-id, we compare

our model with GAN-based methods for ablative analysis in this section.

Qualitative Visual Analysis. To understand how context information is brought to benefit the re-

id model learning, we first visually compare the synthetic images produced by our CR-GAN with

SPGAN [Deng et al., 2018]: a representative re-id method based upon CycleGAN. As Figure 5.7

shows, compared to merely one possible output given by SPGAN, CR-GAN can produce more

diverse outputs. This informs that CR-GAN indeed serves as a much stronger synthetic data

generator to augment much more contextual variations and thus produce a synthetic training set

of much larger-scale. More qualitative results of CR-GAN on four different domain pairs as

further shown in Figure 5.10, 5.11, 5.12, 5.13. Overall, our visualisation shows that CR-GAN is

capable of producing abundant data augmented with different background clutters, colour tones

and lighting conditions, explicitly guided by target instances randomly sampled from the target

domain.

Quantitative Visual Analysis. To evaluate the visual quality quantitatively, we further compare

CR-GAN with SPGAN based on the synthetic data released by the authors. Table 5.4 indicates

that: (1) Both CR-GAN and SPGAN have lower and better FID compared to the FID between

the source and target data. This informs that after style adaptation, the cross-domain distribution

discrepancy is mitigated with both methods. (2) Compared to SPGAN, CR-GAN has much lower

FID and higher LPIPS. This indicates CR-GAN can generate images of better fidelity and higher
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S→ T Market→Duke Duke→Market

Metrics LPIPS FID LPIPS FID

Source-Target data 0.458 0.330 0.458 0.330

SPGAN [Deng et al., 2018] 0.099 0.171 0.099 0.115

CR-GAN 0.281 0.058 0.269 0.096

Table 5.4: Quantitative visual evaluation on image quality. LPIPS: image perceptual similarity,
higher is better. FID: distribution discrepancy, lower is better. Best results are in bold.

XS MS (a) cut and paste (b) CR-GAN

XTtarget instances

paste

cut

guide

Figure 5.8: Synthetic images by (a) “cut and paste” and (b) our CR-GAN. XS: source image; XT :
target image; MS: parsing mask of XS.

diversity.

Analysis on Re-id Matching. To further justify how our synthetic contextual variations benefit

cross-domain re-id learning, we compare CR-GAN with three state-of-the-art GAN-based re-id

methods: PTGAN [Wei et al., 2018], SPGAN [Deng et al., 2018], M2M-GAN [Liang et al.]

on two domain pairs. All these models are trained on the same source datasets under the same

learning paradigm: a GAN – an image generator – is first trained to synthesise images, a CNN

is then fine-tuned upon the synthetic data for model adaptation. Table 5.6 shows that CR-GAN

achieves the best cross-domain re-id performance. It is worth pointing out that previous methods

generally collapse to fixed style(s): one homogenous domain style (PTGAN, SPGAN), or a pre-

defined set of camera styles (M2M-GAN). In contrast, CR-GAN augments much rich contextual

variations for re-id model learning.

5.4.4 Analysis on Image Synthesis Methods

We additionally illustrate the superiority of using CR-GAN to produce realistic synthetic data

in comparison to an easy “cut, paste and learn” [Dwibedi et al.], which is an image synthesis
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S→ T Market→Duke Duke→Market

Metrics (%) R1 mAP R1 mAP

Direct Transfer 36.9 20.5 47.5 20.0

cut, paste and learn [Dwibedi et al.] 21.6 ↓ 9.0 ↓ 26.5 ↓ 11.3 ↓

CR-GAN 52.2 30.0 59.6 29.6

CR-GAN+LMP 56.0 33.3 64.5 33.2

Table 5.5: Ablation study in comparison to “cut, paste and learn”.

S→ T Market→Duke Duke→Market

Metrics (%) R1 mAP R1 mAP

PTGAN [Wei et al., 2018] 27.4 - 38.6 66.1

SPGAN [Deng et al., 2018] 41.1 22.3 51.5 22.8

M2M-GAN [Liang et al.] 49.6 26.1 57.5 26.8

CR-GAN 52.2 30.0 59.6 29.6

SPGAN+LMP [Deng et al., 2018] 46.4 26.2 57.7 26.7

M2M-GAN+LMP [Liang et al.] 54.4 31.6 63.1 30.9

CR-GAN+LMP 56.0 33.3 64.5 33.2

Table 5.6: Evaluation on GAN-based methods in the cross-domain re-id settings. Best results in
each group are in bold. Overall 1st/2nd best in red/blue.

approach originally proposed for instance detection. Specifically, we first cut the source person

segment and paste it to the target background. Then, we train the re-id model upon the “cut and

paste” synthetic data. Figure 5.8 illustrates that the “cut and paste” synthetic data not only con-

tains various artifacts – some identity relevant cue (e.g. backpack) is missing due to incomplete

person mask; but it also cannot capture the lighting nor colour tones of the target domain. These

limitations are in line with its weaker performance as shown in Table 5.5, where “cut, paste

and learn” yields even worse re-id results than “Direct Transfer”. Overall, this demonstrates

the necessity of designing our CR-GAN to generate synthetic training data of higher fidelity and

diversity for enhancing the cross-domain generalisability.

5.4.5 Comparison with the State-of-the-art

Competitors. We compare our CR-GAN with 12 state-of-the-art methods. To ensure a like-

to-like fair comparison, we compare these methods by categorising them into four groups:
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Types
Source→ Target Market1501→ DukeMTMCreID DukeMTMCreID→Market1501

Metrics (%) R1 R5 R10 mAP R1 R5 R10 mAP

Shallow

LOMO 12.3 21.3 26.6 4.8 27.2 41.6 49.1 8.0

BoW 17.1 28.8 34.9 8.3 35.8 52.4 60.3 14.8

UMDL 18.5 31.4 37.6 7.3 34.5 52.6 59.6 12.4

Image

PTGAN 27.4 - 50.7 - 38.6 - 66.1 -

SPGAN+LMP 46.4 62.3 68.0 26.2 57.7 75.8 82.4 26.7

M2M-GAN+LMP 54.4 - - 31.6 63.1 - - 30.9

CR-GAN+LMP 56.0 70.5 74.6 33.3 64.5 79.8 85.0 33.2

Feature

PUL∗ 30.0 43.4 48.5 16.4 45.5 60.7 66.7 20.5

TJ-AIDL† 44.3 59.6 65.0 23.0 58.2 74.8 81.1 26.5

MMFA† 45.3 59.8 66.3 24.7 56.7 75.0 81.8 27.4

BUC∗ 47.4 62.6 68.4 27.5 66.2 79.6 84.5 38.3

TAUDL∗ 61.7 - - 43.5 63.7 - - 41.2

Hybrid

HHL 46.9 61.0 66.7 27.2 62.2 78.8 84.0 31.4

SPGAN+TAUDL 66.1 80.0 83.2 47.2 66.5 81.8 86.6 38.5

CR-GAN+TAUDL 68.9 80.2 84.7 48.6 77.7 89.7 92.7 54.0

Table 5.7: Evaluation on Market1501, DukeMTMCreID in comparison to the state-of-the-art
unsupervised cross-domain re-id methods. ∗: Not use auxiliary source training data. †: Use
auxiliary source attribute labels for training. “-”: no reported results. Best results in each group
are in bold. Overall 1st/2nd best in red/blue. Note that HHL uses StarGAN [Choi et al., 2018] to
generate synthetic training images.

Types
Source→ Target CUHK03→Market1501 CUHK03→ DukeMTMCreID

Metrics (%) R1 R5 R10 mAP R1 R5 R10 mAP

Image

PTGAN 31.5 - 60.2 - 17.6 - 38.5 -

SPGAN 42.3 - - 19.0 - - - -

CR-GAN 58.5 75.8 81.9 30.4 46.5 61.6 67.0 26.9

Feature TAUDL∗ 63.7 - - 41.2 61.7 - - 43.5

Hybrid
HHL 56.8 74.7 81.4 29.8 42.7 57.5 64.2 23.4

CR-GAN+TAUDL 78.3 89.4 93.0 56.0 67.7 79.4 83.4 47.7

Table 5.8: Evaluation on CUHK03 to Market1501 / DukeMTMCreID adaption compared to
state-of-the-art unsupervised cross-domain re-id methods. ∗: Not use source data. “-”: no re-
ported results. Best results in each group are in bold. Overall 1st/2nd best in red/blue.

(a) shallow methods using hand-crafted features: LOMO [Liao et al.], BoW [Zheng et al.,

b], UMDL [Peng et al., 2016]; (b) image-level learning methods: PTGAN [Wei et al., 2018],
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SPGAN [Deng et al., 2018], M2M-GAN [Liang et al.], which use GANs for style adapta-

tion; (c) feature-level learning methods: PUL [Fan et al., 2018], TJ-AIDL [Wang et al., 2018b]

MMFA [Lin et al., a], BUC [Lin et al., b], TAUDL [Li et al., b], which use additional discrimi-

native constraints in CNN; (d) hybrid learning methods: HHL [Zhong et al.], which combine the

benefits of group (b) and (c).

