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Male honeybees (drones) are thought to congregate in large numbers in particular “drone 11 

congregation areas” to mate. We used harmonic radar to record the flight paths of individual drones 12 

and found that drones favoured certain locations within the landscape which were stable over two 13 

years. Surprisingly, drones often visit multiple potential lekking sites within a single flight and take 14 

shared flight paths between them. Flights between such sites are relatively straight and begin as 15 

early as the drone’s second flight, indicating familiarity with the sites acquired during initial learning 16 

flights. Arriving at congregation areas, drones display convoluted, looping flight patterns. We found 17 

a correlation between a drone’s distance from the centre of each area and its acceleration toward 18 

the centre, a signature of collective behaviour leading to congregation in these areas. Our study 19 

reveals the behaviour of individual drones as they navigate between and within multiple aerial leks. 20 

 21 

Keywords: Apis mellifera, drone, drone congregation area, harmonic radar, honeybee, insect mating 22 

systems, insect navigation, lek, orientation flight, queen flight 23 

 24 

Highlights: 25 

• Flight paths of individual honeybee drones were tracked using harmonic radar 26 

• Convoluted flights were concentrated in four drone congregation areas 27 

• Drones commonly move between lek-like congregation areas during a single flight 28 

• Acceleration patterns suggest a mechanism to maintain congregation area cohesion 29 

  30 
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Introduction 31 

A major mystery regarding honeybee (Apis mellifera) mating behaviour, regards where mating takes 32 

place and how drones (males) and queens find one another. Drones (males) attempt to mate with 33 

virgin queens in flight and typically undertake 1-6 flights per day (Witherell, 1971; Reyes et al., 34 

2019), over an average of 7 non-consecutive days (Reyes et al., 2019), until they mate successfully or 35 

die of predation or old age (mean age at death: 21 days, (Witherell, 1971; Reyes et al., 2019)). A 36 

long-standing hypothesis suggests that drones gather in large numbers, up to many thousands at a 37 

time (Koeniger et al., 2005), in locations that are not only stable from day to day, but reappear in the 38 

same places year after year (Ruttner and Ruttner, 1966; Strang, 1970; Loper, Wolf and Taylor, 1992). 39 

Support for this drone congregation area hypothesis comes from studies using tethered queens or 40 

pheromone lures to sample drone abundance (Zmarlicki and Morse, 1963; Ruttner and Ruttner, 41 

1972; Taylor, 1984; Galindo-Cardona et al., 2012), but there is limited evidence that such gatherings 42 

occur in the absence of the methods used to detect them (Loper, Wolf and Taylor, 1987, 1992) and 43 

other lure studies have yielded contradictory evidence (Butler and Fairey, 1964; Currie, 1987). 44 

Nearly all investigations of drone congregations have relied on pheromone lures or tethered queens, 45 

leading to concerns that apparent congregation areas may have been created by the lures 46 

themselves. Apparent congregations can be created by releasing large amounts of pheromone 47 

(Butler, 1967; 1970; Tribe, 1982), and drones return frequently to locations at which they have 48 

encountered queen pheromone (Butler and Fairey, 1964), so such artificial congregations may be 49 

long-lasting. Several authors report that drones were rapidly attracted to pheromone lures in almost 50 

any location (Butler and Fairey, 1964; Tribe, 1982), including 800m out to sea (Butler and Fairey, 51 

1964), leading Butler and Fairey to conclude that drones must be dispersed widely and evenly 52 

throughout the landscape (Butler and Fairey, 1964). While lure-sampling studies in hilly regions have 53 

reported patterns of attraction to lures suggestive of distinct drone congregations (Ruttner, 1966; 54 

Ruttner and Ruttner, 1966), this has been hard to replicate in flatter areas (Ruttner, 1966; Currie, 55 
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1987). To demonstrate the existence of drone congregation areas with certainty, it is necessary to 56 

show that drones congregate in these areas without the presence of such bait. 57 

Two previous studies have used radar technology to attempt to characterize the movements of 58 

drones. Loper et al. (1987), used an X-band (9.4Ghz) marine radar to confirm that drones, were 59 

present at purported drone congregation areas even in the absence of queens. However, since 60 

caged queens had been used to identify these locations to begin with, it was impossible to rule out 61 

the possibility that the congregations had become established as a result of the lures. In a more 62 

ambitious study, Loper and others used radar to survey the numbers of drones observed in different 63 

locations around a large apiary and built up a picture of drone movements, in the aggregate, 64 

although they could not identify or track the flight paths of individual drones (Loper, Wolf and 65 

Taylor, 1992). They described a network of 18km of shared flyways in which thousands of drones 66 

followed very similar routes throughout the landscape. These flyways were 50-100m wide and often 67 

ran parallel (but no closer than 60m) to treelines and roadways. They identified 26 different 68 

locations they believed to be drone congregation areas (Loper, Wolf and Taylor, 1992). Congregation 69 

areas had diameters around 100m and tended to be higher than flyways (around 30m) but were 70 

described as an ‘inverted cone’ in which fewer drones were found at higher altitudes (Loper, Wolf 71 

and Taylor, 1992). In a sub-experiment, Loper et al. (1992) monitored two of these purported 72 

congregation areas throughout the course of one afternoon to observe how the number of drones 73 

varied with time of day. They reported a maximum of 68 drones at a congregation at any one time, 74 

which is very low compared to the numbers found by other studies (Koeniger et al., 2005).  75 

Almost nothing is yet known of the flight dynamics of individual drones, how they explore the 76 

landscape, how their behaviour changes at congregation areas, or whether they are faithful to a 77 

single congregation area. Among vertebrates with lek mating systems – characterized by spatial 78 

clusters of large numbers of males, who are there solely to attempt to mate and do not provide any 79 

direct benefits to females, such as food or territory (Bradbury, 1977; Alcock, 1987) – males show 80 

high levels of fidelity to a single lek (Apollonio, Festa-Bianchet and Mari, 1989; Figenschou, Folstad 81 
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and Liljedal, 2004; Gibson et al., 2014; Fremgen et al., 2017); it is not known whether lekking insects 82 

are similarly faithful to a single site, although there is some evidence that at least one species of 83 

wasp may be (Nielsen and Nielsen, 1953). Additionally, a body of literature on the placement and 84 

composition of congregations rests on the central assumption that the use of pheromone- or queen-85 

lures does not alter drone behaviour. The only support for this comes from a single radar study 86 

