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Abstract 
Fluid flow through a bed of solid particles is an important process that occurs in full-scale water treatment 

operations. The Carman–Kozeny model remains highly popular for estimating the resistance across the bed. It 

is common practice to use particle shape factors in fixed bed state to match the predicted drag coefficient with 

experimentally obtained drag coefficients. In fluidised state, however, where the same particles are considered, 

this particle shape factor is usually simply omitted from the model without providing appropriate reasoning. 

In this research, it is shown that a shape factor is not a constant particle property but is dependent on the fluid 

properties as well. This dynamic shape factor for irregularly shaped grains increases from approximately 0.6 

to 1.0 in fluidised state. 

 

We found that unstable packed beds in moderate up-flow conditions are pseudo-fixed and in a setting state. 

This results in a decreasing bed voidage and simultaneously in a decreasing drag coefficient, which seems 

quite contradictory. This can be explained by the collapse of local channels in the bed, leading to a more 

uniform flow distribution through the bed and improving the available surface for flow-through. Our 

experimental measurements show that the drag coefficient decreases considerably in the laminar and transition 

regions. This is most likely caused by particle orientation, realignment and rearrangement in particles’ packing 

position. 

 

A thorough hydraulic analysis shows that up-flow filtration in rapid sand filters under backwash conditions 

causes the particle bed to collapse almost imperceptibly. In addition, an improved expression of the drag 

coefficient demonstrated that the Carman–Kozeny model constant, however often assumed to be constant, is 

in fact not constant for increasing flow rates. Furthermore, we propose a new pseudo-3D image analysis for 

particles with an irregular shape. In this way, we can explain the successful method using optimisation of the 

extended terminal sub-fluidisation wash (ETSW) filter backwashing procedure, in which turbidity and peaks 

in the number of particles are reduced with a positive effect on water quality. 
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1 Introduction 
 

The downward flow of fluid through a bed of solid particles is an important process that occurs in full-scale 

water treatment operations (Crittenden et al., 2012). In the field of drinking water treatment, rapid sand 

filtration (RSF) is the most common unit operation applied to capture fine particles from the water in the filter 

bed. Accumulated particles cause a gradual increase in head loss and reduce overall effectiveness of the filter 

bed (Howe et al., 2012). When the head loss exceeds a certain threshold after a period of time, the filter is 

backwashed, usually assisted by some auxiliary scouring. During backwashing, an upward water flow expands 

the filter bed and flushes out the collected fine particles. After a filtration and backwashing sequence, the cycle 

starts again (Edzwald, 2011). To reduce the passage of particles through restarted filters immediately after a 

backwash procedure, Amburgey proposed the extended terminal sub-fluidisation wash method (ETSW) to 

remove significantly higher amounts of backwash remnant particles (Amburgey, 2005). ETSW is a proven 

method of terminating the backwash cycle with a sub-fluidisation wash for a time interval adequate to pass 

one theoretical filter volume of water upward through the filter (Amburgey and Amirtharajah, 2005). The 

results presented by Amburgey (2005) show a significant improvement in water quality by reducing, or 

eliminating, the initial particle passage during the restart of a packed filter after backwashing. ETSW reduces 

the turbidity during filter maturation and particle number spikes in practice, but no hydraulic explanation for 

its effectiveness was provided. 

 

In this paper, we report laboratory measurements in which up-flow filtration procedures were simulated. 

During the experiments, an unexpected reduction in both bed voidage and bed resistance was detected which 

could not be explained by traditional drag coefficient correlations as a function of the particle Reynolds 

number. We propose this can be explained by differences in preferred orientation of particles under different 

hydraulic conditions. 

 

2 Hydraulic drag 
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2.1 Hydraulic models for fluid flow in particle beds 

Well-known hydraulic models for flow through particle beds have been introduced for the laminar flow regime 

by (Blake, 1922) and (Kozeny, 1927) based on (Darcy, 1856), for the turbulent flow regime by (Burke and 

Plummer, 1928), and for the transitional flow regime by (Ergun, 1952) and (Carman, 1937) based on the 

Forchheimer flow conditions (Forchheimer, 1930). In the laminar regime, the fluid flows in smooth parallel 

layers without any disturbance between the layers, while in the turbulent flow regime, the fluid undergoes 

irregular fluctuations and changes in both magnitude and direction. Transitional flow is a mixture of laminar 

and turbulent flow, with turbulence in the centre of pore spaces and laminar flow near the particle surfaces. 

Each of these flows behaves in different ways in terms of their frictional energy loss.  

 

De facto, the most commonly used and most accurate (Říha et al., 2018) equation for expressing the 

relationship between permeability and voidage, particle size and tortuosity is the Carman–Kozeny equation. 

