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Abstract

Recent clinical research has highlighted important links between a number of diseases
and the tortuosity of curvilinear anatomical structures such as corneal nerve fibres, sug-
gesting that tortuosity changes might detect early stages of specific conditions. Currently,
clinical studies are mainly based on subjective, visual assessment, with limited repeatability
and inter-observer agreement.

In this thesis I have endeavoured to address these problems by proposing a fully auto-
mated framework for image-level tortuosity estimation, consisting of a hybrid segmentation
method and a versatile tortuosity estimation algorithm. The former combines an appearance
model, based on a Scale and Curvature Invariant Ridge Detector (SCIRD), with a context
model, including multi-range learned context filters. The latter is based on a novel tortuos-
ity estimation paradigm in which discriminative, multi-scale features can be automatically
learned for specific anatomical objects and diseases.

I have validated each module of the system separately and then assessed their impact
on the tortuosity estimation performance (target application). The segmentation module has
been tested on 5 challenging data sets, including corneal nerve fibres (not public, provided
by our clinical collaborators at MEEI, Harvard Medical School, USA), neurites (2 bench-
mark data sets) and retinal blood vessels (2 benchmark data sets). The tortuosity estimation
module has been validated on a data set including 140 corneal nerve images, the largest ever
used for this task, to my best knowledge.

Experimental results show that (1) the segmentation module outperforms state-of-the-
art hand-crafted and hybrid approaches; (2) the tortuosity estimation module performs better
than state-of-the-art and widely used tortuosity indices; (3) the whole system matches and
sometimes even exceeds tortuosity estimation performance of experienced observers when
compared against each other, a level of performance that will allow us to deploy the system
on much larger data sets, with the aim of discovering new links between tortuosity and
specific diseases in an objective and repeatable fashion.
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Chapter 1

Introduction

This thesis focuses on the automated analysis of curvilinear structures in medical im-

ages to improve the quantification and investigation of potential biomarkers, with particular

emphasis on tortuosity. Most of the work described herein was done in collaboration with

cornea specialists at MEEI, Harvard Medical School, USA; therefore, my main target was

corneal nerve fibre analysis, although experiments with retinal blood vessels and neurites

were also carried out to validate the proposed algorithms.

This chapter provides the background and the motivation behind the analysis of curvi-

linear structures in medical images, from both a clinical and technical perspective. Then, I

summarise the main contributions and discuss the organisation of this thesis.

1.1 Background and motivation: curvilinear structure ana-

lysis in medical images

Curvilinear structures in the human body perform fundamental tasks such as propagat-

ing electrochemical stimulation (e.g., dendrites shown in Figure 1.1(a)), transporting blood

(e.g., retinal blood vessels shown in Figure 1.1(b)), and maintaining tissue healthy (e.g.,

corneal nerve fibres shown in Figure 1.1(c)). Shape abnormalities, e.g. stenosis in blood

vessels, may considerably alter these important processes and signal major disorders. For
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(a) (b) (c)

Figure 1.1 Examples of curvilinear structures considered. (a) Neurites; (b) retinal blood
vessels; and (c) corneal nerve fibres.

this reason, shape properties of curvilinear structures are carefully assessed in clinical prac-

tice to identify known abnormalities (diagnosis), determine a therapy and possibly prevent

further complications. Moreover, given the key role played by curvilinear structures in the

human body and the plethora of non-invasive acquisition modalities currently available,

biomarker investigation (i.e., objective indications of medical state measured accurately and

reproducibly from outside the patient [127]) based on curvilinear structure shape analysis is

emerging as a promising research direction [2, 9, 42, 74, 105, 118, 126, 129, 135, 137].

Some of the most investigated biomarkers for curvilinear structures are width or caliber

[118, 137], density [74, 105], fractal dimension [9, 126, 129], bifurcation geometry [2] and

tortuosity. In particular, tortuosity has received much attention since the seminal papers by

Edington et al. [45] and Cairney [30].

Numerous studies have reported correlations between several pathologies and the tor-

tuosity of a wide range of anatomical structures such as retinal vessels [33, 64, 94, 98,

101, 114, 115], intracerebral vessels [29] and conjunctival blood vessels [104], but also

the coronary [47], iliac [38], carotid [19] and aortic [50] arteries, the optic nerve [69] and

corneal nerve fibres [46, 57, 58, 72, 79].

The pathologies involved, some of which have high-prevalence, affect a large portion of

the population worldwide and include diabetes, diabetic retinopathy and diabetic neuropathy

[46, 114, 115], retinopathy of prematurity [64, 136], malignant gliomas [27], facioscapulo-

humeral muscular dystrophy [94], spontaneous coronary artery dissection [47], central ret-
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inal vein occlusion [101], and children with neurofibromatosis type 1 [69]. In particular,

tortuosity has been investigated in corneal diseases such as unilateral herpes zoster [57],

herpes simplex keratitis [58], acute acanthamoeba and fungal keratitis [79] and diabetic

neuropathy [46, 72].

In several studies (e.g. [47, 57, 81, 101]) tortuosity was assessed by experienced special-

ists typically grading structures or whole images on a 3-5 level scale or as normal/abnormal

based on qualitative, albeit structured, protocols [103]. Regardless of the specific anatomical

object of interest, such assessment is subjective and, depending on protocols, tasks and other

factors [132], can lead to substantial inter-observer variability and possibly non-negligible

intra-observer variability, thus limiting the sensitivity of the assessment scheme. Moreover,

requiring direct inspection by specialists limits the amount of images that can be analysed

and makes large screening programs unfeasible or at least very expensive.

Several definitions of tortuosity have been proposed to try and quantify tortuosity auto-

matically [28, 43, 54, 61, 72, 131, 136], but no single definition is widely accepted, possibly

because tortuosity has different characteristics for different anatomical structures. I argue

therefore that a highly adaptable tortuosity estimation algorithm, learning key features for

specific image types and structures would be a promising and effective new research target.

However, efficiency would still be limited if manual segmentation were required. This is

especially true considering the image resolution of state-of-the-art instruments, e.g. 3,500×

2,300 pixels for standard fundus camera images [26]. Fast and accurate curvilinear struc-

ture segmentation is therefore needed, but different characteristics of tortuous curvilinear

structures across image modalities make segmentation challenging. In fact, highly tortu-

ous objects violate one of the basic assumptions of most tubular structure detectors, namely

locally straight tubular shape [49, 60, 83, 123]. Further issues include the presence of non-

target structures (clutter), low resolution, noise and non-uniform illumination, depending on

the imaging modality considered.

Fully automated tortuosity estimation has been proposed for retinal blood vessels, brain

vasculature and corneal nerve fibres [64, 70, 77, 116]. Typically, inaccuracies in the seg-

mentation are the main source of inaccurate automatic tortuosity estimates (e.g. [116]),
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therefore segmentation algorithms should be designed with particular care. Moreover, the

aforementioned methods are based on mathematical definitions of tortuosity providing fixed

models of a subjective perception. Such measures combine features like the number of

inflection points along the structure, and the length to chord ratio. I argue that such hand-

crafted tortuosity definitions limit the accuracy of an automated framework of general value

(in terms of agreement with clinical judgement) and could ultimately misrepresent the im-

portance of tortuosity as a biomarker.

1.2 Contributions

The research included herein is funded by the REVAMMAD project, part of the European

Union’s 7th Framework (FP7) Marie Curie Initial Training Network programme. The net-

work includes 8 universities and 2 companies (main partners), and a number of associate

partners (including Tufts Medical Center, USA). The overall aim is to combat some of the

EU’s most prevalent chronic medical conditions using eye imaging. In this framework, I

addressed some technical issues related to fully automated tortuosity quantification with

application to corneal nerve images. Specifically, I decomposed the task of assigning a tor-

tuosity level to a whole corneal image in two sub-tasks: (1) corneal nerve fibre centrelines

detection/segmentation, and (2) image-level tortuosity quantification. I improved the state-

of-the-art in both sub-tasks and summarise the main contributions below.

1.2.1 Novel curvilinear structure ridge detectors

Highly fragmented and tortuous structures violate two usual assumptions of hand-crafted

filters (henceforth, HCFs), i.e. continuous and locally straight tubular shapes. Here, I intro-

duce novel HCFs, SCIRD (Scale and Curvature Invariant Ridge1 Detector) and SCIRD-TS

(SCIRD for very thin structure), which are simultaneously rotation, scale, contrast, elonga-

tion and, unlike the others, curvature invariant. These new HCFs are shown to outperform

1In image processing, the term ridge refers to a narrow and elongated object within an image.
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state-of-the-art ones on corneal nerve fibres (target structures), but also on neurites and ret-

inal blood vessels.

1.2.2 Learning single- and multi-range context filters

Hand-designing filters to capture inter-object relationships (i.e. context filters) is partic-

ularly challenging as the configurations to be considered, especially in the medical domain,

can vary significantly. To overcome this issue without increasing the computational cost

(e.g. unlike the auto-context solution which learns multiple discriminative models sequen-

tially [133]), I propose to learn a single classifier (e.g., Decision Forest) taking as input both

appearance (estimated by HCFs) and context information obtained from learned context

filters. To improve context modelling and capture multi-range inter-object relationships I

introduce multi-range context filters.

1.2.3 Accelerating convolutional sparse coding for filter learning

Deep learning has shown great potential for curvilinear structure (e.g. retinal blood

vessels and neurites) segmentation as demonstrated by a recent auto-context regression ar-

chitecture based on filter banks learned by convolutional sparse coding [122] (henceforth,

CSC). However, learning such filter banks is very time-consuming, thus limiting the amount

of filters employed and the adaptation to other data sets (i.e. slow re-training). Driven by the

observation that filter banks obtained by CSC applied to curvilinear structures often incor-

porate filters closely resembling hand-crafted ones, I present a novel approach to accelerate

CSC based on refining carefully designed HCFs (warm-start strategy).

1.2.4 Multi-scale analysis of tortuosity measures

To the best of my knowledge, none of the previously proposed tortuosity estimation

approaches investigated the role played by the specific spatial scale in tortuosity quantifica-

tion. I introduce the concept of multi-scale tortuosity representation and show that it is more
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suitable for tortuosity estimation, as it takes into account the different contribution of high-

and low-frequency turns, often characterising corneal nerve fibres, for instance.

1.2.5 A machine learning approach to tortuosity definition

Several definitions of tortuosity (a.k.a. indices) have been proposed to try and quantify

tortuosity automatically, but no single definition is widely accepted, possibly because tortu-

osity has different characteristics for different anatomical structures. Moreover, these tortu-

osity indices are fixed a priori and deemed to be suitable for several curvilinear structures

and pathologies. I argue that a versatile definition of tortuosity is more suitable to address

the tortuosity estimation task. Therefore, I present a machine learning approach to tortuosity

definition, learning key features for specific image types and structures.

1.3 Thesis organisation

This thesis is organised as shown in Figure 1.2.

• Related Work. Chapter 2 reviews work on curvilinear structure analysis in medical

images, modelling, segmentation and tortuosity quantification. It also discusses some

of the limitations of previous methods which motivated this work.

• Materials and experimental protocol. Chapter 3 describes the data sets and protocol

used to validate curvilinear structure segmentation approaches and tortuosity estim-

ation. Notice that, although the main focus was corneal nerve fibre analysis, data

sets including neurites were used to validate segmentation algorithms, while others

including retinal blood vessels were used to validate both segmentation and tortuosity

estimation approaches. Moreover, performance evaluation criteria are introduced and

discussed, both for segmentation and tortuosity estimation.

• Curvilinear structure modelling and segmentation. Chapter 4 presents the novel

ridge detector designed for tortuous and fragmented structures (SCIRD), and the ap-

proach combining HCFs with learned filters efficiently and effectively (single- and
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multi-range context filters). The discussion includes experiments to validated these

approaches.

• Tortuosity estimation. Chapter 5 discusses a machine learning approach to tortuosity

definition and estimation, and a novel representation tool called as tortuosity plane,

leveraging tortuosity interpretation, developed in collaboration with clinical partners

at Harvard Medical School. A substantial number of experiments validating the whole

tortuosity estimation system and the impact of each module on the tortuosity estima-

tion performance are presented and compared with state-of-the-art segmentation and

tortuosity estimation algorithms.

• Improving Curvilinear Structure Modelling and Segmentation. Chapter 6 ex-

plains the reason why the original SCIRD filter banks tend to miss very thin structures

and discusses a novel formulation of SCIRD, SCIRD-TS, addressing such limitation.

Moreover, this chapter discusses a novel approach to speed-up convolutional sparse

coding for filter learning which could be employed to improve detection performance

by learning more discriminative context filters.

• Conclusions, discussion and future work. Chapter 7 concludes this thesis and sug-

gests future research directions for exploration.

• Further work carried out during the project. Appendix A discusses a short project

on identifying the biological factors influencing tortuosity, carried out at Charité -

Universitätsmedizin Berlin (DE).
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Chapter 2

Related Work

2.1 Introduction

This chapter reviews work related to curvilinear structure modelling, segmentation and

tortuosity quantification, and discusses the limitations which have motivated this work.

In Section 2.2, I discuss the main challenges behind curvilinear structure segmentation

and how these have been addressed so far. I categorise and discuss modelling and segment-

ation approaches based on the specific feature extraction technique adopted, as most of the

methods proposed herein focus on this aspect.

Section 2.3 reviews previous approaches to automated tortuosity quantification. In par-

ticular, I present some of the most used tortuosity indices (used as baselines during my

experimental validation) and report information about data sets used, analyses carried out

and performance measures adopted.