(Loper, Wolf and Taylor, 1992), which contradicts most other literature in suggesting that 87 

congregations are smaller, more numerous and closer together than previously thought, and which 88 

thus requires further investigation.  89 

Results 90 

Use of the landscape by drones 91 

We tracked the flights of honeybee drones (Apis mellifera) from three hives in a hay meadow set 92 

within an agricultural landscape at Rothamsted Research, Hertfordshire, UK, over two years, from 93 

June-September 2016 and from May-July 2017. Drones were allowed to leave and enter the hives at 94 

will. They were tracked by harmonic radar when they chose to fly. We recorded 648 substantial 95 

flight segments – defined as a series of positional fixes from the radar which could be unambiguously 96 

identified as being made by a single drone, lasting at least 30s, in which the bee moved at least 15m 97 

from its starting position – from at least 78 individual drones. 98 

Drones were detected across the entire trackable area of the site, with high traffic corridors 99 

extending Southeast and terminating in hotspots in the same locations (Figure 1). We found drone 100 

activity was very similar in both years (Figure 1C, E). Drones from different hives converged on 101 

similar routes (Figures 2, S1, S2) suggesting the use of common heuristic movement rules (see 102 

Supplemental information).  103 

 104 
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 105 

Figure 1. Landscape use by drones 106 

A) Heat map showing all drone flight activity recorded in 2016-2017 superimposed on an aerial 107 

orthomosaic image of the field site. Hive locations are marked by blue circles and numbered. Areas 108 

with brighter, yellower colouration were more visited by drones. N = 1174 tracks. B) Heat map 109 

showing all convoluted sections of flight recorded in 2016-2017, whose centre of mass was greater 110 

than 50m from all active hives. The centre of mass of each cluster of  data points that we identified as 111 

a probable drone congregation area is marked by a grey circle and labelled A-D. Convex hull polygons 112 

containing all  data points assigned to each cluster are outlined in grey. This is a rough estimate of the 113 

boundary of each congregation area, for illustrative purposes only. N = 111 tracks. C) Heat map 114 

showing all drone activity recorded in 2016. N = 835 tracks. D) Heat map showing convoluted sections 115 
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of flight recorded in 2016, whose centre of mass was greater than 50m from all active hives. N = 94 116 

tracks E) Heat map showing all drone activity recorded in 2017. N = 339 tracks F) Heat map showing 117 

convoluted sections of flight recorded in 2017, whose centre of mass was greater than 50m from all 118 

active hives. N = 17 tracks. 119 

 120 

Figure 2. Example flight paths showing convergence on similar routes 121 

A) Flight path of a drone from hive 1 passing through congregation areas A, B and C, and showing 122 

evidence of convoluted flight at locations B and C. Sections of flight classified as straight are depicted 123 

in black; sections of flight classified as convoluted are shown by red lines. Gaps of greater than 30s 124 

between consecutive data points are indicated by dashed lines. The start of the track is marked by a 125 

green triangle and the end by a red rectangle. Hives are marked by blue circles and numbered. The 126 
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centre of mass of each cluster of  data points that we identified as a probable drone congregation 127 

area is marked by a grey circle and labelled A-D. Convex hull polygons containing all  data points 128 

assigned to each cluster are outlined in grey. Insets for each panel: zoomed view showing details of 129 

convoluted flight at congregation areas. B) Example flight from hive 3 showing convergence in both 130 

the route taken and the destination with the flight in A). C-D) Example flights from hive 2 visiting 131 

congregation areas A and B and showing convergence in route and destination with the flights shown 132 

in other panels. Note that only the outbound portion of the flight in D) is shown; either this drone did 133 

not return to the hive or the return flight was not detected. E) Example flight from hive 1 showing a 134 

visit to congregation area D. F) Example flight from hive 3 showing visits to congregation areas D, A 135 

and B, with convoluted flight at D and A. 136 

Identifying potential drone congregation areas 137 

Previous studies either sampled drones at discrete locations or used radar to monitor drone flight in 138 

the aggregate, but could not identify or track the flight paths of individual drones (Loper, Wolf and 139 

Taylor, 1987, 1992). Consequently, little is yet known about the flight paths taken by individual 140 

drones. Our data show that drone flights typically consisted of periods of straight, direct flight, 141 

interspersed with periods of convoluted, looping flight (Figure 2). We developed a simple algorithm 142 

to classify flight into straight and convoluted sections (Figure 2; see Transparent methods, 143 

Supplemental information). We identified 425 sections of convoluted flight in 329 flights (51% of all 144 

substantial flight segments). Multiple convoluted sections occurred in 67 flights (20.3% of all flights 145 

containing convoluted sections). The mean duration of convoluted sections of flight was 134.0s ± 146 

17.3 (means ± standard error, throughout). Among flights that contained convoluted sections, 147 

convoluted flight accounted for 56.3% ± 2.0 of the total flight duration. 148 

We used a clustering algorithm to reveal geographically clustered activity in convoluted flights. We 149 

identified four clusters of drone positions with data points contributed by at least 10 different tracks 150 

(Figure 1B; Table S1). Examination of individual drone tracks confirms the importance of these 151 

probable drone congregation areas, with numerous flights approaching these areas along relatively 152 

direct flight paths and abruptly changing to convoluted flight (Figure 2). 153 
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Orientation flight and route development 154 

We recorded 19 complete first flights of drones, comparable to orientation flights in workers 155 

(Capaldi et al., 2000). First flights remained within around 100m of the hive, and frequently 156 

consisted of multiple loops in different directions from the hive (Figure 3). In this aspect, they more 157 

closely resemble the initial flights of bumblebee (Bombus terrestris) workers (Osborne et al., 2013; 158 

Woodgate et al., 2016), than honeybee workers, which typically perform a single loop per flight 159 

