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Abstract 

Pancreatic cancer is the 10th most common cancer in the UK with 10,000 people a year being 

diagnosed. This form of cancer also has one of the lowest survival rates, with only 5% of patient 

surviving for 5 years (1). There has not been significant progress in the treatment of pancreatic 

cancer for the last 30 years (1). Recognition of this historic lack of progress has led to an 

increase in research effort and funding aimed at developing novel treatments for pancreatic 

cancer. This in turn has had an inflationary effect on the numbers of animals being used to 

study the effects of these treatments. Genetically engineered mouse models (GEMMs) are 

currently thought to be most appropriate for these types of studies as the manner in which the 

mice develop pancreatic tumours is much closer to that seen in the clinic. One such GEMM is 

the K-rasLSL.G12D/+;p53R172H/+;PdxCre (KPC) model (2) in which the mouse is born with 

normal pancreas and then develops PanIN lesions (one of the main lesions linked to pancreatic 

ductal adenocarcinoma (PDAC) (2)) at an accelerated rate. The KPC model is immune 

competent and because the tumours develop orthotopically in the pancreas, they have a 

relevant microenvironment and stromal makeup, suitable for testing of new therapeutic 

approaches.  

Unlike the human pancreas which is regular in shape, the mouse pancreas is a soft and spongy 

organ that has its dimensions defined to a large extent by the position of the organs that 

surround it, such as the kidney, stomach and spleen (3). This changes as pancreatic tumours 

develop, with the elasticity of the pancreas decreasing as the tissue becomes more 

desmoplastic. Because the tumours are deep within the body, disease burden is difficult to 

assess except by sacrificing groups of animals or by using non-invasive imaging. Collecting data 

by sacrificing groups of animals at different timepoints results in use of very high numbers per 

study. This is in addition to the fact that in the KPC model (similar to other GEMMs), fewer than 

25% have the desired genetic makeup, meaning that 3-4 animals are destroyed for every one 

that is put into study (2). Therefore, in order to reduce the numbers of animals used in 



5 
 

pancreatic research, a non-invasive imaging tool that allows accurate assessment of pancreatic 

tumour burden longitudinally over time has been developed. Magnetic resonance imaging 

(MRI) has been used as it is not operator dependent (allowing it to be used by non-experts) and 

does not use ionising radiation which is a potential confounding factor when monitoring tumour 

development. The tool has been developed for use with a low field instrument (1T) which 

ensures its universal applicability as it will perform even better when used with magnets of field 

strength higher than 1T. 

This work has been carried out starting from an existing 3D computational mouse atlas and 

developing a mathematical model that can automatically detect and segment mouse pancreas 

as well as pancreatic tumours in MRI images. This has been achieved using multiple image 

analysis techniques including thresholding, texture analysis, object detection, edge detection, 

multi-atlas segmentation, and machine learning. Through these techniques, unnecessary 

information is removed from the image, the area of analysis is reduced, the pancreas is isolated 

(and then classified healthy or unhealthy), and - if unhealthy - the pancreas is evaluated to 

identify tumour location and volume. This semi-automated approach aims to aid researchers by 

reducing image analysis time (especially for non-expert users) and increasing both objectivity 

and statistical accuracy. It facilitates the use of MRI as a method of longitudinally tracking 

tumour development and measuring response to therapy in the same animal, thus reducing 

biological variability and leading to a reduction in group size. The MR images of mice and 

pancreatic tumours used in this work were obtained through studies already being conducted in 

order to reduce the number of animals used without having to compromise on the validity of 

results.  
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1 Introduction 

1.1 Pancreatic Cancer 

Pancreatic cancer is the 10th most common cancer in the UK, affecting approximately 10,000 

people per annum with a 5 year survival rate of only 5% (1). This poor prognosis of patients with 

pancreatic cancer has persisted for the last 40 years (1) with Cancer Research UK regarding it as 

a cancer of unmet need. In pre-clinical research there has been a recent shift to using 

genetically engineered mouse-models to study pancreatic cancer (4). For example, the KPC 

mouse-model has an intact immune system and the animals are born with a healthy pancreas 

that develops Pan-IN lesions that develop into PDAC tumours (2, 5, 6), the most common form 

of pancreatic tumours seen clinically (7). In order to detect spontaneous tumour development 

within KPC mice scientists often rely upon palpating the animal or ultrasound (8). However, 

palpation is unreliable as it is hard to discern if an object is a tumour, a cyst, or food within the 

digestive system. Although ultrasound can easily distinguish between tumour and cyst, it can 

also be problematic in that it has a small field of view and is very vulnerable to user-

interpretation (9). I propose the use of MR-imaging combined with automated segmentation as 

a means of combating the mentioned issues. With regard to addressing the unreliability of 

tumour identification presented by palpation, MR-imaging provides high-detail internal images 

that can show clear differences between food in the intestine, cysts, and tumours. The 

disadvantages associated with ultrasound are also combatted by MR-imaging in that it provides 

a large field of view with high-sensitivity. However, there are also challenges associated with 

MR-imaging, specifically the imaging data is complicated and hard to analyse (especially early on 

in spontaneous tumour development where it can be difficult to distinguish tumour from 

normal pancreas), which means that results are open to user-interpretation.   

High field instruments (e.g. with field strength of 9.4 T) have much better image quality but the 

user complexity, cost and siting requirements of these are prohibitive for non-specialist units 
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that simply require screening of tumour burden.   Low field (e.g. 1T) bench-top MRI instruments 

are easy to use, affordable and have none of the magnet cooling costs or high field siting 

requirements. However, the trade-off is that low field instruments have lower resolution which 

increases the scan time and difficulty of image analysis.   

Therefore, in the context of the growth of research carried out in spontaneous orthotopic 

pancreatic tumour mouse models, a need exists to develop software that provides automatic 

segmentation of a reasonable resolution (0.15-0.25mm) MR images with minimal user-input. 

Such a tool would also be able to be used with higher field systems. This project seeks to use a 

combination of pre-segmented manual and atlas data and machine-learning algorithms to be 

able to identify and segment a number of organs and tumour.  This includes training an existing 

whole body atlas to segment the liver, spleen, kidneys, stomach, hepatic portal vein and gall 

bladder while also creating a new machine learning tool capable of segmenting pancreas and 

distinguishing pancreatic tumour from normal tissue. This automatic organ/tissue segmentation 

should be achievable with minimal user-input and minimal specialist training required on the 

part of the user.   Evaluation of the sensitivity and specificity of the tool, as well as exact tumour 

locations and size should show agreement with analysis carried out by a panel of  experts in the 

field (a preclinical veterinarian and two experts in preclinical image analysis) with over 35 years 

of image-analysis expertise combined. The core impacts sought from this study are as follows:  

the use of low field MRI combined with a 3D mouse atlas machine learning tool allows users 

with minimal training to obtain accurate and statistically-significant tumour measurements from  

smaller numbers of animals than previously achievable , in keeping with the rationale behind 

the 3Rs.   

1.2 Preclinical Research 

1.2.1 Animal models for pancreatic cancer 

The mouse is a good subject of study when considering researching possible treatments for 

pancreatic cancer. Mice can be bred to be almost genetically identical through inbreeding. Their 



20 
 
 
reproduction rate is relatively quick, so long term effects can be followed within reasonable 

time frames. Additionally, the pathology and anatomy of mice is well understood. However, the 

mouse pancreas is not as well defined or regularly shaped as the human pancreas. Instead, it is 

defined geometrically by the organs surrounding it due to its soft structure (2, 3). Therefore, 

consistent images of the mouse pancreas are difficult to produce and analyse, which has led 

many scientists to disregard Magnetic Resonance Imaging (MRI) as a method of studying mouse 

pancreas, relying on ultrasound or dissection instead. 

A very common method of inducing orthotopic pancreatic tumours is through injection of 

tumour cells directly into the pancreas of the mouse. When the procedure is performed by an 

experienced worker, it is reproducible, but can suffer the drawback of possible contamination of 

other areas of the mouse with tumour cells. Also, since the injections are mainly performed in 

the tail of the pancreas, this is the area where the tumours will most likely form (and not 

necessarily where a spontaneous tumour would form). The tumours develop relatively rapidly 

which is not always ideal in the context of the tumour microenvironment. Additionally, this is a 

surgical procedure which causes discomfort to the mouse. However, mice that are genetically 

modified to spontaneously develop pancreatic cancers do this in a similar way to that observed 

in the clinical situation and over long periods of time. Nevertheless, both orthotopic methods 

are more useful for the study of tumour development, local pathology and anatomy than 

subcutaneously xenografted mice, in which a tumour is implanted in the flank of the mouse and 

not in the pancreas (although the latter method can be useful for the study of drug effects on 

the tumour) (10). 

Genetically engineered mouse models (GEMMs) are considered to be the most clinically 

relevant model. This is due to the development and progression of pancreatic cancer - as well as 

the tumour micro-environment in the context of an intact immune system - being much closer 

to that seen in humans. One commonly used GEMM in the study of pancreatic cancer is the 

KrasLSL.G12D/+;p53R172H/+;PdxCre model (KPC) along with PDXCre+;KrasG12D--;p53mut-- 
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(KP) (11). KPC mice are born with a healthy pancreas but develop Pancreatic Intraepithelial 

Neoplasia 1-A (PanIN) lesions, a precursor to pancreatic ductal adenocarcinoma (3). Similar to 

the human disease, these tumours develop in the pancreas spontaneously over long periods of 

time. C57BL/6 (WT) animals were also used as a true control in order to be able to detect 

changes between WT and KP mice. However, one of the drawbacks of this KPC model is that 

less than 25% of the litter will have the desired genetic makeup, which means that 3-4 mice are 

destroyed for every one that can be used in a study. Furthermore, unlike the human pancreas 

which is very regular in shape, the mouse pancreas is a soft and spongy organ that has its 

dimensions defined primarily by the organs that surround it, such as the kidney, stomach and 

spleen (3). In the KPC mouse, this changes as pancreatic tumours develop, with the elasticity of 

the pancreas changing as the tumour becomes more desmoplastic. Since the tumours develop 

deep within the body, tumour burden is difficult to assess by palpation. In studies which 

measure response to therapy over time, killing groups of animals (typically >10) at different 

time points is commonplace, meaning that a large number of mice must be used in every study. 

Use of longitudinal non-invasive imaging, whereby the same group of animals is imaged at 

multiple timepoints, reduces both biological variability and the number of mice used. Accurate 

assessment of disease burden also has the potential to improve animal welfare.  

The animals are housed in Individually Ventilated Cages (IVCs) in groups whenever possible and 

kept in rooms with a 12-hour day and night light cycle. A large percentage of the animals 

imaged in this study were also used in other studies to reduce the amount of animals needing 

to be bred. 

Multiple academic groups are working with the KPC model in a variety of different studies, from 

tumour development, response to therapies (12) (11, 13, 14), to formation of the stroma in and 

around the tumour (15, 16). 
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1.3 Medical Imaging 

Medical imaging is a vital tool used in the diagnosis and management of the vast majority of 

cancer patients (17). There are many different medical imaging techniques, each of which 

visualises a different physical or physiological property of the body. The major clinical imaging 

modalities are covered briefly below.  

X-ray images, both planar (X-ray) and tomographic (CT), are images of the distribution of the 

linear attenuation coefficient at an average X-ray energy within the human body. This is a 

property which is largely a function of tissue density, at least for soft tissues, but is also a 

function of tissue composition. Thus, bone has a higher attenuation coefficient than can be 

explained simply by increased density because it contains significant amounts of relatively high 

atomic number elements (17). X-ray images are largely images of anatomy. Nuclear imaging 

produces images (PET: positron emission tomography and SPECT: single photon emission 

computed tomography) of the distribution of a molecule which has been labelled with a γ-ray-

emitting isotope (termed a radiotracer). The radiotracer is distributed according to physiological 

function so the image is primarily a functional image, although it can in some cases produce 

recognisably anatomical images. Ultrasound imaging (US) produces images related to changes 

in the acoustic impedance of tissues, again mainly anatomical in nature. Magnetic resonance 

imaging (MRI) produces images of proton density, largely a function of the water content of 

tissue, and images of relaxation times which depend on the environment of the protons. These 

are mainly anatomical. Each of the imaging techniques is unique, in the sense that a unique 

physical property is imaged. X-ray images are quick to obtain and give good anatomical detail 

(skeletal and to a lesser extent soft tissue), however (in the case of CT) the use of ionising 

radiation can result in significant radiation doses. Nuclear imaging gives good functional images 

but limited anatomical imaging. It also uses ionising radiation as it requires the synthesis and 

administration of radiopharmaceuticals, and there is an associated radioactive dose to the 

subject. Ultrasound offers good anatomical soft tissue detail and resolution but has a small field 
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of view, is limited by the depth of the feature within the subject and is very operator 

dependant. MRI offers good soft tissue detail, high resolution and uses non-ionising radiation 

with no effect on the subject (17)  

Currently, analysis and reporting of medical images is mainly done manually, carried out by 

medical physicists and radiologists who are experts in the field. However, computational models 

to help the radiologist validate their choices and optimise their workflows are coming into use. 

This is commonly referred to as Computer Aided Diagnosis (CAD) such as lung nodes, skin 

pigmentation and mammograms. Computer aided image analysis has been used for many years 

in many different fields, from the reading of bar codes, the segmentation of satellite images, 

and machine vision used for facial recognition (18-21). 

Image analysis in medicine has powered not only diagnosis, but also guided patient 

management and delivery of therapy for many decades. In this project, semi-automated image 

analysis is used to demonstrate the feasibility of using pre-clinical MRI as a rapid and user-

independent method for tumour detection and tracking in mice, with aim of facilitating the 

monitoring of pancreatic tumour development and response to therapy. 

1.3.1 Clinical Abdominal Segmentation 

Some novel methods of automatic abdominal segmentation have been developed in the clinic. 

This has allowed for the segmentation of all organs in the abdomen. In the method proposed by 

Shen et al (2016) (22) subcutaneous adipose tissue (SAT) regions were assessed by a fully 

automatic algorithm, using morphological operations and a multi-atlas-based segmentation 

method. However, although a high confidence was found in liver segmentation, calculated 

through Dice Similarity Coefficient (DSC, a measure of spatial overlap between two sample 

sets), in pancreas segmentation, only a 0.672 confidence when compared to expert manual 

segmentation was found (22). Another group used Support Vector Machines (SVMs) and graph-

based Convolution Neural Networks (CNNs) in combination to build an automatic segmentation 

model (23). Their model works better than previous models, but still with a segmentation 
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confidence of 0.761. Both methods, SVMs and CNNs, had reasonable success with the 

combination of one or two different systems being used in the clinic (22, 23). 

1.3.2 Radiomics 

The field of Radiomics was born from CAD, in which automated image analysis is performed of 

image features. The term ‘Radiomics’ was first defined in a conference abstract by Lambin et al 

(2011): 

“Comprehensive quantification of disease phenotypes by applying a large number of 

quantitative image features representing lesion heterogeneity and correlating with omics and 

clinical data” (24)  

Lambin then went on to publish the paper “Radiomics’’ in 2012 which defined the field as we 

recognise it today (25). The field was built off the basis of Genomics and Big Data where an 

increase in computational power had allowed for sequencing of thousands of genomes and the 

need to analyse this so-called ‘Big Data’. Radiomics approaches imaging data in the same way by 

using features of each voxel to produce big imaging data.  

Prior to the definition of ‘radiomics’, multiple papers had shown the ability to classify gene 

expressions using non-invasive imaging. (26, 27) 

Non-invasive imaging provides an alternative to biopsies and histological data. The benefits of 

imaging include avoidance of a painful invasive technique, reduced chance of infection to the 

subject, and the ability to account for the heterogeneity of tumours. However, radiologists rely 

on visual inspection and it has been shown that when it comes to tumour classification, 31-37% 

of cases have discordant interpretations (28-30). Some of the issues that face radiologists are: 

Technical Errors (Scanning Factors, Scanning Parameters, Imaging Protocols), Active Errors 

(Perceptual Factors, Window Settings, Blind Spots, Reading Environment and Ergonomics, 

Satisfaction of Search, i.e. after finding one tumour not looking for more.) and Interpretative 

Factors (Study Indication, Effects of Therapies and Other Interventions) to name a few (31, 32). 
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Radiomics provides a quantitative approach to image-segmentation in which the features 

identified can be related to anatomical and genomic expressions. There were two papers that 

heralded the inception of the field of Radiomics just prior to Lambin’s 2011 paper. The first of 

these papers was written in 2007 by Segal et al (26) in which they identified 28 imaging traits 

that were capable of reconstructing 78% of global gene expression profiles. The second was 

written in 2008 by Diehn et al (27) in which they identified a “infiltrative” imaging phenotype 

that was able to predict the patient outcome. The combined effect of these two papers and 

others was the study of image features, resulting in Lambin’s inspiration for the field of 

Radiomics.  

Figure 1-1: The number of papers published using the term radiomics between 2011 and 
August 2019 

The field of radiomics spans from 2011 to the present day (2019) and has faced multiple 

challenges, many of which have been outlined by Kumar et al. (32). These include the 

requirement of a large multidisciplinary team not only including biologists, chemists, and 

physicists but also computer scientists, mathematicians, bioinformaticians, and statisticians. 
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Another challenge faced is the availability of data where institutes such as universities and 

hospitals will have large cohorts of data but are unable to share them with other institutes. This 

problem is further compounded by the effect of different institutes having different imaging 

standards meaning that even if data can be shared it is often not comparable. Another major 

challenge that radiomics has had to overcome is the validation of its methodologies and proof 

of concepts with reliable correlation to the histological data collected. This issue is one of the 

most complex as the histological sample is only a very small area of the tumour and co-

registering the histological slice with the image slice is not a trivial matter (33). Feature 

extraction is another method that requires standardisation especially if data from multiple 

institutes and reproducibility are to be considered. The statistical analysis performed on the 

features should also be standardised as imaging data in general can be very misleading and the 

statistics, if improperly handled, even more so. The radiomics field has brought together 

numerous texture and feature analysis methods used in multiple disciplines, from medical 

imaging to monitoring of sea ice (34-41). 

 

1.4 Current Methods of Detection of pancreatic tumours in preclinical models. 

1.4.1 Dissection 

Dissection of a mouse is the most basic way to study its anatomy and is the only way to get 

immunohistochemical data. This has many drawbacks: individual mice cannot be studied 

longitudinally which introduces biological variability; if the mice are difficult to breed, as with 

the KPC model, it can be very costly; and it can be difficult to decide when to dissect a mouse as 

tumour development may not be linear and so many more mice must be dissected to gain 

statistical significance. Because of this, non-invasive techniques to study tumours have been 

developed. 
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1.4.2 Ultrasound 

Ultrasound is a common method of detection and tracking of mouse pancreatic tumours (13). 

Ultrasound offers a high accuracy as well as anatomical and functional imaging. Protocol time in 

the hands of an experienced user  is also relatively short when compared to MRI and in the 

current UK-wide university model of cost recovery from users in the form of an hourly rate, 

throughput has a significant impact on imaging costs. Ultrasound has a relatively high depth of 

penetration, although certain features (air, bone) can obscure the image. 

In terms of instrument cost, a preclinical ultrasound for oncology applications can range from 

£150,000-£250,000 and preclinical MRI £225,000-£1,500,000. An MRI will often need a specially 

designed room with a Faraday cage built into the walls, floor, and ceiling unless it is a low field 

MRI. In contrast an ultrasound is often on wheels and can be moved relatively easily. However, 

with the further development of low field MRIs, “desktop” MRIs which do not require the 

infrastructure are becoming increasingly popular. Low-Field MRI is also becoming more readily 

available in preclinical imaging units as it is currently offered as an anatomical imaging modality 

combined with PET and SPECT instruments from a number of manufacturers as an alternative to 

PET/CT or SPECT/CT (42-45). 

In terms of a direct comparison of usability, all things being equal re. accessibility, MRI presents 

as the more convenient. While ultrasound is often faster for an experienced ultrasonographer 

and is able to provide a higher resolution than MRI, MRI offers a larger field of view as well as 

greater depth of penetration, this method also provides more usable results and reduced user 

variability. In terms of practical convenience, ultrasound requires the animal to be shaved prior 

to the procedure which adds to the time required per animal, as well as having a welfare impact 

on the animal.  

There are 6 categories by which we can measure the quality of MRI and ultrasound: image 

resolution, time taken, depth of penetration, field of view, required operator proficiency level 

and animal welfare. In ultrasound, the image resolution is very high (0.01-1mm resolution (46)), 



28 

it is a relatively fast procedure, and the depth of penetration is good (1-10cm depending on 

resolution (46), however the field of view is relatively small and heavily dependent on the probe 

used, the shaving required prior to the procedure is distressing to the animal. The data is easily 

influenced by user technique/proficiency and interpretation which leads to variability in data 

quality between users (47). These limiting factors can be addressed and sometimes eliminated 

when using other non-invasive imaging modalities. In MRI, the welfare impact is low as no 

shaving is necessary. In contrast to ultrasound also, MRI offers a relatively large field of view and 

an unlimited depth of penetration. The image resolution is also relatively high (0.25mm 

isotropic on a 30 minute T1 scan on the Bruker Icon 1T) – although not quite as high as 

ultrasound – with the only potential downside being the time required, as the higher the 

resolution required the longer time each scan will take. See Table 1 for a comparison of these 

factors. 

Table 1: Comparison of low field MRI, high field MRI and Ultrasound 

Low Field MRI High Field MRI Ultrasound 

Resolution 0.1-0.25mm 0.01-0.25mm 0.001-1mm 

Soft tissue contrast +++ +++ +++ 
Field of View +++ +++ + 
Depth of penetration Infinite Infinite 1-10cm

Throughput (volumetric 
imaging time plus 
animal prep) 

30-45 minutes 10-20 minutes 25-45 minutes 

Welfare advantage +++ +++ ++ 
Ease of use +++ + + 
Affordability +++ + +++ 

1.5 MRI 

MRI is a good imaging modality to consider for this application. It is an anatomical imaging 

modality, like Computed Tomography (CT), but is superior for soft tissue imaging and (unlike CT) 

produces the images using non-ionising radiation (47). Large areas of the mouse can be imaged 

in a single scan, allowing better understanding of the effects of the tumours on the full organ 
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system, as well as giving anatomical references that will aid definition of pancreas in the mouse 

(a challenging organ to define). MRI also allows high resolution imaging and features as small as 

0.2mm3 are distinguishable on a low field MRI (48). There is no need to shave the mouse or 

have it undergo any other pre-scan procedures apart from anaesthesia. 

1.5.1 Basics 

Magnetic Resonance Imaging (MRI) is a non-invasive imaging technique which, using a strong 

magnetic field and radiofrequency (RF) pulses, is able to visualise the inner structures of an 

object. MRI is a powerful tool in the study of tumour development and responses to therapy as 

the good soft tissue contrast can provide a large amount of anatomical and pathological 

information (49).  

Figure 1-2: Alignment of hydrogen protons. (a) No external magnetic field applied and the 
protons are aligned randomly. (b) the magnetic field has been applied to the protons and they 
have aligned either spin-up or spin-down. More have aligned spin-up so the net magnetisation 
vector, NMV, is aligned with the external magnetic field. Adapted from (50). 

MRI works by aligning the magnetic spin of hydrogen atoms within a large magnet. Because a 

hydrogen atom has one proton and no neutrons it has the property of a magnetic (dipole) 

moment i.e.: it will align with an external magnetic field (𝐵0) and has two poles. A very small 

number of atoms will align inverse to the magnetic field (spin-down) but the majority will align 
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with the magnetic field (spin-up), as this is the lower energy state. This causes the net magnetic 

field to be aligned with the magnetic field of the MRI, called net magnetisation vector (NMV), 

see Figure 1-2. The atoms also have spin (wobble or precession) of the charged nuclei around 

𝐵0 from the magnetic field’s influence.  

 

 

Figure 1-3: The net magnetisation vector (NMV) moves out of alignment with the magnetic 
field when excited at resonance by the RF pulse. The angle out of alignment is called the flip 
angle. The transversal plane is perpendicular to the longitudinal plane, so a flip angle of 90O 
moves the NMV onto the transversal plane. Adapted from (50). 

1.5.1.1 The Larmor Equation 

The Larmor (precession) frequency, ω0, refers to the rate of precession of the protons around 

the external magnetic field and is related to the strength of the magnetic field, B0, and the 

gyromagnetic ratio, y, which is the ratio of the nucleus magnetic moment and angular moment. 

𝜔0 = 𝑦𝐵0 1-1 

For example, the Larmor frequency of hydrogen in a 1 T MRI is 42.57 MHz, while the Larmor 

frequency of a sodium atom in a 1 T MRI is 11.26 MHz (51). 

1.5.1.2 Resonance 

When an object is exposed to an oscillating perturbation that has a similar frequency to its own 

natural frequency, resonance occurs. The energy required for resonance of hydrogen at the 

precessional frequency corresponds to the radio frequency (RF) band of the electromagnetic 
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spectrum and, depending on the field strength of the magnetic field, must be the exact energy 

defined by the Larmor equation. This resonance frequency will not resonate with other nuclei as 

they have a different Larmor frequency since their gyromagnetic ratios are different. 

This causes the NMV to slip out of alignment with the external magnetic field as some protons 

are excited to a higher energy state. The degree to which the NMV is out of alignment is called 

the flip angle (see Figure 1-3) and can be altered by the amplitude and duration of the RF pulse. 

Furthermore, this resonance frequency causes the magnetic moment of the hydrogen nuclei to 

be in phase with each other. 

1.5.2 The MR Signal 

After the RF pulse has been applied, the coherent magnetisation precesses at the Larmor 

frequency in the transversal plane. This means that if a conductive loop is placed in a moving 

magnetic field a voltage is induced across it (52). A receiver coil performs this function, with the 

frequency of the resulting? magnetic resonance signal being the same as the Larmor frequency, 

and the magnitude defined by the amount of magnetisation in the transversal plane. 

When the RF pulse is switched off the NMV is again influenced by the external magnetic field 

and so returns to that state. In order to do this the hydrogen must lose the energy caused by 

the RF pulse, this is called relaxation. At the same time, the magnetic moments of the 

hydrogens dephase.  

Spin lattice relaxation (T1 recovery) is the effect seen when the nuclei release their energy into 

environment or lattice. This causes the magnetic moments of nuclei to recover back to the 

external field. The rate of recovery is called the T1 relaxation time, which refers to the time it 

takes for 63% of the longitudinal magnetisation to recover into the tissue (see Figure 1-4). 

Spin-spin decay (T2 relaxation) is the interaction of the magnetic fields of neighbouring nuclei 

and results in the decay of coherent transverse magnetisation (see Figure 1-4). This is also an 
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exponential process, so that the T2 relaxation time of a tissue is its time constant of decay and 

the time taken until 37% of the transverse magnetisation, tumbling, remains. 

A pulse sequence is a combination of RF pulses, signals, and periods of recovery. The repetition 

time (TR) is the delay from the application of one pulse to the next and determines the amount 

of longitudinal relaxation. The echo time (TE) is the delay from one pulse to the peak of the 

signal induced in the coil. 

 

Figure 1-4: The relaxation rates of different tissues can be used to increase the contrast in the 
image. (a) shows the alignment of the hydrogen atoms in water (yellow) and fat (green) after 
a 90O pulse is applied. (b) shows the alignment after some time has passed. Fat is progressing 
back to the longitudinal plane faster than water. (c) shows the alignments after another 90O 
pulse is applied. At this point the fat has a larger component vector in the transverse plane 
and so if the signal is collected now fat will have a higher signal. As time continues and both 
tissues progress back to the longitudinal plane the transversal vector of water will get larger 
than that of fat and so will become the stronger signal. This is defines the TR length that can 
be used for high contrast. Adapted from (50). 

1.5.3 Imaging Contrast 

Intrinsic image contrast parameters (parameters that cannot be changed) in MRI are critical and 

consist of T1 recovery time, T2 decay time, and proton density. T1 recovery and T2 decay are 

defined in section 1.5.2. Proton density refers to the number of mobile hydrogen nuclei per unit 

(a) (b) 

(c) 
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volume of the tissue. Higher proton density means there are more nuclei to contribute to the 

signal. T1 and T2 relaxation rely on three main characteristics: 

 

Figure 1-5: Dephasing of the hydrogen vectors over time in the transversal plane. Adapted 
from (50). 

• The inherent energy of the tissue: if the inherent energy of the tissue is low, this means 

it can absorb a great amount of energy during the hydrogen relaxation. If the inherent 

energy is high then it cannot absorb as much energy. This is of particular importance for 

the T1 relaxation process. 

• The tissue density: in a tissue with closely packed molecules the interactions between 

magnetic fields is more efficient, with less dense tissues having less efficient interaction. 

This is important for T2 relaxation and spin-spin decay. 

• The relationship between the molecular tumbling rate and the Larmor frequency: if the 

molecular tumbling rate and the Larmor frequency are similar then interaction between 

the hydrogen molecules and the molecular lattice are more efficient than if there were 

a large discrepancy between the tumbling rate and Larmor frequency. 

Different tissues have different relaxation times due to these intrinsic contrast features. This 

difference can be related to T1 relaxation and T2 decay. 
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Figure 1-6: Fat (green) dephase more quickly in the transversal plane than water (yellow) this 
means that after a short delay the vector in the transversal plane of fat is smaller than of 
water as the water is still more in phase. This causes the water to give off a stronger signal in 
the image. Over time they both completely dephase. Adapted from (50). 

The molecules in fat are large, since they are formed of hydrogen, carbon, and oxygen atoms 

and are packed closely together, this causes the tumbling rate to be relatively slow, the result 

being a relatively slow relaxation time (17). 

Fat has a low inherent energy and so can easily absorb energy into the lattice. This, coupled 

with a relatively slow relaxation time, means that the NMV of fat realigns with B0 rapidly, 

longitudinal magnetisation, causing the T1 time for fat to be short. 

Fat molecules are close together causing a high chance of spin-spin interaction. This causes a 

rapid dephasing and loss of transverse magnetism, resulting in a fast T2 time (see Figure 1-6). 

The molecules in water are spaced relatively far from each other and are relatively small, as 

they are formed of two hydrogen and one oxygen atom. This results in them having a relatively 

fast tumbling speed (17). 

Water has a high inherent energy and so cannot absorb much energy into the lattice. 

Furthermore, the tumbling rate of water is not as close to the Larmor frequency, the result 

being a longer T1 recovery. Therefore, the NMV of water takes longer to align back to 𝐵0. 
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The molecules in water interactions are spaced further apart than those seen in fat. This causes 

the dephasing and a slower loss of transverse magnetism, resulting in a longer T2 time. 

Figure 1-7: A spin echo RARE pulse sequence with 4 phase encoding steps. This is able to 
acquire 4 times the data a standard pulse sequence could attain and so reduces scan time by 
25% (51). RF = radio frequency, GR = gradient readout, GP = gradient phase, and GS = gradient 
slice. Image taken from the Bruker ICON user documentation. Adapted from (50). 

1.5.3.1 T1 Weighted Images 

As fat and water recover from a RF pulse, with a 90𝑂 flip angle, the fat recovers to the 

longitudinal plane quicker. This means that if a second 90𝑂 pulse is applied to the system 

before the water has recovered then fat will be aligned back onto the transversal plane. 

However, water will be aligned past the transversal plane. This means that the signal from the 

fat will be stronger relative to the water as its vector has a larger transversal component. This 

will cause fat to show up bright and water dark in the image. This is a T1 weighted image (see 

Figure 1-4). 
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Figure 1-8: A gradient echo FLASH pulse sequence (51). RF = radio frequency, GR = gradient 
readout, GP = gradient phase, and GS = gradient slice. Image taken from the Bruker ICON user 
documentation. Adapted from (50). 

1.5.3.2 T2 Weighted Images 

Fat and water recover from a 90𝑂 RF pulse, however fat has a fast T2 recovery time meaning 

that the vector component of fat is smaller than that of water after the pulse is applied. This 

causes fat to appear dark and water to appear bright on the image (see Figure 1-6). This is a T2 

weighted image. 

1.5.4 Pulse Sequences 

1.5.4.1.1 Spin Echo Pulse Sequences 

A spin echo pulse uses one 90𝑂  excitation pulse followed by at least one 180𝑂 rephasing pulse 

to generate a spin echo. With one echo generated you can create a T1 weighted image with a 

short TE and TR time. To generate a T2 weighted image two pulses are applied using a long TE 

and TR. 
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Instead of using the same phase encoding for each echo, Rapid Acquisition with Relaxation 

Enhancement (RARE) sequences operate by differing the phase encoding for each echo and so 

can populate multiple lines of an image on each pass (53), see Figure 1-7Figure 1-8. This results 

in a much faster technique for studying a tissue with a long TE, i.e. a T2 weighted scan. RARE 

sequences are also called ‘fast’ or ‘turbo spin echo’. 

Fast low angle shot (FLASH) sequences use a low flip angle (under 90𝑂) and subsequent 

gradients to produce the gradient echo (54). The RF spoiling option allows for T1-dependent 

contrast see Figure 1-8. 

1.5.5 Field Strength 

One of the major developments in preclinical MR imaging has been the creation of low field 

strength instruments. For example, the system used in this project is a 1T MRI which is low field 

strength compared to a possible 9.4 T MRI commonly used in specialist preclinical MRI labs (55). 

In general, a higher field MRI gives better signal to noise ratio and a higher resolution image. 

However, they are more complicated to use, take up much more space, require a lot more 

shielding to contain the magnetic field and cost more to run. So even though higher field 

machines are widely used in preclinical imaging, low field systems have become very popular 

especially as part of a multimodality preclinical systems such as PET/MRI and SPECT/MRI. 

Furthermore, users can easily be trained on low field systems, which means that it does not 

require an MRI specialist to run all the scans, saving time and money. However, the low field 

systems are not as versatile in terms of the range of protocols possible with high field machines. 

Nevertheless, a computational model developed to be used with low field MRI should work also 

on a high field MRI. In addition, it is possible to use the low field MRI instrument for quick and 

accurate screening as well as for longitudinal response to therapy studies. 
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1.6 MRI Data Conversion and reorientation 

Once the MRI scan has been carried out and reconstructed, the images can be further 

processed in order to be used in an application such as the computational tool being created 

here. In order to do this, data from the MRI scanner can be converted from DICOM format to 

‘.RAW’ format in order to carry out various manipulations such as reducing file size, making 

meta-data analysis simpler, and to increase the efficiency of integration of the data into other 

programs such as MATLAB. Similarly any tool that uses the data will require it to be inputted in 

the same orientation, and this is best handled using a global rule that checks and reorients each 

scan before the analysis is performed.  

1.7 Bias Field Correction 

In MRI scanning a bias field is an artefact which adds randomness to the scan via a smooth, low 

frequency signal (56). This can cause significant problems with texture and feature analysis as 

this randomness can cause pseudo pattern formation. This is a major problem for machine 

learning for which multiple counter-methods have been proposed (57). Bias Field Correction 

allows the user to compensate for changes in the magnetic field due to environmental factors 

(e.g. ambient temperature), subject factors (e.g. size of the animal) and user discretion (e.g. 

where the animal is positioned on the bed). Bias field correction is particularly relevant in 

longitudinal studies and inter-subject studies. The effects of bias field correction are hard to 

detect with the human eye, but these effects are nevertheless important. The method used 

here is built into VivoQuant image analysis software (Invicro, USA) and uses an iterative Otsu 

method to identify and remove these signals (58). 
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Figure 1-9: (a) shows an image with normally distributed random pixel values. (b) shows an 
image where both halves have normally distributed random pixels values but the top half has 
a mean of 10 and the bottom a mean of 1.(c) shows a single slice from a MR image. (d) is a 
histogram of (a); this case would be very difficult to identify individual objects. (e) is a bimodal 

(f) 

(d)  (a)  

(e) 
(b) 

(c) 
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histogram of (b), in which it would be easy to distinguish two objects. (f) shows the histogram 
(c), the background is distinguishable by the peak below 10, but to try to split the other peak 
would be very difficult. Also, there is no guarantee that the first peak does not contain some 
important information from the image. 

1.8 Thresholding 

Segmentation through thresholding takes advantage of the difference in grey levels in an image 

and is particularly good at segmenting an object from background. It is fast and computationally 

simple. The most common way to use thresholding as a detection method is to study the 

histogram. If the grey level range of the object’s intensity is known, then only the values of the 

histogram corresponding to that area need to be found. For example, in blood cell 

segmentation, where particular grey levels define the cytoplasm, background and cell kernel 

(59). A simple example would be that of an object with separate grey values, the result is a 

bimodal histogram (see Figure 1-9, (b) and (e)) easily showing the grey levels of the object. 

However, consider an image with the left side white and the right-side black, it would have the 

same histogram as a black image with 50% of the pixels coloured white at random. Thresholding 

cannot definitively link an area on the histogram to an area on the image, as it only finds the 

groups of signal intensity. One threshold can be applied to the entire image (global 

thresholding) to remove the object from the background if the object and background are well 

separated in intensity. One of the problems with MR imaging the grey levels of the different 

tissue types are not always well separated in the histogram. 

It is uncommon in MR imaging for there to be clear boundaries between tissues as the grey 

levels of different tissues are not well defined and noise in the image. If segmentation with 

more than just one threshold is needed, then band thresholding can be used in which the image 

is segmented into multiple regions defined by the grey level. This method is often used in MRI 

segmentation of the brain to separate the grey matter, white matter, and cerebrospinal fluid 

(CSF) (60, 61). This method works well in the brain, where the three tissue types have well-

defined separate proton densities and therefore different signal intensities, see Figure 1-11. 
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Figure 1-10: (a) shows MR image of a mouse. (b) shows the histogram of (a). Individual 
structures are much harder to distinguish than the following example, see Figure 1-11. (c) 
shows global thresholding in which the background of the image can be segmented out, but 
note some of the internal pixels have also been segmented with the background. (d) has four 
bands rather than the two used for global thresholding. Use of 4 bands his has not achieved 
useful thresholding in the image and has led to some of the background noise to be included, 
as seen at the top of the image. However, fewer of the internal pixels have been segmented 
with the background. (e) has more bands and although it has more detail, may still not be 
useful. It may be easier to segment some of the organs seen but use as a simple background 
removal method might be the most useful application. 

1.9 Otsu’s Method 

A simple threshold would be to choose the lowest point of a valley seen in a histogram; this 

would be effective for a bimodal histogram as seen in Figure 1-9. This is often not the case, as 

the histogram may be too complicated and have uneven peaks or a lot of noise. Where previous 

methods used differentiation to look for local minimums, Otsu’s method uses integration to find 

the global minimums (62, 63). This means that Otsu’s method could be used for unsupervised 

computation with no prior knowledge of grey levels of the object. 

(b) Histogram of original image (a) Original image 

(d) Band threshold with 4 
bands 

(e) Band thresholding 
with 7 bands 

(c) Global thresholding 



42 
 
 

 

Figure 1-11: Band thresholding applied to brain MRI. (a) Single slice taken from an MRI of a 
human brain. (b) Band thresholding applied to a to segment of 4 bands. (c) Shows the 
histogram of (a) along with the bands that are applied to obtain (b). 

To implement Otsu’s method, an image is taken. Then for 𝐿, the number of grey levels (i.e. 

[1,2,… , 𝐿]) where the number pixels at each level is 𝑛𝑖. This gives the histogram of the image 

which is then normalised and taken as a probability density: 

𝑝𝑖 =
𝑛𝑖

𝑁
, 𝑝𝑖 ≥ 0,∑ 𝑝𝑖

𝐿
𝑖=1 = 1, 𝑓𝑜𝑟 𝑁 = 𝑛1 + 𝑛2 +⋯+ 𝑛𝐿 ,  1-2 

Then to calculate one threshold and two bands the probability density would be split into two 

groups: 

𝐺1 = [1,2,… , 𝑘], 𝐺2 = [𝑘 + 1, 𝑘 + 2,… , 𝐿],  1-3 

The probabilities and means of the groups can then be calculated, respectively: 

(a) 

(b)  

(c)  
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𝜔1 = 𝑃𝑟(𝐺1) = ∑ 𝑝𝑖
𝑘
𝑖=1 = 𝜔(𝑘), 𝜔2 = 1 − 𝜔(𝑘),  1-4 

𝜇1 = ∑ 𝑖𝑘
𝑖=1  𝑃𝑟 (𝑖|𝐺1) = ∑ 𝑖

𝑝𝑖

𝜔1

𝑘
𝑖=1 =

𝜇(𝑘)

𝜔(𝑘)
,  

 𝜇2 = 
𝜇𝑇−𝜇(𝑘)

1−𝜔(𝑘)
, 𝑓𝑜𝑟 𝜇𝑇 = 𝜇(𝐿) = ∑ 𝑖𝑃𝑖

𝐿
𝑖=1  

1-5 

where 

𝜔(𝑘) = ∑ 𝑃𝑖
𝑘
𝑖=1 , 𝜇(𝑘) = ∑ 𝑖𝑃𝑖

𝑘
𝑖=1 ,  1-6 

are the zeroth and first order cumulative moments of the probability density up to the kth level 

respectively. This gives the simple relationships which are used to verify the threshold choice: 

𝜔1𝜇1 + 𝜔2𝜇2 = 𝜇𝑇 , 𝜔1 + 𝜔2 = 1 1-
7 

The group variances can be calculated by: 

𝜎1 = ∑ (𝑖 − 𝜇1)
2𝑘

𝑖=1 Pr(𝑖|𝐺1) = ∑
(𝑖−𝜇1)

2𝑝𝑖

𝜔1

𝑘
𝑖=1 ,  

𝜎2 = ∑ (𝑖 − 𝜇2)
2𝐿

𝑖=𝑘+1  𝑃𝑟 (𝑖|𝐺2) = ∑
(𝑖−𝜇2)

2𝑝𝑖

𝜔2

𝐿
𝑖=𝑘+1 ,  

1-8 

Therefore, the “goodness” of a threshold, which in this case refers to the effectiveness of 

thresholding separate objects, can be calculated by the following discriminant criterion 

measures, defined by (63). 