In Section 2.4 I discuss the main limitations of previous modelling, segmentation and

tortuosity quantification methods which motivate the proposed solutions.

Section 2.5 summarises this chapter and introduces the next one.
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Table 2.1 Curvilinear structure segmentation methods most related to the work reported
herein. Asterisk means performance validation was carried out in a different setting com-
pared to other methods.

AUTHORS DATA FEATURES CLASSIFICATION PERFORMANCE EVALUATION

Frangi et al. [49]
2D angiography (X-ray)

3D MRA HCFs Unsupervised Qualitative

Hoover et al. [66] STARE (20 images) HCFs Unsupervised ROC, AUROC (0.7590), Acc (0.9275)

Staal et al. [125]
DRIVE (40 images)
STARE (20 images) HCFs Supervised

ROC, AUROC (DRIVE = 0.9520, STARE = 0.9614),
Acc (DRIVE = 0.9516, STARE = 0.9441)

Soares et al. [123]
DRIVE (40 images)
STARE (20 images) HCFs Supervised

ROC, AUROC (DRIVE = 0.9614, STARE = 0.9671),
Acc (DRIVE = 0.9466, STARE = 0.9480)

Mendonca et al. [100]
DRIVE (40 images)
STARE (20 images) HCFs Unsupervised Acc (DRIVE = 0.9463, STARE = 0.9479)

Ricci et al. [110]
DRIVE (40 images)
STARE (20 images) HCFs Supervised

ROC, AUROC (DRIVE = 0.9633, STARE = 0.9680),
Acc (DRIVE = 0.9595, STARE = 0.9646)

Law et al. [83]
Synthetic data

MRA (1 volume) HCFs Unsupervised Qualitative

Al-Diri et al. [3]
DRIVE (40 images)
STARE (20 images) HCFs Unsupervised

Se (DRIVE = 0.7282, STARE = 0.7521),
Sp (DRIVE = 0.9551, STARE = 0.9681)

Law et al. [84]
Synthetic data,

MRA (3 volumes)
CTA (1 volume)

HCFs Unsupervised Qualitative

Lam et al. [82]
DRIVE (40 images)
STARE (20 images) HCFs Unsupervised

ROC, AUROC (DRIVE = 0.9614, STARE = 0.9739),
Acc (DRIVE = 0.9472, STARE = 0.9567)

Marin et al. [96]
DRIVE (40 images)
STARE (20 images) HCFs Supervised

ROC, AUROC (DRIVE = 0.9588, STARE = 0.9769),
Acc (DRIVE = 0.9452, STARE = 0.9526)

Rigamonti et al. [111]

DRIVE (40 images)
STARE (20 images)

BF2D (2 images)
VC6 (3 images)

HM Supervised PRC

Ganin et al. [51] DRIVE (40 images) DLA Supervised PRC, AUPRC (DRIVE = 0.89)

Annunziata et al. [4]
STARE (20 images)

HRF (45 images) HCFs Unsupervised
AUROC (STARE = 0.9655),

Acc (STARE = 0.9562, HRF = 0.9581)

Sironi et al. [121]
DRIVE (40 images)

BF2D (2 images)
OPF (volumes)

DLAs Supervised
AUROC (DRIVE = 0.962, BF2D = 0.98, OPF = 0.997),

F-measure (DRIVE = 0.786, BF2D = 0.749, OPF = 0.567)

Sironi et al. [122]
Brightfield (5 volumes)

VC6 (5 volumes)
Vivo2P (5 volumes)

DLA Supervised PRC (pixel-based evaluation), others (tracing evaluation)

Sironi et al. [120] DRIVE (40 images) DLA Supervised PRC, F-measure (0.81)

Gu et al. [55]
DRIVE (40 images)
STARE (20 images)

Neuronal (112 images)
DLA Supervised

Acc (DRIVE = 0.9732*, STARE = 0.9772*),
modified F-measure (STARE = 0.8092, Neuronal = 0.868)

Zhao et al. [138]
DRIVE (40 images)
STARE (20 images)

VAMPIRE (8 images)
HCFs Unsupervised

AUROC (DRIVE = 0.862, STARE = 0.874, VAMPIRE = 0.857),
Acc (DRIVE = 0.954, STARE = 0.956, VAMPIRE = 0.977)

Azzopardi et al. [10]
DRIVE (40 images)
STARE (20 images)

CHASEDB1 (28 images)
HCFs Unsupervised

ROC,
AUROC (DRIVE = 0.9614, STARE = 0.9563, CHASEDB1 = 0.9487),

Acc (DRIVE = 0.9442, STARE = 0.9497, CHASEDB1 = 0.9387)

Li et al. [89]
DRIVE (40 images)
STARE (20 images)

CHASEDB1 (28 images)
DLA Supervised

ROC,
AUROC (DRIVE = 0.9738, STARE = 0.9879, CHASEDB1 = 0.9716),

Acc (DRIVE = 0.9527, STARE = 0.9628, CHASEDB1 = 0.9581)
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(a) (b) (c) (d) (e)

Figure 2.1 Factors making curvilinear structure segmentation challenging. (a) a corneal
nerve fibre with low signal-to-noise ratio; (b) a fragmented neurite; (c) retinal blood vessels
surrounded by exudates (i.e., confounding non-target structures); (d) corneal nerve image
with non-uniform illumination; and (e) corneal nerve fibres with complex configurations
(e.g., tortuosity, bifurcations and parallel fibres).

2.2 Curvilinear structure modelling and segmentation

Curvilinear structure segmentation is a particularly active area of research [3, 4, 6, 7, 49,

51, 55, 66, 82–84, 89, 96, 100, 110, 111, 120–123, 125, 138]. The problem is made challen-

ging by multiple factors, as shown in Figure 2.1, including low signal-to-noise ratio at small

scales, variable appearance, confounding non-target structures, non-uniform illumination

and complex configurations. In an attempt to address such challenges, several segmenta-

tion methods have been proposed (see [88] for an extensive review). Table 2.1 summarises

the curvilinear structure segmentation methods most related to the work reported herein. A

common way to categorise such methods is based on the type of classifier used to obtain

pixel-level predictions, i.e. unsupervised or supervised (see e.g. [10]). The latter methods

tend to outperform the former ones in terms of detection performance, but they are often

slower due to the classifier (e.g. neural network or decision forest). Moreover, training a

classifier (supervised methods) often requires a substantial amount of labelled training data

(i.e. manually segmented images) which may be difficult to procure. For these reasons,

adopting one solution or the other depends on the application itself and the “speed/detection

performance" trade-off.

The extraction of adequate features is a fundamental aspect for segmentation approaches

and, since most of the methods proposed herein focus on this aspect, I categorise them

based on the feature extraction approach adopted, namely hand-crafted filters, deep learning

architectures and hybrid approaches.
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2.2.1 Hand-crafted filters

Hand-crafted filters (HCFs) model local geometrical properties of ideal tubular struc-

tures. Eigenvalue decomposition of the Hessian matrix was employed by [4, 49, 97, 113];

maximum projections over each scale were used to make the approach scale-invariant.

These projections were then used to build the well-known tubularity measure called ves-

selness by Frangi et al. [49]. However, performance tends to degrade at crossings or bi-

furcations since this approach only looks for elongated structures. To overcome this issue,

Hannink et al. [60] proposed to segment crossings/bifurcations with multiscale invertible

orientation scores and apply vesselness filters to maps of the latter. Optimally Oriented

Flux (OOF) was recently proposed by Law and Chung [83] to improve detection of adja-

cent structures with vesselness measures. OOF is based on the computation of an optimal

projection direction minimizing the inward oriented flux at the boundary of localized circles

(2-D) or spheres (3-D) of different radii. This projected flux can be regarded as a likelihood

that a pixel is part of a tubular structure. Tubularity measures can be obtained by combining

the eigenvalues of the OOF Hessian matrix. Other successful HCFs rely on Gabor wavelets

(a.k.a. Morlet wavelets) as proposed, for instance, by Soares et al. [123] who exploited their

directional selectiveness to detect oriented structures and achieve fine tuning to specific fre-

quencies. HCFs have also been used by Honnorat et al. [65] to compute a local tubularity

measure feeding a graphical model.

2.2.2 Fully learned architectures

Fully learned architectures (FLAs) [16, 17, 86, 117] have shown the potential to over-

come HCFs’ modelling issues by learning object representations directly from training data,

with excellent performance reported on several tasks [48, 78]. A key difference with respect

to traditional approaches is that the intermediate features/filters and classifiers are learned

jointly, with the aim of maximising segmentation performance. This results in a large quant-

ity of parameters (and many hyper-parameters) to be optimised; therefore, training such

complex learning architectures from scratch requires high-performance hardware and/or op-



2.3 Tortuosity quantification 13

timised implementations, and more importantly large datasets to avoid over-fitting, which

are not always available for medical images. For this reason, Becker et al. [15] have re-

cently proposed a less complex solution employing gradient boosting to learn convolutional

filters and boosting weights simultaneously, applied with success to retinal blood vessels

and neurites. Sironi et al. [119] have used the responses of convolutional filters learned by

sparse coding as input features to multiple regressors trained to predict the distance from

the centreline. Recently, Li et al. [89] successfully used convolutional neural networks

(CNN) for retinal vessel segmentation and showed improved performance over many state-

of-the-art methods based on traditional (HCFs + classifier) approaches. Training time and

over-fitting are limited by unsupervised pre-training (using an auto-encoder). The initial

result (i.e. filters in the first layer and all the weights of the CNN) is then refined using

standard CNN optimisation (i.e. backpropagation).

2.2.3 Hybrid methods

Hybrid methods (HMs) combine HCFs with filters learned by FLAs, exploiting the ef-

ficiency of fast HCFs while limiting the amount of learned filters. The first HM applied to

tubular structures was proposed by Rigamonti et al. [111] and it is based on feature vectors

obtained by concatenating OOF filter responses (i.e., HCFs) with those of learned appear-

ance filters, i.e. learned on the original training images. It employs convolutional sparse

coding (CSC) to learn 9 appearance filters. Quantitative results show a clear improvement

over methods based only on HCFs, achieving the same level of performance obtained with a

filter bank of 121 filters learned via SC, at a limited computational cost. Notice that several

days are reportedly needed to learn 121 filters by CSC (without parallel or GPU processing)

[111], while 9 filters are learned in less than 30 minutes thus making adaptation to other

data sets (re-training) fast without worsening segmentation performance.
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2.3 Tortuosity quantification

Automated tortuosity quantification is particularly challenging due to the variability of

anatomical tubular structures and to the varying importance of each tortuosity feature (e.g.,

curvature, number of inflection points) for different structures of interest (e.g., retinal ves-

sels, cononary artery) within specific clinical contexts (e.g., diabetes, malignant gliomas,

facioscapulohumeral muscular dystrophy). Most of the algorithms reported here focus on

the analysis of curvilinear structure centrelines, as the role played by the caliber/width is

still not clear [131]. Table 2.2 summarises the semi-automated and automated tortuosity

quantification systems most related to the work reported herein, along with specific data,

Table 2.2 Tortuosity estimation work most related to the one reported herein. SOAM stands
for "sum of angles measure", ICM for "inflection count measure", others are reported in this
section.

AUTHORS DATA FEATURES ANALYSIS PERFORMANCE MEASURE

Heneghan et al. [64] Retina (23 subjects) DM (and width)
retrospective

normal/abnormal
(subject-level)

ROC, Se (0.82), Sp (0.75)

Bullitt et al. [28] Brain (18 volumes)
SOAM
ICM

retrospective
normal/abnormal

(subject-level)
Mean, SD

Grisan et al. [54] Retina (60 vessels) TD rank correlation
Spearman

(arteries = 0.949, veins = 0.853)

Hart et al. [61] Retina (20 images) curvature-based (τ5)
2-class classification

(vessel- and network-level)

ROC (vessels = 0.96, networks = 0.86),
% correctly class.

(vessels = 89.5, networks = 90)

Wilson et al. [136] Retina (75 vessels) Incremental length-based rank correlation Spearman (0.673)

Trucco et al. [131] Retina (200 vessels) Curvature-caliber
3-class

classification confusion matrices

Turior et al. [134] Retina (60 images) Chain coding
3-class

classification
Se (86.7), Sp (96.7), Acc (91.4),

PPV (92.9), NPV (93.7)

Joshi et al. [70] Retina (8 patients) TD-based
rank correlation
(4-class grading)

Spearman
(arteries = 1, veins = 0.77)

Poletti et al. [109] Retina (20 images) Linear comb. of indices rank correlation Spearman (0.95)

Ghadiri et al. [52]
Retina (10 images),

conjunctiva (10 images)
Curvature-based

(filtering) rank correlation
Spearman

(Retina = 0.94, conjunctiva = 0.89)

Kallinikos et al. [72] Cornea (36 images) TC retrospective Mean, SD

Scarpa et al. [116] Cornea (30 images) TD-based 3-class classification
Krippendorff (0.96),

% correctly class. (0.93)
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Figure 2.2 (a) Key quantities for the DM; (b) vessel partitioning used by the TD algorithm.

tortuosity index/definition (features), type of analysis and performance measure [28, 52, 54,

61, 64, 70, 109, 131, 134, 136] (refer to [71] for an extensive review). Here I report several

tortuosity indices/definitions which will be used as baselines in Chapter 5; indices were se-

lected considering together their performance (as reported in the original papers), recency

and impact on the field (citations, take-up)[93].

