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compartir la teva ciència amb mi!
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José Juan for comments on earlier drafts of this thesis. Thanks to Emilio Torrente for

introducing me into the group of theoretical physics of Universidad de Murcia.

This work has been financially supported by the European Research Council grant

ERC-2014-StG 639022-NewNGR. I am grateful to all the European tax-payers who

have made this thesis possible, and also to the Analysis and Geometry group within

the School of Mathematical Sciences at QMUL for travel funding when it has been

necessary. Thanks to all the staff at QMUL who have helped me some way or another

during my PhD studies. I would also like to thank Universidad de Murcia for warm

hospitality during the final stages of my PhD.
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Abstract

In this thesis we have studied static black holes in direct product spacetimes. In

this setting, there exists a universal sector describing black holes which are uniformly

extended along the internal space. This sector naturally exhibits a hierarchy of length

scales and dynamical instabilities of the Gregory-Laflamme type appear when one of

those lengths is much larger than the other. At the onset of the instability there

exists a 0-mode that hints on the existence of a new branch of black holes that are

non-uniformly extended along the internal space. Typically, this new family of black

holes cannot be found analytically and one has to rely on numerical methods.

In particular, we have numerically constructed these ‘non-uniform black holes’ in

Kaluza-Klein theory and Anti-de Sitter spaces times a sphere. Moving along the space

of solutions, eventually the branches of non-uniform black holes merge with another

branch of black holes which have different horizon topology. These are also constructed

in the Kaluza-Klein case. In this thesis we have focused on a detailed study of the

extreme black holes very near the critical (or merger) point. It had been predicted

that the physical properties of black holes near the critical solution are controlled by

a local Ricci-flat cone that governs, locally, the singularity at the merger. We verify

this prediction by extracting the critical exponents of various physical quantities in

the Kaluza-Klein setting in D = 10. In this particular case, properties of black holes

can be computed by solving a dual super Yang-Mills theory on the lattice. In another

study, we consider critical non-uniform black holes in AdSp × Sq for (p, q) = (5, 5)

and (p, q) = (4, 7), which are the relevant cases for the gauge/gravity duality, and

compute, for the first time, the critical exponents. Remarkably, in these two cases

our study suggests a non-Ricci-flat cone, which is consistent with the presence of non-

trivial fluxes in the setting. Our results are new and non-trivial predictions of the

gauge/gravity duality without supersymmetry.
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Chapter 0

Introduction

The Einstein equation [3]:

Gµν = 8πGTµν , (0.0.0.1)

is possibly one of the most suggestive equations in physics. Roughly, it states that

gravity, understood as the geometry of spacetime, is sourced by its matter content.

The universality feature, first attributed to I. Newton, is now explicit. The equation

(0.0.0.1) is majestic by its simplicity, and brutal due to its many (tested) predictions [4].

One of the most important tested predictions was achieved a handful of years ago

at the time of writing this thesis, when in 2015 the two main worldwide experiments

for the detection of gravitational waves, LIGO and VIRGO, coincided in observing

the signal of a gravitational wave that matches with the imprint predicted by General

Relativity (GR) [283–285] for the merger of a black hole binary system [5]. This was the

first direct detection of gravitational waves, and an indirect detection of black holes:

the two most fundamental solutions of GR in a single event(!) at the backyard. Since

then the observations have not ceased, which now also include gravitational waves

generated by neutron star binary systems. The first direct black hole observation was

accomplished a bit later, with the first image reconstructed in 2019 [6]. These are

undoubtedly the two major milestones in experimental GR of the last few decades,

providing solid evidence of the existence of gravitational waves and black holes, and

opening a new window for exploring the universe on small and large scales in the

strong field regime.1

Despite these recent successes, there are fundamental questions that will not be

able to be addressed experimentally, at least in the near (and likely far) future. This

is particularly true on phenomena that occur (or have occurred) at very very small

scales, where quantum gravity effects become important. These include black hole

evaporation or the black hole information paradox [7] (see [8] for a review and [9]

for recent developments), spacetime singularities [285] or very early cosmology [10]

among others. The quantum gravity problem is perhaps one of the biggest challenges

in theoretical physics today, and in this context several proposals have been made [286].

1Up to these two breathtaking events, most of GR tests were carried out within the Solar system,

and thus in a weak field regime.

1
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The list is led by string theories [287–289], which contain a symmetric spin-2 quan-

tum state in their spectrum and the Einstein’s equation (0.0.0.1) is recovered by taking

a low-energy limit. One crucial aspect of those theories is that they live in more than

D = 4 spacetime dimensions. For instance, D = 10 for superstring theories or D = 11

for M-theory. This clashes with our notion of 4-dimensional spacetime and one possible

explanation for this lies behind a mechanism known as flux compactification.

Compactifications build up on the idea that the 4-dimensional universe we observe

is just an ‘effective reality’, with all the spatial extra dimensions hidden in some tiny

compact manifold. This assumes a direct product spacetime: M4×ND−4, where ND−4

would presumably be fixed by nature itself.2 Or maybe they are not hidden but we

simply can not access them due to the existence of some confining potential that sticks

us to the 4-dimensional world that we experiment. In this latter case, our universe

would be embedded in a higher-dimensional spacetime, or bulk [12]. The truth is that

it is completely unknown if any of these possibilities is a fact of our universe. Still,

research in this direction has been carried out over the last few decades, and theories

of Einstein gravity have been considered in diverse spacetime dimensions, matter field

content and a variety of backgrounds, some of which may have nothing to do with our

reality, but in a theoretical analysis they are as valid as any other.

This connects, perhaps, with a more pragmatic point of view which is: let us accept

that we can formulate theories of (Einstein) gravity in any spacetime dimension, and

let us study how they differ from each other. The most appropriate way of doing this

consists precisely into studying black hole type solutions. These constitute the most

fundamental objects of any theory of (semi-)classical gravity3 [290], helping to have a

better control and understanding of how GR itself works.

Another motivation for doing this comes from progress within the string theory

field. ‘Exotic’ black holes play a central role in the context of the AdS/CFT corre-

spondence [291] which has been proved to be a successful tool for studying a wide

range of quantum field theories in the regime of strong coupling, where a perturba-

tion theory analysis fails. This has provided many new insights in disparate areas of

physics such as particle physics or condensed matter, and it has been in fact the real

fuel pushing for having a complete scan of black hole solutions in non-trivial spaces

such as, for instance, Anti-de Sitter (AdS) space.

In this thesis we have considered GR in D = 10 and D = 11 spacetime dimensions,

and we have studied static black holes that asymptote direct product spaces of the form

Mink9 × S1 (i.e. Kaluza-Klein (KK) theory), AdS5 × S5 and AdS4 × S7. This in turn

fixes a minimal matter field content. In the former case vacuum is allowed, whereas

2This is essentially the ‘landscape’ problem of string theory. Such theories appear to describe a

huge number, ∼ 10500, of 4-dimensional ‘vacua’ with inequivalent physics, most of which clearly do

not describe our universe. The problem lies in the fact that, so far, there is no clue on which one is

relevant or how to find it. See Ref. [11] for a throughout review on this subject.
3Gravitational waves are not that relevant since its study requires a linear approximation. There-

fore they do not capture the non-linearities of the theory, which is precisely where the most interesting

physics comes from.
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in the other two cases there is, at least, a non-trivial (Abelian) 5-form and 4-form

gauge field strength respectively. Such theories actually correspond to (truncated)

low-energy type IIB superstring theory and low-energy M-theory. All three cases have

relevance for GR itself and for the AdS/CFT correspondence, and in the remainder

of this introductory chapter we pretend to briefly explain why, while deferring more

specific details to the next chapters.

First, notice that the backgrounds we have considered have a compact manifold as

internal space, a sphere essentially. This means that the disposition of a black hole in

such space can be made quite precise. For instance, it can be extended along the whole

internal space, or can be localized at some particular region. This naive observation

is telling us that one should expect a non-trivial space of solutions.

Indeed, black holes in KK theory have a long history, but long story short, in

vacuum and for any value of D there exist 3 families of one-parameter black hole

solutions: uniform black strings, non-uniform black strings [13–15] and localized black

holes [16–18]. The former has the largest isometry group and it is known analytically,

but the latter two, with fewer isometries, are only known perturbatively or numerically.

The literature in this case is vast and will be properly referenced in the research

Chapter 3. On the other hand, black holes in AdSp× Sq are less known. In fact, they

have only been considered for (p, q) = (5, 5) [19]. The two crucial differences in this

case is that the longitudinal spacetime factor has also a length scale (the AdS radius),

and that the internal space is more complex. This results in an incredible richer space

of solutions. In addition to the well-known Schwarzschild-AdSp × Sq black hole, now

it presumably exists an infinite amount of ‘lumpy’ or non-uniform black holes along

Sq, each one in correspondence with localized-type black holes in Sq [20]. These black

hole ‘pairs’ also rely on numerical constructions due to the limited analytical methods

currently available, and are considered in Chapter 4.

Broadly speaking, the qualitative features remain the same in all three cases. Their

phase diagram are controlled by bifurcations in solution space and topology-changing

phase transitions. Whereas bifurcations involve the study of 0-mode perturbations

of black holes, and they thus have a well-known theory, the topology-changing phase

transitions require of a more delicate analysis. This is due to the fact that topology

changes put Einstein’s equations at their limit, just before where it is thought that

they loose their predictive power. Still, one can gain some insights in that region

by considering, locally, Ricci-flat cone geometries [21]. These critical geometries were

proposed long time ago to mediate the black string/black hole phase transition in

KK theory, but their accurate validation just recently began hand in hand with the

development of new numerical approaches and techniques.

One of the main goals of this thesis is to employ these techniques to construct

the black hole phases that require a numerical treatment, and focus on the critical

region where the topology-changing phase transition occurs. This was successfully

accomplished in the KK setting by constructing highly non-uniform strings and large

localized black holes in D = 5, 6 [22]. Here we extend such study to D = 10, which
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defines a degenerate dimension for the critical cone model. Additionally, in D =

10 the phase diagram of these families can be mapped onto the phase diagram of

their D0-charged counterparts. Kaluza-Klein black holes with D0-charge have been

identified to be dual to a (1 + 1)-dimensional super Yang-Mills (SYM) theory, which,

remarkably, can be solved using lattice techniques [23, 24] and therefore it provides a

natural example where to test the AdS/CFT correspondence.

Regarding the black holes that arise in AdSp × Sq, the case (p, q) = (5, 5) has

obvious relevance for being related to the duality that gave the name to ‘AdS/CFT’.

This is the only case studied so far, where black holes appear to be solutions to type

IIB supergravity with a self-dual 5-form. To further test the cone model in a non-

trivial space and with additional matter fields, we revisit the lumpy black holes in

AdS5 × S5 and explore, for the first time, the critical regime of a few of its family

members. The solutions clearly show the typical pinch-off that appear in black holes

close enough to a merger between two branches with different topology. This allow us

to conjecture about the topologic nature of the localized-type black holes that merge

with. The other side of the merger is not considered in this case, though. Interestingly

enough, we find that the critical geometry in this case is no longer Ricci-flat, but it is

likely to be sourced by the corresponding critical flux. Furthermore, a KK holographic

analysis relates the asymptotic behavior of such solutions to the vacuum expectation

values (vev’s) of certain scalar fields that appear in the dimensionally reduced (5-

dimensional) theory. Therefore we can also test what is the imprint of the topology

change in the vev’s of scalar operators of the dual gauge theory.

We also construct for the first time lumpy black holes in AdS4 × S7, and examine

their critical regions. In this case we deal with 11-dimensional supergravity. Remark-

ably, black hole families in this case do not always follow an exact parallelism with

the equivalent ones in AdS5 × S5. This study constitutes the first instance where the

cone model is tested beyond ten spacetime dimensions.

The structure of this thesis

The main body of this thesis can be divided in three parts. The first part consists

of Chapters 1 and 2. Both are review chapters. The first chapter is devoted to

introducing black holes in higher dimensions and the AdS/CFT correspondence, which

are basically, the starting points of our work. In the second chapter we introduce the

numerical approach and numerical methods used along this thesis. The second part

is the ‘research’ part, and is formed by Chapters 3 and 4. These are based on Ref. [1]

and [2] respectively. We close this thesis with Chapter 5, the third part, where we

conclude with some final remarks and discuss possible future directions of research.

Most of the work done in this thesis is numerical, and in fact, where computations

can be done analytically, a computer has also been used. To this end we have opted

for using Wolfram Mathematica software. We use ‘mostly plus’ metric signature and

for the curvature tensors we follow the conventions of Wald [284].



Chapter 1

Black Holes in Higher Dimensions and

AdS/CFT Correspondence

In this chapter we review some known features and results of stationary black hole physics

(mostly in vacuum) for D > 4, where D is the total number of spacetime dimensions. We

start in D = 4, where black holes’ shape and existence is pretty constrained. Then we move

on to higher dimensions, where many of the theorems that hold in D = 4 are violated. This

results in a much richer physics. Special emphasis is put on black holes in direct product

spacetimes. Most of what is presented in this first chapter part is descriptive, and precise

expressions are, in general, not shown. Then we introduce the AdS/CFT correspondence.

We begin with the essential ideas behind this conjecture, adding value to gravitational

theories in general, and specially, to black hole type solutions. Special emphasis is put on

the standard prescription of holographic renormalization, which will be needed later on in

this thesis for computing the expectation values of dual gauge operators.

1.1 Black holes in D = 4

Vacuum1 stationary black holes in four dimensions are quite simple and their main

characterizing features are well-known. Their horizon has the topology of a 2-sphere,

they are stable and only a very few number of conserved asymptotic charges are

necessary to uniquely specify them. Moreover, for every possible configuration of the

asymptotic charges only one solution exists, and most importantly, they have algebraic

properties which allow them to be found analytically.

For instance, the Schwarzschild metric [25] is the unique asymptotically flat, spheri-

cally symmetric (and thus [26]) static solution of the vacuum Einstein’s equations with

a regular event horizon. It has one asymptotic charge, the mass M . If rotation is al-

lowed, a second asymptotic charge is added: the angular momentum J , which satisfies

the bound J ≤ M2, and whose saturation gives an extremal horizon (i.e. with zero

surface gravity). The rotating black hole is described by the Kerr solution [27]. The

1Black hole solutions with (positive or) negative cosmological constant, being asymptotically (de

Sitter or) Anti-de Sitter respectively, also exist in D = 4. Although Anti-de Sitter black holes are

relevant to us, they will be discussed separately in Chapter 4.

5
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metric is stationary and axisymmetric, and uniqueness theorems by Israel, Robinson

and others (see [28] and references therein) showed that these are in fact the only

vacuum asymptotically flat black hole solutions with such features for a given pair

of asymptotic charges (M,J). Hawking additionally proved that their event horizon

must necessarily have spherical topology, and that stationary (non-extremal) black

holes are also necessarily axisymmetric [285], with the latter known as Hawking’s

rigidity theorem.

After uniqueness theorems were established, people began to consider gravity cou-

pled to different kind of fields. For instance, stationary rotating black holes in Einstein-

Maxwell theory are described by the Kerr-Newman metric [29, 30], which is uniquely

specified by 4 asymptotic charges: M , J , plus the electric/magnetic charges, Q and

P [31, 32].2 Furthermore, when a scalar field was added to the system it was shown

that in many cases this fell into the black hole or was radiated out at infinity. This fact

was formally collected by a series of ‘no-hair’ theorems [39–42], which essentially state

that black holes are only distinguished by the conserved charges, and in a gravitational

collapse situation any other information of the initial matter distribution is eventually

lost once the black hole is formed. This led to several studies where it was shown that

beyond Einstein-Maxwell-Scalar, black holes may have ‘hair’. These include Einstein-

Yang-Mills and Einstein-Skyrme theory, possibly coupled to various combinations of

dilaton or Higgs fields. The ‘spectrum’ of hairy solutions is now vast, and cannot be

reviewed here. The interested reader may see Ref. [43, 44] and references therein.3

Another issue closely related with uniqueness of solutions is that of dynamical

stability, which has implications for stellar evolution theories. The most likely outcome

of realistic collapse processes of sufficiently massive stars are thought to be black holes,

and therefore any good spacetime candidate to describe them must certainly be stable.

Otherwise, the backreaction created by any probe particle would have catastrophic

consequences and the formation process would be put in serious doubt. In GR, the

non-linearity of the equations makes the stability problem a very challenging one. In

fact, stability at the non-linear level has only been proved for Minkowski space [47],4

and even for this simple solution the proof is very involved requiring a sophisticated

global analysis. When a smooth event horizon is present, the analysis is much more

elusive and a linear perturbation study is carried out. Then the symmetries of the

spacetime are exploited to simplify the problem considerably.

First attempts in proving linear stability of Schwarzschild or Kerr black hole made

Fourier decompositions with a time dependence of the form e−iωt, known as mode

2Static solutions in this theory are given by the Reissner-Nordström [33, 34] or the multi-black

hole Majumdar-Papapetrou (in the extremal case) [35] metrics; the corresponding static uniqueness

theorems were extended for non-zero charge in [36] and in [37,38] for non-connected horizons.
3Note that black holes with scalar-hair in more exotic spaces such as Anti-de Sitter have been

found [45, 46]. Although those are not believed to play an interesting role from the astrophysical

point of view, they are clearly relevant, for instance, in the context of string theory or gauge/gravity

duality. See next section 1.3.
4And also for de Sitter space [48].
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stability [49–51]. Stability implies that, when analyzing each mode separately, only

those with Im[ω] < 0 are allowed. This, together with uniqueness theorems, numerical

analysis evidence [52] and simulations of black hole collisions [53–55] or coalescence of

binary systems [56–58] suggest stability, which is expected to hold even at the non-

linear level. Of course, stability statements made on mode decomposition grounds are

not completely rigorous and they leave a bitter flavor, specially to the mathematics

community. Formally, linear stability concerns general solutions to the linearized Ein-

stein’s equations arising from smooth initial data, and not simply fixed modes. Linear

stability in this broader sense was proved for Schwarzschild in recent years [59], hinting

a route to prove linear stability of Kerr [60], but still, a complete proof is unavailable.

In addition to the strong constraints that black holes set on the causal structure

of the spacetime, they also hide spacetime singularities which pose serious questions

about the predictability of GR. More particularly, Penrose’s singularity theorem [61]

states that in a gravitational collapse situation, once a trapped surface is formed, cur-

vature singularities are inevitable. However, the theorem does not say anything about

where they lie, thus opening the possibility for the existence of naked singularities,

i.e. those that are not hidden by an event horizon. Curvature singularities are thought

to be a limitation of Einstein’s theory as a classical theory, and they are expected

to be resolved by quantum gravity effects. In this sense, naked singularities imply

that quantum gravity would be visible to asymptotic observers, and general relativity

would not be sufficient to describe all gravitational physics outside black holes. There

would be a loss of the predictive power of the theory.

Weak cosmic censorship (WCC) [62–64] is a conjecture that states the opposite:

Generic initial data for asymptotically flat gravity coupled to matter (satisfying

reasonable energy-conditions) does not produce naked singularities.

If the conjecture holds it implies that, at the very least, predictability outside black

holes is ensured.

Since this conjecture was proposed more than fifty years ago, several studies have

tried to find counter-examples to prove its feasibility. Ref. [65] first considered a model

of collapsing pressureless dust, showing that it leads to naked singularities. However,

those arise even with no gravity and therefore they are not related to gravitational

phenomena. Several authors engineered more genuine situations using spherically

symmetric scalar fields [66–70], and more recently without spherical symmetry [71,72],

coupled to gravity. These studies showed that when the amplitude of the initial scalar

configuration is small, the field is eventually scattered out at infinity, but for large

amplitudes it collapses and forms a black hole. Precisely at the threshold of black

hole formation, the evolution yields a naked singularity. Naively, one would arrive to

the conclusion that WCC is violated, but this is not the case due to the fine-tuning

required. In other words, the initial data is not generic.

So far, no evidence for naked singularities in D = 4 has been found, and actually,

the conjecture has been shown to hold for a class of spacetimes with 2 Killing vectors
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[73] and for time-symmetric initial data possessing a trapped surface [74, 75]. The

stability of black holes also suggests that it is very likely that weak cosmic censor is

true, but a formal proof seems to be a bit far away. In the mean time, people keep

trying to find potential counter-examples. A first plausible scenario leading to violation

has been proposed very recently in [76]. The situation, though, seems to be rather

different in AdS space [77–80] where it has been reported that regions of arbitrarily

large curvature are not necessarily hidden by an event horizon, and definitely also

different in higher dimensions (see the upcoming section). For our purposes, the most

reliable counter-examples of WCC appear in this latter context.

The ‘weak’ adjective hints that there exists a ‘stronger’ version of cosmic cen-

sor. Indeed, strong cosmic censorship (SCC) is a related, but independent, conjecture

restoring the breakdown of classical determinism for all observers entering a black

hole, as set by the existence of Cauchy horizons. In this sense, SCC is related to the

global uniqueness of solutions since it also deals with the internal anatomy of black

holes. Black hole interiors are typically excluded in numerical studies, and therefore

this stronger form has less relevance here. Even so, there has been in going research

in recent years from both, mathematical [81–85] and numerical [86], points of view.

End of the story?

Along this brief roadmap of stationary black hole physics in D = 4 we have seen how

restricted they are by a series of theorems. In particular, stability, topology restriction

and uniqueness theorems suggest an ‘end of the story’. Not even close.

The majority of those theorems turned out to be quite dimension dependent and

the natural question arises: what about if D > 4? Beyond the scientific desire of

understanding how GR behaves as we move apart from four spacetime dimensions, the

truth is that the study of higher-dimensional general relativity has been fueled over

the last 3 decades by its potential applications in other areas of physics. These include:

string theory [87–90, 287–289], gauge/gravity dualities (see section 1.3), brane-world

scenarios or TeV-scale gravity models [12,91–97]. This manifests that Einstein’s theory

should nowadays be regarded more properly as a tool, rather a theory that applies only

to astrophysics and cosmology. It is the goal of the next section to provide the reader

with a brief overview of GR in higher dimensions, focusing on the new features that

show up and stopping at the frontiers beyond which this thesis makes its insights.

Some standard references covering the subject of black holes in higher dimensions are

the review by Emparan and Reall [98], or [290].

1.2 ‘More is better’: A black hole zoo

General Relativity in an arbitrary number of spacetime dimensions looks much like

the 4-dimensional version. Their equations look the same but the indices range from

0 up to D − 1, and (the usual) Newton’s constant is replaced by a D-dimensional
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Newton’s constant. So, why would one expect new physics? At the linearized level,

the number of polarizations of a gravitational wave is already different, going from 2 to

D(D − 3)/2, which remarks the dimensional dependence of gravitational phenomena

encoded in Einstein’s equation. The point is that in higher D there is more room in

the metric, which means more freedom for the non-linearities of theory come to play,

resulting in non-uniqueness of solutions, solutions with non-spherical topologies and

new gravitational instabilities, among others.

For static asymptotically flat D-dimensional vacuum gravity there is not much

new. Static black holes are straightforwardly generalized and they are uniquely given

by the Schwarzschild-Tangherlini black hole [99]:

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2
D−2, f(r) = 1−

(r0

r

)D−3

, (1.2.0.1)

where the parameter r0 locates the horizon and it is related to the asymptotic mass,

M , via

rD−3
0 =

16πGDM

(D − 2)ΩD−2

; (1.2.0.2)

ΩD−2 is the volume of the unit (D−2)-sphere. The fall-off of the gravitational potential

has been replaced to fit in a D-dimensional space and the black hole horizon’s geometry

is that of a round (D − 2)-sphere, but the essential features are still the same. In

particular, it turns out that this is the unique static vacuum black hole [100]. On the

other hand, notable differences occur in the presence of rotation.

The generalization of Kerr black hole for higher values of D is described by the

Myers-Perry (MP) solution [101] (see also Ch. 5 of [290]), with topology SD−2. Since

in higher dimensions there are more planes on which simultaneous rotation may occur,

now solutions with various angular momenta do exist. Notice that the fact that ro-

tation is confined on a plane implies that the centrifugal barrier decays as r−2 in

any spacetime dimension, but the gravitational potential is dimension dependent,

∼ r−(D−3). The interplay between these two contributions results in ultra-spinning

black holes, making the differences manifest even for single spinning higher-dimensional

black holes: for D ≥ 6, the angular momenta is not bounded by the mass and can be

arbitrarily large, which has dramatic implications from the dynamical point of view

(see below). Furthermore, it turns out that the MP black hole is not the only regular

stationary solution that exists for asymptotically flat vacuum gravity.

In D = 5 (and D > 5) there is another family of black holes called black rings [102]

(see Ch. 6 of [290] or [103] for a review), whose topology is S2×S1. Depending on the

relative size of these two manifolds, those are referred to as ‘thin’ or ‘fat’ black rings.

Note that this kind of solutions naturally need to rotate along the S1 to compensate

both: ring tension and gravitational pull, and therefore they are characterized by

two asymptotic charges, M and J ,5 just as the single spinning Myers-Perry solution.

Indeed, they co-exist in a certain finite range of parameter space, violating uniqueness

5Ultra-spinning black rings exist in the ‘thin’ branch [103].
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of asymptotically flat stationary solutions in D = 5 and leaving open the possibility

of having phase transitions among the different black holes.

From here onwards, the combinations seem to be endless and a whole zoo of asymp-

totically flat solutions has been analytically constructed in D = 5. For instance, rota-

tion can be provided along the S2 too, yielding to a doubly-rotating black ring [104].

The black ring can be even combined with the Myers-Perry black hole into a black sat-

urn [105], with two disconnected horizon components. Other known solutions include

a multi-black saturn with any number of rings rotating in the same plane, concen-

tric multi-black rings [106, 107] or bicycling rings [108, 109] (two black rings rotating

orthogonally).

It is clear that the space of stationary solutions in flat space gets more complicated

[110–112] as we move apart from four dimensions, which, so far, exhibit non-uniqueness

and a topology that is different from that of a sphere. The rigidity theorem has been

extended to higher dimensions [113, 114], which requires (non-extremal) stationary

black holes to have at least one rotational symmetry,6 and constraints on black hole

horizon’s topology in D > 4 have been established [116] (see [117] for a comprehensive

review on those theorems), but a complete classification of black holes beyond four

dimensions is still an open problem. Moreover, analytic expressions describing the

black objects mentioned above are only known in D = 5, and many solutions that

are believed to exist in dimensions greater than five have only been constructed using

approximate [111, 115, 118] or numerical [119–124] methods, and it is very unlikely

that they actually admit a closed analytic form.

Black holes in direct product spacetimes

In addition to the solutions in flat space, in higher dimensions other possibilities arise.

An important class are the so-called extended black objects. It turns out that the direct

product of two Ricci-flat metrics is also Ricci-flat. Therefore, given any d-dimensional

black hole solution in vacuum, call it B, one can form the metric

dŝ2 = ds2(B) + δijdx
idxj, (i, j = d, . . . , d+ p− 1), (1.2.0.3)

which is automatically a solution of the (d + p)-dimensional vacuum Einstein’s equa-

tions. Solutions of the form (1.2.0.3) are known as black p-branes. The horizon H ⊂ B

is now extended along p flat directions, and it has topology H × Rp, which again, is

different than a sphere. It is important to stress out that this will only work for D > 4,

since no asymptotically flat black holes do exist in D ≤ 3 [98].

Due to the infinite volume of the transverse space Rp, it is common to compactify

these directions, xi ∼ xi + Li, resulting in a p-torus, Tp. The mass of the solution

6Interestingly enough, all the mentioned (analytic) black holes above have more than just one

rotational symmetry. Solutions with less symmetry were conjectured to exist, but the complexity of

the equations makes them rather difficult to find. The first example was found using the blackfold

approach and consists of helical black rings [115], which have only one rotational symmetry.
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is then finite. The simplest example of such black brane solutions is that of B given

by the Schwarzschild-Tangherlini solution (1.2.0.1) in d dimensions and p = 1, i.e. a

(uniform) black string with horizon topology Sd−2×S1.7 Such solution is not (globally)

asymptotically flat, but it is flat in the Kaluza-Klein sense. Kaluza-Klein theory

[125, 126] has its own interest for the dimensional reduction procedure, but from a

higher-dimensional point of view, this only involves vacuum gravity in a Minkowski

times a circle background. In such theory it is where black strings naturally appear. In

addition to black strings, there are also other static black holes, namely non-uniform

black strings [13–15] and localized black holes [16–18],8 as we have advanced in the

introductory chapter. See also Ch. 4 of [290].

However, at this point we have not introduced these black objects to fully discuss

them. This is postponed to chapter 3, where they play a first central role in this work.

Instead, we wanted to illustrate how stability and weak cosmic censorship are also

violated in higher D. In turn, the way in which extended objects can be molded, hints

certain connections with rotating solutions in asymptotically flat space.

The Gregory-Laflamme instability

The crucial point is that the circle S1 of a black string introduces another scale, its

length L. This can be fine-tuned, relative to the horizon size r0 (or the mass M), in

such a way that unstable modes can fit into the black hole.

A key observation that suggested that black strings could be unstable, consisted

into comparing the entropy of a black string and a localized black hole of the same

mass [130, 290]. Localized black holes are not known analytically but, if they are

small enough with respect to L, they are well approximated by a D-dimensional

Schwarzschild black hole. The area theorem ensures that the horizon area never

shrinks, so if an instability process is assumed and there is another configuration with

larger area, and hence larger entropy, it will presumably settle down to that solution.

For the system at hand, a straightforward computation reveals that

Sstring

Sbh

∼
(

M

LD−4

) 1
(D−4)(D−3)

. (1.2.0.4)

Then if LD−4 > M ∼ rD−4
0 , Sstring < Sbh and the black hole phase is preferred.

To prove the actual instability one must perform a linear analysis around the black

string adding a small perturbation: gMN + εhMN , ε � 1 (M,N = 0, . . . , D − 1), as

done for first time by Gregory and Laflamme (GL) [130] (see also [131–133]).

The key observation is that the translation invariance of the black string allows to

expand any perturbation using Fourier modes with momentum k along the compact

direction z: hMN(x, z) = eikzHMN(x), where x denote collectively the coordinates

transverse to the circle. Then the linearized Einstein’s equations can be written as a

7Notice that the S1 of a black ring is different than that of a black string, which is non-contractible.
8We will omit Kaluza-Klein copies [127] and bubbles [128,129] from the discussion.
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massive Klein-Gordon-type equation for the perturbation lying along the non-compact

directions,

(∆
(D−1)
R + k2)HMN(x) = 0. (1.2.0.5)

The operator ∆
(D−1)
R is the linearization of the Einstein’s equations with respect to

the (D− 1)-dimensional Schwarzschild black hole. Additionally, it can be shown that

the unstable modes lie in the scalar sector and therefore it is enough to consider the

indices taking values: M,N → µ, ν = 0, . . . , D − 2 [130,290].

When seeking for unstable modes, an ansatz of the form Hµν(x) ∼ eΩtH̄µν(x
i) (for

some time and space coordinates t and xi) is made. If regular solutions to (1.2.0.5)

with Ω > 0 do exist, then the perturbed D-dimensional metric gMN + εhMN will

be unstable. Originally, the instability was derived in the transverse and trace-less

gauge and using Schwarzschild coordinates. After solving the gauge constraints, the

linearized equations yield a single 2nd order ordinary differential equation (ODE)

that can be solved numerically, for instance via Runge-Kutta integration. The major

drawback of this approach is that the coordinates are singular at the horizon and the

solution turns out to be very sensitive when that point is approached. Additionally,

the equation needs to be discretized on a considerable amount of ‘grid’ points to obtain

accurate results. Here instead, to illustrate, we will proceed taking a different point of

view. We will make use of the methods outlined in the next chapter which, numerically

speaking, are much more robust and efficient.

First, instead of using Schwarzschild coordinates, we will use ingoing Eddington-

Finkelstein coordinates in D − 1 dimensions: (v, r,ΩD−3). This has the benefit that

the metric is explicitly regular at the horizon, and therefore no boundary conditions

need to be imposed there. And second, we will consider (the linearization of) the

Einstein-DeTurck equation, introduced in §2.1.2 of the next chapter. This means that

we will not fix any gauge from the beginning, but it will be fixed a posteriori once

the resulting set of equations are solved. After assuming spherical symmetry, we will

have four unknowns in the perturbation H̄µν(r). We are thus interested in solving the

equation:

(∆
(D−1)
H + k2)(eΩvH̄µν(r)) = 0, (1.2.0.6)

where ∆
(D−1)
H is the linearized operator associated to Eq. (2.1.2.1). The equations now

need to be supplemented with the choice of a reference metric, and for this particular

case, the Schwarzschild metric (in ingoing Eddington-Finkelstein coordinates) in D−1

dimensions does the job. This ensures that solutions to the (linearized) Einstein-

DeTurck equation will be in fact (linearized) Einstein solutions.

We can proceed by taking a family of metrics that contain the Schwarzschild solu-

tion in Eddington-Finkelstein coordinates and perturb it with time-dependent modes

that grow in time. Inserting the ansatz into the Einstein-DeTurck equation, we can

linearize to find the action of ∆
(D−1)
H and the equation (1.2.0.6). We considered:

ds2 = −Q1dv2 +
1

x2

(
−2Q2dvdx+Q3dΩ2

(D−3) +
1

x2
Q4dx2

)
, (1.2.0.7)
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Fig. 1.1: Dispersion relation Ω(k) for which the black string is unstable in

D = 5, . . . , 10 spacetime dimensions.

D 5 6 7 8 9 10

r0|kGL|2 0.767657 1.610148 2.498791 3.417385 4.356176 5.309013

Table 1.1: Threshold wave-number r0|kGL|2 of the GL instability.

with

Q1(v, x) = 1−
(
x

r0

)D−4

+ ε eΩvq1(x),

Q2,3(v, x) = 1 + ε eΩvq2,3(x),

Q4(v, x) = ε eΩvq4(x),

(1.2.0.8)

and expanded to linear order in ε. For q1 = q2 = q3 = q4 = 0, (1.2.0.7) is nothing but

the Schwarzschild metric in D−1 dimensions written in ingoing Eddington-Finkelstein

coordinates, where the original radial coordinate has been redefined in terms of x:

r(x) =
r0

x
. (1.2.0.9)

This is convenient for the numerical implementation, since x is bounded: 0 ≤ x ≤ r0,

with asymptotic infinity lying at x = 0. At this point we must ensure that the solution

is regular. A boundary analysis shows that regular linearized functions q1,2,3,4 must

vanish as r →∞ (at x = 0).
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Having a system of 4 coupled partial differential equations for the eigenmodes

q1,2,3,4, it can be solved using the pseudo-spectral techniques discussed in Ch. 2. For any

r0 and Ω, we can determine the spectrum {q1,2,3,4, k}, using for instance, the subroutine

Eigensystem in Mathematica. In fact, scale invariance of vacuum Einstein’s equations

allows us to fix r0, which we took to be one and we are left with Ω as an input. Where

the uniform black string is unstable, there exists two eigenvalues of k for fixed Ω.9

Therefore we start to scan from Ω = 0, all the way up until these two eigenvalues

disappear. In doing this, we produce Fig. 1.1.

This figure shows the dispersion relation that is found in 5 and up to 10 spacetime

dimensions. The plots clearly intersect the k-axis at two different points: r0|k|2 = 0

and r0|kGL|2. The different values we have found for |kGL|2 are tabulated in Tab. 1.1.

The fact that it intersects at the origin is due to the linear stability of Schwarzschild

black hole. Below the GL critical value, or in other words, for perturbations with

wavelengths above λGL = 2π/kGL, black strings are classically unstable. Therefore the

GL instability is actually a long wavelength instability. At finite L, the perturbative

mode will only fit inside the ‘cylinder’ if its length is larger than λGL, which gives the

bound:

L >
2π

kGL

. (1.2.0.10)

For convenience, we have fixed r0, and the instability condition is discussed in terms

of the circle’s length. For instance, in D = 5 all black strings with r0 = 1 and length

L & 7 (in units of r0) will be unstable. Since these strings have r0/L ∼ 10−1, we talk

about thin black strings. Additionally, this also shows that there exists a gap between

the threshold value provided by the entropic argument and the true GL threshold

value.

The GL threshold 0-mode Ω = 0, k = kGL is a time-independent perturbation

whose net effect is to create (periodic) ripples along the string horizon. The 0-modes

have physical relevance here because they suggest, at least, two things. First, they

signal the onset of a dynamical instability, where modes with k < kGL grow in time.

And second, it is natural to ask whether their continuation at the non-linear level is

connected to the existence of another branch of static solutions. Indeed, these are the

non-uniform black strings that we construct numerically in Ch. 3.

Of course, time-dependent perturbations also create ripples along the horizon, ris-

ing a deeper question: what is the final state of the instability? The answer has been

a bit controversial actually. In spite of the entropic argument, Ref. [134] showed that,

according to GR, the horizon of the black string could not pinch-off to form a local-

ized black hole in finite affine parameter along the horizon generators. The endpoint

then had to be a string-like configuration. However, later numerical studies suggested

precisely the opposite [135,136]. These studies culminated in the first long-term time

9We want to stress out that these will correspond to physical perturbation modes, since pure gauge

modes of the form Hµν = 2∇(µχν) with χµ an arbitrary vector satisfy ∆
(D−1)
R ∇(µχν) = 0. Therefore,

as long as the perturbation is non-trivial, satisfies proper boundary conditions and k is different than

zero, these are not gauge artifacts.
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evolution in higher-dimensional GR by Lehner and Pretorius [137] (see also Ch. 3

of [290] and [138] for a large-D analysis), who simulated how the GL instability devel-

ops in D = 5. The output data suggested the following picture. In some regions the

inhomogeneities induced by the instability grow in time, whereas the thinner regions

start to develop by themselves new generations of GL instabilities in a self-similar way.

The system ends up with an array of localized ‘bulges’ of different sizes connected by

very thin necks. It was observed that the generation formation time-scale decreases

geometrically, suggesting that those thin necks would eventually pinch-off and naked

singularities would be produced to transition from the S2 × S1 topology of the string

to the S3 topology of the localized black holes. Eventually, the array of localized black

holes would tend to collapse into a single localized black hole.

It is important to stress out that the evolution of the black string instability is

generic since it does not require any fine-tuning of the initial data, and thus it con-

stituted the first instance where it was shown, or perhaps strongly suggested by solid

numerical data, that WCC may no longer hold in higher-dimensional GR with compact

spacelike extra-dimensions.

The black string (or black p-branes in general) is (are) the prototypical black hole

system used to illustrate the GL instability, which also serves to infer the qualitative

dynamical behavior of GL-type instabilities that occur in a variety of other black holes,

even in flat space. For instance, ultra-spinning Myers-Perry black holes (for D ≥ 6),

or thin black rings, are GL unstable. In the first case, the ultra-spinning black hole

flattens out with respect to the axis of rotation and resembles to a membrane (or

black 2-brane) [139]. It is then expected that it will suffer from a GL (axisymmetric)

instability if the relative size of directions along the membrane are much larger than

those perpendicular to it. Indeed, linear stationary axisymmetric perturbations about

the MP black hole were constructed in [140–142], signaling the existence of the an-

ticipated GL instability. Additionally, another type of non-axisymmetric instabilities,

known as bar-mode instabilities, have also been identified in [143,144]. These are from

a different nature due to the emission of gravitational waves which, originally, lead to

postulate that these would make the perturbed black hole to settle down to a more

slowly spinning black hole. However, this is not the case (see below). At the end, only

fully non-linear time evolution can reveal the endpoint of these instabilities.

Over the last few years, some impressive studies have followed the mentioned dy-

namical instabilities in time using very sophisticated numerical codes and confirm-

ing, extending and clarifying the guessed pictures. For instance, the outcome of the

ultra-spinning instability turns out to be very similar to that of GL for strings. The

ultra-spinning MP goes first through a multi-black ring stage with multiple inner gener-

ations connected by thin membranes which, again, become GL unstable by themselves

to finally pinch-off. The endpoint is a black ring and weak cosmic censorship is vio-

lated in the process [145]. In this evolution, stationary axisymmetric solutions that

serve as intermediate stages, known as bumpy black holes, were previously constructed

in [146,147] using the same numerical methods that we use in this work. For D > 5, it
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has also been shown that a certain type of non-axisymmetric (bar) modes can become

dominant and develop their own GL-type instabilities leading also to violation of weak

cosmic censorship [148].10

Similarly, a thin black ring looks, locally, much like a (boosted) black string. This

motivated the GL analysis of boosted black strings, which turned out to be unstable

[150]. The authors of this paper engineered an approximate model to describe the

black ring based on the boosted black string, concluding that very thin black rings

would be GL unstable (see also [151]). In terms of ring radii, this would happen when

the length scale associated to the S1 of the ring is much larger than that of its S2.

More recently, a linearized study of gravitational perturbations about black rings [152]

found that all ‘thin’ rings are unstable and that even a region of the fat branch is also

affected by the instability. The ultimate studies have even succeeded in simulating

how it develops in time [153], identifying a new elastic-type instability that competes

with the GL mode. When the elastic mode dominates, the endpoint of the instability

is a spherical black hole. Otherwise, the instability unfolds similarly to that of black

strings. This was in fact the first concrete evidence that weak cosmic censorship can

be violated in higher-dimensional Einstein’s gravity in flat space.

Mergers and conical geometries

The non-trivial family of static black holes based on uniform, non-uniform strings and

localized black holes is not exclusive of KK theory. In practice, any geometry with

a smooth black hole horizon, that tends asymptotically to a warped-product space

Mp × Nq, for some p- and q-dimensional manifolds Mp and (compact) Nq, can be

disposed in different ways along the internal or transverse space. At very least, a

solution that completely wraps Nq in a homogeneous way do exist. If this internal

space is Ricci-flat, we have the black q-branes introduced in (1.2.0.3), but if Nq has

non-zero curvature, solutions will not solve Einstein’s equation in vacuum. Instead,

gauge fields need to be introduced.

In view of the previous discussions, the key is to identify 0-modes (i.e. static per-

turbation modes with Ω = 0) which hint the existence of dynamical instabilities but

also the existence of inhomogeneous solutions along Nq.

For black strings, the equation for a 0-mode (1.2.0.5) can be compared with

the eigenvalue equation for the (D − 1)-dimensional Euclidean continuation of the

Schwarzschild black hole, which reads (∆
(D−1)
E − λE)hµν = 0, and it is known to have

one negative mode, λE < 0 [154]. But for static perturbations, ∆
(D−1)
E = ∆

(D−1)
L , and

both equations become the same upon the identification λE = −k2 [155]. This will

occur for a certain value of the parameter labelling each black hole and will give the

10There was a controversy where it was suggested that bar modes could lead to unstable MP black

holes even in D = 5 [144], whereas their spectrum of quasi-normal modes found in [149] did not reveal

any exponentially growing behavior. These two results could actually be compatible with each other

if the instability in D = 5 was non-linear. Eventually, the time evolution of non-axisymmetrically

perturbed MP black holes in D = 5 revealed stability [148].
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threshold unstable mode, which separates classically stable solutions from unstable

ones.

The previous observation shows that the existence of a 0-mode in the higher-

dimensional Lorentzian black hole is equivalent to the existence of a negative mode in

the Euclidean black hole geometry lying along the longitudinal part Mp. Extrapolating

to a generic case for a black hole in Mp ×Nq space, we have the following [156]. The

black hole geometry on Mp will generically have an Euclidean Lichnerowicz operator

with a negative eigenvalue: (∆
(p)
E − λE)hµν = 0, with λE < 0, as long as it is locally

thermodynamically unstable, manifested by positive eigenvalues of the Hessian matrix

(in the microcanonical ensemble) or negative specific heat (in the canonical ensemble).

On the other hand, the 0-modes will be expanded using a complete set of eigenfunctions

Ψ(µ) on Nq with eigenvalues −µ2 (which can be discrete), with respect to the usual

Laplacian ∇2 on Nq. When the Euclidean mode is saturated by the momentum in the

transverse space: λE = −µ2
∗, this will give a 0-mode of the higher-dimensional black

hole of the form:

hMN(x, y) = HMN(x)Ψ(µ∗)(y), (1.2.0.11)

where x and y are the coordinates along Mp and Nq respectively. For lower momentum,

0 < µ2 < µ2
∗, it is expected that the black hole will be dynamically unstable with

perturbative modes growing in time, whereas at the onset of the instability a new

branch of inhomogeneous solutions along Nq emerge.