λ =
σB
2

σW
2 , κ =

σT
2

σW
2 , η =

σB
2

σT
2 , 1-9 

 

where the variances are defined as: 

within-group variance = 𝜎𝑊
2 = 𝜔1𝜎1

2 + 𝜔2𝜎2
2 1-10 

between-group variance = 𝜎𝐵
2 = 𝜔1(𝜇1 − 𝜇𝑇)

2 + 𝜔2(𝜇2 − 𝜇𝑇)
2 = 𝜔1𝜔2(𝜇2 − 𝜇1)

2 1-11 
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total variance = 𝜎𝑇
2 =∑(𝑖 − 𝜇𝑇)

2𝑝𝑖

𝐿

𝑖=1

 1-12 

It is then an optimisation task to maximise 𝜆, 𝜅 and 𝜂. But note that 𝜎𝑊
2  is a second-order 

cumulative moment, so it is more complex than the others. Therefore, since 𝜂 does not include 

𝜎𝑊
2 , it is the simplest to maximise with respect to 𝑘. Therefore, maximising 𝜂 is a measure of 

“goodness”, which can be maximised by a brute force method: 

𝜂(𝑘) =
𝜎𝐵
2(𝑘)

𝜎𝑇
2  1-13 

Therefore, in order to maximise 

𝜎𝐵
2(𝑘) =

[𝜇𝑇𝜔(𝑘) − 𝜇(𝑘)]
2

𝜔(𝑘)[1 − 𝜔(𝑘)]
 1-14 

Which means that the optimal threshold 𝑘∗ is  

𝜎𝐵
2(𝑘∗) = 𝑚𝑎𝑥

1≤𝑘≤𝐿
𝜎𝐵
2(𝑘) 1-15 

This method thus gives a simple way to find the “good” thresholds. Once these groups have 

been found, each pixel within each group is assigned to the same value. This then forms the 

output and can be used for further processing, such as removing all data located in a certain 

band. 

It can be expanded to have more groups by looking at  

 𝐺1 = [1,2,… , 𝑘1],  𝐺2 = [𝑘1 + 1, 𝑘1 + 2,… , 𝑘2],

𝐺3 = [𝑘2 + 1, 𝑘2 + 2,… , 𝑘3], 𝐺4 = [𝑘3 + 1, 𝑘3 + 2,… , 𝐿]
 

1-1

6 

and then  

𝜎𝐵
2(𝑘1

∗, 𝑘2
∗, 𝑘3

∗, 𝑘4
∗) = 𝑚𝑎𝑥

1≤𝑘1<𝑘2<𝑘3<𝑘4≤𝐿
𝜎𝐵
2(𝑘1, 𝑘2, 𝑘3, 𝑘4) 1-17 

However, the more groups considered the less credible the thresholds become. Meaning that 

whilst this method works well for a brain MRI with defined groups, the same number of groups 

in an abdomen MRI would not be as effective. Adding bands does not necessarily make it 

operate more efficiently, as seen in Figure 1-11.  
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Once the threshold image is created, each band can be looked at individually for texture and 

features. This can then be applied back to the original image to evaluate the effectiveness of the 

thresholding or be used for further processing. 

1.9.1 Adaptive Thresholding 

Adaptive thresholding is another method that has been considered. In adaptive thresholding, 

instead of taking the entire image and calculating the histogram, each voxel is taken individually. 

A predefined neighbourhood around that voxel is considered and the histogram computed. This 

histogram is then banded with Otsu’s method and the central voxel is given a value accordingly, 

see Figure 1-12. The main problem with adaptive thresholding is that objects will not provide a 

consistent signal over the area of the image, i.e. fat in one area of the image may have a 

different signal value than fat in another area due to the surroundings. This can cause 

misleading thresholds when a small window is used, as can be seen in Figure 1-12. 

1.9.2 2D vs 3D Thresholding 

Applying Otsu’s method to a 3D image is no different from to that of a 2D image, since the 

histogram of the full image is considered. Applying adaptive thresholding techniques to a 3D 

image requires a change in the neighbourhood type to a 3D neighbourhood. After this point the 

thresholding method is identical (64). 
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Figure 1-12: (a) shows an MRI image. (b) and (c) show adaptive thresholding with different 
parameters. These are optimised through Otsu’s method for small areas within the image. (b) 
has a neighbourhood of 51 pixels, (c) has a neighbourhood of 101 pixels. A problem with this 
method shown is by the noise in the background. The backgrounds have stochastic noise 
which is small when compared to signals from the mouse, but large when no other signal is 
seen. (d) shows the coronal slice of the same MR image. (e) has band thresholding with 3 
bands. (f) is adaptive thresholding with a neighbourhood of 51 pixels. Both (e) and (f) can 
segment out the background of the image. However, very few of the segments other than 
background have a high confidence in either image. 

1.9.3 After Otsu 

Otsu’s method is one of the foremost thresholding techniques as it is computationally simple 

and reliable. It does however rely on an exhaustive search to maximise the thresholds, which 

can become very computationally heavy on large data sets. Because of this there has been 

research carried out into reducing the computational time while maintaining reasonable 

thresholding (65). This indicates that if Otsu’s method is unable to threshold the data, then one 

of the methods based on Out’s method (63) would not be any more successful. 

(d) (e) (f) 

(a) (b) (c)
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1.10 Region Based Methods 

Region-based segmentation methods examine pixels in an image and form disjointed regions by 

merging neighbouring pixels with predefined properties (66). Two of the most commonly-used 

region-based methods are region growing and watershed segmentation. 

1.10.1 Region Growing  

Region growing is a common region-based segmentation method (67), which starts with at least 

one “seed” voxel that belongs to the structure of interest. Neighbours of the seed are checked 

and those satisfying the similarity criteria are added to the region (68). This process iterates 

until no more pixels can be added to the region. The primary disadvantage of region growing 

method is the partial volume effect, which limits the accuracy of MR image segmentation. The 

partial volume effect blurs the intensity distinction between different tissue classes at the 

border of the two tissues types, because one voxel may represent more than one tissue type. 

This means that borders that are not well defined (or are too small) may merge together, 

causing the region to grow as one area across both tissue types.  

1.10.2 Watershed Segmentation 

Watershed segmentation starts seed points from the lowest intensity voxels, then grows 

regions from them (69). Whenever one region meets another region, a watershed line is drawn 

on the boundary. Once all the pixels have been assigned a region, the watershed lines make up 

the segmentation. This technique has been used successfully to automatically segment out 

regions of tumour in brain (70-74). One disadvantage is that watershed segmentation methods 

usually suffer from over-segmentation leading to overly accurate segmentation and false 

boundary creation, which has led Bieniecki (2004) to develop alternative strategies in order to 

overcome this (69).  
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1.11  Multi-Atlas Segmentation 

Atlas models have a predefined segmentation that they use in order to segment any new scans. 

The first atlas-based algorithm was introduced to register (or superimpose) different brain 

images on to each other in order to compare them (75). Subsequently, atlas-based 

segmentation approaches have been widely used for guiding brain tissue segmentation. In 

general, this method of segmentation includes three steps: firstly, an affine registration (i.e. a 

deformation that preserves points, straight lines and planes) brings the atlas and the image into 

global correspondence; secondly, a template for the organs is provided through the seeding of 

synthetic organs which are normally defined through the input of a database of pre-segmented 

scans into the atlas; thirdly, the synthetic organs are mapped onto the image by deforming the 

seeded atlas using optical flow principles, such as the detection of edges and surface matching 

(76). 

Atlases can also provide probabilistic information about tissue models. Dempster et al (1977) 

employed a probabilistic tissue model and used an Expectation Maximization (EM) method (77) 

to segment by modifying a brain atlas (78, 79), to improve on current atlas techniques. Since 

existing atlases are usually constructed by equally averaging pre-segmented images in a 

population, these processing methods reduce local inter-subject structural variability and lead 

to lower segmentation guidance capability, increasing the accuracy of atlas systems (76).  

Building a precise atlas is the key to atlas-based methods as the efficacy and practicability of 

these methods is very dependent on the atlas itself. In the case of pancreatic tumours, the 

spatial positions of the surrounding organs can be changed due to the invasive tumour, adding 

error to the atlas and making the segmentation method worse. 

Multi-atlas segmentation is a process which allows a library of scans with pre-segmented object 

to be used in automatic segmentation of a novel scan. A novel scan is first compared to all scans 

within the library and the N scans that match the novel scan most closely with the least amount 
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of registration functions are used to build probability maps of the requested object. Once the 

probability clouds have been generated, all voxels with a probability higher than a set threshold 

are classified as the object. This is then repeated for each object to be obtained (80), see Figure 

1-13.  

 

 

Figure 1-13: An example of Invicro’s Whole Body Atlas. A library of scans, 𝑅𝑁 , is used to 

evaluate a novel scan, 𝑇𝑒𝑠𝑡, and produce the probability of organ location (81). 

1.12  Bounding Area 

The bounding area is the area that is classified by the machine. This area must be defined large 

enough that no objected that should be classified are missed but small enough to reduce 

computational time. 

1.13  Normalisation 

In order for two MRI scans to be compared they must undergo normalisation (82). This is due to 

the fact that an MRI scan does not have any units and is only a measure of intensity, meaning 
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that the scale can change depending on the amount of signal in the field of view and the value 

of a tissue will change dependant on what other tissues are in the field of view. 

1.14 Object detection (Channelized Hotelling Observer) 

Humans are very good observers - for example, visualising facial features in clouds. Computers 

can also be good at this process, when object shape or location are known. The method of 

Channelized Hotelling Observer (CHO) can be used to find an object of expected shape or 

position within a novel image (83). The CHO can see the object with high accuracy. This is 

demonstrated in the receiver-operating characteristic (ROC) curve, which compares the 

sensitivity (proportion of positives correctly identified) and 1 - specificity (proportion of 

negatives correctly identified) to show the accuracy of the method, and calculate AUC. This 

method, however, requires quite a large amount of prior knowledge, i.e. either the location or 

the shape of sought object. Therefore, further analysis is required before this can be 

implemented. 

CHO is a form of side-scrolling object detection. It can be used in two separate methods. Firstly, 

if the location of the object is known, the CHO is able to segment the object with zero prior 

knowledge of its shape. Secondly, if the shape of an object is known then the CHO is able to 

search through the image for objects that match the shape. This method is often used for the 

detection of brain tumours as the structure of the brain is relatively stable and tumours can 

often have a relatively defined shape (84). 

1.15  Edge Detection 

Edge detection is a process in which changes in the image intensity are detected, typically with 

a minimum run-length of voxels to exclude single-voxel variation.  

Canny Edge Detection is a well-established and robust method (85). Canny edge detection can 

be seen as 5 steps: 
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1. Apply Gaussian filter to smooth the image in order to remove the noise. For a Gaussian 

filter kernel size of (2𝑘 + 1) ∗ (2𝑘 + 1), this can be defined as 

𝐻𝑖𝑗 =
1

2𝜋𝜎2
exp (−

(𝑖 − (𝑘 + 1))2 + (𝑗 − (𝑘 + 1))
2

2𝜎2
) 

1 ≤ 𝑖, 𝑗 ≤ (2𝑘 + 1) 

1-18 

 

2. Find the intensity gradients of the image. The first derivative of the image in the 

horizontal (𝐺𝑥) and vertical (𝐺𝑦) direction and is used to calculate 

𝐺 = √𝐺𝑥
2 + 𝐺𝑦

2 1-19 

Θ = arctan(𝐺𝑦 , 𝐺𝑥) 1-20 

3. Apply non-maximum suppression to get rid of spurious response to edge detection, 

edge thinning. Each voxel intensity is compared to the intensity of the voxel in the 

negative and positive gradient direction. If the current voxel does not have the highest 

intensity of these neighbours it is supressed to 0, else it is preserved. This method is 

applied in each direction. 

4. Apply double threshold to determine potential edges. To account for noise in the image 

two thresholds are defined, high and low. Any gradient intensity greater than the high 

threshold is classified as a strong gradient. Any gradient intensity less than the low 

threshold is suppressed to 0. Any other gradient intensities are classified as weak 

gradients. 

5. Track edge by hysteresis. Finally, any weak gradient is supressed if one of it’s 8 

neighbour pixels (defined along the surfaces) is not a strong gradient. 

Edge detection as a stand-alone classification method is not appropriate for pancreatic tumour 

segmentation as the tumour is typically heterogeneous, similar to the intestines that often 

neighbour the tumour. 
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1.16  Gradient Analysis 

Gradient analysis finds the gradient magnitude and direction of an image. It does this by using a 

3D Sobel method. A neighbourhood around each pixel is selected and the Sobel operators are 

applied. A 2D example: 

𝐺𝑥 = [
+1 0 −1
+2 0 −2
+1 0 −1

] ∗ 𝐴, 𝐺𝑦 = [
+1 +2 +1
0 0 0
−1 −2 −1

] ∗ 𝐴 1-21

This allows for an approximation of the derivative in the x, y, and z directions. From this, the 

gradient magnitude can be calculated and give the x, y, and z vectors for each of the voxels. This 

can be used as a form of edge detection and therefore if used within a region of interest can 

give information on the homogeneity of the region, see Figure 1-14. The gradient can also be 

calculated using a navigational system and give the azimuth, elevation and magnitude.  

Figure 1-14: T1 FLASH image of a KPC mouse with the gradient information overlaid. The 
Gradient data shows the edges of the animal and structural information within the animal. 
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Using these two systems, the magnitude of the gradient and the direction of flow can be 

calculated. Finally, multiscale gradient analysis can be used, in which case the gradient at 

different diffusion levels is calculated to be able to define larger more intense gradient changes. 

1.17 Fractional Anisotropy 

Fractional Anisotropy is a method that is used to study the flow of neurons and similar 

structures in diffusion tensor imaging (DTI), an emergent form of MR Imaging (86). A scalar 

value between 1 and 0 is calculated with 0 having an unrestricted float (i.e. free floating) and 1 

having flow in only along one axis. 

This method has proved to be exceptionally powerful on DTI images (86) but would not provide 

any information if applied to a T1 flash image. Fractional Anisotropy however, could be applied 

to the gradient flow images to more clearly identify areas of high heterogeneity. 

The classical calculation for fractional anisotropy is: 

𝐹𝐴 = √
3

2

√(𝜆1 − 𝜆̂)
2
+ (𝜆2 − 𝜆̂)

2
+ (𝜆3 − 𝜆̂)

2

√𝜆1
2 + 𝜆2

2 + 𝜆3
2

 1-22 

Where the Eigen vectors (𝜆1, 𝜆2, 𝜆3) of the diffusion tensor image are used. This can then be 

analysed to get the equation: 

𝐹𝐴 =  √
1

2
(3 −

1

𝑡𝑟𝑎𝑐𝑒(𝑅2)
) 1-23 

Where R is the normalised diffusion tensor: 

𝑅 =
𝐷

𝑡𝑟𝑎𝑐𝑒(𝐷)
 1-24 

For 𝐷 the diffusion tensor. 

1.18  Grey Level Co-Occurrence Matrix 

A grey-level co-occurrence matrix (GLCM) is a matrix that is defined over an image to be the 

distribution of co-occurring voxel values at a given offset (39). The offset (Δx,Δy) is a position 
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operator that can be applied to any voxel in the image, e.g. (1,1) could indicate "one right, one 

down”: 

Image = [
0 1 1
2 1 0
1 2 1

]  1-25 

An image with p different voxel values will produce a p*p co-occurrence matrix for the given 

offset. The (𝑖, 𝑗)𝑡ℎ value of the co-occurrence matrix gives the number of times in the image 

that the 𝑖𝑡ℎ and 𝑗𝑡ℎ voxel values occur in the relation given by the offset. The co-occurrence 

matrix C for an image with p different voxel values sized 𝑛 ∗ 𝑚 is defined explicitly as: 

𝐶𝛥𝑥,𝛥𝑦(𝑖, 𝑗) = ∑∑{
1, if 𝐼(𝑥, 𝑦) = 𝑖 and 𝐼(𝑥 + 𝛥𝑥, 𝑦 + 𝛥𝑦) = 𝑗
0, otherwise

𝑚

𝑦=1

 

𝑛

𝑥=1
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Once the GLCM is calculated, different metrics (such as contrast, correlation, inverse difference, 

and maximum probability), can be applied to it to look for patterns or connections in the 

texture of an image. 

1.19  Grey Level Run Length Matrix  

The grey level run length matrix (GLRLM) takes one central voxel and a window around it. This 

area is then analysed to find the frequency of occurring voxel intensities at specific orientations. 

The result is that for every voxel in the image there is one matrix for each orientation (41). If for 

instance four orientations are considered, 0, 45, 90, 135 degree angles (Θ) the image before 

being analysed by the GLRLM is converted to have 32 grey levels only. This means that the 

GLRLM will have a size of 32 by 32. 𝑁𝑔 is the number of discreet intensity values (32). 𝑁𝑟  is the 

number of discreet run lengths. 𝑁𝑝 is the number of voxels in the window. Therefore, the 

number of runs in the window along angle Θ is: 

𝑁𝑟(Θ) −∑∑𝑃(𝑖, 𝑗|Θ)

𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

 

1 ≤ 𝑁𝑟(Θ) ≤ 𝑁𝑝 

1-27 

Where 𝑃(𝑖, 𝑗|Θ) is the run length at each angle. And  
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𝑝(𝑖, 𝑗|Θ) =
𝑃(𝑖, 𝑗|Θ)

𝑁𝑟(Θ)
 1-28 

 

Multiple features can then be calculated on each voxel’s 4 GLRLMs.  

1.20  Machine Learning 

Machine learning provides an effective way to automate image analysis as the machine can 

learn complex relationships or patterns (87). Machine learning algorithms can be categorised 

according to the different principles upon which they are based, some of which are covered 

below. 

1.20.1 Supervised Learning 

In supervised learning, each sample consists of two parts: the first is input observations or 

features and the second is output observations or labels (88). Usually the input observations are 

causes and the output observations are effects. The purpose of supervised learning is to deduce 

a functional relationship from training data that generalises well to testing data. The form of the 

relationship is a set of equations and numerical coefficients or weights, e.g. a classification 

algorithm is a representative method of supervised learning that could be used to identify the 

clusters within data but would require prior knowledge (89). 

1.20.2 Unsupervised Learning 

In unsupervised learning, there is only one set of observations and there is no label information 

for each sample (90). Usually, features are produced by a set of unobserved or latent variables. 

The main purpose of unsupervised learning is to discover relationships between samples or to 

reveal the latent variables behind the observations. A clustering algorithm is a representative 

method of unsupervised learning, but this type would require no prior knowledge (91). 

1.20.3 Semi-supervised Learning 

Semi-supervised learning combines supervised and unsupervised learning. It utilises both 

labelled data and unlabelled data during the training process (92). Semi-supervised learning 
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algorithms were developed mainly because the labelling of data is time consuming and 

therefore expensive (93). Li et al (2001) has used semi-supervised learning to develop a 

stochastic graph labelling technique to search medical image databases (94). 

1.20.4 K-means  

K-means clustering is a method of vector quantitation. It aims to partition n observations into k 

clusters in which each observation belongs to the cluster with the nearest mean, serving as a 

prototype of the cluster. The problem is computationally difficult; however, there are efficient 

heuristic algorithms that are commonly employed in image analysis and converge quickly to a 

local optimum (95).  

1.20.5 Fuzzy C-means Clustering Models 

Fuzzy C-means clustering (FCM) is a method which divides one group of data into two or more 

clusters. This method (96) is frequently used in pattern recognition. The algorithm works by 

assigning membership to each data point corresponding to each cluster centre based on 

distance between the cluster and the data point. The nearer the data point is to the cluster 

centre, the more possible is its membership within it. Some advantages of FCM algorithm 

include giving the best result for overlapped data sets and giving comparatively better results 

than a k-means algorithm. A data point can be assigned to multiple cluster centres, unlike k-

means where the data point must exclusively belong to one cluster centre. Since FCM is an 

iterative algorithm, it is a computationally heavy method.  

1.20.6 Support Vector Machine Models 

Support vector machine (SVM) is treated as a parametrically kernel based method, defined as 

𝐾(𝑥𝑖, 𝑦𝑗) = 𝑒
−1
2𝜎2

(𝑥𝑖−𝑥𝑗)
2

 
1-29 

a pattern analysis technique, to deal with supervised classification problems (97). SVM has been 

widely used for tumour segmentation (98-101). 
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A brain tumour segmentation method exploring one-class SVM has been proposed (98). This 

method has the ability to learn the nonlinear distribution of the image data without prior 

knowledge, via the automatic process of SVM parameter training and an implicit learning 

kernel. Zhou et al (2005) found that it achieved better segmentation results for the extraction of 

brain tumours, compared to the fuzzy clustering method, with more tumour identified correctly 

(98). Some researchers have numerous MRI techniques, including diffusion tensor imaging, to 

create voxel-wise intensity-based feature vectors, which they classify by SVM (99, 101). This 

method could not only segment the healthy tissues, but also segment sub-compartments of 

healthy and tumour regions. A multi-kernel based SVM integrated with a feature selection and a 

fusion process was proposed by Zhang et al (2009) (102) to segment the brain tumour from 

multi-sequence MR images (102). Compared with traditional single kernel SVM, the results of 

this method showed a decrease of the total error and improvement of accuracy. A fully 

automatic method for brain tissue segmentation was proposed by Cai et al (2011) (23, 103) , 

which combined SVM classification using multispectral intensities and textures with subsequent 

hierarchical regularisation based on conditional random field (CRF) methods, a statistical 

modelling method that considers neighbouring pixels during classification. Cai’s method used a 

hierarchical approach to add robustness and speed by allowing different levels of regularisation 

at different stages and had good results. In conclusion, SVM has demonstrated great potential 

and usefulness in tumour segmentation for MR images. This can be extended from linear 

classification to non-linear, using the “kernel trick” which needs only inner product between 

examples, instead of mapping examples in a space. This allows for mapping into higher 

dimensional problems and allows multiple features to be considered. 

A further step from SVM is support vector clustering, where not all the example data is labelled 

and the model attempts to find natural clustering of the data. This becomes useful as the data 

libraries become exceedingly large. 
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1.20.6.1 Generalised Linear Model 

The generalised linear model (GLM) is a flexible generalisation of ordinary linear regression that 

allows for response variables that have error distribution models other than a normal 

distribution (104). The GLM generalises linear regression by allowing the linear model to be 

related to the response variable via a link function and by allowing the magnitude of the 

variance of each measurement to be a function of its predicted value.  

1.20.7 K-Nearest Neighbour 

K-nearest neighbour (KNN) is a machine-learning technique which uses Euclidean distance to 

calculate the feature vectors of each object and assign similar clusters as distinct classes (105). 

Training a KNN is relatively computationally simple and quick. Each object in the training library 

has the feature vectors calculated and the classes are defined from the meta-data. The result is 

that when a novel scan needs to be classified the feature vectors are simply calculated and the 

class which the majority of features is contained in is the class assigned to the novel scan. This 

method, although computationally cheap, has issues when one class is much larger (magnitudes 

greater) than the other classes. 

1.20.8 Random Forests 

A Random Forest is a multitude of decision trees which are assigned random features (106). A 

decision tree is a simple method of binary choice at each level, in this case the choice of the 

object’s feature-class. If a decision tree is grown too deep, it will start to discern insignificant or 

erratic patterns. To combat this instability, multiple decision trees can be grown in parallel to a 

restricted depth, this prevents the model from identifying irregular patterns. However, due to 

the binary decision making, if trees are grown in this manner and provided all the features to 

choose from, they will often choose the same features. To account for this issue, each branch of 

each decision tree is provided with only a subset of features, randomly assigned. An issue arises 

if all trees are trained on the same data as the trees will be highly correlated to one another. To 

avoid this issue, boot-strapping is deployed in which the training set is broken up and used 
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separately. This decreases variants of the model without increasing bias (107). After training a 

random forest on a library of objects a novel scan’s features are classified by all decision trees 

and the majority vote for which class the object should belong to determines which class the 

object should be assigned to. This classification can also more directly be outputted as the 

probability of an object to be in each class. 

1.21 Post Processing  

Post processing allows for the analysis of data after the machine learning output. Often the 

direct output from machine learning is quite course and is not what would be observed, post 

processing allows for the smoothing and further analysis of the machine learning output. 

1.21.1 Level Sets 

Level sets are a partial differential equation technique in which the user defines a proposed 

area around an object. The technique then attempts to accurately segment the object. The 

partial differential equations are made up of 2 constraints, one internal and one external. The 

internal constraint attempts to keep the object smooth within degree parameters. The external 

constraint uses a form of edge detection in order to attempt to fit the classification to the image 

exactly. These two constraints work against each other to try to define the object (33). 

1.21.2 Open/Close 

Opening is a morphological process of dilation of the erosion of a binary object using a given 

structure. It is a computationally simple process. Opening removes bright areas and small 

unconnected objects from an image. For a structure: 

𝐴 = (
0 1 0
1 1 1
0 1 0

) 1-30 

For each voxel with a given class, the surrounding voxels, defined by the size of 𝐴,are assigned 

to the same class if they are in the location of 1 defined by 𝐴, with the starting voxel in the 

centre. This process can have different dimensions of 𝐴 and can be applied multiple times. 
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Application multiple times instead of using a larger matrix for 𝐴 decrease the loss of structural 

shape (85). 

Closing is the morphological process of erosion of the dilation of a binary object using a given 

structure. It is again a computationally simple process. Closing removes gaps in an image and 

connects previously unconnected components. Closing is applied using the same technique as 

opening but with the classes reversed (85). 

1.21.3 Geometric Mean 

The geometric mean is a morphological smoothing process which takes each voxel and 

calculates the mean of all 24 neighbouring voxels in the original image and assigns the centre 

voxel to this mean value in a new image. This method is computationally simple and softens 

sharp edges (85). 

1.21.4 Gaussian Smoothing 

Gaussian smoothing is a convolution operator that is used to remove noise and detail from an 

image. This makes it a useful post processing technique as it is able to smooth a classification, 

though caution should be used as it can remove large amounts of the class (85). 

A 𝑛 dimensional Gaussian function is defined as: 

𝑓(𝑥) = 𝑒−𝑥
𝑇𝐴𝑥+𝑠𝑇𝑥 1-31 

Where 𝑥 = {𝑥1, … 𝑥𝑛} is the column coordinates of 𝑛, 𝐴 is a 𝑛 × 𝑛 positive definite, symmetric 

matrix and 𝑠 = {𝑠1, … 𝑠𝑛} is the shift vector. 

1.21.5 Connected Components 

Connected components is a structural process that identifies all distinct components in an 

image where a connection can be defined along the surface, edge, or vertex of the voxel. 

For a given voxel the number of connecting can be evaluated compared to a minimum number, 

set by the user, and if it is below this threshold the class of the voxel is changed (85). 
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1.22 Aims 

There are 3 core issues associated with the current methods. 1) Owing to the inaccuracy of 

palpation and operator dependency of ultrasound, when detecting tumour size and disease 

burden in the study of pancreatic cancer in KPCs, more mice are required per group per study 

to reach statistical significance. The result of this is more animals must be bred and 

subsequently culled. 2) On account of the difficulty associated with detection and measuring 

tumours within a KPC using palpation and ultrasound, many studies recruit mice with larger 

tumours than the researchers necessarily require for study. The larger-than-necessary tumours 

lead to studies not being as clinically relevant as they possibly could be, as well as potentially 

causing more animal suffering. 3) In a study group, scientists commonly dissect animals at each 

pre-determined time point to measure tumour-burden and then assume uniformity of tumour 

burden throughout the rest of the animals in the study (108). However, due to the spontaneous 

nature of the KPC mouse-model this assumption is not always statistically significant. The 

current method is flawed on account of the existing model coming from uniformly injected 

mouse models, yet is being applied to mice with spontaneously formed tumours where tumour 

size and location is highly variable. The effect of this is study groups must be much larger to 

account for the number of dissections that must be performed owing to the statistical variability 

inherent in the KPC model. The result is that more mice must be bred and subsequently culled. 

1.22.1 An Automatic Computational Model 

The aim of this project is to build a computational tool that will automatically segment out the 

pancreas and any pancreatic tumours from an MRI scan. This 3D computational atlas for mouse 

models of pancreatic cancer (3D-CAMMP) will provide a reliable and reproducible image 

analysis method for volume and surface area quantification of the pancreas and pancreatic 

tumours, reducing effects of user discretion and thus improving the accuracy of the data. 
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1.22.2 The 3Rs in Animal Research: Replace, Reduce, Refine 

Animal research in the UK is regulated by the Home Office under the Animals (Scientific 

Procedures) Act 1986 and it is a statutory requirement of the project licence holders that the 

principles of the 3Rs are adhered to: Replacement, Reduction and Refinement. Replacement 

refers to methods which avoid or replace the use of animals, e.g. developing in silico or in vitro 

techniques.  Reduction refers to methods that minimise the number of animals used per 

experiment. Refinement refers to methods that reduce animal suffering and improve welfare. 

(109).  The 3R’s areas in which this project aims to have an impact are reduction and 

refinement. 

1.22.2.1 Reduction 

As discussed, one of the primary issues with current methods is the large number of mice 

required per study group to achieve statistical significance, owing to the inaccuracy and/or 

operator dependency of existing measurement methods. The aim is to combine MR-Imaging 

and machine learning to  provide more accurate and reproducible tumour measurements, 

allowing  researchers to recruit animals to study groups when they have more similar tumour 

burden.  This should in turn lead to lower variability within the group, increasing statistical 

power and allowing a reduction in group size.  Furthermore, the use of MRI and 3D-CAMMP in a 

longitudinal study allows for direct comparison of tumour growth / treatment curves (using the 

animal as its own control/baseline). The result of this reduction in biological variability is that 

fewer animals are required per group to achieve statistical significance. 

1.22.2.2 Refinement   

As discussed, another issue associated with current methods is the amount of suffering an 

animal must endure owing to larger-than-necessary disease burdens. The combination of MRI 

and 3D-CAMMP refines this by allowing scientists to accurately detect smaller tumours that not 

only are more clinically relevant but also allows experiments to start earlier when tumour 

burden is lower, and end sooner thus potentially reducing suffering.  Reduction in suffering of 
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individual animals is an important goal as the trade-off in using fewer animals overall is that 

those animals will undergo more procedures in total and all will reach the endpoint of the 

experiment (rather than some being culled at early timepoints for dissection).  Therefore, the 

aim must be to move to less severe endpoints in the fewer animals used, which can be achieved 

through regular imaging to monitor tumour burden and animal welfare.  

In terms of the trade-offs of this approach, if palpation is the method being replaced, animals 

must undergo additional procedures using anaesthesia.  However, due to higher disease burden 

in palpated animals and lack of information as to disease progression, these animals are 

generally culled based on clinical signs.  Ideally, imaged animals would be culled based on them 

reaching a defined disease burden before experiencing clinical signs. If volumetric ultrasound is 

the method being replaced, the benefits of a more accurate MRI based method are that they 

would not need to undergo hair removal and that more accurate determination of disease 

burden would allow reduction in group size. 

All of these benefits would affect the pancreatic cancer research landscape by improving the 

standardisation of data and have the important 3Rs effect of reducing the number of animals 

required for each group in a study. In the UK, BCI along with 3 other major UK Institutes have 

sizeable colonies of pancreatic GEMM’s.  The estimated overall number of animals used in 

scientific studies in these 4 institutes  in 2018 was about 1410 per annum.  Since on average 

only 20-25 % of these have the right genotype and phenotype, this translates to 7050 animals 

bred. 

Since the model was first published in 2005, it has increasingly appeared in publications 2011 

(2), 2012 (3), 2013 (11), 2014 (13), 2015 (24), 2016 (31), 2017 (41), 2018(40) and this trend is 

expected to continue. About 18 centres worldwide (4 in the UK) are major users of this specific 

model, but there are many similar GEMMs of pancreatic cancer and their use is rapidly 

expanding. The atlas tool could be developed to be applied to all of these models. 
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In KPC studies it is common to use 10-12 animals per group (110-113). This is doubled if there is 

a control or comparative treatment. In order to reduce these numbers, we need to extract the 

full potential of longitudinal imaging studies, by developing tools that provide robust 

quantitative data at differing time-points. Up to a 50 % reduction in the numbers of animals 

used could be made for every study converted from euthanasia plus dissection to a longitudinal 

study. In addition, being able to size-match tumours between mice with more confidence would 

certainly improve results and may have the effect of being able to reduce group number. As 

some studies are already longitudinal, a calculation can be made based on 60 % reduction in 

KPC. Applied to the major UK users of the model, this would translate to 4,320 fewer KPCs bred 

p.a. (17,280 animals including litter mates who do not have the correct genotype). As is evident, 

this method would greatly decrease the number of animals needing to be culled per study, as 

well as the overall cost associated with breeding KPCs.    Including breeding, maintenance, 

imaging, and staff it is estimated to cost  approximately £700 to produce one KPC mouse ready 

to go on study. If a 60% reduction in KPCs were to be achieved 4,320 fewer animals p.a. would 

need to be bred and culled, amounting to in excess of £3 million in research costs.  

1.22.3 The Strategy 

The primary aim of this project is the development of a mathematical model that can 

automatically detect and segment the mouse pancreas as well as any pancreatic tumours. This 

will be addressed through a combination of multiple image analysis techniques including 

thresholding, texture analysis, object detection, edge and region segmentation, atlas 

segmentation, and machine learning. Through these techniques, unnecessary information will 

be removed, the area of analysis reduced, the pancreas isolated, classified as either healthy or 

unhealthy and unhealthy pancreas evaluated to identify tumour location and volume. The final 

pipeline of steps carried out (see Figure 2-1) to achieve this from acquiring the image through to 

providing the tumour volume is described in section 2.1 below. 
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1.22.4 Image Segmentation Ground Truth / Gold Standard 

Ground truth will be used to measure 3D-CAMMP’s performance, specifically the program’s 

sensitivity, specificity, and exact location. Ground truth was defined by having each image in the 

library segmented independently by 3 image analysis experts, with 35 years of experience 

between them. A round-table meeting was subsequently held to discuss each image and decide 

on a final segmentation. This final segmentation is taken as ground truth with an average of 10 

hours of expert time spent per image. A comparison of an image segmented by an image 

analysis expert and an inexperienced user is shown in Figure 1-15. This work demonstrates that 

with the help of 3D-CAMMP, inexperienced users with very little training are able to obtain 

results similar to that of an image analysis expert. 

 

  

Figure 1-15: (a) shows an MRI scan of a KPC mouse at 127 days old. (b) shows the pancreas 
(green) and pancreatic tumour (red) manually segmented by an expert user in 45 minutes. (c) 
shows the segmentation of the pancreas (green) and pancreatic tumours (red) by an 
inexperienced user in 4 hours. 

(a)                                                         (b)                                                  (c) 
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2 Methods 

2.1 3D Computational Atlas for Mouse Models of Pancreatic Cancer 

3D Computational Atlas for Mouse Models of Pancreatic Cancer (3D-CAMMP) is capable of 

taking a scan extracted from the Bruker ICON 1 T MRI and automatically segmenting any 

pancreatic tumours along with the pancreas, liver, stomach, spleen, hepatic portal vein, 

gallbladder and the left and right kidney. It will also output the volume of any pancreatic 

tumours. 3D-CAMMP’s major steps are outlined in this section and is implemented through 

MATLAB and the script ThreeDCAMMP.m, Appendix 1: 6.1, that calls the functions defined in 

the following sections, see Figure 2-1.  

2.1.1 Animal Handling 

To perform the MRI examination, the mouse is placed into an induction chamber with isoflurane 

at 4% in oxygen at 1.5L/min. The animal is placed in a prone position on the MRI bed (Bruker 

BioSpin MRI, Germany). The bed is equipped with isoflurane anaesthesia, water-heating, and 

respiration monitoring. A solenoid whole body RF coil is placed over the animal (Aspect Imaging, 

Israel). The bed is inserted into the 1 T permanent magnet (Aspect Imaging, Israel) coupled to the 

ICON MRI console controlled by Paravision 6.0 software (Bruker). The respiration is controlled to 

30-45 bpm (SA Instruments, USA). Two images are acquired on the MRI. Firstly, a localiser T1 

FLASH scan with 3 slices is acquire for identification of animal position. Secondly, a T1 FLASH 

isotropic scan is performed. The data is then reconstructed using standard Bruker reconstruction. 
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Figure 2-1: Flowchart of 3D-CAMMP for tumour and pancreas segmentation. 

2.1.2 MRI Protocols  

3D isotropic T1 FLASH scans are performed with parameters outlined in Table 2. This image 

protocol has a scan time of 21 minutes without respiratory gating and approximately 27 minutes 

with the gating. 
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Figure 2-2: A T1 FLASH 3D isotropic scan of a KPC mouse with a pancreatic tumour. The 
images are in order sagittal, coronal and transverse plane. This image shows the anatomy of 
the animal well. 

Table 2: 3D Isotropic T1 FLASH protocol parameters 

 
Parameter Value 
TR 40ms 
TE 6.6ms 
Flip angle 40O 
Oversampling 3 
Slices 1 
Slice orientation Coronal 
Read orientation Ro-Cd 
Slice thickness 20mm 
Image size 160x120x80 
Flied of view 40x30x20mm 
Dummy scans 13 
Dummy duration 520ms 
Segments =  1 
Segmentation method sequential 
Dimension 3D 
Resolution 0.25x0.25x0.25mm 
Anti-aliasing 1x1x1 
Slice gap mode non-contiguous 
Slice gap 0mm 
Slice distance 20mm 
Bandwidth 25kHz 
Interpellation Read 1 
Phase  1 
Slice  1 
Partial-FT Read 1 
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2.1.3 Data Conversion  

The scan data, obtained through the protocol defined in section 2.1.2 is then converted from 

Bruker format to ‘.zraw’ using the script runBMC.vqs, Appendix 1: 6.2, which stands for ‘run 

Bruker MRI Conversion’ and is a piece of code designed to run in VivoQuant (Invicro, USA). Firstly, 

the script looks in a designated folder for any sub folders that start with ‘201’. This is how the 

data folders are designated from the MRI after extracting the zip file (year, month, day, i.e. 

20180703). Once it has identified the folders then for each folder it looks inside the sub folders, 

of which there will be one for each scan performed. Any scan with the label ‘Localizer’ is ignored. 

Each of the scans is then loaded into VivoQuant and the user is asked to define the animals age 

in days, the type of model (KPC, KP or WT) and if there are believed to be any tumours. The script 

asks if the data needs to be reoriented and any such flips are performed.  

The script, runBMC.vqs, then performs a bias field correction using an iterative Otsu method with 

a down sample factor of 2, max iteration of 50x50x50, control points 2x2x3, a spline order of 3 

and a convergence threshold of 0.5. Finally, the data is save out in ‘.zraw’ format into an output 

folder. This script allows for quick application of multiple pre-processing techniques including bias 

filed correction to reduce the corruption effect from the bias field of the MRI and data conversion 

to make it easier for MATLAB to read. This is implemented through the MATLAB script runBMC.m, 

Appendix 1: 6.2. 

2.1.4 Multi-atlas Segmentation 

The multi-atlas segmentation tool developed by Invicro is implemented through MATLAB (2018). 

A reference list is generated from all images that have pass the QC stage of the pipeline. This 

allows for the model to constantly update its own library. A separate settings file is used and can 

be updated, for example increasing the number of scans that will be used (default 6), which 

regions of interest to consider (default is kidneys, spleen, stomach, liver, gall bladder and hepatic 

portal vein, referred to as Other Organs). The Whole Body Atlas (WBA) is then automatically 

implemented through the command window. The WBA then stores these organ segmentations 
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as regions of interest (ROI). The organ probability according to the WBA can also be stored and is 

used to generate Other Organs Probability Cloud, combining all the organs classified by the WBA. 

This is implemented through the MATLAB script MAS_Tool.vqs, Appendix 1: 6.3. 