Distance Measure (DM). The DM is one of the earliest tortuosity indices [61, 64]. Its

popularity may depend on its simple and intuitive definition:

DM =
Lc

Lx
(2.1)

where Lc is the vessel centreline length (dashed white line in Figure 2.2(a)) and Lx the

chord length (line joining the vessel’s endpoints, Figure 2.2(a)). DM is 1 when a vessel is

perfectly straight and increases with tortuosity. The limits of the DM have been pointed out

previously [31, 61], crucially its inability to distinguish vessels with multiple bends (very

tortuous) from vessels with a single arc (less tortuous) that have the same average deviation

from the chord. This problem arises because DM is a global index which fails to capture

local changes.

Tortuosity Density (TD). To address the problem above, Grisan et al. proposed the TD

index [54] (Figure 2.2(b)). TD assesses vessel tortuosity by summing the contributions to

tortuosity of uniformly convex or concave arcs, as follows:

T D =
n−1

n
1
Lc

n

∑
i=1

[
Lcsi

Lxsi
−1
]

(2.2)
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Here, n is the number of “turns" (curvature sign changes, i.e., zero-crossings of the second

derivative of the centreline), Lcsi is the arc length of segment i, Lxsi is the chord length of seg-

ment i. Lc is the length of the whole vessel centreline. A vessel centreline with only one turn

has T D = 0; with more than one turn, the tortuosity is greater than 0 (avoiding the problem

of DM). The TD index is also normalized to vessel length (1/Lc), which allows comparison

of vessels of various lengths and scale invariance. Among several curvature-based and in-

flection point-based tortuosity indices, the authors found TD to be the most accurate index

to model clinical scores of retinal vessel tortuosity with hypertensive retinopathy images

[54].

Slope Chain Coding (SCC). The SCC index was introduced recently as a general index

for planar curves by Bribiesca [23]. The original paper includes a qualitative demonstration

on a single retinopathy of prematurity (ROP) image, but a more comprehensive experimental

validation was carried out in [93]. To calculate SCC, a vessel centreline is approximated by

a linear piecewise curve formed by line segments of fixed length, and the slope change

between segments is computed. The SCC index is defined as the sum of the absolute values

of the slope changes along the centreline:

SCC =
n

∑
i=1

|ai| . (2.3)

Here, n is the number of slope changes (the number of segments minus one) and ai is the

slope change after the i-th segment. The influence of n on the tortuosity is assessed in

[23] with an example showing invariance of SCC with two values of n, and subsequently

investigated in [93] on retinal vessels graded by experts.

Curvature-Integral Measures. Curvature-based measures were introduced by Hart et

al. [61]. Here I report the best-performing one ([93]), defined as

τ5 =
1
Lc

∫ t1

t0
k2(t)dt (2.4)
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where Lc is the vessel centreline length, t is the curvilinear coordinate and k(t) is the

curvature defined as

k(t) =
x′(t)y′′(t)− x′′(t)y′(t)
[y′(t)2 + x′(t)2]3/2 . (2.5)

2.3.1 Corneal nerve fibres tortuosity assessment

Several quantitative measures of the vascular tortuosity have been proposed. Compar-

atively little work exists on quantitative tortuosity measures for corneal fibres. Kallinikos

et al. [72] were the first to propose an objective, semi-automated method for quantifying

sub-basal nerve tortuosity. The first and second derivatives of the function representing

fibre centrelines are squared and added. The sum is multiplied by the length of the interval

(x j,x j+1), to estimate the change in the direction of the nerve fibre, within that interval. The

sum of all the values is obtained and the square root taken. Once all the quantities have been

computed, the tortuosity TC is calculated by the following formula:

TC =

√√√√n−1

∑
j=1

(x j+1 − x j){[ f ′(x j)]2 +[ f ′′(x j)]2} (2.6)

where f ′(x j) and f ′′(x j) are the first and second derivatives at the point x j, respectively.

Scarpa et al. [116] adopted Grisan et al.’s algorithm [54] and reported an experimental

comparison of tortuosity measures; their results suggest that the proposed algorithm was the

one with best associations with annotations provided by a cornea specialist.

2.4 Discussion

In this chapter I briefly reviewed the work related to curvilinear structure modelling, seg-

mentation and tortuosity estimation. It is worth noting that most of the curvilinear structure

segmentation approaches reported so far have not yet been explored for corneal nerve fibres,

my target structures. Moreover, most tortuosity estimation algorithms have been proposed

and validated on blood vessels, with only a few exceptions ([72, 116]) adjusted to work
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on corneal nerve fibres. Below I discuss the main limitations of existing approaches for

modelling, segmentation and tortuosity estimation which motivates the proposed solutions.

2.4.1 Limitations: Modelling and Segmentation

Modelling appearance properties of curvilinear structures inevitably requires making

assumptions that might be violated in some cases. For instance, highly fragmented and tor-

tuous structures violate two usual assumptions of most HCF models, i.e. continuous and

locally straight tubular shapes. While discontinuity can be addressed by adopting elongated

filters (e.g., Gabor [123]), no hand-crafted ridge detector for locally non-straight tubular

shapes has been proposed so far. Given my target application, i.e. tortuosity estimation

(hence tortuous structures), this implicit assumption is expected to have a negative impact

on segmentation performance and therefore requires particular care when designing the seg-

mentation pipeline. This is confirmed by my comparative experiments (Chapter 4).

Although FLAs are designed to overcome these modelling limitations, they tend to re-

quire a large amount of training data, including manual annotations, which is not always

available in the medical domain. In this setting, HMs seem to be more suitable to address

the segmentation task. However, the solution proposed by Rigamonti et al. [111] learns

filters independent of the HCFs used, so that some filters may resemble the ones already

included in the HCF banks. This would result in a subset of redundant filters which may re-

duce the discriminative power of the entire feature set and affect segmentation performance.

Another limitation of this HM is that context information (i.e. inter-object relationships) is

not taken into account, while it has been shown to have a significant positive effect on seg-

mentation performance [133]. However, the auto-context method proposed by Tu and Bai

[133] typically requires learning multiple discriminative models (i.e. classifiers) sequen-

tially, thus leading to slower predictions at test time. Recently, an auto-context framework

(multi-layer) based on unsupervised filter learning has been shown to outperform CNN and

modifications [51] on curvilinear structure segmentation in the medical domain [120, 122].

The framework proposed in [120, 122] relies on filters learned through CSC [111, 121],

but learning them is very time-consuming [111]. Therefore, the filter bank learned at the
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first layer is kept unchanged across the other ones, due to the prohibitive cost of learning

layer-specific filter banks [122]. This represents the first limitation as learning layer-specific

filters would model higher-order properties of curvilinear structures and potentially improve

segmentation performance. Second, since the visual appearance of curvilinear structures

may vary significantly and the range of acquisition modalities may lead to different image

characteristics in terms of contrast and noise, re-training (learning new filter banks) is often

necessary to achieve good performance. Given the time required to learn such filter banks,

re-training would be relatively slow.

Finally, it is worth noting that there is no widely accepted validation protocol for such

methods (Table 2.1). Although accuracy (Acc), ROC and AUROC have been used in early

work, several authors have pointed out that these measures are not suitable to tease out

differences among methods (Acc>0.9 can be achieved by simply predicting always “back-

ground") due to imbalance of negative and positive instances (i.e. number of background

and vessel/fibre pixels, respectively). To overcome these issues, precision-recall curves,

F-measure and AUPRC are currently the measures of choice to assess segmentation per-

formance.

2.4.2 Limitations: Tortuosity estimation

The main limitation of tortuosity estimation approaches lies in the fact that, although

several attempts have been made to try and define tortuosity, no widely accepted definition

is currently available. I argue that this is due to the variability of tortuosity characteristics

among structures and, possibly, pathologies. Therefore, the definitions of tortuosity pro-

posed previously, which are defined a priori, do not seem to be suitable to capture such

variations. Some of the best-performing tortuosity indices are based on a combination of a

set of tortuosity measures, such as DM and number of inflection points. The relative weight

of each tortuosity measure in this combination is again fixed a priori and deemed to be

suitable in general for different structures and pathologies.

An in-depth visual investigation of curvilinear structures such as corneal nerve fibres

suggests that multiple frequency components contribute to tortuosity. Previously proposed
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approaches ignore this aspect and compute tortuosity features as if only a single frequency

component was present.

Curvature estimation algorithms adopted by the best-performing tortuosity indices are

typically based on finite differences leading to noisy estimates, especially when segmenta-

tions are obtained automatically. Methods based on chain coding such as SCC do not seem

to solve the problem, given reported experimental results.

Based on the information reported in Table 2.2, the test set (for image- or patient-level

tortuosity estimation) is often rather small, including at most 60 retinal images and 30

corneal nerve images (36 images for a semi-automated algorithm). Moreover, when im-

ages are graded with different levels, no more than 3 classes are used, with the exception

of [70], assessing the performance in terms of rank correlation for only 8 images split in 4

levels.

2.5 Conclusions

In this chapter, I have discussed the main approaches for curvilinear structure modelling,

segmentation and tortuosity quantification.

Methods for curvilinear structure modelling and segmentation have been categorised

based on the feature extraction technique adopted, as most of the methods proposed herein

focus on this aspect. Traditional segmentation approaches are mostly based on carefully

designed HCFs. More recently, FLAs have been proposed and shown to overcome some of

the HCF-based methods’ limitations. However, FLAs require a much higher computation

power to achieve state-of-the-art performance and, more importantly, may require large

amounts of annotated data. HMs are emerging as a potential solution to mitigate such

requirements (especially the one related to the need for annotated data).

The main difficulty of tortuosity quantification is the lack of a widely-accepted defini-

tion. This has led to the proposal of several tortuosity indices some of which, have been

reviewed in this chapter. Most of these indices have been adopted for retinal vessel tortuos-
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ity estimation, but also for brain and conjunctival vessels. Little work has been reported in

the literature on corneal nerve fibre tortuosity quantification, my main target structure.

In the next chapter, I will discuss the data sets and the experimental protocols used to

validate the proposed fully automated tortuosity estimation method.



Chapter 3

Materials and Experimental Protocol

3.1 Introduction

I used 6 data sets to assess the performance of the various segmentation and tortuosity

estimation algorithms discussed in this thesis. In this chapter I briefly describe these data

sets and the technical challenges when using them to validate segmentation and/or tortuosity

estimation algorithms. Then, I discuss the adopted performance evaluation protocol for each

task.

3.2 Data sets

3.2.1 IVCM100

An initial set of 100 2-D images with 384× 384 pixels were selected by the clinical

collaborators (MEEI, Harvard Medical School) from an existing database of images of the

sub-basal nerve plexus in the central cornea, acquired with laser scanning in vivo confocal

microscopy (IVCM) (Heidelberg Retina Tomograph 3 with the Rostock Cornea Module,

Heidelberg Engineering GmbH, Heidelberg, Germany). The diode laser source of this mi-

croscope has a 670 nm red wavelength and the microscope is equipped with a 63× objective

lens with a numerical aperture of 0.9 (Olympus, Tokyo, Japan). The images obtained by
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A B C D

E F G H

Figure 3.1 Four examples of corneal nerve fibre images captured through in vivo confocal
microscopy. A,B,C,D: original images with increasing tortuosity level (A = 1, D = 4). E, F,
G, H: manually traced fibre centrelines for image A, B, C, D, respectively.

this confocal microscope represent a coronal section of the cornea of 400×400 µm2 which

can be of any corneal layer.

For this general, albeit pilot-level study, images were selected from subjects with Dry

Eye Disease (DED) showing a wide spectrum of tortuosity characteristics (Figure 3.1).

For ground truth, corneal nerve fibre centrelines were manually traced by a clinical col-

laborator using NeuronJ1, an add-on plug-in for the ImageJ software2 [41]. The tortuosity

level of each corneal nerve image was determined using a clinically accepted grading scale

(grades 1 through 4) [103] by three experienced observers (Dr Ahmad Kheirkhah, Dr Shruti

Aggarwal and Dr Pedram Hamrah, clinical authors in [5]) independently.

Segmenting corneal nerve fibres in this data set is particularly challenging due to the

presence of poorly contrasted, fragmented and highly tortuous fibres. Moreover, various

images contain confounding, non-target structures such as dendritic cells easily mistaken

for fibres given similar appearance. Finally, it is worth noting that using this data set for

validating segmentation and, more importantly, tortuosity estimation algorithms represents

a more challenging scenario compared to previous work. As was shown in Table 2.2, this

1http://www.imagescience.org/meijering/software/neuronj.
2http://imagej.nih.gov/ij.

http://www.imagescience.org/meijering/software/neuronj
http://imagej.nih.gov/ij
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Figure 3.2 Four examples of corneal nerve fibre images from subjects with Herpes Simplex
Virus keratitis.

data set is more than 3 times bigger that the one used by Scarpa et al. [116] to validate a

fully automated tortuosity estimation method. Moreover, the clinical ordering in 4 tortuosity

levels calls for higher discrimination capability compared to the previous fully automated

solutions which were tested on 2 or 3 levels (e.g., [61, 116, 131]).

3.2.2 IVCM140

Although a wide spectrum of tortuosity characteristics is shown in IVCM100, it in-

cludes only subjects with DED. To make validation more robust, 40 additional images were

included to build IVCM140. Specifically, 20 images were taken from healthy subjects and

20 from patients with Herpes Simplex Virus (HSV) keratitis. Detecting corneal nerve fibres

in HSV images is particularly challenging as the presence of non-target structures becomes

more pronounced and fibres appear thinner and even less contrasted (Figure 3.2).

