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Abstract—Recently, deep learned enabled end-to-end (E2E)
communication systems have been developed to merge all physical
layer blocks in the traditional communication systems, which
make joint transceiver optimization possible. Powered by deep
learning, natural language processing (NLP) has achieved great
success in analyzing and understanding a large amount of
language texts. Inspired by research results in both areas, we
aim to provide a new view on communication systems from
the semantic level. Particularly, we propose a deep learning
based semantic communication system, named DeepSC, for text
transmission. Based on the Transformer, the DeepSC aims at
maximizing the system capacity and minimizing the semantic
errors by recovering the meaning of sentences, rather than bit- or
symbol-errors in traditional communications. Moreover, transfer
learning is used to ensure the DeepSC applicable to different com-
munication environments and to accelerate the model training
process. To justify the performance of semantic communications
accurately, we also initialize a new metric, named sentence
similarity. Compared with the traditional communication system
without considering semantic information exchange, the proposed
DeepSC is more robust to channel variation and is able to achieve
better performance, especially in the low signal-to-noise (SNR)
regime, as demonstrated by the extensive simulation results.

Index Terms—Deep learning, end-to-end communication, se-
mantic communication, transfer learning, Transformer.

.

I. INTRODUCTION

BASED on Shannon and Weaver [1], communication
could be categorized into three levels: i) transmission of

symbols; ii) semantic exchange of transmitted symbols; iii)
effects of semantic information exchange. The first level of
communication mainly concerns about the successful trans-
mission of symbols from the transmitter to the receiver, where
the transmission accuracy is mainly measured at the level of
bits or symbols. The second level of communication deals
with the semantic information sent from the transmitter and
the meaning interpreted at the receiver, named as semantic
communication. The third level deals with the effects of
communication that turn into the ability of the receiver to
perform certain tasks in the way desired by the transmitter.

In the past decades, communications primarily focus on how
to accurately and effectively transmit symbols (measured by
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bits) from the transmitter to the receiver. In such systems, bit-
error rate (BER) or symbol-error rate (SER) is usually taken as
the performance metrics [2]. With the development from the
first generation (1G) to the fifth generation (5G), the achieved
transmission rate has been improved tens of thousands of times
and the system capacity is gradually approaching to the Shan-
non limit. Recently, various new applications appear, such as
autonomous transportation, consumer robotics, environmental
monitoring, and tele-health [3], [4]. The interconnection of
these applications will generate a staggering amount of data
in the order of zetta-bytes. Besides, these applications need to
support massive connectivity over limited spectrum resources
but require lower latency, which poses critical challenges to
traditional source-channel coding. Semantic communications
can process data in the semantic domain by extracting the
meanings of data and filtering out the useless, irrelevant, and
unessential information, which further compresses data while
reserving the meanings. Moreover, semantic communication
is expected to be robust to terrible channel environments, i.e.,
low signal-to-noise ratio (SNR) region, which fits well the
applications requiring high reliability. These factors motivate
us to develop intelligent communication systems by consider-
ing the semantic meaning behind digital bits to enhance the
accuracy and efficiency of communications.

Different from the conventional communications, semantic
communications aim to transmit the information relevant to
the transmission goal. For example, for text transmission, the
meaning is thereby essential information and the expression,
i.e., is expression of word, are unnecessary. By doing so, the
data traffic would be reduced significantly. Such a system
could be particularly useful when the bandwidth is limited, the
SNR is low, or the BER/SER is high in typical communication
systems.

Historically, the concept of semantic communication was
developed several decades ago. Inspired by Shannon and
Weaver [1], Carnap et al. [5] were the first to introduce the
semantic information theory (SIT) based on logical probabili-
ties ranging over the contents. Afterwards, a generic model
of semantic communication (GMSC) was proposed as an
extension of the SIT, where the concepts of semantic noise
and semantic channel were first defined [6]. As pointed out
in [7], the analysis and design of a communication system
for optimal transmission of intelligence are faced with several
challenges. For instance, how to define error in the intelligence
transmission? In [8], a lossless semantic data compression
theory by applying the GMSC was developed, which means
that data can be compressed at semantic level so that the
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size of the data to be transmitted can be reduced signifi-
cantly. Recently, an end-to-end (E2E) semantic communication
framework integrates the semantic inference and physical layer
communication problems, where the transceiver is optimized
to reach the Nash equilibrium while minimizing the aver-
age semantic errors [9]. However, the semantic error in [9]
measures the meaning of each word rather than the whole
sentence. These aforementioned works provide some insights
and remarks for the design of semantic communications, but
many issues remain unexplored.

Recent advancements on deep learning (DL) based natu-
ral language processing (NLP) and communication systems
inspire us to investigate semantic communication to realize
the second level communications as aforementioned [10]–
[15]. The considered semantic communication system mainly
focuses on the joint semantic-channel coding and decoding,
which aims to extract and encode the semantic information of
sentences rather than simply a sequence of bits or a word. For
the semantic communication system, we face the following
questions:

Question 1: How to define the meaning behind the bits?
Question 2: How to measure the semantic error of sen-

tences?
Question 3: How to jointly design the semantic and channel

coding?
In this paper, we investigate the semantic communication

system by applying machine translation techniques in NLP to
physical layer communications. Specifically, we propose a DL
enabled semantic communication system (DeepSC) to address
the aforementioned challenges. The main contributions of this
paper are summarized as follows:
• Based on the Transformer [16], a novel framework for

the DeepSC is proposed, which can effectively extract the
semantic information from texts with robustness to noise.
In the proposed DeepSC, a joint semantic-channel coding
is designed to cope with channel noise and semantic
distortion, which addresses aforementioned Question 3.