It is worth noting that the learning paradigms in group (b), (c) are essentially orthogonal:

learning is performed either in image space or feature space. Therefore, these two paradigms

should be complementary when unified in a hybrid formulation. To testify the generalisability

of CR-GAN in a hybrid formulation, we add an additional comparison by unifying CR-GAN /

SPGAN with the best performer TAUDL in group (c). We first train the CNN with synthetic

data generated by CR-GAN / SPGAN, then apply TAUDL with the pre-trained CNN in the

target domain. Such hybrid formulations are denoted as CR-GAN+TAUDL / SPGAN+TAUDL,

respectively.

Evaluation on Market1501 / DukeMTMCreID. Table 5.7 shows comparative results on two

domain pairs. It can be observed that (1) CR-GAN performs best in the image-level learning

paradigm; (2) When deploying CR-GAN in a hybrid formulation (CR-GAN+TAUDL), we earn

the best re-id performance due to complementary benefits of two learning paradigms. In particu-

lar, CR-GAN+TAUDL boosts the performance over TAUDL with margins of 7.2% (68.9-61.7) /

14.0% (77.7-63.7) in R1 on DukeMTMCreID / Market1501. These results not only indicate the

benefit of unifying GAN-based image-level learning and CNN-based feature-level learning into

unsupervised cross-domain re-id, but more importantly justify our rationale of augmenting richer

contextual variations to enable learning a more effective re-id model in the applied domain.

Evaluation on CUHK03 to Market1501 / DukeMTMCreID. Table 5.8 shows comparative

results on model adaptation from CUHK03, where there exists larger domain gaps between the

source and target domains (Figure 5.5). It can be seen that (1) CR-GAN clearly outperforms

the best image-level competitor SPGAN with large margins; (2) When deploying in a hybrid

formulation, CR-GAN+TAUDL outperforms the best hybrid competitor HHL with large margins

of 21.5% (78.3-56.8), 25.0% (67.7-42.7) in R1 on Market1501 / DukeMTMCreID respectively.

These collectively suggest the significant advantages of exploiting the synthetic data by CR-GAN

in cross-domain re-id model learning.
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5.5 Summary

We presented a novel Instance-Guided Context Rendering scheme for cross-domain re-id

model learning. Through a carefully-designed dual conditional mapping, abundant target in-

stances are exploited as contextual guidance for image generation. We conducted extensive abla-

tive analysis to validate our model design rationale, and show the best performance over existing

GAN-based re-id methods. Our like-to-like comparison with the state-of-the-art methods demon-

strates the great advantage of our model when flexibly deploying in a hybrid systematic formula-

tion. Overall, CR-GAN serves as a generic generator to augment abundant domain contexts for

re-id model learning in practice.

K-4x4,N,S2

K-4x4,N,S1

K-4x4,N,S2

K-4x4,N,S1

K-4x4,N,S1

K-4x4,N,S1

U-2x2

Figure 5.9: Left: Downsampling residual block. Right: Upsampling residual block. Note: conv
layer is introduced in the shortcut connection as the number of feature maps in input and output
are not necessarily the same in the U-Net.
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Part Name Input→ Output Shape Layer Description

Encoding
(H,W,3)→ (H

2 ,
H
2 ,64)

context pathway:

conv-(K-4×4,N-64,S-2,P-0,PS,LReLU)

(H,W,3)→ (H
2 ,

H
2 ,64)

identity pathway:

conv-(K-4×4,N-64,S-2,P-0,PS,LReLU)

U-Net (encoder)

(H
2 ,

H
2 ,128)→ (H

4 ,
W
4 ,128) res-(K-4×4,N-128,P-0,PS,LReLU)

(H
4 ,

H
4 ,128)→ (H

8 ,
W
8 ,256) res-(K-4×4,N-256,P-0,PS,LReLU)

(H
8 ,

H
8 ,256)→ ( H

16 ,
W
16 ,512) res-(K-4×4,N-512,P-0,PS,LReLU)

( H
16 ,

H
16 ,512)→ ( H

32 ,
W
32 ,512) res-(K-4×4,N-512,P-0,PS,LReLU)

( H
32 ,

H
32 ,512)→ ( H

64 ,
W
64 ,512) res-(K-4×4,N-512,P-0,PS,LReLU)

( H
64 ,

H
64 ,512)→ ( H

128 ,
W
128 ,512) res-(K-4×4,N-512,P-0,PS,LReLU)

( H
128 ,

W
128 ,512)→ ( H

256 ,
W
256 ,512)

conv-(K-4×4,N-512,S-2,P-0,PS)

U-Net (decoder)

( H
256 ,

H
256 ,512)→ ( H

128 ,
W
128 ,512) U + res-(K-4×4,N-512,P-0,PS, IN,ReLU)

( H
128 ,

H
128 ,1024)→ ( H

64 ,
W
64 ,512) U + res-(K-4×4,N-512,P-0,PS, IN,ReLU)

( H
64 ,

H
64 ,1024)→ ( H

32 ,
W
32 ,512) U + res-(K-4×4,N-512,P-0,PS, IN,ReLU)

( H
32 ,

H
32 ,1024)→ ( H

16 ,
W
16 ,512) U + res-(K-4×4,N-512,P-0,PS, IN,ReLU)

( H
16 ,

H
16 ,1024)→ (H

8 ,
W
8 ,256) U + res-(K-4×4,N-256,P-0,PS, IN,ReLU)

(H
8 ,

H
8 ,512)→ (H

4 ,
W
4 ,128) U + res-(K-4×4,N-128,P-0,PS, IN,ReLU)

(H
4 ,

W
4 ,256)→ (H

2 ,
W
2 ,128) U + conv-(K-4×4,N-128,S-1,P-0,PS, IN,ReLU)

Decoding
(H

2 ,
W
2 ,128)→ (H,W,3)

residual map: U +

conv-(K-4×4,N-3,S-1,P-0,PS, tanh)

(H
2 ,

W
2 ,128)→ (H,W,1)

context mask: U +

conv-(K-4×4,N-1,S-1,P-0,PS,sigmoid)

Table 5.9: Network architecture of dual conditional image generator. We de-
scribe each layer or residual block as “conv-(K-,N-,S-,P-,PS/PV, IN/BN,LReLU)”,
“res(K-,N-,S-,P-,PS/PV, IN/BN,LReLU)”. K: kernel size, N: number of filters, S: stride
size, P: padding size, PS: padding=‘same’, PV: padding=‘valid’, IN: instance normalisation, BN:
batch normalisation, LReLU: LeakyReLU. U: upsampling with kernel size 2×2. Input image
size “H×W” is 224×112. Note that the U-Net contains skip connections that are helpful to
preserve the underlying image structure across network layers. Downsampling and upsampling
residual blocks are depicted in Figure 5.9.
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Part Name Input→ Output Shape Layer Description

Input Layer (H,W,3)→ (H,W,3) additive Gaussian noise N (0,0.1)

Hidden Layers

(H,W,3)→ (H
2 ,

W
2 ,128) conv-(K-4×4,N-128,S-2,P-2,PV,LReLU)

(H
2 ,

W
2 ,128)→ (H

4 ,
W
4 ,256) conv-(K-4×4,N-256,S-2,P-2,PV, IN,LReLU)

(H
4 ,

W
4 ,256)→ (H

4 ,
W
4 ,512) conv-(K-4×4,N-512,S-1,P-2,PV, IN,LReLU)

(H
4 ,

W
4 ,512)→ (H

4 ,
W
4 ,512) conv-(K-4×4,N-512,S-1,P-2,PV, IN,LReLU)

Output Layer (H
4 ,

W
4 ,512)→ (H

4 ,
W
4 ,1) conv-(K-4×4,N-1,S-1,P-2,PV,sigmoid)

Table 5.10: Network architecture of domain discriminator Dd .

Part Name Input→ Output Shape Layer Description

Hidden Layers

(H,W,3)→ (H
2 ,

W
2 ,64) conv-(K-4×4,N-64,S-2,P-1,PV,LReLU)

(H
2 ,

W
2 ,64)→ (H

4 ,
W
4 ,128) conv-(K-4×4,N-128,S-2,P-1,PV,BN,LReLU)

(H
4 ,

W
4 ,128)→ (H

8 ,
W
8 ,256) conv-(K-4×4,N-256,S-2,P-1,PV,BN,LReLU)

(H
8 ,

W
8 ,256)→ ( H

16 ,
W
16 ,512) conv-(K-4×4,N-512,S-2,P-1,PV,BN,LReLU)

Pooling Layer ( H
32 ,

W
32 ,512)→ (1,1,512) average-pooling & dropout=0.999

Output Layer (1,1,512)→ C-way softmax conv-(K-1×1,N-C,S-2,softmax)

Table 5.11: Network architecture of camera discriminator Dcam.
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target reference inputs !"

synthesise

(a)

(e)(b) (c) (d)

Figure 5.10: Synthetic data by CR-GAN on Market1501→DukeMTMCreID. XS: source image;
XT : target image; MS: parsing mask of XS; 1−XC: the inverse of context mask; XG: generated
image.

target reference inputs !"

synthesise

(a)

(e)(b) (c) (d)

Figure 5.11: Synthetic data by CR-GAN on CUHK03→ DukeMTMCreID. XS: source image;
XT : target image; MS: parsing mask of XS; 1−XC: the inverse of context mask; XG: generated
image.
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target reference inputs !"

synthesise

(a)

(e)(b) (c) (d)

Figure 5.12: Synthetic data by CR-GAN on DukeMTMCreID→Market1501. XS: source image;
XT : target image; MS: parsing mask of XS; 1−XC: the inverse of context mask; XG: generated
image.