3.2.3 BF2D

The BF2D dataset [111] consists of two minimum intensity projections of bright-field

micrographs that capture neurons (Figure 3.3). The images have a high resolution (1024×

1792 and 768× 1792)[111], considering the instruments adopted for this kind of imaging,

but a low signal-to-noise ratio because of irregularities in the staining process; the dendrites

often appear as point-like (fragmented) structures easily mistaken for noise. This data set

includes masks to eliminate the nucleus. I adopted the same set partition used in [111],
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Figure 3.3 Original images (first row) and ground truth segmentation (second row) from the
BF2D data set.

retaining one image for training and the other for testing. As was shown in Table 2.1, BF2D

is a relatively new data set which has been used as benchmark in [15, 111, 119, 121, 122].

3.2.4 VC6

The VC6 dataset was created by Rigamonti et al. [111] from a set of 3D images showing

dendritic and axonal subtrees from one neuron in the primary visual cortex. The original 3D

images are part of the publicly available data set used recently for the international DIADEM

segmentation challenge (Visual Cortical Layer 6 Neuron) [25]. This data set includes three

high-resolution images (882×378, 630×441 and 817×588 pixels)[111], considering the

instruments adopted for this kind of imaging, obtained by computing minimum intensity

projections of three image stacks (3-D images), hence showing numerous artefacts, poor

contrast and blob-like confounding structures as shown in Figure 3.4. I retained two images

for training and the third one for testing, adopting the same set partition used in [111].
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Figure 3.4 Original images (first row) and ground truth segmentation (second row) from the
VC6 data set.

3.2.5 DRIVE

DRIVE [125] has been widely adopted as a benchmark data set for vessel segmentation

[3, 51, 55, 82, 89, 96, 100, 110, 111, 120, 121, 123, 138]. It includes 40 colour retinal im-

ages from a diabetic retinopathy screening program in the Netherlands. The images were

acquired by a fundus camera (CR5 non-mydriatic 3-CCD, Canon, Tokio, Japan) with 45

degrees field of view. Images are low-resolution (768×584 pixels), considering the resolu-

tion of contemporary fundus camera, hence challenging to segment. The data set was split

by Staal et al. [125] into training and testing set, each including 20 images. As shown in

Figure 3.5, low resolution, non-uniform illumination, low contrast, vessel central reflex, and

confounding structures (exudates, haemorrhages, optic disk) make this data set difficult to

segment automatically.

3.2.6 STARE

STARE [66] is another data set including fundus images, widely used as benchmark

for retinal vessel segmentation [55, 82, 89, 96, 100, 110, 111, 123, 138]. The full data set

includes 397 colour images captured by a TopCon TRV-50 fundus camera at 35 degrees
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field of view. Each image is 605× 700 pixels. A subset of 20 images (10 normal and 10

abnormal) were manually segmented by two experts [66]. Following the literature (e.g.

[96, 123]), I adopted the first observer as ground truth. As shown in Figure 3.6, in addition

to the challenges presented by DRIVE, the STARE data set includes images with large

abnormal regions and/or a large amount of small abnormal ones, which make this data set

difficult to segment automatically.

3.3 Performance evaluation protocol

3.3.1 Segmentation

As discussed in Section 2.4.1, accuracy, ROC and AUROC have been used in early work.

However, several authors have pointed out that these measures are not suitable to tease out

differences among methods for curvilinear structure segmentation (accuracy greater than

0.9 can be achieved by simply predicting always “background") due to the imbalance of

negative and positive instances (i.e. number of background and vessel/fibre pixels, respect-

ively). To overcome these issues, precision-recall curves (PRCs), AUPRC and F-measure

are currently used to assess segmentation performance (e.g., [111, 121, 122]). I adopt the

same performance evaluation protocol of the current literature. Specifically, precision and

recall are defined as

Precision =
TP

TP+FP
(3.1)

Recall =
TP

TP+FN
(3.2)

where TP indicates true positives, FP false positives and FN false negatives. A curve can

be built by measuring precision and recall after applying different thresholds on the output

variable. The AUPRC is measured here using the lower trapezoid point estimator [20] and

is expressed by a single number summarising the information in the PRC. The F-measure
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(a.k.a. F1 score) is defined as

F-measure = 2
Precision × Recall
Precision + Recall

. (3.3)

For centreline detection (used for tortuosity estimation) I adopt a tolerance factor ρ , as

done, for instance, by Sironi et al. in [119]: a predicted centreline point is considered a

true positive if at most ρ pixels away from the closest ground truth centreline point. All the

ground truth centreline pixels that have no predicted centreline pixels within ρ pixels are

considered false negatives.

Following the established benchmarking protocol [111, 119], I average performance

measures over multiple random sub-sampling cross-validation runs (details are given in the

sections reporting the experiments).

3.3.2 Tortuosity estimation

Tortuosity estimation requires assigning images or vessels to a tortuosity level on a given

scale, for instance, 1 (normal) to 4 (severe tortuosity). This can be cast as a classification

problem. Following the standard performance assessment protocol for multi-class classific-

ation [124], we use weighted accuracy (Acc), sensitivity (Se) and specificity (Sp), positive

predicted value (Ppv) and negative predictive value (Npv), defined below.

Acc =
Nc

∑
i=1

wi
TPi +TNi

TPi +FNi +FPi +TNi
(3.4)

Se =
Nc

∑
i=1

wi
TPi

TPi +FNi
(3.5)

Sp =
Nc

∑
i=1

wi
TNi

TNi +FPi
(3.6)

Ppv =
Nc

∑
i=1

wi
TPi

TPi +FPi
(3.7)
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Npv =
Nc

∑
i=1

wi
TNi

TNi +FNi
(3.8)

where TPi indicates true positives, TNi true negatives, FPi false positives, FNi false negat-

ives for the i− th tortuosity level; wi represents the percentage of images whose GT level

is i, according to observer taken as reference, as suggested by [124] (Nc, the number of

classes/tortuosity levels is 4). The above performance measures do not take into account

that the tortuosity level to be predicted is indeed an ordinal variable (i.e. the tortuosity

levels are sorted, not independent from each other). In fact, mis-predicting level 4 when the

GT tortuosity level is 1, represents a “larger" error than mis-predicting level 2. To quantify

this kind of error, I also include the mean squared error (MSE) and mean absolute error

(MAE) defined as

MSE =
1

Nim

Nim

∑
i=1

(yci − ci)
2 (3.9)

MAE =
1

Nim

Nim

∑
i=1

|yci − ci| (3.10)

where Nim is the number of test images, yci is the predicted tortuosity level, and ci is the

true one for the i− th image.

Since IVCM100 and IVCM140 data sets (used to validate image-level tortuosity estim-

ation algorithms) were annotated by three experienced observers independently, we take the

classification by one observer in turn as ground truth, and compare the performance of ours

and baseline methods with that of the other two observers.

3.4 Conclusions

In this chapter, I have described the data sets and evaluation protocol used to validate

the proposed segmentation and tortuosity estimation approaches.

The data sets include images of corneal nerve fibres (target structure), but also neurites

and retinal blood vessels to test generality. The data sets including corneal nerve fibres
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(IVCM100 and IVCM140) have been provided by our clinical collaborators at the Har-

vard Medical School and they are not public. The data sets including retinal blood vessels

(DRIVE and STARE) are public and have been widely adopted as benchmarks for retinal

vessel segmentation methods. The data sets including neurites (BF2D and VC6) are emer-

ging benchmark data sets and have been provided by the CVlab-EPFL upon request.

In the next chapter, I will discuss the proposed approach to curvilinear structure model-

ling and segmentation.



Chapter 4

Curvilinear Structure Modelling and

Segmentation

4.1 Introduction

Appearance features can model object-specific shape properties of curvilinear structures

and can be hand-crafted, or, more generally, learned directly from a training set of images.

Such appearance features are used to enhance tubular shapes. Context features can model

inter-object relationships and can be used to leverage the information captured by the ap-

pearance features adopted.

I adopt a hybrid approach to curvilinear structure segmentation, combining HCFs (used

to model the appearance) and learned filters (capturing context information). In this chapter,

I first introduce, derive and assess the detection performance of a new class of (appearance)

filters for tortuous and fragmented structures. Then, I discuss and evaluate the detection

performance of the methodology to learn context filters, aiming to incorporate inter-object

relationships and compensate for the modelling limitations of HCFs.
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Figure 4.1 The need for a curved-support model. (Left) 3-D profile of the tortuous corneal
nerve fibre highlighted with the red rectangle in the original image (right).

4.2 SCIRD: a Scale and Curvature-Invariant Ridge De-

tector

4.2.1 Curvilinear structure model

The profile of a locally-straight curvilinear structure could be modelled with a Gaussian

function. Specifically, let G(ϕϕϕ;σσσ) be a multivariate, n-D Gaussian function with diagonal

covariance matrix, centred at the origin of the coordinate system,

G(ϕϕϕ;σσσ) =
1√

(2π)n ∏
n
i=1 σ2

i

exp

(
−

n

∑
i=1

ϕ2
i

2σ2
i

)
(4.1)

where ϕϕϕ =(ϕ1,ϕ2, . . . ,ϕn) represents a point in the {ϕ} coordinate system, and σσσ =(σ1,σ2, . . . ,σn)

describes the standard deviation in each direction. A ridge detector can be obtained by meas-

uring the contrast between the part inside and outside the ridge [49]. This can be achieved

by combining (e.g. summing, averaging) the responses of the convolution with the second

derivatives of the Gaussian function in Equation (4.1)[49].

As shown in Figure 4.1, curvilinear structures in my target data sets (i.e., IVCM100 and

IVCM140) often violate the locally-straight assumption and show a curved-support profile
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(Figure 4.1 - left), therefore they cannot be modelled with the straight Gaussian function in

Equation (4.1). To model such curved-support profile, I apply a non-linear transformation

T : Rn 7→ Rn with T (xxx) =ϕϕϕ = (ϕ1,ϕ2, . . . ,ϕn) of the form

ϕn = xn +
n−1

∑
i=0

knimni(x1,x2, . . . ,xn−1) (4.2)

and ϕ1 = x1, where kni are weights (interpretation below) and the non-linear functions

mni(x1,x2, . . . ,xn−1) have continuous partial derivatives [91].

In the 2-D case (n = 2), plugging Equation (4.2) in Equation (4.1) leads to the curved-

support bivariate Gaussian function:

G(x1,x2;σσσ ,kkk) =
1

2πσ1σ2
exp

(
−(x1 + k10)

2

2σ2
1

− (x2 + k20m20 + k21m21)
2

2σ2
2

)
, (4.3)

where m20 and m21 depend on x1.

If we now consider quadratic non-linear functions mni = x2
i for 0 < i < n and mn0 = 1,

some of the parameters kni can be regarded intuitively as curvatures [91]. Specifically, I

observe that k10 controls the elongation asymmetry of the shape (i.e. k10 ̸= 0 makes one

tail longer than the other), k21 its curvature and k20 is simply a translation parameter. How-

ever, although towards the end-point of a curvilinear structure the local shape would appear

asymmetric longitudinally, I set k10 = 0 to keep the model simple and reduce the amount

of free parameters to tune. This seems reasonable since tortuosity estimation, our refer-

ence application, would not benefit significantly from a particularly accurate segmentation

of end-point regions. Finally, assuming that this model is centred on the specific curvilinear

structure of interest, I set k20 = 0 (this choice will allow us to adopt a simple “max" operator

to obtain the ridge detector, as done in the next section).

Therefore, the model I adopt for tortuous and fragmented curvilinear structures is:

Γ(x1,x2;σσσ ,k) =
1

2πσ1σ2
exp
(
−

x2
1

2σ2
1

)
︸ ︷︷ ︸

longitudinal

exp

(
−
(
x2 + kx2

1
)2

2σ2
2

)
︸ ︷︷ ︸

orthogonal

, (4.4)
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Figure 4.2 Appearance model used to capture specific characteristics of tortuous and frag-
mented structures. (a) An example of our curved-support shape model; (b) the insert (below)
visualises the direction along which we measure the second (directional) derivative used to
compute the tubularity probe filter of the shape model (above), in the window selected; (c)
Derived convolutional filter, estimating local tubularity efficiently.

where (x1,x2) is a point in the new {x} coordinate system of the target structure (orientation

assumed known here), (σ1,σ2) control the elongation of the shape and its width, respect-

ively; in fact, the first exponential in Γ(x1,x2;σσσ ,k) controls the longitudinal Gaussian profile

of the model, and the second the orthogonal one. Unlike previous hand-designed models

(e.g., [49, 83, 123]), I add a new parameter, k, to control the curvature of the Gaussian sup-

port (Figure 4.2(a)). The benefit of this choice is illustrated by the experimental results in

Section 4.2.4.

4.2.2 SCIRD

In this section I derive the ridge detector from the shape model described above.

In order to estimate local tubularity, I adopt a shape-aware measure of contrast between

the region inside and outside the curved ridge. Importantly, both the cross-sectional and

the longitudinal Gaussian weighting are taken into account, allowing an accurate contrast

estimation.

Let I(x,y) be the intensity of a monochromatic image at location (x,y) in image co-

ordinates (the same derivation could be applied to each channel of a colour image). To
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make the contrast measure shape-aware locally, I introduce local first-order gauge coordin-

ates {v(x,y),w(x,y)}, where w(x,y) = ∇I(x,y)
∥∇I(x,y)∥ and v(x,y) = w⊥(x,y)1.