• The transceiver of the DeepSC is composed of semantic
encoder, channel encoder, channel decoder, and semantic
decoder. To understand the semantic meaning as well
as maximize the system capacity at the same time, the
receiver is optimized with two loss functions: cross-
entropy and mutual information. Moreover, a new metric
is proposed to accurately reflect the performance of
the DeepSC at the semantic level. These address the
aforementioned Questions 1 and 2.

• To make the DeepSC applicable to various communica-
tion scenarios, deep transfer learning is adopted to ac-
celerate the model re-training. With the re-trained model,
the DeepSC can recognise various knowledge input and
recover semantic information from distortion.

• Based on extensive simulation results, the proposed
DeepSC outperforms the traditional communication sys-
tem and improves the system robustness at the low SNR
regime.

The rest of this paper is organized as follows. Related work
is briefly reviewed in Section II. The framework of a seman-

tic communication system is presented and a corresponding
problem is formulated in Section III. Section IV details the
proposed DeepSC and extends it to dynamic environments.
Numerical results are presented in Section VI to show the
performance of the DeepSC. Finally, Section VII concludes
this paper.
Notation: Cn×m and Rn×m represent sets of complex and

real matrices of size n×m, respectively. Bold-font variables
denote matrices or vectors. x ∼ CN (µ, σ2) means variable x
follows a circularly-symmetric complex Gaussian distribution
with mean µ and covariance σ2. (·)T and (·)H denote the
transpose and Hermitian, respectively. <{·} and ={·} refer to
the real and imaginary parts of a complex number. Finally,
a⊗ b indicates the inner product of vectors a and b.

II. RELATED WORK

This section provides a brief review of the related work on
the E2E physical layer communication systems and the deep
neural network (DNN) techniques adopted in NLP.

A. End-to-End Physical Layer Communication Systems
DL techniques have shown great potential in processing

various intelligent tasks, i.e., computer vision and NLP. Mean-
while, it is possible to train neural networks and run them
on mobile devices due to the increasing hardware comput-
ing capability. In the communication area, some pioneering
works have been carried on DL based E2E physical layer
communication systems, which merge the blocks in traditional
communication systems [17]–[23]. By adopting the structure
of autoencoder in DL and removing block structure, the trans-
mitter and receiver in the E2E system are optimized jointly
as an E2E reconstruction task. It has been demonstrated that
such an E2E system outperforms uncoded binary phase shift
keying (BPSK) and Hamming coded BPSK in terms of BER
[17]. Besides, there are several initial works on dealing with
the missing channel gradient during training. A DNN based
two-phase of training processing has been proposed, where the
transceiver is trained by an stochastic channel model and the
receiver is fine-tuned under real channels [18]. Reinforcement
learning has been exploited in [19] to acquire the channel
gradient under an unknown channel model, which achieves
better performance than the differential quadrature phase-shift
keying (DQPSK) over real channels. A conditional generative
adversarial net (GAN) has been applied in [20] to use a
DNN to represent the channel distortion so that the gradients
can pass through a unknown channel to the transmitter DNN
during the training of the E2E communication system. Meta-
learning combined with a limited number of pilots has been
developed for training the transceiver and enables the fast
training of network with less amount of data [21].

Considering the types of sources, the joint source-channel
coding for texts [22] and images [23] aims to recover the
source information at the receiver directly rather than the
digital bits. Meanwhile, traditional metrics, such as BER,
cannot reflect the performance for such systems well. There-
fore, word-error rate and peak signal-to-noise ratio (PSNR)
are adopted for measuring the accuracy of source information
recovery.
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B. Semantic Representation in Natural Language Processing

NLP makes machines understand human languages, with the
main goal to understand the syntax and text. Initially, natural
language can be described by the joint probability model
according to the context [24]. Thus, language models provide
context to distinguish words and phrases that have similar
semantic meaning. Although such NLP technologies based
on statistical model are developed to describe the probability
of a certain word coming after another in a sentence, it is
hard to deal with long sentences, i.e. the ones over 15 words,
and the syntax. To understand long sentences, the word2vec
model in [25] captures the relationship among words, which
makes similar words ending up with a closer distance in the
vector space. Even if these dense word vectors can capture
the relationship among words, they fail to describe syntax
information. In order to solve such problems, the underly-
ing meaning of texts is represented by using various DL
techniques, which is able to extract the semantic information
in long sentences and their syntax. A deep contextualized
word representation has been proposed in [26], which models
both complex characteristics of word usages, e.g., syntax
and semantics, and how these usages vary across linguistic
contexts (i.e., to model polysemy). However, the above word
representation approaches are designed for specific tasks and
may need to be redesigned whenever the task changes. In
[27], a general word representation model, named bidirectional
encoder representations from transformers (BERT), has been
developed to provide word vectors for various NLP tasks
without requiring redesign of word representations.