This equation is applied in various fields, such as groundwater flow, water treatment and many other water 

processes (Camp, 1946). The Carman–Kozeny equation is important not only for the determination of 

permeability in porous media (Yang, 2003), but also for the estimation of the voidage in a fluidised bed 

(Kramer et al., 2020a). In groundwater flow, the flow regime is generally considered to be laminar (Crittenden 

et al., 2012). In fluidised beds, however, not only laminar, but also transitional and, to a certain degree, 

turbulent flow regimes occur. The resistance of laminar flow through a granular bed can be calculated using 

the well-known equation proposed by (Blake, 1922), (Kozeny, 1927) and (Carman, 1937): 

 

Δ𝑃

Δ𝐿
= 180

𝑣𝑠𝜂

𝑑𝑝
2

(1 − 𝜀)2

𝜀3
 (𝑅𝑒𝜀 < 2)  (1) 

 

This equation shows that the resistance of laminar flow is linear with the viscosity and with the superficial 

velocity, as is also known to be the case for laminar flow through pipes according to Hagen-Poiseuille (Munson 

et al., 2020) and laminar flow through aquifers (Darcy, 1856). The experimentally obtained value of 180 is 

often indicated as the Kozeny drag coefficient (Kozeny, 1927). 

 

Since in water treatment the operational field lies in the vicinity of incipient fluidisation and since turbulent 

flow regimes are exceptional, there is a preference for using the Carman–Kozeny drag relation. Kozeny 

proposed a fixed pore shape factor 𝐾 = 180 in Equation (1) to fit the model results to experimental data. In the 

literature, many other values are proposed (Ozgumus et al., 2014); (Erdim et al., 2015); (Hoyland, 2017); 

(Schulz et al., 2019), of which 𝐾 = 150 is also often used (Burke and Plummer, 1928); (Ergun, 1952); (Kramer 

et al., 2020a). The factor 180 does not appear to be constant at higher velocities when the flow is no longer 

laminar (𝑅𝑒𝜀 > 2), as Carman (1937) showed. He introduced a drag coefficient, which can be written in the 

laminar form (𝑓𝐿) or in the turbulent form (𝑓𝑇) as a function of the Reynolds number 𝑅𝑒𝜀: 

 

𝑓𝐿 = 𝑓𝑇 𝑅𝑒𝜀 = 180 + 2.9 𝑅𝑒𝜀
0.9 (𝑅𝑒𝜀 < 600)  (2) 

 

where the modified particle Reynolds number 𝑅𝑒𝜀 is defined as:  

 

𝑅𝑒𝜀 =
𝜌𝑓𝑑𝑝𝑣𝑠

𝜂

1

1 − 𝜀
   (3) 

 

The experimentally obtained relation for 𝑓𝐿 or 𝑓𝑇 will be indicated below as the Carman drag coefficient 

(Carman, 1937). For further background information on the many forms of this equation, reference is made to 

the literature (Erdim et al., 2015) and model derivations given in the Supplementary Material (Section 3). 

 

 

2.2 Particle correction shape factors 

Within hydraulic modelling, particles are often idealised to spheres for mathematical convenience. Water 

treatment-related particles generally have more complex geometric features, summarised under the term shape, 

including the geometric shape, the presence of surface disparities such as protuberances and re-entrant features 

as well as particle property irregularities. Shape is therefore difficult to define. Although the literature on 

particle shape is extensive (Gauvin and Katta, 1973); (Holdich, 2002); (Seville and Yu, 2016) and a number 

of shape factors and descriptors have been proposed (Clift et al., 1978); (Allen, 1990), there is no universal 
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agreement on how to define particle shape. Therefore, there is no agreement on how to correctly measure it, 

nor does the literature provide consistent methods to cope with naturally irregularly shaped particles that can 

be used in voidage prediction models for liquid-solid fluidisation systems. The size and shape of the particles 

has important implications for, for instance, filter design (Crittenden et al., 2012), but there is no easy way to 

account for this. 

 

In the literature (Wadell, 1933); (Cleasby et al., 1981); (Michaelide et al., 2017) particle shape is often 

characterised by sphericity, which is generally defined as the ratio of the surface area of an equal volume 

sphere to the surface area of the granule. That being said, sphericity has limited value in actual practice for 

several reasons. First, filter media are currently still routinely measured and specified using a laborious sieve 

analysis procedure, and less by means of advanced image analysis techniques. Second, in the literature there 

is no general consensus on how to apply sphericity for commercially available granular media. If the particle 

has a known geometric shape, sphericity can be calculated mathematically. However, for irregularly shaped 

particles, indirect methods are required. To determine shape factors, several empirical fitting models are 

available (Dharmarajah, 1982). Often, these models are based on head loss or voidage experiments. Carman 

(1937) proposed that the 𝐾-value was independent of media properties and introduced a correction factor to 

account for the non-spherical nature of filter grains, using sphericity and the shape factor (Fair et al., 1933). 

According to (Yang, 2003), shape factors are open to criticism, because a range of granules with different 

shapes may have the same shape factor, which is inevitable if complex shapes are to be described by only a 

single parameter. (Wen and Yu, 1966) proposed shape factor corrections, used in the Ergun equation, based 

on experimental data for the minimum fluidisation voidage. According to the literature (Dharmarajah, 1982); 

(Crittenden et al., 2012), a commonly used particle shape factor in fixed bed state is necessary in order to 

match the Carman–Kozeny predicted drag coefficient with the experimentally obtained drag coefficient. The 

main drawback of this approach is that the model parameters often have no direct connection to the underlying 

porous medium structure (Schulz et al., 2019), do not have a physical interpretation, or are difficult or even 

impossible to measure, especially by means of sieve analysis (di Felice, 1995). 