CUHK03_att2.png

target reference inputs !"

synthesise

(a)

(e)(b) (c) (d)

Figure 5.13: Synthetic data by CR-GAN on CUHK03 → Market1501. XS: source image; XT :
target image; MS: parsing mask of XS; 1−XC: the inverse of context mask; XG: generated image.
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Chapter 6

Unsupervised Learning by Online Deep Association

Person re-identification (re-id) aims to match persons across disjoint camera views distributed

at different locations [Gong et al., 2014], which is a practical computer vision task for real-world

surveillance systems. In such real-world surveillance systems, manual annotation is not only

prohibitively expensive to collect in practice as there are a quadratic number of camera pairs,

but also implausible in many cases due to no sufficient training people reappearing under every

pair of camera views. Unsupervised video-based person re-id, therefore, is a non-trivial task as it

targets to address person re-id using unlabelled video data without any manual labelling efforts.

While most recent re-id methods rely on static images [Li et al., d; Ahmed et al.; Xiao et al.,

2016; Wang et al., 2016a; Li et al., 2017; Sun et al., a; Zheng et al., c; Chen et al., 2017c; Li

et al., 2018; Zhong et al., 2018; Wang et al., 2018a; Zhu et al., 2017], video-based re-id has

gained increasing attention [Hirzer et al., 2011; Wang et al., a, 2016b; Zhu et al., 2016; Zheng

et al., a; You et al., 2016; McLaughlin et al., 2016; Yan et al.; Zheng et al., a; Zhou et al., 2017;

Xu et al., 2017] due to the rich space-time information inherently carried in the video tracklets.

A video tracklet is a sequence of images that captures rich variations of the same person in

terms of occlusion, background clutter, viewpoint, human poses, etc, which can naturally be

used as informative data sources for unsupervised learning in person re-id. The majority of

current techniques in video person re-id consider the supervised learning context, which imposes

a strong assumption on the availability of identity (ID) labels for every camera pair, therefore

allowing more powerful and discriminative re-id models to be learned when given relatively

small-sized training data. However, supervised learning methods are weak in scaling to real-
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(b) Global Cyclic Ranking Consistency
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Figure 6.1: Two types of consistency in our Deep Association Learning scheme. (a) Local space-
time consistency: Most images from the same tracklet generally depict the same person. (b)
Global cyclic ranking consistency: Two tracklets from different cameras are highly associated if
they are mutually the nearest neighbour returned by a cross-view ranking.

world deployment beyond the labelled training data domains. In practice, exhaustive manual

annotation at every camera pair is not only prohibitively expensive for a large identity population

across a large camera network, but it is also implausible due to insufficient designated persons

reappearing in every camera pair in real-world surveillance context. In this regard, unsupervised

video re-id is a more realistic task that is worth studying to improve the scalability of re-id models

in practical use.

Unsupervised learning methods [Ma et al., 2017; Liu et al., b; Ye et al.; Liu et al., a;

Karanam et al.; Wang et al., 2018b] are particularly essential when the re-id task needs to be

performed on a large amount of unlabelled video surveillance data cumulated continuously over

time, whilst the pairwise ID labels cannot be easily acquired for supervised model learning. Due

to the inherent nature of unsupervised learning, existing methods suffer from significant perfor-

mance degradations when compared to supervised learning methods in video person re-id. For

instance, the state-of-the-art rank-1 re-id matching rate on MARS [Zheng et al., a] is only 36.8%

by unsupervised learning [Ye et al.], as compared to 82.3% by supervised learning [Li et al., c].

In fact, even the latest video-based unsupervised learning models [Liu et al., b; Ye et al.] for per-

son re-id still lack a principled mechanism to explore the more powerful representation-learning

capabilities of deep Convolutional Neural Networks (CNNs) [Bengio et al., 2013] for jointly

learning an expressive embedding representation and a discriminative re-id matching model in

an end-to-end manner. It is indeed not straightforward to formulate a deep learning scheme for

unsupervised video-based person re-id due to: (1) The general supervised learning nature of deep

CNN networks: most deep learning objectives are formulated on labelled training data; (2) The

cross-camera variations of the same-ID tracklet pairs from disjoint camera views and the like-

lihood of different people being visually similar in public space, which collectively render the

nearest-neighbour distance measure unreliable to capture the cross-view person identity match-
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ing for guiding the model learning.

In this work, we aim to tackle the task of unsupervised video person re-id by an end-to-end

optimised deep learning scheme without utilising any identity labels. Towards this aim, we for-

mulate a novel unsupervised Deep Association Learning (DAL) scheme designed specifically to

explore two types of consistency, including (1) local space-time consistency within each tracklet

from the same camera view, and (2) global cyclic ranking consistency between tracklets across

disjoint camera views (Figure 6.1). In particular, we define two margin-based association losses,

with one derived from the intra-camera tracklet representation updated incrementally on account

of the local space-time consistency, and the other derived from the cross-camera representation

learned continuously based on the global cyclic ranking consistency. Importantly, this scheme

enables the deep model to start with learning from the local consistency, whilst incrementally

self-discovering more cross-camera highly associated tracklets subject to the global consistency

for progressively enhancing discriminative feature learning. Our key idea is to associate the

frame-level feature representations to the the nearest neighbours of tracklet-level feature repre-

sentations within and across camera views. This is based on the consistency assumption [Zhou

et al., 2004] that the nearest neighbours are likely to belong to the same class. Overall, our DAL

scheme imposes batch-wise self-supervised learning cycles to eliminate the need for manual la-

belled supervision in the course of model training.

In summary, our contribution is three-fold:

• We propose for the first time an end-to-end deep learning scheme for unsupervised video

person re-id without imposing any human knowledge on identity information.

• We formulate a novel Deep Association Learning (DAL) scheme, with two discrimina-

tive association losses derived from (1) local space-time consistency within each tracklet

and (2) global cyclic ranking consistency between tracklets across disjoint camera views.

Our DAL loss formulation allows typical deep CNNs to be readily trained by standard

stochastic gradient descent algorithms.

• Extensive experiments demonstrate the advantages of DAL over the state-of-the-art un-

supervised video person re-id methods on three benchmark datasets: PRID2011 [Hirzer

et al., 2011], iLIDS-VID [Wang et al., a], and MARS [Zheng et al., a].
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Figure 6.2: Illustration of Deep Association Learning: (a) Intra-camera association learning
based on the local space-time consistency within tracklets (Section 6.2). (2) Cross-camera asso-
ciation learning based on the global cyclic ranking consistency on cross-camera tracklets (Sec-
tion 6.3). Best viewed in colour.

6.1 Deep Association Learning

Our goal is to learn a re-id matching model to discriminate the appearance difference and

reliably associate the video tracklets across disjoint camera views without utilising any ID labels.

Towards this goal, we propose a novel Deep Association Learning (DAL) scheme that optimises

a deep CNN model based on the learning objective derived based on two types of consistency. As

illustrated in Figure 6.2, we explore the local space-time consistency and global cyclic ranking

consistency to formulate two top-push margin-based association losses. In particular, two sets of

“anchors” are gradually learned all along the training process for our loss formulation. They are

(1) a set of intra-camera anchors {xk,i}Nk
i=1 that denote the intra-camera feature representations of

Nk tracklets under camera k; and (2) a set of cross-camera anchors {ak,i}Nk
i=1, with each represent-

ing the cross-camera feature representation merged by the intra-camera feature representations of

two highly associated tracklets from disjoint camera views. Overall, the DAL scheme consists of

two batch-wise iterative procedures: (a) intra-camera association learning and (b) cross-camera

association learning, as elaborated in the following.

6.2 Intra-Camera Association Learning

Intra-camera association learning aims at discriminating intra-camera video tracklets. To this

end, we formulate a top-push margin-based intra-camera association loss in the form of the hinge

loss based on the ranking relationship of each image frame in association to all the video tracklets

from the same camera view. This loss is formulated in three steps as follows.
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6.2.1 Learning Intra-Camera Anchors

On account of the local space-time consistency as depicted Figure 6.1, each video tracklet

can simply be represented as a univocal sequence-level feature representation by utilising cer-

tain temporal pooling strategy, such as max-pooling or mean-pooling [McLaughlin et al., 2016;

Zheng et al., a]. This, however, is time-consuming to compute at each mini-batch learning it-

eration, as it requires to feed-forward all image frames of each video tracklet through the deep

model. To overcome this problem, we propose to represent a tracklet from camera k as an intra-

camera anchor xk,i, which is the intra-camera tracklet representation incrementally updated by

the frame representation fk,p of any constituent image frame from the same source tracklet all

through the training process. Specifically, the exponential moving average (EMA) strategy is

adopted to update each anchor xk,i as follows.

xt+1
k,i ← xt

k,i−η
(
`2(xt

k,i)− `2( f t
k,p)
)
, if i = p (6.1)

where η refers to the update rate (set to 0.5), `2(·) is `2 normalisation (i.e. ‖`2(·)‖2 = 1), and t

is the mini-batch learning iteration. As xk,i is initialised as the mean of the frame representations

for each tracklet and incrementally updated as Eq. (6.1), the intra-camera anchor is consistently

learned all along with the model learning progress to represent each tracklet.