(Capaldi et al., 2000). Notably, drones performing orientation flights never undertook convoluted 160 

flight at congregation areas. 161 

 162 

Figure 3. Orientation flights 163 

A) Example flight path of the first flight (orientation flight) ever undertaken by a drone from hive 1. 164 

Sections of flight classified as straight are depicted in black; sections of flight classified as convoluted 165 

are shown by red lines. Gaps of greater than 30s between consecutive data points are indicated by 166 

dashed lines. The start of the track is marked by a green triangle and the end by a red rectangle. Hives 167 

are marked by blue circles and numbered. The centre of mass of each cluster of  data points that we 168 

identified as a probable congregation area is marked by a grey circle and labelled A-D. Convex hull 169 
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polygons containing all  data points assigned to each cluster are outlined in grey. Insets for each panel: 170 

zoomed view showing details of flight path. B) Orientation flight of a drone from hive 3. C-D) 171 

Orientation flights of two drones from hive 2, showing the typical range of distances reached from 172 

the hive. 173 

For four drones, we recorded 6-8 consecutive flights, beginning with their first ever orientation flight 174 

(Figures 4, S3). Typically, one or two localised orientation flights were followed by an abrupt switch 175 

to flights travelling much further from the hive, passing through one or more congregation areas. 176 

Drones may thus need fewer orientation flights than typically undertaken by workers (mean 5.6 ± 177 

2.9, (Capaldi et al., 2000)). We attempted to track the flight of virgin queens for comparison, but 178 

with little success (see Figure S4, Supplemental information). 179 
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 180 

Figure 4. Example flight paths showing consecutive flights of drone #48 181 

The first six flights ever undertaken by drone #48. Sections of flight classified as straight are depicted 182 

in black; sections of flight classified as convoluted are shown by red lines. Gaps of greater than 30s 183 

between consecutive data points are indicated by dashed lines. The start of the track is marked by a 184 

green triangle and the end by a red rectangle. Hives are marked by blue circles and numbered. The 185 

centre of mass of each cluster of  data points that we identified as a probable congregation area is 186 

marked by a grey circle and labelled A-D. Convex hull polygons containing all  data points assigned to 187 

each cluster are outlined in grey. A) The drone’s first ever flight was very brief, less than two minutes 188 

with convoluted flight directly in front of the hive entrance and a brief loop toward the Northwest. B) 189 

The second flight was much more extensive with loops passing through congregation areas D and A, 190 

followed by a longer flight through area C and appearing to continue even further, disappearing over 191 
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a road that forms the Southeastern border of our field site. The portions of flight we were able to 192 

detect were fairly straight, going directly to the congregation areas and showing no evidence of 193 

systematic search. C-F) Subsequent flights by the same drone were even more direct, passing through 194 

congregation areas A, B and C, occasionally making convoluted flight at these locations, and 195 

apparently continuing across the road on two more occasions (E, F). 196 

Dynamics of flight at hives and congregation areas 197 

Drones from all hives visited all four congregation areas in both years (Table S1; Supplemental 198 

information), although area A was less commonly visited in 2017, while it is possible that the centre 199 

of area C shifted Southwards (Figure 1D, F). Among vertebrates with lek mating systems, males show 200 

high levels of fidelity to a single lek (Apollonio, Festa-Bianchet and Mari, 1989; Figenschou, Folstad 201 

and Liljedal, 2004; Gibson et al., 2014; Fremgen et al., 2017). We found that it was common for 202 

drones to visit and perform convoluted flight at more than one congregation area during the same 203 

flight, connected by periods of much straighter flight (Figure 2A, D, F). We identified tracks in which 204 

either the bee performed a section of convoluted flight whose center of mass (mean coordinates of 205 

every  data point) was within 50m of a cluster centre, or in which the bee stayed within 50m of a 206 

cluster centre for at least 21s (seven revolutions of the radar). This included periods in which the 207 

signal was lost, provided the positional fixes either side of the missing period were within 50m of a 208 

cluster centre: this can occur if the bee flies too high for the radar to detect. There were 154 such 209 

flights which visited at least one congregation area (representing 23.7% of all flights recorded), 37 210 

(24.0%) of which visited more than one congregation.  211 

We found a linear relationship between a drone’s position relative to the congregation area or hive 212 

and its acceleration conditioned on its position, in both East-West and North-South directions of 213 

travel (all P <0.005; Figures 5, S5; Table S2). The x-intercepts (the location at which the acceleration 214 

is zero) were very close to the cluster centre in all cases (mean ± S.E.: x-direction = -2.17m ± 2.30; y-215 

direction = 0.15m ± 2.13; Table S2; Figure S5). In other words, the further drones moved from the 216 

centre of a congregation area or hive during convoluted flight, the more strongly they accelerated 217 
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back toward the centre. Such patterns of acceleration function as an effective force – with 218 

individuals behaving as though they are trapped in an elastic potential well (Katz et al., 2011; Kelley 219 

and Ouellette, 2013) – and promote swarm cohesion (Kelley and Ouellette, 2013). Other 220 

characteristic properties of swarms, notably including midge mating swarms (Kelley and Ouellette, 221 

2013), are that their distributions of velocity and position have Gaussian cores. This was true of our 222 

convoluted flight data at congregation areas (Figures S6, S7). Taken together, these statistical 223 

properties of drone’s convoluted flight suggest that this flight resembles swarming. Our data on 224 

flight dynamics suggest that congregation areas have roughly symmetrical cores of 30-50m diameter 225 

(see Supplemental information). 226 
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 227 