C. Comparison of State-of-Art NLP Techniques

There are three types of neural networks used for NLP tasks,
including recurrent neural networks (RNNs), convolutional
neural networks (CNNs) and fully-connected neural networks
(FCNs) [28]. By introducing RNNs, language models can
learn the whole sentences and capture the syntax information
effectively [29]. However, for long sentences, particularly,
the distance between subject and predicate is more than 10
words, RNNs cannot find the correct subject and predicate.
For example, for sentence “the person who works in the new
post office is walking to the store”, RNNs fail to recognise the
relationship between “the person” and “is”. Besides, because
of linear sequence structure, RNNs lack of parallel comput-
ing capability, which means that RNNs are time-consuming.
CNNs were born with the capability of parallel computing
[30]. However, even if CNNs can use deeper network to extract
semantic information in long sentences, its performance is not
as good as that of RNNs because the kernel size in CNNs is
small to guarantee the computational efficiency. By combining
with the attention mechanism, language models based on
FCNs, such as Transformer [16], pay more attention to the
useful semantic information for performance improvement on
various NLP tasks. It is worth noting that the Transformer has
the advantages of both RNNs and CNNs [16]. Particularly, the
self-attention mechanism is adopted, which enables the models
to understand sentences regardless of their lengths.
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Fig. 1. The framework of proposed DL enabled semantic communication
system, DeepSC.

III. SYSTEM MODEL AND PROBLEM FORMULATION

The considered system model consists of two levels: se-
mantic level and transmission level, as shown in Fig. 1. The
semantic level addresses semantic information processing for
encoding and decoding to extract the semantic information.
The transmission level guarantees that semantic information
can be exchanged correctly over the transmission medium.
Overall, we consider an intelligent E2E communication system
with the stochastic physical channel, where the transmitter and
the receiver have certain background knowledge, i.e., different
training data. The background knowledge could be various for
different application scenarios.

Definition 1: Semantic noise is a type of disturbance in the
exchange of a message that interferes with the interpretation of
the message due to ambiguity in words, a sentence or symbols
used in the message transmission.

Definition 2: Physical channel noise is caused by the physi-
cal channel impairment, such as, additive white Gaussian noise
(AWGN), fading channel, and multiple path, which incurs the
signal attenuation and distortion.

A. Problem Description

As in Fig. 1, the transmitter maps a sentence, s, into
a complex symbol stream, x, and then passes it through
the physical channel with transmission impairments, such as
distortion and noise. The received, y, is decoded at the receiver
to estimate the original sentence, s. We jointly design the
transmitter and receiver with DNNs since DL enables us to
train a model with inputting variable-length sentences and
different languages.

Particularly, we assume that the input of the DeepSC is
a sentence, s = [w1, w2, · · · , wL], where wl represents the
l-th word in the sentence. As shown in Fig. 1, the trans-
mitter consists of two parts, named semantic encoder and
channel encoder, to extract the semantic information from s
and guarantee successful transmission of semantic information
over the physical channel. The encoded symbol stream can be
represented by

x = Cα (Sβ (s)) , (1)

where x ∈ CM×1, Sβ (·) is the semantic encoder network
with the parameter set β and Cα (·) is the channel encoder
with the parameter set α. In order to simplify the analysis,
we assume the coherent time is M . If x is sent, the signal
received at the receiver will be

y = hx+ n, (2)
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where y ∈ CM×1, h represents the Rayleigh fading channel
with CN (0, 1) and n ∼ CN

(
0, σ2

n

)
. For E2E training of

the encoder and the decoder, the channel must allow back-
propagation. Physical channels can be formulated by neural
networks. For example, simple neural networks could be used
to model the AWGN channel, multiplicative Gaussian noise
channel, and the erasure channel [22]. While for the fading
channels, more complicated neural networks are required
[20]. In this paper, we mainly consider the AWGN channels
and Rayleigh fading channels for simplicity while focus on
semantic coding and decoding.

As shown in Fig. 1, the receiver includes channel decoder
and semantic decoder to recover the transmitted symbols and
then transmitted sentences, respectively. The decoded signal
can be represented as

ŝ = S−1
χ

(
C−1

δ (y)
)
, (3)

where the ŝ is the recovered sentence, C−1
δ (·) is the channel

decoder with the parameter set δ and S−1
χ (·) is the semantic

decoder network with the parameter set χ.
The goal of the system is to minimize the semantic errors

while reducing the number of symbols to be transmitted.
However, we face two challenges in the considered system.
The first challenge is how to design joint semantic-channel
coding. The other one is semantic transmission, which has
not been considered in the traditional communication system.
Even if the existing communication system can achieve a low
BER, several bits, distorted by the noise and beyond error
correction capability, could lead to understanding difficulty as
the partial semantic information of the whole sentence might
be missed. In order to achieve successful recovery at semantic
level, we design semantic and channel coding jointly in order
to keep the meaning between ŝ and s unchanged, which is
enabled by a new DNN framework. The cross-entropy (CE)
is used as the loss function to measure the difference between
s and ŝ, which can be formulated as

LCE(s, ŝ;α,β,χ, δ) =

−
∑
l=1

q (wl) log (p (wl)) + (1− q (wl)) log (1− p (wl)) ,

(4)
where q(wl) is the real probability that the l-th word, wl,
appears in estimated sentence s, and p(wl) is the predicted
probability that the i-th word, wi, appears in sentence ŝ. The
CE can measure the difference between two probability distri-
butions. Through reducing the loss value of CE, the network
can learn the word distribution, q(wl), in the source sentence,
s, which indicates that the syntax, phrase, the meaning of
words in context can be learnt by the network. Besides, jointly
designing and training semantic-channel coding can make the
whole network learning the knowledge for the specific goal.
In other words, the channel coding can pay more attention
in protecting the semantic information related to transmission
goal while neglecting other irrelevant information. Separately
designing will make channel coding addressing all information
equally.