6.2.2 Tracklet Association Ranking

Given the set of incrementally updated intra-camera anchors {xk,i}Nk
i=1 for camera k, the

ranking relationship of the frame representation fk,p in association to all intra-camera anchors

from the same camera k can be generated based on pairwise similarity measure. We use the

`2 distance to measure the pairwise similarities between an in-batch frame representation fk,p

and all the intra-camera anchor {xk,i}Nk
i=1. Accordingly, a ranking list is obtained by sorting the

pairwise similarities of fk,p w.r.t. {xk,i}Nk
i=1, with the rank-1 (top-1) intra-camera anchor having

the minimal pairwise distance:

{Dp,i|Dp,i =
∥∥`2( fk,p)− `2(xk,i)

∥∥
2, i ∈ Nk}

ranking−−−−→ Dp,t = min
i∈[1,Nk]

Dp,i (6.2)

where {Dp,i}Nk
i=1 is the set of pairwise distances between fk,p and {xk,i}Nk

i=1; while Dp,t denotes

the pairwise distance between fk,p and the rank-1 tracklet xk,t .
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6.2.3 Intra-Camera Association Loss

Given the ranking list for the frame representation fk,p (Eq. (6.2)), the intra-camera rank-1

tracklet xk,t should ideally correspond to the source tracklet xk,p that contains the same constituent

frame due to the local space-time consistency. We therefore define a top-push margin-based

intra-camera association loss to enforce proper association of each frame to the source tracklet

for discriminative model learning:

LI =


[Dp,p−Dp,t +m]+, if p 6= t (The rank-1 is not the source tracklet)

[Dp,p−D j,t +m]+, if p = t (The rank-1 is the source tracklet)
(6.3)

where [·]+ = max(0, ·), Dp,p is the pairwise distance between fk,p and xk,p (the source tracklet),

D j,t =
1
M ∑

M
j=1 D j,t is the averaged rank-1 pairwise distance of the M sampled image frames from

camera k in a mini-batch. m is the margin that enforces the deep model to assign the source

tracklet as the top-rank. More specifically, if the rank-1 is not the source tracklet (i.e. p 6= t), LI

will correct the model by imposing a large penalty to push the source tracklet to the top-rank.

Otherwise,LI will further minimise the intra-tracklet variation w.r.t. the averaged rank-1 pairwise

distance in each mini-batch. Since LI is computed based on the sampled image frames and the

up-to-date intra-camera anchors in each mini-batch, it can be efficiently optimised by the standard

stochastic gradient descent to adjust the deep CNN parameters iteratively. Overall, LI encourages

to learn the discrimination on intra-camera tracklets for facilitating the more challenging cross-

camera association, as described next.

6.3 Cross-Camera Association Learning

A key of video re-id is to leverage the cross-camera ID pairing information for model learn-

ing. However, such information is missing in unsupervised learning. We overcome this prob-

lem by self-discovering the cross-camera tracklet association in a progressive way during model

training. To permit learning expressive representation invariant to the cross-camera appearance

variations inherently carried in associated tracklet pairs from disjoint camera views, we formulate

another top-push margin-based intra-camera association loss in the same form as Eq. (6.3). Cru-

cially, we extend the tracklet representation to carry the information of cross-camera appearance

variations by incrementally learning a set of cross-camera anchors. This intra-camera association

loss is formulated in three steps as below.
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6.3.1 Cyclic Ranking

Given the incrementally updated intra-camera anchors (Eq. (6.1)), we propose to exploit the

underlying relations between tracklets for discovering the association between tracklets across

different cameras. Specifically, a cyclic ranking process is conducted to attain the pair of highly

associated intra-camera anchors across cameras as follows.

xk,i
ranking in cam l−−−−−−−−→ Dcp,t = mini∈[1,Nl ]

ranking back in cam k−−−−−−−−−−−→ Dcq, j = mini∈[1,Nk]

Global Cyclic Ranking Consistency: j=i
(6.4)

where Dcp,t denotes the cross-camera pairwise distance between two intra-camera anchors: xk,p

from camera k and xl,t from another camera l. Both Dcp,t and Dcq, j denote the rank-1 pairwise

distance. The pairwise distance and the ranking are computed same as Eq. (6.2). With Eq. (6.4),

we aim to discover the most associated intra-camera anchors across cameras under the criterion

of global cyclic ranking consistency: xk,p and xl,t are mutually the rank-1 match pair to each

other when one is given as a query to search for the best-matched intra-camera anchor in the

other camera view. This cyclic ranking process is conceptually related to the cycle-consistency

constraints formulated to enforce the pairwise correspondence between similar instances [Zhou

et al., 2016; Sener et al.; Godard et al., 2017]. In particular, our global cyclic ranking consistency

in this process aims to exploit the mutual consistency induced by transitivity for discovering the

highly associated tracklets across disjoint camera views all along the model training process.

6.3.2 Learning Cross-Camera Anchors

Based on global cyclic ranking consistency, we define the cross-camera representation as a

cross-camera anchor ak,i by merging two highly associated intra-camera anchors as depicted in

Figure 6.2 and detailed below.

at+1
k,i ←


1
2

(
`2(xt+1

k,i )+ `2(xt
l,t)
)
, if j = i (Cyclic ranking consistent)

xt+1
k,i , others

(6.5)

where ak,i is simply a counterpart of xk,i. Each cross-camera anchor is updated as the arithmetic

mean of two intra-camera anchors if the consistency condition is fulfilled (i.e. j = i), otherwise

as the same intra-camera anchor. As the deep model is updated continuously to discriminate the

appearance difference among tracklets, more intra-camera anchors are progressively discovered

to be highly associated. That is, all along the training process, more cross-camera anchors are
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gradually updated by merging the highly associated intra-camera anchors to carry the informa-

tion of cross-camera appearance variations induced by the tracklet pairs that come from disjoint

camera views but potentially depict the same identities.

6.3.3 Cross-Camera Association Loss

Given the continuously updated cross-camera anchors {ak,i}Nk
i=1, we define another top-push

margin-based cross-camera association loss in the same form as Eq. (6.3) to enable learning from

cross-camera appearance variations:

LC =


[Dap,p−Dp,t +m]+, if p 6= t (The rank-1 is not the source tracklet)

[Dap,p−D j,t +m]+, if p = t (The rank-1 is the source tracklet)
(6.6)

where Dap,p denotes the pairwise distance between the frame representation fk,p and the cross-

camera anchor ak,p. Both Dp,t and D j,t are the same quantities as LI in Eq. (6.3). As depicted in

Figure 6.2 and in the same spirit as LI , the cross-camera association loss LC enforces the deep

model to push the best-associated cross-camera anchor as the top-rank, so as to align the frame

representation fk,p towards the corresponding cross-camera representation.

6.4 Model Training

Overall Learning Objective. The final learning objective for DAL is to jointly optimise two

association losses (Eq. (6.3), (6.6)) as follows.

LDAL = LI +λLC (6.7)

where λ is a tradeoff parameter that is set to 1 to ensure both loss terms contribute equally to the

learning process. The margin m in both Eq. (6.3) and Eq. (6.6) is empirically set to 0.2 in our

experiments. The algorithmic overview of model training is summarised in Algorithm 4.

Complexity Analysis. We analyse the per-batch per-sample complexity cost induced by DAL. In

association ranking (Eq. (6.2)), the pairwise distances are computed between each in-batch image

frame and Nk intra-camera anchors for each camera, which leads to a computation complexity

of O
(
Nk
)

for distance computation and O
(
Nklog(Nk)

)
for ranking. Similarly, in cyclic ranking

(Eq. (6.4)), the total computation complexity is O
(
Nl +Nk

)
+O

(
Nllog(Nl)+Nklog(Nk)

)
. All

the distance measures are simply computed by matrix manipulation on GPU with single floating

point precision for computational efficiency.
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Algorithm 4 Deep Association Learning.

Input: Unlabelled video tracklets captured from different cameras.

Output: A deep CNN model for re-id matching.

for t = 1 to max iter do

Randomly sample a mini-batch of image frames.

Network forward propagation.

Tracklet association ranking on the intra-camera anchors (Eq. (6.2)).

Compute two margin-based association loss terms (Eq. (6.3), (6.6)).

Update the corresponding intra-camera anchors based on the EMA strategy (Eq. (6.1)).

Update the corresponding cross-camera anchors based on cyclic ranking (Eq. (6.4), (6.5)).

Network update by back-propagation (Eq. (6.7)).

end for

Remark. Our proposed approach is overall formulated based on the consistency assumption,

which considers that the two nearest neighbours are likely to belong to the same class. As for

intra-camera learning, each frame representation is considered to belong to its tacklet represen-

tation. As for inter-camera learning, a cyclic ranking consistency is imposed to discover mutual

nearest neighbours across two camera views; while the nearest neighbours are considered to

come from the same class. It is possible that the two nearest neighbours may belong to differ-

ent classes. However, given the pairs of similar nearest neighbours are more likely to belong

to the same class than the pairs of dissimilar non-nearest neighbours, our margin-based hinge

loss would not associate the very dissimilar pairs from different classes, thus ensuring to learn

meaningful discriminative representations.