 

In contrast, in the fluidised state, particle shape factors are usually omitted to match the Carman–Kozeny 

predicted drag coefficient with the experimentally obtained drag coefficient, without providing any 

explanation. Most likely this is done because these parameters are difficult to measure directly (de Jong and 

Nomden, 1974); (Hoyland, 2017); (Hunce et al., 2018). This is remarkable at the very least since the same 

particles are involved, in fixed as well as fluidised states. In addition, particle shape factors as a function of 

fluid velocity and temperature in liquid-solid fluidised systems are rarely evaluated in the literature. In the 

practice of filtration (Crittenden et al., 2012) and other forms of flow through granular beds, the measured 

resistance does not appear to correspond with the calculated resistance. To obtain a fit, an experimentally 

determined shape factor 𝜙𝑠 is used to modify the measured diameter (𝑑) into an effective diameter (𝑑𝑝): 

 

𝑑𝑝 = 𝜙𝑠 𝑑   (4) 

 

For further background information on the manifold empirical adjustments for flow resistance, reference is 

made to the literature (Říha et al., 2018). 

 

3 Research aims 
 

Based on theoretical factors and the specific ETSW procedure as applied after filter backwashing, it is clear 

that in order to obtain a thorough understanding of the hydraulics of up-flow filtration systems applied in full-

scale water treatment unit operation, several goals must be met. Initially, a more effective drag coefficient must 

be introduced to be able to visualise changes in drag for various velocities and temperatures. The magnitudes 

of particle correction shape factors must be shown in fixed and fluidised state. To demonstrate the degree of 

irregularity of considered granular material as well as to determine preferred particle orientation, an applicable 

image analysis method must be developed. In addition, a hydraulic explanation must be offered for the 

effective ETSW method for future optimisation purposes (water throughput and operational time) and to 

improve water quality. 
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4 Materials and methods 
 

4.1 Particle selection and physical properties 

For up-flow filtration and fluidisation experiments, rapid filtration sand grains were selected. The particle 

density was determined using measured differential pressures and a laboratory pycnometer. The hydraulic 

equivalent particle diameter (Dallavalle, 1948); (Crittenden et al., 2012); (Davis, 2010) was calculated using 

the sieve diameters, expressed in Equation (5): 

 

𝑑𝑝 = √𝑑𝑠,1 𝑑𝑠,2     (5) 

 

The dimensions of the particles were also determined by using ImageJ as a particle analyser (Ferreira and 

Rasband, 2012), for which a 4.188 g sample of filter sand was scanned on an A4 flatbed scanner, at a resolution 

of 2,400 dpi. Irregularly shaped particles, in particular elongated parts, tend to lie horizontally oriented. ImageJ 

determines for each individual particle which pixel in the 2D-image belongs to this particle. For each particle, 

the software determines some 34 size parameters, such as equivalent circle diameter, and equivalent ellipse 

dimensions with related morphological particle properties (Table 1), such as aspect ratio, Ferret diameter, 

circularity and solidity. Statistical information such as mean, range and frequency distribution can be 

determined from all these measurements.  

 

Table 1 ImageJ morphological properties (Ferreira and Rasband, 2012) 

Property Meaning 

Aspect ratio The width to height ratio of an elongated particle 

Ferret diameter Distance between two parallel tangents on opposite sides 

of the image of a randomly oriented particle 

Circularity Perimeter of sphere of the same projected area divided by 

the actual projected perimeter of the particle 

Solidity The area of a particle divided by its convex hull area; the 

imaginary convex hull around it 

 

The total mass and measured density were used to calculate the total volume of the particles. Assuming an 

ellipsoid based on length and width of the average of the 2D dimensions gives a pseudo-3D height as average 

value for all particles. 

 

 

4.2 Hydraulic experimental set-up 

Filtration and expansion experiments were carried out at three locations: in Waternet’s Weesperkarspel 

drinking water pilot plant located in Amsterdam, the Netherlands; at the University of Applied Sciences 

Utrecht, the Netherlands; and at Queen Mary University of London, United Kingdom. In all experiments, 

locally produced drinking water was used. The set-up (Figure 1) consisted of a 4 m high transparent PVC pipe 

with an inner diameter of 57 mm. Water temperature was regulated with a boiler, a cooler and a thermostat by 

recirculating water through a buffer vessel connected to a water reservoir. An overflow at the top of the reactor 

returned water to the buffer vessel. From the buffer vessel, water was pumped through the reservoir connected 

to the thermostat which was set to a programmed water temperature. 

 

Through filtration and expansion experiments, bed voidage and pressure drop were measured as a function of 

various linear fluid flow rates and temperatures. Hydraulic experiments were started in fixed bed state, obtained 

after an initial backwash with full fluidisation, which resembled the typical practical conditions of rapid sand 

and multimedia filters. By increasing the flow rate, the bed height was carefully observed and measured to 

determine any change in bed height and consequently average voidage. By measuring the differential pressure, 

the flow rate of the incipient fluidisation point was detected. By further increasing the flow rate, a sequence of 

bed voidages and differential pressures was measured to be able to compose an expansion curve. Based on 

acquired bed voidage, differential pressure, superficial fluid velocity, particle size and kinematic fluid 

viscosity, the drag coefficients were determined as presented in Section 2.1. 