B. Channel Encoder and Decoder Design

One important goal on designing a communication system
is to maximize the capacity or the data transmission rate.
Compared with BER, the mutual information can provide extra
information to train a receiver. The mutual information of the
transmitted symbols, x, and the received symbols, y, can be
computed by

I (x;y) =

∫
X×Yp (x, y) log

p (x, y)

p (x) p (y)
dxdy

= Ep(x,y)

[
log

p (x, y)

p (y) p (x)

]
,

(5)

where (x,y) is a pair of random variables with values over
the space X × Y , where X and Y are the spaces for x and y.
p(x) and p(y) are the marginal probability of sending x and
received y, respectively, and p(x, y) is the joint probability of
x and y. The mutual information is equivalent to the Kullback-
Leibler (KL) divergence between the marginal probabilities
and the joint probability, which is given by

I (x;y) = DKL (p (x, y) ‖p (x) p (y) ) . (6)

From [31], we have the following theorem,
Theorem 1: The KL divergence admits the following dual

representation

DKL (P ‖Q ) = sup
T :Ω→R

EP [T ]− log
(
EQ

[
eT
])
, (7)

where the supremum is taken over all functions T such that
the two expectations are finite.

According to Theorem 1, the KL divergence can also be
represented as

DKL (p (x, y) ‖p (x) p (y) ) > Ep(x,y) [T ]−log
(
Ep(x)p(y)

[
eT
])
.

(8)
Thus, the lower bound of I (x;y) can be obtained from
(6) and (8). In order to find a tight bound on the I (x;y),
an unsupervised method is used to train the network T ,
where T can be approximated by neural network. Meanwhile,
the expectation in (8) can be computed by sampling, which
converges to the true value as the number of samples increases.
Then, we can optimize the encoder by maximizing the mutual
information defined in (8) and the related loss function can be
given by

LMI(x,y;T ) = Ep(x,y) [fT ]− log
(
Ep(x)p(y)

[
efT
])
, (9)

where fT is composed by a neural network, in which the inputs
are samples from p(x, y), p(x), and p(y). In our proposed
design, x is generated by the function Cα and Sβ, thus the
loss function can be represented by LMI(x,y;T,α,β) with

LMI(x,y;T,α,β) 6 I(x;y). (10)

From (10), the loss function can be used to train neural
networks to get α, β, and T . For example, the mutual
information can be estimated by training network T when the
encoders α and β are fixed. Similarly, the encoder can be
optimized by training α and β when the mutual information
is obtained.
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Fig. 2. The proposed neural network structure for the semantic communication system.

C. Performance Metrics

Performance criteria are important to the system design. In
the E2E communication system, the BER is usually taken
as the training target by the transmitter and receiver, which
sometimes neglects the other aspect goals of communication.
For text transmission, BER cannot reflect performance well.
Except from human judgement to establish the similarity
between sentences, bilingual evaluation understudy (BLEU)
score is usually used to measure the results in machine
translation [32], which will be used as one of the performance
metrics in this paper. However, the BLEU score can only
compare the difference between words in two sentences rather
than their semantic information. Therefore, we initialize a new
metric, named sentence similarity, to describe the similarity
level of two sentences in terms of their semantic information,
which is introduced in the following. This provides a solution
to Question 2.

1) BLEU Score: Through counting the difference of n-
grams between transmitted and received texts, where n-grams
means that the size of a word group. For example, for sentence
“weather is good today”, 1-gram: “weather”, “is”, “good” and
“today”, 2-grams: “weather is”, “is good” and “good today”.
The same rule applies for the rest.

For the transmitted sentence s with length ls and the
decoded sentence ŝ with length l̂s, the BLEU can be expressed
as

logBLEU = min
(
1− l̂s

ls
, 0

)
+

N∑
n=1

un log pn, (11)

where un is the weights of n-grams and pn is the n-grams
score, which is

pn =

∑
k min (Ck (̂s) , Ck (s))∑

k min (Ck (̂s))
, (12)

where Ck(·) is the frequency count function for the k-th
elements in n-th grams.

The output of BLEU is a number between 0 and 1, which
indicates how similar the decoded text is to the transmitted
text, with 1 representing highest similarity. However, few
human translations will attain the score of 1 since word
error may not make the meaning of a sentence different. For
instance, the two sentences, “my car was parked there” and
“my automobile was parked there”, have the same meaning
but with different BLEU scores since they use different words.
To characterize such a feature, we propose a new metric, the

sentence similarity, at the sentence level in addition to the
BLEU score.

2) Sentence Similarity: A word can take different meanings
in different contexts. For instance, the meanings of mouse in
biology and machine are different. The traditional method,
such as word2vec [25], cannot recognise the polysemy, of
which the problem is how to use an numerical vector to
express the word while the numerical vector varies in different
contexts. According to the semantic similarity, we propose to
calculate the sentence similarity between the original sentence,
s, and the recovered sentence, ŝ, as

match (̂s, s) =
BΦ (s) ·BΦ(̂s)

T

‖BΦ (s)‖ ‖BΦ (̂s)‖
, (13)

where BΦ, representing BERT [27], is a huge pre-trained
model including billions of parameters used for extracting the
semantic information. The sentence similarity defined in (13)
is a number between 0 and 1, which indicates how similar
the decoded sentence is to the transmitted sentence, with 1
representing highest similarity and 0 representing no similarity
between s and ŝ.

Compared with BLEU score, BERT has been fed by billions
of sentences. Therefore, it has already learnt the semantic
information from these sentences and can generate different
semantic vectors in different contexts effectively. With the
BERT, the semantic information behind a transmitted sentence,
s, can be expressed as c. Meanwhile, the semantic information
conveyed by the estimated sentence is expressed as ĉ. For c
and ĉ, we can compute the sentence similarity by match(c, ĉ).