6.5 Discussion

The commonality of most existing unsupervised learning methods in video person re-id is

to discover the matching correlations between tracklets across cameras. For example, Ma et

al. [Ma et al., 2017] formulate a time shift dynamic warping model to automatically pair cross-

camera tracklets by matching partial segments of each tracklet generated over all time shifts. Ye

et al. [Ye et al.] propose a dynamic graph matching method to mine the cross-camera labels

for iteratively learning a discriminative distance metric model. Liu et al. [Liu et al., b] develop a

stepwise metric learning method to progressively estimate the cross-camera labels; but it requires



126 Chapter 6. Unsupervised Learning by Online Deep Association

stringent video filtering to obtain one tracklet per ID per camera for discriminative model initiali-

sation. Our proposed Deep Association Learning (DAL) method in this work differs significantly

from previous works in three aspects: (I) Unlike [Ma et al., 2017; Liu et al., b], our DAL does

not require additional manual effort to select tracklets for model initialisation, which results in

better scalability to large-scale video data. (II) All existing methods rely on a good external

feature extractor for metric learning; while our DAL jointly learns a re-id matching model with

discriminative representation in a fully end-to-end manner. (II) Our DAL uniquely utilises the

intra-camera local space-time consistency and cross-camera global cyclic ranking consistency to

formulate the learning objective with a relatively low computational cost.

In essence, our proposed DAL method performs unsupervised deep metric learning by

learning a nonlinear mapping that transforms input images into a feature representation space, in

which the distances within the same class are enforced to be small whilst the distances between

different classes are maintained large. Although a variety of supervised deep distance metric

learning methods have been proposed to solve the task of person re-id [Li et al., d; Yi et al., 2014;

Ahmed et al.; Ding et al., 2015; Liu et al., 2016; Wang et al., 2016a; Cheng et al., 2016; Chen

et al., 2016; McLaughlin et al., 2016; Chen et al., 2017b; Hermans et al., 2017; Xu et al., 2017],

such as using Siamese network with a pairwise similarity measure objective [Yi et al., 2014;

McLaughlin et al., 2016; Xu et al., 2017], or minimising a margin-based hinge loss with a batch

online mining strategy for triplet generation [Ding et al., 2015; Hermans et al., 2017], our DAL

especially learns a deep embedding representation in an unsupervised fashion. In particular, in-

stead of grounding the learning objective based on pairwise or triple-wise comparison between a

few labelled samples, e.g., two samples as a pair or three samples as a triplet, our DAL uniquely

learns two set of anchors as the intra-camera and cross-camera tracklet representations, which

allows to measure the pairwise similarities between each image frame and all the other tracklet

representations to ensure more comprehensive comparison between samples, thus resulting in

more effective unsupervised learning.

6.6 Experiments

6.6.1 Evaluation on Unsupervised Video Person Re-ID

Datasets. We conduct extensive experiments on three video person re-id benchmark datasets,

including PRID 2011 [Hirzer et al., 2011], iLIDS-VID [Wang et al., a] and MARS [Zheng et al.,
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(a) PRID 2011 (b) iLIDS-VID (c) MARS

Figure 6.3: Example pairs of tracklets from three benchmark datasets. Cross-camera variations
include changes in illumination, viewpoints, resolution, occlusion, background clutter, human
poses, etc.

a] (Figure 6.3). The PRID 2011 dataset contains 1,134 tracklets captured from two disjoint

surveillance cameras with 385 and 749 tracklets from the first and second cameras. Among all

video tracklets, 200 persons are captured in both cameras. The iLIDS-VID dataset includes 600

video tracklets of 300 persons. Each person has 2 tracklets from two non-overlapping camera

views in an airport arrival hall. The MARS has a total of 20,478 tracklets of 1,261 persons

captured from a camera network with 6 near-synchronized cameras at a university campus. All

the tracklets were automatically generated by the DPM detector [Felzenszwalb et al., 2009] and

the GMMCP tracker [Dehghan et al.].

Evaluation Protocols. For PRID 2011, following [Wang et al., a; Ye et al.; Liu et al., b] we

use the tracklet pairs from 178 persons, with each tracklet containing over 27 frames. These

178 persons are further randomly divided into two halves (89/89) for training and testing. For

iLIDS-VID, all 300 persons are also divided into two halves (150/150) for training and testing.

For both datasets, we repeat 10 random training/testing ID splits as [Wang et al., a] to ensure

statistically stable results. The average Cumulated Matching Characteristics (CMC) are adopted

as the performance metrics. For MARS, we follow the standard training/testing split [Zheng

et al., a]: all tracklets of 625 persons for training and the remaining tracklets of 636 persons for

testing. Both the averaged CMC and the mean Average Precision (mAP) are used to measure re-

id performance on MARS. Note, our method does not utilise any ID labels for model initialisation

or training.

Implementation Details. We implement our DAL scheme in Tensorflow [Abadi et al., 2016].

To evaluate its generalisation ability of incorporating with different network architectures, we

adopt two standard CNNs as the backbone networks: ResNet50 [He et al., 2016] and Mo-

bileNet [Howard et al., 2017]. Both deep models are initialised with weights pre-trained on

ImageNet [Deng et al., 2009]. On the small-scale datasets (PRID 2011 and iLIDS-VID), we ap-

ply the RMSProp optimiser [Tieleman and Hinton, 2012] to train the DAL for 2×104 iterations,
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Datasets PRID 2011 iLIDS-VID MARS

Rank@k 1 5 10 20 1 5 10 20 1 5 10 20 mAP

DVDL 40.6 69.7 77.8 85.6 25.9 48.2 57.3 68.9 - - - - -

STFV3D 42.1 71.9 84.4 91.6 37.0 64.3 77.0 86.9 - - - - -

MDTS-DTW 41.7 67.1 79.4 90.1 31.5 62.1 72.8 82.4 - - - - -

UnKISS 59.2 81.7 90.6 96.1 38.2 65.7 75.9 84.1 - - - - -

DGM+IDE 56.4 81.3 88.0 96.4 36.2 62.8 73.6 82.7 36.8 54.0 61.6 68.5 21.3

Stepwise 80.9 95.6 98.8 99.4 41.7 66.3 74.1 80.7 23.6 35.8 - 44.9 10.5

DAL (ResNet50) 85.3 97.0 98.8 99.6 56.9 80.6 87.3 91.9 46.8 63.9 71.6 77.5 21.4

DAL (MobileNet) 84.6 96.3 98.4 99.1 52.8 76.7 83.4 91.6 49.3 65.9 72.2 77.9 23.0

Table 6.1: Evaluation on three benchmarks in comparison to the state-of-the-art unsupervised
video re-id methods. Red: the best performance. Blue: the second best performance. ‘-’: no
reported results.

with an initial learning rate of 0.045 and decayed exponentially by 0.94 every 2 epochs. On the

large-scale dataset (MARS), we adopt the standard stochastic gradient descent (SGD) to train the

DAL for 1×105 iterations, with an initial learning rate of 0.01 and decayed to 0.001 in the last

5×104 iterations. The batch size is all set to 64. At test time, we obtain the tracklet representa-

tion by max-pooling on the image frame features followed by `2 normalisation. We compute the

`2-distance between the cross-camera tracklet representations as the similarity measure for the

final video re-id matching.

Comparison to state-of-the-art methods. We compare DAL against six state-of-the-art video-

based unsupervised re-id methods: DVDL [Karanam et al.], STFV3D [Liu et al., a], MDTS-

DTW [Ma et al., 2017], UnKISS [Khan and Bremond, 2016], DGM+IDE [Ye et al.], and Step-

wise [Liu et al., b]. Among all methods, DAL is the only unsupervised deep re-id model that

is optimised in an end-to-end manner. Table 6.1 shows a clear performance superiority of DAL

over all other competitors on the three benchmark datasets. In particular, the rank-1 matching

accuracy is improved by 4.4%(85.3-80.9) on PRID 2011, 15.2%(56.9-41.7) on iLIDS-VID and

12.5%(49.3-36.8) on MARS. This consistently shows the advantage of DAL over existing meth-

ods for unsupervised video re-id due to the joint effect of optimising two association losses to

enable learning feature representation invariant to cross-camera appearance variations whilst dis-

criminative to appearance difference. Note, the strongest existing model DGM+IDE [Ye et al.]

additionally uses ID label information from one camera view for model initialisation, whilst

Stepwise [Liu et al., b] assumes one tracklet per ID per camera by implicitly using ID labels.
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Datasets PRID 2011 iLIDS-VID MARS

Rank@k 1 5 10 20 1 5 10 20 1 5 10 20 mAP

LI Only 62.7 85.7 92.1 96.7 31.7 55.2 67.5 78.6 41.6 59.0 66.2 73.2 16.8

LC Only 81.6 95.2 98.1 99.7 47.4 72.6 81.5 89.2 48.1 65.3 71.4 77.6 22.6

LI+LC 84.6 96.3 98.4 99.1 52.8 76.7 83.4 91.6 49.3 65.9 72.2 77.9 23.0

Table 6.2: Effectiveness of two association losses. Red: the best performance. CNN: MobileNet.

In contrast, DAL uses neither of such additional label information for model initialisation or

training. More crucially, DAL consistently produces similar strong re-id performance with dif-

ferent network architectures (ResNet50 and MobileNet), which demonstrates its applicability to

existing standard CNNs.