 

Photographs of particles, technical information about experimental set-up devices and operational procedures 

can be found in the Supplementary Material (Sections 1 and 2). 
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Figure 1 Schematic overview of experimental set-up in all experimental locations 

 

 

4.3 Dynamic shape factor determination 

To investigate the variability of the particle shape factor, the ratio of the measured drag coefficient 𝑓𝐿 and the 

drag coefficient for Carman–Kozeny 𝑓𝐿,𝐶𝐾, using Equation (2), was calculated. We hypothesised that this ratio 

would depend on the hydraulic state, i.e. on the ratio 𝑅𝑒𝜀/𝑅𝑒𝜀,𝑚𝑓 of the actual modified particle Reynolds 

number (Equation 3) and that for incipient fluidisation. Inverting the Carman–Kozeny equation, for the 

measured voidage, velocity and viscosity, it was possible to estimate the average particle size. Accordingly, a 

dynamic shape factor could be determined for various flow rates using a numerical solver. A simplified 

equation states: 

 

𝜙𝑠 = √
𝑓𝐿,𝐶𝐾

𝑓𝐿
   (6) 

 

5 Results and discussion 
 

5.1 Particle properties 

Samples of RSF granules were obtained from a full-scale RSF unit operation located at the Waternet facility 

in Loenderveen, the Netherlands. The applied filter sand range (see Figure 2) was obtained by using sieves of 

0.80 and 1.25 mm. This was confirmed by sieving with 10 sieves between 0.6-2.8 mm (NEN-EN 933-2, n.d.), 

showing that 10 wt-% of the particles were smaller and 1 wt-% were larger than this range, which corresponds 

to a respective 20% and 1% in terms of the number of particles. We measured an average particle diameter of 

𝑑50 = 0.90 mm based on particle counting. 

 

 

Residue release

Thermostat
Adjustable

mixing valve 
  –     ⁰C]

1000 [L]
vessel

Water
overflow

F
I

Flow 
meter 
[L/h]

Valves

0-100
mBar

mA
4-20

Cooling water device

T

0 cm

20 cm

30 cm

40 cm

50 cm

100 cm

500 cm

10 cm

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

G
ra

d
u
a
tio

n
s

Main pump
3000 [L/h]

H max 9 meters

Cooler Boiler

T

Thermometer
  –     ⁰C]

700/800 cm

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

G
ra

d
u
a
tio

n
s

50 [L]

Overflow

Circulation process

Up-flow process

Down-flow process

Water
reservoir

Differential 
pressure

measurement 

Granules 
extraction 

valve

E
xp

a
n
s
io

n
 c

o
lu

m
n

 Ø
 =

5
7
[m

m
]

Bed height

Water level
measuring tube

Transparant level
measuring tube

B
e
d
 r
a
is

e
r

Circulation pump
10,000 [L/h]

H max 30 meters P
ro

ce
ss

 w
a
te

r

F
lu

id
is

e
d
 b

e
d

Buffer vessel
Flow check

F
I

Precision pump
300 [L/h]

Filter



7 
 

 

The full-colour scan obtained from the A4 flatbed scanner was initially converted into a single-colour picture 

for maximum particle distinction from which a binary (black and white) picture was created with a pixel size 

of around 0.01 mm (2,400 dpi). The size of each (black) particle was measured through pixel counting. 

Observed particles with their particle numbers can be shown as outlines on top of the original scan (see Figure 

3). The 4.188 g sample contained 2,040 particles, each analysed by its size, shape and other morphological 

properties in ImageJ. 

 

 

 

  
Figure 2 Rapid sand filter granules 0.8 < 𝑑𝑝 < 1.25 mm  

 

 
 

 Figure 3 Scanned sample with particle analysis with ImageJ, with particle outlines and particle 

numbers, with 2 x 2 mm gridlines 
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Figure 4 and Figure 5 show the measured distribution and cumulative frequency, respectively, of observed 

equivalent particle diameter. The green areas indicate the specification of the filter material based on 

information from the supplier of the two sieves (bottom sieve and top sieve). The projected area per particle, 

determined with ImageJ, was used to obtain the equivalent diameter of a circle resembling the basics of square 

sieve grids, as illustrated in Figure 4. Giving the exact contours per particle allows for the calculation of an 

equivalent ellipse with the same area for each particle, giving two independent diameters 𝑑50 of 1.57 and 1.21 

mm on average, with an aspect ratio of 1.30. Assuming that an ellipsoid with these two axes has the same 

volume as the average particle gives the third diameter of 0.78 mm. This dimension explains the sieve passage 

as particles are passing sieves in an upright orientation, contrary to the scanned particles lying in a horizontal 

orientation.  

 

Figure 5 illustrates how smaller particles are obtained which did not pass through the lowest sieve with the 

smallest mesh size, probably as a result of short sieving time. In contrast, hardly any larger particles were 

found since they did not pass through the top sieve with the largest mesh size. Figure 5 also shows that the 

particles are not perfect spheres, as a sieve curve would suggest, but that they are much better described as an 

ellipsoid with three distinct dimensions: width, height and length. 

 

In sum, it can be concluded that the analysed RSF grains are moderately irregularly shaped, and far from 

spherical. In the next section, it will become clear why this information is important in relation to decreasing 

bed resistance for increasing flow rates. Particle analysis using flatbed scans with pseudo-3D image processing 

is superior to 1D sieve analyses. The determined particle properties of RSF grains are presented in Table 2.  