IV. PROPOSED DEEP SEMANTIC COMMUNICATION
SYSTEMS

In this section, we propose a DNN for the considered
semantic communication system, named as DeepSC, of which
the Transformer is adopted for text understanding. Then,
transfer learning is adopted to make the DeepSC applicable to
different background knowledge and dynamic communication
environments. This provides the solutions to Question 1,3.

A. Basic Model

The proposed DeepSC is as shown in Fig 2. Particularly,
the transmitter consists of a semantic encoder to extract the
semantic features from the texts to be transmitted and a chan-
nel encoder to generate symbols to facilitate the transmission
subsequently. The semantic encoder includes multiple Trans-
former encoder layers and the channel encoder uses dense
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Fig. 3. An example of the self-attention mechanism following long-distance
dependency in the Transformer encoder.

layers with different units. The AWGN channel is interpreted
as one layer in the model. Accordingly, the DeepSC receiver is
composited with a channel decoder for symbol detection and
a semantic decoder for text estimation, the channel decoder
includes dense layers with different units and the semantic
decoder includes multiple Transformer decoder layers. The
loss function can be expressed as

Ltotal = LCE(s, ŝ;α,β,χ, δ)− λLMI(x,y;T,α,β), (14)

where the first term is the loss function considering the
sentence similarity, which aims to minimize the semantic
difference between s and ŝ by training the whole system.
The second one is the loss function for mutual information,
which maximize the achieved data rate during the transmitter
training. The parameter λ (0 ≤ λ ≤ 1) is the weight for the
second term.

The core of Transformer is the multi-head self-attention
mechanism, which enables the Transformer to view the previ-
ous predicted word in the sequence, thereby better predicting
the next word. Fig. 3 gives an example of the self-attention
mechanism for the word ‘it’. From Fig. 3, attention attend to
a distant dependency of the pronoun, ‘it’, completing pronoun
reference “the animal”, which demonstrates that the self-
attention mechanism can learn the semantic and therefore
solve aforementioned Question 1.

Algorithm 1 DeepSC network training algorithm.
Initialization: Initial the weights W and bias b.

1: Input: The background knowledge set K.
2: Create the index to words and words to index, and then

embedding words.
3: while Stop criterion is not met do
4: Train the mutual information estimated model.
5: Train the whole network.
6: end while
7: Output: The whole network Sβ(·), Cα(·), C−1

δ (·), S−1
χ (·).

As shown in Algorithm 1, the training process of the
DeepSC consists of two phases due to different loss functions.
After initializing the weights, W, bias, b, and using embed-
ding vector to represent the input words, the first phase is to
train the mutual information model by unsupervised learning
to estimate the achieved data rate for the second phase. The
second phase is to train the whole system with (14) as the loss
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Fig. 4. The training framework of the DeepSC: phase 1 trains the mutual
information estimation model; phase 2 trains the whole network based on the
cross-entropy and mutual information.

function. Each phase aims to minimize the loss by gradient
descent with mini-batch until the stop criterion is met, the max
number of iteration is reached, or none of terms in the loss
function is decreased any more. Different from performing
semantic coding and channel coding separately, where the
channel encoder/decoder will deal with the digital bits rather
than the semantic information, the joint semantic-channel
coding can preserve semantic information when compressing
data, which provides the detailed solution for aforementioned
Question 3. The two training phases are described in the
following:

1) Training of mutual information estimation model: The
mutual information estimation model training process is illus-
trated in Fig. 4 and the pseudocode is given in Algorithm 2.
First, the knowledge set K generates a minibatch of sentences
S ∈ <B×L×1, where B is the batch size, L is the length
of sentences. Through the embedding layer, the sentences
can be represented as a dense word vector E ∈ <B×L×E ,
where E is the dimension of the word vector. Then, pass the
semantic encoder layer to obtain M ∈ <B×L×V , the seman-
tic information conveyed by S, where V is the dimension
of Transformer encoder’s output. Then, M is encoded into
symbols X to cope with the effects from the physical channel,
where X ∈ <B×NL×2. After passing through the channel, the
receiver obtains signal Y distorted by the channel noise. Based
on (9), the loss, LMI(X,Y;T,α,β), can be computed based
on the transmitted symbols, X, and the received symbols, Y,
under the AWGN channels. Finally, according to computed
LMI, the stochastic gradient descent (SGD) is exploited to
optimize the weights and bias of fT (·).

2) Whole network training: The whole network training
process is illustrated in Algorithm 3. First, minibatch S from
knowledge K is encoded into M at the semantic level, then
M is encoded into symbol X for transmission over the
physical channels. At the receiver, distorted symbols Y are
received and then decoded by the channel decoder layer, where
M̂ ∈ <B×L×V is the recovered semantic information of the
sources. Afterwards, the transmitted sentences are estimated
by the semantic decoder layer. Finally, the whole network is
optimized by the SGD, where the loss is computed by (14).
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Algorithm 2 Train mutual information estimation model.
1: Input: The knowledge set K.
2: Transmitter:
3: BatchSource(K) → S.
4: Sβ(S)→M.
5: Cα(M)→ X.
6: Transmit X over the channel.
7: Receiver:
8: Receive Y.
9: Compute loss LMI by (9).

10: Train T → Gradient descent (T,LMI).
11: Output: The mutual information estimated model fT (·).