Additionally, there is no reason why localized solutions on the internal space should

not exist. In the simplest case, this would be a static black hole with spherical topol-

ogy that feels its self-interaction along the compact space. Localized solutions and

inhomogeneous ones will have different topology, but it is expected to be connected

in some way. The fact that Nq is compact means that if we start with a small lo-

calized black hole and we increase its size, at some point, it will cover Nq entirely.

Conversely, inhomogeneous black holes can be followed through solution space. The

inhomogeneities will grow until the horizon pinches to zero thickness and localizes. At

the level of static solutions, both branches should merge. The details of how this is

codified by the Einstein’s equations is far from trivial. The merger of the two branches

seems to be continuous but this would imply that we can move from one branch with,

say, topology X, to another branch with topology Y , which is not possible without

forming a naked singularity. Solutions close to this merger or critical point are known

as critical black holes, and they develop conifolds, i.e. a geometry containing localized

cone singularities, as they approach this point more and more.

Success in describing such singular geometries has been achieved using local models

based on conical manifolds, first introduced by Kol in the context of KK black holes [21]

(see also [22, 157–159] for subsequent studies), and later on in asymptotically flat

space [147,160]. Conical manifolds can be understood as a local ‘proxy’ for the change

in the topology of the black holes involved. This proxy can be smoothed in two

different ways, each one leading to one of the topologic phases, X and Y , at each side

of the transition. Let us be a bit more precise. A cone over a base H is described by
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the self-similar metric:

ds2
cone = dρ2 + ρ2ds2(H), (1.2.0.12)

where ∀ρ > 0 measures the distance from the tip of the cone, and it is indeed singular

at ρ = 0 (the tip). Relevant to us are the cone over a double or triple product of

spheres,

H = Sl × Sm, or Sl × Sm × Sn, (1.2.0.13)

which are referred to as the double- and triple-cone respectively, or just critical cone.

These are Ricci-flat metrics for any (positive) value of l,m and n, with a curvature

singularity at the tip, and work well to model the pinch-off of black hole configura-

tions in vacuum. However, as we show in this thesis, the pinch-off in the presence of

additional matter fields may lead to a cone model that it is not necessarily Ricci-flat.

One of the spheres of the base H always comes as a fiber bundle involving the

Euclidean time, τ = −it, which has periodicity given by the inverse temperature of

the black hole, β = 1/T . This yields a circle that has zero size at the horizon. The

fiber of this S1
β over a certain manifold, gives rise to a l-sphere. For example, in a

KK setting this is a periodic line that starts and finishes on the horizon, across the

compact direction (see Fig. 1.2), i.e. l = 2. The other sphere(s) in H is (are) inherited

by the geometry of the particular solution under study. For l = 2, the relevant case in

this thesis, the Ricci-flat double-cone metric in Lorentzian signature reads:

ds2
cone = dρ2 +

ρ2

D − 2

(
− sin2 α dt2 + dα2 + (m− 1)dΩ2

(m)

)
, (1.2.0.14)

with α ∈ [0, 2π]. This metric has two horizons, one at α = 0 and the other at α = π,

which connect non-smoothly at the tip ρ = 0. Note that both spheres are contractible,

and shrink to zero size at the tip. The geometry can be smoothed by resolving, for

instance, for the 2-sphere, making it non-contractible. This leads to the localized black

hole phase, for which the other m-sphere is contractible. Alternatively, if the m-sphere

is kept non-contractible, the resulting smoothed geometry is that of the non-uniform

black string (where the Euclidean 2-sphere is contractible).

Notice also that (1.2.0.14) is not asymptotically flat, nor asymptotes any of the

spaces we consider in this thesis. Moreover it extends indefinitely as ρ→∞. Models

based on a conical manifold are local in the sense that describe well the horizon

geometry near the critical points, but the exact way of how this conical region extends

to a full critical solution remains unclear. This explains why they should be good

models regardless of the asymptotic boundary conditions, and in particular, regardless

of the presence of a cosmological constant.

It is remarkable that such a simple model is able to describe not only solutions that,

in their majority, have only been found numerically, but also in a regime where the

underlying theory is less understood. Of course, the fact that (1.2.0.12) is explicitly

singular gives little hope in obtaining analytical predictions for physical properties

beyond of reproducing the correct local critical geometry. But it turns out that a

particular perturbation mode around (1.2.0.12) describes any(!) thermodynamical
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SD−3

S1
β

Fig. 1.2: Pictographic representation of the conical geometry (black lines)

at the critical point in the black string/black hole topology phase transition.

Orange and purple dashed lines are the two different ways in which it can

be smoothed leading to the non-uniform and localized phases respectively.

The blue lines represent the continuation of the horizon’s black hole geometry

away from the pinch-off.

quantity of solutions close enough to the merger at any side of the critical point. In

this sense, the model exhibits certain universality.

More specifically, given a physical quantity Q of a critical solution, it then behaves

according to [21]:

Q = Qc + C+ρ
s+
0 + C−ρ

s−
0 , (1.2.0.15)

where Qc is the value at the critical point, ρ0 is any black hole length that measures

how it deviates from the cone, and the critical exponents s+ and s− are dimension

dependent, which degenerate for D = 10. They are complex for lower dimensions

and become purely real for D ≥ 10. Most of the physical quantities of a black hole

are defined on the horizon, but this is suggesting that in a topology-change phase

transition, these are actually governed by the horizon regions that pinch-off.

The main task that we have carried out in this thesis consists in to check the validity

of this conical model, and in particular the validity of (1.2.0.15). To this end, we have

considered various one-parameter families of black holes with two different asymptotic

boundary conditions, involving a topology phase transition. In the simplest case, we

have considered Kaluza-Klein theory, i.e. MD−1 = MinkD−1 and N1 = S1. This family

was considered in D = 10 [161] but for a rather small range of parameter space,

and in particular, far from the critical region. We revisit this particular dimension

which has a 2-fold interest: first for being D = 10 the critical dimension of the cone,

and second, for being the family dual, after a certain duality map, to thermal states

of (1 + 1)-dimensional SYM theory on a particular background. The latter was the

purpose of [161], and hence, where our data overlaps with the one shown in that paper,

we checked that both results agree. However, to be able to explore the critical region

some refinements need to be taken into account. This is presented in Chapter 3.
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A more involved case is Mp = AdSp and Nq = Sq. For certain values (p, q),

black holes appear to be solutions of 10- and 11-dimensional supergravity theories, so

we are no longer in vacuum. An infinite amount of one-parameter families of black

hole solutions exist in such spaces. The reason is simple: the internal space Sq has

a discrete, but infinite, set of eigenvalues, yielding an infinite number of 0-modes,

each one connected to a new family of inhomogeneous, or lumpy, solutions. In this

case, the values set (p, q) = (5, 5) was studied in [19], but again, only slightly lumpy

black holes were constructed. Our study extends and partially differs than that in [19]

for D = 10, and also considers the case in D = 11. In both cases we manage to

explore their critical regions and we find, for first time with Anti-de Sitter boundary

conditions, the corresponding critical exponents. These coincide with those predicted

by the cone model, which is no longer Ricci-flat due to the presence of non-trivial flux

fields. This is the topic of study of Ch. 4. Additionally, asymptotically AdS solutions

have relevance due to the AdS/CFT correspondence, which we now turn to discuss.

1.3 AdS/CFT correspondence

One of the most remarkable and counter-intuitive achievements in theoretical physics of

the last 20ish years is the AdS/CFT correspondence [162–166]. The original AdS5/CFT4

[162] is a conjectured duality between type IIB superstring theory [287–289] on an

AdS5 × S5 background and N = 4 super Yang-Mills [167] (SYM) with gauge group

SU(N), living in the 4-dimensional conformal boundary of AdS5. According to this

conjecture, despite both theories represent different systems and interactions, they (are

supposed to) describe the exact same physics from very different perspectives. Maybe

the most striking feature is that it states that a gravity-free theory is completely

equivalent to, not only a theory with gravity, but a theory of quantum gravity.

In this regard, AdS/CFT is a very far-from-trivial realization of the holographic

principle (see [168] for a through review), which states that in every theory of quantum

gravity the degrees of freedom of a certain bulk system have a description in terms of

degrees of freedom living on its boundary, and vice versa. This idea is not exclusive of

AdS/CFT, but dates back to the original works by t’ Hooft [169] and Susskind [170],

who built on the fact that black hole temperature and entropy are given in terms of

quantities defined on a surface (rather than a volume), the surface gravity and the

horizon area, to infer the holographic nature of quantum gravity.

In the earlier AdS5/CFT4 duality, the 5-dimensional theory arising from the com-

pactification of type IIB string theory on the S5 is mapped to a gauge theory defined

on the conformal boundary of AdS5. Originally, the correspondence was motivated for

large number of colors, N →∞, and large but fixed ’t Hooft coupling, λ ≡ g2
YMN � 1

(gYM is the SYM coupling), where it was known that the gauge theory had a smooth

large N limit [171] with a perturbative expansion in 1/N . On the AdS side, this

corresponded to performing a perturbative expansion in the string coupling gs, with

the leading contribution being (classical) type IIB supergravity. However, there is
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substantial evidence that the equivalence is not only also true for generic values of

the ‘t Hooft coupling λ, but also for non-conformal settings with less supersymmetries

(see Ch. 6, 7 and 8 in [291] and references therein); with applicability ranging from

heavy ion collisions [172–175] to hydrodynamics [176–181] or condensed matter sys-

tems [182–186], leading to one of the most promising and active areas of research of

current times in theoretical physics. In general, one refers to the correspondences that

arise in such context as gauge/gravity dualities.

One of the main incentives is that under certain limits, gauge/gravity dualities

are in addition strong/weak coupling dualities. For instance, the large N , large ’t

Hooft coupling limits mentioned above in AdS5/CFT4, lead to a strongly coupled

SYM gauge theory and a (free) point-particle limit of type IIB string theory, i.e. type

IIB supergravity. The latter is a classical theory of gravity, and hence more clear,

understood and tractable from a technical point of view than its parent stringy theory.

This is quite appealing given the lack of standard and effective methods to address

the non-perturbative regimes of gauge theories.11 Now, once a dual pair is identified,

one can explore such sectors using, essentially, GR coupled to other fields.

In the rest of this section we briefly introduce the subject without entering into

much detail, emphasizing on the different concepts and results that will be relevant in

the following chapters. There is an extensive literature where this content is explained

in full detail and in turn provide different points of view. See e.g. [187–189,289,291].

AdS5/CFT4 correspondence

In [162] Juan Maldacena introduced the first example of gauge/gravity duality. On

the one hand, the gauge side is N = 4 SYM in 3+1 dimensions and it has two free pa-

rameters: the rank of the gauge group N and the dimensionless coupling gYM. On the

other hand, the gravity side is type IIB string theory in AdS5×S5, with dimensionless

string coupling gs, string length ls =
√
α′ and AdS radius L (which coincides with the

radius of the S5). This is the best understood example of gauge/gravity duality, and

will be the starting point of our discussion in Chapter 4, so let us elaborate a bit more

in this direction. We will not give the precise references at each step of this exposition,

since most the ingredients used are well-known and can be found in the literature cited

above.

The duality is motivated by taking two different points of view, the closed and the

open string perspectives, of type IIB string theory in the presence of a stack of N

coincident D3-branes and then taking the so-called decoupling limit (which typically

is a low-energy limit). Which perspective is the right one depends on the value of the

string coupling which controls the interaction between the two string sectors.

In the general picture at weak coupling, gsN � 1, open string modes propagate

11Lattice gauge theory is actually non-perturbative but it only works in equilibrium situations and

without fermions, and many applications of AdS/CFT correspondence are precisely concerned about

far-from-equilibrium physics and/or with the presence of fermions and non-zero chemical potential.
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along the world-volume of the brane, where their endpoints are attached, and closed

string modes propagate in the bulk. Moreover, if one truncates the theory to the

massless sector, i.e. low energies E � l−1
s , and takes the limit ls → 0, the two sectors

decouple. The dynamics of the open string excitations are described in terms of SYM

gauge theory on the world-volume of the branes which is (3 + 1)-dimensional, whereas

the closed string sector yields type IIB supergravity in R1,9 off the branes. In doing

that, one identifies the couplings of both theories:

g2
YM = 2πgs, 16πG10 = (2π)7(α′)4g2

s . (1.3.0.1)

At strong coupling, gsN � 1, open and closed strings interact and the backreaction

on the D3-branes is significative. Then the latter can no longer be viewed as dynamic

hyperplanes where open strings end. For this reason, at weak coupling one talks

about the ‘open string perspective’. One possible way to understand what is the

effect of such backreaction is looking at the geometry sourced by the D3-branes in the

effective theory. Indeed, D-branes are solitonic objects that appear in 10-dimensional

supergravities. In the case of N D3’s, they appear as a solution within type IIB

supergravity with N units of F(5) flux. Its background metric is given by [190]:

ds2
D3 = H(r)−1/2ηµνdx

µdxν +H(r)1/2
(

dr2 + r2dΩ2
5

)
, (1.3.0.2)

with

H(r) = 1 +
L4

r4
, L4 = 4πgsN(α′)2 (1.3.0.3)

and µ, ν = 0, 1, 2, 3. (There are also other non-zero fields but they are not relevant at

this point.) The characteristic length L must be large compared to the string length,

i.e. weak curvature, in order for the supergravity approximation to be reliable. This

yields the strong coupling condition: 1 � L4/l4s = 4πgsN , valid in a ‘closed string’

perspective. In turn, the string coupling needs to be small, to suppress string loop

effects, gs � 1, which implies that we are taking the large N limit, N →∞.

Now the closed strings of type IIB string theory propagate in the background

(1.3.0.2). The metric has two different regions: in the asymptotic region r � L, it

reduces to 10-dimensional Minkowski space, whereas in the throat, or near horizon

region, r ∼ 0, corresponds to AdS5 × S5 in the Poincaré patch:

ds2
D3(r ∼ 0)→ L2

r2
dr2 +

r2

L2
ηµνdx

µdxν + L2dΩ5. (1.3.0.4)

This yields two sectors of closed strings, one propagating in R1,9 and another one in

AdS5 × S5. In this case, the low-energy limit consists of focusing on modes that have

low energy with respect to an observer in the far region R1,9. For the modes close

to the horizon, this implies that one cannot throw away all the massive modes which

locally have higher energies near the horizon, given that those are highly red-shifted

when they climb up the gravitational wall in order to reach the asymptotically flat

region. However, they do decouple from the asymptotic modes: for an asymptotic
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Fig. 1.3: Pictographic representation of the AdS5/CFT4 correspondence.

observer, the lower the energy that a ‘throat mode’ has, the deeper in the horizon is

located. In the Minkowski region, though, the only modes that remain in the limit

ls → 0 are those of type IIB supergravity in flat space, which decouple from any other:

they do not interact among themselves because G10 vanishes in the limit, and their

characteristic wavelength is much larger than the size of the near horizon region to

resolve it and interact with the modes there. Summarizing, at low energies the ‘closed

string’ description of the system reduces to type IIB supergravity in AdS5 × S5 plus

type IIB supergravity in Minkowski space.

Putting the two perspectives together, the low-energy limit of two points of view

yields two decoupled effective theories. The type IIB supergravity in R1,9 is present

on both sides, and Maldacena conjectured that the other pair must agree as well,

establishing thatN = 4 SYM in 3+1 dimensions with gauge group SU(N) is equivalent

to type IIB supergravity in AdS5 × S5. This is represented in Fig. 1.3.

Once the conjecture is established, note that in the large N limit the effective

coupling in the gauge side is the ’t Hooft coupling, λ (= g2
YMN), which is the only

free parameter available. In the gravity side we are left with the ratio L2/l2s as free

parameter, which is related to λ via: L4/l4s = 2λ. Supergravity applies provided that

the curvature scale is large compared to the string length, which implies that the

gauge side is actually strongly coupled, λ → ∞. This defines the ‘weak’ form of the

AdS5/CFT4 correspondence, but Maldacena went one step further and conjectured

that this correspondence also holds beyond the supergravity limit, making his state-

ment even much more profound. It relies on comparing two points of view that apply

for distinct regimes of gs, but the theories involved exist for any value of the coupling.

A simple check in support of the duality is that the global symmetries on both
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sides match. N = 4 SYM in 4 dimensions is conformal and it enjoys an SO(2, 4)

symmetry, plus an SO(6) symmetry coming from the R-symmetry that rotates the

sixteen supersymmetric charges of the theory. In the gravity side, these symmetry

groups appear as the isometry group of AdS5 × S5.

The conformal boundary of the AdS factor plays an important role in the duality.

In (1.3.0.2), the near horizon region yields AdS5 (let us forget about the 5-sphere for

now) in the Poincaré patch, which does not cover the AdS spacetime in full. In this

patch, the conformal boundary is Minkowski space R1,3, where the dual N = 4 SYM

theory is defined. It is now easy to think about extending the duality to all AdS, using

for instance global coordinates. Then the conformal boundary is the Einstein static

universe, R × S3, and SYM theory is now defined on this compact space. This has

relevance from the thermodynamic point of view, as we will discuss shortly.

Generically, the claim of the gauge/gravity duality is that the physics of some

strongly coupled field theory is encapsulated in the physics of a gravitational theory

on a certain background and vice versa. Holography then suggests that the boundary

of such background realizes geometrically the symmetries of the dual field theory. For

example, in the case at hand of AdS5/CFT4 on flat space, this background is (1.3.0.4),

where the coordinates xµ may be thought as the coordinates along the world-volume of

the original D3-branes, and hence may be identified with the gauge theory coordinates.

Furthermore, notice that the metric (1.3.0.4) realizes the invariance under dilatations

of the CFT,

r → Λr, xµ → Λ−1xµ, (1.3.0.5)

(Λ ∈ R), which in turn reveals that the AdS radial coordinate r defines an energy

scale for the gauge theory (the rest of coordinates span the directions transverse to

the branes). According to (1.3.0.5), small radius means large distances, or low energies,

in the gauge theory, and conversely, large radius corresponds to small distances, or high

energies. For this reason, the conformal boundary of AdS is, in this context, sometimes

referred to as the UV boundary.

If one is interested in non-conformal theories, dilatations can no longer be an exact

isometry of the dual background geometry. Then a dynamical critical or Lifshitz

exponent z is introduced and one is led to consider as background [182]

ds2 =
L2

r2
dr2 +

r2z

L2
dt2 +

r2

L2
δijdx

idxj, (1.3.0.6)

which realizes the scaling symmetry

r → Λr, t→ Λ−zt, xi → Λ−1xi, (1.3.0.7)

(i = 1, . . . , d−1; d being the total number of spacetime dimensions of the dual quantum

field theory (QFT)). Whilst the z = 1 case corresponds to AdS, which is dual to a

relativistic CFT, for z > 1 the gravitational theory is a possible candidate dual to

some non-relativistic QFT. This is indeed the starting point for addressing certain

problems in condensed matter systems using gauge/gravity duality.
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With special interest for us, it is the way of computing the expectation values of

composite gauge invariant operators, and explore the thermal phases of a given gauge

theory at finite temperature using its gravity dual.

Holographic dictionary

The so-called ‘Holographic dictionary’ [163–165,291] provides the formal mapping rules

between the two sides of the duality, establishing a precise one-to-one relation between

operators and fields, and hence how to compute physical observables.

A first entry in this dictionary, tells us that gauge invariant operators are mapped

to bulk fields, with the boundary value of the latter playing the role of sources for the

dual operators. This suggests an equivalence between the generating functionals of

both sides of the duality [163]:12〈
e−SQFT[G(0)]−

∫
d4x
√
G(0)O(x)Ψ(0)(x)

〉
= e−S5d[G(0),Ψ(0)], (1.3.0.8)

where G(0) and Ψ(0) are parametrizing the boundary values of the (5d) bulk solutions

Gµν and Ψ’s in AdS5 (after dimensional reduction on the 5-sphere in the case it plays

any role). Clearly, the fields Ψ(0) play the role of sources, whereas the classical on-

shell 5d supergravity action is the generating functional for the Green’s function of

composite gauge invariant operators O.

For simplicity, the statement in (1.3.0.8) used to be presented for scalars, but the

same logic applies for other types of fields. For instance, vector and tensor fields

are dual to vector currents and stress-energy tensors respectively. Note also that,

formally, (1.3.0.8) would equate the string partition function and that of the dual

CFT, but at the end, most of computations are done assuming the weak form of

AdS/CFT, where one evaluates the string partition function from its semi-classical

(on-shell) supergravity action. Of course, (1.3.0.8) is specified for AdS5 since it is

the relevant case in this thesis, but the case for a CFT defined on the d-dimensional

boundary of a gravity theory in asymptotic AdSd+1 is straightforward to generalize.

The holographic map as given in (1.3.0.8) allows us, in principle, to compute (con-

nected) correlators of composite gauge invariant operators. They just follow from

taking the functional derivatives with respect to the sources Ψi
(0)(xi):

〈O1(x1) . . .On(xn)〉 = (−1)n−1 δnS5d

δΨ1
(0)(x1). . .δΨn

(0)(xn)

∣∣∣∣
Ψi

(0)
=0

. (1.3.0.9)

So far, so good, but in practice one finds some obstacles. Generically, QFTs suffer

from the well-known UV divergences due to unbounded integrals in momentum space,

and therefore the r.h.s. of (1.3.0.8) must also diverge. Indeed, evaluation of the on-

shell supergravity action in AdS yields IR divergences due to the infinite volume of

the spacetime. Then the relation between partition functionals must be understood

12In the semi-classical approximation and Euclidean signature.
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as given in terms of ‘bare’ fields and to restore computation capability one must

renormalize. Renormalization in QFT has been established for a long time, but now

we are interested in to proceed in the gravity side. A systematic procedure exists for

this and it is known as holographic renormalization. The Ward identities satisfied by

symmetry-related correlators and certain quantum anomalies can also be computed

with this recipe, but in the following we will only focus on correlators.

Holographic renormalization

The holographic renormalization formalism [191] applies to asymptotically AdS space-

times, and it is conveniently developed in the Fefferman-Graham (FG) gauge where

the metric reads:

ds2
D =

1

Z2
(dZ2 +Gij(Z,X)dX idXj), (1.3.0.10)

with the (d = D − 1)-dimensional AdS boundary Bd lying at Z = 0, and the addi-

tional coordinates Xk running along Bd. In this sense, FG coordinates are an ana-

log of Gaussian normal coordinates at the conformal boundary Bd, where the metric

Gij(X) = Gij(0, X) defines a non-degenerate Riemannian metric in d dimensions. Any

asymptotically AdS spacetime can be put in the FG form in the neighborhood of Bd.

Asymptotically AdS spacetimes appear in theories of classical gravity with a neg-

ative cosmological constant, possibly coupled to other fields. For our purposes, it

is sufficient to consider gravity plus a scalar field. The holographic dictionary tells

us that the metric Gij is dual to the stress tensor Tij of the d-dimensional CFT at

the boundary, which has scaling dimension ∆ = d, and scalar fields with masses in

the range −d2/4 ≤ m2L2 ≤ 0 are dual to operators O∆(x) of the CFT, with scaling

dimension

2∆ = d+
√
d2 + 4m2L2 (1.3.0.11)

in the range d/2 ≤ ∆ ≤ d, corresponding to relevant or marginal operators. Indeed,

the lower bound is the well-known unitarity bound for a scalar field in a CFTd, now

linked to the Breitenlohner-Freedman (stability) bound for scalar fields in AdSd+1.

The first step in holographic renormalization consists of performing a near-boundary

analysis. It turns out that the metric function Gij(Z,X) and the scalar field Ψ(Z,X)

admit a Taylor series expansion around Z = 0. Solving the bulk equations of mo-

tion order by order yields a schematic form of the metric Gij(Z,X) and scalar field

Ψ∆(Z,X), where ∆ is the dimension of the dual operator. Specifying for D = 5,

Gij(Z,X) = G
(0)
ij (X) + Z2G

(2)
ij (X) + Z4

(
G

(4)
ij (X) + logZ2H

(4)
ij (X)

)
+ . . . ,

Ψ2(Z,X) = Z2
(

logZ2Ψ2
(0)(X) + Ψ̃2

(0)(X) + . . .
)
,

Ψ∆(Z,X) = Z4−∆Ψ∆
(0)(X) + · · ·+ Z∆Ψ∆

(2∆−4) + . . . , (∆ > 2).

(1.3.0.12)

The expansion proceeds in even powers of Z due to the structure of Einstein’s equations

and the logarithmic terms in (1.3.0.12) are only present for d even and/or when ∆−d/2
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is an integer. If no deformations are added to the field theory, the equations of motion

provide two constraints on G
(4)
ij , namely G

(4)
ij is traceless and divergence-free with

respect to G
(0)
ij . However, in the presence of sources G

(4)
ij will not be divergence-free

and it may or may be not traceless. In this case, the constraints on the gravity side

are identical to the Ward identities in the field theory side.

The leading terms G
(0)
ij ,Ψ

2
(0) and Ψ∆

(0) parametrize the Dirichlet boundary condi-

tions. In particular, the leading term G
(0)
ij in the metric corresponds to the boundary

metric and it thus defines the spacetime background where the dual CFT is defined on.

These quantities correspond to the dual sources for the CFT stress-energy tensor, and

the scalar operators of dimension 2 and ∆ respectively. Together with the normaliz-

able modes G
(4)
ij , Ψ̃

2
(0) and Ψ∆

(2∆−4), which can be seen as Neumann data, determine the

series solution completely. In fact, Neumann data contain the important information

on 1-point correlators (see below).

With the asymptotic solution, one can compute the on-shell supergravity action

entering in the r.h.s. of (1.3.0.9). This diverges as one approaches to the boundary

and to make those terms explicit, one regularize the action defining the boundary at

Z = ε, which is eventually removed by taking the limit ε → 0. Defining a set of

local counter-terms, the divergences can be cancelled yielding a finite result. These

were determined once and for all in [191], since the precise form of Sct is completely

determined by the near boundary expansion. The renormalized action is then:

Sren

[
G(0),Ψ(0)

]
= lim

ε→0
(Son-shell + Sct) , (1.3.0.13)

and now one can safely take functional derivatives of Sren with respect to the sources

G
(0)
ij and Ψ(0), and compute the correlators.

For example, 1-point correlators show that the new piece of data G
(4)
ij (X) in

(1.3.0.12), is directly related to the so-called boundary stress-tensor of AdS, Tij, which

is dual to the expectation value of the stress-energy tensor of the dual CFT, 〈TCFT
ij 〉.

The result for the boundary stress-tensor for the gauged supergravity we are interested

in can be written in the simple form [192,193]:

Tij =
N2

2π2

(
G

(4)
ij +

1

8

(
Tr(G(2))2 − (Tr(G(2)))2

)
G

(0)
ij −

1

2
(G2

(2))ij

+
1

4
G

(2)
ij Tr(G(2)) +

3

2
H

(4)
ij +

1

3
(Ψ̃2

(0))
2G

(0)
ij

+
(2

3
Ψ2

(0) − Ψ̃2
(0)

)
Ψ2

(0)G
(0)
ij

)
.

(1.3.0.14)

For arbitrary D, the stress-tensor can be written as Tij ∼ G
(d)
ij + Cij[G

(0)], where

Cij
[
G(0)

]
is a local divergence-free (then the stress-energy tensor is conserved) func-

tional of the boundary metric and its derivatives with the property that it vanishes

for Ricci-flat Bd. The details of Cij are dimension-dependent and for d = 4 coupled

to a scalar field yields (1.3.0.14). The contribution to Tij given by Cij comes from
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the log-term in the boundary expansion, so it also vanishes in odd d dimensions, but

it may not for d even. In such case, Tij will not be traceless unless Bd is flat. The

trace of the stress-energy tensor of any CFT vanishes at the classical level, but at the

quantum level on a curved spacetime may be, precisely, non-zero in even d. This is the

well-known Weyl anomaly, which is now linked to the local geometry of Bd by virtue

of the AdS/CFT correspondence.

On the other hand, the 1-point correlators of the scalar field dual operator read:

〈O2〉 =
N2

2π2

(
2Ψ̃2

(0)

)
, 〈O∆〉 =

N2

2π2

(
(2∆− 4)Ψ∆

(2∆−4)

)
+ lower, (1.3.0.15)

where ‘lower’ indicates terms with index smaller than 2∆ − 4, and they only appear

when the weight ∆ of the operator can be written as a sum of weights of other lower

operators.

At this point, the expressions (1.3.0.14) and (1.3.0.15) are given in terms of com-

pletely general sources G
(0)
ij ,Ψ

2
(0) and Ψ∆

(0), whose particular form will depend upon

the relevant bulk solution arising in the duality. For non-vanishing scalar field source

Ψ∆′

(0) (∆′ = 2 or ∆), the dual field theory is deformed by the corresponding relevant or

marginal operator, yielding an effective Lagrangian given by

LQFT = LCFT + Ψ∆′

(0)O∆′ . (1.3.0.16)

Even if the scalar field source vanishes, it does not necessarily imply that the cor-

responding 1-point function given in (1.3.0.15) is zero. In such case the result is

understood as its vacuum expectation value.

In Chapter 4 we construct bulk solutions that asymptote global AdS5 × S5, and

therefore they have a well-known dual gauge theory, namely N = 4 SYM on the 4-

dimensional Einstein static universe (ESU4). We then use holographic renormalization

to find the stress-energy tensor of our solutions, and hence their energy, which allows

us to study their thermodynamic phase diagram. Additionally, from the point of view

of an observer in AdS5, those solutions are accompanied by various scalar fields which

are dual to certain gauge operators. Those scalar fields acquire non-trivial vev’s and

they are computed using the expressions presented in this section.

Gravity dual thermodynamics

The thermal structure of a given gauge theory at finite temperature can also be ad-

dressed through the AdS/CFT correspondence. The natural objects with thermody-

namic properties in any (semi-)classical theory of gravity are black holes. So, if a dual

pair is known and the bulk theory admits black hole solutions, then the dual gauge

theory is a CFT in a thermal ensemble. More precisely, black holes in the bulk are

describing thermal states of the gauge theory at finite T [163,164].

To motivate this statement, let us turn back to the gravity dual of N = 4 SYM at

finite temperature on flat space. Being at finite temperature means that the Euclidean
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time coordinate is compactified on a circle of period β = 1/T , then the theory is defined

on S1 × R3. For T = 0, the correspondence follows from taking the decoupling limit

of extremal D3-branes, which have zero temperature. The natural generalization is to

consider the decoupling limit of non-extremal (black) D3-branes. Near the throat, the

metric is the planar Schwarzschild-AdS5 × S5 black hole,

ds2
planar =

r2

L2

(
− f(r)dt2 + d~x 2

)
+
L2

r2

(
f(r)−1dr2 + r2dΩ2

5

)
, (1.3.0.17)

with

f(r) = 1− r4
0

r4
. (1.3.0.18)

This metric reduces to (1.3.0.4) at large r, but differs from it in the IR (for small values

of r), where it has an horizon at r = r0. This means that for large r, the duality is

essentially the same as at zero temperature. This is not surprising: large r means high

energies in the gauge theory and in this regime thermal excitations are not supposed

to change the physics much. The black hole (1.3.0.17) has Hawking temperature

TH =
r0

πL2
= T, (1.3.0.19)

which is identified as the temperature of the dual CFT, i.e. N = 4 SYM on S1×R3 at

strong coupling. The rest of the thermodynamical variables are matched as well. For

instance, the Bekenstein-Hawking entropy of the black brane, SBH, corresponds to the

field theory entropy, S:

SBH =
π2

2
N2T 3vol(R3) = S, (1.3.0.20)

where we used the dimensional reduction relation G5 = G10/(π
3L5) and (1.3.0.1) to

express it in terms of gauge theory variables. (1.3.0.20) gives the entropy of large N ,

large λ, N = 4 SYM, and it just required a very simple area calculation. Up to now,

it is not known how to compute such quantity directly in the gauge side. Naively,

this would imply to sum over an infinite amount of Feynman diagrams using ‘thermal’

Feynman rules. However, we can compare this result with the entropy of the free

theory [194], which differs with respect to (1.3.0.20) only by a factor of 4/3. In any

case, a black hole quantity reproduces (at the very least) the expected form of the

gauge entropy: at large N the dynamics of the theory are dominated by N2 degrees of

freedom, which is nothing but the number of gluonic states. On the other hand, the

T -dependence can be justified via dimensional analysis: in a CFT the temperature is

the only scale and entropy, which is dimensionless, must scale with the spatial volume

(i.e. energy to the third power in D = 4)13.

In practice, one usually applies AdS/CFT in one way, namely: given a CFT at finite

T 14 in a certain background Bd, which is fixed, one studies the gravity dual looking for

13This scaling is different for a non-CFT.
14If the field theory is also at finite charge density or chemical potential, it will have a global U(1)

symmetry. In this case one would need to include a U(1) gauge field in the bulk action.
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black hole geometries that are asymptotically AdS whose conformal boundary agrees

with Bd, i.e. it belongs to the same conformal class. In the gravity side Bd is then

a boundary condition. For instance, another possibility for d = 4 is to define the

gauge theory on B4 = S1 × S3. This introduces another parameter: the size of the

3-sphere, allowing richer physics. Precisely, Anti-de Sitter space in global coordinates

has conformal boundary B4 = R×S3. Therefore, any asymptotically global AdS black

hole will be mapped to a thermal state in the gauge theory, with the CFT vacuum state

corresponding to the solution with lowest energy; in this case, this is global AdS itself.15

Schwarzschild black holes in global AdS do exist, and they compete with the other

spacetime configurations available, yielding the well-known Hawking-Page transition

[195]. This was reinterpreted by Witten using the AdS/CFT correspondence as a

confinement/deconfinement transition in the quark-gluon plasma [163]. We postpone

a detailed discussion of black holes in (global) AdS space for Chapter 4.

We close this chapter with a few words on finite chemical potential and finite

density. In QFT, finite density or non-zero chemical potential is introduced by means

of a global U(1) gauge symmetry under which the other fields are charged. From the

gravity perspective, it is then natural to add a U(1) gauge field in the bulk action

with a non-trivial profile for the time-component. Then black holes will have electric

charge. The near-boundary expansion of this field is:

At(z → 0) ∼ µ+ d z2, (1.3.0.21)

where µ is the chemical potential and d is proportional to the charge density. Just as

for any other field, the gauge field tends to a particular value at the boundary which

sources a vector current in the dual gauge theory, Jµ ∼ δSren/δA
(0)
µ .

15If the time coordinate is Wick rotated, t→ iτ , then the Euclidean global AdS metric is known as

‘thermal’ AdS. In this way we are consistent with the duality, with the conformal boundary matching

the space where the gauge theory is defined. At the end, since we are dealing with static solutions,

this does not make any difference.



Chapter 2

Numerical Stationary Solutions in Gen-

eral Relativity

In this chapter we review the basics for constructing stationary solutions (though we restrict

to static ones) in numerical relativity, including both: a re-formulation of the Einstein’s

equations yielding to elliptic character equations, and hence a well-posed boundary value

problem, and the numerical methods we implemented to solve them. We have chosen the

Einstein-DeTurck approach due to its robustness and flexibility, and on the numerical side,

the equations are discretized using pseudo-spectral methods.

Numerical relativity: Long-story short

In the previous chapter we have seen how wide the landscape of stationary vacuum

black hole solutions is when D > 4. Finding those solutions means solving the non-

linear coupled set of PDE’s contained in Einstein’s equations (0.0.0.1). However, even

assuming stationarity, this task is extremely complicated. Over the years, different

solution-generating techniques, such as the inverse scattering method [196, 197] or al-

gebraic methods (see Ch. 9 of [290]) among others, have been employed successfully to

find a remarkable amount of solutions, but only in D = 5 and under strong symmetry

assumptions. The lack of effective techniques beyond five dimensions have prompted

the study of approximate methods (matched asymptotic expansion [198–201], black-

folds [202,203], or more recently, the large-D expansion [204,205] to cite a few), which

are only reliable in their corresponding perturbative regimes, and by the time, the only

complementary way to proceed is resorting to numerical methods [292,293]. Originally,

the field of numerical relativity was mainly concerned in dynamical situations, where

initial data is evolved in time according to the Einstein’s equations in D = 4, for

making contact with the experimental side of the theory. Of course, uniqueness of

vacuum black holes in D = 4 made not much appealing the development of numerical

techniques intended for stationary (vacuum) configurations. It was with the fairly

recent realization that uniqueness breaks down in D > 4 that this exploration path

began. A throughout review can be found in [206]. See also Ch. 10 of [290].

A time-evolution or stationary numerical approach, starts requiring a system of

equations with hyperbolic or elliptic character (see next section for a definition) re-

31
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spectively, ensuring a well-posed problem. In the former case, these leads to an initial

value problem with specified data on a Cauchy surface and having wave-like propa-

gation on small scales. However, diffeomorphism invariance of GR implies that the

equations are not hyperbolic (either elliptic for stationary geometries), and one needs

to modify them appropriately. Some well-known and fruitful approaches yielding the

desired hyperbolicity include the BBSN formalism [207,208], the Z4 system [209] or a

covariant conformal decomposition of this, known as CCZ4 [210].

Then, one possible way to construct stationary black hole solutions would be con-

sidering long-term time evolutions of an appropriate initial data, until the system

reaches its final steady state. This is however clearly not convenient; at least for our

purposes. Ignoring the complexity of the problem, the huge fine-tuning of initial data,

and the large computational resources that this would require, many interesting sta-

tionary solutions in higher D are, or are thought to be, unstable and therefore they

will never be the desired final stationary state.

Instead, stationary problems must be thought as boundary value problems where

data (for example, Dirichlet, Newmann or a mix of both) is given on all boundaries.

An early (non-covariant) formulation for cohomogeneity-2 boundary problems was

based on the conformal gauge, which was employed successfully in a number of works,

e.g. [14,211–213]. A more recent point of view consists into solving the (fully covariant)

Einstein-DeTurck equation introduced in [214] by Headrick, Kitchen and Wiseman,

which works for any cohomogeneity and yields a more flexible and stable numeric

scheme. This is the approach we have used in this thesis. Although originally this

was intended for solving static problems, as the ones we do in this work, it was later

shown that it could also be used to construct stationary solutions [215].

2.1 Einstein-DeTurck approach

To recast the Einstein’s equations in a proper form to be tackled numerically, we need

to see where the ‘issues’ come from. Either hyperbolic or elliptic equations have a

well-developed theory, with formal theorems proving uniqueness of solutions.

However, an initial or boundary value problem for the Einstein’s equations will

not be well-posed. It cannot: general covariance implies that the differential operator

associated to Einstein’s equation is not invertible. In other words: a point in the space

of solutions is not a point actually, it is an entire equivalence class of solutions since

any other metric differing from the former by a diffeomorphism, gives an equivalent

description of physics. It is the same solution. The general theory of PDE’s does not

allow to find the full equivalence class, but the coset by fixing a gauge. Actually, this

happens in every theory with (local) gauge symmetry. In practice, to proceed we need

to fix a gauge in such a way that when solving the equations in full we obtain one

element in the desired class, say, the one that is consistent with our gauge choice. The

point is that (0.0.0.1) codifies all the necessary information to determine the geometry,

but not all the metric components. Indeed, we have D(D + 1)/2 metric components
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for D(D − 1)/21 independent equations, resulting in an undetermined system. It is

the price we have to pay for having a covariant formulation of the theory.

For stationary problems, the Einstein-DeTurck equation provide a way of fixing the

gauge freedom, turning Einstein’s equations into strongly elliptic ones, but preserving

covariance. In the following sections we introduce the theoretical foundations of such

re-formulation on which our studies are based on.

2.1.1 Hyperbolicity, ellipticity and DeTurck gauge fixing

Within the theory of PDE’s [294, 295], the linear equations are classified depending

on the value of the principal symbol P (ζ) on a given region Ω ⊂M of the integration

domain. This involves a combination of the functions accompanying the higher-order

derivative terms, projected onto Fourier space with wave-vector ζµ.

In the case that the principal symbol has real, non-zero eigenvalues, with a single

eigenvalue of opposite sign to the rest, the equation is said to be (weakly) hyperbolic.

If it is additionally diagonalizable, the equation is strongly hyperbolic, which ensures

well-posedness (at least for a certain amount of time, since many field configuration

may eventually develop singularities). Hyperbolic equations may be traced back to

the zeros of the principal symbol, P (ζ) = 0, which defines the characteristic directions

along which wave-like solutions propagate, thus providing a physical meaning.

On the other hand, if the principal symbol is invertible, which amounts to the

condition P (ζ) 6= 0, ∀ζ 6= 0, and has real eigenvalues of the same sign, the differential

operator is said to be (weakly) elliptic. The operator is strongly elliptic, and it thus

yields a well-posed problem, if it is also diagonalizable. One may notice that the

invertibility condition highlights the non-existence of characteristic directions, and thus

the non-propagation of information. This just reflects the fact that elliptic problems

cannot be thought as Cauchy problems, but as boundary value problems where data

at the (spatial) boundaries of the integration domain must be prescribed.

These notions of hyperbolic and elliptic equations also hold for non-linear partial

differential operators by considering the operator’s linearization, which becomes a lin-

ear partial differential operator. Hence the principal symbol of the non-linear operator

is the symbol of its linearization. According to this, to determine the character of the

equation (0.0.0.1) we must linearize it, i.e. take gµν → gµν + δgµν , and expand to first

order in the fluctuation. In vacuum, the result can be written as follows:

∆Rδgµν ≡ ∆Lδgµν +∇(µvν) = 0, (2.1.1.1)

where ∆L is the quasi-linear second-order Lichnerowicz operator, defined as:

∆Lδgµν ≡ −
1

2
∇2δgµν −R ρ σ

µ ν δgρσ +R
σ

(µ δgν)σ, (2.1.1.2)

and

vν ≡ ∇σδg
σ
ν −

1

2
∂νδg. (2.1.1.3)

1Recall that the Einstein tensor must satisfy Bianchi, which provides D constraints.
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The highest derivative terms appearing in ∆R define the principal symbol of the

differential operator, Pg:

Pgδgµν =
1

2
gαβ

(
−∂α∂βδgµν + 2∂α∂(µδgν)β − ∂µ∂νδgαβ

)
. (2.1.1.4)

The principal symbol of the operator is governed by short wavelength perturbations,

which have large gradients and hence large second derivatives. Additionally, discarding

other terms coming from the Ricci tensor, means that we only keep perturbations with

wavelength much smaller than any curvature scale set by the metric gµν , which can be

taken as a fixed (constant) background.

The next step is to move on to Fourier space, replacing each derivative by a 1-form

ζα,

Pg(ζ)δgµν =
1

2
gαβ

(
−ζαζβδgµν + 2ζαζ(µδgν)β − ζµζνδgαβ

)
. (2.1.1.5)

The linear operator ∆R (and hence the operator associated to Rµν = 0) is elliptic if

and only if

Pg(ζ)δgµν 6= 0 (2.1.1.6)

for all non-vanishing 1-forms on M and for every point x ∈ Ω. Physically, the condition

means that there is no short wavelength wave-like perturbations propagating in Ω.

From previous discussion we know that ∆R cannot be elliptic, which is related

with gauge freedom of the equations. Indeed, recall that under an infinitesimal dif-

feomorphism with gauge parameter χµ, we have δgµν = 2∇(µχν), which reduces to

2∂(µχν) if we assume that χ undergoes changes on very short wavelength scales. After

Fourier transform it yields Pg(ζ)δgµν = 0, ∀ζ. The equations can be elliptic though,

on physical ‘transverse’ modes,

∂νδg
phyν

µ −
1

2
∂µδg

phy = 0, (2.1.1.7)

where they are acted on by:

Pgδg
phy
µν = −1

2
gαβ∂α∂βδg

phy
µν . (2.1.1.8)

The latter is a manifestly elliptic/hyperbolic operator on a Riemannian/Lorentzian

background. At the linear level analysis any short wavelength perturbation can be

decomposed as a transverse physical part plus a longitudinal (pure gauge) part, and

therefore it is now clear that the lack of strong ellipticity (or strong hyperbolicity) of

the vacuum Einstein’s equation is a direct consequence of gauge invariance.