6.6.2 Component Analyses and Further Discussion

Effectiveness of two association losses. The DAL trains the deep CNN model based on the

joint effect of two association losses: (1) intra-camera association loss LI (Eq. (6.3)) and (2)

cross-camera association loss LC (Eq. (6.3)). We evaluate the individual effect of each loss

term by eliminating the other term from the overall learning objective (Eq. (6.7)). As shown

in Table 6.2, jointly optimising two losses leads to the best model performance. This indicates

the complementary benefits of the two loss terms in discriminative feature learning. Moreover,

applying LC alone has already achieved better performance as compared to the state-of-the-art

methods in Table 6.1. When comparing with LI+LC, applying LC alone only drop the rank-

1 accuracy by 3.0%(84.6-81.6), 5.4%(52.8-47.4), 1.2%(49.3-48.1) on PRID 2011, iLIDS-VID,

MARS respectively. This shows that even optimising the cross-camera association loss alone can

still yield competitive re-id performance, which owes to its additional effect in enhancing cross-

camera invariant representation learning by reliably associating tracklets across disjoint camera

views all along the training process.

Evolution of cross-camera tracklet association. As aforementioned, learning representation

robust to cross-camera variations is a key to learning an effective video re-id model. To under-

stand the effect of utilising the cyclic ranking consistency to discover highly associated tracklets

during training, we track the proportion of cross-camera anchors that are updated to denote the

cross-camera representation by merging two highly associated tracklets (intra-camera anchors).

Figure 6.4(a) shows that on PRID 2011 and iLIDS-VID, 90+% tracklets find their highly associ-
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(a) Evolution on association rate. (b) Evolution on true-match rate.

Figure 6.4: Evolution on cross-camera tracklet association. The shaded areas denote the varying
range of 10-split results repeated on PRID 2011 and iLIDS-VID. Best viewed in colour.

Datasets PRID 2011 iLIDS-VID MARS

Rank@k 1 5 10 20 1 5 10 20 1 5 10 20 mAP

DAL (LI+LC) 84.6 96.3 98.4 99.1 52.8 76.7 83.4 91.6 49.3 65.9 72.2 77.9 23.0

ID-Supervised 84.3 98.1 99.2 99.8 51.5 76.0 83.8 89.9 71.8 86.8 90.7 93.3 51.5

Table 6.3: Comparison between our unsupervised model and its supervised counterpart. Red:
the best performance. CNN: MobileNet.

ated tracklets under another camera at the end of training. On the much noisier large-scale MARS

dataset, the DAL can still associate more than half of tracklets (>50%) across cameras. Impor-

tantly, as seen in Figure 6.4(b), among self-discovered associated cross-camera tracklet pairs, the

percentage of true-match pairs at the end of training is approximately 90% on PRID 2011, 75%

on iLIDS-VID, and 77% on MARS, respectively. This shows compellingly the strong capabil-

ity of DAL in self-discovering the unknown cross-camera tracklet associations without learning

from manually labelled data.

Comparison with supervised counterparts. We further compare DAL against the supervised

counterpart trained using ID labelled data with the identical CNN architecture (MobileNet), de-

noted as ID-Supervised. This ID-Supervised is trained by the cross-entropy loss computed on the

ID labels. Results in Table 6.3 show that: (1) On PRID 2011 and iLIDS-VID, DAL performs sim-

ilarly well as the ID-Supervised. This is highly consistent with our observations of high tracklet

association rate in in Figure 6.4, indicating that discovering more cross-camera highly associ-

ated tracklets can help to learn a more discriminative re-id model that is robust to cross-camera

variations. (2) On MARS, there is a clear performance gap between the supervised and unsu-

pervised models. This is largely due to a relatively low tracklet association rate arising from the

difficulty of discovering cross-camera tracklet associations in a larger identity population among

much noisier tracklets, as indicated in Figure 6.4(a).
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6.7 Summary

In this work, we presented a novel Deep Association Learning (DAL) scheme for unsuper-

vised video person re-id using unlabelled video tracklets extracted from surveillance video data.

Our DAL permits deep re-id models to be trained without any ID labelling for training data,

which is therefore more scalable to deployment on large-sized surveillance video data than su-

pervised learning based models. In contrast to existing unsupervised video re-id methods that

either require more stringent one-camera ID labelling or per-camera tracklet filtering, DAL is ca-

pable of learning to automatically discover the more reliable cross-camera tracklet associations

for addressing the video re-id task without utilising ID labels. This is achieved by jointly opti-

mising two margin-based association losses formulated based on the local space-time consistency

and global cyclic ranking consistency. Extensive comparative experiments on three video person

re-id benchmarks show compellingly the clear advantages of the proposed DAL scheme over a

wide variety of state-of-the-art unsupervised video person re-id methods. We also provided de-

tailed component analyses to further discuss the insights on how each part of our method design

contributes towards the overall model performance.
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Chapter 7

Conclusion and Future Work

Deep learning algorithms are known to be data hungry. To achieve human- or even super-

human-level performance in most visual recognition tasks, large collections of labelled datasets

are generally required to formulate meaningful supervision signals for model optimisation. The

lack of label annotations is therefore a major lingering issue that prevents us to build more gen-

eralisable visual recognition models. To mitigate the need of tremendous label annotations, this

thesis studied four different visual learning paradigms in limited-label regime, all of which share

the same aim to address the challenge of lacking sufficient label annotations in visual recognition

tasks, including visual classification and visual search. Specifically, our key idea is to exploit

abundant unlabelled visual data together with limited labelled data, by optimising an auxiliary

unsupervised learning signal formulated without utilising any label annotations. In the sequel, a

conclusion of this thesis and a discussion on future work are further elaborated.

7.1 Conclusion

In conclusion, this thesis has explored and tackled different visual learning paradigms in

limited-label regime, where each learning paradigm considers the unlabelled data samples are

presented under different conditions (see Figure 1 in Abstract). As outlined in Chapter 1 and

further analysed in Chapter 2, according to (i) whether there exists class mismatch between the

labelled set and unlabelled set, (ii) whether there exists domain drift between the labelled set and

unlabelled set, and (iii) whether the labelled set is available, visual learning in limited-label

regime can be further divided into four different learning paradigms, which are presented in
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Chapter 3, 4, 5, 6 and summarised below.

1. Chapter 3 addressed close-set semi-supervised learning (i.e. no class mismatch or domain

drift) by introducing a memory module augmented to the network during training. The

memory module captures the underlying manifold structure to reliably propagate proba-

bilistic class assignments from the labelled data pool to the unlabelled data samples, thus

allowing to learn from the unlabelled data without any label information.

2. Chapter 4 tackled an under-explored visual learning paradigm: open-set semi-supervised

learning (i.e. with class mismatch) by formulating an uncertainty-aware self-distillation

(UASD) scheme. UASD averages all the historical model predictions during training to

derive less overconfident probabilistic class assignments (a.k.a. soft target) on the unla-

belled data, which could be leveraged to discard samples lying out-of-distribution and se-

lectively propagate reliable label assignments on unlabelled samples to avoid catastrophic

error propagation.

3. Chapter 5 studied a practical and challenging visual learning paradigm: open-set cross-

domain learning (i.e. class mismatch and domain drift) by forming a novel instance-guided

context rendering scheme. A dual conditional image generation framework is built to ren-

der the source person identity population into the target domain contexts, thus producing an

abundant amount of synthetic imagery data for domain-adaptive training. By fine-tuning

upon these synthetic data, the learnt representations become discriminative to person iden-

tity labels and invariant to the contextual variations, thus yielding a more robust visual

search model in person re-identification.

4. Chapter 6 investigated unsupervised learning (i.e. none labelled data) in visual search via

a new deep association learning (DAL) scheme. DAL learns from unlabelled videos by

automatically associating image representations to video representations via a within-view

temporal consistency loss and a cross-view cycle consistency loss, both of which collec-

tively result in more discriminative representations for effective visual search in person

re-identification.

From Chapter 2 to Chapter 6, it is demonstrated that visual learning in limited-label regime

can be investigated and solved under different scenarios, which introduce the unlabelled visual

data in different ways. Although these visual learning paradigms are mainly evaluated on visual
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classification and visual search tasks, the underlying generic modelling principles to propagate,

selectively propagate, transfer and discover label assignments on the unlabelled visual data could

be easily generalised to other visual recognition tasks.

It is worth noting that our proposed methods are proposed to tackle different problem sce-

narios in a case-by-case basic. In fact, due to unique data characteristics of the unlabelled data

in different scenarios, it is impractical to design one universal semi-supervised or unsupervised

learning model for solving all kinds of visual learning problems in the limited-label regime. For

instance, in the close-set semi-supervised learning scenario, where we know that the unlabelled

data is drawn from the same class distribution as the labelled data, all the unlabelled data can

be used for semi-supervised training. In the open-set semi-supervised learning scenario, where

we have the labelled data and unlabelled data sampled from very different label spaces, it is

essential to use the only in-distribution unlabelled data for model training while discarding the

out-of-distribution unlabelled data. In the open-set cross-domain learning scenario with labelled

data and unlabelled data sampled from very different label spaces and domains, it is important

to tackle both the label drift and domain drift to ensure an effective utilisation of the unlabelled

data. In the most extreme case without any labelled data (i.e. unsupervised learning), it is es-

sential to discover the label information automatically. While the former two scenarios are more

commonly seen in object classification task (with a known label space), the latter two scenarios

are more common in visual recognition tasks (where the label annotations in an open label space

could not be easily acquired). In conclusion, the different data characteristics in various problem

scenarios suggest the necessity to address the challenges on a case-by-case basis. Notably, our

proposed methods are formulated to address these unique problem-specific challenges.

In the following, future directions are further discussed to shed light on potential extension

for our studied learning paradigms.