A shape-aware contrast measure is then given by the second directional derivative in the

direction orthogonal to the model centreline:

Iww = Dw [DwI] = Dw

[
w⊤

∇I
]
, w⊤HIw, (4.5)

where Dw is the directional derivative operator along w,

HI =

 Ixx Ixy

Iyx Iyy

 (4.6)

is the Hessian matrix, and ∇I = [Ix, Iy]
⊤ is the gradient of I in x-y coordinates. Substituting

Equation (4.6) in Equation (4.5) we obtain:

Iww =
(IxIxx + IyIyx)Ix +(IxIxy + IyIyy)Iy

I2
x + I2

y
, (4.7)

where I have omitted arguments (x,y;σσσ ,k) for compactness. We can differentiate by con-

volving the image with derivatives of the curved-support Gaussian, which leads to an ef-

ficient tubularity estimation based on the convolution with a filter bank that can be pre-

computed off-line:

Iww(x,y;σσσ ,k) = I(x,y)∗Kww(x,y;σσσ ,k), (4.8)

where Kww represents our tubularity probe kernel (see example in Figure 4.2(c)):

Kww =
(Γ̃xΓxx + Γ̃yΓyx)Γ̃x +(Γ̃xΓxy + Γ̃yΓyy)Γ̃y

Γ̃2
x + Γ̃2

y
. (4.9)

Here, Γ̃(x1,x2;σσσ ,k) is a curved-support Gaussian model with a constant (hence non-

Gaussian) longitudinal profile; its gradient direction is orthogonal to the centreline (Fig-

1The symbol ⊥ denotes orthogonality.
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Figure 4.3 The effect of geometric parameters on the shape of SCIRD filters.

ure 4.2(b)):

Γ̃(x1,x2;σσσ ,k) ∝ exp

(
−
(
x2 + kx2

1
)2

2σ2
2

)
. (4.10)

To achieve invariance in the discrete domain, I create a filter bank of Kww(x,y;σ1,σ2,k,θ)

kernels generated (notice, off-line for efficiency) by making σ2 (i.e., scale) and k (i.e.,

curvature) span the respective ranges, {σ
(i)
2 , i = 1, . . . ,Nσ2} and {k(i), i = 1, . . . ,Nk}, in

the curvilinear structures of interest. These ranges are easily established by image inspec-

tion and remain valid, in my experiments, for all images of a given type (e.g., corneal fibres,

dendrites). To estimate local orientation (assumed known in Equation 4.4) I expand the filter

bank with kernel replicas rotated by θ ∈ [0,2π), {θ (i), i = 1, . . . ,Nθ}. Finally, I account for

fragmented (point-like) structures by adopting a suitable range for σ1, {σ
(i)
1 , i= 1, . . . ,Nσ1}.

As above, this range is easily established by direct inspection. Figure 4.3 shows the effect of

the main parameters to control the shape of the proposed convolutional tubularity kernels.
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Once the filter bank has been precomputed, approximate2 scale, curvature, rotation, and

elongation invariance is obtained by maximising the tubularity measure Iww(x,y;σ1,σ2,k,θ)

for each pixel (x,y) ∈ D(I) across the pre-defined parameter space {(σ1,σ2,k,θ)( j), j =

1, . . . ,Nσ1 +Nσ2 +Nk +Nθ}:

(
σ1,σ2,k,θ

)∗
= argmax

σ1,σ2,k,θ
Iww (x,y;σ1,σ2,k,θ). (4.11)

Notice that, by definition, the maximum value of Iww(x,y;σ1,σ2,k,θ) at each pixel

across the parameter space corresponds to the measure of tubularity we defined in Equa-

tion (4.8). Since our tubularity measure is based on contrast, its sign, computed on tu-

bular objects, depends on whether the inside or the outside region is brighter. When Iww

is expected to be positive, for instance, negative local tubularity responses are likely due

to a non-target objects and can be discarded. To this aim, I apply thresholding such that

IT
ww = max(Iww,0).

In some cases images show significant intra- and inter-image contrast variability. This

is the case, for instance, for corneal nerve fibres in confocal microscopy images (Figure

3.1), due to illumination and the reflectance of the ocular tissue. In these images, local

tubularity estimation tends to be biased towards high contrast, penalising thin and poorly

contrasted corneal nerve fibres. To alleviate this problem and achieve the desired level of

contrast invariance, I introduce a contrast normalization term with a parameter α ∈R in the

proposed ridge detector, emphasising the response of low-contrast structures:

SCIRD
(

x,y;{σ1,σ2,k,θ}∗
)
=

IT
ww(x,y;{σ1,σ2,k,θ}∗)

1+α IC(x,y)
, (4.12)

where

IC(x,y) =
1

(N +1)2

x+N
2

∑
i=x−N

2

y+N
2

∑
j=y−N

2

max
σ2

∥∥∇I(i, j;σ2)
∥∥

2 (4.13)

2A theoretical invariance could be obtained by introducing normalised coordinates and deriving the norm-
alising terms for each filter, as shown by Lindeberg [92] in the simple case of symmetric Gaussian functions.
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is the adopted contrast measure based on multiscale gradient magnitude estimation averaged

on a (N +1)× (N +1) patch around pixel (x,y) ∈ D(I). Notice, N is not a free parameter,

but the width (and height) of the largest filter in the SCIRD filter bank (N = 8σ2max).

Based on the experimental validation in Section 4.2.4, SCIRD achieves good detection

performance (outperforming state-of-the-art HCFs). However, segmentation and centreline

detection can be improved by introducing a supervised classifier, as discussed in the next

section.

4.2.3 Supervised SCIRD

The selection of a single filter response (i.e. the maximum) over all the filters does

not exploit the discriminative power of the entire filter bank. On the other hand, finding

the optimal (in general, non-linear) combination and weighting factor of each filter is not

trivial. Here, I tackle this problem by proposing the supervised version of SCIRD. To this

aim, I combine nS = Nσ1 +Nσ2 +Nk +Nθ feature maps (I(i)ww, i = 1, . . . ,nS) obtained using

our filter bank with SCIRD to form a feature vector fff :

fff =
[

SCIRD, I(1)ww, I
(2)
ww, · · · , I(nS)

ww

]⊤
, (4.14)

and use it to classify each pixel. I employ a Random Forest [22, 39] as a classifier, due to

its better performance (at parity of feature vector and training protocol) as compared with

other classifiers, e.g. support vector machines or SVM [37], on several tasks [39], includ-

ing curvilinear structure segmentation [111]. Thresholding directly the resulting probability

map (which can be seen as a tubularity map) leads indeed to a more accurate and less noisy

segmentation, as confirmed by the experiments in Section 4.2.4. Supervised centreline de-

tection is obtained using pixel-wise non-maxima suppression and thresholding on the tubu-

larity map. As local orientation for both supervised and unsupervised centreline detection I

choose that of the kernel responding maximally.
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Original image Patch Frangi Gabor OOF SCIRD

Figure 4.5 Qualitative comparison: tubularity estimation results on IVCM. SCIRD (our
approach) shows better connectivity and higher signal-to-noise ratio than others.

4.2.4 Experiments and results

Data sets. I validate SCIRD segmentation performance on IVCM100, BF2D and VC6

described in Section 3.2. These datasets include low and high resolution images of corneal

nerve fibres and neurons, showing a wide range of tortuosity characteristics as illustrated

in Figure 4.4(b). Notice that the task to be performed on IVCM100 is actually centreline

detection (our collaborators traced only corneal nerve fibre centrelines). As usually done to

evaluate methods extracting one-pixel-wide curves (e.g. by Sironi et al. in [119, 122]), I

introduce a tolerance factor ρ: a predicted centreline point is considered a true positive if it

is at most ρ distant from a ground truth centreline point. Following Sironi et al. [119, 122],

ρ = 2 pixels in these experiments. BF2D and VC6 include a training and test set, while

IVCM100 does not. Therefore, for IVCM100, I average performance measures over 10

random sub-sampling cross-validation runs, using 50 images for training and the rest for

testing in each run, following the established benchmarking procedure (e.g. [111]). The

resulting precision-recall curves are reported in Figure 4.6 (mean and standard deviation of

the results from individual runs).

Parameters setting. SCIRD’s key parameters are σ1, σ2 and k controlling the filter

elongation, width and curvature, respectively. These parameters have been set by visual

inspection, following previous performance evaluation protocols for HCFs [49, 83, 111,

123]. The driving idea is to set the parameters such that the shape of SCIRD filters resembles

the one of actual curvilinear structures observed in the data set. Specifically, the ranges of σ1
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over data sets were chosen considering the level of fragmentation (i.e. the more fragmented,

the wider the ranges). I set σ2 values based on the maximum and minimum width of the

target structures in each dataset as they depend on resolution; curvature values were set

according to the level of tortuosity (or bending) shown by the specific curvilinear structures.

The discretisation step of the orientations θ was set to achieve a good trade-off between

accuracy and speed. The contrast normalisation parameter α was set to achieve the desired

level of contrast invariance.

I set a single range (sampled with fixed discretisation step3) for θ and k for all the

datasets: θ =
{

π

12 ,
π

6 , · · · ,2π
}

, and k = {0,0.025, · · · ,0.1}. I set other parameters separ-

ately, given the significant difference in resolution between data sets. In particular, for the

IVCM100, σ1 = {2,3,4}, σ2 = {2,3}, α = 1; for the BF2D dataset, σ1 = 5, σ2 = {2,3,4},

α =−0.075; for the VC6, σ1 = 3, σ2 = {2,3}, α = 0. For the supervised SCIRD, I used the

same range for θ and k, but I doubled the discretisation steps for computational efficiency.

To provide a fair comparison, parameters for SCIRD and baseline methods were manu-

ally tuned on training data to achieve their best performance on each dataset.

I trained Random Forests using 50, 000 pixels randomly selected from the training set

of each data set used in these experiments. The number of decision trees and maximum

number of samples in each leaf was set using the out-of-bag error [22].

Results and discussion. I compare SCIRD with three hand-crafted ridge detectors:

Frangi [49], Gabor [123], and the recent Optimally Oriented Flux (OOF) [83]. These meth-

ods form a representative set of state-of-the-art and accurate detectors of tubular structures.

Qualitative (Figure 4.5) and quantitative (Figure 4.6) results show that SCIRD outperforms

the baselines considered on all datasets. Specifically, SCIRD shows higher precision from

medium to high recall values for the IVCM dataset, suggesting that our filters behave bet-

ter than others at low resolution and low SNR when dealing with tortuous and fragmented

structures. The low number of false positives when the number of false negatives is low

implies that SCIRD selects target structures with higher confidence. Notice that contrast en-

3Notice that using regularly spaced samples on a grid as done here (and by other authors in the context of
curvilinear structure segmentation [49, 83, 111, 123]) is not an optimal sampling strategy. Later, in Section
6.3.1, I will use a better sampling approach based on k-means (locally optimal).
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Figure 4.6 Precision-recall curves for SCIRD and baselines on IVCM, BF2D and VC6 data-
sets. Curves are obtained applying different thresholds on the tubularity maps.
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hancement (“SCIRD α ̸= 0", α = 1) boosts performance on this dataset achieving the level

of performance obtained in the supervised setting (“SCIRD, RF"), at a lower computational

cost. For the BF2D dataset, SCIRD shows a significant improvement from low to high re-

call values, suggesting that fewer non-target structures are detected and targets are enhanced

with higher accuracy (e.g. point-like structures are correctly reconnected, tortuous structure

profiles are better preserved). Contrast reduction (“SCIRD α ̸= 0", α = −0.075) proves

helpful for these images. Supervised classification improves performance further. For the

VC6 dataset, SCIRD shows better performance from low to medium recall values, indicat-

ing a better discrimination between curvilinear structures and artifacts, in addition to a more

accurate profile segmentation for tortuous structures. Contrast enhancement did not help for

this dataset, while supervised classification contributes substantially to improve results.

The time to run SCIRD using a single core on an Intel i7-4770 CPU @ 3.4 GHz and

MATLAB code (R2014a) is 3.84s (IVCM), 2.77s (VC6) and 23s (BF2D). The structure

of the SCIRD algorithm is highly parallelizable (filter bank pre-computed off-line), which

could lead to dramatic speed-ups on a parallel architecture.

Although SCIRD, especially the supervised version, shows good detection performance

on the three data sets used for validation, it does not exploit context information (i.e. inter-

object relationships) found to improve segmentation performance in other applications [1,

99, 133]. Modelling context using HCFs is challenging due to the variety of configurations

which should be considered. In the next section, I will discuss how to complement SCIRD

(HCFs, in general) with learned context filters to leverage context information efficiently.

4.3 Learning context filters

As discussed in Section 2.2.3, feature extraction based on hybrid methods is particularly

appealing as exploiting the efficiency of fast HCFs while limiting the amount of learned fil-

ters. Rigamonti et al. [111] proposed to combine learned appearance filters with HCFs also

modelling appearance (i.e., OOF). However, modelling and including context information

in a segmentation framework has been recently shown to outperform considerably solutions
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(a) (b)

Figure 4.7 Visual examples motivating the need for including context information in the
segmentation pipeline. (a - blue circles) short, well contrasted, but isolated segments, which
could be wrongly segmented as corneal nerve fibres (they are dendritic cells, instead); and
(b - red circles) short and poorly contrasted segments branching from corneal nerve fibres,
which should be segmented as corneal nerve fibres.

based only on appearance features (see, for instance, the auto-context framework proposed

by Tu and Bai [133] and the spin-context algorithm by McKenna et al. [99]). I build on the

same idea here.