It is key then to find a way to get rid of pure gauge modes. In the linear approx-

imation, we know that the de Donder gauge does the job, so one possibility consists

into de-linearize it. We have to find a one-form ξµ depending on the metric whose

variation δξµ about a constant background gµν equals to ∂νδg
ν
µ − 1

2
∂µδg. Fixing ξµ

will then project out the pure-gauge modes. The simplest choice is:

ξµ = gαν
(
∂αgνµ −

1

2
∂µgαν

)
, (2.1.1.9)



2 Numerical Stationary Solutions in General Relativity 35

which can be rewritten as:

ξµ = gαβΓµαβ = −∇2xµ. (2.1.1.10)

The xµ, viewed as scalar functions on the manifold, is some coordinate chart. In

particular, the gauge choice ξµ = −∇2xµ = 0, is the usual harmonic gauge with

harmonic coordinates xµ, sometimes employed for time evolution in numerical GR.

Indeed, in this gauge the principal symbol of the Einstein’s operator becomes sim-

ply: Pgδgµν ∼ −gαβ∂α∂βδgµν , which is manifestly hyperbolic and thus the system of

equations can be solved as a Cauchy problem.

The main issue with this gauge choice is that, even though gauge invariance is

broken (as desired), covariance is also broken since it refers to a particular coordinate

system. This is aesthetically and practically not so desirable. To recast the problem in

a covariant form one takes (2.1.1.9) and promotes the derivatives to covariant deriva-

tives: ∂ → ∇̄, with respect to an arbitrary fixed background ḡαβ on M . Then ξµ can

be written as:

ξµ = gαβ
(
Γµαβ − Γ̄µαβ

)
, (2.1.1.11)

where Γ̄µαβ is the Levi-Civita connection for ḡµν , known as reference metric, and ∇̄µ

is the associated covariant derivative. Defined as the difference of two connections,

ξµ is a globally covariant vector field and covariance is preserved. ξµ is known as the

DeTurck vector [216]. A local gauge fixing of the form ξµ = 0 accounts for the D local

degrees of freedom associated to diffeomorphisms, and yields some sort of generalized

harmonic coordinates, satisfying: ∇2xµ = −gρσΓ̄µρσ [217, 218]. Still, the Einstein’s

equations are dynamical by nature and after a gauge choice is made the system is

manifestly hyperbolic rather than elliptic. An elliptic system is only obtained once

certain symmetries are imposed, namely staticity or stationarity.

2.1.2 Einstein-DeTurck equation

The Einstein-DeTurck approach uses the DeTurck fixing gauge term defined in (2.1.1.11)

to modify the original Einstein’s equations in a way that on stationary metrics the

equations are elliptic. Then, instead of imposing the gauge-fixing conditions a priori,

the proposition of this formulation is to solve ξµ = 0 simultaneously with Rµν = 0.

In this sense, the gauge is implemented a posteriori, once a solution to the modified

equation has been found.

Following [214], this can be achieved solving the so-called Einstein-DeTurck equa-

tion:

RH
µν ≡ Rµν −∇(µξν) = 0, (2.1.2.1)

with the DeTurck vector ξµ defined in (2.1.1.11), as the difference between the usual

Levi-Civita connection of gµν and that one of the reference metric ḡµν . We are free to

prescribe the latter up to a few restrictions that are discussed next.

In this formulation, rather than projecting out the pure-gauge modes (which would

be the result of working in the space of gauge-fixed metrics), they have a kinetic term
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putting them on the same footing with the physical transverse modes. This implies

that instead of having the usual D(D−1)/2 independent Einstein’s equations (with the

Bianchi’s supplying D gauge fixing conditions), now there are D(D + 1)/2 equations

to be solved. In turn, there are also more unknowns since no gauge conditions are

imposed explicitly on the metric ansatz. The idea is to set up the boundary value

problem, and this now includes a reference metric, in such a way that solutions to the

Einstein-DeTurck equations are in the sector with ξµ = 0, and hence they are Einstein.

In particular, one can fine-tune the reference metric with the goal in mind of getting

better numerical or/and computational efficiency.

The fundamental property of the equation (2.1.2.1) is that it has the desired prin-

cipal symbol,

PH
g δgµν = −1

2
gαβ∂α∂βδgµν . (2.1.2.2)

As we mentioned earlier, this principal symbol corresponds to a strongly elliptic oper-

ator for Riemannian geometries (and thus for static black holes, since their Euclidean

continuation is trivial), and to a strongly hyperbolic one in Lorentzian signature. The

equations are also elliptic for Lorentzian stationary metrics whose Killing vector field

is timelike everywhere asymptotically [215]. This includes the aforementioned static

geometries, but also rotating ones and boosted black branes. The ‘proof’ relies on the

rigidity theorems cited in Ch. 1, which apply to those geometries and motivate an ap-

propriate (adapted) form for the metric. Only then it becomes clear the elliptic nature

of the operator. Furthermore, the characteristic flexibility of this approach was made

explicitly manifest when it was used to find solutions that lie outside of a stationary

setting, where there is no guarantee that strong ellipticity applies. Ref. [219,220] found

geometries with a single helical Killing vector field, and [221, 222] even succeeded in

finding flowing solutions with non-Killing horizons.

A few comments more are in order. First, in Chapter 4 we consider solutions with

a (negative) cosmological constant, but it enters in the equations of motion with no

derivatives. Therefore the discussion presented in this chapter remains unchanged in

the presence of a cosmological constant. The matter field content does not modify

either the highest derivative structure of the Einstein’s equations, but gauge fields

in general have their own local gauge symmetry and will spoil the desired character

of their equations of motion. In [223] an Einstein-DeTurck mimicking procedure for

p-form gauge fields was introduced, but in practice it will be more convenient, when

possible, fix the gauge of form fields algebraically, requiring for instance a vanishing

gauge field at the black hole horizon if there is any.

Ricci solitons

An important issue in this re-formulation is under what circumstances solving the

Einstein-DeTurck equation implies solving Rµν = 0 and ξµ = 0 separately. Generically,

solutions with ξµ 6= 0 do exist and are called Ricci solitons, and thus we must be aware

to avoid them when studying numerical solutions to Einstein’s equations. Of course,



2 Numerical Stationary Solutions in General Relativity 37

for a given problem we can always ‘try and check’, namely, we can solve the Einstein-

DeTurck equation numerically and if ξµ is zero (up to numerical precision), the solution

will be Einstein due to ellipticity, which guarantees local uniqueness of solutions. This

means that Ricci solitons are distinguishable from Ricci-flat metrics, and therefore no

confusion can arise.

Even though, it is desirable to have some knowledge about what to expect regarding

the existence of Ricci solitons and luckily, there are now some established results that

we now review. For simplicity, and because this is the relevant case in this thesis,

we will only discuss the static case here [224], though it was recently extended to a

much wider class of stationary geometries satisfying a t-φ symmetry in [225]. If one

considers adapted coordinates (t, xi) for the static problem, the DeTurck vector will

only have non-vanishing spacelike components and therefore the norm φ = ξiξi ≥ 0,

and will saturate the equality only if ξi = 0, ∀i.
The idea is then to consider asymptotic boundary conditions compatible with ξi = 0

and to study under what circumstances this trivial DeTurck vector at the boundary

remains zero as one integrates towards the interior. To this end, an equation of motion

for the vector, or its norm, is needed. The contracted Bianchi identity can be combined

with ∇µ(2.1.2.1), and contracting the resulting expression with the vector ξµ, yields

(in vacuum):

∇2φ+ ξi∂iφ ≥ 0. (2.1.2.3)

Then if a Ricci-soliton exists, there must be a non-trivial solution picking up the

positive sign in which case the equation admits a maximum principle. This states that

if φ is non-constant then it must attain a maximum at the boundary of the manifold,

∂M , and additionally it has positive gradient at this maximum. Therefore, since φ > 0

by construction, if φ = 0 at the boundaries it must necessarily be zero everywhere.

In this sense, the prescribed data at the boundary constraints the existence of

Ricci solitons. Ref. [224] found compatibility with ξµ = 0 for Riemannian manifolds

with boundaries and those that continue to static Lorentzian spacetimes which are

asymptotically flat, KK, locally AdS or have extremal horizons, as long as the reference

metric shares the same isometries and causal structure, and it thus approaches all the

boundaries (see next section) in the same way as the desired solution. In other words,

the reference metric need to be within the same metric family, but it does not need

to solve the Einstein’s equations. Notice that these include the two types of boundary

conditions that we consider in the next chapters.

2.1.3 Boundary conditions

Strongly elliptic equations must necessarily be supplemented by boundary conditions

to form a well-posed problem. The boundaries of the integration domain will include

asymptotic boundaries and fictitious boundaries. See [215] for a throughout exposition.

Asymptotic boundaries lie at infinite proper distance with respect to other points,

and prescribed conditions there require to preserve a certain structure set by the
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problem itself. For instance, the Minkowski space, Anti-de Sitter, etc.; these use to

be defined through Dirichlet-type conditions. According to previous discussion, the

reference metric must be chosen in such a way that the same asymptotic behavior is

also preserved, which is consistent with ξµ
∣∣
∂M

= 0 at that boundary.

On the other hand, fictitious boundaries are at finite proper distance. Some ex-

amples include (non-extremal) Killing horizons or symmetry axis, which demand reg-

ularity of the metric. Regularity conditions depend on the precise metric ansatz that

one considers, and will be discussed separately in the next chapters.

2.2 Numerics

We have seen how the DeTurck method works to re-formulate the Einstein’s equations

in vacuum as a (non-linear) elliptic boundary value problem to find stationary solu-

tions, but now we need to choose a way of implementing the equations in our computer

and an approach to solve them. In this thesis we have opted to discretize the equations

using pseudo-spectral methods, and Newton’s method2 for integration.

We start by describing Newton-Raphson method applied to a generic system of

PDE’s and then we present the general scheme for solving non-linear boundary value

problems. We overview the basics of pseudo-spectral methods, which involve an ex-

pansion on Chebyshev polynomials and non-uniformly distributed grid points. To

better visualize the procedure, we consider a particular mathematical example in 2

spatial dimensions. Additionally, we also consider transfinite interpolation, a key tool

for boundary problems with more than 4 natural boundaries as that of localized black

holes studied in Chapter 3.

2.2.1 Newton-Raphson method

Newton-Raphson (NR) is a root-finding algorithm [296]. Although it was originally

intended to solve equations of the form f(x) = 0, one can generalize it to a functional

version of the method, which is suitable for solving generic systems of PDE’s.

Given a set of differential equations for N functions {f1(x), . . . , fN(x)} ≡ [f ] de-

fined on Rn (i.e. x ∈ Rn), which we denote by Ei(x; [f ], [∂f ], . . . ) = 0 (i = 1, . . . , N),

we can expand about a particular set [fk] to linear order:

Ei(x; [fk + δf ], [∂fk + ∂δf ], . . . ) ' Ei(x; [fk], [∂fk], . . . ) +
δEi
δfj

∣∣∣∣
[fk]

δfj, (2.2.1.1)

where δfj = fj − fkj . The functional derivative in (2.2.1.1) is a differential operator

2Another integration method that has also been used successfully is based on the Ricci-flow equa-

tion [226]. This is a diffusion-type equation for evolving a one-parameter family of metrics, with the

hope that the system will reach a fixed point that solves the Einstein’s equations. Although this

method is rather easier to implement, it is quite sensitive to the spectrum of negative modes of the

desired solution, which will likely make flow the metric away from the desired fixed point.



2 Numerical Stationary Solutions in General Relativity 39

actually, which acts on δfj. This can be found using the standard definition,

δEi
δfj

∣∣∣∣
[fk]

δfj = lim
ε→0

1

ε

(
Ei(x; [fk + εδfk], [∂fk + ε∂δfk], . . . )

− Ei(x; [fk], [∂fk], . . . )
)
.

(2.2.1.2)

Providing a guess [fk] for the solution to the system of equations, we linearize the

functionals Ei and we find a better solution [fk+1] = [fk + δf ] by setting Ei(x; [fk +

δf ], [∂fk + ∂δf ], . . . ) = 0, obtaining:

δEi
δfj

∣∣∣∣
[fk]

δfj ' −Ei(x; [fk], [∂fk], . . . ). (2.2.1.3)

In the most general case, we have moved from a non-linear to a linear set of equations

(subject to the similarly linearized boundary conditions) which may be solved for the

δfj’s using standard PDE methods. Then the corrected solution is given by fk+1
j =

fkj + δfj. The process can be repeated by taking [fk+1] as the new guess to find

[fk+2], and so on. The expression can be used iteratively until the desired accuracy ε

is reached. In our case, the different functionals Ei are the different components of the

Einstein-DeTurck equations we wish to solve, and the [f ] are the unknown functions

appearing in the metric ansatz.

The method will converge quadratically, εn+1 ∼ ε2n, provided that the initial guess

is close enough to the unknown zero. This intuitively means that the number of stable

digits roughly at least doubles at each step. Such a rapid convergence makes NR a

powerful method for finding roots. However, for a generic problem, there exist some

difficulties. Many of them are directly related to the initial seed, after all, it sets up

the point where the method starts to run.

The first one appears (almost) always in numerics: the convergence of the method.

For NR we have said it is quadratic, but this depends strongly on the initial seed, which

if is not chosen suitable may lead the iterations to a divergence, or on the opposite,

to an infinite loop. In some cases, this can be controlled by introducing a parameter

λ ∈ R into the iteration formula. Schematically,

fn+1 ∼ fn + λδf, (2.2.1.4)

with λ ∼ 10−1 or even smaller. The idea is to ensure that iterations keep within the

basin of attraction. On the other hand, if the problem has more than one solution then

exists more than one basin of attraction where the seed can be pushed. It may happen

that the basin of attraction of one root dominates and then other ones may be difficult

to find. Since NR only finds a single solution, one needs a separate, well-motivated

guess to find other solutions. Physical intuition may be useful in this situation.

2.2.2 Pseudo-spectral methods

Pseudo-spectral methods are a collocation method [227,297–299]. The general strategy

in collocation methods is to discretize the problem placing a number of points on the
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domain we wish to solve it, xi (i = 1, . . . , N), the so-called collocation points. The full

set {xi} is referred as the grid, being N its dimension. Given the value of a function

at these points yi = y(xi), its derivatives at these points y
(n)
i are approximated by

differentiating an interpolating (usually polynomial or trigonometric) function. This

operation reduces the derivative to a matrix operation

y
(n)
i ' D

(n)
ij yj, (2.2.2.1)

where D
(n)
ij is the nth order differentiation (N ×N) matrix, and allows us to discretize

linear differential equations reducing them to standard linear algebra problems.

The various different collocation methods differ only in their choice of collocation

points xi, and the type of functions used for interpolation. For instance, kth finite

differences uses a kth order degree polynomial for interpolation, on a uniform grid.

This is a very local approach, where the derivative at a given grid point depends on

the function value on k + 1 neighborhood points, allowing to evaluate k derivative at

most.

For functions that are sufficiently differentiable, finite differences methods converge

in a power-law fashion, with the power being equal to the order of the finite differenc-

ing. Putting the eye on computational efficiency, then the ideal would be to take the

limit where the degree of the interpolating goes to infinity, which is the idea behind

pseudo-spectral methods. Since one works with a finite set of collocation points, it

is impossible to take this limit and the most we can opt is to use all available col-

location points to form an interpolation function. This is, consider the interpolating

P (x) to be a single function, independent of i, such that P (xi) = yi, ∀i, and then

approximate y′i = P ′(xi), y
′′
i = P ′′(xi) and so on. This makes the approach non-local

by nature. Now the derivative of the function at a single point depends on the values

of the function at all points.

To be precise, in a pseudo-spectral approach one express the function y(x) in terms

of N Chebyshev functions:

y(x) '
N∑
k=0

ckTk(x), (2.2.2.2)

with Ti(cos(a)) = cos(ia). In practice, when representing a function we do not make

explicit use of this expression. We specify the function values on the grid yi = y(xi)

instead of the coefficients ck, however, such expansion is used for computing the dif-

ferentiation matrices on a given grid.

The kth Chebyshev polynomial can be written as a kth order polynomial in x, and

therefore (2.2.2.2) provides an ‘all-order’ interpolation of the desired function. One

may notice that (2.2.2.2) is nothing but a Fourier expansion in a = cos−1 x, for which

is well-known that the Fourier transforms ck decay rapidly (provided that the function

y(x) is analytic, or smooth enough). This implies that the numerical error will scale

as δx−N as N → ∞, being δx the largest grid distance, which is called exponential

convergence. In comparison to finite differences, less grid points are needed to achieve
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the same accuracy, which results in a better computational efficiency. One possible

drawback is that it yields denser differentiation matrices since the method makes use

of the function values on all grid points. It is not difficult to determine the specific

form of the entries of the pseudo-spectral differentiation matrices on a Chebyshev

grid of dimension N , but Mathematica has set by default a few single-line commands

to define them for a bunch of well-stablished interpolation methods, pseudo-spectral

among them.

Although an equidistant grid of (non-periodic) N points is appealing because its

simplicity, it is not by far the best option for high order polynomials due to the

Runge’s phenomenon. This problem consists of the appearance of large oscillations in

the interpolant (even if it is a smooth, non-oscillatory function) near the edges of an

equidistant grid, and will spoil the computation. Instead, it has been shown that a

pseudo-spectral approach on Chebyshev-Gauss-Lobatto (CGL, or Chebyshev for short)

collocation points works extremely well in overcoming the Runge’s phenomenon. If

the integration domain is x ∈ [x−, x+], these are given by

xi =
x+ + x−

2
− x+ − x−

2
cos

(
iπ

N

)
, (2.2.2.3)

i = 0, . . . , N . This set of points has higher density towards the edges, x− and x+,

which is precisely where the convergence problems arise in the uniform grid.

Practical example

The best way to visualize how NR works in conjunction with the pseudo-spectral

methods is by considering a particular example. Let us consider the following non-

linear PDE:

E[u, ∂2
xu, ∂

2
yu;x, y] = ∇2u(x, y)− eu(x,y) = 0, (2.2.2.4)

defined on the unit square (x, y) ∈ [0, 1] × [0, 1]. We have four boundaries, and thus

four boundary conditions to impose. Let us consider the Dirichlet boundary conditions

u(1, y) = 0 = u(x, 1), and Newman on the rest of the edges, ∂xu(0, y) = 0 = ∂yu(x, 0).

One can prove that this problem is well-posed, i.e. it has elliptic character. We will

solve this boundary value problem using NR method.

Whatever the differential equation is, the main problem is to construct the matrix

associated to the functional derivative of our non-linear differential operator. This

calculation may be overly costly from a computational viewpoint, or numerically inac-

curate. However, for boundary value problems as ours, the functional E is explicitly

known and functional derivatives can be taken analytically and then implemented.

For the boundary problem at hand, (2.2.1.3) is given by:(
∇2 − eu

)
δu = −(∇2u− eu). (2.2.2.5)

Now we have to discretize it. The solution data is located in a two-dimensional grid,

(xi, yj) → uij = u(xi, yj), (i = 1, . . . , Nx and j = 1, . . . , Ny). We can just use the



42 2.2 Numerics

Chebyshev grid (2.2.2.3) with x− = 0 = y− and x+ = 1 = y+ in each direction

independently, and take the cartesian product: [0, 1]× [0, 1].

The function uij can be though as a Nx × Ny matrix, however, it does not take

long to realize that this is not the proper way to proceed. Instead of this, we consider

a vector uI derived from uij, in such a way that we deal with a partial derivative

operator ∂uI ∼ DIJuJ . We have always considered the following convention for the

ordering:

 u11 . . . u1Ny

...
. . .

...

uNx1 . . . uNxNy

 →



u11

...

u1Ny

...

uNx1

...

uNxNy


. (2.2.2.6)

According to this, u11 is mapped to the component I = 1 of a vector, u12 to the

component I = 2, etc. Then the first vector block corresponds to the function value

at x1, and so on. We can establish a precise relation between the pair of indices (i, j)

and the index I through

I(i, j) = j + (i− 1)Ny. (2.2.2.7)

(This is just one possibility, the one that respects our ordering.) This index ranges

from I = 1 to I = NxNy and the vector uI splits up into Nx vector blocks of length

Ny. Then the corresponding differentiation matrices are found by using the Kronecker

product. If D
(n)
x and D

(n)
y are the differentiation matrices on the grids xi and yi

respectively, then the full derivatives D
(n)
X and D

(n)
Y acting on uI are given by:

D
(n)
X = D(n)

x ⊗ INy , D
(n)
Y = INx ⊗D(n)

y , (2.2.2.8)

where Ik is the k × k identity matrix. Both matrices have dimension NxNy × NxNy,

as expected since they act on vectors with NxNy components. Higher derivatives can

be obtained as products of D
(1)
X and D

(1)
Y , or by taking Kronecker products of higher

derivative matrices.

Having defined how to place the function on the grid and how to take derivatives,

we can proceed. (2.2.2.5) can be put in the form MIJδuJ = −NI , with

MIJ = (D
(2)
X + D

(2)
Y )IJ − IIJe

uI ,

NI = (D
(2)
X + D

(2)
Y )IJuJ − euI ,

(2.2.2.9)

at the interior points. Indeed, at the boundaries we are not interested in solving

the equations. Instead we have to impose conditions that constrain the value of the

solution according to the boundary values. This means that for some index values

I, J , MIJ need to be replaced by the linearized boundary conditions, whereas NI need

to be replaced for the boundary conditions themselves.
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As an example, let us figure out how to implement ∂xu(0, y) = 0, whose lineariza-

tion is: ∂xδu(0, y) = −∂xu(0, y). This amounts to replace the first vector block (of

length Ny) in NI by the first vector block (of length Ny) of (D
(1)
X · u)I . On the other

hand, the matrix operator MIJ splits up into Nx matrices of dimension Ny × NxNy.

Therefore we should replace the first matrix in there by the first matrix (of dimension

Ny ×NxNy) in (D
(1)
X )IJ . It is now straightforward to see what needs to be replaced to

implement the boundary conditions on the other three edges.3

Once provided an initial seed u0
I , we can evaluate (2.2.2.9) and solve for δuJ easily

using LU decomposition, or any other standard algorithm. In our case, at each step of

the iterative process the linear system is solved using the former method, implemented

by subroutine LinearSolve in Mathematica. An improved solution will be given by:

u1
I = u0

I + δu0
I . The process can be repeated as necessary until convergence (or failure;

hopefully not!) according to a defined tolerance ε:

max
0≤xk,yk≤1

|un+1
I − unI | < ε. (2.2.2.10)

The construction outlined here implements the method for one single equation. If

there were more equations, say, p equations for p unknowns, we should consider the

discrete version of the full system. In higher dimensions everything follows as before,

though in this thesis we will restrict to problems with co-dimension 2.

An important step in order to construct accurate numerical solutions is considering

various subdomains, a practice that lies under the name of ‘patching’. In Fig. 2.2 we

display the numerical solution of the boundary problem (2.2.2.4) on a patched grid,

that we have found using the techniques outlined below.

Patching

If the solution to a boundary value problem is smooth, a grid formed by one single patch

to cover the whole integration domain may be enough to obtain an accurate solution,

but at the moment that a solution is not that well-behaved, due to the presence of

large gradients for instance, more resolution is needed to keep the accuracy in order.

Typically, the singular behavior is localized in some region of the whole computational

domain, and in these conditions it is convenient to use various subdomains, or patches,

with different resolutions. This gives the flexibility of increasing the number of grid

points just where it is necessary, instead of increasing the whole grid which would be

computationally more expensive.

For example, taking the cartesian product of two 1-dimensional grids formed by

two set of points that cover the domain well, results in a rectangular grid with (2×2 =)

4 patches. This is the most trivial example of patching. Patching implementations

3Notice that the grid corners belong to two boundaries. In case that both boundaries share the

same condition this does not suppose any difference. But if the conditions are different, we have to

make a choice and establish if the corner belongs to one or the other edge.
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depend on whether the different sub-domains overlap or not. If they do, an inter-

polation function is used on those regions to ensure continuity. On the other hand,

non-overlapping patches meet only on patch boundaries. In this thesis we only consid-

ered this second option. Then in addition to the outer boundaries, we will also have

inner boundaries where continuity of the function and its normal derivative must be

imposed. The full matrix MIJ associated with the linear operator will have a diag-

onal block structure, with many blocks as subdomains, and with off-diagonal blocks

adjacent to any pair used to impose the junction conditions.

x2

x1

ξ2

ξ110

1
x(ξ)

Ξ2X2

B2

B3

B1

B4

Fig. 2.1: Transfinite interpolation.

Now we want to go a step further and

consider grids which are covered with sub-

domains that have non-trivial shape. The

main interest in doing that is that there

exist many boundary problems that in-

volve more than four natural boundaries,

whereas rectangular grids (if the problem

depends on just two coordinates) only have

four. Some examples that arise in GR are

the localized black holes that we find in

next chapter, black rings, domain walls or

plasma balls in AdS, among others. One

way to tackle these problems is dividing the physical domain, i.e. where the problem

is originally defined, into different non-rectangular patches. Mapping each one to a

square grid, numerics are then easily carried out.

This lie much on the idea of a coordinate transformation. The grid points of the

physical grid (or part of this) in a 2-dimensional region X2 ⊂ R2 are defined by map-

ping the nodes of a rectangular reference grid Ξ2, known as the logic or computational

domain, through a certain smooth coordinate transformation: x(ξ) : Ξ2 → X2, with

x = (x1, x2) and ξ = (ξ1, ξ2). See Fig. 2.1. One way to generate such a mapping

given the parametric boundaries B1, . . . ,B4 is by using algebraic methods. Consider

a warped rectangular region in the physical space with coordinates x1 and x2, whose

parametric equations for its four deformed boundaries in terms of the logic coordinates

ξ1 and ξ2 (which take values in the unit interval [0, 1]), are

B1(ξ1) = (x1(ξ1), y1(ξ1)),

B2(ξ1) = (x3(ξ1), y3(ξ1)),

B3(ξ2) = (x3(ξ2), y3(ξ2)),

B4(ξ2) = (x4(ξ2), y4(ξ2)),

(2.2.2.11)

according to Fig. 2.1. The various functions xi(ξ
a), yi(ξ

a) are any functions of our

choosing such that the parametrized curves satisfy the following consistency conditions

on the corners: B1(0) = B3(1), B1(1) = B4(1), B2(0) = B3(0) and B2(1) = B4(0).

These conditions are all that is necessary to generate a coordinate map. The coordinate
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Fig. 2.2: Numerical solution to the boundary problem (2.2.2.4) using transfi-

nite interpolation. The physical space is divided in two different regions: one

‘ellipsoidal’ patch (which in turn has been divided in n = 4 regions) plus one

‘trapezoidal’ patch. The grid resolution Nξ1 ×Nξ2 in each patch is, from the

bottom up, 40×25, 30×25, 20×25, 10×25 and 25×15. We have started with

trivial initial seed. Convergence is reached for ε < 10−12 after 4 iterations.

transformation x(ξ) is then given by the transfinite interpolation formula [300,301]:

x(ξ) = (1− ξ1)B3(ξ2) + ξ1B4(ξ2) + (1− ξ2)B1(ξ1) + ξ2B2(ξ1)

−
(
ξ1ξ2B4(1) + ξ2(1− ξ1)B3(1) + ξ1(1− ξ2)B4(0)

+ (1− ξ1)(1− ξ2)B3(0)
)
.

(2.2.2.12)

The equations are written in the physical space X2, and grid points and differentiation

matrices are mapped from each logic space onto the physical space via the chain rule

and the inverse function theorem applied to (2.2.2.12).

Further considerations to get more accurate numerical results include mesh-refinement

techniques. These are specially necessary when the singular behavior of a given numer-

ical function is very localized at some region of the integration domain. The critical

black holes that we construct in next chapters are an example where this occurs. In

particular, we consider a trivial generalization of the mesh-refinement formula pre-

sented in [228], which has enough flexibility to be adapted on the various cases that

we encounter along this work. Given a set of grid points X distributed along the

interval [A,B], we can generate the new set X̃ = mesh(X;A,B,C), with

mesh(X;A,B, χ) = A+
B − A
sinhχ

sinh

(
χ
X − A
B − A

)
, (2.2.2.13)
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which are densely distributed towards A. The parameter χ controls how densely, and

typically, 1 < χ < 10. One does not want to be interested in using large values of χ,

since the opposite region, say, the grid points close to B, will have a poor density and

the final outcome may be counterproductive.

2.2.3 Convergence tests

Any numerical approach always yields errors due to the finite precision of our com-

puters, and also because the finite size of the grid. A naive ‘measure’ of the error may

consist into evaluate the equations on the numerical solutions, and inspect how close

to zero they are. Even if this quantity is small, sometimes numerics conspire against

us and we need other ways to check the validity of the solutions. Additionally, we

deal with tensor equations, and it only make sense to evaluate coordinate independent

quantities, which gives us the assurance that that zero is not a coordinate artifact.

In the continuum limit where the number of points is large, the error is expected

to reduce to zero. How fast or low depends on the numerical scheme one uses. In the

case of pseudo-spectral methods, these imply exponential convergence if the solution

is smooth enough. However, if the solution only has a finite number of derivatives, the

convergence rate will be a power law, which depends on the number of derivatives that

the continuum solution has. Numerical solutions of a certain system of equations which

represent a good approximation to the real solutions should reflect such a behavior

in the error. To this end, convergence tests are usually carried out. In a converge

tests one monitors the numerical error as a function of the grid resolution. Typically

one choose one or two solutions that are a good representative of the whole branch of

solutions that is found (in case there is a branch), and interpolates them at different

resolutions. Each interpolated solution is then filtered through NR loop to obtain the

actual solution at the given resolution. In any case, the behavior always flattens out

for some critical N∗, precisely due to finite precision, but for N < N∗ one can check

whether the behavior is as expected or not.

It is important to highlight that monitoring the numerical error is key to decide

when more resolution is needed, or directly, when an ansatz needs to be modified to

better suit the real solution. In practice, one needs to distinguish whether a bigger

error occurs because of the form of the solution itself, due to the appearance of singular

behavior for instance, or due to the anomalous behavior of some physical quantity. In

any case, a simple plot of the solution should be enough to get us out of doubt.

The Einstein-DeTurck equation has a very valuable quantity that can be monitored

and which is computationally cheaper to evaluate than the full tensor equations: the

DeTurck vector ξM . This must vanish on the whole integration domain for Einstein

solutions and therefore it provides a reasonable estimate of the numerical error. In the

studies of chapters 3 and 4, we have performed convergence tests using the norm of the

DeTurck vector and their non-zero components, though the latter, being coordinate

dependent, are less reliable.



Chapter 3

Critical Kaluza-Klein Black Holes in D

= 10

This chapter is based on [1], authored in collaboration with P. Figueras. The numerical

code and posterior data analysis was written and carried out by the author of this thesis

and the calculations were verified by P. Figueras.

3.1 Introduction and results

In D = 4 spacetime dimensions, stationary asymptotically flat black hole solutions of

the Einstein equation in vacuum of a given mass have spherical topology, are presum-

ably unique and all the evidence suggests that they are dynamically stable. However,

in D > 4 these properties change radically. The physics of black objects turns out to

be much richer, allowing for non-spherical topologies, instabilities and non-uniqueness

(and thus phase transitions). Black holes are fundamental objects in general relativ-

ity. In recent years the study of such objects in non-astrophysical settings has received

much attention due to the intrinsic interest in understanding fundamental aspects of

gravity as described by GR (see [98] for a review), and also because of the connec-

tions to string theory and the gauge/gravity duality [162–166]. In the latter context,

it is natural to consider spacetimes that are asymptotic to Md × Nn, where Md is

d-dimensional Minkowski or Anti-de Sitter space and Nn is an n-dimensional compact

manifold so that the total number of spacetime dimensions is D = d+ n > 4.

One of the most extensively studied models in this setting is that of Md = Minkd
and N1 = S1, a circle of length L. Since the compact dimension is flat, it is trivial

to write down a black hole solution that is uniformly wrapped along the compact

dimension: This is just given by the (D− 1)-dimensional Schwarzschild solution times

a (compact) flat direction, SchwD−1 × S1. Such a higher dimensional black hole is

known as the uniform black string (UBS). In [130], Gregory and Laflamme (GL)

famously showed that thin enough black strings are unstable under linear gravitational

perturbations with a non-trivial dependence along the S1-direction.1 Determining the

1More precisely, the condition for the existence of a linear instability is r0/L . O(1), where r0 is

the mass parameter of the parent SchwD−1 solution and L is the asymptotic length of the circle.

47
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endpoint of such an instability has been the subject of intense studies during the past

few years.

At the onset of the instability, the linear GL mode is time-independent (i.e. a zero

mode) and can be continued to the non-linear regime. This indicates that there exists

a new branch of black strings which are non-uniform in the compact direction and

are thus known as non-uniform black strings (NUBS). NUBS were first constructed

perturbatively in D = 5 by [13], subsequently constructed fully non-linearly in vari-

ous spacetime dimensions using numerical methods [14, 157, 214, 229–232] and, more

recently, using the large-D expansion [233]. It turns out that in D < D∗ = 13(.5),

NUBS have less entropy than UBS with the same mass and hence they cannot be the

endpoint of the GL instability [234, 235]. In fact, based on entropic arguments, [130]

conjectured that unstable UBS would evolve into an array of localized black holes

through a dynamical topology change transition; the latter can only happen through

a singularity and hence the evolution of the GL instability of black strings could poten-

tially constitute a counter-example of the weak cosmic censorship conjecture [62–64]

around such spacetimes. This scenario was confirmed in Ref. [137], using numerical

relativity techniques.2 On the other hand, for D > D∗, NUBS can be dynamically

stable and hence be the endpoint of the GL instability, as [138,233] confirmed.

Apart from UBS and NUBS, spaces that are asymptotically Minkd×S1 also admit

static black hole solutions that are localized on the S1. These localized black holes

(LOC) have been constructed numerically [17, 18, 22, 214] and perturbatively in the

limit in which the black holes are small compared to L [198–201,236,237].

Motivated by geometrical considerations, [21] conjectured that the NUBS and LOC

branches should merge at a topology changing critical solution governed by a Ricci-flat

double-cone. This conjecture was tested from the black string side in D = 6 [238], and

later in various dimensions in [231]. However, the most non-uniform black strings in

these early constructions were still too far from the critical regime to provide conclusive

results (see however Ref. [230]). Only recently, Kalisch et al. [22,157], in an impressive

numerical construction, have managed to obtain NUBS and LOC in D = 5, 6 extremely

close to the critical point, confirming the double-cone predictions to an unprecedented

level of detail.

The goal of the present work is to construct NUBS and LOC in D = 10 very close

to the critical point, where these branches of black holes merge. Critical solutions

have only been previously constructed in D = 5, 6 [22, 157]; for higher values of D,

gravity becomes more localized near the black hole horizon, which makes the numerical

construction more challenging, especially very close to the critical point. Note that

[161] previously constructed both NUBS and LOC in D = 10, but their solutions were

very far from the critical regime since the aim of that paper was different (see below).

2Recall that this final fate is not exclusive of UBS and black holes with compact extra dimensions.

Fully non-linear time evolutions of analogous instabilities in asymptotically flat black rings or ultra-

spinning Myers-Perry black holes spacetimes, similarly lead to violations of the weak cosmic censorship

conjecture [145,148,153].
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Fig. 3.1: Schematic phase diagrams in the microcanonical ensemble for var-

ious D’s. Here D0 = 10 is the critical dimension of the double-cone geom-

etry [21] and D∗ = 13(.5) is the critical dimension in the microcanonical

ensemble [234].

At the critical dimension D∗ the dynamical stability of weakly NUBS changes from

being unstable for D < D∗ to being stable for D > D∗. However, for D = 12, 13 [231]

found that NUBS with a sufficiently large non-uniformity can also be dynamically

stable.3 This paper showed that there exists a turning point, i.e. a maximum of the

mass/area, along the NUBS branch where the stability properties of the solutions

change. On the other hand, in D = 5, 6 such a turning point is present along the LOC

branch. In D = 10, as we move along both the LOC and the NUBS branches and

approach the critical solution from both sides, we do not find any turning points on

either of the branches. Therefore, the simplest picture that emerges from our work is

that, sufficiently far from the critical solution, in D < 10 there should exist a turning

point along the LOC branch, in D > 10 the turning point occurs along the NUBS, and

in D = 10 there are no turning points at all. See Fig. 3.1. Recently, [233] confirmed the

existence turning points in the phase diagram of NUBS in D < 14 using the large-D

expansion, but the reliability of their approach breaks down at around D ≈ 9. Notice,

however, that the methods of [233] did not allow them to study critical solutions in

detail and therefore our results complement theirs.

Our numerical data suggests that in D = 10 the merger happens precisely at a cusp

in the phase diagram. The study of the critical geometry in [21] showed that D = 10

is the critical dimension of the cone geometry that governs the topology change. For

D < 10, the approach of physical quantities to their critical values is controlled by a

(dimension-dependent) power law with infinitely many oscillations (i.e. turning points);

this behavior has been beautifully confirmed in [22] for D = 5, 6. On the other hand,

for D > 10 the approach to the critical point should be given by two independent

power laws, with no oscillations. D = 10 is the marginal case and the approach to the

critical point should be controlled by a power law with a logarithmic correction. In

3It is plausible that stable NUBS also exist in D = 11 for larger values of the non-uniformity

parameter than in [231].
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this study we confirm this in D = 10.

In this chapter we also compute the spectrum of negative modes of the Lichnerowicz

operator, ∆L, around the LOC and NUBS branches, restricted to modes that preserve

the isometries of the background. Just as in [214,231], we find that NUBS posses two

negative modes: one is continuously connected (as the non-uniformity parameter goes

to zero) to the negative mode of the parent Schwarzschild black hole [154]. This mode

diverges as the NUBS approach the critical solution. The other negative mode is the

continuation of the GL zero mode to non-zero values of the non-uniformity parameter

and our data suggests that it tends to a finite value at the critical solution. On the

other hand, LOC have a single negative mode throughout the branch and it approaches

the same finite value as the NUBS at the critical solution. See Fig. 3.11. Note that at

an extremum of the temperature one can have zero modes corresponding to variations

of the parameters of the solution that respect the boundary conditions (i.e. preserve

the temperature). We do not find any evidence for new zero modes, which is consistent

with the absence of extrema of the temperature along either branch of solutions.

Another motivation for the present work comes from the gauge/gravity duality.

The best well-understood example of this correspondence is between maximally super-

symmetric Yang-Mills (SYM) theory in p+1 dimensions and gauge group SU(N), and

Type IIA (even p) or Type IIB (odd p) superstring theory containing N coincident Dp-

branes in the decoupling limit. For p = 1 the duality is between 2-dimensional SU(N)

SYM theory and type IIA or IIB string theory in the presence of D0- or D1-branes re-

spectively [239]. At large N , strong coupling and finite temperature, the gauge theory

is described by black hole solutions with D0- or D1-charge in the supergravity approx-

imation, depending on the temperature (type IIA at low temperatures and type IIB at

high temperatures respectively). In this chapter we are interested in vacuum black hole

solutions of the Einstein equation in ten spacetime dimensions, one of which is com-

pactified on a circle of length L. After a series of standard U-dualities [161,240–242],

these vacuum black holes can be given D0- or D1-brane charges.

According to the AdS/CFT correspondence, the black hole phase structure should

be reproduced by the thermal phases of SYM on a circle at strong coupling and large

N . Lattice simulations of SYM on a torus, with one of the circles being the thermal

circle and with periodic boundary conditions for the fermions on the other spatial

circle, have been performed. Most of the previous works in the past have focused on

the p = 0 SYM quantum mechanics and agreement with the gravity predictions has

been confirmed [243–256]. The case p = 1 has received less attention in the past [23],

until the recent of work of [24]. This paper predicted the temperature at which a

first order phase transition occurs from lattice simulations, in a regime where the

latter should overlap with the supergravity calculations. The latter was only recently

computed in [161] and found very good agreement with the lattice result. In this

chapter, as a by-product of our calculations, we recompute the value of the phase

transition temperature (or energy, in the canonical ensemble); the values that we

obtain are tcrit = 1.09257 tGL and εcrit = 1.24181εGL for the temperature and energy
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at the phase transition measured with respect to the GL point. Our values differ with

those found in [161] by less than a 0.25%. In addition, we have been able to locate

the merger between the non-uniform and localized phases.

Organization of this chapter

The rest of this chapter is organized as follows. In §3.2.1 we start by reviewing some

general aspects of black holes in Kaluza-Klein spaces. In subsections 3.2.2 and 3.2.3 we

present our numerical construction of NUBS and LOC, respectively. In §3.3 we present

our results. §3.3.1 contains the phase diagrams in the microcanonical and canonical

ensembles, in §3.3.2 we consider the horizon geometry and in §3.3.3 we study in the

detail the critical behavior of NUBS and LOC near the critical point and compare it

with the predictions of the double-cone model. §3.3.4 is devoted to the computation

of the spectrum of negative modes of the Lichnerowicz operator around the NUBS

and LOC. §3.4 contains the results for the phase diagram of the supergravity solutions

with D0-charge. We close the chapter with a discussion in §4.5.

Some technical details are relegated to the Appendices. In appendix 3.A we give

more details about the integration domain that we have used to construct the localized

black holes and in appendix 3.B we present some convergence tests. The mapping from

neutral solutions to charged ones is presented in detail in appendix 3.C.

3.2 Black objects in Kaluza-Klein theory

Consider vacuum Einstein’s gravity in D = 10 spacetime dimensions with Kaluza-

Klein (KK) asymptotic boundary conditions, i.e. Mink9 × S1. For static spacetimes,

this theory contains three different families of static black holes, namely, UBS, NUBS

and LOC. After fixing the overall scale by fixing the length of the asymptotic S1,

these three different types of black holes can be parametrized by the temperature and

one may distinguish them by the topology of the horizon and the isometries. Whilst

UBS are translationally invariant along the S1 and are known explicitly, for NUBS and

LOC the translation invariance along the S1 is broken and they have to be constructed

numerically (or pertubatively). In this section we explain our numerical construction

of such solutions. Since we are interested in studying the thermal phases, we will

be working with the Euclidean form of the solutions where the Euclidean time τ is

periodic, τ ∼ τ + β, with β being the inverse temperature.4

3.2.1 Generalities and uniform black strings

In this chapter we are interested in Einstein metrics that asymptote to the flat Eu-

clidean metric, where one of the directions corresponds the Euclidean time τ , times

4Note that since we are considering static spacetimes, we can change to Lorentzian signature by

a trivial change of coordinates τ → i t.
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a KK circle of length L. As usual, the Euclidean time τ is compact and has period

β. Ultimately we will consider ten dimensional spaces but for now we shall keep the

total number of spacetime dimensions D general. Moreover, we will only consider

spacetimes that preserve an SO(D− 2) subgroup of the full rotation group of the flat

Euclidean metric in D − 1 dimensions. Therefore the asymptotic isometry group of

the spaces that we shall consider is U(1)β×SO(D − 2)×U(1)L, which is made explicit

in the asymptotic form of the flat metric on the product space S1
β × RD−2 × S1

L,

ds2 = dτ 2 + dr2 + r2 dΩ2
D−3 + dy2 , (3.2.1.1)

with τ ∼ τ + β and y ∼ y + L. For more general static metrics, the asymptotic

behavior of the components

gττ ' 1− Cτ
rD−4

, gyy ' 1 +
Cy
rD−4

, (3.2.1.2)

is related to the asymptotic charges, the mass and tension, of the solution [257–259]:5

M =
ΩD−3L

16π

(
(D − 3)Cτ − Cy

)
, T =

ΩD−3

16π

(
Cτ − (D − 3)Cy

)
. (3.2.1.3)

From these quantities one can define the relative tension n = T L/M , which is bounded:

0 ≤ n ≤ D−3. Here the upper bound follows from the Strong Energy Condition which

imposes that gravity is not repulsive asymptotically, while the lower bound was found

in [260,261]. In addition to these charges, NUBS and LOC can be characterized using

their own geometric quantities which are discussed in §3.3.2. All neutral KK solutions

with a single connected horizon have temperature T = κ/(2π) and entropy S = AH/4.