 

Table 2 Particle properties rapid filtration sand grains 

Variable RSF grains Unit 

Particle sieve sizes 0.80-1.25 [mm] 

Particle density 2,638 ± 11 [kg/m3] 

Equivalent circle diameter 2D (average) 2) 1.38 [mm] 

Uniformity 2D (𝑑60/𝑑10) 2) 1.26 [-] 

Circularity 2D (average) 2) 0.73 [mm] 

Ellipsoid 3D-d50 2) 1.57 ∙ 1.21 ∙ 0.78 [mm] 

Ellipsoid aspect ratios 3D - l/b-b/h 2) 1.30 - 1.55 [-] 

Geldart’s type 3) D  
1) Measured particle size distributions are given in the Supplementary Material (Section 4) 
2) ImageJ (Ferreira and Rasband, 2012) 
3) Geldart’s particle classification (Geldart, 1973) type D: spoutable particles 

 

 
 

 

Figure 4 Equivalent diameter (assumed to be a circle): 

histogram of circle diameter from particle areas of 

ImageJ (in blue), compared to filter sand 

specifications (green area). The average 

diameters based on particle counting (𝑑50) are 

presented as vertical lines in green (sieve 

experiment) and blue (ImageJ), respectively 

Figure 5 Cumulative frequency grain sizes 
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In industrial practice, samples of granules are still commonly sieved to obtain information about the particle 

size distribution for process monitoring. With this method, the morphological properties of the particles are 

lost. However, as irregularly shaped particles, and rod-like particles in particular, can realign and pass to lower 

sieves, this gives a distorted view of the actual particle sizes. The easily acquired particle information, i.e. 

average particle size, is entered accordingly into the drag coefficient or voidage prediction model. In practice, 

this classical method works well for spherical particles, but it is less accurate for irregularly shaped particles 

such as RSF grains (Figure 2). Irregularly shaped particles experience anisotropic drag in fixed and fluidised 

state, due to the surrounding fluid and interactions with adjacent particles and the wall (Mahajan et al., 2018). 

 

 

5.2 Hydraulic experiments and expansion curves 

The hydraulic experiments we conducted provided crucial information about differential pressure and bed 

height in fixed, incipient and fluidised states, as a function of linear flow rates and water temperatures. In total, 

eight up-flow experiments were conducted for RSF grains at six different water temperatures (6-29 °C). 

Additional expansion experiments were performed at seven different water temperatures (5-36 °C) to 

determine the minimum or incipient fluidisation points, causing the first particles to expand as well as allowing 

the precise expansion behaviour of RSF grains to be determined. For up-flow filtration, the fluid flow was 

gradually increased until the incipient fluidisation point was reached, where the differential pressure levelled 

at a maximum value. For moderate fluidised state, the fluid flow was slightly further increased under constant 

maximum differential pressure. The expansion curve for RSF grains is presented in Figure 6 The measured 

voidage in fixed bed state varies between 𝜀0 = 0.44 ± 0.03. The voidage at the minimum fluidisation velocity 

is 𝜀𝑚𝑓 = 0.45 ± 0.01. Figure 6 shows the expansion behaviour of RSF grains in the fluidised state. The measured 

bed voidages at various water temperatures agree reasonably well with the predicted values according to the 

Carman–Kozeny model. The influence of the water temperature in the fluidised state can be seen in Figure 7. 

The temperature effect in the fixed bed state was less clearly observable (Figure 6). A moderate linear 

relationship (R2 = 0.99) between the degree of subsidence % of the packed bed and water temperature (5-35 

°C) was found: Δ𝜀/𝜀 = −0.0001𝑇 + 0.008. The temperature dependence of the bed setting is caused by the 

changes in viscosity of water, which affects the frictional forces acting on the filter bed. 

 

Experimental data tabulation (Section 9), minimum fluidisation points (Section 5) and model predictions 

(Section 3) are given in the Supplementary Material. 

 

  
Figure 6 Up-flow filtration and expansion curve for rapid 

filter sand granules 0.8 < 𝑑𝑝 < 1.25 mm. 

Experimental voidage (circles), Carman–Kozeny 

predicted voidage (∙∙∙) and differential pressure 

(triangles) against superficial fluid velocity, (- - -) 

maximum pressure drop, (---) voidage at minimum 

fluidisation 

Figure 7 Fluidisation characteristics of rapid filter sand 

granules 0.8 < 𝑑𝑝 < 1.25 mm. Experimental 

voidage (circles) and Carman–Kozeny 

predicted voidage (∙∙∙) against superficial fluid 

velocity for six different water temperatures 

 

 

5.3 Measured and predicted drag coefficients 

The drag coefficient against the modified Reynolds number 𝑅𝑒𝜀 for RSF grains is presented in turbulent 

representation 𝑓𝑇 in Figure 8 and in laminar representation 𝑓𝐿 in Figure 9. In both figures, the Kozeny and 

Carman (Equation (2)) drag relations are plotted. Figure 8 shows a clear deviation between the measured and 

predicted values for low Reynolds numbers (𝑅𝑒𝜀 < 10). In most other literature references, such deviations 

between measurements and drag models are artificially hidden by the use of logarithmic scales over several 

orders of magnitude. 
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For relatively high Reynolds numbers (𝑅𝑒𝜀 > 10), the predicted Carman values coincide relatively well with 

the measured values. For low Reynolds numbers (especially 𝑅𝑒𝜀 < 5), the measured 𝑓𝐿 values are significantly 

larger than the theoretically expected 𝑓𝐿 =180, corresponding to the Kozeny pore shape factor 𝐾 = 180. The 

laminar representation of 𝑓𝐿 makes changes in drag much more concise compared to the commonly used 

turbulent representation of 𝑓𝑇. Figure 9 clearly shows that the drag decreases considerably in case the fluid 

flow increases slightly, under laminar or transitional conditions. This is happening while the particles are still 

assumed to be packed in the fixed bed state. 