Many types of information can be referred to as context[133]: different parts of an object

can be context to each other; different objects in an image can be each other’s context. For

example, a short, well contrasted, but isolated segment may suggest it is not a corneal nerve

fibre (but rather a dendritic cell due to inflammation, as shown in Figure 4.7(a)). Instead,

a short and poorly contrasted segment branching from a clearly visible corneal nerve fibre

may suggest that the segment is a fibre (Figure 4.7(b)). Learned (multi-range) context filters

presented here, represent an alternative and efficient solution to include context informa-

tion in a segmentation framework, which is experimentally shown to help in ambiguous

situations such as the ones shown in Figure 4.7.

In Section 4.3.1 I summarise the algorithm adopted for unsupervised filter learning. Sec-

tion 4.3.2 and 4.3.3 describe how to use this algorithm to learn context filters efficiently and
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then combine appearance and context information using a single (hence fast) discriminative

model. Experiments and results for single-range context filters are reported and discussed

in Section 4.3.4.

4.3.1 Unsupervised filter learning

Although K-means is not designed to learn sparse representations, such as SC or inde-

pendent component analysis, experimental results [36] suggest that it tends to learn sparse

projections of the data under two assumptions: (1) a sufficiently large amount of training

data, given the data dimensionality; (2) applying whitening as pre-processing to remove

correlations between data components. Both hold in my experimental setting, so that I can

employ K-means clustering to learn context filters instead of more expensive algorithms

such as SC [111]. Here, I adopt the algorithm by Coates et al. [36] which I summarise

concisely.

The goal is to learn a dictionary D∈Rq×K of K vectors so that a data vector x(i) ∈Rq, i=

1, . . . ,mD can be mapped to the code vector that minimizes the reconstruction error. Before

running the learning algorithm I normalize the brightness and contrast of each input data

point x(i), in this case p× p patches. Then, I apply patch-level whitening through the ZCA

transform [36] so that x(i)ZCA = V(Σ+ εZCAI)−1/2V⊤x(i), where V and Σ are computed from

the eigenvalue decomposition of the data points covariance VΣV⊤ = cov(X), and εZCA is a

small constant controlling the trade-off between whitening and noise amplification. After

pre-processing the patches, we solve the optimization problem

argmin
D,c

∑
i

∥∥∥Dc(i)−x(i)ZCA

∥∥∥2

2
(4.15)

subject to ||c(i)||0 ≤ 1,∀i = 1, . . . ,mD and ||d( j)||2 = 1,∀ j = 1, . . . ,K, where c(i) is the code

vector related to input x(i)ZCA, and d( j) is the j-th column of the dictionary D.

Combining appearance filters learned through K-means (or SC) with HCFs leads to the

combination approach proposed in [111] based on appearance-only features (see Figure 4.8

left).
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4.3.2 Context filters

Hand-crafted and learned appearance features are designed to capture object-specific

properties. In the case of curvilinear structures, they detect characteristics that make them

appear as ridge-, vessel- or tube-like shapes. However, appearance features do not take

into account specific inter-object relationships, that is, context information that has been re-

cently shown to improve performance substantially in segmentation tasks over methods em-

ploying appearance features only. A well-known method including context information is

auto-context [133], which learns multiple discriminative models sequentially. This imposes

an extra computational cost over learning a single discriminative model, as in traditional

methods based on features representing object pixels and a single classifier to infer their

labels. While an extra computational cost may have little impact on training/testing time

for applications involving small datasets or small images, it may become impractical with

large volumes of image data. This is the case, for instance, with large healthcare screen-

ing programs based on images, e.g., diabetic retinopathy [67]. For this reason, I aim to

include context information in a learning method without increasing the computational cost

with respect to the solution proposed by Rigamonti and Lepetit [111]. This is achieved by

learning a single discriminative model which takes as input both appearance (i.e. likelihood

computed on the original image) and, unlike Rigamonti and Lepetit’s method [111], context

information (i.e. relations between objects). To model appearance, here I employ the fast

Optimally Oriented Flux (OOF) feature [83], shown to outperform other HCFs on the data-

sets I use for validation[111]4. I include context information by learning context filters to be

used in combination with the HCFs in a new hybrid model to segment curvilinear structures.

Learning context filters has two clear advantages: 1) including higher-level informa-

tion in a hybrid framework; 2) high efficiency and adaptability since convolution with filter

banks is very fast even on standard computers. In addition, the proposed method has a

key advantage over methods learning appearance filters as proposed by Rigamonti and Le-

petit [111]: it implicitly eliminates, or reduces noticeably, the redundancy of learned filters.

In fact, learned appearance filters may be reconstructed through a combination (linear or

4Experiments using SCIRD as base HCF are reported later in the chapter.
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non-linear) of the HCFs already used to model appearance. Figure 4.8 shows the differ-

ence between the proposed approach (right) and the combination method proposed in[111]

(left). Notice, while appearance filters are learned on the same layer where HCFs are ap-

plied (original image), context filters are learned on a different layer (i.e. after HCFs are

applied).

4.3.3 Description vector and supervised classification

I apply learned filters to the input image to compute multiple feature maps efficiently

using correlation:

L( j) = D( j) ◦ In, (4.16)

where D( j) is the j-th learned filter, In is the normalized input image (i.e., zero mean and

unit standard deviation) and the symbol ◦ denotes correlation. I have also experimented

with normalizations of the input image at patch level (including whitening), measuring the

squared distance between the pre-processed patch and each filter; unreported experiments

show that these normalizations, although important during the filter learning procedure, do

not improve performance noticeably and increase the computational cost. Thus, for each

image location (u,v), I construct the following description vector:

[OOF(u,v)︸ ︷︷ ︸
appearance

, L(1)(u,v), . . . ,L(N)(u,v)︸ ︷︷ ︸
context

]T , (4.17)

including appearance and learned context features (N ≤ 200 in my experiments). I then ap-

ply a Random Forest to classify each pixel, for the same reasons detailed above. Centreline

detection is obtained using pixel-wise non-maxima suppression and thresholding on the tu-

bularity map. Local orientation is estimated using OOF.



4.3 Learning context filters 51

Fi
gu

re
4.

9
O

ri
gi

na
l

im
ag

es
(t

op
)

an
d

tu
bu

la
ri

ty
m

ap
s

(b
ot

to
m

)
ob

ta
in

ed
w

ith
ou

r
ap

pr
oa

ch
on

IV
C

M
(l

ef
t)

,
B

F2
D

(c
en

tr
e)

,
V

C
6

(r
ig

ht
)d

at
as

et
s.



4.3 Learning context filters 52

4.3.4 Experiments and results

Datasets. I validate the proposed combination method using the same three data sets

and protocol used to validate SCIRD. Some qualitative results are shown for illustration in

Figure 4.9.

Parameter setting. First, images are normalised to have zero mean and unit standard

deviation. When HCFs are used as baselines, all parameters are tuned for each dataset

independently to achieve best performance on each data set [111]. To reduce the number of

parameters to be optimised over datasets and test generalization, I fixed the OOF parameter

ranges, the whitening parameter εZCA and the filters’ size in the filter banks to the same

values for all datasets. For OOF, I set σ = {2,3,4} (Eq. (8) in [83]) and R= {2,3,4} (Eq. (5)

in [84]). εZCA was set to 0.001, considering the trade-off between noise amplification and

filters sharpness[36]. Filters’ size was set to 11×11 pixels. Notice that the chosen patch size

allows us to collect a sufficient number of patches to learn dictionaries, in agreement with the

guidelines in [36]5. I adopted filter banks of 100 filters (i.e., N = 100) as a good compromise

between accuracy and speed. I used Random Forests with 100 random trees to achieve fast

predictions. I trained classifiers using the same number of positive and negative samples and

priors estimated empirically. Experiments were run on an 8-core 64-bit architecture using

MATLAB (2014a) implementations.

Results and Discussion. I compare the proposed method, combining appearance and

context filters, with the one recently introduced by Rigamonti and Lepetit in [111] based

only on appearance. Therefore, I report results obtained with the original implementation of

[111] using 9 appearance filters learned through SC (“Rigamonti et al. [8]" in Figure 4.6)6.

I also report experiments using k-means to learn appearance filters (“OOF, learned appear-

ance") and the same dictionary size I adopted to learn context filters.

As Figure 4.10 shows, the proposed combination method (“OOF, learned context") out-

performs the baselines on all datasets, especially on VC6 and IVCM (on a rather large

range of recall values). The different datasets allow us to compare performance with very di-

5I selected 340,000 patches in the worst case represented by a single training image of the BF2D dataset.
Notice that, in [36] 100,000 16×16 patches are considered sufficient.

6Original code at: https://bitbucket.org/roberto_rigamonti/med_img_pc.

https://bitbucket.org/roberto_rigamonti/med_img_pc .
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Figure 4.10 Precision-recall curves for pixel-level classification. Shaded color bands rep-
resent 1 standard deviation of the results from individual runs.



4.3 Learning context filters 54

verse data characteristics: with tortuous, fragmented structures and low signal-to-noise ratio

(IVCM), the proposed method shows a better precision for low recall values as it better seg-

ments fragmented structures; when structures have better contrast but point-like appearance

(BF2D), the proposed method shows higher precision at high recall values as it reduces the

false positives due to point-like non-target structures and increases the connectivity; when

dealing with complex non-target structures (e.g. blobs in VC6), the proposed approach

shows better performance from medium to high recall values, since it reduces the amount

of false positives due to such structures.

Since my main goal is to compare learned context with learned appearance regardless of

the learning algorithm used (k-means or SC), I assess the effect of patch and dictionary size

on the performance measured using AUPRC for both combination methods using k-means

as learning method. As Table 4.1 shows, combining OOF with learned context (proposed

here) outperforms the combination with learned appearance [111] in terms of AUPRC re-

gardless of the chosen patch and dictionary size. Moreover, learning as little as 10 context

filters gives the same or even better performance than learning 100 appearance filters, thus

confirming that the proposed approach reduces potential redundancy.

As expected, learning appearance filters using convolutional SC [111] improves per-

formance over k-means (at a parity of dictionary size), at a price of a disproportionate de-

crease in speed. Modest improvements (AUPRC are 0.8748 vs 0.8557 on IVCM, 0.7700

vs 0.7460 on VC6, 0.7955 vs 0.7857 on BF2D) are achieved with a speed loss of two or-

ders of magnitude (speed 25-30 mins vs a few seconds) using the same machine. However,

learning 10 context filters with k-means yields better AUPRC than Rigamonti and Lepetit’s

method [111] (AUPRC are 0.8866 vs 0.8748 on IVCM, 0.7911 vs 0.7700 on VC6, 0.7966

vs 0.7955 on BF2D). Also, while learning with SC is time-consuming for filter banks larger

than 100 (several days are reportedly needed to learn a filter bank of 121 filters [111] on ma-

chines comparable to the ones used in my experiments), a few minutes are required to learn

as many as 200 context filters with k-means, in case a larger dictionary is needed (e.g. for

VC6). As a result, the proposed method combining OOF with context filters learned using
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Table 4.1 Effect of patch and dictionary size on the area under precision-recall curves
(mean/standard deviation). Our method outperforms the baseline in all conditions.

IVCM
Patch size (pixels) Number of learned filters (N)

11 × 11 15 × 15 21 × 21 10 100 200

OOF, learned context 0.8928/0.0056 0.9078/0.0043 0.9133/0.0052 0.8866/0.0033 0.8928/0.0056 0.8976/0.0037
OOF, learned appearance 0.8665/0.0114 0.8878/0.0059 0.8870/0.0102 0.8557/0.0069 0.8665/0.0114 0.8878/0.0039

100 learned filters Patch size: 11 × 11 pixels

4 Conclusion

We designed a novel algorithm for feature boosting which combines hand-crafted
features (modelling the appearance) with learned context filters, unlike previous
solutions involving only appearance. Our method is designed to learn comple-
mentary information, thus involving the used hand-crafted feature in the learning
process. Experimental results using 3 challenging datasets show that our method
outperforms baselines and the method in [1] at the same computational cost,
offering good generalization performance. Our future work will investigate the
possibility to design new hand-crafted features to exploit at most the information
obtained by the appearance model.
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Fig. 3. Precision-recall curves for pixel-level classification. Shaded color bands repre-
sent 1 standard deviation of the results from individual runs.

technique proposed in [1] at the same computational cost. The variability of the
datasets allows us to compare algorithms’ performance in very diverse working
conditions (see Figure 3): when dealing with tortuous, fragmented structures and
low signal-to-noise ratio (IVCM), our method shows a better precision for low
recall values as it better segments fragmented structures; in the BF2D dataset
consisting of images with a better contrast but point-like structures, our method
shows higher precision at recall values over 0.7 as it reduces the false positives
due to point-like non-target structures and increases the connectivity; in the
VC6 dataset, including complex non-target structures (e.g. blobs), the proposed
approach shows better performance from medium to high recall values, since it
reduces the amount of false positives due to such structures.