They satisfy the 1st law of thermodynamics and the Smarr’s relation,

dM = TdS + T dL, (D − 3− n)M = (D − 2)TS. (3.2.1.4)

From the point of view of the numerics, the latter may be used as a consistency check,

since the entropy and the mass are obtained from the metric. The free energy is

F = M −TS. Note that the 1st law of thermodynamics (3.2.1.4) clarifies the physical

meaning of T : it is a force per unit of length, i.e. tension, that wants to stretch the

string along the compact direction.

Uniform black strings are known explicitly for all values of D: The metric is

SchwE
D−1 × S1

L (E stands for Euclidean), where the Schwarzschild metric is written

in (1.2.0.1) (in Lorentzian signature and in D dimensions). The parameter r0 labels

each solution and it is directly related to the physical quantities:

κ =
D − 4

2r0

, M =
ΩD−3L

16π
(D − 3)rD−4

0 ,

AH = LrD−3
0 ΩD−3, T =

ΩD−3

16π
rD−4

0 .

(3.2.1.5)

5Throughout, we use units of GD = 1, where GD is the Newton’s constant in D spacetime

dimensions.
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(Notice that the uniform black string has Cτ = rD−4
0 , Cy = 0 and constant relative

tension n = (D − 3)−1.) Finally, recall that the topology of the horizon is SD−3 × S1.

Gregory and Laflamme [130] famously discovered that thin enough UBS, i.e. r0/L .
O(1), are dynamically unstable to clumping along the compact direction. See §1.2 of

Chapter 1 for a detailed exposition. More precisely, for fixed L there is a critical value

rGL
0 below which there exist regular (linear) perturbations that grow exponentially

with time and that break the translational invariance along the S1; at precisely this

critical value, the perturbations are time-independent thus signaling the existence of a

linear solution of the Einstein equation which is not uniform along the S1. This linear

solution can be continued into the fully non-linear regime, giving rise to the NUBS.

For D = 10, the critical value of the horizon radius at the onset of the GL instability

is given by:

rGL
0 = 0.36671(3)L. (3.2.1.6)

Our aim in this work is to numerically construct vacuum NUBS and LOC solutions

in D = 10. In practice, we will treat the different metrics as smooth Riemannian man-

ifolds with a U(1)β Killing vector that vanishes at the horizon and solve the Einstein

vacuum equation, Rµν = 0, subject to certain regularity and asymptotic boundary

conditions. As is we discussed in Ch. 2, due to the underlying gauge invariance of the

theory, this equation does not yield a well-posed boundary value problem. Instead, we

solve the Einstein-DeTurck equation which is manifestly elliptic.

In our numerical implementation the equations are always discretized using pseudo-

spectral methods on a Chebyshev grid and we solve them by an iterative Newton-

Raphson method. All this has been addressed in Ch. 2, and we refer the reader to

that chapter for any clarification.

3.2.2 Numerical construction of non-uniform black strings

NUBS wrap the KK circle, and, for regular solutions, the horizon SD−3 is finite every-

where. This implies that with our symmetry assumptions, the integration domain has

the following effective boundaries: the horizon, asymptotic infinity and the periodic

boundary. Due to the symmetry of the first GL harmonic, NUBS have a Z2-symmetry

and then one has an additional mirror boundary. Hence, a single coordinate patch

is enough to cover the whole computational domain. In practice, to numerically con-

struct highly non-uniform black strings near the critical point it is convenient to use

more than one patch to get enough resolution in the regions of interest, i.e. where the

metric functions behave in a singular fashion.

To find NUBS we consider the following ansatz for the metric:

ds2 = 4 r2
0 ∆2

(
x2eQ1 dτ 2 +

eQ2

f(x)2(D−3)
dx2

)
+ eQ3 dy2

+ 2Q4 dx dy +
r2

0 e
Q5

f(x)2
dΩ2

D−3,

(3.2.2.1)



54 3.2 Black objects in Kaluza-Klein theory

with ∆ = (D−4)−1, f(x) = (1−x2)∆, and unknowns Q ≡ {Q1, Q2, Q3, Q4, Q5}(x, y).

For Q = 0, this ansatz reduces to the UBS in D dimensions written in terms of the

compact radial coordinate x,

x2(r) = 1−
(r0

r

)D−4

. (3.2.2.2)

The UBS satisfies all the relevant boundary conditions that we will impose on our

solutions (see below) and we shall use it as the reference metric in the Einstein-DeTurck

equation. The compact radial coordinate x ∈ [0, 1) covers the region from the horizon

(x = 0) to infinity (x = 1). Note that NUBS posses reflection symmetry along the S1

direction. This allows us to consider only one half of the KK circle subject to mirror

boundary conditions. Therefore, we take y ∈ [0, 1], where y = 0 corresponds to the

reflection plane and y = 1 the periodic boundary. This implies that the asymptotic

length of the KK circle is kept fixed to be L = 2.

The radius of the round SD−3 at the horizon is a good geometric invariant that

can be used to describe NUBS; with our ansatz (3.2.2.1), this is given by

R(y) = r0

√
eQ5

∣∣∣
x=0

. (3.2.2.3)

Black string solutions can be characterized with the non-uniformity parameter intro-

duced in [13],

λ =
1

2

(
Rmax

Rmin

− 1

)
, (3.2.2.4)

where Rmax = max[R(y)] and Rmin = min[R(y)]. UBS have λ = 0, whereas NUBS

have λ > 0; the limit λ→∞ corresponds to the merger point with the LOC branch,

where Rmin → 0 while Rmax remains finite.

To obtain a well-posed boundary value problem that can be solved with elliptic

methods we need to supplement the equations of motion with appropriate boundary

conditions. These require regularity at the horizon, reflection symmetry, periodicity

and KK asymptotics:

• Horizon at x = 0: smoothness of the metric at the horizon implies that all

Q’s must be even in x and therefore we impose Neumann boundary conditions

on all Q’s, except the crossed term which must be Dirichlet. The condition

Q1(0, y) = Q2(0, y) ensures that the geometry is free of conical singularities and

fixes the surface gravity of the solution to be that of our reference metric.

• Asymptotic boundary at x = 1: the metric must approach the KK space. This

implies the Dirichlet boundary conditions, Qi(1, y) = 1, ∀i 6= 4, and Q4(1, y) = 0.

• Reflection plane and periodic boundary at y = 0 and y = 1 respectively: all

Q’s must be even in the compact S1 coordinate and thus we impose Neumann

boundary conditions for all Q’s, except for the crossed term which must be

Dirichlet there.
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To find NUBS, we start with the UBS close to the GL point and add a bit of the GL

zero mode. This gives a good initial guess that allows us to find weakly non-uniform

black strings. Once we have found a NUBS, we can move along the family varying the

temperature; with our boundary conditions, the inverse temperature is given by

β =
4 π r0

D − 4
. (3.2.2.5)

We move along the branch of NUBS by using the previous solution as a seed and

varying the value of the parameter r0; we start at r0 = 0.73450 which corresponds to

λ = 0.04 (recall that rGL
0 = 0.73342(6) for L = 2) and, given our modest resources,

we move up to a value of r0 = 0.79184, corresponding to λ = 5.05. For λ . 1, the

NUBS are relatively weakly non-uniform, not much resolution is required to construct

the solutions accurately and one single patch is suffices. At this point, the solutions

satisfy ξaξ
a ≡ ξ2 < 10−10, with estimated numerical error to be less than 0.01%. The

Smarr’s relation is satisfied up to the order 10−7.

As we move along the branch of NUBS to greater values of λ, the function Q4 de-

velops very pronounced peaks near the origin, corresponding to the waist of the NUBS,

and some form of mesh-refinement there is needed to construct accurate solutions. We

found that two conforming patches were enough to obtain good results, though the

bound on the DeTurck vector goes up to ξ2 < 10−7 and the Smarr’s relation is satisfied

up to 10−6.

Notice that our mesh-refinement introduces a new parameter x0, which is the

coordinate location where the two patches meet. In addition, we also considered

ỹ = mesh(y; 0, 1, χ), with the function mesh(. . . ) given by (2.2.2.13). Since the steep

gradients move towards the origin as λ increases, we used two different setups with

appropriate grid sizes x0 (∼ 10−1, 10−2) and values of χ (∼ 1, 10). It is possible that

by choosing a different reference metric for highly NUBS one can achieve larger values

of λ without losing accuracy.

3.2.3 Numerical construction of localized black holes

To numerically construct LOC we follow the approach of Kalisch et al. [22] with

minor modifications. Essentially, we considered a different compactification of the

radial coordinate so that we could extract the constants Cτ and Cy appearing in the

conserved charges (3.2.1.3) by calculating 1st derivatives of our unknown functions.

In this section we superficially discuss the actual numerical construction of LOC and

refer the reader to [22] for further details.

We seek static axisymmetric black holes that are asymptotically KK and localized

on a circle of (asymptotic) length L. We choose adapted coordinates so that sym-

metries of the spacetime become manifest. This implies that the actual boundaries

of the computational domain are: the black hole horizon, the asymptotic infinity, the

periodic boundary, the reflection plane and an axis of symmetry where the horizon

SD−2 smoothly shrinks to zero size, which is exposed because the localization on the
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Fig. 3.2: Sketch of the integration domain for localized black holes.

S1. From the point of view of finding these black holes numerically, since the integra-

tion domain has five boundaries, we naturally work with two coordinate patches: One

patch adapted to a ‘near’ region (containing the horizon), and another one adapted to

a ‘far’ region (containing the asymptotic infinity). See Fig. 3.2.

As in [214], one can work with cartesian coordinates (x, y) in the far patch and

polar coordinates (r, a) in the near patch, and the relation between them is simply

given by the polar map (see Appendix 3.A). To transfer information between the two

coordinate patches one can use two overlapping domains and impose uniqueness of

the solution [214]. This is simpler to implement if one uses finite differences. On the

other hand, if one uses spectral methods, one can deform the two domains using some

transfinite transformation and ensure that the two domains match along a curve; along

this common boundary one then imposes continuity of the functions and their normal

derivatives. Alternatively, in the near region [22] introduce polar-like coordinates with

a modified radial coordinate which naturally matches with the Cartesian coordinates

sufficiently far from the black hole. This is the approach we follow in the near region.

We recall the details of the integration domain and introduce the new compactification

in Appendix 3.A.

The ansatz for the metric in the far patch is:

ds2
far = Q1 dτ 2 + x2Q2 dΩ2

D−3 +Q3 dx2 +Q4 dy2 + 2Q5 dxdy , (3.2.3.1)

where the functions Q ≡ {Q1, Q2, Q3, Q4, Q5}(x, y) are our unknowns. As shown in the

actual integration domain, Fig. 3.13, the coordinate x ranges from L/2, which is the

boundary between the far and near regions, to infinity; on the other hand, y ∈ [0, L/2],

where y = 0 is the reflection plane and L/2 is the periodic boundary. The boundary

conditions we impose on the unknown functions Q in this patch are:

• Asymptotic boundary at x = ∞: the metric must approach the KK space.

This implies the Dirichlet boundary conditions, Qi(∞, y) = 1, ∀i 6= 5, and

Q5(∞, y) = 0.

• Matching boundary at x = L/2: we impose continuity of the metric and its

normal derivative.
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• Reflection plane and periodic boundary at y = 0 and y = L/2 respectively:

all Q’s must be even in the compact coordinate y and thus we impose Neumann

boundary conditions on all them except the crossed term Q5, which must be

Dirichlet there.

The near horizon region ansatz covers the horizon and the symmetry axis; at the

horizon, the Killing ∂τ becomes null and at the symmetry axis the round SD−3 (and

in fact the whole horizon SD−2) smoothly shrinks to zero. The ansatz we consider is:

ds2
near = κ2 (r − r0)2Q′1 dτ 2 + r2 cos2 a Q′2 dΩ2

D−3 +Q′3 dr2

+ r2Q′4 da2 + 2 r Q′5 drda,
(3.2.3.2)

where Q′ ≡ {Q′1, Q′2, Q′3, Q′4, Q′5}(r, a) are the unknowns in this patch. This metric has

a Killing horizon located at r = r0 with surface gravity κ, and an axis at a = π/2; a = 0

is the reflection plane. Although the horizon is at r = r0, r0 is simply a parameter

in our ansatz and we keep it fixed throughout the calculation (we choose r0 = 0.8

for convenience); the physical parameter labelling each solution is the surface gravity

κ, and this the parameter that we vary to move along the branch of LOC. With the

definitions given in Appendix 3.A, the boundary conditions that we impose on the

unknown functions Q′ in this region are:

• Horizon at r = r0: smoothness of the metric at the horizon implies that all Q′’s

must be even in r − r0 and therefore we impose Neumann boundary conditions

for Q′1, r2Q′2, Q′3, r2Q′4 and Dirichlet for the crossed term Q′5. The condition

Q′1(r0, a) = Q′3(r0, a) ensures that the geometry is free of conical singularities

and fixes the surface gravity of the solution to be that of the reference metric

(see below).

• Axis of symmetry at a = π/2: regularity requires that all functions Q′’s are

Neumann, except the crossed term which is Dirichlet there. In addition we

impose Q′2(r, π/2) = Q′4(r, π/2) to avoid conical singularities.

• Reflection plane at a = 0: all functions are Neumann except for Q′5, that

vanishes there.

• Periodic boundary at r3(L/2, a) sin a = L/2: using the relation between the

far and near coordinates and the relation between the far and near unknown

functions, one can find the boundary conditions for the near horizon functions

from the boundary conditions that the far region functions satisfy there.

• Matching boundary at r2(L/2, a) cos a = L/2: we impose continuity of the

metric and its normal derivative.

In addition to the ansatz and the boundary conditions, the DeTurck scheme re-

quires a global reference metric as part of the gauge fixing procedure. The reference

metric must satisfy the same boundary conditions as the solution we seek. For the
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LOC, there is no known Einstein metric in closed analytic form that satisfies the

required boundary conditions and hence one has to design it. In this study we fol-

low [22,214], and smoothly glue together two metrics, each of which satisfy the desired

boundary conditions in each region, i.e. asymptotic Kaluza-Klein space in the far region

and, for instance, the asymptotically flat Schwarzschild black hole in D dimensions:

ds̄2 = H(r)dτ 2 + dr2 +G(r)
(
da2 + cos2 a dΩ2

D−3

)
(3.2.3.3)

with

H(r) =

{
Hhor(r) for r < r1

1 for r ≥ r1
, G(r) =

{
Ghor(r) for r < r1

r2 for r ≥ r1
,

Hhor(r) = 1− E(r),

Ghor(r) = r2 − E(r)

(
r2 − (D − 3)2

4κ2
− (r − r0)2

[
D2

4
−D +

3

4
− κ2r2

0

])
,

(3.2.3.4)

where the function E(r) is given by

E(r) = exp

(
−κ2 (r − r0)2

1− (r − r0)2/(r1 − r0)2

)
. (3.2.3.5)

The reference metric depends on κ, r0, and r1, which is an additional parameter that

can be adjusted (see appendix 3.A). The function E(r) vanishes exponentially fast

for r → r1, and the reference metric (3.2.3.3) tends to the KK space written in polar

coordinates. For r → r0, E(r) ' 1 − κ2(r − r0)2 and (3.2.3.3) takes the form of the

near horizon metric of the Schwarzschild black hole in D dimensions.

To find localized black holes we start with the reference metric as a seed with

κ = 2.4 and L = 6 (we keep this value of L for all solutions). Recall that the

convergence of Newton’s method strongly depends on the choice of the initial seed

and finding a first solution may be difficult. To stay within the basin of attraction

at each iteration, we introduce a parameter α ∈ R+ in the iteration loop so that the

update is Q
(n+1)
k = Q

(n)
k + αδQk, where α ∼ O(10−2) or O(10−1) during the first

iterations and is O(1) towards the end. Once we have found the first solution, we use

it as the initial guess to find the next solution with a slightly different κ while keeping

α = 1. We kept the parameters of the integration domain and the coordinates fixed

throughout the calculation and they are specified in Fig. 3.13.

The most critical solution we found corresponds to κ = 1.262768. In this critical

regime, the functions Q′2 and Q′4 develop steep gradients near the axis and the horizon;

to resolve them, we redefine these two functions in the pure polar patch (blue and green

dots in Fig. 3.13): Qc
i(r, a) = 1/Q′i(r, a), i = 2, 4 [22]. The boundary conditions for

these redefined functions can be easily found from the original ones for Q′2 and Q′4.

All solutions we found satisfy ξ2 < 10−10 with numerical error less than 0.01% and the

Smarr’s relation is satisfied up to the order 10−6.
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3.3 Results

In this section we present our results for both NUBS and LOC. We first consider the

behavior of the various thermodynamic quantities along each branch of solutions and

the phase diagrams, and then we focus on the horizon geometry. We then study the

critical behavior near the merger point, and provide evidence that the double-cone

geometry proposed by [21] does indeed control the merger. We finally compute their

spectrum of negative modes of the Lichnerowicz operator.

3.3.1 Thermodynamics

The horizon temperature labels both NUBS and LOC and is given by (3.2.2.5) for

non-uniform black strings and by κ/(2π) for localized solutions. The mass and the

tension follow from (3.2.1.3). For the NUBS the asymptotic charges are computed as:

Cτ =
rD−4

0

2

(
L

2

)−1 ∫ L/2

0

dy

(
2 +

∂Q1

∂x

∣∣∣∣
x=1

)
,

Cy = −r
D−4
0

2

(
L

2

)−1 ∫ L/2

0

dy
∂Q3

∂x

∣∣∣∣
x=1

,

(3.3.1.1)

where in these expressions we first interpolate the numerical data and then perform

the integration. For the LOC these quantities are given in (3.A.0.3). The horizon area

is found to be:

NUBS: AH = 2rD−3
0 ΩD−3

∫ L/2

0

dy
√
eQ3+(D−3)Q5

∣∣∣
r=r0

,

LOC: AH = 2rD−2
0 ΩD−3

∫ π/2

0

da(cos a)D−3

√
Q′2

D−3Q′4

∣∣∣
r=r0

.

(3.3.1.2)

In Fig. 3.3 we display the phase diagram in the microcanonical (top left) and

canonical (top right) ensembles, and the behavior of the horizon area (middle) and

tension (bottom) as a function of the inverse temperature (normalized by L). The

behavior of the mass and the relative tension as a function of the inverse temperature

is similar to that of the area and tension and we do not display the corresponding plots

here. To make the microcanonical and canonical phase diagrams easier to visualize,

we plot the dimensionless entropy and free energy with respect the values of a uniform

black string, ∆S/L8 and ∆F/L7.

NUBS, which exist beyond the GL point, never dominate any of these ensembles

and they are presumably dynamically unstable. The LOC phase crosses the UBS

branch at6

MPT = 0.01375(4)L7, or TPT = 1.26682(1)L−1. (3.3.1.3)

6We simply used Mathematica’s function Interpolation to interpolate our numerical data and

Newton’s method to find the intersection point. Our error bars are estimated from the global error

of the numerical solutions, see Appendix 3.B.
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For lower masses, M < MPT, or higher temperatures temperatures, T > TPT, the LOC

dominate the corresponding ensemble and the UBS are unstable, whilst for M > MPT

or T < TPT, UBS dominate. At M = MPT or T = TPT, there is first order phase

transition. The phase diagrams are consistent with a merger between NUBS and LOC

at

MMerger = 0.02040(4)L7, or TMerger = 1.20585(6)L−1. (3.3.1.4)

See §3.3.3 for its derivation.

One of the remarkable features of the phase diagram in D = 10 is the lack of turning

points away from the merger along any of the branches, either LOC or NUBS. This

should be contrasted with the phase diagram in D = 5, 6, which exhibits a turning

point along the LOC branch at some maximum mass and then there is a minimum of

the temperature [22, 214]. It is reasonable to expect that such a turning point (away

from the merger) exists on the LOC branch for any dimension D < 10. This turning

point switches to the NUBS branch in D = 12 (and presumably in D = 11), as shown

in [231] and more recently in the large-D expansion in [233]. As we will argue below,

the lack of turning points away from the merger in the phase diagram in D = 10 may

be related to the nature of the merger in this specific number of spacetime dimensions.

In Fig. 3.4 we plot various physical quantities, normalized by their value at the GL

point, against the normalized relative tension n/nGL. Close to the merger point, our

results in D = 10 show that the physical quantities do not approach their critical values

following a spiraling behavior, with presumably infinitely many turning points, as in

D = 5, 6 [22, 230]. Instead, the physical quantities of the NUBS and LOC branches

merge at a cusp in the phase diagram, with no oscillations. As we discuss in §3.3.3,

this behavior is precisely what the double-cone model of [21] for the merger predicts

in D = 10. Notice that the physical quantities corresponding to both branches emerge

from the cusp in the ‘same direction’.

3.3.2 Horizon geometry

In this subsection we display the behavior of various geometric quantities defined on

the horizon along the branches of solutions. Then we present the embeddings of the

horizon geometry into flat space to help to visualize the geometry of NUBS and LOC.

We characterize the NUBS using the non-uniformity parameter λ defined in [13],

(3.2.2.3). In addition, we consider the proper length of the horizon along the S1:

Lhor = 2

∫ L/2

0

dy
√
eQ3

∣∣∣
x=0

. (3.3.2.1)

Following [214], for LOC, one can define Req as the equatorial radius of the horizon

round SD−3,

Req = r0

√
Q′2(r0, 0). (3.3.2.2)

Similarly, one defines Lpolar to be the proper distance from the ‘south’ pole to the

‘north’ pole along the horizon SD−2, and Laxis to be the proper distance between the
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Fig. 3.3: Phase diagram in the microcanonical (top left) and canonical (top

right) ensembles respectively for the three different families of KK black ob-

jects in D = 10. These plots reproduce and complete those shown in the

appendix of [161]. Dimensionless horizon area AH/L
8 (middle) and tension

T /L6 (bottom) as a function of the dimensionless ratio β/L. The GL critical

point is indicated with a solid black disc. The dimensionless mass and relative

tension plots are very similar to the ones shown above.
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right hand side correspond to zooming at the merger point, as indicated by

the dashed lines.

poles along the axis:

Lpolar = 2r0

∫ π/2

0

da
√
Q′4

∣∣∣
r=r0

, Laxis = 2

∫ L/2

r0

dr
√
Q′3

∣∣∣
a=π/2

. (3.3.2.3)

Recall that the asymptotically flat Schwarzschild solution in D dimensions is spheri-

cally symmetric and hence it enjoys the symmetry of the full rotation group SO(D−1).

On the other hand, LOC break the SO(D − 1) symmetry down to SO(D − 2), and

only for very small localized black holes, i.e. high temperatures, the full SO(D − 1) is

approximately recovered. We can characterize the deformation of the horizon geome-

try by comparing the area of the round equatorial horizon SD−3, Aeq ∝ RD−3
eq , and the

area of the geodesic SD−3 on the horizon that contains both poles, Apol ∝ RD−3
pol with

Rpol = r0

√
Q′2(r0, π/2). (3.3.2.4)

We compare these two areas defining the eccentricity parameter,

ε =
Apol

Aeq

− 1 . (3.3.2.5)
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A spherically symmetric black hole has zero eccentricity and ε diverges for the critical

solution.

The behavior of these geometric quantities along each branch of solutions is dis-

played in Fig. 3.5. In the top row we display ε and λ as functions of β/L. At high

temperatures, LOC are nearly spherically symmetric and the eccentricity is very small.

In fact, ε remains quite small until pretty close to the merger with NUBS, where it

diverges (notice that the vertical axis is in a log-scale). This explains why perturba-

tion theory works so well for localized black holes in D = 10 [161], and it is another

manifestation of the fact that gravity becomes more localized near the horizon as D

grows. The behavior of the non-uniformity parameter λ for the NUBS is qualitatively

similar. From these two plots it is clear that we managed to get closer to the merger

from the LOC branch. From the behavior of ε and λ we can estimate that the merger

occurs at βMerger ' 0.829L.

At the bottom of Fig. 3.5 we display the remaining geometric quantities as functions

of the relative tension n normalized by its value at the GL point. We have added zooms

of these plots to better appreciate the region where the various curves merge. In

D = 10 the merger happens at a cusp, with the physical quantities of both the NUBS

and the LOC coming out of the cusp in the same direction. This behavior should

be contrasted with the D = 5, 6 case, in which a part from the shrinking spirals, the

physical quantities for the NUBS and the LOC approach the merger from opposite

sides. It would be nice to understand the side from which a given physical quantity

approaches the merger point as a function of the number of spacetime dimensions

D from the double-cone geometry. From the behavior of Laxis/L and Rmin/L as they

approach zero, we estimate the value of n/nGL at the merger to be nMerger ' 0.139nGL.

A useful way to visualize the geometry of τ = const. sections of the horizon is by

embedding them into (D − 1)-dimensional Euclidean space ED−1, with a flat metric

ds2
ED−1 = dX2 + dY 2 + Y 2dΩ2

D−3 . (3.3.2.6)

For NUBS, the horizon geometry can be described as a surface X = X(y), Y (y) = R(y)

in ED−1 (with R(y) defined in (3.2.2.3)), whilst for LOC one has

X = X(a), Y (a) = r0 cos a
√
Q′2
∣∣
r=r0

. (3.3.2.7)

In each case, the embedding coordinate is given by

NUBS: X(y) =

∫ y

0

dy′

√
eQ3 − r2

0

4
eQ5

(
dQ5

dy′

)2∣∣∣∣
x=0

,

LOC: X(a) = r0

∫ a

0

da′

√
Q′4 −

(
sin a

√
Q′2 −

cos a

2
√
Q′2

dQ′2
da′

)2∣∣∣∣
r=r0

.

(3.3.2.8)

In Fig. 3.6 we plot Y/L vs X/L for some representative solutions, including the most

critical ones. We postpone the detailed comparison with the double-cone metric to

the next subsection.
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Fig. 3.5: Eccentricity (top left) and non-uniformity parameter (top right) as

a function of the dimensionless inverse temperature. These quantities give a

direct measure of the deformation of LOC and NUBS respectively. Different

geometrical lengths and radii for NUBS and LOC (bottom) as a function of

the relative tension normalized at the GL threshold point.

3.3.3 Critical behavior at the merger point

Kol argued that the merger between the NUBS and the LOC implies a topology change

not only of the horizon geometry but in fact of the whole Euclidean manifold [21]. This

is a much stronger statement than simply considering the change of the topology of
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Fig. 3.6: Embedding of the spatial cross-section of the horizon into Euclidean

space for different NUBS (top) and LOC (bottom). For NUBS, from left to

right, r0 = 0.74328 (λ ∼ 0.1), r0 = 0.77216 (λ ∼ 0.5), r0 = 0.78950 (λ ∼ 1.5),

r0 = 0.79156 (λ ∼ 3) and r0 = 0.79184 (λ ∼ 5). For LOC the axis is parallel to

X/L and represented by a dashed line starting at the poles. From left to right:

κ = 2.4 (ε ∼ 10−3), κ = 1.5 (ε ∼ 10−1), κ = 1.29 (ε ∼ 100), κ = 1.26341

(ε ∼ 10) and κ = 1.26277 (ε ∼ 3 · 102). Note that the embeddings look

‘rounder’ or ‘fatter’ compared to the ones in lower dimensions; this is just a

manifestation that gravity becomes more localized as D increases.

the horizon. Moreover, [21] conjectured that this topology change of the Euclidean

manifold should locally be controlled by a Ricci-flat double-cone over S2 × SD−3:

ds2 = dρ2 +
ρ2

D − 2

(
dΩ2

(2) + (D − 4)dΩ2
(D−3)

)
. (3.3.3.1)

This double-cone arises as follows. Both the NUBS and the LOC possess an explicit

SO(D − 2) spherical symmetry which must be inherited by the critical metric, i.e. it

must contain a round SD−3. The S2 is less obvious and its origin is the following [21]:

away from the waist, the Euclidean time, which is periodic to avoid a conical singularity
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at the horizon, is fibered over an interval whose endpoints are on the horizon, thus

giving rise to a two-sphere. Such an S2 is finite everywhere on the localized phase

whilst it is contractible to zero size in the black string phase (see [262] for a nice

depiction). On the localized phase, one can compute the radius of this sphere on

the symmetry axis at the equidistant points from the poles of the horizon SD−2. By

symmetry, this corresponds to the equatorial radius of the S2 and is given by

Rτ =
κ

2π

(
L

2
− r0

)√
Q′1(L/2, π/2) . (3.3.3.2)

One can compare it to the radius of this S2 along the symmetry axis,

Raxis =
Laxis

2π
, (3.3.3.3)

along the branch of LOC. See Fig. 3.7. From this plot we see that Rτ ∼ Raxis as

the solutions approach the merger and both radii tend to zero. This shows that the

S2 becomes round as it shrinks, just as the double-cone model of [21] predicts. Also

shown in this plot is the minimum radius of the horizon SD−3, Rmin, on the NUBS.

This quantity also shrinks to zero at the merger.

One can further test the double-cone model of the merger by considering the embed-

ding of the τ = const. section of (3.3.3.1) into Euclidean ED−1 space. The embedding

coordinates of the double-cone metric (3.3.3.1) are simply given by

X(ρ) = ρ

√
2

D − 2
, Y (ρ) = ρ

√
D − 4

D − 2
. (3.3.3.4)

In Fig. 4.14 we compare the embedding of the double-cone in D = 10 dimensions

with the embeddings corresponding to the most critical LOC (red) and NUBS (blue)

solutions that we have found. As this plot shows, the double-cone can be smoothed in

two different ways, each one leading to one of the phases at each side of the transition.

One can consider deformations of the double-cone metric of the form:

ds2 = dρ2 +
ρ2

D − 2

(
eε(ρ)dΩ2

(2) + (D − 4)e−
2

D−3
ε(ρ)dΩ2

(D−3)

)
. (3.3.3.5)

The linearized perturbations satisfy the following equation of motion:

ε′′(ρ) +
D − 1

ρ
ε′(ρ) +

2(D − 2)

ρ2
ε(ρ) = 0 , (3.3.3.6)

and, in for any D 6= 10, solutions of this equation are given by

ε(ρ) = c+ρ
s+ + c−ρ

s− , (3.3.3.7)

with

s± =
D − 2

2

(
− 1± i

√
8

D − 2
− 1

)
. (3.3.3.8)
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Fig. 3.8: Comparison between the embeddings into E9 space of the most

critical NUBS (blue line) and LOC (red line) that we have found and the

Ricci-flat cone (black line). Clearly, both geometries approximate quite well

the double-cone metric.

For D < 10, the imaginary part of s± causes oscillations in ε(ρ), while for D > 10

there are two independent (real) powers. Furthermore, [263] (see also [264]) argued

that the behavior of the deformations of the double-cone metric (4.4.4.6) should be

reflected in the behavior of the physical quantities of NUBS and LOC sufficiently

close to criticality. The argument goes as follows: if the zero mode ε(ρ) measures the

deviation from the double-cone, then any physical quantity Q near the critical solution
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should behave as

δQ = C+

(
ρ

ρ0

)s+
+ C−

(
ρ

ρ0

)s−
= C̃+ρ

−s+
0 + C̃−ρ

−s−
0 , (3.3.3.9)

where δQ ≡ Q−Qc and ρ0 is the typical length scale associated to the smooth cone.

Recently, [22] has beautifully confirmed this prediction in D = 5, 6.

The linearized solutions (4.4.4.6) degenerate in D = 10. Hence this is the critical

dimension of the double-cone metric [21]. In this degenerate case, Frobenius’ method

gives two independent solutions of the form:

εD=10(ρ) ∼ c1 ρ
4 + c2 ρ

4 ln ρ . (3.3.3.10)

In the remaining of this subsection, we fit the different physical quantities of the near

critical solutions that we have constructed according to the double-cone’s prediction

(3.3.3.10). Without loss of generality, for any physical quantity near the merger we

have

Q(x) = Qc + a xb (c+ d lnx) , (3.3.3.11)

where {a, b, c, d} are the fitting parameters and x measures the distance to the critical

solution. We consider the following dimensionless quantities that tend to zero at the

merger:

xNUBS =
Rmin

rGL
0

, xLOC =
Laxis

L
, (3.3.3.12)

where L is the length of the KK circle and rGL
0 is the horizon radius of the black

string at the GL instability point given in §3.2.1. Any other definition of x should give

equivalent results up to a rescaling. We use Mathematica’s FindFit routine to carry

out the fits.

In Fig. 3.9 we present the fits for the mass (normalized with respect to the values

of a UBS at the marginal GL point) for the NUBS and LOC branches. The other

physical quantities behave in a qualitatively similar way and we do not present the fits

here. Note that in contrast to the D = 5, 6 cases, in D = 10 the physical quantities

do not present any oscillations as they approach their critical values. In fact, the

fits clearly show that the approach to the critical value is governed by a power law

with a logarithmic correction, in very good agreement with the double-cone prediction

(3.3.3.10). In Table 3.1 we present the values of fitting parameters for the various

physical quantities. To do the fits, we only have considered the solutions close enough

to the merger, i.e. with small enough x; including more data points to perform the

fit gives less accurate values of the critical thermodynamical values and exponent.

For different physical quantities, the critical exponent coincides with the theoretical

prediction of 4 with deviations of less than 0.05% in the worst case and the critical value

of a given quantity coincide up to the 4th or 5th decimal number for both branches. We

note that the critical values satisfy the Smarr’s relation to the order 10−6 and 10−5 for

NUBS and LOC respectively, which is consistent with the numerical error according

to the values of ξ2 we reached.
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Qc a b c d

T/TGL
NUBS 0.92615 0.09539 4.00001 0.76900 −2.08080

LOC 0.92615 2.41070 3.99967 0.21280 −3.43802

M/MGL
NUBS 1.85551 −1.48224 3.99975 0.80018 −1.68271

LOC 1.85551 −9.31138 3.99814 2.62629 −10.83657

S/SGL
NUBS 2.03933 −0.76910 4.00070 1.88490 −4.13116

LOC 2.03958 −15.75813 4.00047 1.27332 −8.34065

T /TGL
NUBS 0.25816 −1.49842 3.99996 −1.19917 −1.53764

LOC 0.25813 −8.01729 4.00188 −12.66599 −11.94347

n/nGL
NUBS 0.13913 −1.50564 4.00000 −0.69536 −0.69743

LOC 0.13912 6.72458 4.00172 8.18577 6.46396

Table 3.1: Critical exponent and other parameters obtained from the fit of

the non-uniform black strings (1st rows) and localized black holes (2nd rows)

data points.

Qc a b c d

Lhor/polar/L
NUBS 1.54505 −0.40768 0.99955 1.54049 0.02272

LOC 1.54589 0.41840 1.00021 −0.84676 −0.01620

Table 3.2: Critical exponent and other parameters obtained from the fit of

the NUBS’s horizon length (1st row) and LOC’s polar length (2nd row).

Whilst the thermodynamic quantities follow the scaling law predicted by the double-

cone geometry, the geometrical lengths characterizing the shape of the horizon do not

follow the behavior (3.3.3.11), as it may be seen from Fig. 3.10. These are the horizon

length Lhor of the black string and the polar length Lpol of the localized black holes.

In lower dimensions this was also the case, and a linear term was introduced to get

a proper fit [22]. In D = 10 the linear term appears naturally and the real critical

exponent agrees to be one from both sides of the merger, just as in D = 5, 6. The

equivalent plots to Fig. 3.9 for these lengths are shown in Fig. 3.10 and the extracted

critical values and exponents are in Table 3.2. It would be interesting to better un-

derstand why these quantities do not follow the same critical behavior as the other

physical quantities.

3.3.4 Spectrum of negative modes

In this subsection we present the spectrum of negative modes of the Lichnerowicz

operator, ∆L, around the NUBS and LOC solutions that we have constructed.

The negative eigenvalues of ∆L are an invariant feature of the geometry and hence

they provide another way to characterize the merger between NUBS and LOC. To com-
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Fig. 3.9: Normalized mass as a function of x for NUBS and LOC (top row).

Data points left to the dashed vertical line are the ones used for the fit. In

contrast to D = 5, 6 cases, in D = 10 our plots do not present any oscillations

near the critical point, which agrees with the double-cone prediction of a real

critical exponent. At the bottom row we represent δM ≡M −Mc normalized

with respect MGLax
b, as a function of log x. The relation is clearly lineal, in

agreement with (3.3.3.10).

pute the negative modes of ∆L, we take advantage of the fact that, when using New-

ton’s method to construct the solutions numerically, we have to linearize the Einstein-

DeTurck operator as part of the iterative process. Around an Einstein metric, the

linearized Einstein-DeTurck operator coincides with the Lichnerowicz operator [214].

It is then easy to readapt the code to find the low lying eigenvalues and eigenmodes

of ∆L, associated to (physical) metric fluctuations. Notice that with this approach we

only find perturbations that are singlets under the action of U(1)β× SO(D − 3).

We display the results in Fig. 3.11. We found that NUBS have two negative

modes, as in lower D [214].7 The first one (green line in Fig. 3.11) corresponds to the

7In D ≥ 13 NUBS have only one negative mode, and in D = 12 a mode disappears at a minimum
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Fig. 3.10: Normalized horizon length and polar length as a function of x

for NUBS and LOC respectively (top row). Data points left to the dashed

vertical line are the ones used for the fit. At the bottom row we represent

δL ≡ Lhor/polar − Lc normalized with respect to Laxb, as a function of log x.

In both cases the relation is lineal.

continuation of the GL zero mode to a negative mode as one moves along the branch

to larger non-uniformities. The other one (blue line in Fig. 3.11) is continuously

connected to the negative mode of the UBS, which arises from the negative mode

of Schwarzschild [154]. For the explored range of solutions in this work, no further

negative modes appear on this branch.

On the other hand, LOC have only one negative mode (red line in Fig. 3.11). For

small black holes, this coincides with the negative mode of the asymptotically flat

Schwarzschild solution in D = 10, as expected. No further negative modes appear or

disappear along this branch. As we approach the critical solution from both sides, one

of the modes of the NUBS diverges while the other appears to tend to a finite value;

of the temperature along the NUBS branch [231]. This is related to the fact that D = 12 is the

critical dimension for the canonical ensemble for this system.
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lines) and LOC (red line) normalized with respect to the inverse temperature

of the NUBS and LOC as a function of the dimensionless ratio β/L. The

solid black discs show the zero mode and the negative mode of the UBS at

the marginal GL point.

the latter seems to match the limiting value of the negative mode on the LOC branch.

Notice that in D = 10, NUBS and LOC seem to have a different number of negative

modes near the critical region. The reason is that there are no turning points along

either branches, so modes cannot appear or disappear at a minimum of the temper-

ature. However, modes can diverge as they approach the critical solution since it is

singular. In D = 5, 6, there is a minimum of the temperature on the LOC branch, at

which point ∆L has a zero mode that continues to a (second) negative mode near the

merger. At the merger, these two negative modes approach those of the NUBS and,

in particular, a pair of them diverge at the critical solution [214].

3.4 Implications for super Yang-Mills on T2

In this section we derive the thermodynamics of SYM on T2, see also [23,24,161,241,

242], using the (neutral) KK black holes. We start with a lightening review of the

different limits under which string theory can be described by its supergravity sector

and then we use the solutions previously found to obtain the thermodynamics of those

carrying D0-brane charge. Our results extend those in [161] and allow us to find the

merger point in the dual gauge theory.



3 Critical Kaluza-Klein Black Holes in D = 10 73

3.4.1 Toroidal limits and type IIB/IIA supergravity duals

Consider (1+1)-dimensional SU(N) SYM at large N with ’t Hooft coupling λ = Ng2
YM.

If the theory is at finite temperature T so that β = 1/T is the period of the thermal

circle, and the spatial direction is also compactified on a circle of length L, then we can

think of the theory as being defined on a 2-torus, T2 = S1
β×S1

L. In these circumstances,

one can define dimensionless quantities,

t = TL, λ′ = λL2 (3.4.1.1)

to study different regimes of the theory. From the gauge theory perspective, phase

transitions can be inferred by studying the expectation values of Wilson loops, Pβ
and PL, wrapping the temporal and spatial circle respectively, which serve as order

parameters. For SYM on T2 the expectation value 〈PL〉 changes from zero (confined

phase) to non-zero values (deconfined phase) upon heating the system, whereas 〈Pβ〉
is always non-zero at all temperatures (see [23,24,242] and references therein).

Now we consider the dual gravity description. This is given by the near-horizon

geometry of the spacetime sourced by a stack of N coincident D1-branes of type

IIB string theory [239], with a periodic identification on one spatial coordinate. In

particular, one is interested in near-extremal black D1-brane configurations of the

gravitational theory in the decoupling limit, which were studied in [242]. The classical

type IIB supergravity description is valid provided that N is large, to suppress string

quantum corrections; α′-corrections are negligible when t�
√
λ′, while winding modes

around the circle can be ignored when t � 1/
√
λ′. The two conditions imply the

window of validity of IIB supergravity description

1√
λ′
� t�

√
λ′. (3.4.1.2)

In this range one may use the type IIB supergravity solution to derive the thermody-

namics of 2-dimensional SYM. In this regime, the thermal vacuum of type IIB super-

gravity is a black hole carrying D1-brane charge that uniformly wraps the compact

circle. This solution is thought to be stable and corresponds to the uniform phase.

At temperatures t ∼ 1/
√
λ′, stringy winding modes become unstable and the

type IIB supergravity description is no longer valid. However, one can perform a T-

duality transformation acting on the spatial circle, exchanging the theories IIB↔ IIA

and hence the charges D1 ↔ D0, so we can use type IIA black brane solutions to

describe thermal states of SYM on T2 on that range of temperatures. In this case, the

requirement that the supergravity solution is valid gives the conditions

t�
√
λ′, t� λ′−1/6. (3.4.1.3)

Since D0-branes are point-like (instead of string-like, as the previous D1-branes), they

can distribute the charge over the circle in various ways, either being uniformly or non-

uniformly distributed, or localized on the compact circle. These three possibilities give
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rise to a non-trivial phase diagram, and it is then a dynamical question which case is

preferred.

Ref. [242] showed that the IIA supergravity solution with uniformly distributed

D0-brane charge along the compact circle suffers a GL instability at the threshold

temperature

tGL =
3

4
√
π

(2πa)2

√
λ′

, (3.4.1.4)

where a ≡ rGL
0 /L̄ = 0.36671(3), i.e.

tGL = 2.24646
1√
λ′
, or εGL = 78.34939

N

λ′2
, (3.4.1.5)

in the microcanonical ensemble.

For higher temperatures (or lower energies) the charged UBS is thought to be

dynamically stable. However, there exists a range of temperatures tGL < t < tPT for

some tPT, where it is thought (and now known) that the uniform solution becomes

globally thermodynamically less favored than the localized black hole solution. Then

the temperature tPT represents a first order thermal phase transition between the

uniform and localized phase. In the literature this has been termed the Gregory-

Laflamme phase transition [23]. The natural interpretation of this picture on the dual

gauge theory is a confinement/deconfinement phase transition.

In this section we find the temperature tPT and also tMerger, at which the non-

uniform and the localized phase merge. Note, however, that the non-uniform phase

never dominates any ensemble. So far, lattice simulations on the gauge side estimated

the ratio [23]
tPT

tGL

∼ 1.5. (3.4.1.6)

To determine the precise ratio from the gravity dual theory one would need to construct

the near-extremal charged solutions, take the near-horizon limit and extract their

thermodynamic quantities. Clearly, solving the full system of supergravity equations is

a formidable numerical task. However, it is possible to generate charged solutions from

uncharged ones via a process of uplifting + boosting + KK reduction [161, 240–242].

Therefore, we can consider the neutral (vacuum) solutions we have previously found

and from these obtain the thermodynamics that determine the phase structure of SYM

theory under consideration.

Recent construction of KK black holes in D = 10 determined the energy or temper-

ature to be εPT = 97.067(N2/λ′2) = 1.245εGL or tPT = 2.451/
√
λ′ = 1.093tGL [161].

Since the derivation of the mapping {Black hole thermodynamics on R1,8 × S1} →
{SYM thermodynamics on T2} was derived in there we do not include it here; for

completeness, it is rederived in detail in the appendix 3.C. Using (3.C.0.11), we have:

ε = 64π4 (2m0 − s0t0)
N2

λ′2
, t = 4π

√
2s0t30

1√
λ′
,

s = 16
√

2π3

√
s0

t0

N2

λ′3/2
.