Algorithm 3 Train the whole network.
1: Input: The knowledge set K.
2: Transmitter:
3: BatchSource(K) → S.
4: Sβ(S)→M.
5: Cα(M)→ X.
6: Transmit X over the channel.
7: Receiver:
8: Receive Y.
9: C−1

δ (Y)→ M̂.
10: S−1

χ (M̂)→ Ŝ.
11: Compute loss function Ltotal by (14).
12: Train β,α, δ,χ → Gradient descent (β,α, δ,

χ,Ltotal).
13: Output: The whole network Sβ(·), Cα(·), C−1

δ (·), S−1
χ (·).
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Fig. 5. Transfer learning based training framework: (a) re-train channel
encoder and decoder for different channels; (b) re-train semantic encoder and
decoder for different background knowledge.

B. Transfer Learning for Dynamic Environment

In practice, different communication scenarios result in the
different channels and the training data. However, the re-
training of transmitter and receiver to meet the requirements
of dynamic scenarios introduces extra costs. To address this,
a deep transfer learning approach is adopted, which focuses
on storing knowledge gained while solving a problem and
applying it to a different but related problem.

The training process of adopting transfer learning is illus-
trated in Fig. 5 and the pseudocode is given in Algorithm
4, where the training modules, mutual information estimation
model training, and whole network training, are the same
as Algorithm 2 and Algorithm 3. First, load the pre-trained

Algorithm 4 Transfer learning based training for dynamic
environment.
Initialization: Load the pre-trained model Sβ(·), Cα(·),
C−1

δ (·), S−1
χ (·).

Function: Training for different background knowledge
1: Input: The different background knowledge set K1 .
2: Freeze Cα(·) and C−1

δ (·).
3: Redesign and train part of Sβ(·) and S−1

χ (·).
4: while Stop criterion is not met do
5: Train the mutual information estimated model.
6: Train the whole network.
7: end while
8: Output: The adopted whole network.

Function: Training for different channel conditions
9: Input: The background knowledge set K with the different

channel parameters.
10: Freeze Sβ(·) and S−1

χ (·).
11: Redesign and re-train part of Cα(·) and C−1

δ (·).
12: while Stop criterion is not met do
13: Train the mutual information estimated model.
14: Train the whole network.
15: end while
16: Output: The re-trained network.

transmitter and receiver based on knowledge K0 and channel
N0. For applications with different background knowledge,
we only need to redesign and train part of the semantic
encoder and decoder layers and freeze the channel encoder and
decoder layers. For different communication environments, we
redesign and train part of the channel encoder and decoder
layers and freeze the semantic encoder and decoder layers. If
the knowledge and channel are totally different, the pre-trained
transceiver can also reduce the time consumption because the
weights of some layers in the pre-trained model can be reused
in the new model even if the most layers need to redesign.
After the other modules are trained, we will unfreeze them
and train the whole network with few epochs to converge to
the global optimum.

V. NUMERICAL RESULTS

In this section, we compare the proposed DeepSC with
other DNN algorithms and the traditional source coding and
channel coding approaches under the AWGN channels and
Rayleigh fading channels, where we assume perfect CSI for all
schemes. The transfer learning aided DeepSC is also verified
under the erase channel and fading channel as well as different
background knowledge.

A. Simulation Settings

The adopted dataset is the proceedings of the European Par-
liament [33], which consists of around 2.0 million sentences
and 53 million words. The dataset is pre-processed into lengths
of sentences with 4 to 30 words and is split into training data
and testing data.

In the experiment, we set three Transformer encoder and de-
coder layer with 8 heads and the channel encoder and decoder
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TABLE I
THE SETTING OF THE DEVELOPED SEMANTIC NETWORK.

Layer Name Units Activation

Transmitter
(Encoder)

3×Transformer Encoder 128 (8 heads) Linear
Dense 256 Relu
Dense 16 Relu

Channel AWGN None None

Receiver
(Decoder)

Dense 256 Relu
Dense 128 Relu

3×Transformer Decoder 128 (8 heads) Linear
Prediction Layer Dictionary Size Softmax

MI Model
Dense 256 Relu
Dense 256 Relu
Dense 1 Relu

are set as dense with 16 units and 128 units, respectively. For
the mutual information estimation model, we set two dense
layers with 256 units and one dense layer with 1 unit to
mimic the function T in (7), where 256 units can extract
full information and 1 unit can integrate information. These
settings can be found in Table I. For the baselines, we adopt
joint source-channel coding based on neural network and the
typical methods for separate source and channel codings.
• DNN based joint source-channel coding [22]: The net-

work consists of Bi-directional Long Short-Term Mem-
ory (BLSTM) layers. We label it as JSCC [22] in the
simulation figures.

• Traditional methods: To perform the source and channel
coding separately, we use the following technologies
respectively:

– Source coding: Huffman coding, fixed-length cod-
ing (5-bit), and Brotli coding, where Brotli coding
uses 2nd context model to compress the context
information and every 128 sentences are compressed
together in the simulation.

– Channel coding: Turbo coding [34] and Reed-
Solomon (RS) coding [35]. We adopt turbo decoding
method is log-MAP algorithm with 5 iterations.

The BLEU and sentence similarity are used to measure the per-
formance. The simulation is performed by the computer with
Intel Core i7-9700 CPU@3.00GHz and NVIDIA GeForce
GTX 2060.

B. Basic Model

Fig. 6 shows the relationship between the BLEU score and
the SNR under the same number of transmitted symbols over
AWGN and Rayleigh fading channels, where the traditional
approaches use 8-QAM, 64-QAM, and 128-QAM for the mod-
ulation. Among the traditional baselines in Fig. 6(a), Brotli
coding outperforms the Huffman and fixed-length encoding
over AWGN channels when the turbo coding is adopted for
channel coding. The traditional approaches perform better than
the DNN based method when the SNR is above 12 dB since
the distortion from channel is decreased, where the Brotli with
turbo coding performs better than the DeepSC. We observe
that all DL enabled approaches are more competitive in the
low SNR regime.