In terms of efficiency, learning a filter bank of 100 filters using K-means
algorithm is significantly faster than convolutional sparse coding. In fact, less
than 30 seconds are typically required to learn our filter banks which compares
favourably with several days reportedly needed to learn 121 filters using sparse
coding [1]. Using learned filters directly for feature extraction proves extremely
fast - about 2 seconds are required to process high resolution images in the BF2D
dataset. Using a limited number of decision trees for prediction has proved to
be a good compromise between accuracy and running time (9 and 155 seconds
are required for predictions in the IVCM and BF2D datasets, respectively).

We tested the proposed method generalization performance by setting pa-
rameters once for all datasets. Quantitative results suggest that a segmentation
algorithm for a different application involving curvilinear structures can be set
up and get top-rank performance within few minutes.

BF2D
Patch size (pixels) Number of learned filters (N)

11 × 11 15 × 15 21 × 21 10 100 200

OOF, learned context 0.8057/0.0017 0.8010/0.0029 0.7948/0.0021 0.7966/0.0043 0.8057/0.0017 0.8054/0.0022
OOF, learned appearance 0.7881/0.0060 0.7888/0.0035 0.7908/0.0036 0.7857/0.0026 0.7881/0.0060 0.7824/0.0044

100 learned filters Patch size: 11 × 11 pixels

VC6
Patch size (pixels) Number of learned filters (N)

11 × 11 15 × 15 21 × 21 10 100 200

OOF, learned context 0.8272/0.0052 0.8295/0.0035 0.8069/0.0063 0.7911/0.0070 0.8272/0.0052 0.8368/0.0041
OOF, learned appearance 0.7905/0.0063 0.7904/0.0045 0.7809/0.0032 0.7460/0.0053 0.7905/0.0063 0.7905/0.0062

100 learned filters Patch size: 11 × 11 pixels

4 Conclusion

We designed a novel algorithm for feature boosting which combines hand-crafted
features (modelling the appearance) with learned context filters, unlike previous
solutions involving only appearance. Our method is designed to learn comple-
mentary information, thus involving the used hand-crafted feature in the learning
process. Experimental results using 3 challenging datasets show that our method
outperforms baselines and the method in [1] at the same computational cost,
offering good generalization performance. Our future work will investigate the
possibility to design new hand-crafted features to exploit at most the information
obtained by the appearance model.
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k-means outperforms substantially the method proposed in [111]: the best AUPRC figures

are 0.9078 vs 0.8748 on IVCM, 0.8368 vs 0.7700 on VC6, 0.8057 vs 0.7955 on BF2D.

4.4 Learning multi-range context filters

The approach above does capture some level of context, but it has limitations. First, the

range p (in pixels) of spatial context captured in each direction is dictated by the patch size

(p× p). This parameter can be set by cross-validation, but its maximum value pM is limited

by the amount of available training data (see assumption (1) above on applying K-means).

Notice that the data points dimensionality q ∼ p2, thus forcing pM to be relatively small

(e.g., less than 30 pixels) if training data is not abundant (e.g., less than 500,000 patches),

a typical case in several medical applications. So, this approach fails to model long-range

context information. Second, it is a single-range context model, i.e. it captures inter-object

relationships characterising a specific neighbourhood only.

Here, I address these issues by introducing a multi-scale architecture of learned con-

text filters modelling multi-range spatial context (Section 4.4.1), the benefits of which are

assessed and discussed in Section 4.4.2.
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4.4.1 Multi-range context filters

Let us denote with {I(S1)
T } the set of tubularity maps obtained after SCIRD (or any

other HCF) is applied to the training images {IT}, where T = 1, . . . ,TM. The proposed

multi-range context filters architecture is obtained by learning filters on {I(S1)
T } and their

smoothed, downscaled versions {I(SL)T }, where L= 1, . . . , lM indicates a certain level of this

architecture. As Figure 4.11 shows, at level L = 1 patches randomly sampled from {I(S1)
T }

are used to learn the first set of K context filters C(1) = [C11| . . . |CK1]
⊤, where Ci j is p× p

pixels. This captures context information in the range of p pixels in each direction. Then,

Gaussian smoothing with σMRC and downscaling by a factor 2 (i.e., image width and height

are halved) and bi-cubic interpolation are applied to the tubularity maps {I(S1)} to obtain

{I(S2)} and access the level L = 2. Context filter learning is applied to these downscaled

images to learn a second set of K filters C(2) = [C12| . . . |CK2]
⊤, Ci j is again p× p pixels.

This process is repeated until level L = lM is reached and its associate set of context filters

C(lM) = [C1lM | . . . |CKlM ]
⊤ is learned.

Notice, context filters size is the same (i.e., p× p) at each level L but images width and

height are halved from L = i to L = i+ 1, doubling the context range in each direction.

This makes this context learning solution multi-range. Moreover, although the number of

available training patches reduce as images are downscaled, K-means can be still employed

with good clustering performance, making the proposed solution fast and efficient.

4.4.2 Experiments and results

My target application is fully automated image-level tortuosity estimation, therefore I

validate the proposed segmentation architecture on IVCM140, including 140 (384× 384

pixel) corneal nerve images from healthy and unhealthy subjects showing a wide range of

tortuosity characteristics (full description in Section 3.2.2).

Parameter setting. Table 4.2 shows the complete list of parameters I adopted or learned

to train and test the proposed segmentation pipeline. Here, I provide explanations and
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Table 4.2 Parameters of the proposed segmentation architecture.

System parametrisation

Parameter Adopted value Description
σ1 {2,3,4} SCIRD elongation.
σ2 {2,3} SCIRD width.
k {0,0.025,..., 0.1} SCIRD curvature.
θ {15, 30, ..., 180} SCIRD rotation angles.
α 1 SCIRD contrast enhancement.

p× p 15×15 pixels Context filters size.
εZCA 0.001 Patch-level whitening in Spherical K-means [36].

K 100 Number of context filters learned for each pyramid level.
L 3 Number of pyramid levels set manually in order to incorporate multi-range context.

σMRC 1 Sigma for Gaussian smoothing when learning multi-range context filters.
NT 100 Number of trees in the random forest.
Nl Learned Maximum number of samples in each leaf of the random forest.

guidelines with the aim of facilitating adaptation to other data sets, potentially including

different curvilinear structures.

I set SCIRD parameters according to the guidelines reported in Section 4.2.4 (same

setting used for IVCM100). Notice that the number of SCIRD free parameters and the

experience required to set them is comparable with other HCFs (e.g., Gabor, Frangi, OOF).

I learned 100 15× 15 filters using at least 100,000 patches for each context level. In-

creasing the number of context filters is expected to improve segmentation performance, at

a price of a slower segmentation. Experiments suggest that 100 filters per level represent

a good compromise between training/testing speed and tortuosity estimation performance.

Moreover, I tested the sensitivity of the segmentation performance to the filter size and

found that performance was practically unchanged when p = {11,15,21} pixels. When

setting εZCA I considered the compromise between maximising filter sharpness and limiting

noise amplification, as suggested by Coates and Ng [36]. I set σMRC and L in the multi-

range context architecture to capture short-, medium- and long-range context. In particular,

σMRC controls the level of detail preserved in each context level, while L controls the range

of context to be captured (i.e. the number of context levels). According to Criminisi et

al. [40], increasing NT should lead to better classification performance, at a cost of slower

predictions. I found experimentally that NT = 100 is enough for my application. The depth

of the forest is automatically learned using the out-of-bag error on the training set [22].
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Figure 4.12 Precision-recall curves for the corneal nerve fibre centreline detection task
(pixel-level classification). Each curve is obtained by averaging the results of 5 random
cross-validation trials in which the whole data set, including 140 images, is randomly split
in 2 equal partitions.

Results and discussion. I compare the proposed segmentation method with the recent

hybrid solution proposed by Rigamonti and Lepetit [111] as well as with other baselines, in-

cluding widely used and state-of-the-art ridge detectors: Frangi [49], Gabor filters [123] and

Optimally Oriented Flux (OOF) [83]. Performance is reported in terms of PRC and is aver-

aged over 5 random sub-sampling cross-validation runs, using 70 images for training and the

rest for testing in each run (Figure 4.12). The comparison among HCFs shows that SCIRD

performs best, therefore justifying the choice of adopting SCIRD as base HCF on top of

which I learn multi-range context filters. Using SCIRD filter bank responses as input to a
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RF, i.e. “SCIRD, RF", leads to a significant improvement compared to plain SCIRD, espe-

cially at low-medium recall rates. It is worth noting that this result on IVCM140 differs from

the one on IVCM100 (Section 4.2.4). However, IVCM140 includes images from normal and

herpetic patients in addition to all the images from dry eye patients in IVCM100, therefore

presenting a much wider spectrum of appearance characteristics compared to IVCM100.

In this setting, a supervised approach that combines the responses of multiple filters seems

to be more suitable than plain SCIRD. Combining HCFs with learned (single-range) con-

text filters leads to better segmentation results. However, using SCIRD instead OOF in the

combination, yields better performance. A noticeable improvement is achieved by employ-

ing multi-range context filters, i.e. “SCIRD, multi-range context", showing the benefit of

learning a discriminative model capturing context at different levels.

Qualitative comparisons with the baseline methods, shown in Figure 4.13, suggest that

improved performance is largely due to the multi-range context model which reduces con-

siderably the amount of false positives far from target structures and improves the connectiv-

ity of corneal nerve fibres appearing fragmented. Nevertheless, the proposed segmentation

pipeline is fast as it exploits context information efficiently: since a single discriminative

model (i.e., a single RF) is employed, a whole corneal nerve image is segmented in about

30 seconds, using unoptimized MATLAB (R2014a) code on a machine equipped with Intel

i7-4770 CPU at 3.4 GHz.

4.5 Conclusions

In this chapter I presented a hybrid approach to curvilinear structure segmentation. It

consists of a novel class of HCFs (SCIRD) which are then leveraged by a learning-based

architecture of multi-range context filters.

The proposed ridge detector (SCIRD) is based on curved-support Gaussian, and its for-

mulation is such that it is simultaneously invariant to orientation, scale, and unlike its peers,

curvature invariant. Experimental results show that SCIRD outperforms current state-of-
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the-art HCFs on 3 challenging data sets, two of which were used in the recent literature for

similar methods.

Boosting7 HCFs with learned filters has recently emerged as a successful technique to

compensate for limits of HCFs and DLAs. I have proposed a novel combination method

in which HCFs are paired with learned context filters to enhance pixel representation in-

cluding inter-object relationships. Quantitative results suggest that the proposed approach

outperforms a previous combination method. Moreover, it can be used for different image

modalities and can get top-rank performance running in a few minutes only.

Finally, I have discussed the limitations of single-range context filters and proposed a

solution to make them multi-range. Experimental results with 140 IVCM images show that

combining SCIRD with multi-range context filters performs favourably with respect to state-

of-the-art segmentation methods based on single discriminative models, without increasing

the computational cost (i.e. using a single classifier).

This solution represents the segmentation module of the fully automated tortuosity es-

timation system discussed herein. In the next chapter, I will introduce and validate the

tortuosity estimation module and discuss the impact of the segmentation on the tortuosity

estimation results.

7Combining.
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Figure 4.13 Examples from segmentation experiments on IVCM140. First row: original
images. From second to fourth row: probability maps obtained by combining OOF with
learned appearance filters [111], combining OOF with single-range context filters and
combining SCIRD with multi-range learned context filters (proposed approach). Last row:
ground truth.



Chapter 5

Tortuosity Estimation

5.1 Introduction

This chapter describes the approach I adopted to address the limitations of state-of-

the-art tortuosity estimation systems outlined in Section 2.4.2. In particular, Section 5.2

describes a new paradigm to tortuosity estimation based on machine learning. The latter

includes a richer representation of tortuosity (both at structure and image level), based on

multi-scale features (Section 5.2.1 and 5.2.2), and the methodology to identify the most

discriminative tortuosity features (and their combination) among the pool investigated (Sec-

tion 5.2.3). The validation is presented and discussed in Section 5.2.4. Finally, Section 5.3

describes a new representation tool, the tortuosity plane, adopted to leverage tortuosity in-

terpretation.

5.2 A machine learning approach to tortuosity estimation

Tortuosity estimation is a difficult task as different anatomical structures in the context

of different pathologies can show different tortuosity characteristics. Most of the meth-

ods reported so far lack adaptability as they rely on fixed, postulated combinations of fea-

tures to characterise tortuosity. Moreover, different frequencies of direction changes are

ignored, while an in-depth visual investigation of corneal images, for instance, suggests that
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a multiscale approach for tortuosity features extraction is indeed needed (Figure 5.1). Fi-

nally, curvature estimation algorithms are typically based on finite differences leading to

noisy estimates, especially when segmentations are obtained automatically.

The method proposed here addresses all the issues above. It can be summarised in four

steps (Figure 5.2):

1. compute multi-scale shape features for each curvilinear structure to obtain its tortuos-

ity representation;

2. combine shape features computed from each curvilinear structure to obtain image-

level features;

3. use feature selection (FS) to identify the most discriminative set of image-level fea-

tures, which become the tortuosity representation for the specific application con-

sidered;

4. use the set of features identified to train a regressor assigning new images to a tortu-

osity grade on a fixed scale.

5.2.1 Multi-scale tortuosity representation of a single curvilinear struc-

ture

Curvature-based measures tend to outperform the combination of distance measure (DM,

i.e. maximum deviation from chords) and number of inflection points, when high sampling

rates are used to represent vessel centrelines ([93]; see also Section 2.3).