Figure 5. Mean acceleration as a function of position relative to the centre of congregation areas 228 

or hives 229 

A) Mean x-component of acceleration calculated over bins of 5m in the x-direction (East-West) from 230 

the centre of each congregation area. Red line: area A; green line: area B; blue line: area C; magenta 231 

line: area D. Narrow vertical bars show SE for each bin. Vertical dashed reference line indicates centre 232 

of congregation area or hive. Horizontal dashed reference line indicates mean acceleration equal to 233 

zero. Grey dotted line shows regression line through all binned data. B) Mean y-component of 234 

acceleration (North-South) for the same locations. C) Mean x-component of acceleration calculated 235 

over bins of 5m in the x-direction from each hive location. Red line: hive 1; blue line: hive 2; green 236 

line: hive 3. D) Mean y-component of acceleration for the same locations. Scatterplots showing the 237 

full distributions at each location are shown in Figure S5. 238 
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The dynamics of flight at congregation areas differed from those at hives: the distributions of 239 

position and velocity, which at congregations resembled those of midge mating swarms, have much 240 

smaller cores in the case of flight at hives (Figures S8, S9). We tested for a difference in kurtosis, a 241 

measure of how ‘heavy-tailed’ each distribution is. The kurtosis of the hive-flight position 242 

distributions was significantly greater than that for congregation areas (F1,6 = 34.97, P = 0.002; Figure 243 

S10A), while the velocity distributions showed a similar, but non-significant, trend (F1,6 = 5.46, P = 244 

0.067, Figure S10B). There was no effect of direction (x- or y-) on the kurtosis values (position: F1,6 = 245 

0.15, P = 0.714, Figure S10A; velocity: F1,6 = 0.32, P = 0.594; Figure S10B). Flight at swarms was 246 

significantly faster than at hives (swarms, 5.05ms-1 ± 0.14; hives, 3.03ms-1 ± 0.10; F1,300 = 16.02, P = 247 

0.007; c.f. mean speed of straight flight sections, 4.77ms-1 ± 0.07, Figure S10C), but there was no 248 

difference in the duration of convoluted flight sections (swarms, 111.4s ± 25.2; hives, 141.6s ± 23.3; 249 

F1,303 = 0.45, P = 0.515; Figure S10D). These results demonstrate that the convoluted flights recorded 250 

at congregation areas differ their flight dynamics from those around hives, likely reflecting different 251 

functions, with hive-flight probably not a form of swarming. 252 

There were no significant differences between the four congregation areas in the duration of 253 

convoluted flight sections (F3,80 = 0.67, P = 0.574; Figure S10E; Table 1), but the mean speed of 254 

convoluted flight sections at congregation area A was greater than at areas B or C (F3,80 = 4.63, P = 255 

0.005; pairwise comparisons using Tukey’s method: A vs B, P = 0.016; A vs C, P = 0.035; all other 256 

pairwise comparisons, P > 0.05; Figure S10F; Table 1). 257 

Discussion 258 

Using harmonic radar tracking, we have recorded the behaviour of individual honeybee drones as 259 

they explore the landscape and search for mates, revealing a characteristic switch between relatively 260 

straight periods of flight to a tightly looping pattern, often multiple times in the same flight. These 261 

individual tracks show the signature of collective behaviour: convoluted flights were clustered in 262 

four areas of our experimental site, and the flight dynamics of drones suggest the mechanism by 263 
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which group cohesion is maintained, demonstrating that these areas are swarms (Kelley and 264 

Ouellette, 2013). These results reveal the internal structure of drone congregation areas (Taylor, 265 

1984; Koeniger et al., 2005; Koeniger, Koeniger and Pechhacker, 2005; Galindo-Cardona et al., 2012). 266 

It was common in our study for drones to visit more than congregation area within a single flight, 267 

with around a quarter of flights that featured convoluted flight at a congregation area, or lingered in 268 

the area too long to be merely passing through, going on to do the same at other congregations. 269 

Travel between neighbouring areas was particularly common, perhaps facilitated by their locations 270 

on shared flyways (Loper, Wolf and Taylor, 1992). Bouts of convoluted flight in our dataset were 271 

relatively short, with a mean duration of little over two minutes, perhaps suggesting that drones 272 

routinely patrol between swarm locations, lingering only briefly in each to search for the presence of 273 

a queen. 274 

The dominant hypothesis for the purpose of congregation areas is that they function akin to leks 275 

(Zmarlicki and Morse, 1963; Baudry et al., 1998; Koeniger et al., 2005) and facilitate mating (see 276 

Supplemental information). Among lekking species of birds, mammals and fish, individual males 277 

show a high degree of fidelity to a particular lek site (Apollonio, Festa-Bianchet and Mari, 1989; 278 

Figenschou, Folstad and Liljedal, 2004; Gibson et al., 2014; Fremgen et al., 2017). Switching between 279 

leks is rare (Fremgen et al., 2017) and regular movement between leks within a day, or even a 280 

breeding season, is unknown. Males of many insect species form dense, lek-like aerial swarms, 281 

above visual cues known as swarm markers, near treetops or at hilltops (Sullivan, 1981; Alcock, 282 

1987; Shelly and Whittier, 1997; Van Veen, Sommeijer and Meeuwsen, 1997). These often maintain 283 

a relatively stable size and shape even as individuals leave and others arrive, leading Sullivan (1981) 284 

to hypothesise that individual males move between adjacent swarms. There is no previous 285 

experimental support for this hypothesis, however, and one study suggested male mosquitos were 286 

faithful to a particular swarm over a period of several days (Nielsen and Nielsen, 1953). Our radar 287 

tracks provide the best evidence for a mating strategy in which individuals travel between multiple 288 
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aerial leks whose locations are fixed. Tracking or capture-mark-recapture studies of other swarming 289 

insects may reveal similar movements between swarms. 290 

We identified four apparent congregation areas, each of which was visited by drones from all three 291 

hives and across both year of tracking. Nonetheless, there were some differences between them: 292 

areas B and C were frequently visited in both years but area A was much less visited in 2017 than in 293 

2016 and flight speeds during convoluted flight at area A were higher than at B or C. Although area D 294 

was visited as often as area C, a high proportion of visitors came from hive 3, and passed through en 295 

route to areas B and C. It is possible that while some congregation areas remain stable from year to 296 

year and are defined by the features of the landscape, others may be less permanent and influenced 297 

by the positions of colonies or other factors. Loper et al. (1992) reported occasional transient 298 