 

More information about the Carman model can be found in the Supplementary Material (Sections 3). 

 

 

  
Figure 8 Drag (turbulent representation) 𝑓𝑇 against 

modified Reynolds number for rapid filter sand 

granules 0.8 < 𝑑𝑝 < 1.25 mm 

Figure 9 Drag (laminar representation) 𝑓𝐿 against 

modified Reynolds number for rapid filter sand 

granules 0.8 < 𝑑𝑝 < 1.25 mm 

 

To show explicitly that the drag decreases mainly in the (supposedly) fixed bed, the ratio of measured to 

predicted drag 𝑓𝐿 𝑓𝐿,𝐶𝐾⁄  is plotted against the Reynolds number ratio 𝑅𝑒𝜀 𝑅𝑒𝜀,𝑚𝑓⁄  in Figure 10. For increasing 

flow rates, where 𝑅𝑒𝜀 𝑅𝑒𝜀,𝑚𝑓⁄  is still well below 1, the ratio 𝑓𝐿 𝑓𝐿,𝐶𝐾⁄  decreases rapidly. For every percent that 

the bed voidage drops, the drag coefficient 𝑓𝐿 decreases by a factor 4. The large ratio of measured to predicted 

drag occurs at 𝑅𝑒𝜀 𝑅𝑒𝜀,𝑚𝑓⁄  < 0.5, which indicates that it cannot be explained by effects occurring around 𝑣𝑚𝑓. 

This will be investigated further in the next subsection. 

 

A practical approach is to use a particle shape factor to compensate for observed deviations in 𝑓𝐿. The use of 

a shape factor, however, becomes redundant in the fluidised state, since the prediction of the voidage is 

increasingly consistent with the models for (𝑅𝑒𝜀 > 10) in Figure 9 and Figure 10. We reiterate that the common 

use of two different shape factors in the literature for fixed and fluidised beds is remarkable, because it concerns 

the same particles. Using Equation 6, shape factors were calculated for RSF grains. Figure 11 shows that in 

the fixed bed state, the particle shape factor varies between approximately 0.6 < 𝜙𝑠 < 0.9. In the fluidised state, 

however, the shape factor slowly approaches 𝜙𝑠 = 1. 

 

  
Figure 10 Drag (laminar representation) relative to the 

Carman–Kozeny drag against modified Reynolds 

numbers relative to modified Reynolds numbers at 

minimum fluidisation for rapid filter sand 

granules 0.8 < 𝑑𝑝 < 1.25 mm 

Figure 11 Shape factor against modified Reynolds numbers 

relative to modified Reynolds numbers at 

minimum fluidisation for rapid filter sand 

granules 0.8 < 𝑑𝑝 < 1.25 mm 
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5.4 Hydraulic explanation for up-flow filtration and ETSW 

When a fluid flows in upward direction through a particle bed in fixed state, the fluid exerts a certain drag on 

the particles. The transition from a fixed bed to a fluidised bed occurs when the pressure drop across a packed 

bed reaches a constant maximum value, after the fluid flow exceeds the minimum fluidisation velocity. The 

particles start to elevate, and irregularly shaped particles also show changing orientation, realignment and 

rearrangement in their packing position. During the pilot plant experiments, the observed bed height decreased 

slightly (approximately 1%), which can be seen in Figure 12, Figure 13 and Figure 14. Videos of RSF grains 

(Kramer and van Schaik, 2020) as well as calcite pellets (Kramer et al., 2020b), at flow rates well below the 

minimum fluidisation points, show clearly that particles already start to move locally while overall they remain 

in a fixed bed state. The collapse of the packed bed caused by ETSW is also demonstrated in four videos. 

 

 

The collapse of the particles in the fixed beds below the incipient fluidisation point is most likely caused by 

particle orientation, realignment and rearrangement in their packing position. An unsteady packed bed in 

moderate up-flow conditions is pseudo-fixed and in a setting state. This results in a decreasing bed voidage 

and simultaneously in a decreasing drag coefficient, which seems quite contradictory. However, this can be 

explained by the collapse of local channels (Figure 16 and Figure 17) in the bed, leading to a more uniform 

flow distribution through the bed and improving the available surface for flow-through (Hassett, 1961). This 

is the reason why ETSW, as an additional method to a backwash filter recipe, works effectively (Figure 15), 

since it levels the voidage in the particle bed. In this way, the successful ETSW method proposed by Amburgey 

(2005) can be explained. 