2.1.5 Move Whole Body Atlas Output Data 

The ROIs generated by the WBA are located within a folder and are named ‘average_BestN-*-

affine-deform.rmha’ where ‘*’ is the name of the subject and its age. These ROIs were collected, 

moved and renamed to make it easier for the pipeline and any user checks. This is implemented 

through the MATLAB script runArea, Appendix 1: 6.1. The script identifies the input location, 

creates an output folder if one does not already exist, and identifies all the folders within the 

input folder. Then for each of these folders it finds the correct file and saves it to the output 

location under the new name of the subject and its age. In each of these folders is also the 

probability map for all the WBA segmented organs (kidneys, spleen, stomach, hepatic portal vein, 

gallbladder and liver). The files are similarly named ‘average_BestN-*-affine-deform.mhd’ where 

‘*’ is the name of the subject and its age. Therefore, at the same time as the ROIs are being moved 

and renamed, all the other organs probabilities are combined, moved and renamed in the same 

folder as the ROIs, this probability image is defined as ‘Other Organ Probability Cloud’. 

2.1.6 ROI and Other Combine 

The Other Organ Probability Cloud is then combined with the confirmed ROIs from the manual 

QC to give an updated other organ probability cloud. The is implemented through the MATLAB 

script runCombineOther, Appendix 1: 6.1. For each scan’s other probability, the corresponding 

ROIs is converted to a binary image and then dilated and smoothed. The max value for each voxel 

is then taken from the dilated ROIs or the other probability. Finally, the new probability cloud is 

saved out. 
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2.1.7 Probability Clouds 

Using the library of completed ROIs the probability of an organ’s position can be created, similar 

to that of a multi-atlas segmentation method. By finding the centroids of the organs segmented 

by the WBA and then calculating the mean of these spatial positions a point, defined as the 

‘Centre of Organs’, is calculated. The distance for each segmented organ from Centre of Organs 

is calculated and the mean sum of these distances is then used as a scaling factor for the 

transformation of the tumour ROI into a normalised space. The scaling factor is defined as: 

𝜆 =
𝜀

𝜏
 2-1 

Where 𝜆 is the scaling factor, 𝜀 is the mean value of all distances and 𝜏 is the scaling factor of the 

current scan. By doing this to all the scans in the completed library a probability map for the 

tumour location is created in normalised space.  

When a novel scan is introduced the scaling factor is calculated in the same way but 1 over the 

scaling factor is applied to transform the normalised tumour probability cloud onto the novel 

scan. This is implemented through the MATLAB script. 

These two methods are duplicated for the pancreas ROI to produce and apply a pancreas 

probability cloud in the same way. 

2.1.8 Bounding Area 

The bounding area is calculated by taking a novel scan with the tumour and pancreas probability 

clouds applied to it, as described in section 2.1.5. The area that is covered by these probability 

clouds is defined as the area of interest and is used as the bounding area for the rest of the 

pipeline. This is implemented through the MATLAB script runArea, Appendix 1: 6.1. The output 

directory is identified or created if it does not already exist, each ROI file in the input folder is 

identified. The ‘mean magnitude’, ‘tumour cloud’ and ‘pancreas clouds’ are loaded into the 

workspace. For each ROI file in the input folder, the ROIs are loaded into the workspace. If the 

mouse model is a KPC then the pancreasKPC cloud is used along with the tumour cloud, if not the 
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pancreasKP cloud is used and the tumour cloud is set to an empty matrix. The scan is then loaded 

in from the correct folder. The scan is reshaped into 1D and the Otsu’s threshold is found. This 

threshold is applied to the original scan, with everything below the threshold removed to create 

a new scan, call it 𝑠𝑐𝑎𝑛𝐷. A dilation matrix is then defined and used to dilate 𝑠𝑐𝑎𝑛𝐷. Next the 

ROI file from the WBA is used. The centroid of each segmented organ is calculated and the mean 

of these spatial positions gives the ‘Centre of Organs’ for this animal. The mean value of all these 

distance is the used to calculate the scaling factor for the normalised cloud translation by using 

the equation and the ‘mean magnitude’. The scan limits are also calculated to ensure that the 

translation is performed from the centre of the scan not the top left forward corner. The 

translation and warps can now be applied to the probability clouds to map them onto the novel 

scan. The area covered by the tumour and pancreas clouds is taken as the bounding area and the 

area is save as an ROI file. 

2.1.9 Normalisation 

Each scan is normalised using the standard score method (114) defined as: 

𝑋𝑛 =
𝑋 − 𝜇

𝜎
 2-2 

Where 𝑋 is the scan, 𝜇 is the mean on the scan and 𝜎 is the standard deviation of the scan. This 

is implemented through the MATLAB script runArea, Appendix 1: 6.1. The values in the scan that 

are greater than the Otsu’s threshold calculated are taken and the equation 2-2 is used on these 

values. The values are then transformed back into the correct shape of scan and the scan is saved 

out, now normalised. 

2.1.10 Feature Generation 

Features are generated for each voxel within the bounding area. For certain features, such as the 

grey level co-occurrence matrix, a neighbourhood is needed round the central voxel. The window 

size used for the neighbourhood is 11 voxels. All features were generated through runFeatures, 

Appendix 1: 6.1. Firstly, the input folder is identified, the names of the different files are 
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generated, i.e. scan, ROIs, probability clouds, and the output folder is defined. Next a dilation 

matrix is defined and the ‘mean magnitude’ is loaded into the workspace. For each scan the 

following features are generated with a window size of 11 voxels. The scan is loaded into the 

workspace and padded with the window size, this assures no voxel assessed will touch an edge 

of the imaged. 

2.1.10.1 Grey Level Co-Occurrence Matrix 

For each voxel in the bounding area a 2D GLCM is calculated (xy plane). The image is converted 

to have 32 distinct grey levels, a window size of 11 voxels and an offset of 1 left and 2 down is 

used. The output produced is a feature matrix 𝐴 where each row is a voxel in the bounding area 

and each column in a different GLCM feature. The formula used to calculate the GLCM features 

can be found in Appendix 1: 6.1.  

2.1.10.2 Grey Level Run Length Matrix 

The image is converted to have 32 distinct grey levels and the 2D GLRLM is calculated for each 

voxel in the bounding area. A window size of 11 is used along with, multiple different offsets (0 O, 

45 O, 90 O and 135O) and the total count in each of the offsets is collected. Each of these offsets is 

used to calculate a set of GLRLM features. These features are merged with the feature matrix 𝐴. 

The definition of these features can be found in Appendix 1: 6.1. 

2.1.10.3 Statistical Features 

The statistical features are calculated on a 3D area around each voxel with window size of 11 

voxels and are mean, mode, median, variance, standard deviation, kurtosis, skewness, and 

intensity. These are calculated for each voxel and merged with the feature matrix 𝐴. This is done 

through runFeatures.m,. 

2.1.10.4 Gradient Features 

The gradients of the image were calculated, including the magnitude, azimuth, elevation, x, y, and 

z component. These were used to calculate the fractional anisotropy and to calculate the gradient 

at different resolutions by using the equation 
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𝐺𝑥𝑦
𝑛 =

√𝐺𝑥
2 + 𝐺𝑦

2

2𝑛 − 1
 2-3 

For 𝑛 = 1,2,… ,5. These are calculated for each voxel and merged with the matrix 𝐴. This is 

done through runFeatures, Appendix 1: 6.1. 

2.1.10.5 Spatial Features 

Since the Centre of Organs is calculated in section 2.1.8 this can be compared to the location of 

every voxel considered. This is defined for the x coordinate by 

𝐿𝑥 =
𝐶𝑥 − 𝑉𝑥
𝜆

 2-4 

Where 𝐶𝑥 is the Centre of Organs 𝑥 component, 𝑉𝑋 is the voxel’s 𝑥 component and 𝜆 is the scaling 

factor defined in equation 2-1. The calculation for the 𝑦 and 𝑧 component follow directly from 

equation 2-4.These are calculated for each voxel and merged with the matrix 𝐴. This is done 

through runFeatures, Appendix 1: 6.1. 

2.1.10.6 Probability Features 

At each voxel the value of the probability clouds (tumour, pancreas and other) is taken and used 

as a feature. These are calculated for each voxel and merged with the matrix 𝐴. This is done 

through runFeatures.m, Appendix 1: 6.1. 

2.1.11 Machine Learning 

The feature matrix 𝐴 for each novel scan is passed into the pre trained random forest using 

runModel.m, Appendix 1: 6.1. The output of this random forest is three probability maps (tumour, 

pancreas and not tumour not pancreas). 

Post Processing 

The probability vectors for each class are passed from the machine learning model into the post 

processing script. Any value greater than or equal to 0.3 on the tumour probability vector is 

designated as tumour, this new vector is then resized to the proportions of the image data. Next 

this new image undergoes gaussian smoothing with a gaussian filter using a structure defined by:  
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Then the resulting image undergoes connective component clustering where a connection is 

defined as ‘any voxel with a neighbour touching any surface, edge, or vertex’. Any object that is 

formed of less than 16 voxels is removed.  

The same process as above is applied to the pancreas probability vector with the same settings.  

The other organs, as defined by the multi-atlas segmentation, are then applied to the tumour 

segmentation image over-writing any voxels that are defined as other organs. This new image is 

then combined with the pancreas segmentation, similarly with any overlapping voxels deleted 

from the pancreas segmentation.  

This final segmentation image is then saved into the folder ‘classifications’. The normalised scan 

image is also saved into this same folder. The volume of the tumour and pancreas is calculated 

from the segmentation image and a CSV file is created with the tumour and pancreas volumes 

inserted in voxel and millimetres cubed. This is all done through the script runModel, Appendix 1: 

6.1. 
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3 Results 

3.1 MRI Protocols  

The optimum MRI protocol needed to be identified that would provide the relevant data for the 

machine learning algorithms in a reasonable amount of time. A relatively long scan time was 

required to acquire the high feature detail that is required. A T1 FLASH scan (see Figure 3-1) 

provides more texture data of a subject than a T2 RARE scan (see Figure 3-1) and running the 

model on T1 data only instead of T1 and T2 data had no significant effect on the performance of 

3D-CAMMP. However, this did almost halve the time taken for data acquisition for the study. 

 

Figure 3-1 A T2 RARE 3D isotropic scan of a KPC mouse with a pancreatic tumour. The images 
are in order sagittal, coronal and transverse plane. This scan shows the pathology of the 
animal. 

Parameter Value 
TR 1500ms 
TE 84ms 
Averages 1 
Repetitions 1 
Echo Spacing 16.8ms 
Rare Factor 12 
Slices 1 
Slice Orientation Coronal 
Read Orientation Ro-Cd 
Slice Thickness 20mm 
Image Size 160x120x80 
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3.2 Bias Field Correction 

Bias field correction is an important step in any MRI image analysis that is often overlooked in 

pre-clinical work. Some of the effects of bias field correction are shown in Figure 3-3 where the 

liver is more homogeneous after the correction and Figure 3-4 with the changes in overall 

histogram of the image. The changes are slight and seem insignificant when one image is 

considered. However, when multiple images are compared, Bias Field Correction is required in 

order to be able to compare the scans accurately. As shown in Figure 3-2 if the variables of the 

bias field correction are selected too severely they can drastically change the image. For this 

reason the parameters; down sample factor of 2, max iteration of 50x50x50, control points 

2x2x3, a spline order of 3 and a convergence threshold of 0.2 were chosen. The direct effects of 

bias field correction are relatively small. However, this small effect leads to large changes in 3D-

CAMMPs overall performance as it cascades through all features used to calculate the tumour 

and pancreas location resulting in a reduction of the DSC of 0.06. 

Flied Of View 40x30x20mm 
Extraction Angle 90o 
Refocusing Angle 180o 
Dummy Scans 1 
Dummy Duration 1500ms 
Dimension 3D 
Resolution 0.25x0.25x0.25mm 
Anti-Aliasing 1x1x1.1 
Slice Gap Mode non-contiguous 
Slice Gap 0mm 
Slice Distance 20mm 
Bandwidth 25kHz 

Interpellation Read 1 
Phase  1 
Slice  1 
Partial-FT Read 1 
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Figure 3-2: Three images showing (a) the original image , (b) an image with bias field 
correction variables set too strong and (c) the optimal bias field correction image settings . 
Note that (b) has lost contrast and has magnified some to the field instabilities, as shown in 
the fat around the legs. However, application of optimised correction in (c) avoids this while 
also reducing fluctuations within the liver, where the signal should be reasonably consistent. 

 

Figure 3-3: (a) Image of a mouse before bias field correction. (b) Image of a mouse after bias 
field correction.(c) The bias field that was corrected. 

 

(a)    (b)        (c) 

(a)     (b)    (c) 
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Figure 3-4: Histogram of the liver of a mouse before and after bias field correction. The slight 
shift in the histogram does not change the data dramatically but allows for images to be 
compared.  

3.3 Multi-atlas Segmentation (Invicro’s Whole Body Atlas) 

3.3.1 Region Based Segmentation 

Multiple region-based segmentation methods were tested as these have been shown to be a 

robust and relatively quick method of segmentation of large organs (e.g. liver and lungs) and 

areas in the brain (115) (116) (117) (80) (116). However due to the less defined nature of the 

abdomen, pancreas and pancreatic tumours with their deformable characteristics and variable 

spatial location, none of the approaches were successful. However, these approaches (such as 

Invicro’s Whole Body Atlas (WBA)) can be used to segment the larger organs around the 

pancreas (and any tumour contained therein).  

3.3.2 How many scans to compare. Time vs accuracy 

A minimum of 12 scans is required to stably run the multi-atlas segmentation tool with 

reproducible results, as with fewer scans (116) (115) in the library the accuracy of the 

segmentation of large organs is decreased dramatically (DSC = 0.74 decreasing to 0.53 with a 

run time decrease from 9 minutes to 3 minutes). The addition of more scans to the multi-atlas 

segmentation tool reference library increases the accuracy and reproducibility of the 
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segmentation. However, an increase in the library size requires a linear increase in the 

computational time, therefore, a balance must be found between computational time and 

accuracy. A library of scans restricted to 50 produces the very high DSC of 0.91 but with a four-

fold increase in computational time, see Figure 3-5. Researchers are encouraged to use 

between 20 and 40 scans in their library (81).  

Once the library has been compared to the test scan, the best N scans from the reference 

library are used to calculate the segmentations. For 3D-CAMMP, an N of less than or equal to 3 

provides a low computational time but a basic segmentation of the organs (DSC = 0.61, runtime 

= 10 minutes). An N of 9 or greater provides an accurate organ segmentation however the 

computational time required increases exponentially (DSC = 0.85, runtime = 11 minutes). 

Therefore an N of 6 provides an optimal balance between these two factors (DSC = 0.89, 

runtime = 12 minutes).  

 

Figure 3-5: The comparison of the size of library used in the WBA. (a) 6 scans within the 
library, (b) 12 scans within the library and (c) 50 scans. The more library scans the more 
accurately the automated segmentation becomes. However, this must be weighed against the 
increased computational time. 

(a)        (b)        (c) 
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3.3.3 Thresholds on each organ 

 

Figure 3-6: The number of scans combined by the WBA for segmentation. (a) the 3 closest 
scans, (b) the 6 closest and (c) the 9 closest. (a) and (c) under- and over-segment the organs 
respectively with (b) being the compromise. 

A global probability threshold cannot be used in the multi-atlas segmentation tool when it is 

segmenting such a large variety of organs. Large and structurally stable organs such as the liver, 

kidneys, and stomach can be precisely segmented (DSC of 0.90 or higher) using 15 scans 

compared to ground truth with a threshold of 0.5 (all voxels with probability greater than or 

equal to 0.5 are classified). The spleen in the KPC mouse-model (on which 3DCAMMP is built) 

undergoes structural and morphological changes throughout development of the pancreatic 

tumours. However, the spleen is still able to be precisely segmented by the multi-atlas 

segmentation tool at a threshold of 0.5. Finally, the hepatic portal vein and the gallbladder are 

small features that have some variability, and as such, stricter thresholds of 0.2 and 0.15 

respectively are required. This is summarised in Table 3. The effect of changing the threshold 

(a)        (b)        (c) 
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limit on the accuracy of the classification is shown in Figure 3-7 and a specific example of the 

hepatic portal vein is shown in Figure 3-8 

. 

 

Figure 3-7: The Dice Similarity Coefficient at different thresholds for each organ segmented 
using the Multi-Atlas Segmentation Tool (Whole Body Atlas). The highest DSC value for each 
organ was taken as the threshold. 

Table 3: Organ threshold used with Whole Body Atlas. 

Organ WBA Threshold 

Kidneys 0.5 

Liver 0.5 

Stomach 0.5 

Spleen 0.5 

Hepatic Portal Vein 0.2 

Gallbladder 0.15 
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Figure 3-8: Effect of the different thresholds on organ segmentation. (a) A threshold of 0.1 
causes bleeding of the ROI over the edge of the hepatic portal vein. (b) A threshold of 0.2 
segments the majority of the hepatic portal vein without the ROI bleeding. (c) A threshold of 
0.5 causes large areas to be missed. 

3.3.4 Limitations of Multi-Atlas Segmentation Tools 

Commercial Multi-Atlas Segmentation (MAS) tools rely on a predefined user-generated library 

of segmented images. The MAS tool identifies the library and the objects to be segmented in 

the novel scans, each novel scan is compared to every image in the library for large anatomical 

features with simple linear registration. The N most comparable library images to the novel scan 

are then used to build a probability of the location of the object. Each voxel in the novel scan is 

assigned a value between 0 and N, determined by the number of library scans that have an 

object located within the voxel. Each voxel in the novel scan is then divided by N to produce a 

probability. A pre-determined threshold consequently identifies the object. E.g. with a threshold 

of 0.5, any voxel with a probability greater than or equal to 0.5 is classed as the object.  

Due to the high variability of the location of the pancreas and pancreatic tumours that change 

throughout the growth of the animal and the development of tumours, such a rigid method is 

unable to accurately segment the pancreas and any pancreatic tumours, as shown in Figure 3-9.   

(a)                                                   (b)                                                           (c) 
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Therefore, a Multi-Atlas Segmentation tool can be used to be able to identify large and spatially 

fixed organs such as the brain, liver, lungs etc. but is not suitable for a variable organ like the 

pancreas or tumours and an other method must be used. 

  

  

(a)                                                                              (b) 

(c)                                                                              (d) 
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Figure 3-9 (a) shows an MRI scan of a KPC mouse at 102 days old, (b) shows the pancreas 
(green) and pancreatic tumour (red) manually segmented by an expert user and (c) shows the 
segmentation of the pancreas (green) and pancreatic tumours (red) by the Multi-Atlas 
Segmentation Tool using a library of 50 pre-segmented scans. In contrast, (d) shows 3D-
CAMMP’s segmentation of the pancreas and pancreatic tumours. As is evident when 
comparing. (c) and (d), 3D-CAMMP is able to match the accuracy of a manual segmentation 
performed by an expert user. 3D-CAMMP is able achieve a DSC of 0.78 when compared to 
expert segmentation, unlike the MAS tool, which only has a DSC of 0.24. 

3.4 Pancreas and Tumour Cloud Bounding Area 

A bounding box is defined by taking the maximum distance from the centre of the pancreas in 

each of the 6 directions from all scans in the library. This is then increased by one standard 

deviation in each direction to create a 6 distance measures for a bounding box. With the same 

scans the average distance between the centroids of each automatically segmented organ and 

the centroid of the pancreas can be calculated. For a novel scan the centroids of each 

automatically segmented organ are calculated and the centroid of the pancreas is estimated using 

the pre calculated measure. The bounding box is then applied using the 6 measures that have 

been calculated. The scan inside this box is then thresholded using Otsu’s method to remove the 

area background to the scan. This box is then used for the analysis. This type of bounding box 

area for identification and classification of pancreatic tumours and the pancreas creates a large 

area for analysis, much of which is outside the subject or in areas that neither the pancreatic 

tumour nor the pancreas could develop. The tumour and pancreas cloud defines a smaller area 

removing voxels in which the pancreatic tumours and pancreas would not form. However, not all 

areas that the pancreatic tumours and pancreas could develop are identified. The normalised 

tumour-pancreas cloud is able to define the area in which pancreatic tumours and the pancreas 

are likely to develop as well as surrounding areas where there is a possibility of both developing, 

without defining large areas where neither would form. The three tested methods are shown in 

Figure 3-10. 



86 
 
 

 

Figure 3-10: Three tested methods to find the area for the machine learning to analyse. (a) A 
bounding box created by taking the extreme values from all pancreata and tumours. The 
bounding box has an area of 6212mm3 and encloses all the tumours and pancreata. (b) A 
cloud built from combing all pancreata and tumours. The cloud has an area of 2370mm3, 
however, it misses 450mm3 of the tumour/pancreas volume when compared to a large library 
of scans. (c) A normalised cloud built by taking each pancreas and tumour into a normalised 
space and then combining them. When a novel scan is passed to 3D-CAMMP the ‘normalised’ 
pancreata and tumours are transformed onto the novel scan using the ‘centres of the organs’. 
The normalised cloud has an area of 5624mm3 and encloses all of the tumours and pancreata. 

 

To reduce computational time, it was necessary to define an area for analysis by the machine 

learning tool. The area should have a high probability of containing the whole pancreas and 

pancreatic tumour, without incorporating areas that have no, or extremely low probability of 

containing either pancreas or pancreatic tumour. Therefore, three approaches were used (see 

Figure 3-10). Initially a bounding box area for identification and classification of both the 

pancreas and pancreatic tumours was used (see Figure 3-10 (a)). However, this creates a large 

area for analysis much of which is outside the subject, and also includes areas within the subject 

where neither the pancreatic tumour nor the pancreas could develop. This area was therefore 

refined to a smaller area (Figure 3-10 (b)) (a tumour and pancreas cloud ) by removing voxels in 

which the pancreatic tumours and pancreas would not form. However, not all areas in which 

the pancreatic tumours and pancreas could develop are identified. Figure 3-10 (c) shows the 

result of normalising the scans before combining them. The normalised tumour-pancreas cloud 

(a)        (b)        (c) 
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is able to define the area in which pancreatic tumours and the pancreas are likely to develop as 

well as surrounding areas where there is a possibility of both developing while excluding large 

areas where neither would form.  

3.5 Development of Probability Clouds 

There were three distinct approaches, two unsuccessful and one successful. In the first 

approach, all pre-segmented tumours were loaded onto a novel scan. This approach was unable 

to compensate for the position of the animal within the window or for variations in animal size. 

The second method tested used the library of pre-segmented scans and found the vertices of 

each object segmented. It then calculated the mean of the vertices for each object and related 

them to the vertices of the segmented tumour. This method then used that relationship to 

transform the tumour position to a normalised space. This would be performed on every scan in 

the library to produce a normalised tumour probability cloud. A novel scan would then have the 

vertices of each object segmented by the multi-atlas segmentation tool. Using the mean 

distance relationship, the normalised tumour probability cloud was then transformed on to the 

novel scan. This method did not perform well if there were variations in object size due to e.g. 

changes in the size of animal and inflammation of the spleen. The final method, however, was 

more successful. This approach used a library of pre-segmented scans. For each pre-segmented 

scan, the centre of mass of each segmented object was calculated and the mean of all of the 

objects’ centre of mass was then calculated, which denoted ‘centre of animal’. The distance 

from the centre of the animal to the centre of mass of the tumour was then used as the 

transformation function to transform the tumour segmentation into a normalised space. This 

was performed on all scans in the library to build the tumour probability cloud. When a novel 

scan was run through 3D-CAMMP the centre of mass and ‘centre of animal’ was calculated, the 

average transformation function of the library was used to transform the normalised tumour 

probability cloud into the space of the novel scan. This method is able to account for changes in 

animal size, position and disease burden and resulted in powerful and robust feature creation.  
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Figure 3-11: Image intensities of the left kidney before and after two types of normalisation. 
ROI Normalisation is done by creating a small ROI in the spinal muscle (an area that should 
not change dramatically over a mouse’s life span). This entire scan is then divided by the mean 
of this ROI to normalise the image. STDMS Normalisation is Standard Deviation Mean Shift 
Normalisation, in which the normalisation takes the intensity of each voxel minus the mean of 
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the entire image all divided by the standard deviation of the entire image. The figure shows 
the effect of these normalisation techniques with STDMS normalisation bringing the separate 
image values much closer together.  

3.6 Normalisation 

It is impossible to compare MRI scans without normalisation due to the MRI measuring only 

signal intensity, and this can fluctuate between subjects and between scans.  

In first method of normalisation tested a ROI is drawn within the spinal muscle of the scan. The 

mean intensity of this ROI is then set to 1 through transformation and this transformation is 

applied to the entire scan in order to shift the entire scans histogram. 

Further testing of the model comparison showed a slight increase of model classification 

accuracy with the use of standard deviation shift mean normalisation (STDMS), a 0.15 increase 

in DSC, and a large increase in the robustness of the model. This is shown in Figure 3-11 for the 

image intensities of the left kidney and Figure 3-12 showing overall histograms of multiple 

scans. 

 

Figure 3-12: Histograms of scan intensity of multiple scan data overlaid. (a) scans with no 
normalisation. (b) scans with ROI Normalisation. (c) scans with STDMS normalisation. In (c) 
the histograms are much closer together and have a much more defined spread.  

 

Table 4: Numerical data from Figure 3-11 is summarised here. The effect of normalisation on the 
standard deviation of the left kidney signal of multiple scans. The percentage reflects the 
increase in the clustering of intensities of the scan data. STDMS Normalisation consistently out 
performs ROI Normalisation. 

(a)        (b)        (c) 
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1st degree feature ROI Normalisation effect on 

standard deviation of multiple 

scans (% increase in clustering of 

intensities) 

Standard Deviation Mean Shifted 

Normalisation effect on standard 

deviation of multiple scans (% 

increase in clustering of intensities) 

Mode 3% 7% 

Minimum 0% 100% 

Maximum 25% 39% 

Standard Deviation 34% 99% 

The STDMS approach to normalisation was extremely successful and allowed the ability to 

compare MRI scans of subjects on different days as well as inter-subject comparisons. ROI 

normalisation did not provide a significant advantage over using non-normalised scans and 

required much more user interpretation and computational time. A full animal normalisation is 

shown in Figure 3-13. 

Figure 3-13: Scan before and after normalisation. (a) shows the original image. (b) shows the 
image after ROI normalisation. (c) shows the image after STDMS normalisation. It can be seen 
in (c) that the contrast ratio is much improved, there is less visible noise, but the textural 
features have all been preserved. 

3.7 Object Detection 

The CHO can see the object with high accuracy. This is demonstrated in the receiver-operating 

characteristic (ROC) curve, which compares the sensitivity (proportion of positives correctly 

(a)    (b)   (c)
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identified) and 1 - specificity (proportion of negatives correctly identified) to show the accuracy 

of the method, and calculate AUC (0.86 in this model). This method, however, requires quite a 

large amount of prior knowledge, i.e. either the location or the shape of sought object. 

Therefore, further analysis is required before this can be implemented. 

CHO is a form of side-scrolling object detection. It can be used in two separate methods. Firstly, 

if the location of the object is known, the CHO is able to segment the object with zero prior 

knowledge of its shape. Secondly, if the shape of an object is known then the CHO is able to 

search through the image for objects that match the shape. This method is often used for the 

detection of brain tumours as the structure of the brain is relatively stable and tumours can 

often have a relatively defined shape (118). 

3.8 Feature Generation 

 

Figure 3-14: The Dice Similarity Coefficient of the output of 3D-CAMMP based upon the 
window size used for the GLCM feature generation. 

76 features were generated for each voxel in each scan. This is the information that is used by 

the machine learning system to classify each voxel.  
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3.8.1 Grey Level Co-Occurrence Matrix 

GLCMs proved to be invaluable features for the machine learning. Multiple offsets of the GLCMs 

were computed by changing the variable in calculate_glcm_Run_IdxTest.m. The different 

offsets tested were all combinations of [𝑎, 𝑏] where 𝑎 =  −5,−4,−3,…3, 4, 5 and 𝑏 =

1,2,3,4,5. The GLCMs window is also calculated in 3D, tested for different window sizes, 5, 11 

and 16, and tested for different number of grey levels, 16, 32. As a 2D computation they are 

computationally cheap and have a high feature power. Not all GLCMs were ranked very highly, 

however the computational cost of producing them when the GLCM is already calculated is 

negligible. 

3.8.1.1 Size of window 

The use of a window size of 5 caused the GLCM features to become extremely susceptible to 

noise in the image. A window size of 17 caused the fine details in the textures to be smoothed 

out of the GLCM features. A window size of 11 proved to generate robust and sensitive GLCM 

features, see Figure 3-14. 

3.8.1.2 2D vs 3D 

 

The use of 3D GLCMs increased the DSC of 3D-CAMMP by 7%. However, it also increases the 

computational time exponentially from 300 seconds to > 1800 seconds. 

3.8.2 Grey Level Run Length Matrix 

3.8.2.1 Size of window 

The use of a window size of 5 caused the GLRLM features to become extremely susceptible to 

noise in the image. A window size of 17 caused the fine details in the textures to be smoothed 

out of the GLRLM features. A window size of 11 proved to generate robust and sensitive GLRLM 

features 
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3.8.2.2 2D vs 3D 

The use of 3D GLRLM increased the DSC of 3D-CAMMP by 4%. However, it also increases the 

computational time exponentially, and so was not implemented. 

3.8.3 Gradient Features 

Gradient analysis of this type is used in many different feature selection methods and provides a 

large amount of information such as the basis for a more robust but less sensitive edge 

detection. The multi-scale gradient levels were effective at segmentation of the tumour due to 

the ability to remove a large portion of the heterogeneity which occurs within the pancreatic 

tumour. 

3.8.4 Fractional Anisotropy 

Fractional Anisotropy proved to be an important feature in the machine learning step of 3D-

CAMMP, providing features that are highly correlated with gradient analysis. However, 

Fractional Anisotropy was defined as a feature of the higher power than gradient analysis by the 

ensemble predictions of out of bag observations. 

3.8.5 Spatial Features 

The use of ‘centre of mass’ of the organs mean centre increased the DSC score of the model 

from 0.5001 to 0.6117 over the use of directed spatial location within the image. This shows the 

possibility of change of position within the animal as well as the animal location within the 

scanner. 

3.9 Feature selection 

Not all features that were generated would be expected to be useful and the evaluation of the 

most relevant features was performed. 

Multiple feature selection methods were tested in 3D-CAMMP, including forward incremental, 

backward incremental, principle component analysis.  
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A random selection of the training data was loaded into the workspace, 20,000 voxels of each 

class. These voxels were then fed into the script featureSelection.m which calculated the reliefF 

function of the features keeping only the 50 most relevant features. The features selected by 

the reliefF function were then fed to a k-means clustering algorithm to remove redundant 

features. 6 clusters were created, and this was used to choose 15 features. Spatial and 

probability cloud features were removed for the feature selection and added to the final feature 

selection. The selected features were then used to build machine learning models and 

compared against models with the full feature set. Principal component analysis was also 

performed on the feature set and then compared to the standard model output. 

However, none of the methods tested resulted in enhanced performance of 3D-CAMMP and 

reduction in features had a negative effect on model performance that did not outweigh the 

reduced computational time. DSC decreased from 0.6117 to 0.5989 (ROC curves saw no 

change) when tested using MATLAB and multiple feature selection methods such as ReliefF, 

Recursive Feature elimination, Lasso Regression and Principle Component Analysis. Weka, a 

software designed for machine learning in data mining, was also used to confirm these results. 

This is believed to be because there is only a total of 76 features currently being used by 3D-

CAMMP and this is a relatively small number in the field of radiomics where often hundreds if 

not thousands of features are generated. The reason so many features were not generated for 

3D-CAMMP was due to computational time as 3D-CAMMP is designed to be run on an average 

work-station and so must be kept relatively simple. This is the same reason that GPU 

programming was not used. This is shown in Figure 3-15. 
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Standard model 

Feature Reduction Model 
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Figure 3-15: Feature selection was performed on the data and model. Multiple feature 
selection methods were tested which had no negative effect on the performance 3D-CAMMP 
and using only the selected features did not significantly increase run time of 3D-CAMMP. 

3.10 Final Features List 

The features generated by the GLCMs are given as follows (119). Let 𝑝(𝑖, 𝑗) be the (𝑖, 𝑗)𝑡ℎ entry 

of the GLCM and 𝑁𝑔 be the number of discrete grey levels, then  

Mean of row  

𝜇
𝑥
= ∑∑ 𝑖 ∙ 𝑝(𝑖, 𝑗)

𝑗𝑖

 3-1 

Mean of column  

𝜇
𝑦
= ∑∑ 𝑗 ∙ 𝑝(𝑖, 𝑗)

𝑗𝑖

 3-2 

Standard deviation of row  

𝜎𝑥 = ∑∑(𝑖 − 𝜇
𝑥
)
2
∙ 𝑝(𝑖, 𝑗)

𝑗𝑖

 3-3 

Standard deviation of column  

𝜎𝑦 = ∑∑(𝑗 − 𝜇
𝑦
)
2

∙ 𝑝(𝑖, 𝑗)

𝑗𝑖

 3-4 

Sum of rows  

𝑝
𝑥
=∑ 𝑝(𝑖, 𝑗)

𝑗

 3-5 

Sum of columns  

𝑝
𝑦
=∑ 𝑝(𝑖, 𝑗)

𝑖

 3-6 

  

𝑢𝑥 =∑∑ 𝑖𝑝(𝑖, 𝑗)

𝑗𝑖

 3-7 
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𝑢𝑦 =∑∑ 𝑗𝑝(𝑖, 𝑗)

𝑗𝑖

 3-8 

  

𝑝
𝑥+𝑦

(𝑘) =∑∑ 𝑝(𝑖, 𝑗)

𝑗𝑖

, 𝑖 + 1 = 𝑘, 𝑘 = 2,3, … 2𝑁𝑔 3-9 

  

𝑝
𝑥−𝑦

(𝑘) =∑∑ 𝑝(𝑖, 𝑗), |𝑖 − 𝑗| = 𝑘, 𝑘 = 0,1, … , 𝑁𝑔 − 1

𝑗𝑖

 3-10 

Entropy of 𝑝
𝑥
  

𝐻𝑋 = −∑𝑝𝑥(𝑖) log2(𝑝𝑥)

𝑖

 3-11 

Entropy of 𝑝
𝑦

  

𝐻𝑌 = −∑𝑝𝑦(𝑗) log2(𝑝𝑦)

𝑗

 3-12 

Entropy of 𝑝(𝑖, 𝑗)  

𝐻 = −∑∑𝑝(𝑖, 𝑗) log2(𝑝(𝑖, 𝑗)) 

𝑗𝑖

 3-13 

  

𝐻𝑋𝑌1 = −∑∑𝑝(𝑖, 𝑗) log(𝑝𝑥𝑝𝑦) 

𝑗𝑖

 3-14 

  

𝐻𝑋𝑌2 = −∑∑𝑝𝑥(𝑖)𝑝𝑦(𝑗) log(𝑝𝑥𝑝𝑦) 

𝑗𝑖

 3-15 

The GLCM features can therefore be define as follows: 

Autocorrelation  

𝑓 =  ∑∑𝑖𝑗𝑝(𝑖, 𝑗)

𝑗𝑖

 3-16 
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Contrast  

𝑓 =∑∑|𝑖 − 𝑗|2𝑝(𝑖, 𝑗)

𝑗𝑖

 3-17 

Correlation (MATLAB)  

𝑓 =  
∑ ∑ (𝑖 − 𝜇𝑥)(𝑗 − 𝜇𝑦)𝑝(𝑖, 𝑗)𝑗𝑖

𝜎𝑥𝜎𝑦
  

Correlation  

𝑓 =  
∑ 𝑖𝑗𝑝(𝑖, 𝑗) − 𝜇𝑥𝜇𝑦𝑖

𝜎𝑥𝜎𝑦
 3-18 

Cluster Prominence  

𝑓 =∑∑(𝑖 + 𝑗 − 𝜇𝑥 − 𝜇𝑦)
4
𝑝(𝑖, 𝑗)

𝑗𝑖

 3-19 

Cluster Shade  

𝑓 =∑∑(𝑖 + 𝑗 − 𝜇𝑥 − 𝜇𝑦)
3
𝑝(𝑖, 𝑗)

𝑗𝑖

 3-20 

Dissimilarity  

𝑓 =  ∑∑|𝑖 − 𝑗| ∙ 𝑝(𝑖, 𝑗)

𝑗𝑖

 3-21 

Energy (Angular Second Moment)  

𝑓 =  ∑∑𝑝(𝑖, 𝑗)2

𝑗𝑖

 3-22 

Entropy  

𝑓 =  −∑∑𝑝(𝑖, 𝑗) log(𝑝(𝑖, 𝑗))

𝑗𝑖

 3-23 

Homogeneity (MATLAB)  

𝑓 =∑∑
𝑝(𝑖, 𝑗)

1 + |𝑖 − 𝑗|
𝑗𝑖

 3-24 

Homogeneity  

𝑓 =  ∑∑
𝑝(𝑖, 𝑗)

1 + (𝑖 − 𝑗)2
𝑗𝑖

 3-25 
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Maximum Probability  

𝑓 = max
𝑖,𝑗

𝑝(𝑖, 𝑗) 3-26 

Sum of Squares (Variance)  

𝑓 =∑∑(𝑗 − 𝜇)2𝑝(𝑖, 𝑗)

𝑗𝑖

 3-27 

Sum Average  

𝑓 = ∑𝑖𝑝𝑥+𝑦

2𝑁𝑔

𝑖=2

 3-28 

Sum Variance  

𝑓 =∑(𝑖 − 𝑆𝐸)2𝑝𝑥+𝑦

2𝑁𝑔

𝑖=2

 3-29 

Sum Entropy  

𝑓 = −∑𝑝𝑥+𝑦 log2(𝑝𝑥+𝑦)

2𝑁𝑔

𝑖=2

 3-30 

Difference Variance  

𝑓 =  ∑∑(𝑖 − 𝜇)2𝑝(𝑖. 𝑗)

𝑗𝑖

 3-31 

Difference Entropy  

𝑓 = ∑ 𝑝𝑥−𝑦(𝑖) log2 (𝑝𝑥−𝑦(𝑖))

𝑁𝑔−1

𝑖=0

 3-32 

Information Measure of Correlation 1  

𝑓 =
𝐻𝑋𝑌 − 𝐻𝑋𝑌1

max(𝐻𝑋,𝐻𝑌)
 3-33 

Information Measure of Correlation 1  

𝑓 = √1 − 𝑒−2(𝐻𝑋𝑌2−𝐻𝑋𝑌) 3-34 

Inverse Difference  
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𝑓 =∑∑
1

1+ (𝑖 − 𝑗)2
𝑝(𝑖, 𝑗)

𝑗𝑖

 3-35 

Inverse Difference Normalised  

𝑓 =∑∑
𝑝(𝑖, 𝑗)

1 +
|𝑖 − 𝑗|
𝑁𝑔

𝑗𝑖

 
3-36 

Inverse Difference Moment Normalised  

𝑓 =∑∑
𝑝(𝑖, 𝑗)

1 + (
|𝑖 − 𝑗|
𝑁𝑔

)
2

𝑗𝑖
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The image was converted into 32 distinct grey levels. Let 𝑀 be the 𝑁𝑔 ∗ 𝑁𝑟 grey level run length 

matrix with 𝑁𝑔 grey levels and 𝑁𝑟 the maximum possible run length. Let 𝑟𝑖𝑗 = 𝑟(𝑖, 𝑗) is the 

number of occurrences with grey level 𝑖 and 𝑗 the run length. Then let 𝑁𝑣 be the total number 

of voxels and  

𝑁𝑠 =  ∑∑ 𝑟𝑖𝑗
𝑗𝑖

 
3-38 

the sum of all elements. Let  

𝑟𝑖 =∑ 𝑟𝑖𝑗
𝑗

 3-39 

be the marginal sum of the runs over the run length 𝑗 for grey values 𝑖, and marginal sum of the 

runs over the grey values 𝑖 for run length 𝑗 is then  

𝑟𝑗 =∑ 𝑟𝑖𝑗
𝑖

 3-40 

The mean run length is defined as  

𝜇
𝑖
=∑∑ 𝑖𝑝

𝑖𝑗

𝑗𝑖

 3-41 

and  
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𝜇
𝑗
=∑∑ 𝑗𝑝

𝑖𝑗

𝑗𝑖

 3-42 

with the joint probability. 

𝑝
𝑖𝑗
=
𝑟𝑖𝑗

𝑁𝑠
 3-43 

The features generated using the GLRLM are define as follows (119). 