(3.4.1.7)
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Applying this map to the neutral UBS one gets the well-known results [242]:

εUBS(r0) =
32π7

3

(r0

L̄

)6 N2

λ′2
, tUBS(r0) = 3π3/2

(r0

L̄

)2 1√
λ′
. (3.4.1.8)

At r0 = rGL
0 , these expressions correspond to the values εGL and tGL previously dis-

cussed.

3.4.2 Thermodynamics

In this subsection we construct the phase diagrams in the microcanonical and the

canonical ensemble describing the thermodynamics of SYM gauge theory on T2 using

the supergravity approximation. Both diagrams are shown below in Fig. 3.12 and

reproduce and complete those in [161]. In addition, we determine for first time the

merger point between charged NUBS and LOC.

In Fig. 3.12 we plot dimensionless entropy or free energy difference between a given

phase and the uniform one: (si(ε)− sUBS(ε))× (λ′3/2/N2), (fi(t)− fUBS(t))× (λ′2/N2)

with i = NUBS, LOC. Then the uniform phase is represented by a simple horizontal

(black) line at the origin of the vertical axis. UBS are unstable for ε < εGL in the

microcanonical ensemble and for t < tGL in the canonical ensemble. The non-uniform

phase, which exists beyond this point, is never dominant. On the other hand, the

localized phase intercepts the uniform one at

εPT = 97.29477
N2

λ′2
, or tPT = 2.45442

1√
λ′
. (3.4.2.1)

The ratios are: εPT/εGL = 1.24181 and tPT/tGL = 1.09257, and they are consistent

with the predictions from the studies of SYM on the lattice. For energies or tempera-

tures greater than this value, the uniform phase is dominant, and the LOC dominate

the corresponding ensemble otherwise. The phase transition is first order, and it is

thought to correspond to a confinement/deconfinement phase transition in the gauge

side.

Our results allows us to determine, for first time, the merger between LOCs and

NUBS with D0-brane charge. From Table 3.1 we can read off tMerger
0 , mMerger

0 and

sMerger
0 , and using (3.4.1.7) one finds that the merger occurs at

εNUBS
Meger = 143.42647

N2

λ′2
, or tNUBS

Merger = 2.85934
1√
λ′
,

εLOC
Meger = 143.41301

N2

λ′2
, or tLOC

Merger = 2.85949
1√
λ′
.

(3.4.2.2)

Since the non-uniform phase never dominates any of the ensembles (it is a genuinely

unstable saddle), it may be difficult to test these numbers using lattice simulations.8

8However, in a remarkable paper, [265] managed to study a metastable state on the lattice cor-

responding to the field theory dual to an evaporating black hole. Furthermore, demon’s methods in

lattice simulations can be used to explore metastable states associated to first order phase transitions.

We thank the referee for pointing this out to us.
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Fig. 3.12: Phase diagram in the microcanonical ensemble (left) and canonical

ensemble (right), of UBS, NUBS and LOC with D0-charge in the decoupling

limit. The GL threshold point εGL or tGL is indicated with a black solid disc.

3.5 Discussion and outlook

In this chapter we have constructed NUBS and LOC in D = 10 and followed these

two branches very close to the merger point. D = 10 is special from the point of view

of this system since this is the critical dimension for the Ricci-flat double-cone metric

that was conjectured to control the merger [21]. By fitting the physical quantities

of both NUBS and LOC close to the merger point, we have shown that in D = 10,

their approach to their critical values is governed by a power law plus a logarithmic

correction, in accordance to the double-cone model. This result should be contrasted

to the results in D = 5, 6 obtained in [22], which exhibit a spiraling behavior of the

physical quantities as they approach their critical values. Moreover, we have found

evidence that in D = 10, the merger happens at cusp in the phase diagram, and

physical quantities belonging to the NUBS and the LOC emerge from the critical

point in the ‘same direction’. This feature should be related to the fact that D = 10

is the critical dimension for the double-cone metric and it would be very interesting to

understand it in detail. To further confirm the double-cone model of the merger, one

should construct NUBS and LOC very close to the critical point in D > 10 and verify

that the physical quantities approach their critical values according to the predictions

of the double-cone model. Work in this direction is underway.

We have not discussed the dynamical stability of NUBS and LOC. Ref. [138] con-

sidered the evolution of the GL instability of black strings in the large-D expansion

and showed that they settle on a stable NUBS. More recently, [233] included correc-

tions beyond the leading order term in the large-D expansion, and found that the

endpoint depends on the thickness of the initial black string. For the cases where the

black string is expected to pinch off, [138] could not follow the evolution all the way

to the end. It would be very interesting to study the evolution of the instability of
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uniform black strings for large yet finite D. The techniques used in [145,148,153] seem

appropriate and we are currently investigating this problem.

With the methods of [22] and those used in this chapter, one can study the details

of the mergers of other black hole systems of interest. In particular, for lumpy and

localized black holes in AdS5×S5. Moreover, recently [24] obtained accurate results of

the thermal phase diagram of 1 + 1 SYM on a twisted torus using lattice simulations.

It would be very interesting to compare their results using the supergravity approxi-

mation, but to do so one needs to consider NUBS that are electrically charged with

respect to a 2-form.

3.A Generic integration domain for localized solutions

In this appendix we describe the integration domain we have used to construct the

localized black holes. Due to their nature, the numerical construction involves to work

in two separate coordinates systems, one adapted to the asymptotic behavior and

another one adapted to the near horizon behavior.

The construction considered in [22] takes the near chart (r, a) with five boundaries

and divides it into three different subdomains. This encompasses the horizon, the axis,

the boundaries of the internal space and a shared boundary with the far patch. The

blue and green regions in Fig. 3.13, say region 1 in the near patch, are covered by

polar coordinates r ∈ [r0, r1], a ∈ [0, π/2] whose relation with the far patch is simply

given by x(r, a) = r cos a, y(r, a) = r sin a. The orange and yellow regions, say regions

2 and 3, are covered by polar-like coordinates with a modified radial coordinate which

is parametrized in terms of v ∈ [r1, L/2]. In the orange region a ∈ [0, π/4], whereas

in the yellow one a ∈ [π/4, π/2]. The precise relation with the far coordinates is:

x(v, a) = rk(v, a) cos a, y(v, a) = rk(v, a) sin a, with

rk(v, a) = r1
L/2− v
L/2− r1

+
L

2

v − r1

L/2− r1

1

δk2 cos a+ δk3 sin a
, k = 2, 3 . (3.A.0.1)

Here r0 and r1 (< L/2) are parameters that we are free to specify, and L is the

asymptotic length of the Kaluza-Klein circle. Notice that this construction assumes

that the angular coordinate in the near patch 1 is further divided into two subregions:

one patch where a ∈ [0, π/4], to match the density of grid points with that in the

near patch 2, and another one where a ∈ [π/4, π/2] to match the density of grid

points with region 3. We also consider the mesh-refinement (2.2.2.13) near the axis,

ã = mesh(a; π/2, a∗, χ1), and near the horizon, r̃ = mesh(r; r0, r∗, χ2).

The far chart (x, y) covers the ranges x ∈ [L/2,∞) and y ∈ [0, L/2]. To deal with

the infinity, the coordinate x is compactified introducing a new coordinate ξ ∈ [−1, 1).

Ref. [22] considers x(ξ) = L/(1 − ξ), such that ξ = −1 corresponds to the shared

boundary x = L/2 with the near patch and ξ = 1 corresponds to asymptotic infinity.

The problem with this is that to find the charges Cτ and Cy, i.e. the mass and the

tension, one needs to consider the asymptotic expansion of the metric components
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up to (D − 4)th order, which implies to take D − 4 derivatives. Of course, this is

problematic for D > 5, 6. We overcome this issue by considering the compactification

x(ξ) =
L

2

(
2

1− ξ

)∆

, (3.A.0.2)

where ∆ = (D− 4)−1 has been defined in §3.2.2. This way we still have x(−1) = L/2

and x(1) = ∞, but it is sufficient to consider the metric expansion at infinity up to

1st order. In particular, the charges are given by 1st derivatives of the metric,

Cτ = 2

(
L

2

)D−5 ∫ L/2

0

dy
∂Q1

∂ξ

∣∣∣∣
ξ=1

, Cy = −2

(
L

2

)D−5 ∫ L/2

0

dy
∂Q4

∂ξ

∣∣∣∣
ξ=1

. (3.A.0.3)

Additionally, each patch has been further divided into other small subregions in

order to be able to increase the grid resolution just where it is necessary. This is of

particular interest since as we increase D gravity turns out to be more localized and the

spacetime region close to the horizon needs special care. Moreover, close to the merger

point with NUBS, some functions develop steep gradients. In practice, the radial

coordinate in the near patch 1 is divided into two subdomains, and the compactified

coordinate ξ in the far patch is divided into three subdomains. In the near patches

containing the axis, the angular coordinate is also divided into two subregions. In

total, this introduces four new parameters in the integration domain: r∗, ξ∗, ξ∗∗ and

a∗, corresponding to the values where the different patches meet. At each shared

boundary, either near-near, near-far or far-far patch, one must impose continuity of

the functions and their first normal derivatives.

To impose these matching conditions one may consider the same grid point den-

sities from both sides of a given shared boundary. Alternatively, one can still require

continuity of the function and its normal derivative by performing the matching on an

interpolation function. Unlike [22], we have opted to work with the same grid point

densities. They are naturally always the same except at the shared boundary between

near and far patches. We fix this by considering the coordinate y given in terms of a

coordinate σ lying in the unit interval σ ∈ [0, 1]:

y(σ) =
L

2
tan
(π

4
σ
)
. (3.A.0.4)

Using Chebyshev grid points for σ, then the grid points along the y-direction are

properly distributed.

To check whether our code with the described modifications gives rise to reasonable

solutions and, in particular, accurate values for the mass, we compare the obtained

results, (i) for small localized black holes, with the mass of a Schwarzschild black hole

in D = 10, or (ii) with the perturbative results.

For small localized black holes one expects that the spacetime metric can be sys-

tematically expanded in a perturbation series with a small parameter ρ0/L, being ρ0

the location of the horizon. The best available perturbative approximation for the
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In both cases, the error decays exponentially, as expected.

thermodynamic quantities, with D arbitrary, are given in [198]. (We did not include

these curves in our plots in §3.3.1 or §3.4.2 since they were not much clarifying.) For

small enough black holes, i.e. with eccentricity ε < 10−3, our numerical values differ by

less than a 0.05% when compared to those obtained by (i) or (ii). From the geometri-

cal point of view, another check is to compare Lpolar defined in (3.3.2.3), with one half
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of the perimeter of a Schwarzschild black hole of the same temperature in D = 10. In

this case the deviations are always less than 0.01%.

3.B Convergence tests

In this appendix we check that our numerical solutions converge to the continuum limit

according to our discretization scheme. In the case of using pseudo-spectral methods,

the error should be exponentially suppressed with increasing the grid size. To monitor

it we use the squared norm of the DeTurck vector ξ2. We expect it to become zero

in the continuum limit. Indeed, Fig. 3.14 shows that our numerical implementation

exhibits the expected behavior.

To produce this figure we picked up a reference solution of each branch, we inter-

polated it at different resolutions and then we filtered through the Newton-Raphson

loop. For each output we computed the quantity of interest. For NUBS we just con-

sidered one single patch with resolution N = NxNy, being Nx and Ny the number of

grid points in each direction. In the case of LOC, we considered the usual 12 patches

and varied the mean resolution N̄ .

3.C D0-charge via uplifting + boosting + Kaluza-Klein

reduction

In this appendix we derive the mapping between the thermodynamics of neutral

Kaluza-Klein black solutions and the thermodynamics of near-extremal D0-black branes

on a circle of type IIA supergravity [161,240–242]. This involves a M-theory lift-boost-

reduce procedure.

Consider any static, axially symmetric metric solving Rµν = 0 in D spacetime

dimensions and approaching the direct product manifold R1,D−2 × S̄1 asymptotically.

The bar notation in S̄1 (of length L̄) is to distinguish, in D = 10, the T-dual circle of

type IIA supergravity from the original circle of length L of the type IIB theory. This

solution can be written using isotropic coordinates:

ds2 = −f 2dt2 + g2
(
dρ2 + ρ2dΩ2

D−3

)
+ h2dy2, (3.C.0.1)

with the generic functions f, g and h approaching 1 at ρ → ∞, and y ∼ y + L̄ is the

coordinate of S̄1. If (3.C.0.1) is a black hole with a Killing horizon located at ρ = ρ0,

then f(ρ0, y) = 0. We can construct the dimensionless quantity p0 ≡ ρ0/L̄ to label a

given family of such metrics.

Now uplift the solution adding a compact coordinate z, dŝ2
D+1 = ds2 + dz2. Boost-

ing along z with rapidity parameter α yields a solution to vacuum general relativity

in D + 1 dimensions. Upon dimensional reduction with respect to z we rewrite the

metric as

dŝ2
D+1 = e−2ηφds2

D + e2ζφ (dz − Atdt)2 , (3.C.0.2)
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with η2 = (2(D − 1)(D − 2))−1 and ζ = (D − 2)η. This choice of constants ensures

an Einstein framed dimensionally reduced action and canonical normalization for the

dilaton kinetic term. For D = 10, this procedure allows us to construct solutions of

type IIA supergravity with only graviton, dilaton and 1-form field excitations.

The new metric, the non-trivial dilaton field and the 1-form gauge field are identi-

fied to be:

ds2
D = H

2
D−2

(
− f

2

H2
dt2 + g2

(
dρ2 + ρ2dΩ2

D−3

)
+ h2dy2

)
,

eφ = H1/ζ ,

A(1) =
(
H−2 − 1

)
cothαdt ,

(3.C.0.3)

where H2 = 1 + (1− f 2) sinh2 α. This works because momentum around the circle in

the (D+1)th dimension is reinterpreted as D0-brane charge from the lower-dimensional

viewpoint [241].

We can start with (3.C.0.1) being a neutral non-uniform black string or localized

black hole, and obtain the charged solution using (3.C.0.3) (which depends on the

parameter α in addition to ρ0). Since we are interested in their thermodynamics

rather than the solutions themselves, we will proceed by expressing the quantities of

interest of the new charged solutions in terms of the uncharged ones. For instance, it

easy to see that the temperature and the entropy of the charged solution are simply

shifted by a factor of coshα with respect to the uncharged ones. To be precise,

T =
1

L̄ coshα
t(p0), S =

1

4GD

L̄D−2ΩD−3 coshα s(p0), (3.C.0.4)

where t(p0), s(p0) encode the parametric dependence of dimensionless temperature

and entropy of neutral solutions. The mass and the charge can be obtained from

the asymptotic expansion of the metric and the gauge field. Because (3.C.0.1) is

asymptotically KK, for large ρ we may expand

f(ρ, y) ' 1− ct(p0)
L̄D−4

ρD−4
, h(ρ, y) ' 1 + cy(p0)

L̄D−4

ρD−4
. (3.C.0.5)

Taking the square and considering the factors of H, one obtains the effective charges

for the solution (3.C.0.3), Ct(p0) and Cy(p0), entering in the expression (3.2.1.3). The

D0-charge may be obtained from the flux or from the asymptotic behavior of the gauge

field, and the chemical potential is given by µ = −At
∣∣
ρ=ρ0

= tanhα. The result is:

M =
L̄D−3ΩD−3

8πGD

(
(D − 3)ct(p0)− cy(p0) + (D − 4)ct(p0) sinh2 α

)
,

Q =
L̄D−3ΩD−3

8πGD

(D − 4)ct(p0) sinhα coshα.

(3.C.0.6)

Now set D = 10. The derived quantities so far correspond to the thermodynamic

quantities of the charged solution (3.C.0.3) of type IIA supergravity with a metric,
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a dilaton and a 1-form. At this point note that all physical quantities appearing

in (3.C.0.4) and (3.C.0.6), reduce to those of the uncharged solution in the limit

α → 0. The opposite limit α → ∞ corresponds to take the near-extremal limit. To

obtain the desired mapping we have to take the decoupling limit of Ref. [239] of near-

extremal configurations, which sends the string length `s to zero while keeping g2
YM

fixed. According to holography, these are dual to the decoupled field theory at finite

temperature. To proceed one needs the relation between the 10-dimensional Newton’s

constant and the string length and coupling constant, given in (1.3.0.1) (with ‘bar’

string coupling), the T-dual relations [288]:

L̄ =
(2π`s)

2

L
, ḡs =

2π`s
L

gs, (3.C.0.7)

and the relation between the string coupling and SYM coupling. In the case of IIB

string theory with D1-branes, this is given by

g2
YM = (2π)p−2gs`

p−3
s , (3.C.0.8)

with p = 1 [239]. To translate back the quantities above in terms of SYM variables

recall that λ′ = λL2 = Ng2
YML

2.

The dimensionless energy above extremality, ε = LE = L(M −Q), in these limits

corresponds to the energy density of the SYM theory. Since this becomes independent

of `s, the decoupling limit is trivial. The decoupling limit of the temperature and the

entropy needs to be taken with more care. At the end, one finds that the dimensionless

energy, temperature and entropy associated to a stack of N -coincident near-extremal

D0-branes in the decoupling limit are:

ε =
16

3
π7 (4ct(p0)− cy(p0))

N2

λ′2
, t = 2π5/2

√
2ct(p0)t(p0)

1√
λ′
,

s =
16

3
π11/2 s(p0)√

2ct(p0)

N2

λ′3/2
.

(3.C.0.9)

These expressions explicitly depend on functions that can be obtained from the

KK vacuum solution (3.C.0.1). Clearly, the numerical solutions found in §3.2 are

not written in isotropic coordinates which difficult the computation of such functions.

It is then convenient to write (3.C.0.9) in terms of gravitational variables which are

intrinsic of the solution instead of the coordinates. To this end, set α = 0 in (3.C.0.4)

and (3.C.0.6) and solve for the functions t(p0), s(p0), ct(p0) and cy(p0). The Smarr’s

relation closes the system of equations. The solution is:

t(p0) = t0, s(p0) =
4s0

ΩD−3

,

ct(p0) =
8π

ΩD−3

t0s0

D − 4
, cy(p0) =

8π

ΩD−3

(
D − 3

D − 4
t0s0 −m0

)
,

(3.C.0.10)

where t0 = L̄T , m0 = M/L̄D−3 and s0 = S/L̄D−2 are the dimensionless temperature,

mass and entropy of the neutral gravity solutions. Setting D = 10 and inserting these
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expressions back into (3.C.0.9), gives the final mapping:

ε = 64π4 (2m0 − s0t0)
N2

λ′2
, t = 4π

√
2s0t30

1√
λ′
,

s = 16
√

2π3

√
s0

t0

N2

λ′3/2
.

(3.C.0.11)
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Chapter 4

Critical Black Holes in AdSp× Sq

This chapter is based on [2], authored in collaboration with P. Figueras. The numerical

code and posterior data analysis was written and carried out by the author of this thesis

and the calculations were verified by P. Figueras.

4.1 Introduction and results

The gauge/gravity duality has become an important tool to unravel the physics of

certain quantum field theories (QFTs) at strong coupling, where the traditional tech-

niques of perturbation theory fail. With the current understanding of the duality, its

power mostly lies on the ‘gravity side’ of the correspondence, which involves (semi-

)classical theories of gravity that, in general, are more tractable than their respective

field theory duals. The first example of the gauge/gravity duality was introduced

by Maldacena in [162]. This was originally coined as the AdS/CFT correspondence,

since it relates a conformal field theory (CFT) such as N = 4 super Yang-Mills in

3 + 1 spacetime dimensions and gauge group SU(N) to type IIB superstring theory

in AdS5 × S5. Although the equivalence was conjectured to be true for generic values

of N and gYM (the gauge theory coupling constant), the duality is better understood

in the large N and large (effective) ‘t Hooft coupling λ = g2
YMN limit, where the

dual superstring theory reduces to classical supergravity in AdS5 × S5 [166, 171]. By

now, the duality has been extended to other dimensions and even to non-conformal

settings. The literature on the subject is vast and we will not review it here (see the

textbook [291] for a review and extensive references).

In this Chapter we are interested in equilibrium static black holes in asymptoti-

cally global AdSp×Sq spacetimes. By the gauge/gravity duality, these black holes are

dual to thermal phases of certain gauge theories. The field theory is defined at the

boundary, Bp−1, of the p-dimensional Anti-de Sitter (AdS) space, which enjoys a time-

like conformal structure at infinity.1 For instance, if Bp−1 is taken to be Minkowski

space, then the bulk spacetime is asymptotically AdSp in Poincaré coordinates. In

the Poincaré patch there exist two homogeneous solutions of the Einstein’s equations,

1The internal manifold, Sq in our case, is reflected in the field content of the dual gauge theory.
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namely pure AdSp and the planar Schwarzschild-AdSp black hole. However, the latter

always dominates the canonical ensemble and there are no phase transitions. This is

consistent with the fact that a CFT cannot have phase transitions on a scale invariant

background such as Minkowski space. Considering Bp−1 to be a space with non-zero

curvature [266] can lead to new and interesting physics. In the simplest case, one

can take Bp−1 to be the Einstein static universe (ESU), R× Sp−2, which corresponds

to consider asymptotically global AdSp spacetimes in the bulk. In this case, there

exists the well-known Hawking-Page phase transition [195] between global AdSp and

(large) Schwarzschild black holes in that background. This phase transition was later

re-interpreted by Witten [163] (see also Ref. [164]) as a confinement/deconfinement

phase transition in the dual CFT.

So far the discussion has ignored the dynamics in the internal manifold, namely

the Sq in our case. There are situations where the internal geometry leads to new

and interesting dynamics. This is famously the case for the Gregory-Laflamme (GL)

instability of black branes [130], whose endpoint has led to counterexamples of the

weak cosmic censorship conjecture in higher dimensions [137]. In fact, soon after the

discovery of the GL instability, it was suggested that black holes in global AdS would

undergo a similar dynamical instability that should lead to localization in the internal

space [267, 268]. The instability of black holes in global AdS was addressed in [156],

who found the threshold zero (i.e., time-independent) mode(s) for the Schwarzschild-

AdS5 × S5 black hole. In that paper it was shown that small (compared to the AdS

radius) Schwarzschild-AdS5 × S5 black holes had zero modes (preserving a SO(5)

isometry) when the negative modes of the Schwarzschild-AdS black hole [269] coincided

with the momentum along the internal space. For the latter, being a S5, modes are

expanded in terms of spherical harmonics, which are labeled by the harmonic number

`. Then there exists an infinite number of zero modes, one for each (discrete) value of

` and the corresponding specific horizon radius.

The existence of zero modes suggests two things: First, the presence of a dynamical

instability and, second, the existence of new branch of static black holes. Indeed, in

the case of the GL instability of black strings, [13, 14] first showed that there exists a

new branch of non-uniform black strings that emanates from the uniform string branch

precisely at the onset of the GL instability. Similarly, [19] constructed asymptotically

global AdS5 × S5 black holes with non-uniform horizons along the S5 that emanate

from the Schwarzschild-AdS5 × S5 black holes at the onset of GL instability for the

` = 1 and ` = 2 modes respectively. These so-called lumpy black holes have the

same horizon topology as their Schwarzschild-AdS5 × S5 counterparts, but no longer

preserve the full isometry group of the internal space. In the examples of [19], only a

round S4 inside the internal S5 is preserved. The role of the lumpy black holes in the

space of black hole solutions AdS5 × S5 is analogous to that of the non-uniform black

strings in the context of black holes in standard Kaluza-Klein (KK) theory. Similar

to the fact that there exist localized black holes in KK theory [18], there also exist

black holes in AdS5 × S5 that are localized on the S5. The latter were numerically
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constructed in [20]. The localized black holes of [20] should presumably merge with

the ` = 1 lumpy black holes, but the branches of solutions in [19] and [20] are still

quite far from the merger point. One of the goals of this chapter is to get close to this

point from the lumpy black holes side.

Mergers in the space of static black hole solutions in general relativity have been

thoroughly studied in the context of KK theory. Kol [21] proposed that the horizon

topology change between the two branches is locally described by conifold-type-of

transition, controlled by a (singular) self-similar double-cone geometry. This double-

cone model has been confirmed for the localized black hole/non-uniform black string

transition [238] (see also the recent studies [1, 22, 157–159]) and in asymptotically

flat space [147, 160]. One non-trivial prediction of the double-cone model is that the

behavior of any physical quantity Q near the critical point is given by

Q = Qc + C+ρ
s+
0 + C−ρ

s−
0 , (4.1.0.1)

where Qc is the value of Q at the critical point, ρ0 is any length that measures the

deviation from the cone, and s+ and s− are the critical exponents that govern the

perturbations away from the double-cone geometry. These critical exponents are di-

mension dependent, and they are complex for D < 10 and purely real for D > 10;

D = 10 is a degenerate case that leads to a power law with a logarithmic correction.

This behavior of the physical quantities near the critical point has been beautifully

confirmed for D < 10 [157] and D = 10 [1,22]. Whilst physical quantities may be de-

fined on the whole horizon, Eq. (4.1.0.1) indicates that sufficiently close to the critical

point in a topology-change transition, they are actually governed by the regions of the

horizon that pinch-off.

So far no topology change transitions analogous to the localized black hole/non-

uniform black string have been studied in AdS. In this chapter we fill this gap by

numerically constructing critical lumpy black holes. We review, correct and extend

the work of [19] by constructing lumpy black holes in AdS5 × S5 and AdS4 × S7 with

non-uniformity parameters (see Section 4.3 for the definition) λ ∼ 25 and λ ∼ 104

(for ` = 1) respectively.2 Ref. [19] only considered the AdS5× S5 case, and from their

plots we have estimated that their most critical solutions have λ ∼ 2. For the ` = 1

lumpy family, the phase diagrams that we obtain exhibit some differences compared

to those reported in [19], with our branches being shorter (see Section 4.4.1). This

may appear to be a little surprising since we have managed to construct solutions with

significantly larger values of λ and hence closer to the critical point; these discrepancies

can be attributed to the different quality of our numerical solutions and theirs. To get

closer to the critical point, we employ the sophisticated methods that we successfully

used in [1] (see also [22,157] and Section 4.3.4). As we will show in Section 4.4.4, in the

context of asymptotically AdSp×Sq black holes, the critical geometry is controlled by

a triple cone which is not Ricci-flat anymore. We have checked that to leading order

2Following [13], from now on we will exclusively use λ to denote the non-uniformity parameter, as

is customary in the field. This should not be confused with the ’t Hooft coupling.
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the behavior near the critical point of physical quantities of the different families of

lumpy black holes that we have constructed (more specifically ` = 1, 2, 3) is given by

(4.1.0.1). Furthermore, the critical exponents obtained from our numerical solutions

(see Tables 4.3 and 4.4) match the prediction of the triple-cone model. Therefore, we

are confident of the correctness and accuracy of our numerical solutions.

Another novelty of our work is that we use the holographic dictionary to extract

how the physics of the topology change is imprinted in the dual field theory observ-

ables. Using the tools of KK holography [270], we extract the vacuum expectation

values (vev’s) of the boundary stress-energy tensor and certain scalar operators (see

Section 4.4).3 The latter parametrize the deformations of the internal space and, unsur-

prisingly, near the critical point they exhibit the behavior predicted by the triple-cone

model (4.1.0.1). This result can be interpreted as a prediction from holography of

how the dual field theory may detect a topology change in the bulk. We should point

out that our results from KK holography differ from those of [19]. In particular, the

expressions for the holographic stress-energy tensor and the scalar vev’s are different,

and we also find that 〈OT 4〉 = 0. To correct errors and typos in the literature, we

felt the need to provide an extensive review of KK holography and the details of our

calculations in Appendices 4.A and 4.B.

So far we have focused on asymptotically AdS5×S5 lumpy black hole solutions since

these are the relevant ones for type IIB supergravity in ten spacetime dimensions. In

this chapter we also consider lumpy black holes in asymptotically AdS4×S7 spacetimes,

hence they are solutions to 11-dimensional supergravity/M-theory.4 In this case, the

only bosonic fields are the metric and the 4-form field strength. The equations of

motion for the bosonic fields in this theory are simpler than in the IIB case (because

there is no self-duality condition for the field strength), which allows us to get much

closer to the merger point and test the triple-cone model with exquisite detail. Lumpy

black holes in this theory should be dual to certain thermal phases of ABJM theory

[271].

The gravity problem

As stated at the beginning, our problem consists of finding static black holes that are

solutions to certain supergravities and are asymptotically AdSp × Sq (so D = p+ q is

the total number of spacetime dimensions) such that the Sp−2 inside AdS and an Sq−1

3This is only possible when the SO(q + 1) isometry of the internal Sq is broken, as it occurs at

the threshold point of the GL instability of small Schwarzschild-AdS black holes [156], and persists

along the lumpy branches. Holographically, this is interpreted as a spontaneous symmetry breaking

in the dual gauge theory.
4We could also have considered (p, q) = (7, 4) within 11D supergravity; other possibilities are,

for instance, type IIB supergravity with a 3-form field strength, corresponding to (p, q) = (7, 3), or

type IIA supergravity with a Ramond-Ramond (RR) 2- or 4-form. In this case one can presumably

construct black hole solutions for (p, q) = (4, 6), (8, 2) and (6, 4), respectively.
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inside the Sq are round. Asymptotically, the solutions must tend to the metric:

ds2
AdS×S = ds2

(p)(AdS) +R2dΩ2
(q), (4.1.0.2)

where R denotes the radius of the Sq. R is fixed by supersymmetry in terms of the

radius L of the AdS factor. For (p, q) = (5, 5) and (4, 7), the background metric

(4.1.0.2) is a solution to the bosonic sector of type IIB SUGRA with only a RR self-

dual 5-form field strength or 11D SUGRA respectively.

The actions for the theories considered in this study can be derived requiring local

supersymmetry and we truncate them to the desired field content. We have considered

the following normalizations for the field strengths:

SIIB =
1

16πG10

∫ (
R ? 1− 1

4
? F(5) ∧ F(5)

)
,

S11D =
1

16πG11

∫ (
R ? 1− 1

2
? F(4) ∧ F(4)

)
,

(4.1.0.3)

where F(n) = dA(n−1). In type IIB case, one has to additionally impose the self-duality

condition F(5) = ?F(5) after deriving the equations of motion.

A few comments are in order. First, notice that in D = 10, this is the minimal

field content consistent with the symmetries. Since the S3 within the AdS5 factor

is assumed to be round, a 3-form field strength would also be compatible with the

symmetry, but it is not necessary. For simplicity, in this study we have turned it off.

We leave for future work the problem of exploring for phase diagram of asymptotically

AdS5 × S5 black hole solutions with an additional 3-form field strength. Second, in

D = 11 the action contains a Chern-Simons term,

SSC
11D ∼

∫
F(4) ∧ F(4) ∧ A(3), (4.1.0.4)

whose coefficient is fixed by supersymmetry. However, for static configurations and

with the symmetry assumptions of this analsyis, the Chern-Simons term does not

contribute and we omit it.

The equations of motion that one obtains from (4.1.0.3) can be written as follows:

RMN −
1

96
F(5)MPQRSF

PQRS
(5)N = 0, dF(5) = 0, F(5) = ?F(5),

RMN −
1

12

(
F(4)MOPQF

OPQ
(4)N − 1

12
gMN |F(4)|2

)
= 0, d ? F(4) = 0.

(4.1.0.5)

The indices run over the whole number of spacetime dimensions. None of the equations

for the metric has a ‘bare’ cosmological constant. Instead, this emerges from the flux

of the gauge field, allowing the background (4.1.0.2) to be a solution of (4.1.0.5) with:

F(5) =
4

L
(vol(AdS5) + vol(S5)) , R = L,

F(4) =
3

L
vol(AdS4), R = 2L.

(4.1.0.6)
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Numerical approach

As for the numerical approach, we implement the Einstein-DeTurck equation discussed

in Chapter 2. Originally, this was intended to solve static problems in vacuum Ein-

stein’s gravity [214], but it can be straightforwardly generalized to include matter. In

fact, matter does not modify the principle part of Einstein’s equations and therefore

the non-vacuum Einstein-DeTurck equation:

RH
MN ≡ RMN − 8π G

(
TMN −

1

D − 2
gMNT

)
−∇(MξN) = 0, (4.1.0.7)

is manifestly elliptic on static metrics. ξM is the already known DeTurck vector,

ξM = gNO
(
ΓMNO − Γ̄MNO

)
, (4.1.0.8)

containing the usual Levi-Civita connection Γ compatible with the spacetime metric

g, and a Levi-Civita connection Γ̄ compatible with some reference metric ḡ that we

are free to prescribe. Additionally, there are also the matter field equations which will

not be elliptic due to the underlying local gauge symmetry

A(n−1) → A(n−1) + dΛ(n−2), (4.1.0.9)

where Λ(n−2) is an arbitrary (n− 2)-form. The matter equations can also be modified

by adding a DeTurck-like term, but in this case it will be easier to fix the gauge

algebraically with a suitable ansatz for the gauge field.

For static spacetimes that are either asymptotically flat, KK or AdS, and whose

boundary conditions are compatible with ξM vanishing at the boundaries of the mani-

fold (if any exist), [224] showed that all solutions to RH
MN = 0, are necessarily Einstein.

Even though the proof of [224] is for the pure gravity case, it should be straightforward

to generalize to the present case. In fact, as we shall see below, for our particular prob-

lem, the boundary conditions that we impose fall within the class considered in [224],

and hence solving (4.1.0.7) is equivalent to solving the Einstein equations. In practice,

we use the square of the DeTurck vector, ξ2 ≡ ξMξ
M , to quantify the validity of our

numerical solutions and to perform convergence tests. More details about the DeTurck

method can be found in §2.1 of Chapter 2 and references therein.

From the technical point of view, the equations are always discretized using pseudo-

spectral methods on a Chebyshev grid and we solve them by a standard iterative

Newton-Raphson method. See §2.2 of Chapter 2.

Organization of this chapter

The rest of this chapter is organized as follows. In Section 4.2 we review the simplest

black hole solution with the desired asymptotics, namely the Schwarzschild-AdSp×Sq
black hole. We do so for generic values of p and q, and we present the expressions for

the physical quantities. In Section 4.3 we present the metric and gauge field ansatz,
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again for generic values of p and q, that we use for the numerical construction of

the lumpy black holes. This section also includes a discussion about the boundary

conditions that yield a well-posed boundary value problem. The one-parameter family

that we use as ansatz, by construction captures the threshold GL zero mode for any

`. We use this mode as the initial seed to find the actual non-linear solutions. The

results are presented in Section 4.4. This section constitutes the core of the chapter,

where the phase diagrams are shown and discussed. Special emphasis is put on the

isometric embeddings, the topology changes and the critical behavior of the solutions

close enough to the merger point. In particular, we compute the critical exponents

and find the critical values of various thermodynamic quantities. We close in Section

4.5 with a discussion and outlook of our results.

Finally, we include a few appendices with technical details. KK holography in

AdS5 × S5 is reviewed thoroughly in Appendix 4.A, and detailed application of this

procedure to our solutions can be found in Appendix 4.B. This requires a basis of

spherical harmonics that preserve an SO(5) subgroup of the full SO(6) rotational group

of the S5; this is presented for generic value of q in Appendix 4.C. In Appendix 4.D

we show the embedding plots in D = 10, which are not included in the main body of

the chapter. In Appendix 4.E we include further details of the numerical construction,

especially of the grids employed, and we perform some convergence tests.

4.2 Schwarzschild-AdSp×Sq black hole

The simplest black hole solution with the desired asymptotics is the Schwarzschild-

AdSp×Sq black hole, which is known explicitly. In this section we review those aspects

of this solution that are relevant for our analysis for generic values of p and q. Most

of the material in this section is well-known and can be skipped by the expert reader.

The horizon of Schwarszchild-AdSp×Sq black hole is uniformly smeared along the

internal Sq and it thus respects the full SO(q + 1) symmetry; the horizon topology is

Sp−2 × Sq. The metric reads:

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2dΩ2

(p−2) +R2dΩ2
(q), (4.2.0.1)

where dΩ2
(p−2) and dΩ2

(q) = dθ2 + sin2 θ dΩ2
(q−1) are the line elements of the round

spheres appearing in the AdSp and Sq factors respectively, and

f(r) = 1 +
r2

L2
−
(r+

r

)p−3
(

1 +
r2

+

L2

)
, (p > 3). (4.2.0.2)

The field strength and radius of the Sq coincide with those for the background AdSp×
Sq and are given in (4.1.0.6).

It is straightforward to compute the temperature and entropy of this black hole.

The energy may be found by integrating the first law of black hole mechanics and then
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Fig. 4.1: Dimensionless temperature vs. dimensionless control parameter for

the relevant values (p, q). The value at which the HP phase transition takes

place is shown.

the free energy is given by F = E − TS. We find:

T =
p− 3 + (p− 1)(r+/L)2

4πr+

,

S =
1

4GD

rp−2
+ Ω(p−2)R

qΩ(q),

E = EAdSp +
p− 2

16πGD

(
1 +

r2
+

L2

)
rp−3

+ RqΩ(p−2)Ω(q),

F = FAdSp +
1

16πGD

(
1−

r2
+

L2

)
rp−3

+ RqΩ(p−2)Ω(q).

(4.2.0.3)

EAdSp (= FAdSp) is the vacuum energy of Anti-de Sitter space, which is non-vanishing

for p = 3, 5 (it is zero for p = 4), and whose precise expression cannot be found from

the first law, as it appears as an integration constant. One can find those ‘Casimir’

energies, for instance, with the prescription of [272] for defining the stress tensor of

asymptotically AdS spacetimes. Here we instead use the results that follow from the

KK holography analysis (see Appendix 4.B and in particular equation (4.B.0.16)).

Letting L be the AdS radius, Schwarzschild-AdSp×Sq black holes are called small

if r+ . L or large if r+ & L. We may invert the relation between the temperature T

and the horizon radius r+ in (4.2.0.3) to find the two branches of black holes at the

same temperature T :

r+ =
L

p− 1

(
2πTL±

√
(2πTL)2 − 3− p(p− 4)

)
. (4.2.0.4)

The positive branch describes large AdS black holes, while the negative branch de-
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scribes small AdS black holes. The temperature has a minimum

Tmin =

√
(p− 3)(p− 1)

2π L
, (4.2.0.5)

at

rmin
+ = L

√
p− 3

p− 1
, (4.2.0.6)

and diverges in the limits of either large or small r+. This minimum temperature

separates the two branches of black holes and there are no homogeneous static black

holes in AdSp × Sq (for fixed values of p and q) for T < Tmin. This is summarized in

Fig. 4.1.

With the expressions for the physical quantities in (4.2.0.3), we can now review the

phase diagram of the homogenous asymptotically AdSp × Sq solutions. These include

the background AdSp × Sq itself and the two branches of Schwarzschild-AdSp × Sq

black holes. Since these spacetimes are static, we can trivially consider their Euclidean

sections. There are two relevant thermodynamic ensembles: the microcanonical and

the canonical ensembles. In the former, we compare solutions with the same energy

and those with the largest entropy dominate; in the latter, the temperature is fixed

and the solutions with the lowest free energy are preferred.

In the microcanonical ensemble the phase diagram is trivial: the background has no

horizon and hence vanishing entropy; consequently, there is only one solution at a given

energy, namely the corresponding Schwarzschild-AdSp × Sq black hole. On the other

hand, the phase diagram in the canonical ensemble is much richer. First notice that

global AdSp×Sq exists at any temperature: the period β of the Euclidean time circle

can be chosen to have any value. The geometry has no horizon and therefore vanishing

entropy. Consequently, FAdSp = EAdSp . From now on we subtract this contribution

in (4.2.0.3), and consider the difference ∆F = F − FAdSp . For the Schwarzschild-

AdSp×Sq, regularity of the Euclidean section requires that the period of the Euclidean

time circle is given by β = 1/T with T given in (4.2.0.3). Furthermore, from (4.2.0.3)

we see that ∆F < 0 for r+ > L, and hence large Schwarzschild-AdSp × Sq black holes

above this threshold dominate the canonical ensemble. On the other hand, ∆F > 0

and for r+ < L, and thus thermal AdSp × Sq is preferred. At r+ = L, corresponding

to Hawking-Page (HP) temperature,

THP =
p− 2

2π L
, (4.2.0.7)

there is a phase transition between two distinct equilibrium states: large Schwarzschild-

AdSp × Sq black holes and thermal AdSp × Sq. This is summarized in Fig. 4.1. The

energy is discontinuous across the phase transition, E+
HP 6= E−HP, with

E±HP ≡ lim
T→T±HP

E(T ), (4.2.0.8)

yielding a non-vanishing latent heat ∆E, and the phase transition is of first order.

For temperatures T < Tmin, there only exists thermal AdS. For Tmin < T < THP,
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homogenous black hole solutions do exist but do not dominate the canonical ensemble;

for T > THP, large Schwarzschild-AdSp × Sq black holes are the preferred phase, with

both phases co-existing at THP. Small Schwarzschild-AdSp×Sq black holes are always

subdominant.5

So far, the physics only presents dependence on p. For the values (p, q) of inter-

est, these quantities are shown in Table 4.1. Schwarzschild-AdSp × Sq describes the

universal sector to which Ref. [266] refers, only involving gravity in AdS and with the

internal space playing no role. This is indeed the case if we only consider large black

holes and the background. On the other hand, small enough Schwarzschild-AdSp×Sq
black holes are dynamically unstable under perturbations that break the isometries of

the internal space [156]. Whilst the thermodynamic stability of the small black hole

branch changes at

r+ = rmin
+ , (4.2.0.9)

becoming unstable for r+ < rmin
+ , this does not necessarily signal the onset of a dynam-

ical instability. Indeed, the onset of the dynamic instability occurs when the Euclidean

eigenmode λE of the Schwarzschild-AdSp black hole coincides exactly with the ‘mo-

mentum’ in the transverse space. In the present case, where we take the internal space

to be a Sq, the threshold unstable mode will occur when λE = −`(` + q − 1), where

` is labels the spherical harmonics on the Sq. This is how the zero mode that signals

the instability was first obtained. In turn, it suggests the existence of new branches

of black holes that emerge from this point and that have deformed horizons along Sq.

These new branches of black holes are completely analogous to the non-uniform strings

in the context of the GL instability of black strings [13, 14]. From the D-dimensional

point of view, for each ` there is a GL zero mode that breaks the SO(q + 1) isometry

of Sq down to SO(q). These zero modes can be uplifted to fully non-linear solutions,

leading to the so-called lumpy black holes, first constructed in [19] in AdS5 × S5.

The aim of this chapter is to study in detail several branches of lumpy black holes in

AdS5 × S5 and AdS4 × S7.

Linear perturbations about the Schwarzchild-AdSp × Sq spacetime can be decom-

posed into a sum of scalar, vector and tensor perturbations, depending on how they

transform under coordinate transformations on the Sq. The GL zero modes are in the

scalar sector and are classified in terms of `, the harmonic quantum number on the

Sq. Here, instead of proceeding as in [156] and expand the AdS sector of the metric

perturbations in spherical harmonics,

gµν → gµν + h`µνY`(θ), (4.2.0.10)

we will linearize the full D-dimensional general ansatz for the lumpy black holes (see

the next section) around Schwarzchild-AdSp×Sq. The problem of numerically finding

5Notice that planar-AdSp(×Sq) black holes are infinitely extended since Bp−1 = R1,p−2 and can

be recovered in the limit r+ � L. In this limit the free energy is always negative and therefore there

are no phase transitions. As we anticipated earlier, these black holes always dominate the canonical

ensemble.