“bubbles” of drone activity within flyways, but areas A and D in our study appear to be more stable 299 

than that, with activity recorded in both areas over two years. Further work may reveal whether the 300 

term drone congregation area presently confuses multiple discrete phenomena. 301 

Our results on flight dynamics explain how congregations can remain stable, even though individual 302 

drones do not remain there for prolonged periods: the relationship observed between acceleration 303 

and distance from the centre will tend to function to draw individuals back in toward the centre 304 

creating an emergent potential well that keeps drones bound to the congregation (Okubo, 1986; 305 

Kelley and Ouellette, 2013). The congregation thus takes on physical properties, emerging from the 306 

collective behaviour of the individuals within it. Drones thus use the same mechanisms for swarm 307 

cohesion as midges or mosquitos but on a far larger spatial scale (our congregations had a radius of 308 

approximately 50m, c.f. approximately 10cm for swarms of Chironomus riparius midges (Kelley and 309 

Ouellette, 2013)). Individual drones tended to perform convoluted flight for 2-3 minutes at a time 310 

but if drones leaving the congregation are replaced by newly arriving ones, the congregation itself 311 

can remain stable for far longer periods (Sullivan, 1981). 312 
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The congregation areas and flyways we have identified were frequented by drones across two years, 313 

demonstrating, in concert with the results of Loper et al. (1992), that swarms in relatively restricted 314 

volumes can remain stable over multiple years. This adds perspective to previous reports that the 315 

broad areas of drone activity revealed by lure-sampling studies persist over long periods (Strang, 316 

1970; Ruttner and Ruttner, 1972). No individual drones could possibly visit a drone congregation 317 

area in multiple years, since they do not survive over winter. The locations of drone congregations, 318 

therefore, must be discoverable by individual drones rather than being learned from others. Our 319 

data show that orientation flights of drones typically do not take them far enough from their hive to 320 

discover congregations, and that drones switch from orientation to making direct flights to 321 

congregation areas within one or two flights, without obvious signs of systematic searching. Cues to 322 

congregation area locations must be perceivable from relatively close to the hive and, since drones 323 

from all hive locations visited the same congregations, must be perceivable from many locations. 324 

Previous authors have suggested several landscape properties that might determine where drone 325 

congregations form: low parts of the skyline (Ruttner and Ruttner, 1966, 1972), distance from tree 326 

cover (Zmarlicki and Morse, 1963; Ruttner and Ruttner, 1966; Galindo-Cardona et al., 2012), and 327 

South facing aspect (Galindo-Cardona et al., 2012). None of these, however, are sufficient to predict 328 

exactly where swarms will form. Our flight tracks demonstrate that drones share routes through the 329 

landscape, as well as destinations. These flyways (Loper, Wolf and Taylor, 1992) might play a role in 330 

helping drones locate congregations, potentially explaining why it has proved so difficult to find any 331 

combination of cues that defines individual congregation areas. Reconstruction, from radar track 332 

data, of the views experienced by drones as they navigate to and from drone congregation areas 333 

promises to reveal the cues they use. 334 

It has been long hypothesised that drones gather in large numbers at drone congregation areas 335 

(Taylor, 1984; Koeniger et al., 2005; Koeniger, Koeniger and Pechhacker, 2005; Galindo-Cardona et 336 

al., 2012), but this has been challenged (Butler and Fairey, 1964; Currie, 1987), because almost all 337 

evidence for these congregations comes from studies using either caged queens or pheromone lures 338 
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to attract drones. Such studies cannot with certainty refute the alternative hypothesis that these 339 

sampling methods, themselves, cause the congregations. This debate was partially resolved when 340 

Loper et al. (1992) used radar tracking to demonstrate that drones congregated in repeatable 341 

locations in the absence of lures. However, their observations departed from the consensus 342 

emerging from lure-sampling studies in several ways: the clusters of activity that Loper et al. 343 

identified as drone congregation areas were much smaller than previously assumed (100m diameter, 344 

with a peak of 68 drones observed at any one time (Loper, Wolf and Taylor, 1992); c.f. 220m x 260m 345 

during the South African winter, enlarging to 500m x 1000m in summer (Tribe, 1982); a mean of 346 

11,750 drones estimated at a single congregation using lure-sampling (Koeniger et al., 2005)), and 347 

were found much closer together. Loper et al. (1992) also suggested that shared flyways around the 348 

landscape might be more important than the congregations themselves. They were unable to track 349 

individuals, but our work now corroborates most of their unusual findings: using different 350 

methodology we also estimated our congregations to be approximately 100m across and identified 351 

shared flyways between them. We found four such locations at close proximity. The placement of 352 

congregations B and C, either side of a roadway, appears to agree with the suggestion that 353 

congregations form where terrain features are interrupted (Loper, Wolf and Taylor, 1992).  354 

Why do radar studies of drone activity depart from the observations of lure sampling studies? The 355 

most likely explanation is that the superior spatial and temporal resolution of radar monitoring has 356 

revealed the internal structure present in drone congregation areas. We suggest that the locations 357 

described as drone congregation areas by previous authors (Zmarlicki and Morse, 1963; Taylor, 358 

1984; Koeniger et al., 2005; Koeniger, Koeniger and Pechhacker, 2005; Galindo-Cardona et al., 2012) 359 

are likely to actually comprise several distinct swarms and their associated flyways. Our data 360 

demonstrate that these substructures, and not just the broad region favoured by drones, are 361 

themselves stable over a timescale of years. If, as our data suggest, individual drones move between 362 

congregation areas, remaining for only short periods at each, the congregations may never have 363 

more than a small number of drones present at once. Aerial traps, though, will not only catch drones 364 
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present when the lure is raised, but all those that subsequently arrive (while few are able to leave), 365 

gradually depleting the population of an entire network of congregations and flyways. This may also 366 

partly explain why the supposedly enormous aggregations of drones have proven difficult to locate 367 

when much smaller swarms of midges, mosquitos or wasps are readily discovered (Sullivan, 1981; 368 