 

 

During full-scale operational ETSW procedures, small (1-10 mm) spouting channels were observed: this is 

shown in Figure 16 and Figure 17. The amount and intensity of spouts decreased during the procedure. A 

   
Figure 12 Initial fixed bed Figure 13 Fixed bed setting after 

𝑡=5 [min] ETSW 
Figure 14 Fixed bed setting after 

𝑡=30 [min] ETSW 

   
Figure 15 Full-scale RSF during 

collapse pulsing 40 m/h 

backwashing scour 

Figure 16 Full-scale RSF during 

ETSW 5 m/h up-flow 
Figure 17 Full-scale RSF during ETSW 

bed, spouting channels 
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plausible explanation is that the up-flow filtration caused the channels to collapse in the bed, leading to a more 

uniform flow distribution through the bed and improving the available surface for flow-through. We 

hypothesise that this phenomenon has a positive effect on water quality, since the magnitude of turbidity and 

particle count spikes decrease. Therefore, the successful optimisation ETSW filter backwashing procedure 

proposed by Amburgey (2005) can be explained hydraulically. 

 

 

5.5 Preliminary considerations of hydraulics-based ETSW 

According to Amburgey (2005), adjustments in fluid velocity should be limited to the minimal fluidisation 

velocity. Since this velocity depends on both the filter bed material and on water temperature, optimising the 

up-flow velocity could become complicated due to different packing materials and seasonal temperature 

fluctuations. Smaller RSF grains fluidise more easily compared to the larger RSF grains, resulting in a gradual 

transition. In other words, because of differences in particle size, the minimum fluidisation velocity cannot be 

determined exactly. In the event that during ETSW velocities occur that are too high, the benefits of bed setting, 

a more uniform flow distribution throughout the bed and better available surface for through-flow are nullified. 

Therefore, when optimising the ETSW time, it may be more important to focus on effective bed subsidence 

instead of focussing on incipient fluidisation. Amburgey (2005) assumed that at least one bed volume would 

be required to wash out remaining particles. As we provide a hydraulic explanation for improved water quality, 

this assumption does not need to apply. Therefore, considering this hydraulic explanation, the ETSW time 

could potentially be shortened to less than one bed volume. This would decrease down-time due to 

backwashing and increase up-time (filtration time) as breakthrough at restart will be significantly reduced, or 

even eliminated. With regard to water quality and costs, the elimination of breakthrough at restart will improve 

the overall bulk quality of the produced water, increase the total volume produced in between backwashes and 

subsequently save overall production costs. In practice, the first half hour of filtration, after backwashing, is 

discarded as this contains the highest concentrations of remaining particulates and contamination. 

 

 

5.6 Full-scale consequences of utilising the ETSW procedure 

Turbidity is a measure of the amount of particulate matter in water and is one of the most widely used 

parameters for measuring water quality prior to disinfection (Edzwald, 2011). High turbidity levels can reduce 

disinfection capacity. Adequate turbidity removal implies the partial removal of pathogens in water 

(Lechevallier et al., 1991), since most pathogens tend to aggregate with particles. Before 2016, at the full-scale 

RSF in Loenderveen (the Netherlands), considerable turbidity spikes were detected in the first filtrate after 

backwash cycles. After a backwash cycle had been completed and the filter returned to operational mode, the 

turbidity of the first filtrate was measured in four filters (Figure 18). After approximately 30 minutes, the 

turbidity increased from 0.2 FTU up to 1-3 FTU. A similar elevated pattern could be seen for bacterial levels 

Enterococci (𝑁=4/10L), E.coli (𝑁=14/10L) and traces of sulphite-reducing Clostridia (𝑁=103/10L). The WHO 

(World Health Organization, 2017) promotes a turbidity threshold of below 0.2 NTU.  

 

 

Accordingly, an optimisation process has been started at the full-scale facility in Loenderveen to improve water 

quality by reducing bacterial breakthroughs. The goal was to decrease the concentrations of bacteria to improve 

the oxidation and disinfection efficiency in the ozonation unit operation down-stream (van der Helm, 2007). 

  
Figure 18 Turbidity measurements of four full-scale RSF 

first filtrates in Loenderveen before the ETSW 

procedure was established 

Figure 19 Turbidity measurements of four full-scale RSF 

first filtrates in Loenderveen after the ETSW 

procedure was established 
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The ETSW procedure was initialised on the full-scale facilities additional to the standard backwash procedure. 

Furthermore, we investigated whether it was desirable to remove the first filtrate for approximately three hours. 

After the ETSW procedure was utilised, turbidity spikes in the first filtrates were excluded (Figure 19) in 

favour of water quality. 

 

6 Conclusions 
Our experiments showed that irregularly shaped particles such as RSF grains in fixed beds under moderate up-

flow conditions show non-monotonous hydraulic behaviour related to changing orientation, realignment and 

rearrangement in particle packing position. This happens in such a manner that the bed offers the maximum 

flow passage, i.e. voidage to the fluid. Initially, the bed voidage, the flow-through interface available in the 

bed, as well the drag decrease and accordingly increase for larger fluid flows. These phenomena also affect 

the volume-based voidage prediction, something that to the best of our knowledge has not been elucidated in 

the literature. 