7.2 Future Work

Visual learning meaningful representations with limited or none human supervision is a long-

standing problem. It is therefore profound to formulate effective auxiliary supervision signals

that empower machine learning models to learn from visual data without relying on task-relevant

manual annotations provided in the form of instance-level class labels (e.g. visual classification),

pixel-level class labels (e.g. semantic segmentation), bounding boxes (e.g. object detection),
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etc. In essence, such auxiliary supervision signals aim to introduce additional regularisers that

constrain the model solution space in a meaningful manner, which in effect learn invariant rep-

resentations that are robust to various task-irrelevant invariances while being discriminant to

task-relevant factors. In addition to semi-supervised and unsupervised visual learning paradigms

for improving model generalisation, there are also other plausible learning paradigms to serve

with a similar purpose. In the following, we discuss the possible extensions and highlight the

scope for further development beyond the works presented in this thesis.

Learning from Transferable Knowledge entails the possibility to accrue better model gener-

alisation without utilising numerous label annotations for model training. The generic aim is to

leverage prior knowledge learnt from another data distribution by introducing auxiliary unsuper-

vised supervision signals based on prior information encoded in pre-trained model parameters

[Sharif Razavian et al.; Yosinski et al.; Oquab et al.; Wang et al., b], model representations [Don-

ahue et al., 2014; Romero et al., 2015], or model predictions [Hinton et al., 2015; Laine and Aila,

2017; Ba and Caruana; Urban et al.]. For instance, to transfer model parameters, a new deep

model architecture can be built by adding new layers upon an existing model [Wang et al., b].

To transfer model representations or predictions, a new model can be optimised with an auxil-

iary regulariser formed upon representations or predictions from a pre-trained larger model or

an ensemble of models [Romero et al., 2015; Hinton et al., 2015]. As learning from transferable

knowledge allows us to utilise label information from other datasets, it can also be easily extended

to tackle the lack of numerous label annotations. The plausible extension in visual learning is

to leverage the pre-trained model parameters, representations, or predictions to impose auxiliary

unsupervised loss terms that permit to learn from unlabelled visual data. During the course of

this thesis, we also proposed a feature regularisation technique by consensus propagation [Chen

et al., 2017c], which transfers the knowledge learnt from a multi-scale teacher model to a single-

scale student model. Our proposed deep multi-scale representation learning model is a natural

extension upon standard teacher-student transfer learning [Hinton et al., 2015], which can be

easily extended to transfer knowledge from labelled data to unlabelled data in a semi-supervised

or unsupervised manner.

Learning Using Privileged Information (LUPI) [Vapnik and Vashist, 2009; Vapnik and Iz-

mailov, 2015] is originally proposed by Vapnik et al. as a machine learning paradigm to use

extra side information available only during training, which could also be exploited for visual
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learning in limited-label regime. This learning paradigm has further been introduced to a variety

of computer vision tasks (e.g. image retrieval [Sharmanska et al., 2013] and web image recog-

nition [Li et al., e]) to enhance model performance by exploiting additional information sources

[Sharmanska et al., 2013; Li et al., e; Lopez-Paz et al., 2015; Hoffman et al., 2016; Yang et al.,

2017; Garcia et al.; Lambert et al., 2018; Lee et al., b], such as supervision provided by other

modalities [Hoffman et al., 2016; Garcia et al.], and auxiliary hashtags [Sharmanska et al., 2013;

Li et al., e]. In the case of lacking sufficient label supervision, LUPI provides an alternative way

to formulate auxiliary supervision signals that could further boost model generalisation without

labelling more visual data to meet the expected model performance. For instance, Hoffman et

al. [Hoffman et al., 2016] use depth images as extra data source to guide the learning of more

effective RGB image representation for object detection. Lee et al. [Lee et al., b] propose a GAN

framework that uses labelled stimulated synthetic images as privilege information to constrain

the learning on unlabelled real-world images for semantic segmentation in urban scenes. During

the course of this thesis, we also proposed an auxiliary visual-semantic optimisation scheme to

tie the learnt visual representation with auxiliary language semantics extracted from privileged

linguistic information, such as image captions or product descriptions that carry semantic in-

formation about the visual content [Chen et al., 2020a]. As a natural future exploration, our

proposed visual-semantic optimisation scheme can be extended for visual learning in limited-

label regime by exploiting privileged information to form auxiliary supervision signals that do

not urge for task-specific manual annotations.

Learning from Non-Visual Data provides a promising modelling strategy to learn from non-

vision modalities, such as audio, language, and touch, which can be formulated as a multi-modal

semi-supervised or unsupervised learning paradigm to learn visual representations without la-

belling the visual data. In the domain of vision-audio learning, based upon the natural synchroni-

sation between vision and audio in a video, unsupervised learning signals can be simply formed

to enforce the visual-audio consistency across two modalities [Korbar et al.; Owens and Efros].

By applying unsupervised clustering within the vision and audio modalities, single-modal and

multi-modal pseudo labels can be generated to guide representation learning in both modalities

[Alwassel et al., 2019; Morgado et al., 2020]. In the domain of vision-language learning, built

upon recent advance of BERT in unsupervised linguistic representation learning [Devlin et al.,

2018], variants of visual-linguistic BERT have been proposed to learn the joint representations



138 Chapter 7. Conclusion and Future Work

of vision and language in an unsupervised manner [Tan and Bansal, 2019; Lu et al.; Su et al.; Li

et al., a], which could serve as effective unsupervised pre-training strategies without using any

label annotations to improve a variety of downstream tasks, such as image captioning, image-text

matching, and visual question answering. In essence, multi-modal data could serve as informa-

tive sources to provide richer unsupervised signals for semi-supervised or unsupervised learning.

A natural future extension beyond visual learning is to explore multi-modal learning in limited-

label regime by leveraging additional non-visual modalities to provide informative unsupervised

learning signals and guide representation learning with minimal human supervision.
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Baochen Sun and Kate Saenko. Deep coral: Correlation alignment for deep domain adaptation.

In European Conference on Computer Vision, Amsterdam, Netherlands, October 2016.

Yifan Sun, Liang Zheng, Weijian Deng, and Shengjin Wang. Svdnet for pedestrian retrieval. In

IEEE International Conference on Computer Vision, a.

Yifan Sun, Liang Zheng, Yi Yang, Qi Tian, and Shengjin Wang. Beyond part models: Person

retrieval with refined part pooling. In European Conference on Computer Vision, b.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfel-

low, and Rob Fergus. Intriguing properties of neural networks. In International Conference

on Learning Representation, Banff, Canada, April 2014.

Yaniv Taigman, Adam Polyak, and Lior Wolf. Unsupervised cross-domain image generation. In

International Conference on Learning Representation.



158 Bibliography

Hao Tan and Mohit Bansal. Lxmert: Learning cross-modality encoder representations from

transformers. In The Conference on Association for Computational Linguistics, Florence,

Italy, July 2019.

Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged

consistency targets improve semi-supervised deep learning results. In Advances in Neural

Information Processing Systems, Long Beach, California, USA, December 2017.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running

average of its recent magnitude. COURSERA: Neural networks for machine learning, pages

26–31, 2012.

Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. Deep domain confu-

sion: Maximizing for domain invariance. arXiv preprint arXiv:1412.3474, 2014.

Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate Saenko. Simultaneous deep transfer across

domains and tasks. In IEEE International Conference on Computer Vision, Araucano Park,

Las Condes, Chile, December 2015.

Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative domain

adaptation. In IEEE Conference on Computer Vision and Pattern Recognition, Honolulu,

Hawaii, USA, June 2017.

Dmitry Ulyanov, Andrea Vedaldi, and Victor S Lempitsky. Improved texture networks: Maximiz-

ing quality and diversity in feed-forward stylization and texture synthesis. In IEEE Conference

on Computer Vision and Pattern Recognition, Honolulu, Hawaii, USA, July 2017.

Gregor Urban, Krzysztof J. Geras, Samira Ebrahimi Kahou, Ozlem Aslan, Shengjie Wang, Rich

Caruana, Abdel rahman Mohamed, Matthai Philipose, and Matthew Richardson. Do deep

convolutional nets really need to be deep (or even convolutional)? In International Conference

on Learning Representation.

Vladimir Vapnik and Rauf Izmailov. Learning using privileged information: similarity control

and knowledge transfer. The Journal of Machine Learning Research, 16(1):2023–2049, 2015.

Vladimir Vapnik and Akshay Vashist. A new learning paradigm: Learning using privileged

information. Neural networks, 22(5-6):544–557, 2009.



159

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting

and composing robust features with denoising autoencoders. In International Conference on

Machine Learning, Helsinki, Finland, July 2008.

Riccardo Volpi, Pietro Morerio, Silvio Savarese, and Vittorio Murino. Adversarial feature aug-

mentation for unsupervised domain adaptation. In IEEE Conference on Computer Vision and

Pattern Recognition, Salt Lake City, Utah, USA, June 2018.

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-

ucsd birds-200-2011 dataset. 2011.

Faqiang Wang, Wangmeng Zuo, Liang Lin, David Zhang, and Lei Zhang. Joint learning of

single-image and cross-image representations for person re-identification. In IEEE Conference

on Computer Vision and Pattern Recognition, Las Vegas, Nevada, USA, June 2016a.

Hanxiao Wang, Xiatian Zhu, Shaogang Gong, and Tao Xiang. Person re-identification in identity

regression space. International journal of computer vision, 126(12):1288–1310, 2018a.