Shelly and Whittier, 1997). Another explanation for the discrepancies between radar and lure-369 

sampling studies could be that the presence of queens or pheromone-lures alters drone behaviour 370 

sufficiently to interrupt the normal structure of congregation areas, causing them to expand or 371 

perhaps inducing several, ordinarily distinct congregations to merge (Ni and Ouellette, 2016). Careful 372 

experiments using radar to monitor drone activity in the presence of lures could resolve the 373 

question of whether congregations are smaller in the absence of lures or whether drone 374 

congregation areas have an internal structure which radar tracking is only now starting to reveal. 375 

Limitations of the study 376 

Due to the logistical problems involved in moving the harmonic radar, we monitored the movements 377 

of drones in just one location. We partially mitigated this issue by tracking bees from three different 378 

hives, demonstrating that the behaviours we uncovered are not completely idiosyncratic to a single 379 

spatial location, but the three hives were close enough that bees from each encountered a 380 

substantially similar landscape. Repetition of this work in other locations will establish how the 381 

networks of flyways and stable congregation areas identified in our work and by Loper et al. (1992) 382 

are influenced by landscape structure. Loper er al. (1992) found that flight at congregation areas was 383 

higher than in flyways, although drones were rarer and rarer as elevation increased. We angled the 384 

harmonic radar to maximise our ability to track bees across the entire network of flyways and 385 

congregations, so it is likely that further flight activity took place at congregation areas too high for 386 

us to detect. Current harmonic radar technology doesn’t allow us to identify individual bees when 387 

several transponders are used. Solving this problem would open up the potential to investigate 388 

interactions between drones, and between drones and queens. 389 
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Figure legends 496 

Figure 1. Landscape use by drones 497 

A) Heat map showing all drone flight activity recorded in 2016-2017 superimposed on an aerial 498 

orthomosaic image of the field site. Hive locations are marked by blue circles and numbered. Areas 499 

with brighter, yellower colouration were more visited by drones. N = 1174 tracks. B) Heat map 500 

showing all convoluted sections of flight recorded in 2016-2017, whose centre of mass was greater 501 

than 50m from all active hives. The centre of mass of each cluster of data points that we identified as 502 

a probable drone congregation area is marked by a grey circle and labelled A-D. Convex hull polygons 503 

containing all data points assigned to each cluster are outlined in grey. This is a rough estimate of the 504 

boundary of each congregation area, for illustrative purposes only. N = 111 tracks. C) Heat map 505 

showing all drone activity recorded in 2016. N = 835 tracks. D) Heat map showing convoluted sections 506 

of flight recorded in 2016, whose centre of mass was greater than 50m from all active hives. N = 94 507 

tracks E) Heat map showing all drone activity recorded in 2017. N = 339 tracks F) Heat map showing 508 

convoluted sections of flight recorded in 2017, whose centre of mass was greater than 50m from all 509 

active hives. N = 17 tracks. 510 

Figure 2. Example flight paths showing convergence on similar routes 511 

A) Flight path of a drone from hive 1 passing through congregation areas A, B and C, and showing 512 

evidence of convoluted flight at locations B and C. Sections of flight classified as straight are depicted 513 

in black; sections of flight classified as convoluted are shown by red lines. Gaps of greater than 30s 514 

between consecutive data points are indicated by dashed lines. The start of the track is marked by a 515 

green triangle and the end by a red rectangle. Hives are marked by blue circles and numbered. The 516 

centre of mass of each cluster of data points that we identified as a probable drone congregation area 517 

is marked by a grey circle and labelled A-D. Convex hull polygons containing all data points assigned 518 

to each cluster are outlined in grey. Insets for each panel: zoomed view showing details of convoluted 519 

flight at congregation areas. B) Example flight from hive 3 showing convergence in both the route 520 

taken and the destination with the flight in A). C-D) Example flights from hive 2 visiting congregation 521 

areas A and B and showing convergence in route and destination with the flights shown in other 522 

panels. Note that only the outbound portion of the flight in D) is shown; either this drone did not 523 

return to the hive or the return flight was not detected. E) Example flight from hive 1 showing a visit 524 

to congregation area D. F) Example flight from hive 3 showing visits to congregation areas D, A and B, 525 

with convoluted flight at D and A. 526 

Figure 3. Orientation flights 527 

A) Example flight path of the first flight (orientation flight) ever undertaken by a drone from hive 1. 528 

Sections of flight classified as straight are depicted in black; sections of flight classified as convoluted 529 
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are shown by red lines. Gaps of greater than 30s between consecutive data points are indicated by 530 

dashed lines. The start of the track is marked by a green triangle and the end by a red rectangle. Hives 531 

are marked by blue circles and numbered. The centre of mass of each cluster of data points that we 532 

identified as a probable congregation area is marked by a grey circle and labelled A-D. Convex hull 533 

polygons containing all data points assigned to each cluster are outlined in grey. Insets for each panel: 534 

zoomed view showing details of flight path. B) Orientation flight of a drone from hive 3. C-D) 535 

Orientation flights of two drones from hive 2, showing the typical range of distances reached from 536 

the hive. 537 

Figure 4. Example flight paths showing consecutive flights of drone #48 538 

The first six flights ever undertaken by drone #48. Sections of flight classified as straight are depicted 539 

in black; sections of flight classified as convoluted are shown by red lines. Gaps of greater than 30s 540 

between consecutive data points are indicated by dashed lines. The start of the track is marked by a 541 

green triangle and the end by a red rectangle. Hives are marked by blue circles and numbered. The 542 

centre of mass of each cluster of data points that we identified as a probable congregation area is 543 

marked by a grey circle and labelled A-D. Convex hull polygons containing all data points assigned to 544 

each cluster are outlined in grey. A) The drone’s first ever flight was very brief, less than two minutes 545 

with convoluted flight directly in front of the hive entrance and a brief loop toward the Northwest. B) 546 