Short Run Emphasis  

𝑓 =
1

𝑁𝑠
∑

𝑟𝑗

𝑗2
𝑗

 3-44 

Long Run Emphasis  

𝑓 =
1

𝑁𝑠
∑𝑗2𝑟𝑗
𝑗

 3-45 

Low Grey Level Run Emphasis  

𝑓 =
1

𝑁𝑠
∑

𝑟𝑖
𝑖2

𝑖

 3-46 

High Grey Level Run Emphasis  

𝑓 =
1

𝑁𝑠
∑𝑖2𝑟𝑖
𝑖

 3-47 

Short Run Low Grey Level Emphasis  

𝑓 =
1

𝑁𝑠
∑∑𝑟𝑖𝑗

𝑗𝑖

 3-48 

Short Run High Grey Level Emphasis  

𝑓 =
1

𝑁𝑠
∑∑

𝑖2𝑟𝑖𝑗

𝑗2
𝑗𝑖

 3-49 

Long Run Low Grey Level Emphasis  

𝑓 =
1

𝑁𝑠
∑∑

𝑗2𝑟𝑖𝑗

𝑗2
𝑗𝑖

 3-50 

Long Run High Grey Level Emphasis  
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𝑓 =
1

𝑁𝑠
∑∑𝑖2𝑗2𝑟𝑖𝑗

𝑗𝑖

 3-51 

Grey Level Non-Uniformity  

𝑓 =
1

𝑁𝑠
∑𝑟𝑖

2

𝑖

 3-52 

Grey Level Non-Uniformity Normalised  

𝑓 =
1

𝑁𝑠
2∑𝑟𝑖

2

𝑖

 3-53 

Run Length Non-Uniformity   

𝑓 =
1

𝑁𝑠
∑𝑟𝑗

2

𝑗

 3-54 

Run Length Non-Uniformity Normalised  

𝑓 =
1

𝑁𝑠
2∑𝑟𝑗

2

𝑗

 3-55 

Run Percentage  

𝑓 =
𝑁𝑠
𝑁𝑣

 3-56 

Grey Level Variance  

𝑓 =∑∑(𝑖 − 𝜇)2𝑝𝑖𝑗
𝑗𝑖

 3-57 

Run Length Variance  

𝑓 =∑∑(𝑗 − 𝜇)2𝑝𝑖𝑗
𝑗𝑖

 3-58 

Run Entropy  

𝑓 = −∑∑𝑝𝑖𝑗 log2(𝑝𝑖𝑗)

𝑗𝑖

 3-59 

Mean 

𝑓 =
1

𝑁
∑∑𝑝(𝑖, 𝑗)

𝑗𝑖

 3-60 

Median 
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𝑓 =

{
 
 

 
 (

𝑛 + 1

2
)
𝑡ℎ

𝑡𝑒𝑟𝑚, if odd

(
𝑛
2
)
𝑡ℎ
𝑡𝑒𝑟𝑚 + (

𝑛
2
+ 1)

𝑡ℎ
𝑡𝑒𝑟𝑚

2
, if even

   3-61 

Variance 

𝑓 = 𝐸[(𝑋 − 𝐸[𝑋])2] 3-62 

Standard Deviation 

𝑓 =  √
1

𝑁 − 1
∑(𝑥𝑖 − 𝑥̅)

2 3-63 

Skewness 

𝑓 =  𝐸 [(
𝑋 − 𝐸[𝑋]

𝜎
)

3

] 3-64 

Kurtosis 

𝑓 = 𝐸 [(
𝑋 − 𝐸[𝑋]

𝜎
)

4

] 3-65 

Intensity 

𝑓 = 𝑝(𝑖, 𝑗) 3-66 

Gradient Magnitude 

𝑓 =  √𝑔𝑦
2 + 𝑔𝑥

2 
3-67 

Gradient component X direction 

𝑔𝑥 = [
+1
−1
] ∗ 𝐴 3-68 

Gradient component Y direction  

𝑔𝑦 = [
−1
+1
] ∗ 𝐴 3-69 

Gradient Magnitude XY scale 1 
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𝑔𝑥𝑦
1 = 

√𝑔𝑦
2 + 𝑔𝑥

2

21
 

3-70 

Gradient Magnitude XY scale 2 

𝑔𝑥𝑦
2 = 

√𝑔𝑦
2 + 𝑔𝑥

2

22
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Gradient Magnitude XY scale 3 

𝑔𝑥𝑦
3 = 

√𝑔𝑦
2 + 𝑔𝑥

2

23
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Gradient Magnitude XY scale 4 

𝑔𝑥𝑦
4 = 

√𝑔𝑦
2 + 𝑔𝑥

2

24
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Gradient Magnitude XY scale 5 

𝑔𝑥𝑦
5 = 

√𝑔𝑦
2 + 𝑔𝑥

2

25
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Fractional Anisotropy 

𝑓 = √
3

2

√(𝜆1 − 𝜆̂)
2
+ (𝜆2 − 𝜆̂)

2
+ (𝜆3 − 𝜆̂)

2

√𝜆1
2 + 𝜆2

2 + 𝜆3
2

 

Where the Eigen vectors (𝜆1, 𝜆2, 𝜆3) of the gradient image’s azimuth and elevation. 
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Normalised x, y, and z direction and probability overlays formed in a normalised space of the 

pancreas, tumour and organs segmented by the MAS tool. 

3.11 Machine Learning 

Multiple machine learning methods were tested and the hyper parameters of the most suitable 

were also tested to find the optimum settings for this problem. This is first performed using the 

built in MATLAB Classification tool and is able to easily compare different models on the same 

data. One million voxels of the three classification types (tumour, pancreas and not tumour or 

pancreas) were loaded into a matrix and fed into classification tool. Multiple machine learning 



106 
 
 
techniques were then tested on this data and compared by accuracy, ROC curves and confusion 

matrices. 

 (a) K-Nearest Neighbour  
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(b) Support Vector Machine 
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(c) Random Forest 
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Figure 3-16: Comparison of machine learning methods. Each method was given a sample of 
150,000 voxels, 50,000 voxels of tumour, pancreas and not tumour/pancreas. The models 
were evaluated on their accuracy to correctly classify these three sets. (a) A K-Nearest 
Neighbour model with an accuracy of 90.5% and AUC of 0.98. (b) A Support Vector Machine 
with an accuracy of 90.7% and AUC of 0.99. (c) A Random Forest with an accuracy of 93.4% 
and AUC of 0.99. 

 

The models tested were decision trees (fine, medium and coarse), discriminant analysis (linear 

and quadratic), support vector machines (linear, quadratic, cubic, fine Gaussian, medium 

Gaussian and coarse Gaussian), nearest neighbour (fine, medium, course, cosine, cubic and 

weighted) and ensemble classifiers (boosted trees, bagged trees, subspace discriminant, 

subspace KNN and RUS boosted trees). 

A confusion matrix displays the number of correctly predicted number of objects for each class. 

The diagonal of the matrix shows correctly predicted classes, while the off-diagonal shows the 

incorrect predictions, what class they should be, and what class they were assigned. In Figure 

3-16, we can see the ROC curves and confusion matrices for 3 different types of machine 

learning: a) K Nearest Neighbour, b) Support Vector Machine, c) Random Forest. The ROC 
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curves and AUC for all 3 were almost identical, however the confusion matrices show in more 

detail where the 3 machine-learning methods differ. The confusion matrix A (K Nearest 

Neighbour) shows that the model had a tendency to assign non-pancreas / non-tumour voxels 

as either pancreas or tumour. The confusion matrix B (Support Vector Machine) shows the 

model has a tendency to classify pancreas and tumour voxels as non-pancreas / non-tumour. 

The confusion matrix C (Random Forest) has a much lower incidence of either of these issues.  

The three best performing methods were Random Forests, K-Nearest Neighbour and Support 

Vector Machines. Random Forests proved to have the greatest accuracy, as shown in Figure 

3-16. Random Forests are also a relatively computationally cheap machine learning method and 

can easily explained to non-machine learning experts, making it more approachable. 

 

Figure 3-17: The number of grown trees built vs the out-of-bag classification error. The 
number of trees built was 50 as an increase in the number of trees did not decrease the out of 
bag error significantly and a decrease in the number of trees did not improve computational 
time significantly. 

 

3.12 Random Forest Parameters  

Multiple Random Forest parameters were tested to see the effect on the model’s output. These 

included minimum leaf size, number of predictors to sample, prior knowledge and combinations 

of these three. The parameters tested values where: 
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• ‘MinLeafSize’ = 1, 5 and 10.

• ‘NumPredictorsToSample’ = 2, 5, 8, 10.

• Prior = off and on.

The best of performing of each of these is taken and the combinations where then tested: 

• ‘Prior’ + ‘NumPredictorsToSample’ + ‘MinLeafSize’.

• ‘Prior’ + ‘MinLeafSize’.

• ‘Prior’ + ‘NumPredictorsToSample’.

• ‘NumPredictorsToSample’ + ‘MinLeafSize’.

The only parameter changed that improved the machine learning models performance was the 

number of trees grown, with 50 trees giving a low out-of-bag classification error and an increase 

in the number of trees not improving the classification error significantly to the computational 

time increase required, as shown in Figure 3-17. 

In general image analysis problems, a random forest is built with hundreds of trees. The number 

of trees built for 3D-CAMMP was restricted to 50 as any more trees yielded an insignificant 

increase in model accuracy without a significant increase in computational time. 

3.13 Post Processing 

Figure 3-18: Shows model output with different forms of post processing. (a) Expert 
segmentation used as gold standard for model post processing comparison. (b) Direct model 
output has unconnected areas and does not segment large amounts of the tumour or 
pancreas. (c) Close geometric mean open threshold smooth cluster segmentation has closed 
shapes closer to the expert segmentation. (d) Threshold smooth geometric mean cluster 
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segmentation captures a larger amount of the tumour as well as the greatest stability 
between scans/subjects. 

3.13.1 Level Sets 

Level sets were not an appropriate technique for 3D-CAMMP. This is on account of level sets 

requiring user-input with prior knowledge, as well as the fact that pancreatic tumours tend to 

be structurally heterogeneous to the extreme, having very irregular patterns, i.e. some areas of 

smooth curve surface and some coarse sharp objects. 

3.13.2 Sequential Post Processing 

Multiple post processing techniques were tested, including; Thresholding Smooth Cluster, Close 

Geometric mean Open Threshold Smooth Connected components, Close Geometric mean 

Threshold Smooth Connected components, Close Open Threshold Smooth Connected 

components, Open Close Threshold Smooth Connected components, 3x3 moving filter, and 

Gaussian Smoothing. Threshold (0.3) smooth cluster has the greatest stability while also 

optimising the classifications, as shown in Figure 3-18  and Figure 3-19. 
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Figure 3-19: Volume of the classified tumours by expert segmentation vs model segmentation. 
Thresholding at 0.3 Smooth Cluster (TSC 3) has smallest variance along the x=y line and 
therefore has the closest approximation to expert segmentation of the model output (direct) 
and all other post processing techniques. Close Geometric Mean Open Threshold at 0.3 
Smooth Cluster (CGMOTSC 3) was the next closet post processing technique with an almost 
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identical result but more than twice the computational time due to the additional steps so 
was not used. 

 

Figure 3-20: The ROC curve of tumour detection by 3D-CAMMP compared to experts. 3D-
CAMMP has a sensitivity of 100% and a specificity of 85.7%. Therefore, 3D-CAMMP always 
detects a tumour that has been identified by expert segmentation and has a high rate of not 
identifying animals without tumours segmented. 

3.14 3D-CAMMP 

The final version of 3D-CAMMP is able to take a novel MR image of a KPC mouse abdomen and 

segment any pancreatic tumours, the pancreas, liver, kidneys, spleen, stomach, gall bladder, 

and hepatic portal vein accurately and reliably with less user input than an expert user (e.g. 

someone with multiple years of training/experience in identifying tumours in preclinical images, 

in this case MRI).  

Expert image analysis was used to define ground truth.  However, when multiple expert users 

were asked to segment the same image, there were often discrepancies between the individual 

segmentations. To mitigate this risk, after each scan had been segmented by the three expert 

users, a round-table meeting was held to discuss the individual segmentation with the objective 
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being to come to a consensus as to what the final segmentation should be. Due to the variable 

nature of the images and the fact that 3D data can be viewed at multiple angles, areas were 

sometimes missed by one expert and noticed by another. In almost all cases, the tumour area 

was expanded after discussion. See Figure 3-21 for details. 

3D-CAMMP outperforms non-expert users consistently and obtains a DSC score with expert 

users of 0.76 for tumour segmentation and 0.65 for pancreas segmentation. This DSC score is as 

high as possible since 3D-CAMMP was in some cases able to detect tumours missed by the 

expert users. Receiver Operating Characteristic curve (ROC curve) analysis of 3D-CAMMP on 

tumour existence shows a sensitivity of 100% meaning that an animal with a tumour will always 

identified and a specificity of 85.7% meaning that an animal without a tumour may be identified 

as having a tumour, with an overall Area Under the Curve (AUC) of 0.93, as shown in Figure 

3-20. This is the best-case scenario as it is advantageous for 3D-CAMMP to be over- rather than 

under-sensitive as user checks can more easily identify mistakes. However, when the incorrect 

classifications are manually checked by expert users it was found that 83% of the time 3D-

CAMMP had identified small tumours that had been missed by the expert users, shown in 

Figure 3-22. This shows the validity of 3D-CAMMP and reiterates the difficulty of the task even 

for expert users. 

Furthermore, 3D-CAMMP is able to perform the analysis within approximately 1-2 hours. By 

comparison expert users could take roughly the same amount of time but in some cases took up 

to a total of 10 hours for some images for which 3D-CAMMP took no extra time and was 

comparable to the 10-hour segmentation by two expert users. The 1-2-hour process performed 

by 3D-CAMMP is made up of 2 parts. Stage 1, data conversion, the bias field correction, 

normalisation and multi atlas segmentation. This takes up to 70% of the runtime. Stage 2, 

creation of the bounding area, normalisation, feature generation and classification. In between 

these two stages, manual user input is required in order to check multi atlas segmentation. For 

this reason, 3D-CAMMP will run every novel scan available through stage 1 before requesting 
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user input. This means that 3D-CAMMP can be initiated and left while it completes stage 1 for 

all scans, then the user can check all the data at once and initiate stage 2. This means the user 

does not have to constantly check 3D-CAMMP and no time is lost when the model is left to run. 

(a) (b) 
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(c) (d) 

Figure 3-21 shows the sagittal slice of two KPC mice with pancreatic tumours. (a) and (c) 
show the novel images. (b) and (d) show areas classified as tumour by all three experts in 
red and areas discussed at the round table meeting and then classified as tumour in teal. 
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Figure 3-22: The expert segmentation (left) of tumour (red) and pancreas (green) compared to 
the final 3D-CAMMP output (right). The tumour identified by 3D-CAMMP has twice the 
volume and the pancreas 1.5 times the volume. This is an acceptable variance as it has been 
shown that human segmentation in general misses portions of the tumour segmentation. 

A combination of 3D-CAMMP and expert user proved to be the most effective segmentation 

combination. 3D-CAMMP and new user greatly outperforms new users alone and is relatively 

similar to the classification of an expert user alone. 

A version of 3D-CAMMP is also able to segment the pancreas, liver, kidneys, spleen, stomach, 

gall bladder, and hepatic portal vein accurately and reliably in C57BL/6 mice using the same 

technique.  
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Figure 3-23: Tumour volume classified by both 3D-CAMMP and expert users. It can be seen 
that the classifications are very similar though 3D-CAMMP is often able to segment the 
tumours earlier than manual expert segmentation. Furthermore, 3D-CAMMP does not 
segment any tumours in the KP or WT animals throughout the study. 
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3D-CAMMP can also be used by expert users to give more confidence to their segmentations. It 

was shown that due to the difficulty of pancreatic tumour segmentation that expert users could 

miss tumours and 3D-CAMMP can provide another stage of analysis to help in identifying these 

tumours. The final DSC score of 3D-CAMMP was 0.75 when compared to expert users. This 

score is hindered by the fact that 3D-CAMMP is able to locate tumours that were missed by the 

experts but upon revisiting the images agreed that they were indeed tumours. 3D-CAMMP was 

also able to detect tumours at earlier stages than expert users with an average of 3 days earlier, 

see Figure 3-23. 
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4 Discussion 

A major problem still facing the radiomics field as a whole is the acceptance and change in the 

culture of the larger medical and biological community. More published proof of radiomics 

power is constantly being requested, especially on the preclinical side. As more studies are 

proving the stability and usefulness of radiomics more researchers are brought to understand 

the power that it can unlock (120). 

In this work a computational tool has been developed, termed 3D-CAMMP, that is able to 

segment multiple organs within the abdomen of a KPC mouse including the mouse pancreas 

and any pancreatic tumours that form. 3D-CAMMP requires very little user input which makes it 

accessible to researchers who do not have much experience in image analysis, but nevertheless 

is still very customisable if the researcher wishes it to be. The mouse pancreas and pancreatic 

tumours are difficult objects to segment due to their lack of clearly defined borders, spatial 

variance of the pancreas and the tumours being able to form anywhere in a large area. This 

coupled with the fact that the abdomen as a whole is extremely variable, depending on the age 

of the animal, if it has just eaten and even if it has just woken up, creates a difficult set of 

obstacles to overcome. 3D-CAMMP is built with the work done at Invicro with their Whole Body 

Atlas segmentation (WBA) tool that is capable of segmenting large organs within the abdomen 

and through the combination of the WBA, registration and machine learning algorithms this 

segmentation is possible (80). 

Acceptance of radiomics can still be an issue when working with researchers who have never 

used it before as is the case with all emergent techniques. Early work in the field may also in 

some cases not be rigorous enough in terms of capturing the relevant information and 

statistical power (121) Welch et al published a study in 2019 showing that not all radiomic 

features are suitable surrogates for tumour volume measurements (122). A combined method 

of semi automatic segmentation and manual segmentation has been suggested to combat 

some of these issues (123). However, as more studies are published proving the robustness of 
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the techniques and the techniques become more broadly available, a quick shift will occur 

towards radiomics being used for long term studies as well as to enhance end of study histology 

(124). The emergent technology of whole animal slicing and histology will also be another major 

step towards the proof of radiomic features as then histological and non-invasive images can be 

co-registered to each other much more easily (125). The sharing of data between institutes and 

groups would be a huge boon to the field of Radiomics and Data Mining as a whole. The 

availability of data would create a much larger pool of information for researchers to use and 

could be extremely useful, especially when used for control studies. There is a current trend of 

sharing data after publication that for the imaging community in particular would be a great 

step forward. 3D-CAMMP has been built to be used on any workstation that might be available 

to the user so as not limit its use. However, a version built to use parallel programming, graphic 

processor programming or even cluster and supercomputer programming would be possible 

and would allow for the software to be used much more quickly. 3D-CAMMP and other similar 

tools should also be adapted to try to identify other objects (e.g. tumours, cysts) similar to the 

original design in either location or radiomics features, as building new tools from the ground 

up is often not necessary. Furthermore, tools like 3D-CAMMP often collect large amounts of 

data that may not be used for the original purpose but should in no way be discounted as 

useless. For example, 3D-CAMMP segments the liver, kidneys and spleen of an animal through 

its pipeline, all four of which show measurable anatomical changes throughout tumour 

development and so should be studied further as the data has already been collected but just 

remains un-analysed. This is entirely consistent with the 3R’s aim of obtaining more data from 

each animal. 

In total 30 animals where used in this research. 17 KPC, 8 KP and 5 WT where imaged a total of 

300 times. None of the 30 animals used where bread specifically for this research. 

This work has been presented at multiple conferences and outreach events including: 
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• European Molecular Imaging Meeting (EMIM), 2019. (Conference and Oral 

presentation). 

• World Molecular Imaging Congress (WMIC), Seattle 2018. (Conference, Oral and Poster 

presentation, awarded best poster). 

• Barts Cancer Institute PhD Day (BCI PhD Day), Queen Mary University, 2018, 

(Conference, Poster presentation, awarded best poster).  

• London Pancreas Workshop, 2018, (Conference, Poster presentation, awarded one of 

top 5 abstracts).  

• European Society of Magnetic Resonance in Medicine and Biology (ESMIMB), 2017, 

(Conference, Oral and Poster presentation)  

• Barts Cancer Institute PhD Day, Queen Mary University, 2017, (Conference, Poster 

presentation, awarded best poster). 

• Life Science Initiative, Queen Mary University, 2016, (Conference, Poster presentation, 

awarded best poster).  

• STEMNET: Over 100 hours of public engagement and outreach, including school visits, 

presentations and tours.  

3D-CAMMP has also received over £80,000 in grants including over £5,000 in travel grants from 

national and international agencies and a £75,000 NC3Rs Skills and Knowledge Transfer Grant - 

£75,000 to disseminate the research and have more institutes using 3D-CAMMP (The Francis 

Crick Institute, Cambridge University, Glasgow University and Queen Mary University of 

London). 
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5 Conclusion and Further work  

As set out in section 1.23, the aim of this project was to build a computational tool that will 

automatically segment out the pancreas and any pancreatic tumours from an MRI scan, 

providing a reliable and reproducible image analysis method for volume and surface area 

quantification of the pancreas and pancreatic tumours, reducing effects of user discretion and 

thus improving the accuracy of the data. 

Measured against these criteria, it has been shown that the computational model 3D-CAMMP 

can perform more consistently and more accurately than an expert image analyst. Furthermore, 

it takes less training for the user than either US or manual MRI segmentation. 

The time cost of performing the MRI and running 3D-CAMMP (1-2 hours) is similar to that of 

performing US combined with the required volumetric analysis (2 hours), and has reduced user 

training needed (contrast with the operator dependency of US) and the fact that 3D-CAMMP 

does not need to be monitored for the majority of the time it is running (actual user time 1 

hour). 3D-CAMMP offers a much more accurate, fast and cheaper way to analyse MRI images 

than having a dedicated expert user or training new users in image analysis. In order to reduce 

the amount of time for which 3D-CAMMP needs to be supervised further, an email alert could 

be set up in the user interface to inform users when the quality control step is required and 

when 3D-CAMMP has finished the classifications. 3D-CAMMP removes the need for dissection 

at every time point, similar to US, and in doing so reduces the issues of inter-animal variability, 

improving statistics for longitudinal studies, reduces group size and the cost of breeding and 

maintaining animals. A study was conducted between image analysis experts (n=3) and image 

analysis novices (n=3). The image analysis novices were given a four-hour training session on 

the segmentation of pancreatic tumours in KPC mice. Each group was given three images to 

segment. On average the image analysis experts were able to segment the pancreatic tumours 

within 1 hour per image with a high level of confidence. However, the image analysis novices 
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took on average 4 hours with a low level of confidence in the segmentation. Typical 

segmentations can be seen in Figure 1-15. 

The reduction in group size has a substantial effect on the breeding due to fewer than 1 in 4 of 

the animals bred in this model having the correct genotype. Therefore, a reduction of group size 

from 12 to 8 in a study with 4 groups would reduce the number of animals bred by 64. 

Furthermore, the animals do not need to be age matched and can be inducted into a study 

when the individual animal has tumours of a predetermined size. This helps improve the 

statistical accuracy and means that a smaller colony can be used for the same studies. 

3D-CAMMP has been developed on a low field MRI (Brucker ICON/Aspect 1T). This allows for 

the imaging protocols to be used on any MRI with a field strength of 1T or greater with minimal 

development. Contrast this with protocols that are developed on higher field machines that 

cannot always be transferred to lower field machines due to constraints of the field. 

Furthermore, this allows an institute to be able to purchase a low field machine (or use the low 

field MRI component of a hybrid system) and still be able to perform the protocols needed to 

use 3D-CAMMP.  

Finally, any higher field MRI will be able to produce the image quality needed for 3D-CAMMP in 

a faster time than a low field MRI with similar tissue contrast (T1 weighted FLASH) and without 

any addition of contrast agent. This tool is now being implemented at centres with high field 

MRI. 

To further improve this model, a larger set of features could be identified to increase the 

amount of points that the machine learning model must work from.  

If the number of features is increased, then the use of feature selection may become relevant. 

3D-CAMMP could be run faster using Parallel processing, GPU processing or even a cluster or 

supercomputer. However, if 3D-CAMMP was built in this way it would reduce its usability as it 
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would require anyone using it to have the correct hardware and knowledge of how to set it up. 

As it stands, 3D-CAMMP can be run on any computer, giving it much wider applicability.  

In addition, and in parallel with the field of radiomics in humans, correlation of the outputs of 

3D-CAMMP need to be validated through collection of pancreatic and pancreatic tumour 

histology data from scanned animals.  This will provide reassurance for researchers that the 

model outputs correlate not only with imaging experts, but also are in agreement with results 

obtained from whole body tissue staining.     

An NC3Rs’ Skills and Knowledge Transfer Grant has been secured to implement 3D-CAMMP at 

Barts Cancer Institute (QMUL), The Francis Crick Institute, Cambridge University and The 

Beatson (Glasgow University) with collaborations with Invicro (USA). Each site will be visited 

over the next year and appropriate MRI protocols will be designed as well as training and 

support provided for the new users. Furthermore, the User Interface of 3D-CAMMP will be 

upgraded to make it more accessible. Each institute has also agreed that data collected using 

these protocols will be available online to the wider scientific community, after publication of 

the data to allow researchers from all over the world to use 3D-CAMMP with a large library of 

data and reduce the number of control experiments needed. 3D-CAMMP in this time will also 

be further developed and tested on its ability to detect metastatic tumours within the KPC 

model as well as detection of tumours in other genetically modified mouse models, for 

pancreatic cancer and beyond. 
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Appendix 1: 3D-CAMMP 
6.1 ThreeDAMMP.m 
%% Data Pipeline 
% 11/12/2018 
function ThreeDCAMMP() 
% addpath('Code') 
currentFolder = pwd; 
masDir = CharParse(currentFolder,'\D',0); 
 
 
%% Find the maximum magnitude of vectors from centre of mass of organs to general centre 
f = 'data/refLib/*1.rmha'; % Get all rmha files 
F = dir(f); 
a = size(F,1); 
mag = zeros(1,a); 
for i = 1:a 
    fROI = sprintf('data/refLib/%s',F(i).name); 
    [ROI,~] = mhdImport(fROI); 
    %% Centre of each ROI 
    [xN,yN,zN] = deal(zeros(7,1)); 
    for j = 1:7 %for loop for each ROI 
        Roi = ROI; 
        Roi(Roi~=j)=0; 
        Roi = Roi./j; 
        cen = regionprops(Roi,'centroid'); 
        xN(j) = cen.Centroid(2); 
        yN(j) = cen.Centroid(1); 
        zN(j) = cen.Centroid(3); 
        xyzN(j,[2,1,3]) = cen.Centroid; %Reorder as output of cen is y,x,z 
    end 
    xyzNm =  round(mean(xyzN)); 
    xyzNm = reshape(xyzNm, [1 3]); 
    mag(i) = mean(sum(([xyzN(:,1),xyzN(:,2),xyzN(:,3)] - 
[xyzNm(1),xyzNm(2),xyzNm(3)]).^2,2).^(1/2)); 
end 
magColl = round(mean(mag)); 
 
%% Pancreas and Tumour Cloud 
id = {}; 
[PancCloudWarp, TumCloudWarp] = deal(zeros(120,80,160)); 
[roiPanc, roiTum] = deal([]); 
for m = 1:size(F,1) 
    fROI = sprintf('data/refLib/%s',F(m).name); 
    [ROI,~] = mhdImport(fROI); 
    %% Centre of each ROI 
    xyzN = zeros(7,3); 
    for n = 1:7 %for loop for each ROI Kidneys Spleen Stomach, Liver Gallbladder and Hepatic 
Portal Vein 
        Roi = ROI; 
        Roi(Roi~=n)=0; 
        Roi = Roi./n; 
        cen = regionprops(Roi,'centroid'); 
        xyzN(n,[2,1,3]) = cen.Centroid; %Reorder as output of cen is y,x,z 
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    end 
    xyzNm = round(mean(xyzN)); 
    xyzNm = reshape(xyzNm, [1 3]); 
    shiftT = eye(4); 
    PancCenterVec = size(Roi)/2; 
    shiftImg{m} = -( xyzNm - PancCenterVec); 
    shiftT(4,1:3) = shiftImg{m}([2,1,3]); 
    tformShift = affine3d(); 
    tformShift.T = shiftT; 
    mag = mean(sum(([xyzN(:,1),xyzN(:,2),xyzN(:,3)] - 
[xyzNm(1),xyzNm(2),xyzNm(3)]).^2,2).^(1/2)); 
    scaleFac = magColl/mag; %Calcuate the scaling factor 
    Rin = imref3d(size(Roi)); 
    Rin.XWorldLimits = Rin.XWorldLimits-2*mean(Rin.XWorldLimits); %Find the limits for the 
translation 
    Rin.YWorldLimits = Rin.YWorldLimits-2*mean(Rin.YWorldLimits); 
    Rin.ZWorldLimits = Rin.ZWorldLimits-2*mean(Rin.ZWorldLimits); 
     
    %% Pancreas 
    Roi = ROI; 
    Roi(Roi~=8)=0; 
    Roi = Roi./8; 
    img = imwarp(Roi,Rin,tformShift,'linear','OutputView', Rin,'FillValues', min(Roi(:))); 
    img = imresize3(img,scaleFac); 
    img = FitImageToMatrix(img,size(Roi)); 
    PancCloudWarp = PancCloudWarp+img; 
    roiPanc = cat(4,roiPanc,img); 
     
    %% Tumour 
    Roi = ROI; 
    Roi(Roi~=9)=0; 
    Roi = Roi./9; 
    imgTum = imwarp(Roi,Rin,tformShift,'linear','OutputView', Rin,'FillValues', min(Roi(:))); 
    imgTum = imresize3(imgTum,scaleFac); 
    imgTum = FitImageToMatrix(imgTum,size(Roi)); 
    TumCloudWarp = TumCloudWarp+imgTum; 
    roiTum = cat(4,roiTum,imgTum); 
     
    %% Index 
    idTemp = CharParse(F(m).name,'.',0); 
    id = [id;idTemp]; 
     
end 
 
DiMask(:,:,1) = [0 1 0; 1 1 1; 0 1 0]; 
DiMask(:,:,2) = 1; 
DiMask(:,:,3) = DiMask(:,:,1); 
 
% Pancreas 
PancDi = imdilate(PancCloudWarp,DiMask); 
PancSmooth = imgaussfilt3(PancDi, 1); 
PancSmooth(PancSmooth<0) = 0; 
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PancSmooth = PancSmooth./max(max(max(PancSmooth))); 
IDs.ID = id; 
PancCloudKPC = struct('PancreasCloud',PancSmooth,'AnimalID', IDs,'NumberOfScans',size(id,1)); 
 
% Tumour 
TumSmooth = imgaussfilt3(TumCloudWarp, 1); 
TumSmooth(TumSmooth<0) = 0; 
TumSmooth = TumSmooth./max(max(max(TumSmooth))); 
IDs.ID = id; 
TumCloud = struct('TumourCloud',TumSmooth,'AnimalID', IDs,'NumberOfScans',size(id,1)); 
 
%% Bias filter correction, Normalisation & Data convertion - Data in Input/BiasCon 
%% runBMC 
scriptPath = '"runBMC-Matlab.vqs"'; 
openVQ = ['"C:\Program Files\inviCRO\VivoQuant\Vivoquant.exe" --script ' scriptPath ' & exit 
&']; 
system (openVQ); 
uiwait(msgbox('Complete runBMC code in VivoQuant and then click OK.','Success','modal')); 
 
%% Multi Atlas Segmentation tool - Data in Rois 
%% runWBA 
% Run the VivoQuant Whole Body Atlas tool in order to classify the Kidneys, 
% Spleen, Stomach, Liver, Gallbladder and Hepatic Portal Vein 
 
% Build a reference library from the data contained in folder library 
d = 'Library/*KPC*1.mhd'; 
D = dir(d); 
inDir = 'WBA';  
inputD = 'Library'; 
if ~exist(inDir,'dir'),mkdir(inDir);end 
 
fid = fopen( 'WBA/refList.txt', 'wt' ); 
for i = 1:length(D) 
  dataName = CharParse(D(i).name,'.',0); 
  fprintf(fid,'%s/%s,%s/%s.rmha\n', D(i).folder, D(i).name, D(i).folder, dataName); 
   
  id = sprintf('%s/%s',inputD,D(i).name); 
  headerid = fopen(id,'r+'); 
  [A,~] = fscanf(headerid,'%s'); 
  if contains(A,'StudyDescription') == 0 
      fprintf(headerid, 'StudyDescription = MRI'); 
  end 
  fclose(headerid); 
end 
fclose(fid); 
 
% Run the WBA 
indir = 'data'; 
%  
probOut = sprintf('./data/probabilities/'); 
if ~exist(probOut,'dir'),mkdir(probOut);end 
 
scriptPath = '"MAS_tool.vqs"'; 
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openVQ = ['"C:\Program Files\inviCRO\VivoQuant\Vivoquant.exe" --script ' scriptPath ' & exit 
&']; 
system (openVQ); 
 
uiwait(msgbox('Once the MAS tool in VivoQuant has finished for all scans click 
OK.','Success','modal')); 
 
%% Create the probability map of all organs segmented by the WBA 
d = dir(fullfile(indir,'*1.mhd')); 
for i = 1:length(d) 
    dDir = fullfile(indir,d(i).name); 
    basename = strrep(d(i).name,'.mhd',''); 
    [zScan, rScan, klScan, krScan, liScan, spScan, stScan, gScan, hScan] = deal(zeros(120,80,160)); 
 
 % Find the ROI output 
    [~,sInfo] = mhdImport(dDir); 
    odir = 
sprintf('%s/AppData/Roaming/inviCRO/VivoQuant/cache/WBAtlas%s',masDir,sInfo.sopinstanceu
id); 
 
    % Create probability map 
    pname = sprintf('%s/average_BestN-kidneyLeft-linear-deform.mhd',odir); 
    [pScan,~] = mhdImport(pname); 
    zScan = zScan+pScan; 
    pScan(pScan >= 0.5) = 1; 
    pScan(pScan < 0.5) = 0; 
    CC = bwconncomp(pScan); 
    numPixels = cellfun(@numel,CC.PixelIdxList); 
    [~,idxG] = max(numPixels); 
    klScan(CC.PixelIdxList{idxG}) = 1; 
    klScan = round(smooth3(klScan,'box',[3,3,3])); 
    rScan(klScan == 1) = 1; 
     
    pname = sprintf('%s/average_BestN-kidneyRight-linear-deform.mhd',odir); 
    [pScan,~] = mhdImport(pname); 
    zScan = zScan+pScan; 
    pScan(pScan >= 0.5) = 1; 
    pScan(pScan < 0.5) = 0; 
    CC = bwconncomp(pScan); 
    numPixels = cellfun(@numel,CC.PixelIdxList); 
    [~,idxG] = max(numPixels); 
    krScan(CC.PixelIdxList{idxG}) = 1; 
    krScan = round(smooth3(krScan,'box',[3,3,3])); 
    rScan(krScan == 1) = 2; 
     
    pname = sprintf('%s/average_BestN-Spleen-linear-deform.mhd',odir); 
    [pScan,~] = mhdImport(pname); 
    zScan = zScan+pScan; 
    pScan(pScan >= 0.5) = 1; 
    pScan(pScan < 0.5) = 0; 
    CC = bwconncomp(pScan); 
    numPixels = cellfun(@numel,CC.PixelIdxList); 
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    [~,idxG] = max(numPixels); 
    spScan(CC.PixelIdxList{idxG}) = 1; 
    spScan = round(smooth3(spScan,'box',[3,3,3])); 
    rScan(spScan == 1) = 3; 
     
    pname = sprintf('%s/average_BestN-Stomach-linear-deform.mhd',odir); 
    [pScan,~] = mhdImport(pname); 
    zScan = zScan+pScan; 
    pScan(pScan >= 0.5) = 1; 
    pScan(pScan < 0.5) = 0; 
    CC = bwconncomp(pScan); 
    numPixels = cellfun(@numel,CC.PixelIdxList); 
    [~,idxG] = max(numPixels); 
    stScan(CC.PixelIdxList{idxG}) = 1; 
    stScan = round(smooth3(stScan,'box',[3,3,3])); 
    rScan(stScan == 1) = 4; 
     
    pname = sprintf('%s/average_BestN-Liver-linear-deform.mhd',odir); 
    [pScan,~] = mhdImport(pname); 
    zScan = zScan+pScan; 
    pScan(pScan >= 0.5) = 1; 
    pScan(pScan < 0.5) = 0; 
    CC = bwconncomp(pScan); 
    numPixels = cellfun(@numel,CC.PixelIdxList); 
    [~,idxG] = max(numPixels); 
    liScan(CC.PixelIdxList{idxG}) = 1; 
    liScan = round(smooth3(liScan,'box',[3,3,3])); 
    rScan(liScan == 1) = 5; 
     
    pname = sprintf('%s/average_BestN-Gallbladder-linear-deform.mhd',odir); 
    [pScan,~] = mhdImport(pname); 
    pScan(pScan >= 0.15) = 1; 
    pScan(pScan < 0.15) = 0; 
    CC = bwconncomp(pScan); 
    numPixels = cellfun(@numel,CC.PixelIdxList); 
    [~,idxG] = max(numPixels); 
    gScan(CC.PixelIdxList{idxG}) = 1; 
    gScan = round(smooth3(gScan,'box',[3,3,3])); 
    rScan(gScan == 1) = 6; 
     
    pname = sprintf('%s/average_BestN-HepaticPortalVein-linear-deform.mhd',odir); 
    [pScan,pInfo] = mhdImport(pname); 
    zScan = zScan+pScan; 
    pScan(pScan >= 0.2) = 1; 
    pScan(pScan < 0.2) = 0; 
    CC = bwconncomp(pScan); 
    numPixels = cellfun(@numel,CC.PixelIdxList); 
    [~,idxG] = max(numPixels); 
    hScan(CC.PixelIdxList{idxG}) = 1; 
    hScan = round(smooth3(hScan,'box',[3,3,3])); 
    rScan(hScan == 1) = 7; 
     
    zScan(zScan>1) = 1; 
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    % Save the probability to new location 
    probName = sprintf('%s%s_OtherProb.mhd',probOut,basename); 
    mhdExport(zScan,probName,pInfo); 
     
    % Save the ROIs to new location 
    mROI = CharParse(dDir,'.m',0); 
    dataName = sprintf('%sMASTool.rmha',mROI); 
    [~,rInfo] = mhdImport(dataName);     
%     newName = sprintf('%s%s.rmha',outDir,basename); 
    mhdExport(rScan,dataName,rInfo); 
end 
 
%% Manual QC 
% uiwait(msgbox('Check the output from the MAS tool ROIs in the data folder. When you are 
happy with an ROI save it into the same folder, once all ROIs have been check click 
OK.','Success','modal')); 
 
%% ROI and Other Prob Combine - Data in Rois 
%% runCombineOther 
% Take the probability cloud of the organs from the WBA and combine this 
% with the user verified ROIs and after some smoothing taking the largest 
% number from either to update the probability cloud 
 
runDir = sprintf('data/*MASTool.rmha'); %Identify input folder 
C = dir(runDir); 
 
id = struct2cell(C); 
for i = 1:size(C,1) 
%     zScan = zeros(120,80,160); %Create a new space 
    rName = sprintf('data/%s',C(i).name); 
    [rScan,~] = mhdImport(rName); %Load the ROI data 
    rScan(rScan > 7) = 0; %Remove any extra ROIs 
    rScan(rScan > 1) = 1; %Convert to a binary map 
 DiMask(:,:,1) = [0 1 0; 1 1 1; 0 1 0]; %Create a dilation mask 
    DiMask(:,:,2) = 1; 
    DiMask(:,:,3) = DiMask(:,:,1); 
    dScan = imdilate(rScan,DiMask); %Dilate the ROI data 
    dScan = dScan - rScan; %Smooth the edges of the dilated data 
    dScan = dScan.*0.5; 
 rScan = rScan+dScan; 
    idC = CharParse(id{1,i},'MASTool.',0); 
    oName = sprintf('%s%s_OtherProb.mhd',probOut,idC); 
    [oScan,sInfo] = mhdImport(oName); %Load the other probability   
    Scan = max(rScan,double(oScan)); %Take the max value from either the ROIs or the Other 
probability 
    mhdExport(Scan,oName,sInfo); %Save the data out 
end 
 
%% Create bounding area and normalise the scan - Data in normalisedData 
%% runArea 
% Load in the tumour and pancreas clouds that are built from the library  
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% data. These probability clouds are then then used to identify where the  
% Machine Learning should look to identify the pancreas and tumour. Any  
% voxels already classified as other organs by the WBA and user are removed 
% from this area. Finally perform mean standard deviation normailsation 
 
 
normOut = 'data/normalised'; 
if ~exist(normOut,'dir'),mkdir(normOut);end 
 
%% Load in the novel scan 
d = 'data/*MASTool.rmha'; % Get all rmha files 
D = dir(d); 
 
for m = 1:size(D,1)  
    fROI = sprintf('data/%s',D(m).name); %Load in the ROI 
    [ROI,rInfo] = mhdImport(fROI);     
    id = CharParse(D(m).name,'MASTool.',0);  
    idType = CharParse(id,'-',2); 
    idType = idType{3}; 
 
    fScan = sprintf('data/%s.mhd',id); %Load in the scan  
    [scan,sInfo] = mhdImport(fScan); 
    scanRe = reshape(scan,[size(scan,1)*size(scan,2)*size(scan,3),1]); 
    T = otsuthresh(scanRe); %Find the Otsu's threshold of the scan 
    scanD = scan; 
    scanD(scanD < T) = 0; 
    scanD(scanD >= T) = 1; %Create binary map 
    di(:,:,1) = [0 0 0; 0 1 0; 0 0 0]; 
    di(:,:,2) = [0 1 0; 1 1 1; 0 1 0]; 
    di(:,:,3) = di(:,:,1); 
    for n = 1:3 %Dilate the binary map 3 times 
        scanD = imdilate(scanD,di); 
    end 
         