In Fig. 6(b), the DL enabled approaches outperform all tra-
ditional approaches over the Rayleigh fading channels, where
RS coding is better than turbo coding in terms of 2-grams
to 4-grams. This is because RS coding is linear block coding
with long block-length, and can correct long series of bits,
however, turbo coding is a type of convolutional coding with
short block-length, so that the adjacent words have higher error
rate. DeepSC is not only suitable for short block-length but
also performs better in decoding adjacent words, i.e., 4-grams.
Note that the BLEU score of the method with Brotil coding
and turbo coding is always 0 over Rayleigh fading channels.
This is because that 128 sentences are compressed together,
while Brotil decoding requires error-free codes after channel
decoding for the codes corresponding to the 128 sentences.
However, it is almost to guarantee the error-free transmission
over Rayleigh fading channels. Therefore, we fail to restore
any of the 128 sentences compressed together in Brotil coding
as shown in Fig. 6(b). Besides, the lower BLEU score of the
DL enabled approaches may not be caused by word errors.
For example, it may be due to substitutions of words using
synonyms or rephrasing, which does not change the meaning
of the word. Fig. 6 also demonstrates that the joint semantic-
channel coding design outperforms the traditional methods,
which provides solution to Question 1 and 3.

Fig. 7 shows that the proposed performance metric, the
sentence similarity, with respect to the SNR under the same
total number of symbols, where the traditional approaches use
8-QAM, 64-QAM and 128-QAM. In Fig. 7(a), the proposed
metric has shown the same tendency compared with the BLEU
scores. Note that for part of the traditional methods, i.e.,
Huffman with Turbo coding, even if it can achieve about 20%
word accuracy in BLEU score (1-gram) from Fig. 6(a) when
SNR = 9 dB, people are usually unable to understand the
meaning of texts full of errors. Thus, the sentence similarity
in Fig. 7(a) almost converges to 0. For the DeepSC, it achieves
more than 90% word accuracy in BLEU score (1-gram) when
SNR is higher than 6 dB in Fig. 6(a), which means people can
understand the texts well. Therefore the sentence similarity
tends to 1. Fig. 6(b) and Fig. 7(b) show the same tendency.
The benchmark, including the DNN based JSCC method in
[22] under Rayleigh fading channels, also gets much higher
score than the traditional approaches in terms of the sentence
similarity since it can capture the features of the syntax and
the relationship of the words, as well as present texts that is
easier for people to understand. Few representative results are
shown in Table II.

In brief, we can conclude that the tendency in sentence
similarity is more closer to human judgment and the DeepSC
achieves the best performance in terms of both BLEU score
and sentence similarity. Compared to the simulation results
with BLEU score as the metric, the sentence similarity score
can better measure the semantic error, which solves the
Question 2.

Fig. 8 illustrates that the impact of the number of symbols
per word on the 1-gram BLEU score when SNR is 12 dB.
As the number of symbols per word grows, the BLEU scores
increase significantly due to the increasing distance between
constellations gradually. Generally, people can understand
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Fig. 6. BLEU score versus SNR for the same total number of transmitted symbols, with Huffman coding with RS (30,42) in 64-QAM, 5-bit coding with
RS (42, 54) in 64-QAM, Huffman coding with Turbo coding in 64-QAM, 5-bit coding with Turbo coding in 128-QAM, Brotli coding with Turbo coding in
8-QAM; the DNN based JSCC [22] trained over the AWGN channels and Rayleigh fading channels, our proposed DeepSC trained over the AWGN channels
and Rayleigh fading channels.
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TABLE II
THE SAMPLE SENTENCES BETWEEN DIFFERENT METHODS OVER RAYLEIGH FADING CHANNELS WHEN SNR IS 18 dB.

Transmitted sentence it is an important step towards equal rights for all passengers.
DeepSC it is an important step towards equal rights for all passengers.

JSCC-[22] it is an essential way towards our principles for democracy.
Huffman + Turbo coding rt is a imeomant step tomdrt equal rights for atp passurerrs.

Huffman + RS coding it is an important step towards ewiral rlrsuo for all passengess.
Bit5 + Turbo coding it is an yoportbnt ssep sowart euual qighd fkr ill passeneers.

Bit5 + RS coding it iw an ymp!rdbnd stgo to!atds eq.al ryghts dkr alk passengers.
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Fig. 8. BLEU score (1-gram) versus the average number of symbols used
for one word in the DeepSC, SNR = 12 dB.
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8 symbols per word.

the basic meaning of transmitted sentences with over 85%
word accuracy in BLEU score (1-gram). For short sentences
consisted of 5 to 13 words, our proposed DeepSC can achieve
85% accuracy with 4 symbols per word, which means that
we can use fewer symbols to represent one word in the en-
vironment that mainly transmits short sentences. Therefore, it
can achieve high speed transmission rate. For longer sentences
consisted from of 21 to 30 words, the proposed DeepSC faces
more difficulties to understand the complex structure of the
sentences in the transmitted texts. Hence the performance
is degraded with longer sentences. One way to improve the
BLEU score is to increase the average number of symbols
used for each word.
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Fig. 10. The impact of different learning rates with training SNR = 12 dB.