4 Critical Black Holes in AdSp× Sq 95

(p, q) rmin
+ /L TminL THPL E−HP E+

HP ∆E

(5, 5) 1√
2

√
2
π

3
2π

3N2

16L
27N2

16L
3N2

2L

(4, 7) 1√
3

√
3

2π
1
π

0 128π4L8

3
128π4L8

3

Table 4.1: Relevant thermodynamic values in the phase diagram of the so-

lutions preserving the background’s isometries. In D = 10, the G10 has been

expressed in terms of the dual gauge theory parameter N using (4.4.1.1). In

D = 11, G11 is a fundamental constant and can be taken to be one.

the lumpy black holes requires to construct the linearized Einstein-DeTurck operator,6

and hence we can easily adapt our code to find the spectrum of time independent

perturbations of Schwarzschild-AdSp × Sq black holes. Since the latter turn out to be

thermodynamically unstable for r+ < rmin
+ , we started our search for zero modes at

r+ = rmin
+ and gradually decreased this value until a zero mode is found. The first

three zero modes, corresponding to ` = 1, 2, 3, occur at

(p, q) = (5, 5) : y`=1,2,3
0 = {0.44023414, 0.32388984, 0.25704192},

(p, q) = (4, 7) : y`=1,2,3
0 = {0.28898162, 0.24819894, 0.21751714},

(4.2.0.11)

where y0 = r+/L . In practice we use these zero modes as initial seeds for finding the

corresponding non-linear families of lumpy black holes. We note that in the D = 10

case, our values coincide with those found in [19] for ` = 1, 2. In the D = 11 case, as

far as we know, our results are new. The spectrum of negative modes of the Schw-AdS4

black hole was computed in [269]. The threshold radii for the 0-modes that we have

found agree, within numerical error, with the values of the radii where these negative

modes coincide with the eigenvalues −`(`+ 6) of the scalar harmonics on the S7.

4.3 Lumpy black holes in AdSp×Sq

In this section we present the numerical construction of lumpy black holes in AdSp×Sq.
The different cases that we explore differ by the equations of motion and by the n-form

gauge field, but the ansatz for the metric is general and can be written down for any

values of p and q.

Lumpy black holes in AdSp× Sq only retain a SO(q) subgroup of the full isometry

group of the internal Sq. In the space of static solutions, they emanate from the small

Schwarzschild-AdSp × Sq black hole branch at the GL threshold point, and therefore

they have the same horizon topology: Sp−2 × Sq. They are classified by `, which

6Around an Einstein metric, this operator coincides with the Lichnerowicz operator.
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is the harmonic number corresponding to the scalar harmonic on the Sq that labels

the corresponding zero mode. Each lumpy solution of the `th family depends on two

coordinates: the radial coordinante r in the AdSp factor, and the polar angle θ on the

Sq; using standard spherical coordinates, the polar angle ranges from 0 to π, with the

‘north’ pole of Sq at θ = 0, the equator at θ = π/2 and the ‘south’ pole at θ = π.

Uniform horizons on Sq trivially possess a reflection symmetry θ ↔ π − θ with re-

spect to the equator of this Sq. However, under this parity transformation scalar har-

monics pick up a factor of (−1)`. Recall that the various families of lumpy black holes

are non-linear solutions of the field equations that are continuously connected (in the

space of solutions) to the linear deformations of the uniform black holes parametrized

by the scalar harmonics. Therefore, the lumpy families labelled by the harmonic `

transform in the same way as the scalar harmonics under reflections about the equa-

tor of the internal Sq. Consequently, lumpy black holes labelled by an odd ` are not

symmetric with respect to reflections about the equator, and one has to consider the

whole range of the polar angle θ on the Sq to construct them. On the other hand, for

even ` lumpy black holes enjoy a reflection symmetry about the equator and it suffices

to consider θ ∈ [0, π/2].

4.3.1 Metric ansatz

Given the previous considerations, a suitable ansatz for the metric of the lumpy black

holes consists of a general enough deformation of the Schwarzschild-AdSp × Sq black

hole that breaks the SO(q + 1) symmetry down to SO(q). To solve the equations of

motion numerically, it turns out to be convenient to compactify the radial coordinate

and to redefine the polar angle as follows:

r(y) =
r+

1− y2
, θ(a) = arcsin(1− a2). (4.3.1.1)

In these coordinates, the horizon is located at y = 0 and the conformal boundary of

AdSp is at y = 1, while the north and south poles of the Sq are at a = ±1 respectively,

and the equator is at a = 0. Then for odd/even ` the integration domain is simply

[0, 1] × [−1, 1] / [0, 1] × [0, 1]. We will be parametrize the ansatz in terms of the

dimensionless parameter y0 = r+/L. If we further rescale the time coordinate t→ Lt,

then the AdS radius L drops out of the equations of motion, leaving y0 as the only

control parameter. This parameter effectively sets the temperature of the black hole.

Therefore, for any given harmonic `, the lumpy black holes form a one-parameter

family of solutions specified by the temperature.

Applying these changes of coordinates and redefinitions to (4.2.0.1), the metric

reads:

ds2 =
L2

(1− y2)2

(
−Gp(y)

1− y2
dt2 +

4y2(1− y2)y2
0

Gp(y)
dy2 + y2

0dΩ2
(p−2)

)
+R2

(
4da2

2− a2
+ (1− a2)2dΩ2

(q−1)

)
,

(4.3.1.2)
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with

Gp(y) = 3y4 − y6 − (1 + y2
0)
(
(1− y2)p − 1

)
− y2

(
3 + y2

0

)
. (4.3.1.3)

This is the metric that we will use as the reference metric in the Einstein-DeTurck

equations (4.1.0.7). We can now present the ansatz for the lumpy black holes. For any

value of p and q, we consider:

ds2 =
L2

(1− y2)2

(
− Gp(y)

1− y2
Q1dt2 +

4y2
0y

2(1− y2)

Gp(y)
Q2

(
dy − (1− y2)2Q3da

)2

+ y2
0Q5dΩ2

(p−2)

)
+R2

(
4Q4

2− a2
da2 + (1− a2)2Q6dΩ2

(q−1)

)
,

(4.3.1.4)

whereQ(y, a) ≡ {Q1, . . . , Q6}(y, a) are the unknowns for the metric field. ForQi(y, a) =

1, ∀i 6= 3 and Q3(y, a) = 0, we recover (4.3.1.2). These are actually the Dirichlet

boundary conditions imposed at y = 1, as required by the asymptotics. The ansatz

(4.3.1.4) preserves the full SO(p−1) symmetry of the Sp−2 within the AdSp factor and

the unbroken SO(q) symmetry of the Sq−1 inside the Sq.

4.3.2 Gauge field ansatz

The different theories that admit AdSp × Sq asymptotic solutions also contain a non-

trivial n-form gauge field strength; n = 5 in D = 10 and n = 4 in D = 11. In order

to solve the equations of motion numerically, we need to provide a suitable ansatz for

this field.

Instead of considering the form field strength F(n), we will work with the potential

form field A(n−1), such that F(n) = dA(n−1). The reason is that the equations of

motion for A(n−1) are of 2nd order and elliptic. To find a suitable ansatz, we consider

a deformation of the gauge field A(n−1) corresponding to the Schwarzschild-AdSp×Sq
black hole (4.1.0.6) written in terms of the coordinates (y, a); see Eq. (4.3.1.1). In

particular, we consider a gauge such that the (n − 1)-form potential vanishes at the

horizon, which has the benefit of simplifying the boundary conditions there. Taking

these considerations into account, we have the following ansatz for A(n−1):

(p, q) = (5, 5) : A(4) = L4y4
0

y2(2− y2)(2− 2y2 + y4)

(1− y2)4
Q7dt ∧ dσ(3)

−Wdσ(4),

(p, q) = (4, 7) : A(3) = −L3y3
0

y2(3− 3y2 + y4)

(1− y2)3
Q7dt ∧ dσ(2),

(4.3.2.1)

where dσ(r) is the volume r-form of a round unit r-sphere, and Q7 = Q7(y, a) is an

unknown function that encodes the deformations away from Schwarzschild-AdSp×Sq.
For Q7(y, a) = 1 (and a particular function W for (p, q) = (5, 5)), these expressions

yield the field strengths given in (4.1.0.6) in the (y, a) coordinates. Having fixed

the gauge a priori, the equation of motion for the potential is elliptic; this equation
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together with the Einstein-DeTurck equations for the metric (4.1.0.7) and for suitable

boundary conditions (see §4.3.3) form a well-posed boundary value problem.

There is a small caveat in the case (p, q) = (5, 5). Notice that we have not specified

the particular form of the function W (y, a) appearing in the ansatz. The reason is that

the self-duality condition F(5) = ?F(5) allows us to eliminate the first derivatives of W

in terms of the first derivatives of Q7. Then, the equation dF(5) = 0 can be written

solely in terms of Q7 and its first and second derivatives. This is not surprising, since

the self-duality condition by itself is non-dynamical.

4.3.3 Boundary conditions

The boundary value problem has to be supplemented by suitable boundary conditions

to form a well-posed problem. These are obtained by requiring regularity at the

horizon and at the poles (or reflection symmetry at the equator for even values of `),

and by requiring that the solution is asymptotically AdSp × Sq. In full, the boundary

conditions that we impose are:

• Horizon at y = 0: regularity at the horizon implies that all functions Q must

be even in y and therefore we impose a Neumann boundary condition on all of

them, except Q3 which is Dirichlet. The condition Q1(0, a) = Q2(0, a) ensures

that the geometry is free of conical singularities and fixes the surface gravity of

the lumpy black holes to be the same as that of the reference metric.

• Asymptotic boundary at y = 1: AdSp×Sq asymptotics imply Dirichlet bound-

ary conditions Qi(1, a) = 1, ∀i 6= 3, and Q3(1, a) = 0.

• North and south poles of Sq (for ` odd) at a = ±1 respectively: all Q’s must be

even in (1∓a) respectively, and thus we impose Neumann boundary conditions on

all of them except the crossed term Q3, which must satisfy a Dirichlet boundary

condition, Q3 = 0. In addition, to avoid conical singularities at the poles we

impose: Q4(y,±1) = Q6(y,±1).

• Equator and north pole of Sq (for ` even) at a = 0 and a = 1 respectively: all

Q’s must be even there and thus we impose Neumann boundary conditions on

all of them except the crossed term Q3 which must satisfy a Dirichlet boundary

condition, Q3 = 0. In this case, we only need to further impose the absence a

conical singularity at the pole (a = 1) by requiring Q4(y, 1) = Q6(y, 1).

4.3.4 Further considerations

Now we are in position to construct the numerical solutions for the lumpy black holes.

We start with the Schwarzschild-AdSp× Sq black hole, corresponding to Qi(y, a) = 1,

∀i 6= 3, and Q3(y, a) = 0 in (4.3.1.4) and (4.3.2.1), and we add a bit of the `th zero

mode, depending on the lumpy family that we aim to find, to construct a good enough
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initial guess of the Newton-Raphson loop. Whereas for ` odd, adding or subtracting

the zero mode connects to the same lumpy family, this is not the case for ` is even.

This is better understood in terms of the perturbations as written in (4.2.0.10): under

a parity transformation, the perturbations transform as

h`µν → (−1)`h`µν . (4.3.4.1)

Therefore, we see that for odd `, the positive sign in the perturbation is equivalent to

the negative sign by transforming θ → π−θ, which is nothing but a redefinition of what

we call ‘north’ and ‘south’ poles of the Sq. However, this redundancy does not apply

when ` is even, and the choice of the sign yields physically different perturbations that

connect to different families of lumpy black holes. In this chapter we have focused on

finding the first four families of lumpy black holes, i.e., ` = 1, 2+, 2− and 3. The upper

sign for ` = 2 refers to the family that branches off from the Schwarzschild-AdSp× Sq
black hole by adding (+) or subtracting (−) the 0-mode for seeding the first solution.

Given the boundary conditions above, the temperature of our lumpy black holes

is the same as the Schwarzschild-AdSp × Sq black hole used as a reference metric

and is controlled by the parameter y0 in (4.3.1.4). We move along a given branch of

lumpy black holes by varying y0. In analogy with non-uniform black strings in KK

theory [13], we define a ‘lumpiness’ parameter λ (see Eq. (4.4.3.3)), that measures

the size of deformations away from the Schwarzschild-AdSp × Sq black hole. Slightly

non-uniform (on the Sq) lumpy black holes have λ� 1, while λ→∞ as we approach

the critical regime, where lumpy black holes merge with another family of black holes

with a different horizon topology. For non-critical lumpy black holes (λ . 1), one

single patch of Chebyshev grid points is enough to obtain accurate numerical results.

However, critical solutions need a more careful treatment.

In order to access the critical regime we employed three techniques that have

been used successfully in the past [1, 22] . For critical solutions but not the most

critical ones, we supplement the single domain with mesh-refinement in the region

where it is necessary. As we approach the merger point, some functions develop very

steep gradients near one (or both) pole(s) and mesh-refinement alone is insufficient to

accurately construct such solutions; to resolve them, we simply redefine the unknowns

as Qnew = 1/Qold, for some functions (see below), and we split the domain into several

(smaller) patches and apply mesh-refinement to increase the resolution where it is

needed. The boundary conditions for the new unknowns are the same as the ones listed

before, but the new functions remain bounded as we approach the critical regime.

In general, we have tracked the value of ξ2 to determine when the resolution needs

to be increased. We have always required ξ2 < 10−10, despite the most critical solutions

we reached do not satisfy this bound. Still, the numerical error is very localized and

under control. In addition, we have also monitored some physical observables (see

Section 4.4) along a given family; when numerical errors are unacceptably large they

are reflected in the physical quantities. With these considerations, we have managed

to confidently construct families of lumpy black holes up to following maximum values
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of λ:

(p, q) = (5, 5) : λ`=1,2+,2−,3
max = {25, 8.1, 6.3, 26},

(p, q) = (4, 7) : λ`=1,2+,2−,3
max = {104, 109, 6.0, 100}.

(4.3.4.2)

To construct solutions in the critical regime for the various families, we generically

redefine the unknowns Q1,2,7 as described above. For the families ` = 1, 2+ and 3, the

singular behavior appears near a pole and near the horizon. To resolve it, we increase

the resolution in that corner by splitting the integration domain into several patches,

with higher resolution and applying mesh-refinement in the regions where it is needed.

We have considered up to 4 patches for the most critical solutions. See Appendix 4.E

for more details and some examples of the types of domains that we have used to

construct critical solutions.

It turns out to be much harder to construct critical solutions for the ` = 2−

branch. The reason is that the singular behavior of the functions is not localized at

a corner but somewhere near the horizon and in between the equator and the poles.

Additionally, for the two cases that we have considered, namely (p, q) = (5, 5), (4, 7),

there is a turning point along the branch in the non-critical regime. Indeed, we find

that starting at y0 = y`=2
0 (see equation (4.2.0.11)) and decreasing y0, at some point

we can no longer find solutions. Examining the behavior of the physical quantities

near this point, it is clear that we are not at the end of the branch; in fact, we observe

that the derivative of any thermodynamical variable as a function of the temperature

becomes infinite. It turns out that this point corresponds to a local maximum of the

temperature along the branch. To go past it and to larger values of λ, we use the trick

explained in Ref. [206].

4.4 Results

4.4.1 Thermodynamics

In this section we display and discuss the phase diagrams of asymptotically global

AdSp×Sq spacetimes, including the lumpy black holes solutions that we have numer-

ically constructed. To make the microcanonical and canonical phase diagrams easier

to visualize, we plot the dimensionless differences of the entropy or the free energy

with respect to the small Schwarzschild-AdSp×Sq black hole with the same energy or

temperature, depending on the ensemble.

In the D = 10 case we can use the holographic relation,

N2 =
π4L8

2G10

, (4.4.1.1)

to express the physical quantities in terms of gauge theory units. In this way, we shall

display S/N2 versus EL/N2 in the microcanonical ensemble and FL/N2 versus TL for

the canonical ensemble. In D = 11, the Newton’s constant is a fundamental quantity
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and it is only related to Planck’s length. We can safely take units where G11 = 1, and

then S/L9, E/L8 and F/L8 are dimensionless.

Before proceeding to display the phase diagrams, we collect the expressions for the

various physical quantities of interest. Given our ansatz for the metric (4.3.1.4) and

the boundary conditions that we impose, the temperature of lumpy black holes is the

same as the reference Schwarzschild-AdSp × Sq black hole and it is given by (4.2.0.3).

The entropy of a black hole is proportional to its horizon area, S = AH/(4GD). For

generic values of p and q, the area of the horizon for the lumpy black holes is given by

AH = 2(Ly0)p−2RqΩ(p−2)Ω(q−1)

∫ +1

−1

da
(1− a2)q−1

√
2− a2

√
Qp−2

5 Q4Q
q−1
6

∣∣∣
y=0

, (4.4.1.2)

for odd `. For even ` the integral ranges from 0 to 1 and we have to multiply by a

factor of 2 due to the reflection symmetry about the equator of the internal Sq. As a

consistency check, note that setting Q4 = Q5 = Q6 = 1, yields the horizon area of the

Schwarzschild-AdSp × Sq solution given in (4.2.0.3).

The most straightforward way to compute the energy of the solutions is by inte-

grating the 1st law of thermodynamics. We can easily find the curve S(T ), since it

only involves the computation of horizon area, and the families of lumpy black holes

are parametrized by the temperature. Then the energy is given by:

E(T ) = EGL +

∫ T

TGL

dS(T ′)

dT ′
dT ′ , (4.4.1.3)

where EGL and TGL are the energy and temperature of the Schw-AdSp×Sq black hole

at the `th GL threshold point. This procedure, however, fails if there is a turning point

along a given family, since at this point the derivative dS(T ′)/dT ′ blows up. This is

the case of the ` = 2− branches. In this case, we can still integrate over the rest of

the branch, where the first derivative is finite, and leave the contribution coming from

the solutions around the turning point region as an undetermined constant. Then we

can try to ‘guess’ such a constant using the phase diagrams: in the microcanonical

ensemble the phase diagram must be smooth, whereas in the canonical ensemble the

turning point must be a cusp. This trick works well as long as we have enough solutions

sufficiently close to the turning from both sides. In both D = 10 and D = 11, the

phase diagrams for the ` = 2− families have been completed using this trick.

An alternative way to compute the energy E of the solutions is by performing an

asymptotic expansion of the fields near the AdS boundary and apply KK holography

[270] and holographic renormalization [191]. In this study we only have worked out

this alternative way of finding E for D = 10 case. The calculation is long and tedious

and the details can be found in Appendices 4.A and 4.B. The final expression is given

by:
E L

N2
=

3

16
(1 + 2y2

0)2 +
y4

0

512

(
∂4
yQ5 − ∂4

yQ1

) ∣∣∣
y=1

. (4.4.1.4)

Note that for Q5 = 1 = Q4, this expression reduces to the energy in (4.2.0.3) for

(p, q) = (5, 5), after using (4.4.1.1) and identifying the well-known dimensionless vac-
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uum energy of global AdS5 [272]. The drawback of using (4.4.1.4) to compute E is

that it implies computing four derivatives of the numerical solutions, which inevitably

leads to a loss of accuracy.

(p,q) = (5,5)

In Fig. 4.2 we display the phase diagrams for both the microcanonical and canonical

ensembles for the ` = 1 lumpy family. The branch emanates from the GL threshold

point, and it moves towards higher energies or lower temperatures. As this figure

shows, the ` = 1 lumpy solutions are always subdominant in both the microcanonical

and canonical ensembles. Furthermore, the phase diagrams do not present any turning

points for the range of temperatures that we explored. As we shall see in Section 4.4.4,

the local cone model for the merger predicts that in D = 10 there should not be any

turning points sufficiently close to the merger point, i.e. in the limit λ→∞. For this

particular family it turns out that there are no turning points at all.

The phase diagram for the ` = 1 lumpy AdS5 × S5 black holes was previously

discussed in [19]. We now compare their results with ours. In the region near the

GL threshold (i.e., λ . 1), our results and theirs are in perfect agreement. However,

we find some disagreement for λ ∼ O(1). According to Fig. 9 in their paper, the

solution with the lowest temperature (i.e., the most critical) that they managed to

find has T L = 0.49444 and energy EL/N2 ∼ 0.388; using the data in their figure, we

see that Min[RS3 ] ∼ 0.09 and Max[RS3 ] ∼ 0.56, which implies λ ∼ 2.6. On the other

hand, the most critical solution that we have found for this branch has λ ' 25, which

corresponds to a temperature T L = 0.49575 and energy EL/N2 = 0.38540. Clearly

our results and theirs are not compatible. The extend of the ` = 1 family in the

phase diagram that we find is significantly shorter than previously reported [19]. The

most reasonable explanation for this discrepancy is that the resolution used in [19]

is insufficient to accurately construct the lumpy black holes with large λ. Indeed,

we had to use various tricks (see Section 4.3.4) to be able to numerically construct

critical lumpy black holes, whilst [19] used a single patch with moderate resolution.

According to our estimates, the grid setup used in [19] rapidly becomes insufficient to

accurately resolve the lumpy black holes with λ ∼ O(1). Therefore, it seems reasonable

to conclude that part of the phase diagram reported in [19] is unphysical.

The phase diagrams for the branches ` = 2+, 3 are qualitatively the same as those

for the ` = 1 family and we do not discuss them any further. We simply stress that

these other families of lumpy black holes are also always subdominant in both the

microcanonical and canonical ensembles. In order to ‘locate’ in the phase diagram the

various families of lumpy black holes that we have studied, in Fig. 4.4 we display the

phase diagram in the canonical ensemble with all solutions that we have found. In

this case we compare the free energy with respect to that of global AdS5×S5. As this

figure illustrates, lumpy black holes occupy a very small portion of the entire phase

diagram.
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Fig. 4.2: Phase diagram in the microcanonical ensemble (left) and the canon-

ical ensemble (right), for ` = 1 lumpy black holes. The GL threshold point is
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both ensembles. The phase diagrams of the other families of lumpy black

holes that we have constructed are qualitatively similar, except for ` = 2−.
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Fig. 4.3: Phase diagram in the microcanonical ensemble (left) and canonical

ensemble (right), of ` = 2− lumpy black holes. The GL threshold point is

indicated with a black solid disc. The zero is taken to be the Schwarzschild-

AdS5 × S5 black hole phase. The ` = 2− lumpy black holes dominate the

microcanonical ensemble near the GL threshold. In the canonical ensemble,

the ` = 2− lumpy black holes are also dominant with respect to the small

Schwarzschild-AdS5 × S5 black hole for temperatures near the GL point, but

thermal AdS5×S5 is always the preferred phase in this range of temperatures.
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Fig. 4.4: Phase diagram in the canonical ensemble containing all asymp-

totically AdS5 × S5 spacetimes that we consider in this chapter. The GL

threshold point for the various modes is indicated with a solid black disk.

The zero of the free energy is taken to be the background thermal AdS5×S5,

which has free energy FAdS = 3N2/(16L). All lumpy black holes are subdom-

inant, even though the ` = 2− family has lower free energy than the small

Schwarzschild-AdS5 × S5 black hole for some temperatures.

Before we move on to discuss the phase diagrams for the ` = 2− branch, we briefly

comment on the previous results by [19] on the ` = 2+ and ` = 2− branches. In

particular, their most critical solution has temperature T L = 0.57278. We infer from

their Fig. 11 (right panel) that this solution has λ ∼ 3.1. On the other hand, the

left panel of their Fig. 11 indicates that their most critical solution for the ` = 2−

branch has temperature T L = 0.60849 and λ ∼ 0.5. In both cases, this agrees with

our results and up to these solutions, our phase diagrams and theirs match very well.

With our more accurate numerics, we have been able extend both the ` = 2+ and

` = 2− families to larger values of λ, closer to the critical point.

It turns out that for the ` = 2− branch, the solution with TL = 0.60849 is very

close to a turning point, and more specifically to a local maximum of the temperature.

This solution has λ ∼ 0.54, and hence it is still very far (in solution space) from the

critical regime. We have managed to continue beyond this turning point, and the

full phase diagram for the ` = 2− family is displayed in Fig. 4.3. Note that whilst



4 Critical Black Holes in AdSp× Sq 105

the ` = 2+ branch never dominates any ensemble, the ` = 2− lumpy black holes

can be favored with respect to the small Schwarzschild-AdS5 × S5 black hole. In the

microcanonical ensemble, the ` = 2− phase has larger entropy than the Schwarzschild-

AdS5×S5 black hole (for the same energy) in the region near the GL point. Likewise,

in the canonical ensemble the ` = 2− lumpy black holes dominate over the small

Schwarzschild-AdS5 × S5 black hole near the GL threshold point and until slightly

beyond the turning point. However, in this range of temperatures, thermal AdS is

always the preferred phase in the canonical ensemble. It is interesting to note that

for this particular branch of lumpy black holes, the microcanonical and the canonical

ensembles seem to give slightly different results. This minor observation adds to the

puzzles raised in [273] related to the apparent differences between the two ensembles

in the thermodynamic limit.

(p,q) = (4,7)

The phase diagrams in the microcanonical and canonical ensembles for ` = 1 lumpy

black holes in AdS4 × S7 are depicted in Fig. 4.5. According to this figure, the ` =

1 lumpy phase exists beyond the corresponding GL threshold point towards larger

energies or lower temperatures, depending on the ensemble under consideration. Just

as in the (p, q) = (5, 5) case, this phase is always subdominant with respect to the small

Schwarzschild-AdS4×S7 black hole (and of course with respect to thermal AdS4×S7,

which is the dominant phase in the canonical ensemble in this range of temperatures).

It is interesting to note that even though we have managed to follow this branch up

until λ = 104, and hence very close to the merger point, we did not find any turning

points along the family. In the critical regime (i.e., large values of λ) the local cone

model predicts the absence of turning points and our numerical construction confirms

this model beautifully (see Section 4.4.4 for more details). The phase diagrams for the

` = 2+, 3 lumpy AdS4×S7 black hole families are qualitatively similar to those of the

` = 1 black holes and we do not present them here.

On the other hand, the phase diagrams for the ` = 2− family exhibit some notable

differences. In Fig. 4.6 we display the microcanonical and canonical phase diagrams

for the ` = 2− lumpy AdS4×S7 black holes. Using the trick explained in the discussion

after equation (4.4.1.3), we can find the complete phase diagram beyond the turning

point and up to the most critical solution that we have been able to construct, even

if we are integrating the 1st law. Fig. 4.6 includes the whole ` = 2− family, up to

λ = 6.00374 corresponding to TL = 0.37907.

In the microcanonical ensemble (left panel in Fig. 4.6), the ` = 2− black holes

dominate for energies near the GL point. This suggests that this family of black holes

could be dynamically stable in some region of parameter space, and a certain (perhaps

fine-tuned) class of perturbations of the Schwarzschild-AdS4 × S7 black holes could

evolve into them at the non-linear level. There is a minimum energy along this branch

at Emin/L
8 = 519.30461; presumably, at this point the stability properties of these
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Fig. 4.5: Phase diagram in the microcanonical ensemble (left) and canonical

ensemble (right), of ` = 1 lumpy black holes. The GL threshold point is

indicated with a black solid disc. The zero is taken to be the Schwarzschild-

AdS4×S7 black hole phase. The lumpy black holes are subdominant in both

ensembles. The phase diagrams of the other families of lumpy black holes that

we have constructed are qualitatively similar, except for the ` = 2− family.
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ical ensemble (right), of ` = 2− lumpy black holes. The GL threshold
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Schwarzschild-AdS4 × S7 black hole phase. The ` = 2− dominate over the

small Schwarzschild-AdS4×S7 black hole near the GL threshold point in both

ensembles. In the canonical ensemble, thermal AdS4 × S7 is the dominant

phase in this range of temperatures.
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Fig. 4.7: Phase diagram in the canonical ensemble of all lumpy black holes

we have found in D = 11. The GL threshold points for the various modes

are indicated with black solid disks. The zero of the free energy is taken to

be the background AdS4×S7. As this figure shows, all lumpy black holes are

subdominant with respect to thermal AdS4×S7 for the range of temperatures

that they exist.

black holes change [274]. The branch continues to higher energies again while the

entropy decreases until it reaches E∗/L8 = 521.80046. At this energy, the lumpy black

holes and the Schwarzschild-AdS4×S7 black holes have the same entropy. Continuing

along the ` = 2− branch, for energies higher than E∗, the Schwarzschild-AdS4 × S7

black hole is the phase with the highest entropy. The last solution we have found has

energy 710.39314 × L8, corresponding to λ = 6, but the phase diagram extends way

beyond this value.

In the canonical ensemble, right panel in Fig. 4.6, the ` = 2− black holes dominate

over the small Schwarzschild-AdS4 × S7 near the GL threshold. There is a turning

point along this branch at TturnL = 0.400824 (λturn = 1.37424) corresponding to a

local maximum of the temperature. The difference of free energies increases at lower

temperatures beyond the turning point and it becomes zero at TL = 0.399124. At

even lower temperatures, the small Schwarzschild-AdS4×S7 dominates over the lumpy

black hole phase. However, in the range of temperatures that the ` = 2− black holes

exist, thermal AdS4 × S7 is always the dominant phase in the canonical ensemble.
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The phase diagram in the canonical ensemble showing all the black hole phases

that we have considered in this study is displayed in Fig. 4.7. As this figure shows, all

families of lumpy black holes that we have studied are subdominant with respect to

thermal AdS4× S7 in the range of temperatures that they exist. However, the ` = 2−

branch locally dominates over the small Schwarzschild-AdS4 × S7 black holes for a

small range of temperatures. It is clear from Fig. 4.7 that the families of lumpy black

holes occupy a very small portion of the phase diagram.

4.4.2 Kaluza-Klein holography

An important class of observables that characterize the lumpy black holes are the

vev’s of the dual scalar operators of different conformal dimensions. These essentially

parametrize the deformations of the internal space and they can be obtained using KK

holography [270]. In this subsection we will focus on the (p, q) = (5, 5), i.e. type IIB

supergravity in AdS5×S5, since in this case the details of this procedure have been fully

worked out in [270]. We provide the details of our calculation in the Appendices 4.A

and 4.B to correct some typos in the literature and because the calculation of [19] seems

to have some mistakes. The generalization to the (p, q) = (4, 7) is beyond the scope

of this study, even though there are some partial results in the literature [275,276].

The lumpy black holes in AdS5×S5 have horizons that are non-uniformly smeared

over the S5, breaking the SO(6) symmetry of the latter down to SO(5). Holograph-

ically, this corresponds to the spontaneous breaking of the R-symmetry in the dual

N = 4 SYM theory and is reflected in the condensation of an infinite tower of scalar

operators. The vev’s of these operators encode the deformations of the internal S5

and they can be computed, using KK holography, from the asymptotic expansion of

the unknown functions Q1, . . . , Q7 near the boundary of AdS5 (see Appendix 4.B). We

find that the operators with the lowest conformal dimension that develop a non-trivial

vev are S2, S3 and S4. From (4.B.0.18), the vev’s of these operators are given by:

〈OS2〉 =
N2

2π2

√
2

15
y2

0β2,

〈OS3〉 =
N2

2π2

1√
3
y3

0γ3,

〈OS4〉 =
N2

2π2

1√
3
y4

0

(19
√

7

1500
β2

2 − δ4

)
,

(4.4.2.1)

where β2, γ3 and δ4 are constants that can be obtained from the numerical solutions

that we find. On the other hand, the other family of scalar operators of low dimension

that could have contributed, namely {T 0, T 1, T 2, T 3, T 4}, all have vanishing vev’s.7

7From the expressions in equation (A.42) of [19], it would seem that 〈OT 4〉 6= 0. We believe

that this is incorrect. In fact, we have checked from the near boundary expansions in equation (A.10)

of [19] that the equations of motion for some of the gauge invariant scalar fields at linear and quadratic

order are not satisfied. Therefore, it may be that some of the expressions for the vev’s given in [19]

may not be correct.
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computed using the holographic expression (4.4.1.4) (blue line). Dimension-

less vev of the dual lower-dimensional scalar field S2,3,4 (right), as a function

of the dimensionless temperature.
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There are various ways to extract the coefficients β2, γ3 and δ4 (and δ0) appearing

in (4.4.2.1) from our numerical solutions. One possibility consists of taking derivatives

of the Q’s at the boundary and then project on to the harmonic basis. For instance,
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from (4.B.0.5) the constant β2 is given by:

β2 ∼
∫ +1

−1

∂2
yQ1,2,4,5,6,7

∣∣
y=1

Y2(x)dx (for ` odd), (4.4.2.2)

where Y2(x) is the ` = 2 SO(5) scalar harmonic (see Appendix 4.C) and the precise

coefficient in front of the integral depends on the function Q that one uses to do

the extraction. Another possibility to find the undetermined constants is to fit our

numerical data according to the asymptotic expansion (4.B.0.5). This latter option has

been shown to be more accurate and stable towards the end of the branches, specially

for the coefficients that appear at 3rd and 4th order. The reason is that too close to the

merger, the accuracy of the numerical solution deteriorates and we could not reliably

compute the numerical derivatives needed to calculate the coefficients. In practice, we

compute β2 using both: (4.4.2.2) for all Qi’s, i = 1, 2, 4, 5, 6, 7 and performing data

fits to check the consistency of the results and estimate the error in this quantity. The

other coefficients, γ3 and δ4 (and δ0), have generically been found fitting our numerical

data.

The temperature dependence of 〈Oi〉 ≡ 〈OSi〉, i = 2, 3, 4, along the ` = 1 lumpy

black hole family is shown in Fig. 4.8 (right). The vev’s vanishes at the GL threshold

point, which lies on the Schwarzschild-AdS5 × S5 solution, and attains a finite value

at the merger. The behavior of 〈O1〉 is consistent with the plot shown in Ref. [19], but

〈O3〉 differ in sign and value. The corresponding behavior of the vev’s along the ` = 3

is qualitatively the same as that for the ` = 1 family. As we show in Section 4.4.4,

the approach of all three vev’s to the merger is controlled by the local (singular) cone

geometry in the bulk; in particular, it follows the same power law (with a logarithmic

correction) and the same critical exponents as the other physical observables.

For the families with even ` we have only been able to compute accurately the vev

〈O2〉 and the result is shown in Fig. 4.9 (right). Again, it vanishes at the GL threshold

point and becomes positive along the extend of our branch. Unfortunately, in this case

we could not find enough critical solutions to recover the critical exponents predicted

by the local cone model.

We have also included an energy comparison when it is computed via integration

of the 1st law and using the expression (4.4.1.4). In Fig. 4.8 (left) and 4.9 (left) we

present the energy as a function of the temperature for ` = 1, 2+ and 2− lumpy black

holes. For the ` = 1 and 2+ families we check the consistency of the energy values

almost for the whole branch. For the ` = 2− family we could only do it partially, but

far enough to cover the turning point, which is the main interest in this case. Clearly,

the turning point is well-resolved by the energy computed using the 1st law. In all

cases, the deviations for the values shown in these figures were less than a 0.03%.

4.4.3 Horizon geometry

In this subsection we study in detail the geometry of the horizon of the lumpy AdSp×Sq
black holes. We construct embedding diagrams of the horizon geometry into Euclidean
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space to visualize how the shapes of the various spheres change as one moves along a

given family of solutions. This allows us to get a better understanding of the possible

topology changes at the critical points, where the lumpy black holes merge with new

families of black holes.

The induced metric on the spatial cross-sections of the horizon of the lumpy AdSp×
Sq black holes is:

ds2
∣∣∣
H

= L2y2
0Q5(0, a)dΩ2

(p−2)

+R2

(
4Q4(0, a)

2− a2
da2 + (1− a2)2Q6(0, a)dΩ2

(q−1)

)
.

(4.4.3.1)

At the horizon, the radii of the Sp−2 within the Anti-de Sitter factor and the radii of

the Sq−1 within the internal Sq are given by:

Rp−2(a) = Ly0

√
Q5(0, a), Rq−1(a) = R(1− a2)

√
Q6(0, a), (4.4.3.2)

respectively. These are gauge invariant quantities within the symmetry class of space-

times that we consider. The behavior of these two quantities (and in particular their

zeroes) as functions of the polar angle a dictate the topology of the horizon. Indeed,

the geometry (4.4.3.1) can be understood as a fibration of an Sp−2 and an Sq−1 over

an interval parametrized by the coordinate a with a ∈ [−1, 1]. For all lumpy black

holes, we see from (4.4.3.2) that Rq−1(a) smoothly shrinks to zero size at both ends

of the interval whilst Rp−2 is always finite there. This results in the familiar horizon

topology Sp−2 × Sq, as the Schwarzschild-AdSp × Sq black hole. In the latter case,

both radii Rp−2(a) and Rq−1(a) are constant everywhere. As we shall see momentarily,

for the lumpy black holes these radii develop a non-trivial profile as we move along a

given family, away from the GL threshold. In particular, Rp−2(a) approaches zero at

a point (or several points, depending on the harmonic ` labelling the family) on the

horizon, becoming precisely zero at the merger. At the zero(s) of Rp−2(a), the horizon

becomes singular and the branch of lumpy black holes presumably merges with a new

branch of topologically distinct black holes in a conifold-type-of transition. In analogy

with the non-uniform black strings [13], we may define the ‘lumpiness’ parameter in

terms of Rp−2(a) as a measure of the ‘distance’ to the merger:

λ =
1

2

(
max[Rp−2(a)]

min[Rp−2(a)]
− 1

)
. (4.4.3.3)

For solutions close to the threshold of the GL `th zero mode, Rp−2(a) is approxi-

mately constant on the horizon and consequently λ ∼ 0, with λ = 0 precisely at the

GL threshold point. Conversely, as we move along the family of lumpy black holes

and towards the merger point, max[Rp−2(a)] remains finite whilst min[Rp−2(a)] → 0

and hence λ → ∞, just as in the standard KK setting. The vanishing of Rp−2 at a

certain point a = a∗ happens in a singular way at the merger. We should expect that

at the other side of the transition, the vanishing of Rp−2 occurs in a smooth manner,
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Fig. 4.10: Lumpiness parameter λ and minimum radius of the Sp−2,

min[Rp−2(a)], for the ` = 1 family of lumpy black holes as a function of

the dimensionless temperature for the (p, q) = (5, 5) (left) and (p, q) = (4, 7)

(right) cases. These plots show that λ diverges as we approach the merger

point. Lumpy black hole families labelled by other harmonics ` exhibit a

qualitatively similar behavior.

` 1 2+ 3

Lhor/L

D = 10 3.26912 − 3.21607

D = 11 6.34959 6.39356 6.33214

Table 4.2: Dimensionless horizon’s length values of the most critical solutions

that we have found for the families ` = 1, 3 in D = 10 and ` = 1, 2+, 3 in

D = 11. We did not construct critical enough solutions for ` = 2+ in D = 10.

as it should if there exists a smooth family of black holes with a different horizon

topology. We point out that even though the radius Rq−1(a) of the horizon Sq−1 van-

ishes smoothly at the endpoints of the interval parametrized by a for all lumpy black

holes, for some families (but not all) the horizon Sq−1 can also become singular at the

merger. However, for all cases that we have considered, the horizon Sp−2 shrinks to

zero size in a singular manner somewhere on the horizon precisely at the merger, and

hence the lumpiness parameter defined in (4.4.3.3) is a good measure of the degree of

deformation of the horizon geometry.

In Fig. 4.10 we plot λ and the minimum of Rp−2 on the horizon, as functions of the

temperature. This figure shows that λ defined in (4.4.3.3) behaves in the same way as

the analogous quantity for the non-uniform black strings: λ increases monotonically
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along the family and diverges at the merger point. The behavior of λ for the other

families of lumpy black holes labelled by different harmonics ` is qualitatively similar

to Fig. 4.10 and we will not display them here. Note that for the ` = 2− family, λ

(and min[Rp−2(a)]) are not uni-valued functions of the temperature because there is

a turning point at some temperature. However, the corresponding λ still increases

monotonically along the family and it diverges in a qualitatively similar manner as in

the other families as we approach the merger point.

One may also define the horizon length along the Sq:

Lhor = 2R

∫ +1

−1

da

√
Q4(0, a)

2− a2
. (4.4.3.4)

Again, for ` = 2 solutions the integral is from 0 to 1 and there is an extra factor

of 2. The Schwarzschild-AdSp × Sq black hole has Lhor = πR, which is nothing but

the geodesic distance between the poles of the Sq of radius R. The behavior of this

physical quantity along the family of lumpy black holes is quite generic. For a given

`, the curve starts at the GL point where Lhor/L = π or Lhor/L = 2π in D = 10 or 11

respectively, and it is a monotonically increasing function until it attains a finite value

at the merger point. In Table 4.2 we list the different values at the merger for the

families for which we have constructed critical enough solutions. As this table shows,

the value of Lhor/L at the merger point is unique to each family. Critical localized-type

black holes that merge with the various family of lumpy solutions studied here should

give the same values of Lhor/L.

Ref. [19] considered the possible topologies of the localized black hole solutions that

would merge with a given family ` of lumpy black holes in D = 10. This reference

based their analysis on the behavior of the induced Ricci scalar at the poles of the

Sq, and concluded that the divergence of the Ricci scalar there indicated localization.

In this study we follow a different route and instead we consider embedding diagrams

into Euclidean space, as they are more intuitive and the topology changes become

apparent.

One may consider two possible embeddings: at fixed coordinates of the Sp−2 or

fixed coordinates of the Sq−1. For fixed Sq−1 coordinates, the horizon geometry may

be embedded into Ep, whereas for fixed Sp−2 coordinates the horizon geometry may

be visualized as an embedded surface in Eq+1. Generically, the metric of En reads

ds2
En = dX2 + dY 2 + Y 2dΩ2

(n−2). (4.4.3.5)

The embedded surface has the form: X = X(a) and Y = Rp−2(a) or Y = Rq−1(a) for

fixed Sq−1 or Sp−2 coordinates respectively. Then, matching (4.4.3.5) with (4.4.3.1),

we obtain X(a):

X(a) = R

∫ +1

−1

da

√
4Q4(0, a)

2− a2
− y2

0

(L/R)2

4Q5(0, a)

(
dQ5(0, a)

da

)2

, (4.4.3.6)
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for fixed Sq−1 or

X(a) = R

∫ +1

−1

da

√
4Q4(0, a)

2− a2
− 4Q6(0, a)

(
a− 1− a2

4

d lnQ6(0, a)

da

)2

, (4.4.3.7)

for fixed Sp−2. Recall that for ` = 2 lumpy black holes the range of the integral is

from 0 to 1, and to represent the full embedding we just add the mirror image with

respect to the equator (a = 0). In our plots we present X/L versus Y/L for the three

families ` = 1, 2+ and 2−. For each of these families, we show together the embedding

plots for fixed Sp−2 and fixed Sq−1 coordinates respectively, to make the topology of

the horizon apparent. The qualitative behavior of the ` = 3 family is essentially the

same as that of ` = 1; we comment on it below but we do not display any embedding

plots for this case.

In Figs. 4.11, 4.12 and 4.13 we show the embeddings for different families of the

AdS4 × S7 lumpy black holes. The analogous embeddings for the AdS5 × S5 lumpy

black holes are qualitatively similar and we display them in Appendix 4.D. The only

exception is the ` = 2− family, which we comment on below.

In Fig. 4.11 we show representative embeddings for the ` = 1 AdS4 × S7 lumpy

black holes for fixed S2 coordinates (top) and fixed S6 coordinates (bottom). This

figure shows that whilst the S6 smoothly shrinks to zero size at both poles of the S7,

as λ increases it develops a conical singularity at the south pole. Similarly, the horizon

S2 has finite size everywhere on the S7 for all lumpy black holes, but as λ increases

it also develops a conical singularity at the south pole, suggesting that it pinches off

there. At the other side of the transition, both of these singularities will be resolved,

resulting on a S6 that smoothly shrinks to zero size at the north pole of the S7, whilst

it has finite size on the south pole; conversely, the S2 will continue to have finite size

at the north pole but it shrinks smoothly at the south pole. The induced geometry at

the other side of the merger can hence be modeled by the line element,

∼ f1(a)da2 + cos2 af2(a)dΩ2
(p−2) + sin2 af3(a)dΩ2

(q−1), (4.4.3.8)

with the poles located at a = 0 and a = π/2, and non-trivial smooth and finite

functions fi(a), i = 1, 2, 3, such that f3(0) = f1(0) and f2(π/2) = f1(π/2). Indeed,

this geometry has the topology of SD−2 and hence it corresponds to a single localized

black hole, as expected.