    %% Centre of each ROI + the average distance of that ROI to the Pancreas 
    xyzN = zeros(7,3); 
    for n = 1:7 %for loop for each ROI 
        Roi = ROI; 
        Roi(Roi~=n)=0; 
        Roi = Roi./n;  
        cen = regionprops(Roi,'centroid'); 
        xyzN(n,[2,1,3]) = cen.Centroid; %Reorder as output of cen is y,x,z 
    end 
    xyzNm = round(mean(xyzN)); 
    xyzNm = reshape(xyzNm, [1 3]); 
    shiftT = eye(4); 
    PancCenterVec = size(Roi)/2; 
    shiftImg{m} = ( xyzNm - PancCenterVec); 
    shiftT(4,1:3) = shiftImg{m}([2,1,3]); 
    tformShift = affine3d(); 
    tformShift.T = shiftT; 
    mag = mean(sum(([xyzN(:,1),xyzN(:,2),xyzN(:,3)] - 
[xyzNm(1),xyzNm(2),xyzNm(3)]).^2,2).^(1/2)); 
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    scaleFac = magColl/mag; 
     
    Rin = imref3d(size(Roi)); 
    Rin.XWorldLimits = Rin.XWorldLimits-2*mean(Rin.XWorldLimits); 
    Rin.YWorldLimits = Rin.YWorldLimits-2*mean(Rin.YWorldLimits); 
    Rin.ZWorldLimits = Rin.ZWorldLimits-2*mean(Rin.ZWorldLimits); 
     
    %% Transform probability cloud 
    PancCloudNovel = PancCloudKPC.PancreasCloud; 
    PancCloudNovel = imresize3(PancCloudNovel,1/scaleFac); 
    PancCloudNovel = FitImageToMatrix(PancCloudNovel,size(Roi)); 
    PancCloudNovel = imwarp(PancCloudNovel,Rin,tformShift,'linear','OutputView', 
Rin,'FillValues', min(Roi(:))); 
    PancCloudNovel(PancCloudNovel<0)=0; 
    pCloud = sprintf('%s/%s_PancCloud.mhd',probOut,id); 
    mhdExport(PancCloudNovel,pCloud,sInfo); 
     
    TumCloudNovel = TumCloud.TumourCloud; 
    TumCloudNovel = imresize3(TumCloudNovel,1/scaleFac); 
    TumCloudNovel = FitImageToMatrix(TumCloudNovel,size(Roi)); 
    TumCloudNovel = imwarp(TumCloudNovel,Rin,tformShift,'linear','OutputView', 
Rin,'FillValues', min(Roi(:))); 
    TumCloudNovel(TumCloudNovel<0)=0; 
    tCloud = sprintf('%s/%s_TumCloud.mhd',probOut,id); 
    mhdExport(TumCloudNovel,tCloud,sInfo); 
    areaRoi = PancCloudNovel+TumCloudNovel; 
 
    areaRoi(areaRoi<0.02) = 0; 
    areaRoi(areaRoi>0)=1; 
    areaRoi = areaRoi.*scanD; 
    aRoi = sprintf('%s/%s_AreaRoi.rmha',probOut,id); 
    mhdExport(areaRoi,aRoi,rInfo); 
     
    %% Normalisation  
    idx = scan>=T; 
    scanRe(scanRe<T)=[]; 
    scanStd = (scanRe-mean(scanRe))/std(scanRe); 
    [mk,mkI] = maxk(scanStd,round(size(scanStd,1)*0.001)); 
    scanStd(mkI) = mk(end); 
    scanStdBuild = zeros(120,80,160); 
    if min(scanStd) < 0 
        scanStdBuild = scanStdBuild + min(scanStd); 
    end 
    scanStdBuild(idx) = scanStd; 
    scanStdBuild = scanStdBuild - min(scanStd); 
     
    %% Save out 
    StdName = sprintf('%s/%s.mhd',normOut,id); 
    mhdExport(scanStdBuild,StdName,sInfo); 
     
end 
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%% Feature Calculation - Data in Features 
% runFeatures 
% Calculate the features of the area defined in runArea 
 
normDir = ('./data/normalised/'); 
probDir = ('./data/probabilities/'); 
 
d = 'data/normalised/*1.mhd'; % Get all ROIs 
D = dir(d); 
for l = 1:length(D) 
    dName{l} = CharParse(D(l).name,'.',0); 
end 
 
x = size(D,1); 
 
Outdir = sprintf('./data/features/'); 
if ~exist(Outdir,'dir') 
    mkdir(Outdir); 
end 
 
DiMask(:,:,1) = [0 1 0; 1 1 1; 0 1 0]; 
DiMask(:,:,2) = 1; 
DiMask(:,:,3) = DiMask(:,:,1); 
% load('magMean.mat'); 
 
OffSet = [1 2]; 
glcm_window = 11; 
 
for i = 1:length(D) 
    %% Read volumes 
    fscan = sprintf('%s%s',normDir,D(i).name); 
    [Data,~]=mhdImport(fscan); 
    DataP = padarray(Data,[glcm_window,glcm_window,glcm_window]); 
    DataP = double(DataP); 
     
    pscan = sprintf('%s%s_PancCloud.mhd',probDir,dName{i}); 
    [Panc,~]=mhdImport(pscan); 
    Panc = padarray(Panc,[glcm_window,glcm_window,glcm_window]); 
    idType = CharParse(dName{i},'-',2); 
    idType = idType{3}; 
    if strcmp('KPC',idType) 
        tscan = sprintf('%s%s_TumCloud.mhd',probDir,dName{i}); 
        [Tum,~]=mhdImport(tscan); 
        Tum = padarray(Tum,[glcm_window,glcm_window,glcm_window]); 
    else  
        Tum = zeros(size(Panc)); 
    end 
     
    % mask 
    fROI = sprintf('data/%sMASTool.rmha',dName{i}); 
    [ROI,~]=mhdImport(fROI); 
     
 [Gmag, Gazi, Gele] = imgradient3(DataP); 
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    [Gx, Gy, ~] = imgradientxyz(DataP); 
    Gxy1 = (Gx.^2+Gy.^2).^.5/(2^0); 
    Gxy2 = (Gx.^2+Gy.^2).^.5/(2^1); 
    Gxy3 = (Gx.^2+Gy.^2).^.5/(2^2); 
    Gxy4 = (Gx.^2+Gy.^2).^.5/(2^3); 
    Gxy5 = (Gx.^2+Gy.^2).^.5/(2^4); 
    FA = FACalcArea(Gmag,Gazi,Gele,glcm_window); 
 
    %% COM     
    xyzN = zeros(7,3); 
    for n = 1:7 %for loop for each ROI 
        Roi = ROI; 
        Roi(Roi~=n)=0; 
        Roi = Roi./n; 
        cen = regionprops(Roi,'centroid'); 
        xyzN(n,[2,1,3]) = cen.Centroid; %Reorder as output of cen is y,x,z 
    end 
 
    xyzNm = round(mean(xyzN)); 
    xyzNm = reshape(xyzNm, [1 3]); 
    mag = mean(sum(([xyzN(:,1),xyzN(:,2),xyzN(:,3)] - 
[xyzNm(1),xyzNm(2),xyzNm(3)]).^2,2).^(1/2)); 
    scaleFac = magColl/mag; 
     
   %% Bounding Box 
    % mask 
    fROI = sprintf('%s%s_AreaRoi.rmha',probDir,dName{i}); 
    [ROIb,~]=mhdImport(fROI); 
    ROInames = {'BoundingBox'}; 
%     Rs = size(rInfo.extras.val{end},1); 
    RoiP = padarray(ROIb,[glcm_window,glcm_window,glcm_window]); 
    
     
    %% Find slices with label 
    idxP = find(RoiP); 
    [~,~,i3] = ind2sub(size(RoiP), idxP); 
    indZ = unique(i3); 
    RoiZ = RoiP; 
    for kk = 1:glcm_window 
        RoiZ = imdilate(RoiZ,DiMask); 
    end 
    DataP = padarray(DataP,[0,0,glcm_window]); 
    DataP = double(DataP); 
 
    %% extract features 
    feature_matrix=[]; 
    Glrlm = []; 
    for k = 1:length(indZ) 
        [indx,indy] = find((RoiP(:,:,indZ(k)))>0); 
        %GLCM 
        [mean_im,std_im,entropy_im,~]= calculate_main_features((DataP(:,:,indZ(k)))); 
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glcm_struct=calculate_glcm_Run_IdxTest((DataP(:,:,indZ(k))),glcm_window,OffSet,indx,indy); 
        
[featur_vector,~]=features_vector_Run(ROInames(1),mean_im,std_im,entropy_im,glcm_struct,
indx,indy); 
        feature_matrix= cat(1, feature_matrix, featur_vector); 
        %GLRLM 
        [RLFeatures0,RLFeatures45,RLFeatures90,RLFeatures135] = deal([]); 
        [rlm0,rlm45,rlm90,rlm135,max0,max45,max90,max135] = 
calculate_glrlm_Run_IdxTest(DataP(:,:,indZ(k)),glcm_window,indx,indy); 
        for jj = 1:size(rlm0,1) 
            [RLFeatures0(jj,:)] = calculate_glrlm_features(rlm0{jj,1},max0(:,jj),glcm_window); 
        end 
        for jj = 1:size(rlm45,1) 
            [RLFeatures45(jj,:)] = calculate_glrlm_features(rlm45{jj,1},max45(:,jj),glcm_window); 
        end 
        for jj = 1:size(rlm90,1) 
            [RLFeatures90(jj,:)] = calculate_glrlm_features(rlm90{jj,1},max90(:,jj),glcm_window); 
        end 
        for jj = 1:size(rlm135,1) 
            [RLFeatures135(jj,:)] = calculate_glrlm_features(rlm135{jj,1},max135(:,jj),glcm_window); 
        end 
        Glrlm = cat(1,Glrlm,[RLFeatures0, RLFeatures45, RLFeatures90, RLFeatures135]); 
         
    end 
    feature_matrix= cat(1, feature_matrix); 
    Features = cat(2,feature_matrix(:,1:23), Glrlm); 
     
    %% Spatial features 
    fea = MoCalc(DataP,idxP,glcm_window); 
    Features = cat(2,Features, fea); 
     
     %% Calculate the Gradient Magnitude and the FA values 
     Grad = Gmag(idxP); 
     FA3 = FA(idxP); 
     Gxx = Gx(idxP); 
     Gyy = Gy(idxP); 
     Gxy1C = Gxy1(idxP); 
     Gxy2C = Gxy2(idxP); 
     Gxy3C = Gxy3(idxP); 
     Gxy4C = Gxy4(idxP); 
     Gxy5C = Gxy5(idxP); 
     Features = cat(2,Features,Grad,Gxx,Gyy,Gxy1C,Gxy2C,Gxy3C,Gxy4C,Gxy5C,FA3); 
         
    
    %% COM 
    [xx,yy,zz] = Gen3DCoords(RoiP); 
    difCOM = zeros(size(xx,1),3); 
    for k = 1:size(xx,1) 
        difCOM(k,1) = (xyzNm(1)-xx(k,1))/scaleFac; 
        difCOM(k,2) = (xyzNm(2)-yy(k,1))/scaleFac; 
        difCOM(k,3) = (xyzNm(3)-zz(k,1))/scaleFac; 
    end 
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    Features = cat(2,Features, difCOM); 
     
     
   %% Other organ probability 
   PancC = Panc(idxP); 
   TumC = Tum(idxP); 
   OPname = sprintf('%s%s_OtherProb.mhd',probDir,dName{i}); 
   [oProb, ~] = mhdImport(OPname); 
   oProb = padarray(oProb,[glcm_window,glcm_window,glcm_window]); 
   opGath = oProb(idxP); 
   Features = cat(2,Features, PancC, TumC, opGath); 
     
    
    %% Save features 
    saveName = dName{i}; 
    fname = sprintf('%s%s_BoundingArea_Features.mat',Outdir,saveName); 
    parsave(fname,Features); 
     
end 
 
%% Run Model - Data in Classification 
%% runModel 
% Run the Bagged Random Forest Classification model and perform postprocessing 
 
% clearvars 
inputD = 'data/features'; 
d = sprintf('%s/*Area*.mat',inputD); 
D = dir(d); 
load('TreeBagger.mat'); 
 
outdir = 'Classification'; 
if ~exist(outdir),mkdir(outdir);end 
 
%% 
windSize = 11; 
for i = 1:size(D,1) 
    bname = sprintf('%s/%s',inputD,D(i).name); 
    load(bname); 
    dName = CharParse(D(i).name,'_',0); 
     
    [~, yscore] = predict(Mdl,x); 
     
    brName = sprintf('data/probabilities/%s_AreaRoi.rmha',dName); 
    [Bb, ~] = mhdImport(brName); 
    Bb = padarray(Bb,[windSize,windSize,windSize]); 
    Ind = find(Bb == 1); 
     
    rName = sprintf('data/%sMASTool.rmha',dName); 
    [ROI, rInfo] = mhdImport(rName); 
 
    %% Other ROIs 
    Roi = ROI; 
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    Roi(Roi > 7) = 0; 
    ROIidx = find(Roi > 0); 
     
    %% Save out ROIs 
    [yFitVisCloudPanc,yFitVisCloudTum] = deal(zeros(142,102,182)); 
    for j = 1:size(Ind,1) 
        yFitVisCloudPanc(Ind(j)) = yscore(j,1); 
        yFitVisCloudTum(Ind(j)) = yscore(j,2); 
    end 
 
    %% Tumour - Threshold, Smooth, Connected Componets (0.3) 
    yTum = yFitVisCloudTum(1+windSize:end-windSize,1+windSize:end-windSize,1+windSize:end-
windSize); 
    imT = zeros(size(yTum)); 
    imT(yTum>=0.3) = 1; 
    imT = round(smooth3(imT,'ball',3)); 
     
    TumourROI = imT; 
    CC2 = bwconncomp(TumourROI,18); 
    numPixels2 = cellfun(@numel,CC2.PixelIdxList); 
    [~,idx2] = find(numPixels2 < 64); 
    for j = 1:size(idx2,2) 
        TumourROI(CC2.PixelIdxList{idx2(j)}) = 0; 
    end 
    TumourROI(ROIidx) = 0; 
    tumourIdx = find(TumourROI > 0); 
     
    vTumour = length(tumourIdx); 
    voxVol = rInfo.p_size(1)*rInfo.p_size(2)*rInfo.p_size(3); 
    tumVol = vTumour*voxVol; 
     
    %% Pancreas - Threshold, Smooth, Connected Componets (0.3) 
    yPanc = yFitVisCloudPanc(1+windSize:end-windSize,1+windSize:end-
windSize,1+windSize:end-windSize); 
    imP = zeros(size(yPanc)); 
    imP(yPanc>=0.3) = 1; 
    imP = round(smooth3(imP,'ball',3)); 
     
    PancreasROI = imP; 
    CC2 = bwconncomp(PancreasROI,18); 
    numPixels2 = cellfun(@numel,CC2.PixelIdxList); 
    [~,idx2] = find(numPixels2 < 64); 
    for j = 1:size(idx2,2) 
        PancreasROI(CC2.PixelIdxList{idx2(j)}) = 0; 
    end 
    PancreasROI(ROIidx) = 0; 
    PancreasROI(tumourIdx) = 0; 
    pancreasIdx = find(PancreasROI > 0); 
    vPancreas = length(pancreasIdx); 
    pancVol = vPancreas*voxVol; 
     
    %% Combine segmentations 
    dNameTum = CharParse(dName,'-',2); 
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    if tumVol > 0 
        dNameTum{4} = '1'; 
 else 
  dNameTum{4} = '0'; 
    end 
    dNameTumComb = sprintf('%s-%s-%s-%s-
%s',dNameTum{1},dNameTum{2},dNameTum{3},dNameTum{4},dNameTum{5}); 
    ROI(pancreasIdx) = 8; 
    ROI(tumourIdx) = 9; 
    rInfo.extras.val{end}(8) = {'Pancreas'}; 
    rInfo.extras.val{end}(9) = {'Tumour'}; 
    sName = sprintf('%s/%s.rmha',outdir,dNameTumComb); 
    mhdExport(ROI,sName,rInfo); 
 
    tName = sprintf('%s/%s.csv',outdir,dNameTumComb); 
    fid = fopen(tName,'w'); 
    fprintf(fid,'Animal ID,Tumour Size (mm3),Pancreas Size (mm3)\n'); 
    fprintf(fid,'%s,%.2f,%.2f\n',dNameTumComb,tumVol,pancVol); 
    fclose(fid); 
     
    dataPull = sprintf('data/normalised/%s.mhd',dName); 
    [Scan, sInfo] = mhdImport(dataPull); 
    sName = sprintf('%s/%s.mhd',outdir,dNameTumComb); 
    mhdExport(Scan,sName,sInfo); 
     
     
end 
 
%% Remove unnecessary files 
% rmdir normalisedData s 
% rmdir Rois s 
% rmdir WBA/WBAOutput s 
 
uiwait(msgbox('Classifictaion Complete!','Success','modal')); 
end 
 
function [out] = cad_glcm_features(glcm) 
 
% VECTORIZED CODE: FASTER 
 
size_glcm_1 = size(glcm,1);  
size_glcm_2 = size(glcm,2);  
size_glcm_3 = size(glcm,3); 
 
% checked  
out.autoc = zeros(1,size_glcm_3); % Autocorrelation: [2]  
out.contr = zeros(1,size_glcm_3); % Contrast: matlab/[1,2]  
out.corrm = zeros(1,size_glcm_3); % Correlation: matlab  
out.corrp = zeros(1,size_glcm_3); % Correlation: [1,2]  
out.cprom = zeros(1,size_glcm_3); % Cluster Prominence: [2]  
out.cshad = zeros(1,size_glcm_3); % Cluster Shade: [2]  
out.dissi = zeros(1,size_glcm_3); % Dissimilarity: [2]  
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out.energ = zeros(1,size_glcm_3); % Energy: matlab / [1,2]  
out.entro = zeros(1,size_glcm_3); % Entropy: [2]  
out.homom = zeros(1,size_glcm_3); % Homogeneity: matlab  
out.homop = zeros(1,size_glcm_3); % Homogeneity: [2]  
out.maxpr = zeros(1,size_glcm_3); % Maximum probability: [2]  
out.sosvh = zeros(1,size_glcm_3); % Sum of sqaures: Variance [1]  
out.savgh = zeros(1,size_glcm_3); % Sum average [1]  
out.svarh = zeros(1,size_glcm_3); % Sum variance [1]  
out.senth = zeros(1,size_glcm_3); % Sum entropy [1]  
out.dvarh = zeros(1,size_glcm_3); % Difference variance [4]  
out.denth = zeros(1,size_glcm_3); % Difference entropy [1]  
out.inf1h = zeros(1,size_glcm_3); % Information measure of correlation1 [1]  
out.inf2h = zeros(1,size_glcm_3); % Informaiton measure of correlation2 [1]  
out.indnc = zeros(1,size_glcm_3); % Inverse difference normalized (INN) [3]  
out.idmnc = zeros(1,size_glcm_3); % Inverse difference moment normalized [3] 
 
% Indices  
[i,j] = meshgrid(1:size_glcm_1,1:size_glcm_2);  
idx1 = (i+j)-1;  
idx2 = abs(i-j)+1;  
ii = (1:(2*size_glcm_1-1))';  
jj = (0:size_glcm_1-1)'; 
 
for k = 1:size_glcm_3 % number glcms  
% Normalize GLCM  
glcm_sum = sum(sum(glcm(:,:,k)));  
Pij = glcm(:,:,k)./glcm_sum; % Normalize each glcm  
glcm_mean = mean(Pij(:)); % compute mean after norm  
%  
p_x = squeeze(sum(Pij,2));  
p_y = squeeze(sum(Pij,1))';  
%  
u_x = sum(sum(i.*Pij));  
u_y = sum(sum(j.*Pij));  
%  
p_xplusy = zeros((2*size_glcm_1 - 1),1); %[1]  
p_xminusy = zeros((size_glcm_1),1); %[1]  
for aux = 1:max(idx1(:))  
p_xplusy(aux) = sum(Pij(idx1==aux));  
end  
for aux = 1:max(idx2(:))  
p_xminusy(aux) = sum(Pij(idx2==aux));  
end  
 
% Contrast  
out.contr(k) = sum(sum((abs(i-j).^2).*Pij));  
% Dissimilarity  
out.dissi(k) = sum(sum(abs(i-j).*Pij));  
% Energy  
out.energ(k) = sum(sum(Pij.^2));  
% Entropy  
out.entro(k) = -sum(sum(Pij.*log(Pij+eps)));  
% Homogeneity Matlab  
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out.homom(k) = sum(sum(Pij./(1+abs(i-j))));  
% Homogeneity Paper  
out.homop(k) = sum(sum(Pij./(1+abs(i-j).^2)));  
% Sum of squares: Variance  
out.sosvh(k) = sum(sum(Pij.*((j-glcm_mean).^2)));  
% Inverse difference normalized  
out.indnc(k) = sum(sum(Pij./(1+(abs(i-j)./size_glcm_1))));  
% Inverse difference moment normalized  
out.idmnc(k) = sum(sum(Pij./(1+((i-j)./size_glcm_1).^2)));  
% Maximum probability  
out.maxpr(k) = max(Pij(:));  
% Sum average  
out.savgh(k) = sum((ii+1).*p_xplusy);  
% Sum entropy  
out.senth(k) = -sum(p_xplusy.*log(p_xplusy+eps));  
% Sum variance  
out.svarh(k) = sum((((ii+1) - out.senth(k)).^2).*p_xplusy);  
% Difference entropy  
out.denth(k) = -sum(p_xminusy.*log(p_xminusy+eps));  
% Difference variance  
out.dvarh(k) = sum((jj.^2).*p_xminusy);  
% Computes correlation  
hxy1 = -sum(sum(Pij.*log(p_x*p_y' + eps)));  
hxy2 = -sum(sum((p_x*p_y').*log(p_x*p_y' + eps)));  
hx = -sum(p_x.*log(p_x+eps));  
hy = -sum(p_y.*log(p_y+eps));  
hxy = out.entro(k);  
% Information measure of correlation 1  
out.inf1h(k) = (hxy-hxy1)/(max([hx,hy]));  
% Information measure of correlation 2  
out.inf2h(k) = (1-exp(-2*(hxy2-hxy)))^0.5;  
% Cluster Prominence  
out.cprom(k) = sum(sum(Pij.*((i+j-u_x-u_y).^4)));  
% Cluster Shade  
out.cshad(k) = sum(sum(Pij.*((i+j-u_x-u_y).^3)));  
%  
s_x = sum(sum(Pij.*((i-u_x).^2)))^0.5;  
s_y = sum(sum(Pij.*((j-u_y).^2)))^0.5;  
corp = sum(sum(Pij.*(i.*j)));  
corm = sum(sum(Pij.*(i-u_x).*(j-u_y)));  
% Autocorrelation  
out.autoc(k) = corp;  
% Correlation paper  
out.corrp(k) = (corp-u_x*u_y)/(s_x*s_y);  
% Correlation Matlab  
out.corrm(k) = corm/(s_x*s_y);  
end 
end 
 
function glcm_struct=calculate_glcm_Run_IdxTest(im,ws,OffSet,indx,indy) 
 
glcm_struct=cell(length(indx),1); 
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for i=1:length(indx) 
 
        temp_im=im(indx(i)-ws:indx(i)+ws,indy(i)-ws:indy(i)+ws);  % crop a small window around 
pixel 
        glcm=graycomatrix(temp_im,'offset',OffSet,'NumLevels',32,'GrayLimits',[0 1.0]); 
        %glcm=round(mean(glcm,3)); 
        glcm_struct{i}=cad_glcm_features(glcm); 
        
end 
 
end 
 
function [ RLFeatures ] = calculate_glrlm_features( grl,maxcount,ws ) 
mx = size(grl,1); 
mn = 1; 
% gl = (mx-mn)+1; 
gl = mx; 
 
m=grl(mn:mx,:); 
m1=m'; 
maxrun=max(max(maxcount)); 
S=0; 
p = 120+(2*ws); 
q = 80+(2*ws); 
n=p*q; 
G(gl)=0; 
R(q)=0; 
for u=1:gl 
    for v=1:size(m,2) 
        G(u)=G(u)+m(u,v); 
        S=S+m(u,v); 
    end 
end 
for u1=1:size(m,2) 
    for v1=1:gl  
        R(u1)=R(u1)+m1(u1,v1); 
    end 
end 
 
SRE=0; LRE=0; GLN=0; RLN=0; RP=0; LGRE=0; HGRE=0; 
for h1= 1:maxrun 
    SRE=SRE+(R(h1)/(h1*h1)); %Short Run Length 
    LRE=LRE+(R(h1)*(h1*h1)); %Long Run Length 
    RLN=RLN+(R(h1)*R(h1)); %Run Length Non-Uniformity 
    RP=RP+R(h1); %Run Percentage  
end 
SRE1=SRE/S;%%  
LRE1=LRE/S;%% 
RLN1=RLN/S;%% 
RP1=RP/n;%% 
for h2=1:gl 
    GLN=(GLN+G(h2)^2); %Grey-Level Non-Uniformity 
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    LGRE=LGRE+(G(h2)/(h2*h2)); %Low Grey-Level Emphasis  
    HGRE=HGRE+(h2*h2)*G(h2); %High Grey-Level Emphasis 
end 
GLN1=GLN/S; 
LGRE1=LGRE/S; 
HGRE1=HGRE/S; 
RLFeatures = [SRE1,LRE1,RLN1,RP1,GLN1,LGRE1,HGRE1]; 
end 
 
function [ 
glrlm0,glrlm45,glrlm90,glrlm135,maxcount0,maxcount45,maxcount90,maxcount135,idx ] = 
calculate_glrlm_Run_IdxTest(im,ws,indx,indy) 
 
 
[glrlm0,glrlm45,glrlm90,glrlm135] = deal(cell(length(indx),1)); 
for ii=1:length(indx) 
    temp_im=im(indx(ii)-ws:indx(ii)+ws,indy(ii)-ws:indy(ii)+ws); 
     
    %% Set image to 32 levels (16 bit) 
    Imin = min(min(temp_im)); 
    newim = temp_im-Imin; 
    Nmax = max(max(newim)); 
    Q = round(Nmax/32); 
    [m,n] = size(newim); 
    Quant = 0; 
    for i = 1:m 
        for j = 1:n 
            I = temp_im(i,j); 
            for B = 1:32 
                if (I > Quant) && ( I <= Quant+Q) 
                    temp_im(i,j) = B/32; 
                    Quant = Quant+Q; 
                end 
            end 
        end 
    end 
    newmax = max(max(temp_im)); 
    newim1 = temp_im/newmax; 
    temp_im = round(newim1*32)+1; 
    dir=0; 
    dist1=1; 
    if (dir == 1) 
        temp_im=temp_im'; 
    end 
    temp_im(isnan(temp_im))=0; 
     
    %% Calculate grey level run length matrix 90 degrees  mx = max(max(temp_im)); 
 
    mx = max(max(temp_im)); 
%     mn = min(min(temp_im)); 
    [p,q] = size(temp_im); 
    count=1; 
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    c=1; 
    col=1; 
    grl = zeros(mx,p); 
    if ~exist('maxcount90') 
        maxcount90 = zeros(p*q,length(indx)); 
    end 
    mc=0; 
    for j=1:p 
        for k=1:q-dist1 
            mc=mc+1; 
            g=temp_im(j,k); 
            f=temp_im(j,k+dist1); 
            if (g==f)&&(g~=0) 
                count=count+1; 
                c=count; 
                col=count; 
                maxcount90(mc,ii)=count; 
            else grl(g,c)=grl(g,c)+1; 
                col=1; 
                count=1; 
                c=1; 
            end 
        end 
        grl(f,col)=grl(f,col)+1; 
        count=1; 
        c=1; 
    end 
    grl(1,:) = []; 
    glrlm90{ii} = grl; 
     
  
    %% Calculate grey level run length matrix 135 degrees 
    count=1; 
    c=1; 
    col=1; 
    grl = zeros(mx,p); 
    if ~exist('maxcount135') 
        maxcount135 = zeros(p*q,length(indx)); 
    end 
    mc=0; 
    for k=1:q-dist1 
        for j=1:p-dist1 
            mc=mc+1; 
            g=temp_im(j,k); 
            f=temp_im(j+dist1,k+dist1); 
            if (g==f)&&(g~=0) 
                count=count+1; 
                c=count; 
                col=count; 
                maxcount135(mc,ii)=count; 
            else grl(g,c)=grl(g,c)+1; 
                col=1; 
                count=1; 
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                c=1; 
            end 
        end 
        grl(f,col)=grl(f,col)+1; 
        count=1; 
        c=1; 
    end 
    grl(1,:) = []; 
    glrlm135{ii} = grl; 
     
    %% Calculate grey level run length matrix 0 degrees 
    count=1; 
    c=1; 
    col=1; 
    grl = zeros(mx,p); 
    if ~exist('maxcount0') 
        maxcount0 = zeros(p*q,length(indx)); 
    end 
    mc=0; 
    for k=1:q 
        for j=1+dist1:p 
            mc=mc+1; 
            g=temp_im(j,k); 
            f=temp_im(j-dist1,k); 
            if (g==f)&&(g~=0) 
                count=count+1; 
                c=count; 
                col=count; 
                maxcount0(mc,ii)=count; 
            else grl(g,c)=grl(g,c)+1; 
                col=1; 
                count=1; 
                c=1; 
            end 
        end 
        grl(f,col)=grl(f,col)+1; 
        count=1; 
        c=1; 
    end 
    grl(1,:) = []; 
    glrlm0{ii} = grl; 
     
     
    %% Calculate grey level run length matrix 45 degrees 
    count=1; 
    c=1; 
    col=1; 
    grl = zeros(mx,p); 
    if ~exist('maxcount45') 
        maxcount45 = zeros(p*q,length(indx)); 
    end  
    mc=0; 
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    for k=1+dist1:q 
        for j=1+dist1:p 
            mc=mc+1; 
            g=temp_im(j,k); 
            f=temp_im(j-dist1,k-dist1); 
            if (g==f)&&(g~=0) 
                count=count+1; 
                c=count; 
                col=count; 
                maxcount45(mc,ii)=count; 
            else grl(g,c) = grl(g,c)+1; 
                col=1; 
                count=1; 
                c=1; 
            end 
        end 
        grl(f,col)=grl(f,col)+1; 
        count=1; 
        c=1; 
    end 
    grl(1,:) = []; 
    glrlm45{ii} = grl; 
     
     
end 
end 
 
function [mean_im,std_im,entropy_im,gf]= calculate_main_features(im) 
 
% mean of the images  
w=5; 
h = 1/w*ones(w,1); 
H = h*h'; 
mean_im = filter2(H,im); 
 
% standard deviation  
std_im= stdfilt(im,ones(w)); 
 
% entropyfilt 
 
e=11; 
entropy_im= entropyfilt(im,ones(e)); 
 
% gabor filter 
gf=gabor_feature(im); 
 
end 
 
function f_out = CharManip(f_in,s_cut,op,s_add) 
% 
% Function to manipulate strings 
% 
% f_out = CharManip(f_in,s_cut,op,[s_add]) 
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% 
% f_out --> output string 
% f_in --> input string 
% s_cut --> string to remove, replace, or shift 
% op --> operation 
%   0 --> remove s_cut 
%   1 --> replace s_cut with s_add 
%   2 --> insert s_add before s_cut 
% s_add --> string to add (optional) 
 
if nargin == 3 
    s_add = ''; 
end 
 
occur = 0; 
for i = 1:(length(f_in)-length(s_cut)+1) 
  cnt = 0; 
  flag = 0; 
  while cnt < length(s_cut) && flag == 0 
 cnt = cnt + 1; 
 if f_in(i+cnt-1) ~= s_cut(cnt) 
   flag = 1; 
 end 
  end 
  if (cnt == length(s_cut) && flag == 0)  
 occur = occur + 1; 
 idx(occur) = i;  
  end 
end 
 
if occur == 0 
  f_out = f_in; 
  %return; 
  %disp('No occurrences found.'); 
  %msg = sprintf('String %s not found!',s_cut); 
  %error(msg); 
elseif occur == 1 
  switch op 
   case 0 
 f_out = sprintf('%s%s',f_in(1:idx(1)-1),f_in(idx(1)+length(s_cut):length(f_in))); 
   case 1 
 f_out = sprintf('%s%s%s',f_in(1:idx(1)-1),s_add,f_in(idx(1)+length(s_cut):length(f_in))); 
   case 2 
 f_out = sprintf('%s%s%s',f_in(1:idx(1)-1),s_add,f_in(idx(1):length(f_in))); 
  end 
elseif occur > 1 
  switch op 
   case 0 
 f_out = sprintf('%s',f_in(1:idx(1)-1)); 
 for i = 1:occur-1 
   f_out = sprintf('%s%s',f_out,f_in(idx(i)+length(s_cut):idx(i+1)-1)); 
 end 
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 f_out = sprintf('%s%s',f_out,f_in(idx(occur)+length(s_cut):length(f_in))); 
   case 1 
 f_out = sprintf('%s%s',f_in(1:(idx(1)-1)),s_add); 
 for i = 1:occur-1 
   f_out = sprintf('%s%s%s',f_out,f_in(idx(i)+length(s_cut):idx(i+1)-1),s_add); 
 end 
 f_out = sprintf('%s%s',f_out,f_in(idx(occur)+length(s_cut):length(f_in))); 
   case 2 
 f_out = sprintf('%s%s',f_in(1:idx(1)),s_add); 
 for i = 1:occur-1 
   f_out = sprintf('%s%s%s',f_out,f_in(idx(i):idx(i+1)-1),s_add); 
 end 
 f_out = sprintf('%s%s',f_out,f_in(idx(occur):length(f_in))); 
  end 
end 
end 
 
function f_out = CharParse(f_in,s_delimit,op) 
% 
% Function to manipulate strings 
% 
% f_out = CharManip(f_in,s_delimit,op) 
% 
% f_out --> output string or cell 
% f_in --> input string 
% s_delimit --> character delimiter 
% op --> operation 
%   0 --> return all before delimiter 
%   1 --> return all after delimiter 
%   2 --> parse chunks around delimiter (f_out = cell)  
 
sL = length(s_delimit); 
 
occur = 0; 
for i = 1:(length(f_in)-sL+1) 
    cnt = 0; 
    flag = 0; 
    while cnt < length(s_delimit) && flag == 0 
        cnt = cnt + 1; 
        if f_in(i+cnt-1) ~= s_delimit(cnt) 
            flag = 1; 
        end 
    end 
    if (cnt == length(s_delimit) && flag == 0)  
        occur = occur + 1; 
        idx(occur) = i;  
    end 
end 
 
if occur == 0 
    %disp(sprintf('String %s not found!',s_delimit)); 
 if op == 0 || op == 1 
   f_out = f_in; 
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 else 
   f_out{1} = f_in; 
 end 
elseif occur == 1 
    switch op 
        case 0 
            f_out = f_in(1:idx(1)-1); 
        case 1 
            f_out = f_in(idx(1)+sL:length(f_in)); 
        case 2 
            f_out{1} = f_in(1:idx(1)-1); 
            f_out{2} = f_in(idx(1)+sL:length(f_in)); 
    end 
elseif occur > 1 
    switch op 
        case 0 
            f_out = f_in(1:idx(1)-1); 
        case 1 
            f_out = f_in(idx(1)+sL:length(f_in)); 
        case 2 
            f_out{1} = f_in(1:idx(1)-1); 
            for i = 1:occur-1 
                f_out{i+1} = f_in(idx(i)+sL:idx(i+1)-1); 
            end 
            f_out{occur+1} = f_in(idx(occur)+sL:length(f_in)); 
    end 
end 
end 
 
function [FA] = FACalcArea(Mag,Azi,Ele,windowSize) 
    %% One slice of an image at a time 
     
    sP = 1+windowSize; 
    ePX = size(Mag,1)-windowSize; 
    ePY = size(Mag,2)-windowSize; 
    ePZ = size(Mag,3)-windowSize; 
    FA = zeros(size(Mag)); 
    for i = sP:ePX 
        for j = sP:ePY 
            for k = sP:ePZ 
                if Mag(i,j,k) == 0 
                    continue 
                end 
                MagM = mean2(Mag(i-windowSize:i+windowSize,j-windowSize:j+windowSize,k-
windowSize:k+windowSize)); 
                AziM = mean2(Azi(i-windowSize:i+windowSize,j-windowSize:j+windowSize,k-
windowSize:k+windowSize)); 
                EleM = mean2(Ele(i-windowSize:i+windowSize,j-windowSize:j+windowSize,k-
windowSize:k+windowSize)); 
                 
                A(1,1) = MagM*sind(EleM)*cosd(AziM); 
                A(2,1) = MagM*sind(EleM)*sind(AziM); 
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                A(3,1) = MagM*cosd(EleM); 
                T = A*A'; 
                R = T/trace(T); 
                FA(i,j,k) = sqrt((1/2)*(3-(1/trace(R.^2)))); 
            end 
        end 
    end 
 
end 
 
function 
[features_vector,label_mat]=features_vector_Run(label,mean_im,std_im,entropy_im,glcm_stru
ct,indx,indy) 
 
% [indx,indy]=find((mask)>0); 
 
features_vector=zeros(length(indx),24); 
label_mat=cell(length(indx),1); 
 
for i =1: length(indx) 
 
 features_vector(i,1)=mean_im(indx(i),indy(i)); 
      features_vector(i,2)=std_im(indx(i),indy(i)); 
      features_vector(i,3)=entropy_im(indx(i),indy(i)); 
      features_vector(i,4)=mean_im(indx(i),indy(i)); 
        features_vector(i,5)=glcm_struct{i}.corrm;                            
        features_vector(i,6)=glcm_struct{i}.contr; 
        features_vector(i,7)=glcm_struct{i}.corrp; 
        features_vector(i,8)=glcm_struct{i}.cprom; 
        features_vector(i,9)=glcm_struct{i}.cshad; 
        features_vector(i,10)=glcm_struct{i}.dissi; 
        features_vector(i,11)=glcm_struct{i}.energ; 
        features_vector(i,12)=glcm_struct{i}.entro; 
        features_vector(i,13)=glcm_struct{i}.homom; 
        features_vector(i,14)=glcm_struct{i}.maxpr; 
        features_vector(i,15)=glcm_struct{i}.sosvh; 
        features_vector(i,16)=glcm_struct{i}.savgh; 
        features_vector(i,17)=glcm_struct{i}.senth; 
        features_vector(i,18)=glcm_struct{i}.dvarh; 
        features_vector(i,19)=glcm_struct{i}.denth; 
        features_vector(i,20)=glcm_struct{i}.inf1h; 
        features_vector(i,21)=glcm_struct{i}.inf2h; 
        features_vector(i,22)=glcm_struct{i}.indnc; 
        features_vector(i,23)=glcm_struct{i}.idmnc; 
         
        label_mat{i,1}=label; 
         
end 
     
  
     
end 
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% function com = Find_COM(img,b_flag) 
% % 
% % Function to find the center-of-mass of a 2D or 3D image 
% % 
% % com = Find_COM(img,b_flag) 
% % 
% % com --> center-of-mass 
% % img --> input image 
% % b_flag --> binary flag (default = 1).  If 0, then each voxel value will be 
% % used.  If 1, then all > 0 voxel values = 1 
%  
% if nargin == 1, b_flag = 1;end 
%  
% if b_flag == 1 
%   img(img>0) = 1; 
%   img(img~=1) = 0; 
% end 
%  
% if length(size(img))==2 
%  
%   com(1) = sum(sum(img,2)'.*(1:size(img,1)))/sum(img(:)); 
%   com(2) = sum(sum(img,1).*(1:size(img,2)))/sum(img(:)); 
%  
% elseif length(size(img))==3 
%  
%   tmp = squeeze(sum(img,1)); 
%   com_1(2) = sum(sum(tmp,2)'.*(1:size(tmp,1)))/sum(tmp(:)); 
%   com_1(1) = 0; 
%   com_1(3) = sum(sum(tmp,1).*(1:size(tmp,2)))/sum(tmp(:)); 
%  
%   tmp = squeeze(sum(img,2)); 
%   com_2(2) = 0; 
%   com_2(1) = sum(sum(tmp,2)'.*(1:size(tmp,1)))/sum(tmp(:)); 
%   com_2(3) = sum(sum(tmp,1).*(1:size(tmp,2)))/sum(tmp(:)); 
%  
%   tmp = squeeze(sum(img,3)); 
%   com_3(2) = sum(sum(tmp,1).*(1:size(tmp,2)))/sum(tmp(:)); 
%   com_3(1) = sum(sum(tmp,2)'.*(1:size(tmp,1)))/sum(tmp(:)); 
%   com_3(3) = 0; 
%  
% %  if (com_1(1)~=com_3(1) | com_1(3)~=com_2(3) | com_2(2)~=com_3(2)) 
% % disp('Warning; Individual COM Mismatch'); 
% %  end 
%  
%   com = [com_3(1) com_3(2) com_2(3)]; 
%  
% end 
% end 
 
function [img_out,rge_in,rge_out] = FitImageToMatrix(img_in,coords,varargin) 
% 
% Function to fit a 3D image into the size defined in the 3x1 coords 
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% 
% img_out = FitImageToMatrix(img_in,coords,<backgroundPixelValue=min>) 
% 
% img_out --> 3D image out size of coords 
% img_in --> 3D image in 
% coords --> 3 x 1 size vector 
 
d_in = size(img_in); 
d_out = coords; 
d_diff = d_out-d_in; 
 
backgroundPixelValue = double(min(img_in(:))); 
if length(varargin) > 0 
    backgroundPixelValue = varargin{1}; 
end 
img_out = backgroundPixelValue*ones(coords(1),coords(2),coords(3)); 
if length(find(d_diff<0))==0 
    d_diff = round(d_diff/2); 
    for i = 1:3 
      rge_out{i} = (d_diff(i)+1):(d_diff(i)+d_in(i)); 
      rge_in{i} = 1:size(img_in,i); 
    end 
    img_out(rge_out{1},rge_out{2},rge_out{3}) = img_in; 
else 
    for i = 1:3 
        if d_diff(i) < 0 
            rge_out{i} = 1:d_out(i); 
            idx = round(-1*d_diff(i)/2); 
            rge_in{i} = (idx+1):(idx+d_out(i)); 
        else 
            d_diff(i) = round(d_diff(i)/2); 
            rge_out{i} = (d_diff(i)+1):(d_diff(i)+d_in(i)); 
            rge_in{i} = 1:d_in(i); 
        end 
    end 
    img_out(rge_out{1},rge_out{2},rge_out{3}) = img_in(rge_in{1},rge_in{2},rge_in{3}); 
end 
end 
 
function gf=gabor_feature(img)  
 
imageSize = size(img); 
numRows = imageSize(1); 
numCols = imageSize(2); 
 
wavelengthMin = 4/sqrt(2); 
wavelengthMax = hypot(numRows,numCols); 
n = floor(log2(wavelengthMax/wavelengthMin)); 
wavelength = 2.^(0:(n-2)) * wavelengthMin; 
 
deltaTheta = 45; 
orientation = 0:deltaTheta:(180-deltaTheta); 
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g = gabor(wavelength,orientation); 
 