C. Mutual Information

Fig. 9 demonstrates the relationship between SNR and
mutual information after training. As we can imagine, the
mutual information increases with SNR. From the figure,
the performance of the transceiver trained with the mutual
information estimation model outperforms that without such
a model. From Fig. 9, with the proposed mutual information
estimation model, the obtained mutual information at SNR
= 4 dB is approximately same as that without the training
model at SNR = 9dB. From another point of view, the mutual
information estimation model leads to better learning results,
i.e., data distribution, at the encoder to achieve higher data rate.
In addition, this shows that introducing (9) in loss function can
improve the mutual information of the system.

Fig. 10 draws the relationship between the loss value in
(14) and the mutual information with increasing epoch. Fig.
11 indicates the relationship between BLEU score and SNR.
The two figures are based on models with the same structure
but different training parameters, i.e., learning rate. In Fig. 10,
the obtained mutual information is different, i.e., the mutual
information of model with learning rate 0.001 increases along
with decreasing loss value while the other one with learning
rate 0.002 stays zero although the loss values of two models
gradually converge to a stable state. From Fig. 11, the BLEU
score with learning rate 0.001 outperforms that with learning
rate 0.002, which means that even if the neural network
converges to a stable state, it is possible that gradient decreases
to a local minimum instead of the global minimum. During
the training process, the mutual information can be used as a
tool to decide whether the model converges effectively.
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Fig. 13. Transfer learning aided DeepSC with different channels: (a) loss values versus epochs under the erasure channel; (b) Loss values versus epochs
under the Rician fading channel; (c) BLEU score (1-gram) versus the dropout rate; (d) BLEU score (1-gram) versus the SNR.

D. Transfer Learning for Dynamic Environment
In this experiment, we present the performance of transfer

learning aided DeepSC for two tasks: transmitter and receiver
re-training over different channels and diffident background
knowledge.

Fig. 12 shows the training efficiency and the performance
for different background knowledge, where the model will be
trained and re-trained in new background knowledge with the
same channel (AWGN) for different background knowledge.
The models have the same structure and re-train with the same
parameters in each scenario. From Fig. 12(a), the epochs are
reduced from 30 to 5 to reach convergence. In Fig. 12(b), the
pre-trained model can provide additional knowledge so that the
corresponding model training outperforms that of re-training
the whole system. This demonstrates that the transfer learning
aided DeepSC can help the transceiver to accommodate the
new requirements of communication environment.

Fig. 13 shows the training efficiency and the performance
for different channels, where the DeepSC transceiver is pre-
trained under the AWGAN channel, and then it is re-trained
under the erasure channel and the Rician fading channel, re-
spectively, with the same background knowledge. The models

have the same structure and re-train with the same parameters
in each scenario. From Fig. 13(a) and Fig. 13(b), the adoption
of the pre-trained model can speed up the training process
for both the erasure channel and Rician fading channel. In
Fig. 13(c) and Fig. 13(d), the performance of the DeepSC with
pre-trained model is similar to that without pre-trained model
channel while the required complexity is reduced significantly
as less number of epochs is required during the re-training
process. It is further noted that the BLEU score achieved by
the DeepSC is slightly degraded under the fading channel,
especially in the lower SNR region, compared to that under
the erasure channel.

E. Complexity Analysis

The computational complexities of the proposed DeepSC,
the JSCC in [22], the RS coding, Turbo coding, are compared
in Table III in terms of the average processing runtime per
sentence1. All the DL enabled approaches have lower runtime
than the traditional approaches, where turbo coding costs
much longer runtime in log-map iterations and the JSCC [22]

1The runtime of source coding and decoding are omitted in the comparison.
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requires the lowest average time due to its simple network
architecture, however, it comes with poorer semantic process-
ing capability. As a comparison, the runtime of our proposed
DeepSC significantly outperforms the traditional schemes and
is slight higher than JSCC [22] but with significant perfor-
mance improvement.

TABLE III
THE AVERAGE SENTENCE PROCESSING RUNTIME VERSUS VARIOUS

SCHEMES.

DeepSC JSCC [22] RS coding Turbo coding
Runtime 3.27ms 2.71ms 4.14ms 8.59ms

VI. CONCLUSIONS

In this paper, we have proposed a semantic communication
system, named DeepSC, which jointly performs the semantic-
channel coding for texts transmission. With the DeepSC, the
length of input texts and output symbols are variable, and the
mutual information is considered as a part of the loss function
to achieve higher data rate. Besides, the deep transfer learning
has been adopted to meet different transmission conditions
and speed up the training of new networks by exploiting the
knowledge from the pre-trained model. Moreover, we initial-
ized sentence similarity as a new performance metric for the
semantic error, which is a measure closer to human judgement.
The simulation results has demonstrated that the DeepSC
outperforms various benchmarks, especially in the low SNR
regime. The proposed transfer learning aided DeepSC has
shown its ability to adapt to different channels and knowledge
with fast convergence speed. Therefore, our proposed DeepSC
is a good candidate for text transmission, especially in the
low SNR regime, which could be very useful for cases with
massive number of devices to be connected with the limited
spectrum resource.

We conclude the difference between semantic communica-
tion systems and conventional communication systems into the
following:

1) Different data processing domains. The former process
data in semantic domain while the latter compress data
in entropy domain.

2) Different communication targets. The conventional com-
munication systems focus on the exact data recovery
while the semantic communication systems serve for the
decisions or targets of the transmission.

3) Different system designs. The conventional systems only
design and optimize the information transmission mod-
ules, which are contained in the traditional transceiver,
however, the semantic systems jointly design the whole
information processing blocks from source information
to final targets of applications.

Following the concept of semantic communications proposed
in this paper, we have developed L-DeepSC [36] and DeepSC-
S [37] for text and speech transmission.
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