In Fig. 4.12 we consider the embeddings for different values of λ for the ` = 2+

family of AdS4 × S7 lumpy black holes. From the top panel in this figure, (i.e. fixed

S2 coordinates,) we see that the S6 will develop conical singularities at the merger

point at both the north and the south pole of the S7. Likewise, the bottom panel

(i.e. fixed S6 coordinates) shows that the S2 will also develop conical singularities at

both poles for λ→∞. Then, we expect that the resolved geometry at the other side

of the merger will have an S6 that is finite in the whole a-interval, whilst the S2 will

smoothly shrink to zero size at both endpoints, giving an S3. Therefore, we conclude
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Fig. 4.11: Embedding plots for fixed S2/S6 coordinates of lumpy black holes

in AdS4×S7 with ` = 1. This family merges with a localized black hole with

S9 horizon topology. The corresponding plots for ` = 3 are similar to those

for ` = 1, but the pinch-off appears at the opposite pole.

that the topology of the horizon of the family of black holes sitting at the other side

of the merger is S3 × S6, corresponding to a black belt.

The sequence of embeddings for the ` = 2− family are shown in Fig. 4.13. For fixed

S2 coordinates (top panel), we see that see that the S6 becomes more deformed, but

it continues to shrink to zero size smoothly at the endpoints of the a-interval, even

in the λ → ∞ limit. On the other hand, for fixed S6 coordinates (bottom panel),

we see that for λ → ∞ the S2 will pinch off at two different points a
N/S
∗ near the

north and the south poles of the S7. Therefore, in the resolved geometry at the other

side of the merger, we expect that the a-interval will be divided in three subintervals,

−1 < aS∗ < aN∗ < 1, such that: For −1 ≤ a ≤ aS∗ , the S6 shrinks to zero size smoothly

at a = −1, whilst it remains finite at a = aS∗ ; on the other hand, the S2 is finite at

a = −1 and smoothly shrinks to zero at a = aS∗ . Therefore, the horizon topology

in this region is S9. Likewise, a similar reasoning shows that the horizon topology

in the aN∗ ≤ a ≤ 1 interval is also that of an S9. On the other hand, in the middle

interval, aS∗ ≤ a ≤ aN∗ , we have that the S6 is finite everywhere, whilst the S2 smoothly
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Fig. 4.12: Embedding plots for fixed S2/S6 coordinates of lumpy black holes

in AdS4×S7 with ` = 2+. This family merges with a black belt with horizon

topology S3 × S6.

shrinks at the endpoints, giving a horizon topology of S3 × S6. Putting everything

together, we conclude that the ` = 2− family of lumpy black holes merges with a

family of black holes whose horizon topology is a connected sum S9#(S3 × S6)#S9,

that is, two localized black holes with a black belt joining them. Interestingly, the

` = 2− family in the AdS5 × S5 seems to merge with a different family of black holes.

Indeed, as [19] pointed out and our embedding diagrams confirm (see Fig. 4.16), in

this case the lumpy black holes merge with a double localized black hole, and hence

the horizon topology of the latter is S8#S8. It would seem that it should also be

possible to connect the two localized black holes with a black belt, giving a topology

S8#(S4 × S4)#S8. However, if such a family of black holes exists, it does not merge

with the ` = 2− lumpy AdS5 × S5 black holes.

The ` = 3 solutions do not differ much with respect to the ` = 1 ones in terms

of the topology change across the transition. Although the profile of the embeddings

presents more oscillations (since it belongs to a higher harmonic family), our data

seems to indicate that the branch merges with another localized black hole with S9
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Fig. 4.13: Embedding plots for fixed S2/S6 coordinates of lumpy black holes

in AdS4×S7 with ` = 2−. This family merges with a black hole whose horizon

topology is the connected sum S9#(S3 × S6)#S9.

horizon topology, but potentially having lumpiness along its horizon and hence dis-

tinct from the localized black hole family that merges with the ` = 1 lumpy branch.

Presumably, this new family of deformed localized black holes would merge with new

families of multiple localized black holes and black belts. This is quite analogous to

the situation in higher dimensional asymptotically flat singly spinning black holes,

where different families of topologically spherical bumpy black holes, corresponding

to different harmonics, merge with different families of black rings and bumpy black

rings [147].

Summarizing, we have the following topology-change phase transitions for the dif-

ferent families of lumpy black holes considered in this chapter:

` = 1 : Sp−2 × Sq → Sp+q−2 ,

` = 2+ : Sp−2 × Sq → Sp−1 × Sq−1 ,

` = 2− : Sp−2 × Sq →
Sp+q−2#(Sp−1 × Sq−1)#Sp+q−2

Sp+q−2#Sp+q−2
,

` = 3 : Sp−2 × Sq → Sp+q−2 .

(4.4.3.9)
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Given the richness of the various topology changes that we have uncovered, it is not

inconceivable that other topology changes are possible for values of (p, q) not considered

in this analysis.

We see that except for the ` = 2− family, the topology-changing transitions depend

in a trivial way on the number of spacetime dimensions. The details of the underlying

theory in each of the cases that we have considered, either type IIB supergravity or

11D supergravity, do seem not play a significant role. However, the particular way

in which physical quantities approach the critical point does depend on the spacetime

dimension, and is predicted by the local cone model governing the change of topology.

4.4.4 Critical behavior at the merger point

Topology-changing transitions in the space of equilibrium solutions have been pre-

viously studied in higher-dimensional general relativity. The first and most studied

system is the transition between non-uniform black strings and localized black holes

in standard KK theory. Kol [21] proposed that, in this case, the transition is gov-

erned by a Ricci-flat double cone over S2 × SD−3. The SD−3 appears explicitly in

both the non-uniform black strings and in the localized black holes; the S2 on the

other hand comes from the fact that the Euclidean time is fibered over an interval

whose endpoints are on the horizon. The SD−3 is non-contractible in the black string

phase, while it is contractible in the localized black hole phase; the opposite happens

with the S2, which is contractible in the black string phase and non-contractible in

the black hole phase. There is now detailed numerical evidence that this model is

correct in D = 5, 6 [22,157] and in D = 10 [1,158] (see [159] for an analytical approach

in the large-D limit of general relativity). Beyond KK theory, Ref. [147, 160] consid-

ered mergers of singly spinning black hole solutions in asymptotically flat space and

described local Lorentzian double cone models for the critical geometries controlling

them. These papers considered mergers between rotating black holes, black rings,

di-rings and black saturns in D ≥ 6, providing strong evidence that such double-cone

models do indeed describe the topology-changing phase transitions for asymptotically

flat stationary black holes as well.

The topology-changing transitions that have been considered so far involve black

hole spacetimes in pure Einstein gravity, and hence it is natural to consider local Ricci-

flat cones to model the local singularity at the merger point. However, in this chapter

we consider Einstein gravity in asymptotically AdSp × Sq coupled to a certain form

field strength so it is not obvious that local Ricci-flat cones should still control the

topology-change transitions in this case. In this section we will show that even though

the topology change is still controlled by a conical geometry, the latter is no longer

Ricci-flat due to the presence of fluxes in the internal Sq.

We will focus on the local merger between the ` = 1 lumpy black holes with horizon

topology Sp−2 × Sq and a localized black hole with horizon topology Sp+q−2, but the

discussion also applies to the other `’s. Based on previous studies, the double-cone
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inherits a huge amount of spherical symmetry from the full solution: the Sp−2 and

Sq−1 that appear explicitly in the metric, plus an additional Sr that comes from the

fibration, in the Wick rotated geometry, of the Euclidean time circle over some base

manifold that depends on the particular merger. In the canonical non-uniform black

string/localized black hole merger, the base is an interval with the two endpoints on

the horizon; this, together with the fibered Euclidean time circle, gives r = 2; in the

black ring/black hole merger the base is a 2-disk giving r = 3. In the case under

consideration the base is also an interval. This consists of any path that connects two

points on the horizon along the polar direction and thus r = 2, just as in non-uniform

black string/localized black hole transition. Similarly, this S2 is contractible in the

lumpy black hole phase, but it is not contractible in the localized phase.

By symmetry, the merger should be described by a cone over a triple direct product

of spheres, S2 × Sp−2 × Sq−1:

ds2 = dρ2 +
ρ2

D − 2

(
dΩ2

(2) + (p− 3)dΩ2
(p−2) + α dΩ2

(q−1)

)
. (4.4.4.1)

With the presence of a non-trivial fluxes, it is not obvious that the cone that controls

the merger should be Ricci-flat and, as we shall see shortly, our data indicates that

it is not. We will leave to future work the first principles understanding of the types

of cones that control the topology changing transitions in the presence of fluxes. The

numerical factors in (4.4.4.1) have been chosen so that the embeddings agree with

our numerical solutions in the critical regime. The factors in front of the S2 and the

Sp−2 in (4.4.4.1) ensure that the components in these directions of the associated Ricci

tensor vanish; on the other hand, our data suggests that

α = α0 +
D

4
, (4.4.4.2)

where α0 = q − 2 corresponds to the coefficient for which (4.4.4.1) is Ricci-flat. This

implies that the components of the Ricci tensor along the Sq do not vanish.

To test the validity of the local model (4.4.4.1), we compare the embeddings of the

cone:

Fixed Ω(q−1): X(ρ) = ρ

√
q + 1

D − 2
, Y (ρ) = ρ

√
p− 3

D − 2
,

Fixed Ω(p−2): X(ρ) = ρ

√
D − 2− α
D − 2

, Y (ρ) = ρ

√
α

D − 2
,

(4.4.4.3)

with the embeddings of the horizon geometry of the critical lumpy black holes described

in Section 4.4.3. The results are shown in Fig. 4.14 for the AdS4 × S7 case and in

Fig. 4.17 for the AdS5 × S5 one. For fixed S6 coordinates, Fig. 4.14 shows that

there is a very good agreement between the local cone model and the actual geometry

of the horizon. On the other hand, for fixed S2 coordinates along the AdS factor,

we can demand that the local geometry of the horizon near the pinch off region is

well described by (4.4.4.1) and thereby fix the constant α. By doing this, we find
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Fig. 4.14: Embedding diagrams of the horizon for the ` = 1 (top) and

` = 2+ (bottom) lumpy black holes (blue line) in AdS4 × S7 for the largest

lumpiness parameter that we have reached. The plots on the left correspond

to fixed S6 coordinates while the plots on the right correspond to fixed S2

coordinates. The black lines correspond to the embeddings of the local cone

that mediates the topology change transition. For fixed S6 coordinates, the

agreement between the cone model and the local horizon geometry is very

good. For fixed S2 coordinates, demanding that the cone model agrees with

the local geometry suggests α = q − 2 + D
4

= 31
4

. In these two plots, the

embeddings dictated by the Ricci-flat cone are indicated with dashed lines.

Clearly, the latter do not agree with our data.

that (4.4.4.2) is preferred. The dashed line in this figure shows the embedding of a

Ricci-flat cone. Clearly, our numerical data is incompatible with a Ricci-flat cone.

The local cone model not only captures the shape of the horizon near the pinch

off, but it also predicts the behavior of the physical quantities near the merger [263].
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The latter follows from considering perturbations of (4.4.4.1) that preserve the various

spheres while they change their relative sizes:

ds2 = dρ2 +
ρ2

D − 2

(
eε(ρ)dΩ2

(2) + (p− 3)e−ξε(ρ)dΩ2
(p−2) + α e−ηε(ρ)dΩ2

(q−1)

)
, (4.4.4.4)

where ξ and η are free parameters. Imposing that the ρρ, S2 and Sp−2 components of

the Ricci tensor of the perturbed cone (4.4.4.4) vanish implies that

ξ =
2

p− 2
, η = 0, or ξ = 0, η =

2

q − 1
. (4.4.4.5)

Either choice leads to the same linear equation of motion for ε(ρ) and, unsurprisingly,

it coincides with the equation of motion for the perturbation mode of the double-cone

of [21]. Note that in our case, the first solution is the relevant one since it implies that

the metric on the internal Sq is not modified at linear order; this is consistent with the

vanishing of the components of the Ricci tensor along the S2 and the Sp−2 directions.

On the other hand, the components along the Sq are affected by the leftover fluxes on

this internal sphere, and hence they should be sourced at second order in perturbation

theory. The general solution is given by:

ε(ρ) = c+ρ
s+ + c−ρ

s− , (4.4.4.6)

with critical exponents

s± =
D − 2

2

(
− 1± i

√
8

D − 2
− 1

)
. (4.4.4.7)

For D < 10, the solutions have a non-zero imaginary part, which implies that they will

spiral infinitely many times as they approach the origin ρ = 0; D = 10 is a marginal

dimension for this model, where the imaginary part vanishes and the solution has

a quartic power-law with an additional logarithmic term. For D > 10, the critical

exponents become purely real and the approach to the origin is govern by two powers.

In D = 11, we have s+ = 6 and s− = 3.

The prediction of [21] is that the deformations of the cone metric (4.4.4.6) should

be reflected in the behavior of the physical quantities of the black holes sufficiently

close to criticality, with the zero mode ε(ρ) measuring the deviation from the cone.

According to this prediction, any physical quantity Q near the critical solution should

behave as

(p, q) = (5, 5) : δQ = ρ4
0(C1 + C2 log ρ0),

(p, q) = (4, 7) : δQ = C+ρ
6
0 + C−ρ

3
0 ,

(4.4.4.8)

where δQ ≡ Q − Qc and ρ0 is any typical length scale that measures the deviation

from the actual cone. In principle, sufficiently close to the merger, the topology change

develops in the same manner independently of the boundary data that one considers.
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Fig. 4.15: Normalized free energy (blue) and temperature (red) as a functions

of xlumpy for ` = 1 lumpy black holes in AdSp × Sq. Data points to the left

of the dashed vertical line are the ones used for the fit (in black). The other

thermodynamic quantities exhibit a similar behavior.

To compute the critical exponents from our numerical data and compare them with

the predictions of the cone model (4.4.4.8), we have fitted the temperature, energy,

entropy and free energy of critical enough solutions according to

(p, q) = (5, 5) : f(x) = fc + xA(B + C log x),

(p, q) = (4, 7) : f(x) = fc + xA(B + Cx3),
(4.4.4.9)

with

xlumpy =
min[Rp−2(a)]

Ry`0
, (4.4.4.10)

measuring the deviation from the cone. Notice that at this point in D = 11 we

have already assumed that one of the exponents is A+ 3. This exponent corresponds

precisely to the smallest contribution to f(x). In this case one would ideally want to

fit the near critical data to a function of the form f(x) = fc + AxB + CxD, so that

both exponents can be independently extracted and tested. However, in practice this

turns out to be quite hard. The reason is that to carry out the fits, we only consider
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` Qc A B C

T/TGL
1 0.98823 4.00002 0.07251 −0.05082

3 0.98996 4.00017 −0.01765 −0.08789

E/EGL
1 1.06752 4.00005 −0.75232 −0.00001

3 1.00739 3.99931 −0.02129 0.04625

S/SGL
1 1.18230 4.00004 −2.04392 −0.00002

3 1.04771 3.99951 −0.38000 0.21411

〈O2〉/N2 1 1.571× 10−4 3.99997 −0.13485 −0.05648

3 9.464× 10−6 3.99996 0.00029 0.00016

〈O3〉/N2 1 5.168× 10−5 3.99949 −0.00052 0.00018

3 1.090× 10−6 4.00060 −6× 10−6 9× 10−6

〈O4〉/N2 1 9.499× 10−6 3.99994 −0.00039 0.00015

3 7.882× 10−6 4.00028 −0.00001 0.00003

Table 4.3: Critical exponents and other parameters obtained from the fit

of the temperature, energy, entropy and scalar vev’s of the different lumpy

solutions in AdS5 × S5.

` Qc A B C

T/TGL

1 0.99353 3.00005 0.01318 8.97006

2+ 0.97730 2.99940 0.02580 9.55439

3 0.99443 3.00003 0.01290 8.68568

E/EGL

1 1.01374 3.00000 −0.02690 −16.87280

2+ 1.03911 2.99982 −0.04605 −35.34570

3 1.00826 2.99996 −0.01918 −12.96730

S/SGL

1 1.02389 3.00000 −0.04691 −29.42860

2+ 1.07090 2.99982 −0.08444 −64.81000

3 1.01520 2.99996 −0.03538 −23.91850

Table 4.4: Critical exponents and other parameters obtained from the fits

of the temperature, energy and entropy of the different lumpy solutions in

AdS4 × S7. Note that for a given `, the critical exponents for the energy and

the entropy are exactly the same. This is not surprising, since they are not

independent: recall that in D = 11 the energy is found by integrating the 1st

law of black hole mechanics.

the solutions that are close to the merger and for those we have x ∼ 10−3. Therefore,

the behavior of f(x) near the critical point is completely dominated by the smallest

exponent, 3 in this case, and the corrections introduced by the other exponent (6 in

D = 11) are too small to be reliably detected.
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In Figure 4.15 we present the fits for the free energy and the temperature (normal-

ized with respect to the values at the marginal GL point) for the ` = 1 lumpy family

in D = 10 and D = 11. The other physical quantities behave in a qualitatively similar

way and we do not present the fits here. We have critical enough solutions for the

families ` = 1, 3 in D = 10 and ` = 1, 2+, 3 in D = 11. The fit parameters that we

have extracted from the various physical quantities are shown in Tables 4.3 and 4.4

respectively. As these tables show, the values of the exponents obtained from fitting

different physical quantities are perfectly compatible with each other and match the

predictions of the cone model. With our fitting procedure we also extract the values of

the different thermodynamic quantities (normalized with respect to the values of the

`th family at the marginal GL point) at the merger point. In the different cases studied

in this chapter, the agreement with the cone model is very good, with deviations of

0.1% in the worst case. Working with a denser grid and/or including more data points,

i.e. more solutions near the merger region, may improve the accuracy of the critical

exponents. It should be clear from our studies that (4.4.4.1) does indeed capture both

the local geometry of the horizon and the behavior of the physical quantities.

In D = 10 we have also explicitly checked that the vev’s of the dual scalar field S2,

S3 and S4, follow the same power law behavior near the merger as the other physical

quantities. From the point of view of the cone model, this should not be surprising

since any observable should exhibit the same behavior near the merger. However,

from the point of view of holography, this is quite interesting. Firstly, the fact that

the field theory observables, such as the vev’s of the scalar operators, exhibit this

scaling behavior indicates how the field theory knows about the topology change in

the bulk: none of the field theory observables seem to become singular at the merger

point; they simply develop a scaling behavior with exponents determined by the local

cone model in the bulk. Secondly, one might naively expect that the vev’s, being

associated to scalar fields that are coupled to 5-dimensional gravity in AdS, develop

a spiraling behavior since in D = 5 the critical exponents have a non-zero imaginary

part. However, our result shows that this is not the case; the behavior near criticality

is inherited from the full higher-dimensional solution.

4.5 Discussion and outlook

In this Chapter we have numerically constructed various families of asymptotically

AdSp × Sq black holes with a non-trivial field strength; we have considered the spe-

cific cases of (p, q) = (5, 5) corresponding to IIB supergravity in AdS5 × S5, and

(p, q) = (4, 7) corresponding to 11D supergravity in AdS4 × S7. These black holes

have horizon topology Sp−2 × Sq and were called ‘lumpy’ black holes in [19]. Each

family is specified by an integer ` that labels the harmonic on the internal Sq in the

decomposition of the linear perturbations around the Schwarzschild-AdSp × Sq black

hole. For each harmonic, at a specific value of the horizon radius of the Schwarzschild-

AdSp × Sq black hole given in (4.2.0.11), there exists a time-independent linear solu-
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tion (i.e. a zero mode) of the Einstein’s equations corresponding to a black hole with

a slightly deformed horizon on the Sq. These linear modes can be uplifted to full non-

linear solutions of the Einstein’s equations, corresponding to the lumpy black holes.

These zero modes signal the onset of the corresponding GL instability of the small

Schwarzschild-AdSp × Sq black hole.

Ref. [19] was the first one to construct lumpy black holes in AdS5×S5; on the other

hand, our solutions in the AdS4 × S7 case are new. Arguably, the solutions of [19]

are only slightly non-uniform on the S5, with their non-uniformity parameter (4.4.3.3)

being λ ∼ O(1) at most. In this study we have used similar numerical techniques as in

the previous chapter of this thesis to extend the various families of lumpy black holes

to very large values of λ, all the way to near the critical regime where they are expected

to merge with other families of black holes with different horizon topology. While our

results and those of [19] agree very well near the GL threshold point (λ� 1), we found

some inconsistencies further along the branch towards more non-uniform lumpy black

holes. We attribute this disagreement to the fact that the resolutions used in [19] were

insufficient to accurately describe their most non-uniform black holes.

We have constructed the phase diagrams in both the microcanonical and the

canonical ensembles all the way to the critical regime. In the microcanonical ensem-

ble, we find that the lumpy black holes are always subdominant with respect to the

Schwarzschild-AdSp×Sq black hole with the same energy, except for the ` = 2− family,

which dominates in the region near the GL threshold point. In the canonical ensemble,

for the range of temperatures that the lumpy black holes exist, thermal AdSp × Sq

is always the dominant phase whilst the lumpy black holes are always subdominant,

even though the ` = 2− family dominates over the small Schwarzschild-AdSp × Sq

black hole. This apparent disagreement between these two thermodynamic ensembles

in AdS5 × S5 was highlighted in [273].

The main goal of this chapter was to explore the topology-changing transitions

that presumably connect, in the space of static solutions, AdSp×Sq lumpy black holes

with other families of black holes with different horizon topologies. This transitions

have been well-studied in the past in the context of black holes in KK theory. Kol [21]

predicted that such transitions were of the conifold-type and were governed by a local

Ricci-flat cone. According to this model, the local cone not only controls the change

of topology, but it also determines the near-merger behavior of the physical quantities

of the black holes on both sides of the transition. These predictions have been recently

numerically verified [1,22,157]. In this study we have extended these local cone models

to black holes in AdS5 × S5 and AdS4 × S7 coupled to a (self-dual) five-form and a

four-form field strength respectively. By constructing lumpy black holes with very

large ‘lumpiness’ parameters (see (4.3.4.2)), we have verified, for the first time, that

such local cone models also accurately describe the topology-changing transitions in

AdSp × Sq with the presence of non-trivial fluxes. Interestingly, we have found that

the local cones (4.4.4.1) are no longer Ricci-flat because of the presence of fluxes in

the internal Sq−1 in this limit. Work towards understanding the new class of conical
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geometries that arise when there are fluxes in the internal spheres is in progress.

For the asymptotically AdS5 × S5 lumpy black holes, we have extracted the dual

field theory observables using the procedure of KK holography [270]. Our computation

fixes some typos and inconsistencies in [19]. We give the expressions for the vev’s of

the scalar operators S2, S3 and S4 in (4.B.0.18); on the other hand, the vev’s of T `,
` = 0, 1, 2, 3, 4, vanish identically in these backgrounds (and in the localized AdS5×S5

black holes). The vev’s of the dual scalar operators exhibit the same scaling behavior

near the merger as the other physical quantities, thus showing how these topology

changes are ‘detected’ by the dual CFT. It is important to note that the behavior of

the scalar operators near the merger is dictated by the full 10D geometry. The 11D

solutions can also be dimensionally reduced on the S7. The KK map in this case, to

leading and quadratic order, was worked out in [275], and [276] respectively. We will

leave the computation of the holographic data for this case for future work.

The most natural extension of this work is to consider localized black holes in

AdS5×S5 and in AdS4×S7. Localized black holes in AdS5×S5 have been previously

constructed in [20], but their solutions are still quite far from the merger with the

lumpy black holes considered in this study. Using the same numerical techniques as

in [1], we should be able to construct localized black holes in the critical regime and

verify the predictions of the local cone model from the other ‘side’ of the transition.

Work in this direction is in progress.

4.A Kaluza-Klein holography

In this appendix we review the procedure of holographic renormalization for solutions

of IIB supergravity that are asymptotically AdS5 × S5. This procedure was worked

out in [270] (see also [277, 278] for related work) and named, for obvious reasons,

Kaluza-Klein holography, or KK holography for short. We review it here to set up our

conventions and fix the numerical factors. In Appendix 4.B we apply it to the spe-

cific class of solutions considered in this chapter. These calculations were previously

reported in [19]. However, since we found some disagreements with their results, we

decided to write down our calculations in full detail so that they can be straightfor-

wardly and independently checked, should anyone wish to do so. That said, we have

verified that our calculations pass all consistency checks and hence we are certain of

their correctness.

Let us begin recalling that in the context of gauge/gravity duality one can compute

vev’s of the dual gauge invariant fields in the bulk by differentiating the (renormal-

ized) on-shell supergravity action once with respect to the sources, a procedure known

as holographic renormalization [191] (see also [192, 193]). In this way, one obtains

the vev’s of gauge invariant operators of the dual field theory in terms of certain co-

efficients in the asymptotic expansion of the bulk fields. Originally, this procedure

was worked out for solutions that are asymptotically AdS. The extension to generic

solutions that asymptote to the direct product AdS × X, where X is some internal
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(compact) manifold, requires to first carry out the dimensional reduction on X. In

general, this dimensional reduction will involve an infinite tower of massive KK fields

that come from the deformations of X, and which are dual to an infinite number of

gauge invariant operators in the CFT. Here we will concentrate on the AdS5×S5 case,

which is the relevant one for this study.

Given that the information needed is encoded in the asymptotic behavior of the

solution near the AdS boundary, one may work out the dimensional reduction analysis

as a linear perturbation about the AdS5×S5 background and then apply holographic

renormalization. This is what the authors of [270] did in the most general way, using

gauge invariant variables. This paper finds the effective 5-dimensional field equations

and an explicit non-linear map between the higher-dimensional fields (which is the nu-

merical data we have) and the solutions to these 5-dimensional equations. Integrating

the latter equations one obtains a 5-dimensional (super)gravity action, which involves

certain scalar fields; from here one can compute the 1-point correlation functions of

the dual field theory applying holographic renormalization, introduced in Chapter 1.

At this point the idea is clear and [270] provides an algorithm to implement it in

practice. However, the expressions that arise are quite lengthly and involved. This

is essentially because the dimensional reduction cannot be truncated to the massless

sector when the isometries of the internal space are broken. In other words, the

mapping between higher- and lower-dimensional fields, ψk and Ψk respectively, in

general is going to be highly non-linear:

Ψi = ψi −
∑
j,k

(
Aijkψ

jψk +Bi
jkDµψ

jDµψk +O[ψ3]
)
, (4.A.0.1)

where Aijk and Bi
jk are numerical coefficients. Luckily, it turns out that to find the

vev of an operator of a given dimension, one only needs the map truncated at certain

order in the number of fields [270]. Let us elaborate a bit more on this. If Ψi is dual

to an operator of dimension i, one would need to expand the field up to order Zi in

the standard Fefferman-Graham (FG) coordinate to extract the operator’s vev:

Ψi = Ψi
(0) + Ψi

(1)Z + Ψi
(2)Z

2 + · · ·+ Ψi
(i)Z

i + irrelevant terms. (4.A.0.2)

If only a finite number of terms in the near boundary expansion are needed to compute

the vev of (4.A.0.1), then the r.h.s. of this expression can only involve a finite number

of fields. Recall that after all, the outcome of this mapping is directly related to a

physical observable which must be finite. As we will see in the following sections and

in Appendix 4.B, the scalar operators whose vev’s we shall compute have at most

conformal dimension 4. Hence we will need to compute the near boundary expansion

of the corresponding bulk fields up to order Z4 in the FG radial coordinate. This

truncates the mapping (4.A.0.1) to quadratic order in the number of fields.

In the rest of this appendix we will provide the details of this procedure in the

context of this chapter. This has been done before in [270] and in [19]. Here we repeat

the analysis in these references because we use slightly different conventions and we

take this opportunity to fix typos.
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4.A.1 Kaluza-Klein dimensional reduction on S5

The first step consists of dimensionally reducing the higher-dimensional solutions on

the S5. To this end, we need to expand a general perturbation of AdS5 × S5 into

a complete set of scalar, vector and tensor harmonics. Due to the symmetries of the

spacetimes that we consider, we only have to consider scalar harmonics on the S5; from

these we can obtain the corresponding scalar derived vector and tensor harmonics. The

details of the basis of harmonics that we use in this chapter are summarized in the

Appendix 4.C.

We consider solutions that are fluctuations about the AdS5 × S5 background (de-

noted by the superscript “(0)”),

gMN = g
(0)
MN + hMN , F(5) = F

(0)
(5) + f(5). (4.A.1.1)

The indices are split up into M = (µ, a), with µ ∈ AdS5 and a ∈ S5. From the point

of view of transformations on the S5, the perturbations of the metric components with

two legs along the AdS factor behave as scalars, and the ones with one/two leg/s along

the S5, behave as vectors/tensors. Then we may expand the metric as follows:

hµν(z, x) =
∑
`

h`µν(z)Y`(x), hµa(z, x) =
∑
`

A`µ(z)DaY`(x),

h(ab)(z, x) =
∑
`

B`(z)D(aDb)Y`(x), haa(z, x) =
∑
`

C`(z)Y`(x).
(4.A.1.2)

Notice that the internal metric perturbation is split into the trace, which behaves

as a scalar, and a traceless symmetric part which behaves as a tensor. Here we use

the notation T(ab) to denote the symmetric and traceless part of a given 2-tensor Tab:

T(ab) = (Tab + Tba)/2− gabT aa /5.

The 5-form field strength is expanded in the following way:8

fµνρστ (z, x) =
∑
`

5D[µb
`
νρστ ](z)Y`(x),

faνρστ (z, x) =
∑
`

b`νρστ (z)DaY`(x),

fabcdµ(z, x) =
∑
`

Dµb
`(z)ω e

abcd DeY`(x),

fabcde(z, x) =
∑
`

ωabcdeb
`(z)Λ`Y`(x).

(4.A.1.3)

where ωabcde denotes the volume 5-form of the S5 and Λ` = −`(`+ 4) is the harmonic

eigenvalue with respect to the scalar Laplacian on the S5. Given the self-duality

condition of the 5-form, it turns out that the perturbation functions bνρστ (z) and b(z)

are algebraically related,

bνρστ = ω γ
µνρσ (A`γ −Dγb

`), (4.A.1.4)

8The numerical constants here are introduced to match with the conventions of [279].
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so we may just focus on one of them; b(z) for instance.

A few comments are in order. First, in the expansions (4.A.1.3) we have only

included fields that couple to scalar-derived vector and tensor harmonics. Although

the analysis can be carried out in full generality, including transverse vector and tensor

harmonics, the additional terms would break the SO(5) isometry that the class of

spacetimes that we consider have. In addition, not all the expansions in (4.A.1.2) and

(4.A.1.3) start with the lowest harmonic, ` = 0; there are a few exceptions. Given that

Λ0 = DaY0(x) = D(aDb)Y0,1(x) = 0, then A0
µ(z), B0(z), B1(z) and b0(z) are not defined,

and the expansion for the perturbation fields hµa(z, x), h(ab)(z, x) and fabcde(z, x) starts

at ` = 1, ` = 2 and ` = 1, respectively.

The next step consists of inserting the expansions (4.A.1.2) and (4.A.1.3) into the

linearized field equations, work out the mapping between the higher and the lower-

dimensional fields, and obtain the 5-dimensional equations of motion for the dimen-

sionally reduced fields. Before that, let us count the number of fields that we have.

From the lower-dimensional perspective we have, for each value of `, a graviton, h`µν ,

a vector, A`µ, and three scalars: B`, C` and b`. However, some of these fields are pure

gauge modes. By finding the gauge transformation rules, we can determine which ones

are pure gauge and which ones correspond to the physical modes; a straightforward

way to do this is to explicitly fix the gauge. For instance, Refs. [279–282] performed

the actual dimensional reduction in the de Donder gauge, which can be shown to be

equivalent to setting to zero the fields A`µ and B`. In the analysis we do here we

follow [270], and these are not set to zero but instead they are used to define gauge

invariant physical fields. This is much more convenient in practice since, in general,

solutions to 10-dimensional supergravity equations will not be in the de Donder gauge.

Consider a gauge transformation: δxM = −ξM . The shift up to linear terms in the

perturbation fields is given by9

δhMN = (DMξN +DNξM) + (DMξ
PhPN +DNξ

PhPM + ξPDPhMN),

δfMNPQR = −5D[Mξ
SF

(0)
NPQR]S − (5D[Mξ

SfNPQR]S − ξSDSfMNPQR).
(4.A.1.5)

Here the gauge parameter ξM(z, x) is also expanded in harmonics,

ξµ(z, x) =
∑
`

ξ`µ(z)Y`(x) , ξa(z, x) =
∑
`

ξ`(z)DaY`(x) . (4.A.1.6)

Plugging (4.A.1.2), (4.A.1.3) and (4.A.1.6) into (4.A.1.5), we obtain the gauge trans-

formations of the perturbations at linear order, and from these we can identify the

gauge invariant combinations. At linear order these transformations can be directly

read off by looking at the coefficients of each harmonic. At quadratic order, one needs

to project onto the basis of spherical harmonics to identify the transformation rules.

9Notice that the background is kept fixed: δg
(0)
MN = 0 = δF (0).
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Fields Gauge inv. fields

` = 0
h0
µν C̄0 ≡ C0

C0

` = 1

h1
µν

h̄1
µν ≡ h1

µν −DµÃ
1
ν −DνÃ

1
µC1

A1
µ b̄1 ≡ 1

4
b1 − 1

2Λ1
C1

b1

` ≥ 2

h`µν h̄`µν ≡ h`µν −DµÃ
`
ν −DνÃ

`
µC`

A`µ C̄` ≡ C` − Λ`B
`

b` b̄` ≡ 1
4
b` − 1

2
B`

B`

Table 4.5: Fields and gauge invariant combinations at linear order. For ` = 0

there is only one gauge invariant field and h0
µν is a deformation of the AdS

part of the background metric (since it carries trivial harmonic index). To

construct gauge invariant combinations for ` > 0, one needs to introduce the

auxiliary field: Ã1
µ ≡ A1

µ − DµC
1/(2Λ1), such that δÃ1

µ = ξ1
µ, and for ` > 1,

Ã`µ ≡ A`µ −DµB
`/2 (then δÃ`µ = ξ`µ).

Gauge invariance and equations at leading order

At leading order one obtains the following gauge transformations of the perturbations:

δh`µν = Dµξ
`
ν +Dνξ

`
µ, ` ≥ 0,

δA`µ = Dµξ
` + ξ`µ, ` ≥ 1,

δB` = 2ξ`, ` ≥ 2,

δC` = 2Λ`ξ
`, ` ≥ 0,

δb` = ξ`, ` ≥ 1.

(4.A.1.7)

Given that the different harmonics ` are decoupled at linear order, we analyze the

cases ` = 0, 1 and ` ≥ 2, separately. From (4.A.1.7) one can easily identify the gauge

invariant combinations, which we summarize in the following table:

Notice that the definition of the field b̄` in Table 4.5 includes a factor 1/4 which

is not present in [270]. This simply corresponds to a different normalization of the

field strength: in our equations of motion (4.1.0.5) the coupling in front of the field

strength is 1/96, whereas [270, 279–282] considered 1/6. To be consistent with the

mapping, we need to rescale our field strength which amounts to the 1/4 factor in the

dimensionally reduced b` field.

To obtain the equations of motion for the gauge invariant fields, we plug the ex-

pansions (4.A.1.2) and (4.A.1.3) into the linearized type IIB supergravity equations
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of motion and project onto a given spherical harmonic. The equations for the fields

h̄`µν , C̄
` nor b̄` are of the Klein-Gordon type, but these fields are not mass eigenstates.

Diagonalizing, one finds the following gauge invariant combinations [279,280]:

ŝ` =
1

20(`+ 2)

(
C̄` − 10(`+ 4)b̄`

)
, ` ≥ 2,

t̂` =
1

20(`+ 2)

(
C̄` + 10`b̄`

)
, ` ≥ 0,

φ̂`(µν) = h̄`(µν) −
1

(`+ 1)(`+ 3)
D(µDν)

(
2

5
C̄` − 12b̄`

)
, ` ≥ 1,

(4.A.1.8)

satisfying:

�ŝ` = `(`− 4)ŝ`, ` ≥ 2,

�t̂` = (`+ 4)(`+ 8)t̂`, ` ≥ 0,

�φ̂`(µν) = (`(`+ 4)− 2) φ̂`(µν), ` ≥ 1,

(4.A.1.9)

where the ‘box’ operator is the D’Alembertian in AdS5. Now one can easily identify

the mass of the different modes (in units of AdS radius L = 1); the scalar fields ŝ`, t̂`

and the graviton φ̂`(µν) are dual to operators of conformal dimensions:10 {∆+,∆−} =

{`, 4− `}, {∆+,∆−} = {`+ 8,−`− 4} and {∆+,∆−} = {`+ 4,−`} respectively.

Gauge invariance and equations at quadratic order

At quadratic order the expressions are much more involved; for this reason we first

discuss the scalar sector (B`, C` and b`) and then the tensor sector (h`µν and A`µ).

As mentioned earlier, at quadratic order the gauge transformations are obtained

by projecting onto the basis of spherical harmonics. For instance, the transformation

rule for the scalar field B` is given by:

δB`(z) =
1

z(`)q(`)

∫
D(aDb)Y` δh(ab) dω5, (4.A.1.10)

with δh(ab) = 2D(aξ
Phb)P + ξPDPh(ab); z(`) and q(`) are defined in Appendix 4.C. Let

us discuss again different values of ` separately. For ` = 1 we have two scalars, C1

and b1, whose gauge transformations are the same as those at linear order, equation

(4.A.1.7), and hence the gauge invariant quantities at quadratic order are the same as

those in Table 4.5. For ` = 0 we only have one scalar: C0; its gauge transformation is:

δC0 =
∑
`≥1

z(`)

Ω5

(
2ξ`B`q(`) +

2

5
Λ`ξ

`C` + ξµ`DµC̄
`

− Λ`

(
ξ`C` + 2ξµ` Ã

`
µ

))
,

(4.A.1.11)

10Recall that ∆− = 4−∆+.
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and the corresponding gauge invariant combination is given by:

¯̄C0 = C̄0 +
∑
`≥1

z(`)

Ω5

(
3

10
Λ`B

`C̄` − 1

4
Λ` (Λ` + 8) (B`)2 − Ãµ`DµC̄

`

+ Λ`Ã
µ
` Ã

`
µ

)
,

(4.A.1.12)

where C̄` and Ã`µ are defined in Table 4.5. Notice that the sum above starts at ` = 1,

but B1 is not defined. We have written it this way just for notational compactness,

and from this section onwards whenever we have B1 we actually mean C1/Λ1. Here

Ω5 denotes the surface area of the unit round S5.

For ` ≥ 2 we have the whole scalar sector, B`, C` and b`. At quadratic order the

gauge transformations are given by

δB`1 = 2ξ`1 +
1

z`1q`1

∑
`2,`3≥1

(
2ξµ`2A

`3
µ c`1`2`3 +

2

5
ξ`2C`3d`3`1`2

+ ξµ`2DµB
`3d`2`1`3 + ξ`2B`3e`1`2`3

)
,

δC`1 = 2Λ`1ξ
`1 +

1

z`1

∑
`2,`3≥1

(
2B`2ξ`3d`1`2`3 +

(
ξ`2C`3 + 2ξµ`2A

`3
µ

)
b`1`2`3

+
(2

5
Λ`2ξ

`2C`3 + ξµ`2DµC
`3
)
a`1`2`3

)
,

δb`1 = ξ`1 +
1

Λ`1z`1

∑
`2,`3≥1

(
ξµ`2Dµb

`3 + Λ`2b
`2ξ`3

)
(b`1`2`3 + Λ`3a`1`2`3) ,

(4.A.1.13)

with the notation for normalization factors and triple integrals defined in Appendix

4.C: z`1 ≡ z(`1), a`1`2`3 ≡ a(`1, `2, `3), etc. From these transformations one infers the

following gauge invariant fields:11

¯̄C`1 = C̄`1 − 1

2z`1

∑
`2,`3≥1

(
2

5

(
Λ`2a`1`2`3 +

5

2
b`1`2`3 −

Λ`1

q`1
d`3`1`2

)
B`2C̄`3

+
(
d`1`2`3 −

Λ`1

2q`1
e`1`2`3

+
Λ`3

5

[
Λ`2a`1`2`3 +

5

2
b`1`2`3 −

Λ`1

q`1
d`2`1`3

])
B`2B`3

+ 2Ã`2µ

(
DµC̄`3a`1`2`3 + Ãµ`3

[
b`1`2`3 −

Λ`1

q`1
c`1`2`3

]))
,

¯̄b`1 = b̄`1 +
1

z`1

∑
`2,`3≥1

(
Λ`3

2Λ`1

B`2 b̄`3b`3`1`2 +
1

10q`1
d`3`1`2B

`2C̄`3

+
1

8

(Λ`3

Λ`1

b`3`1`2 +
2

5

Λ`3

q`1
d`2`1`3 +

1

q`1
e`1`2`3

)
B`2B`3

+ Ã`2µ

( 1

2q`1
Ãµ`3c`1`2`3 +

1

Λ`1

Dµb̄`3b`2`1`3

))
.

(4.A.1.14)

11A few typos have been corrected with respect to the expressions given in [19,270].
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In the tensor sector we are only interested in the massless KK graviton, i.e., h0
µν (see

[270] for the analysis of massive gravitons). At quadratic order, this field transforms

according to:

δh0
µν = Dµξ

0
ν +Dνξ

0
µ +

(
Dµξ

α
0 h

0
αν +Dνξ

α
0 h

0
αµ + ξα0Dαh

0
µν

+
∑
`≥1

z`
Ω5

(
Dµξ

α
` h

`
αν +Dνξ

α
` h

`
αµ + ξα` Dαh

`
µν

− Λ`(ξ
`h`µν + 2D(µξ

`A`ν))
))

.

(4.A.1.15)

Then the combination

¯̄h0
µν = h0

µν +
1

3
¯̄C0g(0)

µν −
∑
`≥1

z`
Ω5

(
− 1

2
Λ`
(
B`h̄`µν +

1

2
DµB

`DνB
`
)

+DµÃ
α
` h̄

`
να +DνÃ

α
` h̄

`
µα + Ãα`Dαh̄

`
µν

+DµÃ
α
`DνÃ

`
α + Ãα` Ã

`
αg

(0)
µν − Ã`µÃ`ν

)
,

(4.A.1.16)

where g
(0)
µν denotes the AdS5 background metric, is not gauge invariant but provides a

correction to the spacetime metric that transforms nicely. Notice that what plays the

role of ‘gauge invariant’ field at linear order here is the combination:

h̄(0)
µν ≡ h0

µν +
1

3
C̄0g(0)

µν , (4.A.1.17)

although it is not gauge invariant either (recall that δC̄0 = 0 but δh0
µν = Dµξ

0
ν +

Dνξ
0
µ). The shift in C̄0 can be understood as a Weyl transformation that brings the

5-dimensional action to the Einstein frame. Then h̄
(0)
µν satisfies the proper linearized

Einstein equation [270].

From the gauge invariant scalar fields, one can define the same combinations as

in (4.A.1.8), now replacing the ‘bar’ fields by the double ‘bar’ ones, which satisfy the

modified equations of motion [280]:

(�− `(`− 4)) ˆ̂s` =
1

2(`+ 2)

(
(`+ 4)(`+ 5)Q`

1 +Q`
2

+ (`+ 4)(DµQ
µ
3
` +Q`

4)
)
,

(�− (`+ 4)(`+ 8)) ˆ̂t` =
1

2(`+ 2)

(
`(`− 1)Q`

1 +Q`
2 − `(DµQ

µ
3
` +Q`

4)
)
,

(4.A.1.18)

where the double ‘hat’ notation is to emphasize that these are defined in terms of gauge

invariant fields at quadratic order (i.e., they are built up from double ‘bar’ fields). Note

that the masses are the same as those of the linear fields ŝ and t̂, equation (4.A.1.9).