Jingya Wang, Xiatian Zhu, Shaogang Gong, and Wei Li. Transferable joint attribute-identity

deep learning for unsupervised person re-identification. In IEEE Conference on Computer

Vision and Pattern Recognition, Salt Lake City, Utah, USA, June 2018b.

Qin Wang, Wen Li, and Luc Van Gool. Semi-supervised learning by augmented distribution

alignment. In IEEE International Conference on Computer Vision, Seoul, Korea, October

2019.

Taiqing Wang, Shaogang Gong, Xiatian Zhu, and Shengjin Wang. Person re-identification by

video ranking. In European Conference on Computer Vision, a.

Taiqing Wang, Shaogang Gong, Xiatian Zhu, and Shengjin Wang. Person re-identification by

discriminative selection in video ranking. IEEE transactions on pattern analysis and machine

intelligence, 38(12):2501–2514, 2016b.

Xiaojuan Wang, Wei-Shi Zheng, Xiang Li, and Jianguo Zhang. Cross-scenario transfer person

reidentification. IEEE Transactions on Circuits and Systems for Video Technology, 26(8):

1447–1460, 2015.



160 Bibliography

Xiaolong Wang and Abhinav Gupta. Unsupervised learning of visual representations using

videos. In IEEE International Conference on Computer Vision.

Yuxiong Wang, Deva Ramanan, and Martial Hebert. Growing a brain: Fine-tuning by increasing

model capacity. In IEEE Conference on Computer Vision and Pattern Recognition, b.

Longhui Wei, Shiliang Zhang, Wen Gao, and Qi Tian. Person transfer gan to bridge domain gap

for person re-identification. In IEEE Conference on Computer Vision and Pattern Recognition,

Salt Lake City, Utah, USA, June 2018.

Yandong Wen, Kaipeng Zhang, Zhifeng Li, and Yu Qiao. A discriminative feature learning

approach for deep face recognition. In European Conference on Computer Vision, Amsterdam,

Netherlands, October 2016.

Jason Weston, Frédéric Ratle, Hossein Mobahi, and Ronan Collobert. Deep learning via semi-

supervised embedding. In International Conference on Machine Learning, Helsinki, Finland,

July 2008.

Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. In International Confer-

ence on Learning Representation, Banff, Canada, April 2014.

Tobias Weyand, Andre Araujo, Bingyi Cao, and Jack Sim. Google landmarks dataset v2 - a

large-scale benchmark for instance-level recognition and retrieval. In IEEE Conference on

Computer Vision and Pattern Recognition, Seatle, USA, June 2020.

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via

non-parametric instance discrimination. In IEEE Conference on Computer Vision and Pattern

Recognition, Salt Lake City, Utah, USA, June 2018.

Tong Xiao, Hongsheng Li, Wanli Ouyang, and Xiaogang Wang. Learning deep feature repre-

sentations with domain guided dropout for person re-identification. In IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, Nevada, USA, June 2016.

Shaoan Xie, Zibin Zheng, Liang Chen, and Chuan Chen. Learning semantic representations for

unsupervised domain adaptation. In International Conference on Machine Learning, Stock-

holm, Sweden, July 2018.



161

Shuangjie Xu, Yu Cheng, Kang Gu, Yang Yang, Shiyu Chang, and Pan Zhou. Jointly attentive

spatial-temporal pooling networks for video-based person re-identification. In IEEE Confer-

ence on Computer Vision and Pattern Recognition, Honolulu, Hawaii, USA, July 2017.

Yichao Yan, Bingbing Ni, Zhichao Song, Chao Ma, Yan Yan, and Xiaokang Yang. Person re-

identification via recurrent feature aggregation. In European Conference on Computer Vision.

Hao Yang, Joey Tianyi Zhou, Jianfei Cai, and Yew Soon Ong. Miml-fcn+: Multi-instance multi-

label learning via fully convolutional networks with privileged information. In IEEE Confer-

ence on Computer Vision and Pattern Recognition, Honolulu, Hawaii, USA, July 2017.

Mang Ye, Andy J Ma, Liang Zheng, Jiawei Li, and Pong C Yuen. Dynamic label graph match-

ing for unsupervised video re-identification. In IEEE International Conference on Computer

Vision.

Dong Yi, Zhen Lei, Shengcai Liao, and Stan Z Li. Deep metric learning for person re-

identification. In IEEE International Conference on Pattern Recognition, Stockholm, Sweden,

August 2014.

Donggeun Yoo, Namil Kim, Sunggyun Park, Anthony S Paek, and In So Kweon. Pixel-level

domain transfer. In European Conference on Computer Vision, Amsterdam, Netherlands, Oc-

tober 2016.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in

deep neural networks? In Advances in Neural Information Processing Systems.

Jinjie You, Ancong Wu, Xiang Li, and Wei-Shi Zheng. Top-push video-based person re-

identification. In IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas,

Nevada, USA, June 2016.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In British Machine Vision

Conference, York, UK, September 2016.

Linfeng Zhang, Jiebo Song, Anni Gao, Jingwei Chen, Chenglong Bao, and Kaisheng Ma. Be

your own teacher: Improve the performance of convolutional neural networks via self distilla-

tion. In IEEE International Conference on Computer Vision, Seoul, Korea, October 2019.



162 Bibliography

Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful image colorization. In European

Conference on Computer Vision.

Richard Zhang, Phillip Isola, and Alexei A Efros. Split-brain autoencoders: Unsupervised learn-

ing by cross-channel prediction. In IEEE Conference on Computer Vision and Pattern Recog-

nition, Honolulu, Hawaii, USA, July 2017.

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable

effectiveness of deep features as a perceptual metric. In IEEE Conference on Computer Vision

and Pattern Recognition, Salt Lake City, Utah, USA, June 2018a.

Weichen Zhang, Wanli Ouyang, Wen Li, and Dong Xu. Collaborative and adversarial network

for unsupervised domain adaptation. In IEEE Conference on Computer Vision and Pattern

Recognition, Salt Lake City, Utah, USA, June 2018b.

Yanhao Zhang, Pan Pan, Yun Zheng, Kang Zhao, Yingya Zhang, Xiaofeng Ren, and Rong Jin.

Visual search at alibaba. In International Conference on Knowledge Discovery & Data Mining,

pages 993–1001, London, United Kingdom, August 2018c.

Long Zhao, Xi Peng, Yu Tian, Mubbasir Kapadia, and Dimitris Metaxas. Learning to forecast and

refine residual motion for image-to-video generation. In European Conference on Computer

Vision.

Liang Zheng, Zhi Bie, Yifan Sun, Jingdong Wang, Chi Su, Shengjin Wang, and Qi Tian. Mars:

A video benchmark for large-scale person re-identification. In European Conference on Com-

puter Vision, a.

Liang Zheng, Liyue Shen, Lu Tian, Shengjin Wang, Jingdong Wang, and Qi Tian. Scalable

person re-identification: A benchmark. In IEEE International Conference on Computer Vision,

b.

Zhedong Zheng, Liang Zheng, and Yi Yang. Unlabeled samples generated by gan improve the

person re-identification baseline in vitro. In IEEE International Conference on Computer

Vision, c.

Zhun Zhong, Liang Zheng, Shaozi Li, and Yi Yang. Generalizing a person retrieval model

hetero-and homogeneously. In European Conference on Computer Vision.



163

Zhun Zhong, Liang Zheng, Zhedong Zheng, Shaozi Li, and Yi Yang. Camera style adaptation

for person re-identification. In IEEE Conference on Computer Vision and Pattern Recognition,

Salt Lake City, Utah, USA, June 2018.

Denny Zhou, Olivier Bousquet, Thomas N Lal, Jason Weston, and Bernhard Schölkopf. Learning

with local and global consistency. In Advances in Neural Information Processing Systems,

Vancouver, B.C., Canada, December 2004.

Tinghui Zhou, Philipp Krahenbuhl, Mathieu Aubry, Qixing Huang, and Alexei A Efros. Learning

dense correspondence via 3d-guided cycle consistency. In IEEE Conference on Computer

Vision and Pattern Recognition, Las Vegas, Nevada, USA, June 2016.

Zhen Zhou, Yan Huang, Wei Wang, Liang Wang, and Tieniu Tan. See the forest for the trees:

Joint spatial and temporal recurrent neural networks for video-based person re-identification.

In IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Hawaii, USA,

July 2017.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image transla-

tion using cycle-consistent adversarial networks. In IEEE International Conference on Com-

puter Vision.

Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label

propagation. Technical Report CMU-CALD-02-107, Carnegie Mellon University, 2002.

Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. Semi-supervised learning using gaussian

fields and harmonic functions. In International Conference on Machine Learning, Washington

D.C, USA, August 2003.

Xiaojin Jerry Zhu. Semi-supervised learning literature survey. Technical report, University of

Wisconsin-Madison Department of Computer Sciences, 2005.

Xiaoke Zhu, Xiao-Yuan Jing, Fei Wu, and Hui Feng. Video-based person re-identification by

simultaneously learning intra-video and inter-video distance metrics. In International Joint

Conference of Artificial Intelligence, New York, United States, July 2016.

Xiatian Zhu, Botong Wu, Dongcheng Huang, and Wei-Shi Zheng. Fast open-world person re-

identification. IEEE Transactions on Image Processing, 27(5):2286–2300, 2017.