The second flight was much more extensive with loops passing through congregation areas D and A, 547 

followed by a longer flight through area C and appearing to continue even further, disappearing over 548 

a road that forms the Southeastern border of our field site. The portions of flight we were able to 549 

detect were fairly straight, going directly to the congregation areas and showing no evidence of 550 

systematic search. C-F) Subsequent flights by the same drone were even more direct, passing through 551 

congregation areas A, B and C, occasionally making convoluted flight at these locations, and 552 

apparently continuing across the road on two more occasions (E, F). 553 

Figure 5. Mean acceleration as a function of position relative to the centre of congregation areas 554 

or hives 555 

A) Mean x-component of acceleration calculated over bins of 5m in the x-direction (East-West) from 556 

the centre of each congregation area. Red line: area A; green line: area B; blue line: area C; magenta 557 

line: area D. Narrow vertical bars show SE for each bin. Vertical dashed reference line indicates centre 558 

of congregation area or hive. Horizontal dashed reference line indicates mean acceleration equal to 559 

zero. Grey dotted line shows regression line through all binned data. B) Mean y-component of 560 

acceleration (North-South) for the same locations. C) Mean x-component of acceleration calculated 561 

over bins of 5m in the x-direction from each hive location. Red line: hive 1; blue line: hive 2; green 562 

line: hive 3. D) Mean y-component of acceleration for the same locations. Scatterplots showing the 563 

full distributions at each location are shown in Figure S5. 564 
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Supplemental figure legends 565 

Figure S1. Heat maps showing drone activity broken down by hive of origin, related to Figure 1 566 

A) Heat map showing all drone flights from hive 1, recorded over both years 2016-2017, superimposed 567 

on an aerial orthomosaic image of the field site. Hive locations are marked by blue circles and 568 

numbered. Areas with brighter, yellower colouration were more visited by drones. N = 256 tracks. B) 569 

Heat map showing all drone flights from hive 2. N = 375 tracks. C) Heat map showing all drone flights 570 

from hive 3. N = 131 tracks. 571 

Figure S2. Example flight paths showing probable shared flyway, related to Figures 1, 2 572 

A) Flight path of a drone from hive 1 returning from an unknown location to the Northeast of the 573 

trackable area of the site. The outbound portion of this flight was not detected by the radar. Sections 574 

of flight classified as straight are depicted in black; sections of flight classified as convoluted are shown 575 

by red lines. Gaps of greater than 30s between consecutive data points are indicated by dashed lines. 576 

The start of the track is marked by a green triangle and the end by a red rectangle. Hives are marked 577 

by blue circles and numbered. The centre of mass of each cluster of data points that we identified as 578 

a probable congregation area is marked by a grey circle and labelled A-D. Convex hull polygons 579 

containing all data points assigned to each cluster are outlined in grey. B) Outbound flight path of a 580 

drone from hive 1, showing convoluted flight at congregation area D and leaving the trackable area 581 

to the Northeast. Curved flight path shows convergence with track shown in A and is likely to be the 582 

same drone. C) Inbound flight to hive 2 to destination to the Northeast showing convergence in route 583 

and destination with flights from other hives in other panels. D) Complete flight from hive 3 to 584 

destination to the Northeast showing convergence in route and destination with flights from other 585 

hives shown in other panels. 586 

Figure S3. Example flight paths showing consecutive flights of drone #39, related to Figures 3, 4 587 

The first eight flights ever undertaken by drone #39. Sections of flight classified as straight are 588 

depicted in black; sections of flight classified as convoluted are shown by red lines. Gaps of greater 589 

than 30s between consecutive data points are indicated by dashed lines. The start of the track is 590 

marked by a green triangle and the end by a red rectangle. Hives are marked by blue circles and 591 

numbered. The centre of mass of each cluster of data points that we identified as a probable 592 

congregation area is marked by a grey circle and labelled A-D. Convex hull polygons containing all data 593 

points assigned to each cluster are outlined in grey. A) The drone’s first flight was typical of orientation 594 

flights, remaining close to the hive with convoluted flight centred on the hive location and no evidence 595 

of exploratory flight further afield. B) The second flight was very similar in structure. C) The third flight, 596 

taking place approximately 15 minutes after the drone had returned from its second flight, showed 597 

an abrupt change in structure. The track is missing some data, suggesting the drone flew too high or 598 
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low for the radar to detect, but the data we do have show that the drone went much further from the 599 

hive, passing through congregation areas A and B. The portions of flight we recorded were fast and 600 

direct, with no evidence of orientation-flight-like convolution or of systematic search. D-H) The 601 

remaining flights by this drone were very similar: direct flights passing through congregation areas A 602 

and B. H) The drone did not return from its eighth flight; it is unknown whether it mated successfully 603 

or died. 604 

Figure S4. Example flight paths showing first and subsequent flights of virgin queens, related to 605 

Figures 3, 4 606 

A) First flight ever undertaken by queen #02. Sections of flight classified as straight are depicted in 607 

black; sections of flight classified as convoluted are shown by red lines. Gaps of greater than 30s 608 

between consecutive data points are indicated by dashed lines. The start of the track is marked by a 609 

green triangle and the end by a red rectangle. Hives are marked by blue circles and numbered. The 610 

centre of mass of each cluster of data points that we identified as a probable drone congregation area 611 

is marked by a grey circle and labelled A-D. Convex hull polygons containing all data points assigned 612 

to each cluster are outlined in grey. It was common for first flights to remain within 10m of the hive 613 

entrance. B) Second flight undertaken by the same queen, #02, during the same day as her first flight. 614 

The bee largely made loops in a very restricted area near the hive entrance, with occasional larger 615 

loops, centred on the hive. C) First flight of queen #77. Queens were kept in mating nuclei at the 616 

location marked with a blue circle and labelled ‘Q’. D) Third flight of queen #09, showing longer range 617 

looping flight. E) Second flight of queen #21, showing flight to the North, during which the queen 618 

appears to have mated. F) First flight of queen #75. The bee lost her transponder and the flight is 619 

incomplete, but it returned having mated. 620 

Figure S5. Mean acceleration as a function of position relative to the centres of congregation areas 621 

or hives, related to Figure 5 622 

A-D) Distance from the centre of each congregation area in the x-direction (East-West) plotted against 623 

the x-component of acceleration in the x-direction. Grey dotted lines in each panel show the 624 

regression lines for each distribution. E-H) Distance from the centre of each congregation area in the 625 

y-direction (North-South) plotted against the y-component of acceleration in the y-direction. I-K) 626 