 

In the field of engineering, a shape factor is applied to compensate for the above aspect in the fixed and 

incipient fluidisation but is omitted when the fluidised state is described. In this research, it was shown that 

such a shape factor is not a constant particle property but is dependent on the fluid properties as well. This 

dynamic shape factor for irregularly shaped RSF grains increases from approximately 0.6 until 1.0 in fairly 

fluidised state. The use of constant shape factors regarding natural, irregularly shaped granules is therefore not 

recommended. Our new straightforward image analysis method, based on a weighted particle sample to 

estimate the mean measures of spheroids, shows that sieve measures are not representative of natural, 

irregularly shaped granules. Based on experimental data obtained in this work, it is shown that, for increasing 

fluid flow rates, the fixed bed voidage decreases slightly (approximately 1%) while the drag coefficients 

decline to a considerable degree. The drag coefficient reached values up to 450 (in laminar representation), 

which is considerably larger than the well-known Kozeny value of 180. 

 

The reduction in bed voidage as well as bed resistance is due to the realignment of the particles in the packed 

bed and the collapse of flow channels created during a normal backwash procedure. Particle orientation, 

realignment and rearrangement implies unstable fixed beds that become denser in laminar up-flow conditions. 

This results in a decreasing bed voidage and simultaneously in a decreasing drag coefficient. A complete 

fluidised state, i.e. exceeding the minimum fluidisation velocity, is not necessary. In addition, besides the 

particle size, also the particle shape is a decisive factor in the phenomena occurring in the particle beds. The 

collapse of local channels in the bed leads to a more uniform flow distribution through the bed and improves 

the available surface for flow-through. In this way, the successful ETSW method proposed by Amburgey 

(2005) can be explained. 

 

7 Recommendations 
With the knowledge acquired during these experiments, the ETSW procedure can, in future research, be further 

optimised by adjustments to the up-flow velocity and time. Since the configuration of the particles in the 

packed filter bed is generated by frictional forces, it is recommended to investigate alternative methods that 

include frictional forces, so that subsidence can take place. Although filter resting could also be a solution to 

acquire bed setting and prevent the first filtrate turbidity spike after the backwash expansion, it reduces the 

operational up-time. In order to extend the hydraulic impact discussed here to an even more effective ETSW, 

a model to predict the permeability and bed setting of the filter bed needs to be further substantiated and 

developed to be able to optimise the ETSW procedure. The newly proposed pseudo-3D ImageJ analysis 

method can be used for future CFD modelling research, taking into account the influence of non-spherical 

particles, in which the obtained measures of the ellipsoids can be put to good use. 

 

8 Nomenclature 
 

Subscripts, superscripts and abbreviations can be found in the Supplementary Material (Section 7). 
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Nomenclature 

𝐴𝑟 Archimedes number [-] 

𝑐𝑖 Coefficients [-] 

𝐷 Inner column or cylinder vessel diameter [m] 

𝑑  Measured diameter [m] 

𝑑𝑝 Effective or average or particle equivalent diameter [m] 

𝑑𝑠,𝑖  Sieve mesh diameter [m] 

𝑓𝐿 Dimensionless drag coefficient (laminar representation) [-] 

𝑓𝐿,𝐶𝐾 Dimensionless drag coefficient (laminar representation for Carman–Kozeny) [-] 

𝑓𝑇 Dimensionless drag coefficient (turbulent representation) [-] 

𝑓𝑇,𝐶𝐾 Dimensionless drag coefficient (turbulent representation for Carman–Kozeny) [-] 

𝑔 Local gravitational field of earth equivalent to the free-fall acceleration [m/s²] 

Δ𝐿 Relative total fluid bed height [m] 

𝐿 Fluid bed height [m] 

𝐿𝑚𝑓 Bed height at minimum fluidisation [m] 

𝐿0 Fixed bed height [m] 

𝑁 Total number of particles / total number of experiments [#] 

𝛥𝑃/𝐿 Pressure drop head loss [kPa/m] 

𝛥𝑃𝑚𝑎𝑥 Total maximum differential pressure over the bed [kPa] 

𝑄𝑤 Water flow [m³/h] 

𝑅𝑒𝑝 Reynolds particle number [-] 

𝑅𝑒𝜖 Modified Reynolds particle number [-] 

𝑅𝑒𝜖,𝑚𝑓 Modified Reynolds particle number at minimum fluidisation [-] 

𝑣𝑠 Linear superficial velocity or empty tube fluidisation velocity [m/s] 

𝑇 Temperature [°C] 

𝑉𝑝 Volume of an individual particle [m³] 

 

 

Greek symbols 

𝜀 Voidage of the system [m³/m³] 

𝜀0 Fixed bed voidage [-] 

𝜀𝑚𝑓 Voidage at minimum fluidisation [-] 

𝜂 Dynamic fluid viscosity [kg/m/s] 

𝜐𝑇 Kinematic fluid viscosity [m²/s] 

𝜙𝑠 Shape of diameter correction factor [-] 

𝜌𝑓 Fluid density [kg/m³] 

𝜌𝑝 Particle density [kg/m³] 

 

 

Abbreviations 

CFD Computational Fluid Dynamics 

DPI Dots per inch 

ETSW Extended terminal sub-fluidisation wash 

FTU Formazin turbidity units 

HSV Colour model (hue, saturation, value) in graphic design 

RSF Rapid sand filtration 

WHO World Health Organisation 
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