The box operator is again the D’Alembertian in AdS5 and the Q’s that appear in the
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r.h.s. of the equations are given by:

Q`1
1 =

1

20z`1q`1

∑
`2,`3

(
(c`1`2`3 + d`2`3`1 + d`3`2`1)T`2`3

+ 32c`1`2`3Dµŝ
`2Dµŝ`3

)
,

Q`1
2 =

1

20z`1

∑
`2,`3

(
10S`1`2`3 + (b`1`2`3 − 2f`3a`1`2`3)T`2`3

+ 32b`1`2`3Dµŝ
`2Dµŝ`3

)
,

Qµ`1
3 =

1

z`1f`1

∑
`2,`3

((
U`2 + 3V`2

)
ŝ`2Dµŝ`3 +W`2D

(µDν)ŝ`2Dν ŝ
`3
)
b`2`1`3 ,

Q`1
4 = − 1

4z`1

∑
`2,`3

(
T`2`3 + V`2

(
16f`3 − 40V`3

)
ŝ`2 ŝ`3

)
a`1`2`3 ,

(4.A.1.19)

with

T`2`3 =
(
3V`2V`3 + 5U`2U`3

)
ŝ`2 ŝ`3 +W`2W`3D

(µDν)ŝ`2D(µDν)ŝ
`3 ,

S`1`2`3 = −V`2V`3b`2`1`3 ŝ`2 ŝ`3 − 8(a`1`2`3f`2f`3 ŝ
`2 ŝ`3 + b`1`2`3D

µŝ`2Dµŝ
`3)

+ V`3U`2a`1`2`3D
µ(ŝ`2Dµŝ

`3) +W`2V`3a`1`2`3Dµ(D(µDν)ŝ`2Dν ŝ
`3)

+ a`1`2`3V`2(64f`3 − 80V`3)ŝ
`2 ŝ`3 ,

(4.A.1.20)

and

V` = −5

3
U` = 2`, W` =

4

`+ 1
. (4.A.1.21)

4.A.2 Non-linear mapping: 5d action

If we pack together fields and masses:
ˆ̂
ψI` = {ˆ̂s`, ˆ̂t`}, m2

I,` = {`(` − 4), (` + 4)(` + 8)}
(I = 1, 2), the scalar field equations at quadratic order (4.A.1.18) may be written as:

(�−m2
I,`1

)
ˆ̂
ψI`1 =

∑
`2,`3≥1

(
DI
`1`2`3

ŝ`2 ŝ`3 + EI
`1`2`3

Dµŝ
`2Dµŝ`3

+ F I
`1`2`3

D(µDν)ŝ
`2D(µDν)ŝ`3

)
,

(4.A.2.1)

for some coefficients DI
`1`2`3

, EI
`1`2`3

and F I
`1`2`3

that are easily identified using the

expressions in (4.A.1.19) (see Table 4.6). Notice that the scalar fields in the l.h.s. are

the gauge invariant combinations at second order whilst the fields in the r.h.s. are

the gauge invariant fields at linear order (given that the r.h.s. side is quadratic in the

fields). In the case where ŝ2 is the only non-zero field at linear order (as it is for our

solutions), the gauge invariant combinations can be written in the form:

ˆ̂
ψI` = ψ̂I` + AI`sB ŝ

2B2 + AI`BB(B2)2 + AI`sAD
µŝ2Ã2

µ + AI`AA(Ã2
µ)2 (4.A.2.2)

with ψ̂I` = {ŝ`, t̂`}. The four coefficients AI`XX are also given in Table 4.6.
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The higher derivative terms on the r.h.s. of equation (4.A.2.1) can be removed via

a field redefinition
ˆ̂
ψI` → ΨI

` = {S`, T `} of the form:

ΨI
`1

= wI`1

(
ˆ̂
ψI`1 −

∑
`2,`3≥1

(
J I`1`2`3 ŝ

`2 ŝ`3 +KI
`1`2`3

Dµŝ
`2Dµŝ`3

))
, (4.A.2.3)

with

wI` =

{√
8`(`− 1)(`+ 2)

`+ 1

z`
Ω5

,

√
8(`+ 2)(`+ 4)(`+ 5)

`+ 3

z`
Ω5

}
,

J I`1`2`3 =
1

2
EI
`1`2`3

+
1

4
F I
`1`2`3

(
m2
I,`1
−m2

1,`2
−m2

1,`3
+ 8
)
,

KI
`1`2`3

=
1

2
F I
`1`2`3

.

(4.A.2.4)

Then the field equations for the fields ΨI
` read

(�−m2
I,`1

)ΨI
`1

=
∑

`2,`3≥1

λI`1`2`3S
`2S`3 , (4.A.2.5)

where

λI`1`2`3 =
wI`1

w1
`2
w1
`3

(
DI
`1`2`3

+ (m2
I,`1
−m2

1,`2
−m2

1,`3
)J I`1`2`3

− 2

5
KI
`1`2`3

m2
1,`2
m2

1,`3

)
.

(4.A.2.6)

All quadratic and cubic scalar couplings have been determined and can be found in

the literature [279–282], but in our case it is sufficient to retain only the quadratic

coupling to the field ŝ2 (or S2). The numerical factors up to this quadratic coupling

can be found in Table 4.6.

A very similar approach can be carried out for the massless KK graviton; the

equation of motion for ¯̄h0
µν at quadratic order is sourced by higher derivative interac-

tions [270] which, just as in the case of the scalars, can be removed through the field

redefinition:

Gµν = ¯̄h0
µν −

1

12

(
2

9
DµD

ρŝ2DνDρŝ
2 − 10

3
ŝ2DµDν ŝ

2

+
(10

9
Dµŝ

2Dµŝ2 − 32

9
(ŝ2)2

)
g(0)
µν

)
.

(4.A.2.7)

The equations of motion for the scalar fields and the massless graviton after the

field redefinitions, (4.A.2.3) and (4.A.2.7), can be obtained by varying a 5-dimensional

action with a negative cosmological constant. Therefore these mappings define the

desired non-linear KK map from solutions of the 10-dimensional equations {ˆ̂s`, ˆ̂t`, ¯̄h0
µν}

to solutions of the 5-dimensional equations {S`, T `, Gµν}. More precisely, given the
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ˆ̂s` (I = 1) ˆ̂t` (I = 2)

` 2 4 0 2 4

DI
`22 −16

√
2
15
−172

√
7

25
229
75

304
25

√
6
5

52
√

7
5

EI
`22

2
5

√
6
5

3
√

7
5
−11

20 −6
5

√
6
5
−
√

7
5

F I
`22

1
3

√
2
15

7
√

7
45

1
60

1
15

√
2
15

0

AI`sB
7
5

√
3
10

7
√

7
10

− 3
40

− 7
5
√

30 −
√

7
10

AI`BB −17
20

√
3
10

−
√

7
10
− 1

80
3
20

√
3
10

√
7

40

AI`sA − 1√
30 −3

√
7

20
− 1

48
− 1

5
√

30
0

AI`AA −1
4

√
3
10

−
√

7
20
− 1

80 − 1
20

√
3
10

0

J I`22
8
5

√
2
15

83
√

7
90

− 3
40 − 8

15

√
2
15
−
√

7
10

KI
`22

1
3
√

30
7
√

7
90

1
120

1
15
√

30
0

λI`22 − 16√
15

0 0 0 0

Table 4.6: Numerical coefficients in equations (4.A.2.1)-(4.A.2.6). Notice

that our numerical coefficients differ with respect to those given in [270].

More precisely, all the non-zero coefficients for ` = 2 or ` = 4 differ by the

same factor, 4
√

2/5 and
√

7/5 respectively, compared to the corresponding

coefficients in that paper. This is due to the fact that we use a different

harmonic representation, which also includes odd values of `. The coefficients

are the same for ` = 0. For ` odd all coefficients vanish.

normalization factors w(ψI` ) in (4.A.2.4), the 5-dimensional theory corresponds to the

bosonic sector of D = 5, N = 8 gauged supergravity, whose action is given by:

S5D =
N2

2π2

∫
d5x
√
−G
[

1

4
R + 3−

∑
I,`

(1

2
(∂ΨI

`)
2 + V (ΨI

`)
)]
. (4.A.2.8)

This yields the equation of motion for Gµν :

Rµν [G] = 2

(
−2Gµν + Tµν −

1

3
GµνT

)
, (4.A.2.9)
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with

Tµν =
∑
I,`

(
∂µΨI

`∂νΨ
I
` −Gµν

(1

2
(∂ΨI

`)
2 + V (ΨI

`)
))

, (4.A.2.10)

and the non-homogeneous Klein-Gordon equations (4.A.2.5) for the scalar fields.

Let us remark again that if one considered the problem in full generality, the

resulting action would involve an infinite tower of KK fields. However, to find 1-point

correlation functions we only need to expand the 5-dimensional fields near the AdS

boundary up to a certain order. This truncates the infinite KK tower to a finite number

of fields. When applying this procedure to our solutions we will see that the only field

that contributes to the dual scalar vev’s and the dual stress tensor is the field S2. This

amounts to having the following non-zero potential in the action (4.A.2.8):

V (S2) =
1

2
m2

1,2(S2)2 − 16

3
√

15
(S2)3. (4.A.2.11)

Having a five-dimensional theory of gravity coupled to scalars in AdS allows us

to apply the standard holographic renormalization prescription introduced §1.3 of

Chapter 1 to calculate the dual field theory observables: the dual stress-energy tensor

and thus the energy of the gravittational solutions, and the scalar vev’s.

4.B Harmonic expansion, stress-energy tensor and scalar

vev’s

In this section we perform the near boundary dimensional reduction for the class of

spacetimes that we consider. We first expand our solutions near the AdS boundary in

spherical harmonics on the S5 according to (4.A.1.2) and (4.A.1.3). We work with the

compactified radial coordinate y in our ansatz (4.3.1.4), and then transform to the FG

gauge.

Our ansatz for the metric (4.3.1.4) involves products of the variables Q2, Q3 and

Q4, which are not convenient to perform the decomposition in spherical harmonics.

For instance, the (aa)-component is not just the polar component of the S5 times the

unknown function Q4, but it also includes a shift proportional to the product Q2Q
2
3,

coming from the crossed y − a term. The Q2
3 factor in this term would introduce

scalar-derived vector harmonic modes into the component haa(y, a), which is not com-

patible with the decompositions in (4.A.1.2). We overcome this issue through a simple

redefinition of variables:

Q2 = Q′2,

Q3 =
Gp(y)

4y2y2
0(1− y2)

Q′3
Q′2
,

Q4 = Q′4 −
(1− y2)(2− a2)Gp(y)

16y2y2
0

Q′3
2

Q′2
,

(4.B.0.1)
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so that the new variables Q′2, Q′3 and Q′4 have a transparent decomposition in spherical

harmonics. Then the spacetime metric reads

ds2 =
L2

(1− y2)2

(
− Gp(y)

1− y2
Q1dt2 +

4y2
0y

2(1− y2)

Gp(y)
Q′2dy2

− 2(1− y2)2Q′3dyda+ y2
0Q5dΩ2

(p−2)

)
+R2

(
4Q′4

2− a2
da2 + (1− a2)2Q6dΩ2

(q−1)

)
.

(4.B.0.2)

Given the asymptotic boundary conditions that our solutions satisfy, the unknown

functions appearing in the metric (4.B.0.2) have the following near boundary expan-

sion:

Qk(y, a) = 1 +
∞∑
i=1

(1− y2)i
i∑

`=0

qk(i)
`Y`(a), (k = 1, 2, 5, 7),

Q′3(y, a) =
∞∑
i=1

(1− y2)i
i+1∑
`=1

q3(i)`S`1(a),

Q′4(y, a) = 1 +
2− a2

4

∞∑
i=2

(1− y2)i
i∑

`=2

qS(i)`S`aa(a)

+
1

5

∞∑
i=1

(1− y2)i
i∑

`=0

qT (i)`Y`(a),

Q6(y, a) = 1 +
1

(1− a2)2

∞∑
i=2

(1− y2)i
i∑

`=2

qS(i)`S`ΩΩ(a)

+
1

5

∞∑
i=1

(1− y2)i
i∑

`=0

qT (i)`Y`(a),

(4.B.0.3)

The various q’s are constants that can be determined by solving the equations of motion

order by order near the AdS boundary, at y = 1. The factors in the expansions for Q′4
and Q6 have been chosen such that the internal part of the metric can be written as

ds2
int = g

(0)
ab dxadxb + h(ab)(y, a)dxadxb +

1

5
g

(0)
ab h(y, a) dxadxb +O(h2), (4.B.0.4)

where h(ab) and h are the symmetric-traceless and trace parts respectively. They have

an expansion in harmonics as in (4.A.1.2), where now the coefficients of the harmonics

are functions of the compact radial coordinate y.

At each order in the near boundary expansion only a finite number of harmonics are

necessary to solve the equations of motion. This has already been taken into account

in the form of the expansions: notice that at ith order in the near boundary expansion,

the sum in (4.B.0.3) over the harmonics only runs up to the ` = i harmonic.12 Plugging

12For Q′3 this sum runs up to i+1; the reason for this is that in the metric ansatz this term appears

multiplied by an extra factor of 1− y2.
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the expansions (4.B.0.3) into the equations of motion yields, at each order and after

projecting them into the spherical harmonics, algebraic relations between the different

q(i)`’s; at the end, only a few q’s remain undetermined. Up to order (1−y)4 we obtain:

Q1(y, a) ' 1− 4

15
β2Y2(y − 1)2 − 4

15

(
β2Y2 + 30γ3Y3

)
(y − 1)3

+

(
16δ0Y0 −

1

15

(
1− 32

5

√
2

15
β2

)
β2Y2 − 4 (3γ3Y3 − 4δ4Y4)

)
(y − 1)4

Q2(y, a) ' 1− 4

15
β2Y2(y − 1)2 − 4

15

(
β2Y2 + 30γ3Y3

)
(y − 1)3

+

(
1

9
β2

2Y0 −
1

15

(
1− 96

25

√
6

5
β2

)
β2Y2 − 12γ3Y3 − 16

(2
√

7

375
β2

2 − δ4

)
Y4

)
(y − 1)4,

Q3(y, a) ' 1

15
β2(Sa)

2(y − 1) +
(
γ1(Sa)

1 − 1

30
β2(Sa)

2 + γ3(Sa)
3
)

(y − 1)2

+

(( 1

30
+

4

15

1

y2
0

+
4

225
β2Y2 −

56

1125

√
2

15
β2

)
β2(Sa)

2 +
4

3

(√7

375
β2

2 − δ4

)
(Sa)

4

)
(y − 1)3,

Q4(y, a) ' 1 +
4

5
β2Y2(y − 1)2 + 4

(2

3
γ1Y1 +

1

5
β2Y2 + 4γ3Y3

)
(y − 1)3

+

(
− 3

125
β2

2Y0 + 4γ1Y1 +
1

5

(
1− 992

375

√
2

15
β2

)
β2Y2 + 24γ3Y3 +

( 544

5625
β2

2 −
80

3
δ4

)
Y4

+
16

375

√
2

15
β2

2(SΩ
Ω)2 +

8
√

7

1125
β2

2(SΩ
Ω)4 − 16

225
β2

2(Sa)2(Sa)2

)
(y − 1)4,

Q5(y, a) ' 1− 4

15
β2Y2(y − 1)2 − 4

15

(
β2Y2 + 30γ3Y3

)
(y − 1)3

+

(
16

3

( 1

900
β2

2 − δ0

)
Y0 −

1

15

(
1− 32

5

√
2

15
β2

)
β2Y2 − 4 (3γ3Y3 − 4δ4Y4)

)
(y − 1)4,

Q6(y, a) ' 1 +
4

5
β2Y2(y − 1)2 + 4

(2

3
γ1Y1 +

1

5
β2Y2 + 4γ3Y3

)
(y − 1)3

+

(
− 3

125
β2

2Y0 + 4γ1Y1 +
1

5

(
1− 992

375

√
2

15
β2

)
β2Y2 + 24γ3Y3

+
(544

√
7

5625
β2

2 −
80

3
δ4

)
Y4 +

16

375

√
2

15
β2

2(SΩ
Ω)2 +

8
√

7

1125
β2

2(SΩ
Ω)4

)
(y − 1)4,

Q7(y, a) ' 1− 8

15
β2Y2(y − 1)2 − 8

15

(
β2Y2 + 30γ3Y3

)
(y − 1)3

+

(
16α0Y0 −

2

15

(
1 +

16

y2
0

− 512

75

√
2

15
β2

)
β2Y2 − 24γ3Y3 + 32

( √7

1500
β2

2 + δ4

)
Y4

)
(y − 1)4.

(4.B.0.5)

The harmonic expansion near the AdS boundary depends on six undetermined con-

stants: β2, γ1, γ3, δ0, δ4 and α0. Gauge freedom of both the metric and gauge field

allows us to set γ1 and α0 to any value and we choose to set them to zero. Note

that even if they are not set to zero, observables are gauge invariant and therefore,

at the end, they cannot depend on these two constants. The rest of coefficients,
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{β2, γ3, δ0, δ4}, correspond to data that can only be determined from the full bulk

solution.

To bring the metric into the FG gauge (z, θ) in 10D we perform the coordinate

transformation y = y(z, θ), a = a(z, θ) in a series expansion near the AdS boundary

z = 0. At each order in the FG coordinate zi, we have two functions to solve for and the

only requirement is that the AdS part of the metric takes the FG form, i.e. gzz = 1/z2

(recall that L = 1) and gzi = 0. This completely determines the form of the coordinate

transformation. The first terms are given by:

y(z, θ) = 1 +
y0

2
z − y2

0

8
z2 +

1

8
y0

(
1 +

1

2
y2

0

(
1 +

2

15
β2Y2(θ)

))
z3 + . . .

a(z, θ) = θ +
1

20

√
3

10
y2

0β2 θ(2− 3θ2 + θ4)z2

+
1

12
y3

0

√
2− θ2(1− θ2)

(
γ1 −

1√
10
γ3

(
1− 8θ2(2− θ2)

))
z3 + . . .

(4.B.0.6)

To obtain the metric up to order z4 we need this change of coordinates up to order z7

for y(z, θ) and up to order z5 for a(z, θ).

Now we can identify the different fields appearing in (4.A.1.2) and (4.A.1.3).13 To

this end, it is useful to write the background AdS5 × S5 in FG coordinates since we

have to subtract it:

ds2
(0) =

L2

z2

(
dz2 −

(
1 +

z2

2L2
+

z4

16L4

)
dt2 +

(
1− z2

2L2
+

z4

16L4

)
L2dΩ(3)

)
+ L2dΩ(5),

(4.B.0.7)

and F
(0)
(5) is given in (4.1.0.6) in a coordinate invariant form. We are now in a position

to find the various harmonic contributions to the near boundary expansions of the

fields hMN and fMNPQR. For the components of the metric along the AdS5 factor we

find:

h0
µν(z) = −y2

0

(3h0

4
(1 + y2

0)− y2
0(

h1

7200
β2

2 + h0δ0)
)
z2ηµν ,

h2
µν(z) = − 1

10
y2

0β2

(
1 +

3

4

(
h2 −

23

75

√
2

15
y2

0β2

)
z2

)
ηµν ,

h3
µν(z) = −4

3
y3

0γ3zηµν ,

h4
µν(z) =

1

4
y4

0

(
13
√

7

1500
β2

2 + 5δ4

)
z2ηµν ,

(4.B.0.8)

with {h0, h1, h2} = {−1/3, 11/3, 1/9} when the indices are along the S3 within the

AdS5 space, otherwise these constants are all equal to one; ηµν = diag(0,−1, σı̂̂),

where σı̂̂ is the standard metric on the unit round S3. Since, by construction, in

13Note that because we work with gauge invariant variables, strictly speaking we should not need

to put the 10D solution in the FG gauge.
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the FG gauge there are no crossed terms between the AdS5 and S5 factors, we have

A`µ(z) = 0. The scalar fields (from the point of view of AdS5) that come from the

components of the 10D metric along the S5 are given by:

B2(z) =
1

20
y2

0β2

(
1 +

5

8

(
1− 1

25

√
2

15
y2

0β2

)
z2

)
z2, B3(z) =

2

9
y3

0γ3z
3,

B4(z) =
1

48
y4

0

(√7

300
β2

2 − 5δ4

)
z4,

C0(z) =
1

600
y4

0β
2
2z

4, C2(z) =
2

5
y2

0β2

(
1 +

5

16

(
1− 17

25

√
2

15
y2

0β2

)
z2

)
z2,

C3(z) =
16

3
y3

0γ3z
3, C4(z) =

1

300
y4

0

(√
7β2

2 − 5δ4

)
z4.

(4.B.0.9)

Finally, the 5-dimensional scalar fields arising from the 5-form are:

b2 = − 1

10
y2

0β2

(
1 +

3

8

(
1− 31

75

√
2

15
y2

0β2

)
z2

)
z2, b3 = −8

9
y3

0γ3z
3,

b4 = −1

8
y4

0

(7
√

7

750
β2

2 − 5δ4

)
z4.

(4.B.0.10)

From these expressions we can find the gauge invariant combinations at linear order

from Table 4.5, and then the corresponding gauge invariant mass eigenfields defined in

(4.A.1.8). To leading order in the number of fields, the equations of motion are satisfied

up to order z2, since higher order terms in z can (and will!) receive contributions from

the non-linear interactions. The leading order field ŝ2 is given by

ŝ2 =
1

20
y2

0β2z
2 +O(z4). (4.B.0.11)

The rest of the fields fields ŝ`, ` = 3, 4 are at least O(z3) and t̂`, ` = 0, 1, 2, 3, 4, are

O(z4). We do not present the explicit expressions for them in this appendix, but they

can be non-trivial at this order and they are needed to find the dimensionally reduced

scalar fields S` and T `.
The relevant fields to the second order are ˆ̂s2 and ¯̄h0

µν . Using (4.A.2.2) and

(4.A.1.16) we find:

ˆ̂s2 =
1

20
y2

0β2z
2 +

1

40
y2

0β2

(
1− 1

25

√
2

15
y2

0β2

)
z4,

¯̄h0
zz = − 11

3600
y4

0β
2
2z

2 ,

¯̄h0
ij =

(
3

4
h′0y

2
0

(
1 + y2

0

)
− 1

960
h′1y

4
0β

2
2 − h′0y4

0δ0

)
z2δij ,

(4.B.0.12)

where δij = diag(1, σı̂̂), and {h′0, h′1} = {1/3,−61/45} for indices along the S3 and

one otherwise. We are interested in the scalar fields S`, T ` given in (4.A.2.3) and

the massless KK graviton Gµν (4.A.2.7). These are 5D fields involving only quadratic
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contributions in ŝ2 and its derivatives. After adding the background in the case of the

metric, we find:

S2 =
1

15
√

2
y2

0β2z
2 +

1

30
√

2
y2

0β2

(
1− 4

15

√
2

15
y2

0β2

)
z4,

Gzz =
1

z2
− 13

10800
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0β
2
2z
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Gij =
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1

z2
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G0

2
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( 1
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− 3G0

4
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0(1 + y2
0)
)
z2

− y4
0

( 31G1

43200
β2

2 −G2δ0

)
z2

)
ηij,
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with ηij = diag(−1, σı̂̂), (G0, G1, G2) = (−1, 15/31,−1/3) for the components along

the S3 and one otherwise. The fields T `, ` = 0, 1, 2, 3, 4 are O(z5). Therefore, up to

order z4, there are only two other scalars which can acquire non-trivial vev’s:

S3 =
1

2
√

3
y3

0γ3z
3,

S4 = − 1

1200
√

3
y4

0(
√

7β2
2 + 300δ4)z4.

(4.B.0.14)

Having the 5D fields, we are now in a position to apply the standard holographic

renormalization prescription (see §1.3 of Chapter 1). Clearly, the metric in (4.B.0.13)

is not in FG gauge; introducing the 5D FG coordinate Z through

z(Z) = Z +
13

86400
y4

0β
2
2Z

5 +O(Z6), (4.B.0.15)

we can bring it to the canonical FG form. Finally, identifying the different terms that

appear in the FG expansion, we obtain the stress-energy tensor from (1.3.0.14):

〈Tij〉 =
N2

2π2

(
3

16
(1 + 2y2

0)2 + y4
0

( β2
2

3600
− δ0

))
(1, σı̂̂/3). (4.B.0.16)

The boundary geometry B4 is conformally flat and therefore there is no conformal

anomaly: the stress-energy tensor is traceless 〈T ii 〉 = 0. It is also trivially conserved,

Di
(0)〈Tij〉 = 0, and in the limit β2, δ0 → 0, it reduces to the stress-energy tensor of

the Schwarzschild-AdS black hole, as expected. The energy of the spacetime is simply

given by E = Ω3〈T00〉, which includes the well-known Casimir energy of the dual

N = 4 SYM on the ESU4. Using the expressions in (4.B.0.5) one has the relation

β2
2

3600
− δ0 =

1

512

(
∂4
yQ5 − ∂4

yQ1

) ∣∣∣
y=1

, (4.B.0.17)

which is very useful in order to check the numerics.

The non-vanishing scalar vev’s associated to S2,S3 and S4 follow from (1.3.0.15).

Recall that the conformal dimension of operators dual to S` is ∆+ = ` (∆− = 4− `).
Notice that in our case the dual operator with smallest conformal dimension is 2
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and therefore the non-linear terms that appear for operators with higher conformal

dimension vanishes for ∆ = 3 and it is proportional to 〈O2〉2 for ∆ = 4. In the latter

case, the proportionality factor can be computed for our harmonic representation using

the expressions in Ref. [270].

The expressions for the vev’s are given by:
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2π2
(2S̃2
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N2

2π2

√
2

15
y2

0β2,

〈OS3〉 =
N2

2π2
(2S3

(2)) =
N2

2π2

1√
3
y3

0γ3,

〈OS4〉 =
N2

2π2

(
4S4

(4) +
3
√

21

5
(2S̃2

(0))
2
)

=
N2

2π2

1√
3
y4

0

(19
√

7

1500
β2

2 − δ4

)
.
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4.C Scalar harmonics of Sq with SO(q) symmetry

In this appendix we construct the scalar spherical harmonics on Sq that preserve an

Sq−1. These are necessary to perform the dimensional reduction of our solutions and

compute the vev’s of the dual operators.

The metric of Sq in the standard spherical coordinates can be found recursively

through:

dΩ2
1 = dθ2

1,

dΩ2
q = dθq + sin2 θqdΩ2

q−1,
(4.C.0.1)

with θ1 ∈ [0, 2π) and θk ∈ [0, π), ∀k = 2, . . . , q. The corresponding volume forms are:

dω1 = dθ1,

dωq = sinq−1 θqdθq ∧ dωq−1,
(4.C.0.2)

and the Laplace operators are:

∆1 =
∂2

∂θ2
1

,

∆q =
1

sinq−1 θq

∂

∂θq

(
sinq−1 θq

∂

∂θq

)
+

1

sin2 θq
∆q−1.

(4.C.0.3)

The defining equations for the scalar spherical harmonics are:(
∆1 + `2

1

)
Y`1(θ1) = 0,(

∆q − Λ`q

)
Y`1...`q(θ1, . . . , θq) = 0,

(4.C.0.4)

with Λ`n = −`n(`n + n − 1), n = 1, . . . , q and `i = 0, 1, 2, . . . . Scalar harmonics in

one dimension (on a circle), are given by the Fourier modes: Y`1(θ1) ∝ ei`1θ1 (up to a

normalization constant). Requiring univaluedness implies that `1 ∈ Z.

We focus on harmonics that preserve an SO(q) subgroup out of the full SO(q + 1)

isometry group of the Sq. Imposing SO(q) symmetry implies that these spherical
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harmonics can only depend on the polar angle θq ≡ θ, and thus they are labeled by a

single quantum number `q ≡ `. Therefore, the scalar harmonics that we are interested

in satisfy: (
1

sinq−1 θ

∂

∂θ

(
sinq−1 θ

∂

∂θ

)
− Λ`

)
Y`(θ) = 0. (4.C.0.5)

Let Y`(θ) = y(cos θ) and consider the change of variables θ = arccos(x). Defining

2µ = q−1 and ν = `, equation (4.C.0.5) becomes the Gegenbauer differential equation:

(1− x2)y′′(x)− (2µ+ 1)xy′(x) + ν(ν + 2µ)y(x) = 0. (4.C.0.6)

The general solution to this equation is

y(x) = (x2 − 1)(1−2µ)/4
(
C1 P

1/2−µ
µ+ν−1/2(x) + C2Q

1/2−µ
µ+ν−1/2(x)

)
, (4.C.0.7)

where C1 and C2 are integration constants, and P a
b (x) and Qa

b (x) are the Legendre’s

polynomials of first and second kind respectively. Finiteness at the poles, x = ±1,

requires that C2 = 0, and ν to be a non-negative integer, i.e., ` ≥ 0.

The solution may be written in terms of hypergeometric functions. Redefining the

integration constant by absorbing the numerical factors that arise, we write the regular

solution as:

y(x) = C̄1 · 2F1

(
−ν, 2µ+ ν;µ+

1

2
;
1− x

2

)
(4.C.0.8)

where C̄1 is determined by requiring a proper normalization. To be consistent, we

use the same normalization as in the previous literature [279–282]. The desired scalar

harmonics are then given by:

Y`(θ) =

√
2−`−q+2π1/2Γ(`+ q − 1)

Γ(`+ q−1
2

)Γ(q/2)
2F1

(
−`, `+ q − 1;

q

2
;
1− cos θ

2

)
, (4.C.0.9)

satisfying ∫
Y`1Y`2dωq = z(`1)δ`1`2 , z(`1) =

`1!( q−1
2

)!

2`1(`1 + q−1
2

)!
Ωq, (4.C.0.10)

where Ωq is the surface area of the unit q-sphere. This normalization ensures that

totally symmetric traceless rank k tensors of SO(q+1), which can be used to represent

the scalar harmonics, are normalized to a delta function.

From the scalar harmonics one may define scalar-derived quantities such as vector

and tensor harmonics by taking covariant derivatives on the Sq. Letting the metric on

the Sq be σab, with compatible covariant derivative Da, the scalar-derived vector and

tensor harmonics are given by

S`a(θ) = DaY`,

S`ab(θ) ≡ D(aDb)Y` = DaDbY` −
Λ`

q
σabY`.

(4.C.0.11)
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With these definitions, these harmonics satisfy:

DaS`a = Λ`Y`, DaS`ab = (q − 1)

(
1 +

Λ`

q

)
S`a,

DbDbS
`
a = (Λ` + q − 1)S`a, DcDcS

`
ab = (Λ` + 2q)S`ab,∫

S`1a S
a
`2

dωq = z(`1)f(`1)δ`1`2 ,

∫
S`1abS

ab
`2

dωq = z(`1)q(`1)δ`1`2 ,

(4.C.0.12)

where z(`) has been defined in (4.C.0.10) and

f(`) = −Λ`, q(`) = Λ`(q − 1)

(
1 +

1

q
Λ`

)
. (4.C.0.13)

In order to find the gauge transformations of the lower-dimensional fields in Ap-

pendix 4.A, one also needs the following triple integrals of spherical harmonics:

a(`1, `2, `3) =

∫
Y`1Y`2Y`3 dωq b(`1, `2, `3) =

∫
Y`1S

`2
a S

a
`3

dωq,

c(`1, `2, `3) =

∫
Sab`1 S

`2
a S

`3
b dωq, d(`1, `2, `3) =

∫
Y`1S

ab
`2
DaS

`3
b dωq,

e(`1, `2, `3) =

∫
Sab`1
(
2DaS

c
`2
S`3cb + Sc`2DcS

`3
ab

)
dωq.

(4.C.0.14)

The expressions for b(`1, `2, `3), c(`1, `2, `3), d(`1, `2, `3) and e(`1, `2, `3) can be written

in terms of a(`1, `2, `3) by partial integrating, e.g.

b(`1, `2, `3) =
1

2

(
f(`2) + f(`3)− f(`1)

)
a(`1, `2, `3). (4.C.0.15)

Useful identities among them also include:

d(`2, `1, `3) + c(`1, `2, `3) +
q(`1)

Λ`1

b(`2, `1, `3) = 0,

b(`2, `1, `3) + b(`1, `2, `3) + Λ`3a(`1, `2, `3) = 0.

(4.C.0.16)

4.D Embedding plots in AdS5×S5

In Fig. 4.16 of this Appendix we include the embedding diagrams for the lumpy black

hole families ` = 1, 2+ and 2− in AdS5×S5. These figures help to visualize the topology

changing transition, in which the lumpy black holes merge with another family of black

holes with a different horizon topology. In the AdS5×S5 case, the values of lumpiness

parameter λ that we were able to confidently achieve are smaller than in the AdS4×S7

case, but yet significantly larger than in [19]. The topology changes are qualitatively

similar to the corresponding ones in AdS4 × S7, except for the ` = 2− case; in the

AdS5 × S5 case, the lumpy black holes merge with a black hole family whose horizon

topology is S8#S8, i.e. a double localized black hole.
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` = 2−
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Fig. 4.16: Embeddings plots for fixed S3/S4 coordinates of lumpy black holes

in AdS5 × S5 with ` = 1, 2+ and 2−. The corresponding plots for ` = 3 are

similar to those for ` = 1, but the pinch-off appears at the opposite pole.

In Fig. 4.17 we show the embedding plots of the most critical solution we have found

along the ` = 1 branch, and compare them with the embeddings of the local cone.

The embedding along the internal S4 indicates that the local cone must be sourced by

some flux field along the internal directions, and it is consistent with (4.4.4.2).

4.E Numerics and convergence tests

In this appendix we provide further details of our numerical construction of the lumpy

black hole solutions and present some convergence tests.

Our numerical approach to construct critical solutions relies on the re-definition

of certain unknown functions to ensure that the new functions have bounded values

at the merger. However, steep gradients are unavoidable and therefore, very close

to critical limit, these re-definitions are useless if they are not accompanied by a

numerical grid that can properly resolve these gradients. To this end, it is convenient

to divide the original grid into other small subregions in order to be able to increase

the grid resolution just where it is necessary. Of course, it is not desirable to consider
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Fig. 4.17: Embedding diagrams of ` = 1 lumpy black hole (blue line) in

AdS5×S5, for the largest lumpiness parameter we have reached with fixed S4

coordinates (left) and fixed S3 coordinates (right). The black lines correspond

to the cone embeddings proposed to mediate the topology change transition.

For fixed S3 coordinates, the embedding dictated by the Ricci-flat cone is

indicated with dashed lines.

many subdomains as it may result in a loss of computational efficiency. A moderate

number of patches together with mesh-refinement overcomes the efficiency issue while

redistributing the density of points in a useful manner.

In this study we have used up to 4 subdomains and the mesh-refinement function

(2.2.2.13) in the patch where the singular behavior appears, which is typically at a

pole in the near horizon region. Therefore, where needed, we redefine the coordinates

as x̃ = mesh(x; 0, x∗, χx) and ỹ = mesh(y; 0, y∗, χy). In total, this introduces four

new parameters: x∗ and y∗, corresponding to the coordinate values where the different

patches meet, and χx and χy, which control the ‘strength’ of the density of the new grid

points along each coordinate direction. Typical values that we used are χx, χy = 4.

At each shared boundary one must impose continuity of the functions and their first

normal derivatives. An example of such grids is shown in Fig. 4.18. As for the

resolution used, for all families we began with a single patch with 60× 60 grid points,

and then we increased the number of patches up to four as we moved along the branch

of solutions towards the critical regime. The smallest patch where the peaks of the

functions typically appear has 50× 50 resolution, whereas for the other patches lower

resolutions suffice, e.g. ∼ 30× 50 or 30× 30.

To check whether the solution on a given grid is good enough, we monitor the

numerical error. If this is greater than a few percent, then the resolution needs to

be increased. To this end, we use the squared norm of the DeTurck vector ξ2 and its

non-zero components ξx and ξy since they should all vanish in the continuum limit
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Fig. 4.18: Physical grid to construct solutions with ` even, with grid parame-

ters x∗ = 0.3 = y∗. Left: simple Chebyshev grid points for the various patches.

Right: mesh-refined grid points x̃ = mesh(x; 0, x∗, χx), ỹ = mesh(y; 0, y∗, χy),

with χx,y = 4, in the blue patch. In the green and red patches only x- and

y-directions need to be refined respectively.

and hence they are good measures of the error. In the case of using a pseudo-spectral

numerical approach, as in this chapter, the error should be exponentially suppressed

in the continuum limit, i.e. with increasing the grid size. Insufficient resolution can

also reflect itself in some unphysical behavior of the physical parameters in the phase

diagram of the family of black holes under consideration. For this reason, we also

monitor the physical quantities along the branch.

In Fig. 4.19 we compare the maximum values of ξ2 and ξy for a reference solution

(with λ ∼ 0.2) at different resolutions in each of the branch of solutions we have

constructed. To produce this figure we picked up a reference solution of each branch,

we interpolated it at different resolutions and then we filtered through the Newton-

Raphson loop. Solutions with other values of λ behave in a qualitatively similar

manner. Of course, the larger the λ is the larger the error is with the same grid

structure and resolution.

Indeed, in all cases shown we observe that those quantities vanish in the continuum

limit. This ensures that our numerical solutions provide a good approximation to the

actual solution of the continuous problem. Notice that for the component ξy, the

values themselves, being coordinate dependent, are not physical. However, the fact

that they become zero for large N confirms that we are finding an Einstein metric
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Fig. 4.19: Logarithmic plot of the maximum values of ξ2 and ξy on the

whole integration domain, as a function of the grid size. In both cases the

error decays exponentially, as expected. The plot for the DeTurck vector

component along the x-direction is very similar to that for the y-component,

so we do not include it here.

rather than a Ricci soliton.



Chapter 5

Summary and Outlook

In this thesis we have used numerical methods to solve Einstein’s equations and con-

struct static black hole solutions in spacetimes with compact spaces. These are physi-

cally motivated due to the appearance of conifold geometries which, so far, have been

barely studied in General Relativity. We have considered D = 10 and 11 spacetime

dimensions, which are the relevant cases for the AdS/CFT correspondence. We have

investigated various thermodynamic and geometric aspects of these solutions, and

the possible relation between these two aspects on a specific region of solution space,

namely close to the merger or critical point. At this point the solutions become singular

and some numerical refined techniques need to be used to approach it. Additionally,

using holography we have been able to make some novel predictions regarding the

thermal phase diagrams of certain dual gauge theories, and how the critical behavior

of the gravitational solutions is imprinted in the gauge side. The results are presented

in the research Chapters 3 and 4, which are based on Ref. [1] and [2] respectively.

More precisely, we have first considered static black hole solutions in 10-dimensional

Kaluza-Klein theory, which means that they are asymptotically Mink9 × S1 vacuum

solutions of Einstein’s equations. We have numerically constructed black holes whose

horizons are localized or non-uniformly distributed along the Kaluza-Klein circle S1.

Utilizing some well-motivated numerical techniques we have been able to reach so-

lutions with critical (or conical) horizon deformations, just where both solutions are

about to merge at the level of solution space. Remarkably, we find that the merger

happens at a cusp in the phase diagram, in contrast to what occurs in lower spacetime

dimensions. This can be linked to the cone geometry that reproduces the horizon

regions that presumably pinch-off, as previously predicted, and now verified. Indeed,

we show that the critical geometry is locally controlled by a Ricci-flat double-cone,

which explains how the different physical quantities approach to their critical values.

In D = 10, the double-cone predicts a quartic power law plus a logarithmic correction

and using our solutions we have checked that this is indeed the case.

According to holography, D0-charged 10-dimensional localized black holes and

black strings are dual to thermal states of (1 + 1)-dimensional SU(N) maximal su-

per Yang Mills theory compactified on a circle. The corresponding phase diagrams

for this particular point-like charge can be obtained from our neutral solutions. The
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phase diagrams show a 1st order phase transition between these two phases, which is

consistent with the available lattice simulations carried out in the gauge side. At this

point, though, lattice results are insufficient to talk about an holographic test, since

they just put a bound on the temperature. In this sense, our results comprise new

holographic predictions that will surely be used in the future to test AdS/CFT.

Having numerical codes available for the construction of these Kaluza-Klein so-

lutions, it would be easy to find them in dimensions greater than ten, specially for

examining the stability properties of such families which are believed to change around

the critical spacetime dimension D∗ = 13.5. Large-D analysis have considered approx-

imate solutions around this particular dimension, which may not be high enough for

the results be completely reliable. Thus, it would be interesting to check if there is

any substantial deviation with respect to the ‘exact’ (but numerical) results.

Then we have moved on to Anti-de Sitter space. Fomented by AdS/CFT, solutions

with a negative cosmological constant are now a very active area of research. Here

we have considered static black holes with non-uniform horizons along a q-sphere,

also known as lumpy black holes in the literature. The solutions are asymptotically

AdSp × Sq, which require of the presence of a form field strength. For the values ex-

amined, (p, q) = (5, 5) and (4, 7), the theories that we solve are type IIB supergravity

(with a self-dual 5-form) and low-energy M-theory. The solutions we are interested in

are labeled by the harmonic number ` of scalar harmonics that respect their isometries.

We constructed four families corresponding to ` = 1, 2+, 2− and 3. Using the same

techniques as those for the Kaluza-Klein setting, we were able to reach unprecedented

values of lumpiness parameter, which characterize the deformations along the internal

space Sq. With the solutions in our power, we study their thermodynamics and ge-

ometry. In particular, our data allows us to infer the horizon topology of the solutions

that are supposed to merge with the lumpy black holes at the merger or critical point.

We show that the geometry of the horizon near the merger is well-described by a cone

over a triple product of spheres, thus extending the original local cone model to the

present asymptotics. Interestingly enough, our data is not compatible with a Ricci-flat

cone, specially for the components along the internal sphere, which is consistent with

the presence of a non-trivial flux. The pinch-off occurs at the horizon, and therefore we

do not expect that this can be direct consequence of the presence of the AdS bound-

ary. A perturbation analysis around the critical cone accounts for the behavior of the

physical quantities of the actual solutions sufficiently close to the critical point. To

leading order, this perturbation mode coincides with that of the Ricci-flat double-cone.

We compute with an exceptional accuracy the critical exponents predicted by the cone

model, which coincide as well.

Dimensionally reducing our solutions on the sphere, yields asymptotically AdSp
solutions coupled to additional scalar fields coming from the compactification. These

fields acquire non-zero vacuum expectation values that can be computed using our

numerical data. We examined these expectation values only in D = 10. Although

they lie in a 4-dimensional gauge theory (or 5-dimensional AdS gravity theory), the
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imprint from the 10-dimensional bulk solutions is reflected in the critical behavior of

such quantities: they follow a quartic power law with a logarithmic correction, just

as dictates the leading order perturbation analysis of the cone in the bulk. These

comprise new further non-trivial predictions for the dual gauge theory on which to

test AdS/CFT.

There are some natural extensions of this work. The black hole solutions that

merge with the lumpy ones are only known in D = 10 and for the family with ` =

1, which corresponds to a spherical black hole localized on the 5-sphere. Still, the

available results are very far away from the merger point. The phase diagram of

these localized solutions indicate the existence of a 1st order phase transition between

these solutions and (small) Schwarzschild-AdS5 × S5 black holes, which is interpreted

as spontaneous symmetry breaking in the dual gauge theory. However, the little

numerical data available required of extrapolation to deduce its temperature. The

techniques developed and used in this thesis would definitely help to resolve towards

more critical black holes, allowing to obtain the precise value at which the phase

transition occurs. Likewise, their different quantities should match with the ones that

we have found from the lumpy side, towards the end of the branch. Of course, it would

also be interesting to construct localized black holes in AdS4 × S7, or localized black

holes that merge with higher harmonic lumpy solutions. Further work is currently

being carried out in this direction. So far we have been able to design a proper reference

metric resembling a spherical black hole near the horizon and being asymptotically

AdSp × Sq. Although this is the hard or creative part in this problem, the code

we have still fails to find the desired solution. To fix this we need to fine tune the

parameters that enter in the numerical problem and/or finding a more refined ansatz

for the fields.

Another thing to consider would be to extend the Kaluza-Klein holography analysis

to D = 11 spacetime dimensions. This case has received less attention and a fully

generic gauge invariant mapping to 4-dimensional AdS gravity beyond linear order

in the number of fields is not yet available. There are some results applied to the

so-called LLM geometries which are clearly useful in our context, but the complete

analysis requires some further work.
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[141] Ó. J. C. Dias, P. Figueras, R. Monteiro, H. S. Reall, and J. E. Santos, An

instability of higher-dimensional rotating black holes, JHEP 05 (2010) 076

[hep-th/1001.4527].



165
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