Distance from each hive location vs the x-component of acceleration. L-N) Distance from each hive 627 

location vs the y-component of acceleration. There is a statistically significant negative slope to all 628 

distributions indicating that the further drones travel from the centre of the congregation or hive, the 629 

more strongly they accelerate back toward the centre. O) Positions of convoluted sections of flight. 630 

The centre of mass of each cluster of data points that we identified as a probable congregation area 631 

is marked by a grey circle and labelled A-D. Convex hull polygons containing all data points assigned 632 

to each cluster are outlined in grey. The centre of mass of each convoluted section of flight classified 633 
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as taking place at congregation area A is represented by a red circle; those at area B by green circles; 634 

those of area C by blue circles; and those at area D by magenta circles. 635 

Figure S6. Histograms and normal probability plots showing the distributions of bee position 636 

during sections of convoluted flight at four congregation areas, related to Figure 5 637 

A-D) Histograms of the x-position (East-West, relative to cluster centre) of every data point in any 638 

convoluted section whose centre of mass was within 50m of each congregation area centre. E-H) 639 

Normal probability plots for the distributions shown in A-D. I-L) Histograms of the y-position (North-640 

South, relative to cluster centre) of every data point in any convoluted section whose centre of mass 641 

was within 50m of each congregation area centre. M-P) Normal probability plots for the distributions 642 

shown in I-L. Distributions are approximately Gaussian at their centres, deviating only toward the 643 

edges. 644 

Figure S7. Histograms and normal probability plots showing the distributions of bee velocity 645 

during sections of convoluted flight at four congregation areas, related to Figure 5 646 

A-D) Histograms of the x-component of velocity (East-West) of every data point in any convoluted 647 

section whose centre of mass was within 50m of each congregation area centre. E-H) Normal 648 

probability plots for the distributions shown in A-D. I-L) Histograms of the y-component of velocity 649 

(North-South) of every data point in any convoluted section whose centre of mass was within 50m of 650 

each congregation area centre. M-P) Normal probability plots for the distributions shown in I-L. 651 

Distributions are approximately Gaussian at their centres, deviating only toward the edges. 652 

Figure S8. Histograms and normal probability plots showing the distributions of bee position 653 

during sections of convoluted flight around three hives, related to Figure 5 654 

A-C) Histograms of the x-position (East-West, relative to hive position) of every data point in any 655 

convoluted section whose centre of mass was within 50m of each hive. D-F) Normal probability plots 656 

for the distributions shown in A-C. G-I) Histograms of the y-position (North-South, relative to hive 657 

position) of every data point in any convoluted section whose centre of mass was within 50m of each 658 

hive. J-L) Normal probability plots for the distributions shown in G-I. Distributions are narrower than 659 

those at swarm locations and fit a Gaussian distribution less well, showing a higher degree of kurtosis. 660 

Figure S9. Histograms and normal probability plots showing the distributions of bee velocity 661 

during sections of convoluted flight around three hives, related to Figure 5 662 

A-C) Histograms of the x-component of velocity (East-West) of every data point in any convoluted 663 

section whose centre of mass was within 50m of each hive. D-F) Normal probability plots for the 664 

distributions shown in A-C. G-I) Histograms of the y-component of velocity (North-South) of every 665 

data point in any convoluted section whose centre of mass was within 50m of each hive. J-L) Normal 666 

probability plots for the distributions shown in G-I. Distributions are narrower than those swarm 667 

locations and may fit a Gaussian distribution less well. 668 
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Figure S10. Differences in flight dynamics between convoluted flight sections occurring at 669 

congregation areas and those near hives, related to Figure 5 670 

A) Boxplots showing the kurtosis of distributions of drone positions in the x-direction (East-West), or 671 

y-direction (North-South) relative to the centre of each congregation area or hive; flights at hives show 672 

significantly heavier-tailed distributions than those at congregations. Asterisks denote results of 673 

statistical analysis: ns: non-significant; *: P<0.05; **: P<0.01; ***: P<0.001 B) Boxplots showing 674 

kurtosis of distributions of drone velocity in the x- and y-directions. C) Boxplots showing the duration 675 

of convoluted sections of flight whose centre of mass lies within 50m of the centre of a congregation 676 

area or of a hive. Only hive sites that were populated at the time the convoluted section occurred are 677 

included. D) Boxplots showing mean speed of flight during convoluted sections of flight at 678 

congregation areas or hives; flight in the congregations was significantly faster than that at hives. E) 679 

Boxplots showing duration of convoluted flight at each congregation area. F) Boxplots showing mean 680 

speed of sections of convoluted flight at each congregation area; bees flew faster at area A than at 681 

areas B or C. 682 

Figure S11. Heat maps demonstrating that detection of convoluted flight is robust to variation in 683 

the parameters used, related to Figures 1, S1, Transparent methods 684 

A-I) Heat maps showing all convoluted sections of flight recorded in 2016-2017, whose centre of mass 685 

was greater than 50m from all active hives. Hive locations are marked by blue circles and numbered. 686 

Areas with brighter, yellower colouration were more visited by drones. Each panel shows the sections 687 

of convoluted flight detected by our algorithm when a different combination of two parameters was 688 

used (the duration of the moving window over which straightness of the track was calculated, and the 689 

threshold minimum vector length used to differentiate straight from convoluted flight). In general, 690 

shorter windows or resultant vector lengths result in fewer data points being classified as belonging 691 

to convoluted flight, while longer windows or vector lengths result in more data points being classified 692 

as convoluted flight. In practice, the same sections of flight are typically identified, with data points 693 

added to or removed from the start and end of these periods of convoluted flight as the parameters 694 

change. In the aggregate, while the boundaries of the regions visited by convoluted flight are 695 

changeable, depending on the exact combinations of parameters used, they expand and contract 696 

around four constant hotspots, corresponding to the four congregation areas identified in the main 697 

text. N = panel A, 57 tracks; B, 79 tracks; C, 113 tracks; D, 79 tracks; E, 111 tracks; F, 146 tracks; G, 92 698 

tracks; H, 135 tracks; I, 165 tracks. 699 