%%  
gabormag = imgaborfilt(img,g); 
 
 
%%  
for i = 1:length(g) 
    sigma = 0.5*g(i).Wavelength; 
    K = 3; 
    gabormag(:,:,i) = imgaussfilt(gabormag(:,:,i),K*sigma); 
end 
 
 
%%  
X = 1:numCols; 
Y = 1:numRows; 
[X,Y] = meshgrid(X,Y); 
featureSet = cat(3,gabormag,X); 
featureSet = cat(3,featureSet,Y); 
 
%%  
 
% numPoints = numRows*numCols; 
X = reshape(featureSet,numRows*numCols,[]); 
 
%% 
X = bsxfun(@minus, X, mean(X)); 
X = bsxfun(@rdivide,X,std(X)); 
 
 
coeff = pca(X); 
 
 
% gf1=X*coeff(:,1); 
gf = reshape(X*coeff(:,1),numRows,numCols); 
 
end  
 
function [x,y,z] = Gen3DCoords(img,value) 
% 
% Function to find the x,y,z coordinates of non-zero voxels in a 3D image 
% 
% [x,y,z] = Gen3DCoords(img,[value]) 
% 
% img --> input image 
% num --> find only coordinates for voxels of a particular value 
% x,y,z --> the coordinates 
 
if ~exist('value','var') || isempty(value) 
  [x,yz] = find(img~=0); 
else 



161 
 

  [x,yz] = find(img == value); 
end 
y = mod(yz,size(img,2)); 
y(y==0) = size(img,2); 
z = ceil(yz/size(img,2)); 
 
end 
 
function parsave(fname, x) 
save(fname, 'x') 
end 
 
function struct = getOrSetField(struct, field, default) 
% takes in a struct and a desired field and populates with default if it 
% does not exist, it is case insensitive, and will force the case of field 
% even if it exists. This function is great for passing options structures 
% to functions 
% 
% Elliot January 2016 
 
fields = fieldnames(struct); 
[a, b] = ismember(lower(field), lower(fields)); 
if ~a 
    struct.(field) = default; 
else 
    %ensure case 
    tmp =     struct.(fields{b(1)}); 
    struct = rmfield(struct, (fields{b(1)})); 
    struct.(field) = tmp; 
end 
end 
 
function mhdExport(dta,filename,varargin) 
% 
% Function to write .mhd and .raw data 
% 
% mhdEport(dta,filename,varargin) 
% 
% dta --> data to be written 
% filename --> path and filename where the .mhd and .raw files should be 
% written 
% varargin must be a structure, examples bellow: 
%   '-p', pixel_size --> pixel size 
%   '-c', class-type --> class (i.e., 'float') 
%   '-s', scale factor --> ScalingFactor 
%   '-si',scale intercept --> ScalingIntercept 
%   '-u', scaling unit --> ScalingUnit 
%   '-r', roi.type,roi.vals --> ROI 
%   '-m', modality --> modality 
%   '-n', patientsname --> PatientsName 
%   '-seriesdec','-d', seriesdescription --> SeriesDescription 
%   '-studydesc', studydescription --> StudyDescription 
%   '-v', version --> Version 
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%   '-o', offset --> use a zero offset (needed for AC) 
%   '-w', slices thrown away (specific to the Atlas MR tool) 
%   '-e', extras (see mhdImport to find all extras) 
%   '-g', magnification (used by NM/CT tool) 
%   '-h', header (assumes unsigned char) 
%   '-i', image type (i.e., volume, planar) 
%   '-id', patient id 
%   '-ipacs', write the header for iPACS upload 
%   '-t', transpose the image data before writing 
%   '-studyuid', study instance uid 
%   '-seriesuid', series instance uid 
%   '-sopuid', sop instance uid 
%   '-weight', animal weight 
%   '-dose', injected dose 
%   '-dosetime', time of injected dose 
%   '-names', ROI names 
%   '-colors', ROI colors 
%   '-cr', cropping range 
%   '-hdr', write the header only (must be MHD) 
%   '-sz', manually write the image size 
%   '-zlib', compress raw using zlib library (writes mhd/zraw pair) 
%   '-off', writes custom offset 
%   '-frameduration', writes duration of each frame (vector) 
%   '-framestart', writes start time of each frame (vector) 
%   '-framemidpoint', writes center point of each frame (vector) 
%   '-frameunit', writes time unit (string) (example:s) 
%   '-framedesc', writes optional description about frame time info (example:time) 
 
%   CiQuant 
%   '-fd', Registration fidical centers [x,y,z] 
%   '-fdr',Registration fiducials diameter (mm) 
%   '-fdc',Registration fiducials colors in RGB format 
%   '-swd', splitting window diemensions 
%   '-sw', splitting window centers 
%   '-swc', splitting window colors in RGB 
 
%   '-cal', calibration fiducials centers 
%   '-calr', calibration fiducials radius 
%   '-calc', calibration fiducials colors 
%   '-calseq', calibration sequence, sequence of the actual consntration of standards 
%   '-calpro', calibration procedure 
%   '-caleq', calibration equation used [a,b,z] y=ax+b, z is plate location in z 
%   '-calunit', calibration sequence units 
 
%   '-rgl', registration parameters local  [cos sin xt yt] 
%   '-rgg', registration parameters global [a b c d xt yt] 
%   '-zwl', position of WL in Z 
%   '-zarg' position of Autorad in Z 
 
% ipacs use 
%   '-studyuid' 
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% CFT 
%   '-fluro', fluorophore name 
%   '-flurowv', [excitation emission] 
 
% Joseph Brook - 11/11/2019 
 
 
 
if nargin < 3 
    error('Must include data, a filename and an info structure'); 
end 
 
if ~isa(varargin{1},'struct') 
    error('Must include data, a filename and an info structure'); 
else 
    info = varargin{1}; 
    [~, name, ext] = fileparts(filename); 
     
     
    p_size = getFieldOrDefault(info,'p_size', 0.02); 
     
    info = getOrSetField(info,'patientsname', name); 
    info = getOrSetField(info,'patientsid', name); 
    info = getOrSetField(info,'seriesdescription', name); 
     
    type = getFieldOrDefault(info,'type', class(dta)); 
    scaling = getFieldOrDefault(info,{'scaling' 'slope'}, 1); 
    intercept = getFieldOrDefault(info,'intercept',0); 
    scaling_unit =  getFieldOrDefault(info,{'scaling_unit' 'ScalingUnit' 'Unit' 'unit'},''); 
    header_only =  getFieldOrDefault(info,{'header_only' 'hdr'},0); 
    compress =  getFieldOrDefault(info,{'compress' 'zlib'},0); 
    sz =size(dta); 
     
     
    varargin = {'-p',p_size,'-n',info.patientsname,'-d',info.seriesdescription,'-s',scaling,'-si', 
intercept,'-u', scaling_unit,'-id',info.patientsid}; 
    if strcmp(ext,'.rmha') 
        dta = uint8(dta); 
        type = 'uint8'; 
        varargin = {varargin{:}, '-names',   info.extras.val{end}}; 
    end 
    if header_only 
        varargin = {varargin{:}, '-hdr'}; 
    else 
        varargin = {varargin{:},'-sz',sz,'-c', type}; 
    end 
     
    if compress, varargin = {varargin{:}, '-zlib'}; end 
     
     
    n_in = size(varargin,2); 
    n_cnt = 1; 
    p_flag = 0; % for pixel size 
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    c_flag = 0; % for type to write 
    v_flag = 0; 
    r_flag = 0; 
    m_flag = 0; 
    d_flag = 0; 
    n_flag = 0; 
    e_flag = 0; 
    s_flag = 0; 
    o_flag = 0; 
    off_flag = 0; 
    w_flag = 0; 
    h_flag = 0; 
    g_flag = 0; 
    t_flag = 0; 
    id_flag = 0; 
    cr_flag = 0; 
    ipacs_flag = 0; 
    study_flag = 0; 
    series_flag = 0; 
    sop_flag = 0; 
    weight_flag = 0; 
    studydesc_flag = 0; 
    dose_flag = 0; 
    dosetime_flag = 0; 
    names_flag = 0; 
    colors_flag = 0; 
    sfactor_flag = 0; 
    sifactor_flag = 0; 
    hdronly_flag = 0; 
    zlib_flag = 0; 
    jp2_flag = 0; 
    jpg_flag=0; 
    png_flag = 0; 
    tif_flag = 0; 
    sz_flag = 0; 
    framedesc_flag = 0; % description of frame time info (optional) 
    frameunit_flag = 0; % time unit of frames (required for any frame info) 
    frameduration_flag = 0; 
    framemidpoint_flag = 0; 
    framestart_flag = 0; 
    s_factor = 1; 
    s_unit = 'UNKNOWN'; 
    fd_flag = 0; 
    fdr_flag= 0; 
    fdc_flag=0; 
    sw_flag = 0; 
    swd_flag = 0; 
    swc_flag = 0; 
    cal_flag =0; 
    calr_flag=0; 
    calc_flag =0; 
    calseq_flag=0; 
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    calpro_flag =0; 
    caleq_flag=0; 
    calunit_flag=0; 
    rgg_flag=0; 
    rgl_flag=0; 
    zwl_flag=0; 
    zarg_flag=0; 
    fluor_flag=0; 
    fluorwv_flag=0; 
     
    while n_cnt <= n_in 
        switch varargin{n_cnt} 
            case '-m' 
                m_flag = 1; 
                m_val = varargin{n_cnt+1}; 
                n_cnt = n_cnt + 2; 
            case '-p' 
                p_flag = 1; 
                p_val = varargin{n_cnt+1}; 
                n_cnt = n_cnt + 2; 
            case '-d' 
                d_flag = 1; 
                seriesdesc = varargin{n_cnt+1}; 
                n_cnt = n_cnt + 2; 
            case '-seriesdesc' 
                d_flag = 1; 
                seriesdesc = varargin{n_cnt+1}; 
                n_cnt = n_cnt + 2; 
            case '-studydesc' 
                studydesc_flag = 1; 
                studydesc = varargin{n_cnt+1}; 
                n_cnt = n_cnt + 2; 
            case '-e' 
                e_flag = 1; 
                extras = varargin{n_cnt+1}; 
                n_cnt = n_cnt + 2; 
            case '-n' 
                n_flag = 1; 
                n_val = varargin{n_cnt+1}; 
                n_cnt = n_cnt + 2; 
            case '-id' 
                id_flag = 1; 
                patientid = varargin{n_cnt+1}; 
                n_cnt = n_cnt + 2; 
            case '-ipacs' 
                ipacs_flag = 1; 
                ipacshdr = varargin{n_cnt + 1}; 
                n_cnt = n_cnt + 2; 
            case '-c' 
                c_write = varargin{n_cnt+1}; 
                switch c_write 
                    case 'ushort' 
                        c_cast = 'uint16'; 
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                        c_print = 'MET_USHORT'; 
                    case 'char' 
                        c_cast = 'int8'; 
                        c_print = 'MET_CHAR'; 
                    case 'uchar' 
                        c_cast = 'uint8'; 
                        c_print = 'MET_UCHAR'; 
                    case 'uint8' 
                        c_cast = 'uint8'; 
                        c_print = 'MET_UCHAR'; 
                    case 'float' 
                        c_cast = 'single'; 
                        c_print = 'MET_FLOAT'; 
                    case 'int' 
                        c_cast = 'int32'; 
                        c_print = 'MET_INT'; 
                    case 'double' 
                        c_cast = 'double'; 
                        c_print = 'MET_DOUBLE'; 
                    case 'uint' 
                        c_cast = 'uint32'; 
                        c_print = 'MET_UINT'; 
                    case 'short' 
                        c_cast = 'int16'; 
                        c_print = 'MET_SHORT'; 
                    otherwise 
                        error('File type not supported'); 
                end 
                n_cnt = n_cnt + 2; 
                c_flag = 1; 
            case '-s' 
                sfactor_flag = 1; 
                s_factor = varargin{n_cnt+1}; 
                n_cnt = n_cnt + 2; 
            case '-si' 
                sifactor_flag = 1; 
                si_factor = varargin{n_cnt+1}; 
                n_cnt = n_cnt + 2; 
            case '-u' 
                s_flag = 1; 
                s_unit = varargin{n_cnt+1}; 
                n_cnt = n_cnt + 2; 
            case '-v' 
                version = varargin{n_cnt+1}; 
                n_cnt = n_cnt + 2; 
                v_flag = 1; 
            case '-h' 
                h_flag = 1; 
                header = varargin{n_cnt + 1}; 
                n_cnt = n_cnt + 2; 
            case '-names' 
                names_flag = 1; 
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                roiNames = varargin{n_cnt+1}; 
                n_cnt = n_cnt + 2; 
            case '-colors' 
                colors_flag = 1; 
                colorNames = varargin{n_cnt+1}; 
                n_cnt = n_cnt + 2; 
            case '-colormap' 
                colors_flag = 2; 
                cmap = varargin{n_cnt+1}; 
                n_cnt = n_cnt + 2; 
            case '-cr' 
                cr_flag = 1; 
                crRange = varargin{n_cnt+1}; 
                n_cnt = n_cnt + 2; 
            case '-t' 
                t_flag = 1; 
                n_cnt = n_cnt + 1; 
            case '-r' 
                roi = varargin{n_cnt+1}; 
                n_cnt = n_cnt + 2; 
                r_flag = 1; 
            case '-o' 
                o_flag = 1; 
                n_cnt = n_cnt + 1; 
            case '-off' 
                off_flag = 1; 
                offsetin = varargin{n_cnt+1}; 
                n_cnt = n_cnt + 2; 
            case '-w' 
                w_flag = 1; 
                slices = varargin{n_cnt+1}; 
                n_cnt = n_cnt + 2; 
            case '-g' 
                g_flag = 1; 
                mag = varargin{n_cnt+1}; 
                n_cnt = n_cnt + 2; 
            case '-i' 
                itype = varargin{n_cnt+1}; 
                n_cnt = n_cnt + 2; 
            case '-weight' 
                weight_flag = 1; 
                weight = varargin{n_cnt + 1}; 
                n_cnt = n_cnt + 2; 
            case '-dose' 
                dose_flag = 1; 
                dose = varargin{n_cnt + 1}; 
                n_cnt = n_cnt + 2; 
            case '-dosetime' 
                dosetime_flag = 1; 
                dosetime = varargin{n_cnt + 1}; 
                n_cnt = n_cnt + 2; 
            case '-hdr' 
                hdronly_flag = 1; 
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                %             fprintf('Writing MHD header file only.\n'); 
                n_cnt = n_cnt + 1; 
            case '-sz' 
                sz_flag = 1; 
                sz = varargin{n_cnt + 1}; 
                n_cnt = n_cnt + 2; 
            case '-studyuid' 
                study_flag = 1; 
                studyuid = varargin{n_cnt + 1}; 
                n_cnt = n_cnt + 2; 
            case '-seriesuid' 
                series_flag = 1; 
                seriesuid = varargin{n_cnt + 1}; 
                n_cnt = n_cnt + 2; 
            case '-sopuid' 
                sop_flag = 1; 
                sopuid = varargin{n_cnt + 1}; 
                n_cnt = n_cnt + 2; 
            case '-zlib' 
                zlib_flag = 1; 
                n_cnt = n_cnt + 1; 
            case '-jp2' 
                jp2_flag = 1; 
                n_cnt = n_cnt + 1; 
            case '-jpeg' 
                jpg_flag = 1; 
                n_cnt = n_cnt + 1; 
            case '-jpg' 
                jpg_flag = 1; 
                n_cnt = n_cnt + 1; 
            case '-png' 
                png_flag = 1; 
                n_cnt = n_cnt + 1; 
            case '-tif' 
                tif_flag = 1; 
                n_cnt = n_cnt + 1; 
            case '-tiff' 
                tif_flag = 1; 
                n_cnt = n_cnt + 1; 
            case '-framestart' 
                framestart_flag = 1; 
                framestart = varargin{n_cnt + 1}; 
                n_cnt = n_cnt + 2; 
            case '-frameduration' 
                frameduration_flag = 1; 
                frameduration = varargin{n_cnt + 1}; 
                n_cnt = n_cnt + 2; 
            case '-framemidpoint' 
                framemidpoint_flag = 1; 
                framemidpoint = varargin{n_cnt + 1}; 
                n_cnt = n_cnt + 2; 
            case '-frameunit' 
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                frameunit_flag = 1; 
                frameunit = varargin{n_cnt + 1}; 
                n_cnt = n_cnt + 2; 
            case '-framedesc' 
                framedesc_flag = 1; 
                framedesc = varargin{n_cnt + 1}; 
                n_cnt = n_cnt + 2; 
            case '-fd' 
                fd_flag = 1; 
                fdLocation = varargin{n_cnt + 1}; 
                n_cnt = n_cnt + 2; 
            case '-fdr' 
                fdr_flag = 1; 
                fd_radius = varargin{n_cnt + 1}; 
                n_cnt = n_cnt + 2; 
            case '-fdc' 
                fdc_flag = 1; 
                fd_color = varargin{n_cnt + 1}; 
                n_cnt = n_cnt + 2; 
            case '-swd' 
                swd_flag = 1; 
                splittingWindowDim = varargin{n_cnt + 1}; 
                n_cnt = n_cnt + 2; 
            case '-sw' 
                sw_flag = 1; 
                splittingWindowCen = varargin{n_cnt + 1}; 
                n_cnt = n_cnt + 2; 
            case '-swc' 
                swc_flag = 1; 
                splittingWindowColor = varargin{n_cnt + 1}; 
                n_cnt = n_cnt + 2; 
            case '-cal' 
                cal_flag = 1; 
                cal_centers = varargin{n_cnt + 1}; 
                n_cnt = n_cnt + 2; 
            case '-calr' 
                calr_flag = 1; 
                cal_radius = varargin{n_cnt + 1}; 
                n_cnt = n_cnt + 2; 
            case '-calc' 
                calc_flag = 1; 
                cal_color = varargin{n_cnt + 1}; 
                n_cnt = n_cnt + 2; 
            case '-calseq' 
                calseq_flag = 1; 
                calibSequence = varargin{n_cnt + 1}; 
                n_cnt = n_cnt + 2; 
            case '-calpro' 
                calpro_flag = 1; 
                calibProcedure = varargin{n_cnt + 1}; 
                n_cnt = n_cnt + 2; 
                 
            case '-caleq' 
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                caleq_flag = 1; 
                cal_eq = varargin{n_cnt + 1}; 
                n_cnt = n_cnt + 2; 
                 
            case '-calunit' 
                calunit_flag = 1; 
                calunit = varargin{n_cnt + 1}; 
                n_cnt = n_cnt + 2; 
                 
            case '-rgl' 
                rgl_flag = 1; 
                registration_local = varargin{n_cnt + 1}; 
                n_cnt = n_cnt + 2; 
            case '-rgg' 
                rgg_flag = 1; 
                registration_global = varargin{n_cnt + 1}; 
                n_cnt = n_cnt + 2; 
            case '-zwl' 
                zwl_flag = 1; 
                z_location_wl = varargin{n_cnt + 1}; 
                n_cnt = n_cnt + 2; 
            case '-zarg' 
                zarg_flag = 1; 
                z_location_arg = varargin{n_cnt + 1}; 
                n_cnt = n_cnt + 2; 
            case '-fluor' 
                fluor_flag=1; 
                fluro_name = varargin{n_cnt + 1}; 
                n_cnt = n_cnt + 2; 
            case '-fluorwv' 
                fluorwv_flag=1; 
                fluor_wavelength = varargin{n_cnt + 1}; 
                n_cnt = n_cnt + 2; 
            otherwise 
                error('Improper variable input argument'); 
        end 
    end 
     
    if c_flag == 0 
        if ~jp2_flag 
            c_cast = 'single';c_print = 'MET_FLOAT';c_write = 'float'; 
        else 
            if strcmp(class(dta),'uint8') 
                c_cast = 'uint8';c_print = 'MET_UCHAR';c_write = 'uint8'; 
            elseif strcmp(class(dta),'uint16') 
                c_cast = 'uint16';c_print = 'MET_USHORT';c_write = 'uint16'; 
            else 
                fprintf(['\nWARNING: %s not supported for JPEG2000. Converting ' ... 
                    'to uint8\n\n'],class(dta)); 
                dta = cast(dta,'uint8'); 
                c_cast = 'uint8';c_print = 'MET_UCHAR';c_write = 'uint8'; 
            end 
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        end 
    end 
     
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
     
    % CHECK THE NAME 
    tmp = CharParse(filename,'.',2); 
    doRMHA = 0; 
    if strcmp(tmp{length(tmp)},'mhd') 
        doMHA = 0; 
    elseif strcmp(tmp{length(tmp)},'mha') 
        doMHA = 1; 
    elseif strcmp(tmp{length(tmp)},'rmha') 
        doMHA = 1; 
        doRMHA = 1; 
        % FORCE MODALITY TO RO 
        m_flag = 1;m_val = 'RO'; 
        if ~strcmp(c_print,'MET_UCHAR') 
            c_print = 'MET_UCHAR'; 
            c_write = 'uchar'; 
            %disp('Warning: Must use unsigned char with RMHA'); 
        end 
    else 
        disp('Error: Filename must end in either mhd,mha,or rhma'); 
    end 
     
    % MAKE SURE HEADER ONLY ONLY ON FOR MHD 
    if (doMHA || doRMHA) && hdronly_flag 
        error('Header only option only available for MHD'); 
    end 
     
    % GET THE SIZE, 
    if ~sz_flag, sz = size(dta);end 
    ndims = length(sz); 
     
    if jp2_flag || jpg_flag || png_flag || tif_flag, sz(ndims) = 1;end 
     
    if jp2_flag || jpg_flag || png_flag || tif_flag 
         
        sz=size(dta); 
        ndims=length(sz); 
        if ndims==3 && size(dta,3) ~=3 %% for fluorescence stack 
            sz(ndims) = []; 
            ndims=2; 
        elseif ndims==4  % for white light image stack 
            sz(ndims-1)=sz(ndims); 
            sz(ndims)=[]; 
            ndims=3; 
            dta = permute(dta,[2 1 3 4]); 
        elseif (size(dta,3) == 3 && size(dta,4) == 1) %% for single white light image 
            ndims = 4; 
            sz = [size(dta,1) size(dta,2) size(dta,3) size(dta,4)]; 
            sz(ndims-1) = sz(ndims); 
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            sz(ndims) = []; 
            ndims = 3; 
            dta = permute(dta,[2 1 3 4]); 
        end 
         
    end 
    % CHECK FOR TRANSPOSITION 
    if t_flag 
        tmp = sz;sz(2) = tmp(1);sz(1) = tmp(2); 
        if ndims == 2, dta = permute(dta,[2 1 3]); 
        elseif ndims == 3, dta = permute(dta,[2 1 3 4]); 
            %elseif ndims == 4, dta = permute(dta,[2 1 3 4]); 
        end 
    end 
     
    % CHECK THE PIXEL SIZE 
    if p_flag == 0 
        if ndims == 2 
            p_val = [1.0 1.0]; 
        elseif ndims == 3 
            p_val = [1.0 1.0 1.0]; 
        elseif ndims == 4 
            p_val = [1.0 1.0 1.0 1.0]; 
        end 
    else 
        if ndims == 2 && length(p_val)==1 
            p_val = [p_val p_val]; 
        elseif ndims == 3 && length(p_val)==1 
            p_val = [p_val(1) p_val(1) p_val(1)]; 
        elseif ndims == 4 && length(p_val)==1 
            p_val = [p_val(1) p_val(1) p_val(1) p_val(1)]; 
        elseif length(p_val)~=ndims 
            if hdronly_flag 
                fprintf('Warning: Voxel mismatch, but only writing header.\n'); 
            else 
                error('Either the length of the voxel dimension vector is incorrect or the number of 
dimensions is not supported.'); 
            end 
        end 
    end 
     
     
    [fid,message] = fopen(filename,'w'); 
     
    if fid == -1 
        error('Could not open MHD file %s for writing: %s.',filename,message); 
    end 
    if doRMHA==1 
        fprintf(fid,'ObjectType = ROI\n'); 
    else 
        fprintf(fid,'ObjectType = Image\n'); 
    end 
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    if exist('itype') 
        fprintf(fid,'ImageType = %s\n',itype); 
    end 
    fprintf(fid,'NDims = %d\n',ndims); 
    fprintf(fid,'BinaryData = True\n'); 
    fprintf(fid,'BinaryDataByteOrderMSB = False\n'); 
    if doRMHA == 0 
        if zlib_flag 
            fprintf(fid,'CompressedData = True\n'); 
        elseif jp2_flag 
            fprintf(fid,'CompressedData = JP2\n'); 
        elseif jpg_flag 
            fprintf(fid,'CompressedData = JPEG\n'); 
        elseif png_flag 
            fprintf(fid,'CompressedData = PNG\n'); 
        elseif tif_flag 
            fprintf(fid,'CompressedData = TIFF\n'); 
        else 
            fprintf(fid,'CompressedData = False\n'); 
        end 
    else 
        fprintf(fid,'CompressedData = RLE\n'); 
    end 
    if e_flag 
        idx = find(strcmp(extras.key,'CompressedData')); 
        if ~isempty(idx) 
            extras.val(idx) = [];extras.key(idx) = []; 
        end 
    end 
    if ndims == 2 
        fprintf(fid,'TransformMatrix = -1 0 0 -1\n'); 
    elseif ndims == 3 
        fprintf(fid,'TransformMatrix = -1 0 0 0 -1 0 0 0 -1\n'); 
    elseif ndims == 4 
        fprintf(fid,'TransformMatrix = -1 0 0 0 0 -1 0 0 0 0 -1 0 0 0 0 -1\n'); 
    end 
    % DICOM --> RAI 
    % IVS --> LPS 
    fprintf(fid,'AnatomicalOrientation = LPS\n'); 
     
    p_val = abs(p_val); 
     
    if ndims == 2 
        if off_flag == 1 
            fprintf(fid, 'Offset = %g %g\n', offsetin(1), offsetin(2)); 
            disp('Printing custom offset.'); 
        elseif o_flag == 1 
            fprintf(fid,'Offset = 0 0\n'); 
            disp('Printing a zero offset.'); 
        else 
            fprintf(fid,'Offset = %g %g\n',sz(1)*p_val(1),sz(2)*p_val(2)); 
        end 
        fprintf(fid,'CenterOfRotation = 0 0\n'); 
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        fprintf(fid,'ElementSpacing = %g %g\n',p_val(1),p_val(2)); 
        fprintf(fid,'DimSize = %d %d\n',sz(1),sz(2)); 
    elseif ndims == 3 
        if off_flag == 1 
            fprintf(fid, 'Offset = %g %g %g\n', offsetin(1), offsetin(2),... 
                offsetin(3)); 
            disp('Printing custom offset.'); 
        elseif o_flag == 1 
            fprintf(fid,'Offset = 0 0 0\n'); 
            disp('Printing a zero offset.'); 
        else 
             
            fprintf(fid,'Offset = %g %g %g\n',sz(1)*p_val(1),sz(2)*p_val(2),sz(3)*p_val(3)); 
        end 
        fprintf(fid,'CenterOfRotation = 0 0 0\n'); 
        fprintf(fid,'ElementSpacing = %g %g %g\n',p_val(1),p_val(2),p_val(3)); 
        fprintf(fid,'DimSize = %d %d %d\n',sz(1),sz(2),sz(3)); 
    elseif ndims == 4 
        if off_flag == 1 
            fprintf(fid, ['Offset = %g %g %g %g\n'], offsetin(1), offsetin(2), ... 
                offsetin(3), offsetin(4)); 
            disp('Printing custom offset.'); 
        elseif o_flag == 1 
            fprintf(fid,'Offset = 0 0 0 0\n'); 
            disp('Printing a zero offset.'); 
             
            %     elseif jpg_flag 
            %         fprintf(fid,'Offset = %g %g %g\n',sz(1)*p_val(1),sz(2)*p_val(2),sz(3)*p_val(3)); 
        else 
            fprintf(fid,'Offset = %g %g %g 
%g\n',sz(1)*p_val(1),sz(2)*p_val(2),sz(3)*p_val(3),sz(4)*p_val(4)); 
        end 
        fprintf(fid,'CenterOfRotation = 0 0 0 0\n'); 
        fprintf(fid,'ElementSpacing = %g %g %g %g\n',p_val(1),p_val(2),p_val(3),p_val(4)); 
        fprintf(fid,'DimSize = %d %d %d %d\n',sz(1),sz(2),sz(3),sz(4)); 
    end 
    fprintf(fid,'Rows = %d\n',sz(1)); 
    fprintf(fid,'Columns = %d\n',sz(2)); 
     
    % fiducial location FiducialSetSequence (0070,031C) 
     
    if fd_flag == 1 
         
        fprintf(fid,'RegistrationFiducialCenters = '); 
        fprintf(fid,'['); 
        for fnum=1:size(fdLocation,2)-1 
            fprintf(fid,'%.2f %.2f %.2f\\ ',... 
                fdLocation{fnum}(1),fdLocation{fnum}(2),fdLocation{fnum}(3)); 
             
        end 
        fprintf(fid,'%.2f %.2f %.2f]\n',... 
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fdLocation{size(fdLocation,2)}(1),fdLocation{size(fdLocation,2)}(2),fdLocation{size(fdLocation,2)}
(3)); 
         
    end 
     
    if fdr_flag == 1 
         
        fprintf(fid,'RegistrationFiducialRadius = '); 
        fprintf(fid,'[%.2f]\n',fd_radius); 
         
    end 
     
    if fdc_flag == 1 
         
        fprintf(fid,'RegistrationFiducialColors = '); 
        fprintf(fid,'['); 
        for fnum=1:size(fd_color,2)-1 
            fprintf(fid,'%.2f %.2f %.2f\\ ',... 
                fd_color{fnum}(1),fd_color{fnum}(2),fd_color{fnum}(3)); 
             
        end 
        fprintf(fid,'%.2f %.2f %.2f]\n',... 
            fd_color{size(fd_color,2)}(1),fd_color{size(fd_color,2)}(2),fd_color{size(fd_color,2)}(3)); 
         
         
    end 
     
    if swd_flag == 1 
         
        fprintf(fid,'SplitingWindowDim = %0.2f 
%0.2f\n',splittingWindowDim(1),splittingWindowDim(2)); 
    end 
     
    if sw_flag == 1 
         
        fprintf(fid,'SplittingWindowCenters = '); 
        fprintf(fid,'['); 
        for fnum=1:size(splittingWindowCen,2)-1 
            fprintf(fid,'%.2f %.2f %.2f\\ ',... 
                
splittingWindowCen{fnum}(1),splittingWindowCen{fnum}(2),splittingWindowCen{fnum}(3)); 
        end 
         
        fprintf(fid,'%.2f %.2f %.2f]\n',... 
            
splittingWindowCen{size(splittingWindowCen,2)}(1),splittingWindowCen{size(splittingWindowC
en,2)}(2),splittingWindowCen{size(splittingWindowCen,2)}(3)); 
         
    end 
     
    if swc_flag == 1 
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        fprintf(fid,'SplittingWindowColors = '); 
        fprintf(fid,'['); 
        for fnum=1:size(splittingWindowColor,2)-1 
            fprintf(fid,'%.2f %.2f %.2f\\ ',... 
                
splittingWindowColor{fnum}(1),splittingWindowColor{fnum}(2),splittingWindowColor{fnum}(3))
; 
             
        end 
        fprintf(fid,'%.2f %.2f %.2f]\n',... 
            
splittingWindowColor{size(splittingWindowColor,2)}(1),splittingWindowColor{size(splittingWind
owColor,2)}(2),splittingWindowColor{size(splittingWindowColor,2)}(3)); 
         
    end 
    % calibration related parameters 
     
    if cal_flag == 1 
         
        fprintf(fid,'CalibrationStandardsCenters = '); 
        fprintf(fid,'['); 
        for fnum=1:size(cal_centers,2)-1 
            fprintf(fid,'%.2f %.2f %.2f\\ ',... 
                cal_centers{fnum}(1),cal_centers{fnum}(2),cal_centers{fnum}(3)); 
        end 
        fprintf(fid,'%.2f %.2f %.2f]\n',... 
            
cal_centers{size(cal_centers,2)}(1),cal_centers{size(cal_centers,2)}(2),cal_centers{size(cal_cente
rs,2)}(3)); 
         
    end 
     
    if calr_flag == 1 
         
        fprintf(fid,'CalibrationStandardsRadius = [%.2f]\n',cal_radius); 
         
    end 
     
    if calc_flag == 1 
         
        fprintf(fid,'CalibrationStandardsColors = '); 
        fprintf(fid,'['); 
        for fnum=1:size(cal_color,2)-1 
            fprintf(fid,'%.2f %.2f %.2f\\ ',... 
                cal_color{fnum}(1),cal_color{fnum}(2),cal_color{fnum}(3)); 
             
        end 
        fprintf(fid,'%.2f %.2f %.2f]\n',... 
            
cal_color{size(cal_color,2)}(1),cal_color{size(cal_color,2)}(2),cal_color{size(cal_color,2)}(3)); 
         
    end 
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    if calpro_flag == 1 
         
        fprintf(fid,'CalibrationProcedure = %s\n',calibProcedure); 
         
    end 
     
    if calseq_flag == 1 
         
        fprintf(fid,'CalibrationSequence ='); 
         
        for cs=1:length(calibSequence) 
            fprintf(fid,' %.2f',calibSequence{cs}); 
        end 
         
        fprintf(fid,'\n'); 
         
    end 
     
    if calunit_flag == 1 
         
        fprintf(fid,'CalibrationSequenceUnit = %s\n',calunit); 
         
    end 
     
     
    if caleq_flag == 1 
         
         
        fprintf(fid,'CalibrationStandardsEquation = '); 
        fprintf(fid,'['); 
        for fnum=1:size(cal_eq,2)-1 
            fprintf(fid,'%.2f %.2f %.2f\\ ',... 
                cal_eq{fnum}(1),cal_eq{fnum}(2),cal_eq{fnum}(3)); 
             
        end 
         
        fprintf(fid,'%.2f %.2f %.2f]\n',... 
            cal_eq{size(cal_eq,2)}(1),cal_eq{size(cal_eq,2)}(2),cal_eq{size(cal_eq,2)}(3)); 
         
    end 
     
     
    if rgl_flag == 1 
         
        fprintf(fid,'RegistrationSequence = '); 
        fprintf(fid,'['); 
        for fnum=1:size(registration_local,2)-1 
            fprintf(fid,'%.2f %.2f %.2f %0.2f\\ ',... 
                registration_local{fnum}(1),registration_local{fnum}(2),... 
                registration_local{fnum}(3),registration_local{fnum}(4)); 
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        end 
        fprintf(fid,'%.2f %.2f %.2f %0.2f]\n',... 
            
registration_local{size(registration_local,2)}(1),registration_local{size(registration_local,2)}(2),... 
            
registration_local{size(registration_local,2)}(3),registration_local{size(registration_local,2)}(4)); 
         
         
    end 
     
    if rgg_flag == 1 
         
        fprintf(fid,'RegistrationMatrixGlobal = '); 
        fprintf(fid,'['); 
        for fnum=1:size(registration_global,2) 
            fprintf(fid,'%.2f %.2f %.2f %0.2f %.2f %0.2f',... 
                registration_global{fnum}(1),registration_global{fnum}(2),... 
                registration_global{fnum}(3),registration_global{fnum}(4),... 
                registration_global{fnum}(5),registration_global{fnum}(6)); 
             
        end 
        fprintf(fid,']\n'); 
         
    end 
     
     
    if zwl_flag == 1 
         
        fprintf(fid,'BlockSliceLocationWL = '); 
        fprintf(fid,'['); 
        for fnum=1:length(z_location_wl)-1 
            fprintf(fid,'%.2f\\',... 
                z_location_wl(fnum)); 
             
        end 
        fprintf(fid,'%.2f]\n',... 
            z_location_wl(length(z_location_wl))); 
         
         
    end 
     
    if zarg_flag == 1 
         
        fprintf(fid,'BlockSliceLocationARG = '); 
        fprintf(fid,'['); 
        for fnum=1:length(z_location_arg)-1 
            fprintf(fid,'%.2f\\',... 
                z_location_arg(fnum)); 
             
        end 
        fprintf(fid,'%.2f]\n',... 
            z_location_arg(length(z_location_arg))); 
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    end 
     
    if fluor_flag == 1 
         
        fprintf(fid,'Fluorophore = %s\n',fluro_name); 
    end 
     
    if fluorwv_flag == 1 
         
        fprintf(fid,'FluorophoreWavelength = %d %d\n',fluor_wavelength(1),fluor_wavelength(2)); 
    end 
     
    if ipacs_flag 
        key = ipacshdr.key;val = ipacshdr.val; 
        for i = 1:length(key) 
            fprintf(fid,'%s = %s\n',key{i},val{i}); 
        end 
         
    else 
        if v_flag == 1 
            fprintf(fid,'Version = %0.3f\n',version); 
        end 
        if r_flag == 1 
            fprintf(fid,'ROI = %s ',roi.type); 
            switch roi.type 
                case 'box' 
                    fprintf(fid,'%d %d %d %d %d %d\n',roi.vals(1),roi.vals(2),roi.vals(3),... 
                        roi.vals(4),roi.vals(5),roi.vals(6)); 
                case 'sqbox' 
                    fprintf(fid,'%d %d %d %d %d %d\n',roi.vals(1),roi.vals(2),roi.vals(3),... 
                        roi.vals(4),roi.vals(5),roi.vals(6)); 
                otherwise 
                    disp('That ROI type is not supported'); 
                    fprintf(fid,'UNK\n'); 
            end 
        end 
        if g_flag == 1 
            if ndims == 2 
                if length(mag)==1 
                    mag = [mag mag]; 
                end 
                fprintf(fid,'Magnification = %g %g\n',mag(1),mag(2)); 
            elseif ndims == 3 
                if length(mag)==1 
                    mag = [mag mag mag]; 
                end 
                fprintf(fid,'Magnification = %g %g %g\n',mag(1),mag(2),mag(3)); 
            elseif ndims == 4 
                if length(mag)==1 
                    mag = [mag mag mag mag]; 
                end 
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                fprintf(fid,'Magnification = %g %g %g %g\n',mag(1),mag(2),mag(3),mag(4)); 
            end 
        end 
         
        % Cropping range 
        if cr_flag == 1 
            if ndims == 2 
                fprintf(fid,'Cropping = [%d %d %d %d]\n',... 
                    crRange{1}(1),crRange{1}(end),crRange{2}(1),crRange{2}(end)); 
            elseif ndims == 3 
                fprintf(fid,'Cropping = [%d %d %d %d %d %d]\n',... 
                    
crRange{1}(1),crRange{1}(end),crRange{2}(1),crRange{2}(end),crRange{3}(1),crRange{3}(end)); 
            end 
        end 
         
        if w_flag == 1 
            fprintf(fid,'Slice = ['); 
            if ~isempty(slices) 
                for i = 1:(length(slices)-1) 
                    fprintf(fid,'%d ',slices(i)); 
                end 
                for i = length(slices) 
                    fprintf(fid,'%d',slices(i)); 
                end 
            end 
            fprintf(fid,'];\n'); 
        end 
         
        if m_flag == 1 
            fprintf(fid,'Modality = %s\n',m_val); 
            if e_flag 
                idx = find(strcmp(extras.key,'Modality')); 
                if ~isempty(idx), extras.val(idx) = [];extras.key(idx) = [];end 
            end 
        end 
         
        if n_flag == 1 
            fprintf(fid,'PatientsName = %s\n',n_val); 
            if e_flag 
                idx = find(strcmp(extras.key,'PatientsName')); 
                if ~isempty(idx), extras.val(idx) = [];extras.key(idx) = [];end 
            end 
        end 
         
        if id_flag == 1 
            fprintf(fid,'PatientID = %s\n',patientid); 
            if e_flag 
                idx = find(strcmp(extras.key,'PatientID')); 
                if ~isempty(idx), extras.val(idx) = [];extras.key(idx) = [];end 
            end 
        end 
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        if d_flag == 1 
            fprintf(fid,'SeriesDescription = %s\n',seriesdesc); 
            if e_flag 
                idx = find(strcmp(extras.key,'SeriesDescription')); 
                if ~isempty(idx), extras.val(idx) = [];extras.key(idx) = [];end 
            end 
        end 
         
        if studydesc_flag == 1 
            fprintf(fid,'StudyDescription = %s\n',studydesc); 
            if e_flag 
                idx = find(strcmp(extras.key,'StudyDescription')); 
                if ~isempty(idx), extras.val(idx) = [];extras.key(idx) = [];end 
            end 
        end 
         
        if study_flag == 1 
             
            if length(studyuid)==1 
                cdate = datestr(now,'yyyymmdd'); 
                ctime = datestr(now,'HHMMSS.FFF'); 
                studyuidnew = sprintf('1.1.05001.07005.%s.%s',cdate,ctime); 
                imagetype='Volume'; 
                opt.Method = 'MD5';opt.Format = 'double'; 
                uidInput = [cdate ctime imagetype]; 
                uidStr = strrep(num2str(DataHash(uidInput,opt)),' ',''); 
                uidStr = [uidStr(1:6) uidStr((end-3):end)]; 
                studyuidnew = [studyuidnew '.' uidStr]; 
                 
                fprintf(fid,'StudyInstanceUID = %s\n',studyuidnew); 
            else 
                fprintf(fid,'StudyInstanceUID = %s\n',studyuid); 
            end 
        end 
         
        if series_flag == 1 
            fprintf(fid,'SeriesInstanceUID = %s\n',seriesuid); 
            if e_flag 
                idx = find(strcmp(extras.key,'SeriesInstanceUID')); 
                if ~isempty(idx), extras.val(idx) = [];extras.key(idx) = [];end 
            end 
        end 
         
        if sop_flag == 1 
            fprintf(fid,'SOPInstanceUID = %s\n',sopuid); 
            if e_flag 
                idx = find(strcmp(extras.key,'SOPInstanceUID')); 
                if ~isempty(idx), extras.val(idx) = [];extras.key(idx) = [];end 
            end 
        end 
         
        sfOff = 0; 
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        if sfactor_flag == 1 
            fprintf(fid,'ScalingFactor = %g\n',s_factor); 
            sfOff = 1; % To overwrite the '-extras' value 
        end 
         
        if sifactor_flag == 1 
            fprintf(fid,'Intercept = %g\n',si_factor); 
        end 
         
        suOff = 0; 
        if s_flag == 1 
            fprintf(fid,'ScalingUnit = %s\n',s_unit); 
            suOff = 1; % To overwrite the '-extras' value 
        end 
         
        if weight_flag == 1 
            fprintf(fid,'PatientsWeight = %g\n',weight); 
        end 
         
        if dose_flag == 1 
            fprintf(fid,'TotalDose = %g\n',dose); 
        end 
         
        if dosetime_flag == 1 
            fprintf(fid,'TotalDoseTime = %s\n',dosetime); 
        end 
         
        if h_flag == 1 
            fprintf(fid,'HeaderSize = %d\n',length(header)); 
        end 
         
         
        %% Enter in frame stuff here andrew 
        if framedesc_flag == 1 
            fprintf(fid,'FrameDesc = %s\n',framedesc); 
            if e_flag 
                idx = find(strcmp(extras.key,'FrameDesc')); 
                if ~isempty(idx), extras.val(idx) = []; extras.key(idx) = [];end 
            end 
        end 
         
        if frameunit_flag == 1 
            fprintf(fid,'FrameUnit = %s\n',frameunit); 
            if e_flag 
                idx = find(strcmp(extras.key,'FrameUnit')); 
                if ~isempty(idx), extras.val(idx) = []; extras.key(idx) = [];end 
            end 
        end 
         
        if framemidpoint_flag ==1 
            if length(framemidpoint) ~= size(dta,4) 
                error('Number of frames in -framemidpoint does not match size of data'); 
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            end 
            if length(unique(framemidpoint)) ~= length(framemidpoint) 
                disp('WARNING: There are duplicate entries in -framemidpoint'); 
            end 
            if find(diff(framemidpoint) <= 0) 
                disp('WARNING: -framemidpoint is not increasing in time'); 
            end 
            if size(framemidpoint,1) ~= 1 
                framemidpoint = framemidpoint'; 
            end 
            if size(framemidpoint,1) ~= 1 
                error('WARNING: -framemidpoint must be a 1-D vector'); 
            end 
            fprintf(fid,'FrameMidpoint = %s\n',regexprep(num2str(framemidpoint),'\s+',' ')); 
            if e_flag 
                idx = find(strcmp(extras.key,'FrameMidpoint')); 
                if ~isempty(idx), extras.val(idx) = []; extras.key(idx) = [];end 
            end 
        end 
         
        if framestart_flag ==1 
            if length(framestart) ~= size(dta,4) 
                error('Number of frames in -framestart does not match size of data'); 
            end 
            if length(unique(framestart)) ~= length(framestart) 
                disp('WARNING: There are duplicate entries in -framestart'); 
            end 
            if find(diff(framestart) <= 0) 
                disp('WARNING: -framestart is not increasing in time'); 
            end 
            if size(framestart,1) ~= 1 
                framestart = framestart'; 
            end 
            if size(framestart,1) ~= 1 
                error('WARNING: -framestart must be a 1-D vector'); 
            end 
             
            fprintf(fid,'FrameStart = %s\n',regexprep(num2str(framestart),'\s+',' ')); 
            if e_flag 
                idx = find(strcmp(extras.key,'FrameStart')); 
                if ~isempty(idx), extras.val(idx) = []; extras.key(idx) = [];end 
            end 
        end 
         
        if frameduration_flag ==1 
            if length(frameduration) ~= size(dta,4) 
                error('Number of frames in -frameduration does not match size of data'); 
            end 
            if size(frameduration,1) ~= 1 
                frameduration = frameduration'; 
            end 
            if size(frameduration,1) ~= 1 
                error('WARNING: -frameduration must be a 1-D vector'); 
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            end 
             
            if e_flag 
                idx = find(strcmp(extras.key,'FrameDuration')); 
                if ~isempty(idx), extras.val(idx) = []; extras.key(idx) = [];end 
            end 
        end 
         
        if e_flag == 1 
            if ~isempty(fieldnames(extras)) 
                for i = 1:length(extras.key) 
                    if strcmp(extras.key{i},'ScalingUnit') && suOff == 1 
                        %                     disp('Using modified scaling unit.'); 
                    elseif strcmp(extras.key{i},'ScalingFactor') && sfOff == 1 
                        %                     disp('Using modified scaling factor.'); 
                    elseif strcmp(extras.key{i},'SOPInstanceUID') && doRMHA == 1 
                        %                     fprintf(fid,'ReferenceUID = %s\n',extras.val{i}); 
                    elseif strcmp(extras.key{i},'roiNames') 
                        if ~names_flag 
                            names_flag = 1; 
                            roiNames = cell(length(extras.val{i}),1); 
                            for j = 1:length(extras.val{i}),roiNames{j} = extras.val{i}{j};end 
                        end 
                    else 
                        fprintf(fid,'%s = %s\n',extras.key{i},regexprep(num2str(extras.val{i}),'\s+',' ')); 
                    end 
                end 
            end 
        end 
    end 
     
    fprintf(fid,'ElementType = %s\n',c_print); 
     
    %fname = sprintf('%s.raw',filename); 
    fname = filename; 
    if contains(fname,'/') 
        fname = CharParse(fname,'/',2); 
        fname = fname{length(fname)}; 
    elseif contains(fname,'\') 
        fname = CharParse(fname,'\',2); 
        fname = fname{length(fname)}; 
    end 
     
    % CLEAN UP THE ROI FOR RMHA OUTPUT 
    if doRMHA == 1 
        if ~isempty(find(mod(dta,1)>0, 1)) 
            disp('Warning: Only positive integer values supported with RMHA'); 
            dta = round(dta); 
        end 
        if ~isempty(find(dta<0, 1)) 
            disp('Warning: Only positive integer values supported with RMHA'); 
            dta(dta<0) = 0; 
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        end 
         
        %colorIdx = unique(dta); 
        %colorIdx(colorIdx==0) = []; 
        %if islogical(colorIdx), colorIdx = cast(colorIdx,'uint8');end 
        colorIdx = 1:double(max(dta(:))); 
         
        if length(colorIdx) > 255 
            disp('Warning:Only 255 ROIs supported.'); 
            colorIdx = colorIdx(1:255); 
        end 
         
        if colors_flag == 0 
            if length(colorIdx) < 16 
                colorNames = {'red','green','blue','cyan','magenta','yellow',... 
                    'gray','white','darkRed','darkGreen','darkBlue',... 
                    'darkCyan','darkMagenta','darkgoldenrod','darkgray','lightgray'}; 
            else 
                colorFull = {'khaki','violet','plum','aquamarine','lightsteelblue',... 
                    'lightskyblue','silver','skyblue','palegreen','orchid',... 
                    'burlywood','hotpink','lightsalmon','tan','lightgreen',... 
                    'aqua','cyan','fuchsia','magenta','yellow',... 
                    'darkgray','darkgrey','darksalmon','sandybrown','lightcoral',... 
                    'turquoise','salmon','cornflowerblue','mediumturquoise','mediumorchid',... 
                    'darkkhaki','mediumpurple','palevioletred','mediumaquamarine','greenyellow',... 
                    'darkseagreen','rosybrown','gold','mediumslateblue','coral',... 
                    'deepskyblue','dodgerblue','tomato','deeppink','orange',... 
                    'darkturquoise','goldenrod','cadetblue','yellowgreen','lightslategray',... 
                    'lightslategrey','blueviolet','darkorchid','mediumspringgreen','peru',... 
                    'slateblue','darkorange','royalblue','indianred','gray',... 
                    'grey','slategray','slategrey','chartreuse','springgreen',... 
                    'lightseagreen','steelblue','lawngreen','darkviolet','mediumvioletred',... 
                    'mediumseagreen','chocolate','darkgoldenrod','orangered','dimgray',... 
                    'dimgrey','limegreen','crimson','sienna','olivedrab',... 
                    'darkcyan','darkmagenta','darkslateblue','seagreen','olive',... 
                    'purple','teal','blue','lime','red',... 
                    'brown','firebrick','darkolivegreen','saddlebrown','forestgreen',... 
                    'darkslategray','darkslategrey','indigo','mediumblue','midnightblue',... 
                    'darkblue','darkred','green','maroon','navy',... 
                    'white','snow','ghostwhite','azure','ivory',... 
                    'mintcream','floralwhite','aliceblue','lavenderblush','seashell',... 
                    'honeydew','whitesmoke','lightcyan','lightyellow','oldlace',... 
                    'cornsilk','linen','beige','lavender','lemonchiffon',... 
                    'lightgoldenrodyellow','mistyrose','papayawhip','antiquewhite','blanchedalmond',... 
                    'bisque','moccasin','gainsboro','peachpuff','paleturquoise',... 
                    'navajowhite','pink','wheat','palegoldenrod','lightgray',... 
                    'lightgrey','lightpink','powderblue','thistle','lightblue',... 
                    'darkgreen'}; 
                if length(colorIdx) > 145 
                    colorFull = [colorFull colorFull]; 
                    colorFull = colorFull(1:255); 
                end 
                colorSub = round(linspace(1,length(colorFull),length(colorIdx))); 
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                colorNames = colorFull(colorSub); 
            end 
        elseif colors_flag == 1 
            if length(colorNames)~=length(colorIdx) 
                error('Number of colors does not match number of ROI regions'); 
            end 
        else 
            cmat = vqpalette(cmap); 
            cx = 1:size(cmat,1); 
            cxi = linspace(1,size(cmat,1),255); 
            for cc = 1:3 
                cmati(:,cc) = interp1(cx,cmat(:,cc),cxi); 
                cmati(:,cc) = round(cmati(:,cc)./max(cmati(:,cc))*255); 
            end 
            for cc = 1:255, colorNames{cc} = '#'; 
                for ee = 1:3  
                    colorNames{cc} = [colorNames{cc} dec2hex(cmati(cc,ee),2)]; 
                end 
            end 
            colorSub = round(linspace(1,length(colorNames),length(colorIdx))); 
            colorNames = colorNames(colorSub); 
        end 
         
         
        % MORE AVAILABLE 
        % http://www.w3.org/TR/SVG/types.html#ColorKeywords 
         
%         roiCnt = 0; 
        if ~isempty(colorIdx) 
            for i = 1:max(colorIdx) 
                 
                %% SET ROI NAME 
                if names_flag && (numel(roiNames)>=i) 
                    roiName = roiNames{i}; 
                else 
                    roiName = sprintf('ROI-%d',i); 
                end 
                 
                %% CHECK FOR NON-ZERO 
                if find(colorIdx == i) 
                    fprintf(fid,'ROI[%d] = %s:%s:0:0:128:255\n',i,roiName,colorNames{i}); 
                else 
                    fprintf('WARNING: No voxels in %s\n',roiName); 
                    fprintf(fid,'ROI[%d] = %s:transparent:1:0:128:255\n',i,roiName); 
                end 
            end 
        end 
    end 
     
    % define data to write here (so that we know compressed data size) 
    towrite = []; 
    if doRMHA==1 
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        % USE RLE ENCODING 
        dta = dta(:)'; 
        tmp = [find(dta(1:end-1) ~= dta(2:end)) length(dta)]; 
        nums = diff([0 tmp]); 
        vals = dta(tmp); 
        towrite = zeros(size(dta)); 
        cnt = 1; 
        charmax = 255; 
        for i = 1:length(tmp) 
            if nums(i) > charmax 
                ntmp = [repmat([vals(i) charmax],1,floor(nums(i)/charmax)) vals(i) 
mod(nums(i),charmax)]; 
                towrite(cnt:(cnt+length(ntmp)-1)) = ntmp; 
                cnt = cnt + length(ntmp); 
            else 
                towrite(cnt:cnt+1) = [vals(i) nums(i)]; 
                cnt = cnt + 2; 
            end 
        end 
        towrite = towrite(1:cnt-1); 
    else 
        if hdronly_flag == 0 
            if zlib_flag 
                dta = cast(dta, c_cast); 
                towrite = zlib_deflate(dta); 
                c_write = 'uint8'; 
            elseif jp2_flag 
                 
                if length(size(dta))~=3 
                    fprintf('\nJPEG data must have 3 dimensions for writing. Exiting.\n\n'); 
                    return; 
                end 
                if size(dta,3)~=3 && size(dta,3)~=4 
                    fprintf(['\nJPEG data 3rd dimension must be length 3 (RGB) ' ... 
                        'or 4 (RGBA). Exiting.\n\n']); 
                    return; 
                else 
                    fprintf(fid,'ElementNumberOfChannels = %d\n',size(dta,3)); 
                end 
                 
                towrite = dta; 
                 
            elseif jpg_flag || png_flag || tif_flag 
                 
                if length(size(dta))<3 
                    fprintf('\nJPEG, PNG, and TIFF data must have 3 dimensions for writing. 
Exiting.\n\n'); 
                    return; 
                     
                else 
                    fprintf(fid,'ElementNumberOfChannels = %d\n',size(dta,3)); 
                end 
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                towrite = dta; 
                 
            else 
                 
                towrite = dta; 
            end 
        end 
    end 
     
    % finish writing header 
    if doMHA == 0 
         
        if zlib_flag 
            filename((end-2):(end+1)) = 'zraw'; 
            fname((end-2):(end+1)) = 'zraw'; 
            fprintf(fid, 'CompressedDataSize = %d\n', length(towrite)); 
        elseif jp2_flag 
            filename((end-2):end) = 'jpg'; 
            fname((end-2):end) = 'jpg'; 
        elseif jpg_flag 
            fprintf(fid,'RGBRepresentation = %d\n', 4); 
            fprintf(fid,'ShowRGB = %d\n', 1); 
             
            filename((end-3):end+4) = '%04d.jpg'; % image names are zero padded 
            fname((end-3):end+4) = '%04d.jpg'; 
            if length(sz)==3 
                fname = sprintf('%s %d %d %d',fname,0,sz(end)-1,1); 
            else 
                fname = sprintf('%s %d %d %d',fname,0,0,1); 
            end 
        elseif png_flag 
            fprintf(fid,'RGBRepresentation = %d\n', 4); 
            fprintf(fid,'ShowRGB = %d\n', 1); 
             
            filename((end-3):end+4) = '%04d.png'; 
            fname((end-3):end+4) = '%04d.png'; 
            if length(sz)==3 
                fname = sprintf('%s %d %d %d',fname,0,sz(end)-1,1); 
            else 
                fname = sprintf('%s %d %d %d',fname,0,0,1); 
            end 
        elseif tif_flag 
            fprintf(fid,'RGBRepresentation = %d\n', 4); 
            fprintf(fid,'ShowRGB = %d\n', 1); 
             
            filename((end-3):end+4) = '%04d.tif'; 
            fname((end-3):end+4) = '%04d.tif'; 
            if length(sz)==3 
                fname = sprintf('%s %d %d %d',fname,0,sz(end)-1,1); 
            else 
                fname = sprintf('%s %d %d %d',fname,0,0,1); 
            end 
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        else 
             
            filename((end-2):end) = 'raw'; 
            fname((end-2):end) = 'raw'; 
             
        end 
         
        fprintf(fid,'ElementDataFile = %s\n',fname); 
        fclose(fid); 
         
        % open file for writing raw 
        if hdronly_flag == 0 && ~jpg_flag && ~jp2_flag && ~png_flag && ~tif_flag 
%             fname = sprintf('%s.raw',filename); 
            fid = fopen(filename,'w','l'); 
        end 
         
    else 
        if zlib_flag 
            fprintf(fid, 'CompressedDataSize = %d\n', length(towrite)); 
        end 
        fprintf(fid,'ElementDataFile = LOCAL\n'); 
    end 
     
    if h_flag == 1 && hdronly_flag == 0 
        fwrite(fid,header); 
    end 
     
    % write data if needed 
    if hdronly_flag == 0 
         
        if jp2_flag 
             
            imwrite(towrite,filename,'jp2','mode','lossless'); 
             
        elseif jpg_flag 
             
            filename=strrep(filename,'\','\\'); 
            if length(sz)==3 
                for jj=1:sz(end) 
                     
                    jpgim=towrite(:,:,:,jj); 
                    imwrite(jpgim,sprintf(filename,jj-1),'jpg','BitDepth',12); 
                end 
            elseif length(sz)==2 
                imwrite(towrite,sprintf(filename,0),'jpg'); 
            end 
        elseif png_flag 
             
            filename=strrep(filename,'\','\\'); 
            if length(sz)==3 
                for jj=1:sz(end) 
                     
                    pngim=towrite(:,:,:,jj); 
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                    imwrite(pngim,sprintf(filename,jj-1),'png'); 
                end 
            elseif length(sz)==2 
                imwrite(towrite,sprintf(filename,0),'png'); 
            end 
        elseif tif_flag 
             
            filename=strrep(filename,'\','\\'); 
            if length(sz)==3 
                for jj=1:sz(end) 
                     
                    tifim=towrite(:,:,:,jj); 
                    imwrite(tifim,sprintf(filename,jj-1),'tif'); 
                end 
            elseif length(sz)==2 
                imwrite(towrite,sprintf(filename,0),'tif'); 
            end 
             
        else 
             
            fwrite(fid,towrite,c_write); 
            fclose(fid); 
        end 
    end 
     
end 
 
 
 
end 
 
function val = getFieldOrDefault(info,field, default) 
if ~ iscell(field); field = (68); end 
useDefault = 1; 
for f = field 
    if isfield(info,field{1}) 
        if ~isempty(info.(field{1})) 
            useDefault = 0; 
            val = info.(field{1}); 
        end 
    end 
end 
if useDefault 
    val = default; 
end 
return 
end 
 
function [img,i_info] = mhdImport(fname) 
% 
% Function to read in an image of the form fname.mhd & fname.raw 
% 
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% [img,i_info] = mhdImport(fname, <dflag>) 
% 
% img --> resulting image 
% i_info --> other information (pixel size, data type, etc) 
% fname --> filename.mhd 
% 
% Joseph Brook - 11/11/2019 
 
dflag = 1; 
 
% IDENTIFY PATH 
dpath = ''; 
if ~isempty(findstr(fname,'/')) 
  fname_tmp = CharManip(fname,'\',1,'/'); 
  str_sets = CharParse(fname_tmp,'/',2); 
  dpath = CharManip(fname_tmp,str_sets{length(str_sets)},0); 
elseif ~isempty(findstr(fname,'\')) 
  str_sets = CharParse(fname,'\',2); 
  dpath = CharManip(fname,str_sets{length(str_sets)},0); 
end 
 
% CHECK FOR MHD OR MHA 
l = length(fname); 
if lower(fname((l-2):l))=='mhd' 
  doMHA = 0; 
elseif lower(fname((l-2):l))=='mha' 
  doMHA = 1; 
else 
  error('Filename should end in mhd or mha'); 
end 
 
zip_str = []; 
byte_rd = 'l'; 
roiCnt = 0; 
headersize = 0; 
i_info.scaling = 1.0; 
i_info.intercept = 0.0; 
n_dims = 0; 
[fid,message] = fopen(fname,'r'); 
if fid == -1 
    err_msg = sprintf('Unable to open file %s: %s',fname,message); 
    error(err_msg); 
end 
i_info.extras = struct; 
eCnt = 0; 
endCheck = 0; 
roiCnt = 0; 
numchan = 1; 
while endCheck == 0 
  in = fgetl(fid); 
  if strfind(in,'=')>0  
    in = CharParse(in,' = ',2); 
    if length(in)>1 
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      tagname = cast(in{1},'char'); 
      tagname(ismember(tagname,', ''')) = []; 
      if contains(tagname,'ROI[') 
        tagroi = tagname; 
        tagname = '3DROI'; 
      end 
      switch tagname 
        case 'ObjectType' 
          o_type = char(in{2}); 
        case 'ImageType' 
          i_info.imagetype = char(in{2}); 
          [i_info.extras,eCnt] = AddExtra(i_info.extras,tagname,eCnt,in{2},0); 
        case 'NDims' 
          n_dims = str2num(char(in{2})); 
          i_info.n_dims = n_dims; 
        case 'BinaryData' 
          bin_str = char(in{2}); 
        case 'BinaryDataByteOrderMSB' 
          byte_str = lower(char(in{2})); 
          byte_str(byte_str==' ') = ''; 
          i_info.bit_type = byte_str; 
          if strcmp(byte_str,'true')==1 
            byte_rd = 'b'; 
          else 
            byte_rd = 'l'; 
          end 
        case 'CompressedData' 
          zip_str = char(in{2}); 
          [i_info.extras,eCnt] = AddExtra(i_info.extras,tagname,eCnt,zip_str,0); 
        case 'TransformMatrix' 
          t_matr = str2num(in{2}); 
          i_info.tMatrix = t_matr; 
        case 'Offset' 
          i_info.offset = str2num(in{2}); 
        case 'CenterOfRotation' 
          i_info.cor = str2num(in{2}); 
        case 'AnatomicalOrientation' 
          i_info.orientation = in{2}; 
        case 'HeaderSize' 
          headersize = str2num(in{2}); 
        case 'ElementSpacing' 
          spacing = str2num(in{2}); 
          i_info.p_size = str2num(in{2}); 
        case 'ElementNumberOfChannels' 
          numchan = str2num(in{2}); 
          i_info.numchannels = numchan; 
          [i_info.extras,eCnt] = AddExtra(i_info.extras,tagname,eCnt,numchan,0); 
        case 'Cropping' 
          i_info.cr = eval(in{2}); 
        case 'DimSize' 
          i_info.size = str2num(in{2}); 
        case 'ElementType' 
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          el_str = in{2}; 
          switch el_str 
            case 'MET_USHORT' 
              el_read = 'ushort'; 
              ml_read = 'uint16'; 
            case 'MET_CHAR' 
              el_read = 'char'; 
              ml_read = 'int8'; 
            case 'MET_UCHAR' 
              el_read = 'uchar'; 
              ml_read = 'uint8'; 
            case 'MET_FLOAT' 
              el_read = 'float'; 
              ml_read = 'single'; 
            case 'MET_INT' 
              el_read = 'int'; 
              ml_read = 'int32'; 
            case 'MET_DOUBLE' 
              el_read = 'double'; 
              ml_read = 'double'; 
            case 'MET_UINT' 
              el_read = 'uint'; 
              ml_read = 'uint32'; 
            case 'MET_SHORT' 
              el_read = 'short'; 
              ml_read = 'int16'; 
          end 
          i_info.type = el_read; 
        case 'ElementDataFile' 
          dname = in{2}; 
        case 'DoseUnits' 
          i_info.doseUnit = in{2}; 
          [i_info.extras,eCnt] = AddExtra(i_info.extras,tagname,eCnt,in{2},0); 
        case 'TotalDose' 
          i_info.DICOMid = str2num(in{2}); 
          [i_info.extras,eCnt] = AddExtra(i_info.extras,tagname,eCnt,in{2},1); 
        case 'DoseValue' 
          i_info.DICOMid = str2num(in{2}); 
          [i_info.extras,eCnt] = AddExtra(i_info.extras,tagname,eCnt,in{2},1); 
        case 'Dose' 
          i_info.DPid = str2num(in{2}); 
          [i_info.extras,eCnt] = AddExtra(i_info.extras,tagname,eCnt,in{2},0); 
        case 'PatientsWeight' 
          i_info.DICOMweight = in{2}; 
          [i_info.extras,eCnt] = AddExtra(i_info.extras,tagname,eCnt,in{2},0); 
        case 'PatientsSex' 
          i_info.patientssex = in{2}; 
          [i_info.extras,eCnt] = AddExtra(i_info.extras,tagname,eCnt,in{2},0); 
        case 'PatientsBirthDate' 
          i_info.patientsbirthdate = str2num(in{2}); 
          [i_info.extras,eCnt] = AddExtra(i_info.extras,tagname,eCnt,in{2},1); 
        case 'Magnification' 
          i_info.magnification = str2num(in{2}); 
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          [i_info.extras,eCnt] = AddExtra(i_info.extras,tagname,eCnt,str2num(in{2}),1); 
        case 'SoftwareVersion' 
          i_info.softwareversion = in{2}; 
          [i_info.extras,eCnt] = AddExtra(i_info.extras,tagname,eCnt,in{2},0); 
        case 'Weight' 
          i_info.DPweight = str2num(in{2}); 
          [i_info.extras,eCnt] = AddExtra(i_info.extras,tagname,eCnt,in{2},1); 
        case 'Intercept' 
          i_info.intercept = str2num(in{2}); 
          [i_info.extras,eCnt] = AddExtra(i_info.extras,tagname,eCnt,in{2},1); 
        case 'ScalingFactor' 
          i_info.scaling = str2num(in{2}); 
          [i_info.extras,eCnt] = AddExtra(i_info.extras,tagname,eCnt,in{2},1); 
        case 'ScalingUnit' 
          i_info.scaling_unit = in{2}; 
          [i_info.extras,eCnt] = AddExtra(i_info.extras,tagname,eCnt,in{2},0); 
        case 'Modality' 
          i_info.modality = in{2}; 
          [i_info.extras,eCnt] = AddExtra(i_info.extras,tagname,eCnt,in{2},0); 
        case 'PatientsName' 
          i_info.patientsname = in{2}; 
          [i_info.extras,eCnt] = AddExtra(i_info.extras,tagname,eCnt,in{2},0); 
        case 'PatientID' 
          i_info.patientsid = in{2}; 
          [i_info.extras,eCnt] = AddExtra(i_info.extras,tagname,eCnt,in{2},0); 
        case 'SeriesDescription' 
          i_info.seriesdescription = in{2}; 
          [i_info.extras,eCnt] = AddExtra(i_info.extras,tagname,eCnt,in{2},0); 
        case 'SeriesDate' 
          i_info.seriesdate = in{2}; 
          [i_info.extras,eCnt] = AddExtra(i_info.extras,tagname,eCnt,in{2},0); 
        case 'SeriesTime' 
          i_info.seriestime = in{2}; 
          [i_info.extras,eCnt] = AddExtra(i_info.extras,tagname,eCnt,in{2},0); 
        case 'StudyDate' 
          i_info.studydate = in{2}; 
          [i_info.extras,eCnt] = AddExtra(i_info.extras,tagname,eCnt,in{2},0); 
        case 'StudyTime' 
          i_info.studytime = in{2}; 
          [i_info.extras,eCnt] = AddExtra(i_info.extras,tagname,eCnt,in{2},0); 
        case 'StudyInstanceUID' 
          i_info.studyinstanceuid = in{2}; 
          [i_info.extras,eCnt] = AddExtra(i_info.extras,tagname,eCnt,in{2},0); 
        case 'SeriesInstanceUID' 
          i_info.seriesinstanceuid = in{2}; 
          [i_info.extras,eCnt] = AddExtra(i_info.extras,tagname,eCnt,in{2},0); 
        case 'SOPInstanceUID' 
          i_info.sopinstanceuid = in{2}; 
          [i_info.extras,eCnt] = AddExtra(i_info.extras,tagname,eCnt,in{2},0); 
        case 'SOPClassUID' 
          i_info.sopclassuid = in{2}; 
          [i_info.extras,eCnt] = AddExtra(i_info.extras,tagname,eCnt,in{2},0); 
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        case 'ContentDate' 
          i_info.contentdate = in{2}; 
          [i_info.extras,eCnt] = AddExtra(i_info.extras,tagname,eCnt,in{2},0); 
        case 'ContentTime' 
          i_info.contenttime = in{2}; 
          [i_info.extras,eCnt] = AddExtra(i_info.extras,tagname,eCnt,in{2},0); 
        case 'InstanceNumber' 
          i_info.instancenumber = str2num(in{2}); 
          [i_info.extras,eCnt] = AddExtra(i_info.extras,tagname,eCnt,in{2},1); 
        case 'ImageSelection' 
          i_info.i_flag = in{2}; 
          [i_info.extras,eCnt] = AddExtra(i_info.extras,tagname,eCnt,in{2},0); 
        case 'AcquisitionDate' 
          i_info.acqdate = in{2}; 
          [i_info.extras,eCnt] = AddExtra(i_info.extras,tagname,eCnt,in{2},0); 
        case 'AcquisitionTime' 
          i_info.acqtime = in{2}; 
          [i_info.extras,eCnt] = AddExtra(i_info.extras,tagname,eCnt,in{2},0); 
        case 'AcquisitionDateTime' 
          i_info.acqdatetime = in{2}; 
          [i_info.extras,eCnt] = AddExtra(i_info.extras,tagname,eCnt,in{2},0); 
        case 'ManufacturersModelName' 
          i_info.modelname = in{2}; 
          [i_info.extras,eCnt] = AddExtra(i_info.extras,tagname,eCnt,in{2},0); 
        case 'StudyDescription' 
          i_info.studydescription = in{2}; 
          [i_info.extras,eCnt] = AddExtra(i_info.extras,tagname,eCnt,in{2},0); 
        case 'SeriesNumber' 
          i_info.seriesnumber = in{2}; 
          [i_info.extras,eCnt] = AddExtra(i_info.extras,tagname,eCnt,in{2},0); 
        case 'StudyID' 
          i_info.studyid = in{2}; 
          [i_info.extras,eCnt] = AddExtra(i_info.extras,tagname,eCnt,in{2},0); 
        case 'AccessionNumber' 
          i_info.accessionnumber = in{2}; 
          [i_info.extras,eCnt] = AddExtra(i_info.extras,tagname,eCnt,in{2},0); 
        % Frame info 
        case 'FrameDesc' 
          i_info.framedesc = in{2}; 
          [i_info.extras,eCnt] = AddExtra(i_info.extras,tagname,eCnt,in{2},0); 
        case 'FrameUnit' 
          i_info.frameunit = in{2}; 
          [i_info.extras,eCnt] = AddExtra(i_info.extras,tagname,eCnt,in{2},0); 
        case 'FrameMidpoint' 
          i_info.framemidpoint = str2num(in{2}); 
          [i_info.extras,eCnt] = AddExtra(i_info.extras,tagname,eCnt,in{2},1); 
        case 'FrameStart' 
          i_info.framestart = str2num(in{2}); 
          [i_info.extras,eCnt] = AddExtra(i_info.extras,tagname,eCnt,in{2},1); 
        case 'FrameDuration' 
          i_info.frameduration = str2num(in{2}); 
          [i_info.extras,eCnt] = AddExtra(i_info.extras,tagname,eCnt,in{2},1); 
        case 'ROI' 
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          roiCnt = roiCnt + 1; 
          tmp = CharParse(in{2},' ',2); 
          roi.type = tmp{1}; 
          i_info.roi.type{roiCnt} = roi.type; 
          switch i_info.roi.type{roiCnt} 
            case 'box' 
              for i = 1:6, i_info.roi.vals{roiCnt}(i) = str2num(tmp{i+1});end 
            case 'sqbox' 
              for i = 1:6, i_info.roi.vals{roiCnt}(i) = str2num(tmp{i+1});end 
            otherwise 
              disp('That ROI type is not supported'); 
              i_info.roi.vals{roiCnt} = 0; 
          end 
        case '3DROI' 
          roinum = str2num(CharParse(CharParse(tagroi,']',0),'[',1)); 
          roiinfo = CharParse(in{2},':',2); 
          nSet = {'name','color','hidden','immutable','alphaSlice', ... 
                  'alphaSurface'}; 
          for rr = 1:length(roiinfo) 
            if rr < 3 
              cmd = sprintf('i_info.roi3d(%d).%s = ''%s'';',roinum,nSet{rr},roiinfo{rr}); 
            else 
              cmd = sprintf('i_info.roi3d(%d).%s = %d;',roinum,nSet{rr},str2num(roiinfo{rr})); 
            end 
            eval(cmd); 
          end 
        case 'Slice' 
          i_info.slices = eval(in{2}); 
        otherwise  
%           cmd = sprintf('i_info.%s = ''%s'';',strrep(in{1},' ',''),in{2}); 
%           eval(cmd); 
      end 
    end 
  end 
  if doMHA == 0, endCheck = feof(fid); 
  else 
      endCheck = strcmp(tagname,'ElementDataFile'); 
  end 
end 
 
% ADD ROINAMES TO EXTRAS 
if isfield(i_info,'roi3d') 
  roiNames = cell(length(i_info.roi3d),1); 
  for i = 1:length(i_info.roi3d) 
    roiNames{i} = i_info.roi3d(i).name; 
  end 
  i_info.extras.key{end+1} = 'roiNames'; 
  i_info.extras.val{end+1} = roiNames; 
end 
 
% CHECK THE INJECTED DOSE AND WEIGHT 
if isfield(i_info,'DPweight'), i_info.weight = i_info.DPweight; 
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elseif isfield(i_info,'DICOMweight'), i_info.weight = i_info.DICOMweight;end 
 
if isfield(i_info,'DPid'), i_info.id = i_info.DPid; 
elseif isfield(i_info,'DICOMid'), i_info.id = i_info.DICOMid;end 
 
% READ IN THE IMAGE DATA 
if dflag >= 1 
  if ~isempty(dpath), dname = [dpath dname]; end 
 
  if doMHA==0 
    fclose(fid); 
    [fid,message] = fopen(dname,'r',byte_rd); 
    if fid == -1 
%       err_msg = sprintf('Unable to open file %s: %s',dname,message); 
      error('Unable to open file %s: %s',dname,message); 
    end 
  end 
  i_info.hdr = fread(fid,headersize,'uchar'); 
  switch (zip_str) 
    case 'RLE' 
      img = zeros(prod(i_info.size),1); 
      rle = fread(fid,inf,el_read); 
      cnt = 1; 
      for i = 1:2:length(rle) 
        img(cnt:(cnt+rle(i+1)-1)) = rle(i); 
        cnt = cnt + rle(i+1); 
      end 
    case 'True' 
      imgz = fread(fid,inf,'uchar=>uint8'); 
      img = zlib_inflate(imgz, ml_read); 
    case 'JP2' 
      img = imread(dname); 
      i_info.size(3) = size(img,3); 
    otherwise 
      img = fread(fid,inf,['*' el_read]); 
  end 
  %img = cast(fread(fid,inf,el_read),'single'); 
  fclose(fid); 
   
  % RESHAPE THE IMAGE DATA 
  dims = i_info.size; 
  if numchan == 1 
    if n_dims == 3 
      img = reshape(img,[dims(1) dims(2) dims(3)]); 
    elseif n_dims == 2 
      img = reshape(img,[dims(1) dims(2)]); 
    elseif n_dims == 4 
      img = reshape(img,[dims(1) dims(2) dims(3) dims(4)]); 
    end 
  else 
    tmp = img; 
    img = zeros([dims numchan]); 
    switch n_dims 
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      case 2, for i = 1:numchan,img(:,:,i) = reshape(tmp(i:numchan:end),dims);end 
      case 3, for i = 1:numchan,img(:,:,:,i) = reshape(tmp(i:numchan:end),dims);end   
      case 4, for i = 1:numchan,img(:,:,:,:,i) = reshape(tmp(i:numchan:end),dims);end 
    end 
  end 
 
  % SCALE THE IMAGE DATA 
  if i_info.scaling ~= 1 % if scaling is present  
      if ismember(class(img),{'uint16', 'uint8', 'ushort'}) %and is in integer for, 
          img = single(img); % cast to a single 
          i_info.type = 'float'; 
      end 
  end 
  img = img.*i_info.scaling+i_info.intercept; 
  i_info.scaling = 1; 
  i_info.intercept = 0; 
   
  % FLIP THE IMAGE DATA 
  if (exist('t_matr') && exist('spacing')) 
 if n_dims == 3 
   if i_info.p_size(3) < 0 
  i_info.p_size(3) = i_info.p_size(3)*-1; 
  t_matr(9) = t_matr(9)*-1; 
   end 
   if isfield(i_info,'orientation') 
  if strcmp(i_info.orientation(1),'R') 
    t_matr(1) = t_matr(1)*-1; 
    i_info.orientation(1) = 'L'; 
  end 
  if strcmp(i_info.orientation(2),'A') 
    t_matr(5) = t_matr(5)*-1; 
    i_info.orientation(2) = 'P'; 
  end 
  if strcmp(i_info.orientation(3),'I') 
    t_matr(9) = t_matr(9)*-1; 
    i_info.orientation(3) = 'S'; 
  end 
   end 
 end 
  
 if n_dims == 2 
   %if t_matr(1)==1, img=fliplr(img);end 
   %if t_matr(4)==1, img=flipud(img);end 
   %img = img'; 
 elseif n_dims == 3 
   if t_matr(1)==1, img=flip3d(img,1);end 
   if t_matr(5)==1, img=flip3d(img,2);end 
   if t_matr(9)==1, img=flip3d(img,3);end 
   i_info.tMatrix = [-1 0 0 0 -1 0 0 0 -1]; 
      if ~isequal(abs(t_matr([1,5,9])), [1,1,1]) 
          disp(['Warning: Given Transform Matrix not supported at this ' ... 
                'time']); 
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      end 
 elseif n_dims == 4 
      if t_matr(1)==1, img=img(end:-1:1,:,:,:);end 
      if t_matr(6)==1, img=img(:,end:-1:1,:,:);end 
      if t_matr(11)==1, img=img(:,:,end:-1:1,:);end 
      i_info.tMatrix = [-1 0 0 0 0 -1 0 0 0 -1 0 t_matr(13:end)]; 
      if ~isequal(abs(t_matr([1,6,11])), [1,1,1]) 
          disp(['Warning: Given Transform Matrix not supported at this ' ... 
                'time.']); 
      end 
 end 
  end 
   
  % CHECK FOR TRANSPOSITION 
  if dflag == 2 
      if isfield(iinfo,'p_size') 
          tmp = iinfo.p_size; 
          iinfo.p_size(1) = tmp(2); 
          iinfo.p_size(2) = tmp(1); 
      end 
      if isfield(iinfo,'size') 
          tmp = iinfo.size; 
          iinfo.size(1) = tmp(2); 
          iinfo.size(2) = tmp(1); 
      end       
      if n_dims == 2, img = img'; 
      elseif n_dims == 3, img = permute(img,[2 1 3]); 
      elseif n_dims == 4, img = permute(img,[2 1 3 4]); 
      end 
  end     
else 
  img = 0; 
  fclose(fid); 
end 
 
function [extras,eCnt] = AddExtra(extras,key,eCnt,val,evalStr) 
eCnt = eCnt + 1; 
%extras(eCnt).key = key; 
%extras(eCnt).val = val; 
extras.key{eCnt} = key; 
if evalStr 
  extras.val{eCnt} = str2num(val); 
else 
  extras.val{eCnt} = val; 
end 
end 
end 
 
function [ features ] = MoCalc( img, idx, win ) 
%Calculate the central tendancies 
 
[x,y,z] = size(img); 
[a,b,c] = ind2sub([x,y,z],idx); 



200 
 
 
 
features = []; 
for i = 1:size(idx) 
    A = img(a(i)-win:a(i)+win,b(i)-win:b(i)+win,c(i)-win:c(i)+win); 
    B = reshape(A,[size(A,1)*size(A,2)*size(A,3),1]); 
    meanB = mean(B); 
    modeB = mode(B); 
    medB = median(B); 
    varB = var(B); 
    stdB = std(B); 
    kurtB = kurtosis(B); 
    skewB = skewness(B); 
    inte = img(idx(i)); 
    features = [features; meanB,modeB,medB,varB,stdB,kurtB,skewB,inte]; 
end 
end 
 
function out = zlib_deflate(in) 
% ZLIB_DEFLATE compresses input using the zlib package in java 
%  
% INPUTS 
% in    input values (of uncompressed type) 
% 
% OUTPUTS 
% out   compressed bytes (uint8) 
 
import com.mathworks.mlwidgets.io.InterruptibleStreamCopier 
 
% convert input to byte stream 
in_bytes = typecast(in(:), 'uint8'); 
in_stream = java.io.ByteArrayInputStream(in_bytes); 
 
% create a deflater stream 
deflater_stream = java.util.zip.DeflaterInputStream(in_stream); 
 
% copy deflated bytes into output byte array 
stream_copier = InterruptibleStreamCopier.getInterruptibleStreamCopier(); 
out_stream = java.io.ByteArrayOutputStream(); 
stream_copier.copyStream(deflater_stream, out_stream); 
out = typecast(out_stream.toByteArray(), 'uint8'); 
end 
     
function out = zlib_inflate(in, type) 
% ZLIB_INFLATE decompresses input using the zlib package in java 
%  
% INPUTS 
% in    compressed input bytes (uint8) 
% type  output type (e.g., uint8, single, double - see typecast) 
% 
% OUTPUTS 
% out   decompressed values of output type  
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import com.mathworks.mlwidgets.io.InterruptibleStreamCopier 
 
% create an inflater input stream from the compressed bytes 
in_stream = java.io.ByteArrayInputStream(in); 
inflater_stream = java.util.zip.InflaterInputStream(in_stream); 
 
% copy stream  
stream_copier = InterruptibleStreamCopier.getInterruptibleStreamCopier(); 
out_stream = java.io.ByteArrayOutputStream(); 
stream_copier.copyStream(inflater_stream, out_stream); 
out = typecast(out_stream.toByteArray(), type); 
end 

6.2 runBMC-MATLAB.vqs 
//Brucker MRI Conversion  
//Script to take Bruker data and organise it into raw format, ignoring localisers and applying bias 
filter correction 
//Looks for folders that begin with 201 as extracted from the Paravisions (Bruker, MA, USA) zip 
files 
//Impanated using VivoQuant (inviCRO, MA, Boston) ver3.5  
//Written by Joseph Brook  
//version 4.0 (11/12/2018) - J. Brook 
 
//Define Libraries and prebuilt functions 
#include "VQSTools.vqs" 
#include "ipacs.vqs" 
var bruk = VQ.brukerImporter(); 
var dm = VQ.dataManager(); 
 
//Designate where to save the files 
var dataLoc = 'Input'; 
var oLoc = 'data/'; 
rmkdir(oLoc); 
var patients = VQ.lsDir(dataLoc,'201*'); //Input data 
 
//Bring the Reorientation/Registration menu 
var mw = VQ.mainWin(); 
var dm = VQ.dataManager(); 
var ctl = VQ.controler(); 
mw.setViewMode('Slice View','Reorientation/Registration'); 
var reg = VQ.currentOp(); 
 
//For each folder  
for (var i = 0 ;i < patients.length; i++){ 
    var cdir = dataLoc + "/" +  patients[i]; 
    var strs = bruk.scanStudies(cdir); 
    var strs = bruk.scanStudies(cdir); 
    var st1 = bruk.loadDesc(cdir,'1');  
    VQ.debug(strs); 
 
    //For each scan in the folder 
    for (var j = 0; j < strs.length; j++){ 
        var tok = strs[j].split('-'); 
        var idx = tok[0]; 
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        var val = tok[1]; 
        var str = bruk.loadDesc(cdir,idx); 
 
  //Skip the localizer 
        if (wildcardMatch(str,'*Localizer*'))  
            continue; 
 
        //Load the data 
  var path = VQ.fileExists(cdir + "/" + idx + '/pdata/' + val + '/2dseq'); 
   if (path === false){ 
   continue;} 
 
  //Get info for the naming 
        bruk.load(cdir + "/" + idx + '/pdata/' + val + '/2dseq'); 
        bruk.transferData(0,dm); 
 
        var tr = dm.getDcmString(0,'RepetitionTime'); 
        var te = dm.getDcmString(0,'EchoTime'); 
  var psplit = patients[i].split('_'); 
  var sdesc = dm.getDesc(0,'seriesdescription'); 
        var tak = sdesc.split('_'); 
        var type = tak[0]; 
  var tw = type.split(' - '); 
  if (tw[1] === 'T2') { 
   continue; 
  } 
  var age = VQ.getInt('Age of ' + psplit[3] + psplit[4] + psplit[5] + ' on date ' + 
psplit[0],'Input age of the animal',value = 0,min = 0,max = 2147483647,step = 1);  
 
        var fname = psplit[3] + psplit[4] + psplit[5] + "-" + age + "-KPC-0-" +  tw[1]; 
 
  //Prepare to flip the data 
        mw.setViewMode('Slice View','Reorientation/Registration'); 
        var reg = VQ.currentOp(); 
  VQ.getWidget('dataSelector').setSelectionString('0'); 
  VQ.suspend('Tick the orientations needed to be flipped. The stomach should be 
on the left and the head at the top of the coronal orientation and the spine on the left of the 
sagital orientation'); 
   
        //Apply transformation 
        VQ.currentOp().applyTransformation(); 
   
  //Apply Bias Filter 
  mw.setViewMode('Slice View','Filtering'); 
  VQ.getWidget('dataSelector').setSelectionString('0'); 
  VQ.getWidget('cbSelect').setCurrentIndex(8); 
  VQ.getWidget('DownsampleFactor').setValue('2'); 
  VQ.getWidget('cbAppendData').setChecked(false); 
  VQ.getWidget('cbForce2D').setChecked(false); 
  VQ.getWidget('ConvergeThreshold').setValue('0.5000'); 
  VQ.getWidget('buttonBox').accepted(); 
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        //Save the data as raw 
  dm.setDesc(VQ.index(0),'StudyDescription','Library') 
        var stddesc = dm.getDesc(0,'studydescription'); 
  VQ.storeAsRaw(oLoc + fname + ".zraw",0); 
         
  //Unload the data 
        dm.unloadData(0,-1); 
    }    
 VQ.quit() 
} 

6.3 MAS_Tool.vqs 
#include "VQSTools.vqs" 
#include "ipacs.vqs" 
 
//Used to run MAS tool on local data given path to local reference library 
//Reference library directory must contain MASsettings.txt and ref_list.txt files 
 
var ref_lib_path =  getLocalDir() + 'data/refLib/'; //reference library directory 
var data_dir = getLocalDir() + 'data/'; //Input data directory 
 
 
//Initial setup 
var dm = VQ.dataManager(); 
var mw = VQ.mainWin(); 
 
dm.unloadData(0,-1); 
var maxVoxRatio = VQ.getConfig("Data/maxVoxRatioVol"); 
VQ.setConfig("Data/maxVoxRatioVol", 20.0, true); 
 
 
//Find and list data to run MAS tool on (wildcard filter acceptable) 
var studies = VQ.lsDir(data_dir,'*mhd'); 
var ref_lib_count = VQ.lsDir(ref_lib_path,'*rmha'); 
 
//Define which ROI names in the reference library rmha files to run for the input data 
var roi_list = 
['KidneyLeft','KidneyRight','Spleen','Stomach','Liver','Gallbladder','HepaticPortalVein']; 
 
//Run for each subject 
for (var i = 0;i<studies.length;i++){ 
  
 //remove file extension from input just for formatting output file name 
 var pname = studies[i].split('.').slice(0, -1).join('.') 
 var output_rmha = data_dir+pname+'MASTool.rmha'; 
  
 //check if output exists 
 if (VQ.fileExists(output_rmha)) 
 { 
  //VQ.showMessage('Output for subject - ' + pname + ' - is already 
found...skipping'); 
  //continue; 
 } 
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 //load preprocessed input image 
 dm.openDat(0,[data_dir + studies[i]]); 
 
  
    //Initialize and run MAS tool       
 var MAS = VQ.wbAtlas(ref_lib_path); 
 MAS.initialize(); 
 
 //Check off ROIs to run 
 var mas_rois = MAS.getROIsList(); 
 for(var ridx=0; ridx<roi_list.length; ridx++){ 
  mas_rois.setChecked(roi_list[ridx].toLowerCase(),true); 
 } 
 
 //Load in MAS tool settings and run 
 var settings_file = ref_lib_path + 'MASsettings.txt'; 
 MAS.loadSettings(settings_file); 
 MAS.getWidget('dataSelector').setSelectedIndex(0); 
 MAS.run() 
 if(MAS.hasError()){ 
  VQ.suspend(MAS.takeError()); 
 } 
  
  
  
 //Save resulting ROIs to local rmha file in data directory 
 mw.setViewMode('Slice View','3D ROI Operator'); 
 var roi = VQ.currentOp(); 
 roi.saveROI(output_rmha); 
  
  
  
 //Clean-up 
 roi.clearAllROIs(); 
 MAS.close(); 
  
    dm.unloadData(0,-1); 
} 
 
VQ.setConfig("Data/maxVoxRatioVol", maxVoxRatio, true); 
 
VQ.showMessage('Done for all subjects!'); 
 
 
 
 
//Returns the directory of the current VivoScript. 
function getLocalDir(){ 
    // Is it run from the App 
    if (VQ.isInteractive()){ 
        var localDir = VQ.getConfig('cwdVQScript'); 
    } 
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    else{ 
 var localDir = VQ.getConfig('VQScript/QuickAccess/'+arguments[0]) 

    } 
    // Switch to all forward slashes 
    while (localDir.indexOf('\\') > -1) 

      localDir = localDir.replace('\\','/'); 
    // Remove last piece (which is the file name) 
    var tok = localDir.split('/'); 
    tok = tok.splice(0,tok.length-1); 
    var dirout = tok.join('/'); 
    dirout = dirout + '/'; 

    return dirout; 
} 

6.4 MASToolSetting.txt 
OutputFileExtension = mhd 
UseCompression = 1 
SaveRegistrationMovieImages = 0 
SaveMetric = 1 
BoundingBoxName = PerOrgan 
BoundingBoxPadding = 0 
AverageName = BestN 
AverageBestN = 6 
BestNMetric = MI 
AverageThreshold = 0.44 
ThresholdName = Fixed 
HistogramMatchingFlag = 1 
HistogramMatchingBins = 1024 
HistogramMatchingPoints = 10 
Winsorize = 0 
WinsorizeLowerQuantile = 0.005 
WinsorizeUpperQuantile = 0.995 
LinearTransformTypes = Affine 
LinearInitName = Moments 
LinearMetricType = MattesMutualInformation 
MetricHistogramBins = 64 
LinearOptimizerType = ConjugateGradientDescent 
LinearSamplingPercentage = 0.02 
LinearNumIter = 200 
LinearMinStepLength = 0.0001 
LinearLearningRate = 8 
LinearRelaxation = 0.8 
LinearMultiResFlag = 1 
LinearShrinkFactors = 2 1 
LinearSmoothingSigmas = 1 0 
DeformablePreRegName = None 
DeformableName = DiffeomorphicDemons 
DeformableMetricName = MattesMutualInformation 
DeformableSigma = 0.5 
DeformableTolerance = 0.01 
DeformableNumIter = 150 
DeformableMaxStep = 0.5 
DeformableMultiResFlag = 1 
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DeformableShrinkFactors = 4 2 1 
DeformableSmoothingSigmas = 2 1 0 
Verbose = 2 

6.5 RebuildModle.m 
%% Rebuild Model 
clearvars 
addpath('Code') 
tic 
inDir = ('Library'); 
 
d = 'Library/*.mhd'; 
D = dir(d); 
k = size(D,1); 
for l = 1:k 
    dNameTemp = CharParse(D(l).name,'.',0); 
    dName{l} = CharParse(dNameTemp,'_',0); 
end 
duName = unique(dName); 
%%%%%% 
outDir = 'Library'; 
 
 
%% Find the maximum magnitude of vectors from centre of mass of organs to general centre 
f = 'Library/*1.rmha'; % Get all rmha files 
F = dir(f); 
a = size(F,1); 
mag = zeros(1,a); 
for i = 1:a 
    fROI = sprintf('%s/%s',outDir,F(i).name); 
    [ROI,rInfo] = mhdImport(fROI); 
    %% Centre of each ROI 
    [xN,yN,zN] = deal(zeros(7,1)); 
    for j = 1:7 %for loop for each ROI 
        Roi = ROI; 
        Roi(Roi~=j)=0; 
        Roi = Roi./j; 
        cen = regionprops(Roi,'centroid'); 
        xN(j) = cen.Centroid(2); 
        yN(j) = cen.Centroid(1); 
        zN(j) = cen.Centroid(3); 
        xyzN(j,[2,1,3]) = cen.Centroid; %Reorder as output of cen is y,x,z 
    end 
    xyzNm =  round(mean(xyzN)); 
    xyzNm = reshape(xyzNm, [1 3]); 
    mag(i) = mean(sum(([xyzN(:,1),xyzN(:,2),xyzN(:,3)] - 
[xyzNm(1),xyzNm(2),xyzNm(3)]).^2,2).^(1/2)); 
end 
magColl = round(mean(mag)); 
save('Code/magMean.mat','magColl'); 
 
%% Pancreas and Tumour Cloud 
id = {}; 
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[PancCloudWarp, TumCloudWarp, PancCloudWarpKPWT] = deal(zeros(120,80,160)); 
[roiPanc, roiTum] = deal([]); 
for m = 1:size(F,1) 
    fROI = sprintf('%s/%s',outDir,F(m).name); 
    [ROI,~] = mhdImport(fROI); 
    %% Centre of each ROI 
    xyzN = zeros(7,3); 
    for n = 1:7 %for loop for each ROI Kidneys Spleen Stomach, Liver Gallbladder and Hepatic 
Portal Vein 
        Roi = ROI; 
        Roi(Roi~=n)=0; 
        Roi = Roi./n; 
        cen = regionprops(Roi,'centroid'); 
        xyzN(n,[2,1,3]) = cen.Centroid; %Reorder as output of cen is y,x,z 
    end 
    xyzNm = round(mean(xyzN)); 
    xyzNm = reshape(xyzNm, [1 3]); 
    shiftT = eye(4); 
    PancCenterVec = size(Roi)/2; 
    shiftImg{m} = -( xyzNm - PancCenterVec); 
    shiftT(4,1:3) = shiftImg{m}([2,1,3]); 
    tformShift = affine3d(); 
    tformShift.T = shiftT; 
    mag = mean(sum(([xyzN(:,1),xyzN(:,2),xyzN(:,3)] - 
[xyzNm(1),xyzNm(2),xyzNm(3)]).^2,2).^(1/2)); 
    scaleFac = magColl/mag; %Calcuate the scaling factor 
    Rin = imref3d(size(Roi)); 
    Rin.XWorldLimits = Rin.XWorldLimits-2*mean(Rin.XWorldLimits); %Find the limits for the 
translation 
    Rin.YWorldLimits = Rin.YWorldLimits-2*mean(Rin.YWorldLimits); 
    Rin.ZWorldLimits = Rin.ZWorldLimits-2*mean(Rin.ZWorldLimits); 
     
    %% Pancreas 
    Roi = ROI; 
    Roi(Roi~=8)=0; 
    Roi = Roi./8; 
    img = imwarp(Roi,Rin,tformShift,'linear','OutputView', Rin,'FillValues', min(Roi(:))); 
    img = imresize3(img,scaleFac); 
    img = FitImageToMatrix(img,size(Roi)); 
    PancCloudWarp = PancCloudWarp+img; 
    roiPanc = cat(4,roiPanc,img); 
     
    %% Tumour 
    Roi = ROI; 
    Roi(Roi~=9)=0; 
    Roi = Roi./9; 
    imgTum = imwarp(Roi,Rin,tformShift,'linear','OutputView', Rin,'FillValues', min(Roi(:))); 
    imgTum = imresize3(imgTum,scaleFac); 
    imgTum = FitImageToMatrix(imgTum,size(Roi)); 
    TumCloudWarp = TumCloudWarp+imgTum; 
    roiTum = cat(4,roiTum,imgTum); 
     
    %% Index 
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    idTemp = CharParse(F(m).name,'.',0); 
    id = [id;idTemp]; 
     
end 
 
DiMask(:,:,1) = [0 1 0; 1 1 1; 0 1 0]; 
DiMask(:,:,2) = 1; 
DiMask(:,:,3) = DiMask(:,:,1); 
 
% Pancreas 
PancDi = imdilate(PancCloudWarp,DiMask); 
PancSmooth = imgaussfilt3(PancDi, 1); 
PancSmooth(PancSmooth<0) = 0; 
PancSmooth = PancSmooth./max(max(max(PancSmooth))); 
IDs.ID = id; 
PancCloudKPC = struct('PancreasCloud',PancSmooth,'AnimalID', IDs,'NumberOfScans',size(id,1)); 
save('Code/PancCloudKPC.mat','PancCloudKPC'); 
 
% Tumour 
TumSmooth = imgaussfilt3(TumCloudWarp, 1); 
TumSmooth(TumSmooth<0) = 0; 
TumSmooth = TumSmooth./max(max(max(TumSmooth))); 
IDs.ID = id; 
TumCloud = struct('TumourCloud',TumSmooth,'AnimalID', IDs,'NumberOfScans',size(id,1)); 
save('Code/TumCloud.mat','TumCloud'); 
 
OffSet = [1 2]; 
glcm_window = 11; 
for i = 1:size(duName,2) 
    otherProbName = sprintf('%s/%s_OtherProb.mhd',inDir,duName{i}); 
     
    tempName = sprintf('%s/%s.mhd',inDir,duName{i}); 
    runWBAModel; 
     
    fROI = sprintf('%s/%s',outDir,F(i).name); 
    [ROI,rInfo] = mhdImport(fROI); 
    id = CharParse(F(i).name,'.',0); 
    idType = CharParse(id,'-',2); 
    idType = idType{3}; 
    if strcmp('KPC',idType) 
        PancCloud = PancCloudKPC; 
    else 
        PancCloud = PancCloudKP; 
        TumCloud.TumourCloud = zeros(size(ROI)); 
    end 
    fScan = sprintf('%s/%s.mhd',outDir,id); 
    [scan,sInfo] = mhdImport(fScan); 
    scanRe = reshape(scan,[size(scan,1)*size(scan,2)*size(scan,3),1]); 
    T = otsuthresh(scanRe); 
    scanD = scan; 
    scanD(scanD < T) = 0; 
    scanD(scanD >= T) = 1; 



209 
 

    di(:,:,1) = [0 0 0; 0 1 0; 0 0 0]; 
    di(:,:,2) = [0 1 0; 1 1 1; 0 1 0]; 
    di(:,:,3) = [0 0 0; 0 1 0; 0 0 0]; 
    for n = 1:3 
        scanD = imdilate(scanD,di); 
    end 
     
    %% Centre of each ROI + the average distance of that ROI to the Pancreas 
    xyzN = zeros(7,3); 
    for n = 1:7 %for loop for each ROI 
        Roi = ROI; 
        Roi(Roi~=n)=0; 
        Roi = Roi./n; 
        cen = regionprops(Roi,'centroid'); 
        xyzN(n,[2,1,3]) = cen.Centroid; %Reorder as output of cen is y,x,z 
    end 
    xyzNm = round(mean(xyzN)); 
    xyzNm = reshape(xyzNm, [1 3]); 
    shiftT = eye(4); 
    PancCenterVec = size(Roi)/2; 
    shiftImg{m} = ( xyzNm - PancCenterVec); 
    shiftT(4,1:3) = shiftImg{m}([2,1,3]); 
    tformShift = affine3d(); 
    tformShift.T = shiftT; 
    mag = mean(sum(([xyzN(:,1),xyzN(:,2),xyzN(:,3)] - 
[xyzNm(1),xyzNm(2),xyzNm(3)]).^2,2).^(1/2)); 
    scaleFac = magColl/mag; 
     
    Rin = imref3d(size(Roi)); 
    Rin.XWorldLimits = Rin.XWorldLimits-2*mean(Rin.XWorldLimits); 
    Rin.YWorldLimits = Rin.YWorldLimits-2*mean(Rin.YWorldLimits); 
    Rin.ZWorldLimits = Rin.ZWorldLimits-2*mean(Rin.ZWorldLimits); 
     
    %% Transform probability cloud 
    PancCloudNovel = PancCloud.PancreasCloud; 
    PancCloudNovel = imresize3(PancCloudNovel,1/scaleFac); 
    PancCloudNovel = FitImageToMatrix(PancCloudNovel,size(Roi)); 
    PancCloudNovel = imwarp(PancCloudNovel,Rin,tformShift,'linear','OutputView', 
Rin,'FillValues', min(Roi(:))); 
    PancCloudNovel(PancCloudNovel<0)=0; 
    pCloud = sprintf('%s/%s_PancCloud.mhd',outDir,id); 
    mhdExport(PancCloudNovel,pCloud,sInfo); 
     
    if strcmp('KPC',idType) 
        TumCloudNovel = TumCloud.TumourCloud; 
        TumCloudNovel = imresize3(TumCloudNovel,1/scaleFac); 
        TumCloudNovel = FitImageToMatrix(TumCloudNovel,size(Roi)); 
        TumCloudNovel = imwarp(TumCloudNovel,Rin,tformShift,'linear','OutputView', 
Rin,'FillValues', min(Roi(:))); 
        TumCloudNovel(TumCloudNovel<0)=0; 
        tCloud = sprintf('%s/%s_TumCloud.mhd',outDir,id); 
        mhdExport(TumCloudNovel,tCloud,sInfo); 
        areaRoi = PancCloudNovel+TumCloudNovel; 
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    else 
        areaRoi = PancCloudNovel; 
    end 
     
    areaRoi(areaRoi<0.02) = 0; 
    areaRoi(areaRoi>0)=1; 
    areaRoi = areaRoi.*scanD; 
    aRoi = sprintf('%s/%s_AreaRoi.rmha',outDir,id); 
    mhdExport(areaRoi,aRoi,rInfo); 
     
 
     
    %% Other area 
    Roi = ROI; 
    Roi(Roi==9) = 8; 
    Roi(Roi~=8) = 1; 
    Roi(Roi==8) = 0; 
    otherRoi = areaRoi.*Roi; 
     
    oRoi = sprintf('%s/%s_OtherRoi.rmha',outDir,id); 
    mhdExport(otherRoi,oRoi,rInfo); 
     
    %% 
    %% Read volumes 
    fscan = sprintf('%s/%s',inDir,D(i).name); 
    [Data,~]=mhdImport(fscan); 
    DataP = padarray(Data,[glcm_window,glcm_window,glcm_window]); 
    DataP = double(DataP); 
     
    pscan = sprintf('%s/%s_PancCloud.mhd',inDir,dName{i}); 
    [Panc,~]=mhdImport(pscan); 
    Panc = padarray(Panc,[glcm_window,glcm_window,glcm_window]); 
    idType = CharParse(dName{i},'-',2); 
    idType = idType{3}; 
    if strcmp('KPC',idType) 
        tscan = sprintf('%s/%s_TumCloud.mhd',inDir,dName{i}); 
        [Tum,~]=mhdImport(tscan); 
        Tum = padarray(Tum,[glcm_window,glcm_window,glcm_window]); 
    else 
        Tum = zeros(size(Panc)); 
    end 
     
    % mask 
    fROI = sprintf('%s/%s.rmha',inDir,dName{i}); 
    [ROI,rInfo]=mhdImport(fROI); 
    ROIName = rInfo.extras.val{end}; %ROI Names 
    Rs = size(rInfo.extras.val{end},1); 
    ROInames = {'KidneyLeft','KidneyRight','Spleen','Stomach','Liver',... 
        'Gallbladder','HepaticPortalVein','Pancreas','Tumour'}; 
     
    [Gmag, Gazi, Gele] = imgradient3(DataP); 
    [Gx, Gy, Gz] = imgradientxyz(DataP); 
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    Gxy1 = (Gx.^2+Gy.^2).^.5/(2^0); 
    Gxy2 = (Gx.^2+Gy.^2).^.5/(2^1); 
    Gxy3 = (Gx.^2+Gy.^2).^.5/(2^2); 
    Gxy4 = (Gx.^2+Gy.^2).^.5/(2^3); 
    Gxy5 = (Gx.^2+Gy.^2).^.5/(2^4); 
    FA = FACalcArea(Gmag,Gazi,Gele,glcm_window); 
     
    %% COM 
    xyzN = zeros(7,3); 
    for n = 1:7 %for loop for each ROI 
        Roi = ROI; 
        Roi(Roi~=n)=0; 
        Roi = Roi./n; 
        cen = regionprops(Roi,'centroid'); 
        xyzN(n,[2,1,3]) = cen.Centroid; %Reorder as output of cen is y,x,z 
    end 
     
    xyzNm = round(mean(xyzN)); 
    xyzNm = reshape(xyzNm, [1 3]); 
    mag = mean(sum(([xyzN(:,1),xyzN(:,2),xyzN(:,3)] - 
[xyzNm(1),xyzNm(2),xyzNm(3)]).^2,2).^(1/2)); 
    scaleFac = magColl/mag; 
    %% ROI 
    if Rs(1) == 9 
        jl = [8,9]; 
    else 
        jl = 8; 
    end 
    for j = jl%1:Rs %for loop for each ROI 
        ROIChoice = j; 
        Roi = ROI; 
        Roi(Roi~=ROIChoice)=0; 
        Roi = Roi./ROIChoice; 
        RoiP = padarray(Roi,[glcm_window,glcm_window,glcm_window]); 
         
        %% Find slices with label 
        idxP = find(RoiP); 
        [~,~,i3] = ind2sub(size(RoiP), idxP); 
        indZ = unique(i3); 
        RoiZ = RoiP; 
        for kk = 1:glcm_window 
            RoiZ  = imdilate(RoiZ,DiMask); 
        end 
         
        %% extract GLCM & GLRLM features 
        feature_matrix=[]; 
        Glrlm = []; 
        for k = 1:length(indZ) 
            [indx,indy] = find((RoiP(:,:,indZ(k)))>0); 
            %GLCM 
            [mean_im,std_im,entropy_im,gf]= calculate_main_features((DataP(:,:,indZ(k)))); 
            
glcm_struct=calculate_glcm_Run_IdxTest((DataP(:,:,indZ(k))),glcm_window,OffSet,indx,indy); 
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[featur_vector,label_mat]=features_vector_Run_IdxTest(ROIName(j,:),mean_im,std_im,entropy
_im,glcm_struct,indx,indy); 
            feature_matrix= cat(1, feature_matrix, featur_vector); 
            %GLRLM 
            [RLFeatures0,RLFeatures45,RLFeatures90,RLFeatures135] = deal([]); 
            [rlm0,rlm45,rlm90,rlm135,max0,max45,max90,max135] = 
calculate_glrlm_Run_IdxTest(DataP(:,:,indZ(k)),glcm_window,indx,indy); 
            for jj = 1:size(rlm0,1) 
                [RLFeatures0(jj,:)] = calculate_glrlm_features(rlm0{jj,1},max0(:,jj),glcm_window); 
            end 
            for jj = 1:size(rlm45,1) 
                [RLFeatures45(jj,:)] = calculate_glrlm_features(rlm45{jj,1},max45(:,jj),glcm_window); 
            end 
            for jj = 1:size(rlm90,1) 
                [RLFeatures90(jj,:)] = calculate_glrlm_features(rlm90{jj,1},max90(:,jj),glcm_window); 
            end 
            for jj = 1:size(rlm135,1) 
                [RLFeatures135(jj,:)] = 
calculate_glrlm_features(rlm135{jj,1},max135(:,jj),glcm_window); 
            end 
            Glrlm = cat(1,Glrlm,[RLFeatures0, RLFeatures45, RLFeatures90, RLFeatures135]); 
             
        end 
        feature_matrix= cat(1, feature_matrix); 
        Features = cat(2,feature_matrix(:,1:23), Glrlm); 
         
        %% Spatial features 
        fea = MoCalc(DataP,idxP,glcm_window); 
        Features = cat(2,Features, fea); 
         
        %% Calculate the Gradient Magnitude and the FA values 
        Grad = Gmag(idxP); 
        FA3 = FA(idxP); 
        Gxx = Gx(idxP); 
        Gyy = Gy(idxP); 
        Gxy1C = Gxy1(idxP); 
        Gxy2C = Gxy2(idxP); 
        Gxy3C = Gxy3(idxP); 
        Gxy4C = Gxy4(idxP); 
        Gxy5C = Gxy5(idxP); 
        Features = cat(2,Features,Grad,Gxx,Gyy,Gxy1C,Gxy2C,Gxy3C,Gxy4C,Gxy5C,FA3); 
         
        %% COM 
        [xx,yy,zz] = Gen3DCoords(RoiP); 
        difCOM = zeros(size(xx,1),3); 
        for k = 1:size(xx,1) 
            difCOM(k,1) = (xyzNm(1)-xx(k,1))/scaleFac; 
            difCOM(k,2) = (xyzNm(2)-yy(k,1))/scaleFac; 
            difCOM(k,3) = (xyzNm(3)-zz(k,1))/scaleFac; 
        end 
        Features = cat(2,Features, difCOM); 
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        %% Other organ probability 
        PancC = Panc(idxP); 
        TumC = Tum(idxP); 
        OPname = sprintf('%s/%s_OtherProb.mhd',inDir,dName{i}); 
        [oProb, ~] = mhdImport(OPname); 
        oProb = padarray(oProb,[glcm_window,glcm_window,glcm_window]); 
        opGath = oProb(idxP); 
        Features = cat(2,Features, PancC, TumC, opGath); 
         
        %% Save features 
        saveName = dName{i}; 
        fname = sprintf('%s/%s_%s_Features.mat',outDir,saveName,char(ROIName(j,:))); 
        parsave(fname,Features); 
    end 
     
     
    %% Bounding Box 
    % mask 
    fROI = sprintf('%s/%s_AreaRoi.rmha',inDir,dName{i}); 
    [ROIb,rInfo]=mhdImport(fROI); 
    ROInames = {'BoundingBox'}; 
    Rs = size(rInfo.extras.val{end},1); 
    RoiP = padarray(ROIb,[glcm_window,glcm_window,glcm_window]); 
     
     
    %% Find slices with label 
    idxP = find(RoiP); 
    [~,~,i3] = ind2sub(size(RoiP), idxP); 
    indZ = unique(i3); 
    RoiZ = RoiP; 
    for kk = 1:glcm_window 
        RoiZ = imdilate(RoiZ,DiMask); 
    end 
    DataP = padarray(DataP,[0,0,glcm_window]); 
    DataP = double(DataP); 
     
    %% extract features 
    feature_matrix=[]; 
    Glrlm = []; 
    for k = 1:length(indZ) 
        [indx,indy] = find((RoiP(:,:,indZ(k)))>0); 
        %GLCM 
        [mean_im,std_im,entropy_im,gf]= calculate_main_features((DataP(:,:,indZ(k)))); 
        
glcm_struct=calculate_glcm_Run_IdxTest((DataP(:,:,indZ(k))),glcm_window,OffSet,indx,indy); 
        
[featur_vector,label_mat]=features_vector_Run_IdxTest(ROInames(1),mean_im,std_im,entropy
_im,glcm_struct,indx,indy); 
        feature_matrix= cat(1, feature_matrix, featur_vector); 
        %GLRLM 
        [RLFeatures0,RLFeatures45,RLFeatures90,RLFeatures135] = deal([]); 
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        [rlm0,rlm45,rlm90,rlm135,max0,max45,max90,max135] = 
calculate_glrlm_Run_IdxTest(DataP(:,:,indZ(k)),glcm_window,indx,indy); 
        for jj = 1:size(rlm0,1) 
            [RLFeatures0(jj,:)] = calculate_glrlm_features(rlm0{jj,1},max0(:,jj),glcm_window); 
        end 
        for jj = 1:size(rlm45,1) 
            [RLFeatures45(jj,:)] = calculate_glrlm_features(rlm45{jj,1},max45(:,jj),glcm_window); 
        end 
        for jj = 1:size(rlm90,1) 
            [RLFeatures90(jj,:)] = calculate_glrlm_features(rlm90{jj,1},max90(:,jj),glcm_window); 
        end 
        for jj = 1:size(rlm135,1) 
            [RLFeatures135(jj,:)] = calculate_glrlm_features(rlm135{jj,1},max135(:,jj),glcm_window); 
        end 
        Glrlm = cat(1,Glrlm,[RLFeatures0, RLFeatures45, RLFeatures90, RLFeatures135]); 
         
    end 
    feature_matrix= cat(1, feature_matrix); 
    Features = cat(2,feature_matrix(:,1:23), Glrlm); 
     
    %% Spatial features 
    fea = MoCalc(DataP,idxP,glcm_window); 
    Features = cat(2,Features, fea); 
     
    %% Calculate the Gradient Magnitude and the FA values 
    Grad = Gmag(idxP); 
    FA3 = FA(idxP); 
    Gxx = Gx(idxP); 
    Gyy = Gy(idxP); 
    Gxy1C = Gxy1(idxP); 
    Gxy2C = Gxy2(idxP); 
    Gxy3C = Gxy3(idxP); 
    Gxy4C = Gxy4(idxP); 
    Gxy5C = Gxy5(idxP); 
    Features = cat(2,Features,Grad,Gxx,Gyy,Gxy1C,Gxy2C,Gxy3C,Gxy4C,Gxy5C,FA3); 
     
     
    %% COM 
    [xx,yy,zz] = Gen3DCoords(RoiP); 
    difCOM = zeros(size(xx,1),3); 
    for k = 1:size(xx,1) 
        difCOM(k,1) = (xyzNm(1)-xx(k,1))/scaleFac; 
        difCOM(k,2) = (xyzNm(2)-yy(k,1))/scaleFac; 
        difCOM(k,3) = (xyzNm(3)-zz(k,1))/scaleFac; 
    end 
    Features = cat(2,Features, difCOM); 
     
     
    %% Other organ probability 
    PancC = Panc(idxP); 
    TumC = Tum(idxP); 
    OPname = sprintf('%s/%s_OtherProb.mhd',inDir,dName{i}); 
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    [oProb, ~] = mhdImport(OPname); 
    oProb = padarray(oProb,[glcm_window,glcm_window,glcm_window]); 
    opGath = oProb(idxP); 
    Features = cat(2,Features, PancC, TumC, opGath); 
     
     
    %% Save features 
    saveName = dName{i}; 
    fname = sprintf('%s/%s_BoundingArea_Features.mat',outDir,saveName); 
    parsave(fname,Features); 
    toc 
     
    %% Other featrues 
    Oname = sprintf('%s/%s_OtherRoi.rmha',inDir,dName{i}); 
    [other, oInfo] = mhdImport(Oname); 
    other = padarray(other,[glcm_window,glcm_window,glcm_window]); 
    idxO = find(other == 1); 
    q = ismember(idxP,idxO); 
    idxOt = find(q == 1); 
    OtherFeatures = Features(idxOt,:); 
    fname = sprintf('%s/%s_Other_Features.mat',outDir,saveName); 
    parsave(fname,OtherFeatures); 
end 
 
%% Build Model 
Ogat = []; 
for l = 1:size(duName,2) 
    o = sprintf('%s/*%s*Other*.mat',inDir,duName{l}); 
    O = dir(o); 
    for i = 1:size(O,1) 
        lOname = sprintf('%s/%s',inDir,O(i).name); 
        OFe = load(lOname); 
        Ogat = [Ogat;OFe.x]; 
    end 
end 
 
Pgat = []; 
for l = 1:size(duName,2) 
    polyN = sprintf('%s/*%s*Pancreas*.mat',inDir,duName{l}); 
    P = dir(polyN); 
    for i = 1:size(P,1) 
        lPname = sprintf('%s/%s',inDir,P(i).name); 
        PFe = load(lPname); 
        Pgat = [Pgat;PFe.x]; 
    end 
end 
 
Tgat = []; 
for l = 1:size(duName,2) 
    t = sprintf('%s/*%s*Tumour*.mat',inDir,duName{l}); 
    T = dir(t); 
    for i = 1:size(T,1) 
        lTname = sprintf('%s/%s',inDir,T(i).name); 
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 TFe = load(lTname); 
 Tgat = [Tgat;TFe.x]; 

    end 
end 

%% Choose random pixels 
rng(1); 
M = min(size(Tgat,1),size(Pgat,1)); 
PgatR = datasample(Pgat,M,'Replace',false); 
OgatR = datasample(Ogat,M,'Replace',false); 
TgatR = datasample(Tgat,M,'Replace',false); 

fullData = cat(1,PgatR,TgatR,OgatR); 
cList = [repmat({'Pancreas'},M,1);repmat({'Tumour'},M,1);repmat({'Other'},M,1);]; 

names = {'Autocorrelation', 'Contrast', 'CorrelationMatlab', 'Correlation',... 
    'ClusterProminence', 'ClusterShade', 'Dissimilarity', 'Energy',... 
    'Entropy', 'HomogeneityMatlab', 'Homogeneity', 'MaximumProbability',... 
    'SumofSquares', 'SumAverage', 'SumVariance', 'SumEntropy',... 
    'DifferenceVariance', 'DifferenceEntropy',... 
    'InformationMeasureofCorrelation1', 'InformationMeasureofCorrelation2',... 
    'InverseDifference', 'InverseDifferenceNormalised',... 
    'InverseDifferenceMomentNormalised', 'SRE0', 'LRE0', 'RLN0', 'RP0',... 
    'GLN0', 'LGRE0', 'HGRE0', 'SRE45', 'LRE45', 'RLN45', 'RP45', 'GLN45',... 
    'LGRE45', 'HGRE45', 'SRE90', 'LRE90', 'RLN90', 'RP90', 'GLN90',... 
    'LGRE90', 'HGRE90', 'SRE135', 'LRE135', 'RLN135', 'RP135','GLN135',... 
    'LGRE135', 'HGRE135', 'Mean', 'Mode', 'Median', 'Variance',... 
    'StandardDeviation', 'Kurtosis', 'Skewness', 'Intensity', 'Gradient',... 
    'GradientX', 'GradientY', 'GradientXY0', 'GradientXY1', 'GradientXY2',... 
    'GradientXY3', 'GradientXY4', 'FractionalAnisotropy', 'xDist',... 
    'yDist', 'zDist', 'PancCloud', 'TumCloud','OtherOrganProb'}; 

Mdl = TreeBagger(50,fullData,cList,'OOBPrediction','On','OOBPredictorImportance',... 

'On','Method','classification','PredictorNames',names,'ClassNames',{'Pancreas','Tumour','Other'}
); 
save('Code/TreeBagger.mat','Mdl') 
toc 