We showed in [5] that multi-scale curvature-based measures, if estimated accurately, can

lead to accuracy comparable or even higher than that of two experienced observers, when

the third is taken as reference. Our algorithm for curvature estimation was based on a multi-

window ellipse/line fitting approach which can be time consuming, although sub-sampling

could achieve a reasonable trade-off between performance and time.
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Here, I use spline fitting to replace the multi-window ellipse/line fitting for fast and

accurate curvature estimation. The structures of interest are normally rotated first or repres-

ented in parametric coordinates. I choose the latter to avoid the additional computational

burden and potential inaccuracies introduced by rotations. To counteract the noise intro-

duced by the automated centreline segmentation, I adopt a robust version of cubic spline

fitting, which reduces the influence of outliers1. This yields accurate curvature estimates,

supporting reliable estimation of inflection points.

Derivatives are computed locally and analytically from the parameters of the fitted

splines. Changes in curvature sign along the curves are the estimated inflection points (Fig-

ure 5.3).

In summary, the following shape features are extracted from each fibre [5]:

• the average curvature along the fibre, kmean;

• the “twistedness", or density of inflection points, dip;

• the maximum curvature along the fibre, kM.

I propose to represent curvilinear structures for tortuosity estimation using a scale-space

representation, taking into account the different frequency of direction changes, as shown

in Figure 5.4. The multi-scale version of the features listed above becomes: {kmean(t)},

{dip(t)} and {kM(t)}, for t ∈ {1, . . . , tM}, where tM is the coarsest resolution used.

5.2.2 Image-level tortuosity features for image classification

Our next task is to assign a tortuosity grade to a whole image. This is done, for in-

stance, in the clinical assessment of images of the corneal nerves. The task is non-trivial

as images contain variable numbers of corneal nerve fibres of varying lengths, which could

show considerably different tortuosity characteristics. I turn the features computed for indi-

vidual fibres into image-level features by computing, at each scale t and for each feature, a

weighted average over all fibers in the image, where the weights are the fibre lengths. The
1MATLAB code available at http://www.mathworks.com/matlabcentral/fileexchange/

13812-splinefit

http://www.mathworks.com/matlabcentral/fileexchange/13812-splinefit
http://www.mathworks.com/matlabcentral/fileexchange/13812-splinefit
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1 2 3 4 5 6

Figure 5.4 Multi-scale analysis of a corneal nerve fibre. From left to right: original fibre
including turns at all frequencies (spatial scale 1), and its smoothed versions at spatial scales
from 2 to 6 to take into account turns at intermediate and high frequencies.

weights model the observation that longer fibres are more informative, overall, than shorter

ones.

Denoting the length of the i− th fibre at scale t as li(t) , and the total number of fibres

within an image as N f , our image-level features are defined as follows:

• Kmean(t) =
∑

N f
i=1 li(t)kmean(t)

∑
N f
i=1 li(t)

;

• Dip(t) =
∑

Nf
i=1 li(t)dip(t)

∑
Nf
i=1 li(t)

;

• KM(t) = ∑
Nf
i=1 li(t)kM(t)

∑
Nf
i=1 li(t)

.

5.2.3 Feature selection and tortuosity prediction

FS identifies the most discriminative features and the most important spatial scales for

the tortuosity assessment. This choice makes the tortuosity estimation framework highly

adaptable.

Of the several FS strategies proposed [56, 85, 108], I adopt a wrapper-based strategy in

which a learning algorithm is used to score repeatedly subsets of features according to their
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predictive power. Exhaustive search can be employed as our feature pool is relatively small

(i.e. less than 20, including different spatial scales), guaranteeing that the search returns the

true absolute extremum. I use a multinomial logistic ordinal regressor (henceforth, MLOR),

a low-complexity, hence fast multi-class classifier taking into account the order of tortuosity

grades (1 to 4, i.e., ranking), modelled by a logit link function. Specifically, MLOR models

the log cumulative odds [18], the logarithm of the ratio of the probability of a class preceding

or equal to class j in the class ranked list, P(yc ≤ c j) and the probability of the same class

following class j, P(yc > c j). To limit model complexity and make FS more efficient, we

assume that the effects of features fi are the same for all classes on the logarithmic scale.

This means that the model has different intercepts (γ), but common slopes (β ) among classes

(proportional odds assumption). Thus, the MLOR model is

ln
(

P(yc ≤ c j)

P(yc > c j)

)
= γ j +β1 f1 +β2 f2 + · · ·+βs fs (5.1)

for j ∈ {1,2,3}, where s is the feature space cardinality.

Once the most discriminative combination of features is selected by exhaustive search,

these are extracted from training images and a new MLOR model is learned and used to

predict unseen images.

5.2.4 Experiments and results

I compute image-level tortuosity measures (mean, max and density of inflection points)

in a scale-space representation of 6 spatial scales (i.e. tM = 6)2, therefore assessing the

discriminative power of 18 features in total.

I compare the performance of our multi-scale tortuosity estimation approach with single-

scale methods reported to perform very well in comparative tests: tortuosity density (TD,

[54]), distance measure (DM, [64]), slope chain coding (SCC, [23]), τ5 [61]. Moreover, I

report the results obtained using a tortuosity estimation algorithm based on multi-window

curvature estimation [5].
2I set the maximum spatial scale tM = 6 as, for tM > 6, almost all the frequency components of the corneal

nerve fibres in IVCM140 are smoothed out.
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Since the IVCM140 data set was annotated by three experienced observers independ-

ently (clinical collaborators at Harvard Medical School, reported as Obs1, Obs2, Obs3), I

take the classification by each observer in turn as ground truth, and compare the perform-

ance of ours and aforementioned methods with that of the other two observers. Therefore,

MLOR coefficients are learned using a leave-one-out cross-validation for each observer

taken as reference. Notice that 11 images, corresponding to less than 8% of the entire data

set, were excluded (only for the tortuosity estimation performance evaluation, not for the

segmentation) due to complete disagreement among the observers (i.e. all the observers

assigned a different tortuosity level to those images), confirming the difficulty of tortuosity

modelling. There are mainly two reasons behind this choice. First, given that I compare

the performance of automated algorithms (trained on one observer) with that of the other

two observers, excluding those 11 images is indeed a more challenging scenario in terms of

multi-class classification performance. In fact, for those 11 images the tortuosity estimation

algorithm would perform at least as well as the other two observers. Second, when FS is

applied to identify the best combination of tortuosity features for the entire data set, I adopt

the majority voting criterion to establish the ground truth tortuosity level of each image,

therefore leading to ambiguity on those 11 images. Other choices and assumptions could be

made (e.g. averaging the ground truth tortuosity level as assigned by each observer for each

image), and those images could be included (as they would still carry useful information),

but I reckoned that discarding this small amount of images was a reasonable choice for this

pilot-level study.

I investigate the impact of each building block on the tortuosity estimation performance

of the proposed framework for fully automated tortuosity estimation. Specifically, (1) I

compare the performance of the proposed tortuosity estimation algorithm with state-of-the-

art methods, at a parity of segmentation; (2) I assess the performance when replacing a

conventional segmentation method (i.e. based on the “locally-straight" assumption) with

the proposed segmentation approach, at a parity of tortuosity estimation algorithm.



5.2 A machine learning approach to tortuosity estimation 72

Table 5.1 Tortuosity estimation: comparison of tortuosity estimation algorithms at a
parity of segmentation approach. For tortuosity ground truth, each experienced observer
is taken as reference in turn (Obs1, Obs2 and Obs3). The segmentation approach used for
these experiments is our “SCIRD, multi-range context" shown to outperform others methods
on the IVCM140 data set (see Figure 4.12). The first two columns in each table show the
performance of the others observers against the one used as reference. The other columns
in each table report several tortuosity estimation algorithms. Specifically, MSMW is the
algorithm based on multi-scale-multi-window tortuosity [5], MSSPLINE is the proposed
approach based on multi-scale rotation invariant spline fitting (results in boldface), MSS-
PLINE (no FS) is the latter approach without using tortuosity feature selection, TD is the
tortuosity density index [54], DM is the distance measure [64], SCC is the tortuosity estim-
ation algorithm based on slope chain coding [23] and τ5 is the normalised integral of the
squared curvature [61].

Ground Truth = Obs1

Performance measure Obs2 Obs3 MSMW MSSPLINE MSSPLINE (no FS) TD DM SCC τ5

Acc 0.7678 0.7451 0.7080 0.7408 0.7066 0.6247 0.6236 0.6194 0.6303
Se 0.5736 0.5194 0.4729 0.5194 0.4651 0.3333 0.3411 0.3333 0.2171
Sp 0.8457 0.8219 0.7825 0.8113 0.7904 0.6797 0.6732 0.6704 0.8083

PPv 0.5729 0.5547 0.4815 0.5184 0.4630 0.1165 0.3842 0.1129 0.4864
Npv 0.8329 0.8223 0.7949 0.8204 0.7945 0.8379 0.8410 0.8388 0.7346
MSE 0.4729 0.5736 0.6202 0.5504 0.6512 1.1705 1.0543 1.0853 2.6977
MAE 0.4419 0.5116 0.5581 0.5039 0.5736 0.8295 0.7907 0.8062 1.3333

Ground Truth = Obs2

Performance measure Obs1 Obs3 MSMW MSSPLINE MSSPLINE (no FS) TD DM SCC τ5

Acc 0.7791 0.7513 0.7619 0.7838 0.7802 0.6304 0.6301 0.6260 0.6661
Se 0.5736 0.5271 0.5426 0.5814 0.5736 0.3101 0.3101 0.3023 0.3101
Sp 0.8455 0.8254 0.8334 0.8478 0.8506 0.7055 0.7024 0.6997 0.8044

PPv 0.5977 0.5580 0.5473 0.5807 0.5678 0.2278 0.3564 0.0928 0.5479
Npv 0.8507 0.8317 0.8386 0.8560 0.8514 0.7864 0.8370 0.8350 0.7774
MSE 0.4729 0.5659 0.6202 0.5349 0.5426 1.2946 1.2946 1.3411 2.6124
MAE 0.4419 0.5039 0.5116 0.4574 0.4651 0.8915 0.8915 0.9070 1.2326

Ground Truth = Obs3

Performance measure Obs2 Obs1 MSMW MSSPLINE MSSPLINE (no FS) TD DM SCC τ5

Acc 0.7329 0.7381 0.6735 0.7266 0.6777 0.6366 0.6411 0.6388 0.6232
Se 0.5271 0.5194 0.4419 0.5271 0.4419 0.4109 0.4186 0.4109 0.2868
Sp 0.8290 0.8275 0.6994 0.7409 0.7299 0.6008 0.5983 0.5969 0.7848

PPv 0.5495 0.5459 0.4223 0.5057 0.4293 0.2892 0.3187 0.1715 0.3269
Npv 0.7930 0.8001 0.7711 0.8286 0.7617 0.7405 0.8778 0.8766 0.7306
MSE 0.5659 0.5736 0.7907 0.6124 0.7442 1.1008 1.1163 1.1473 2.2171
MAE 0.5039 0.5116 0.6357 0.5194 0.6202 0.7597 0.7597 0.7752 1.1473

I carried out FS on the pool of multi-scale features using the majority voting ground truth

for tortuosity estimation as reference3. I found through a 20-fold nested cross-validation

(training, validation, test sets) on IVCM100 that the best combination of image-level tor-

3The majority voting ground truth assumes that the true tortuosity level of each image is the one assigned
by the majority of experienced observers, independently.
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tuosity features was {Kmean(2),Kmean(5)} in 17 out of 20 cases[5], suggesting that (1) a

multi-scale approach is more suitable to tortuosity estimation than single-scale indices re-

ported in literature, and (2) the feature selection procedure is very stable. I adopted this

combination of features in these experiments.

Comparison of tortuosity estimation algorithms at a parity of segmentation. Table

5.1 shows the experimental evaluation for the tortuosity estimation task when state-of-the-

art tortuosity estimation approaches are used together with the best segmentation approach

(i.e., “SCIRD, multi-range context", as shown in Figure 4.12). First, experimental results

adopting each expert observer as reference in turn, suggest that the proposed tortuosity

estimation method based on multi-scale cubic splines (MSSPLINE) outperforms the multi-

scale-multi-window approach (MSMW) previously proposed [5]. Moreover, MSSPLINE

is much faster than MSMW as shown in Table 5.5, thus successfully addressing the main

drawback of MSMW. Second, MSSPLINE performs significantly better than the baselines

for all the observers used as reference, thus suggesting that a multi-dimensional tortuosity

representation feeding a MLOR model is more suitable for this task. Third, tortuosity FS

yields a substantial extra performance when Obs1 and Obs3 are used as reference. This

can be justified by the fact that some features may be highly correlated, noisy due to seg-

mentation imperfections or not discriminative enough. Notice that FS does not improve

tortuosity estimation performance when Obs2 is used as reference. However, matching the

performance obtained with a larger feature vector is still an important advantage in terms of

computational efficiency (i.e., less features to be computed at run time). Finally, the average

performance of the proposed fully automated tortuosity quantification system (i.e., “SCIRD,

multi-scale context + MSSPLINE", reported in this table as MSSPLINE) matches or even

exceeds (e.g. by about 3% in terms of accuracy, when Obs2 is used as ground truth) the

tortuosity estimation performance of at least one of the other two expert observers, when

compared against the one taken as reference.

Comparison of segmentation algorithms at a parity of tortuosity quantification ap-

proach. Table 5.2 shows the tortuosity estimation performance when replacing a conven-

tional segmentation method [111] with the proposed one. The tortuosity estimation al-
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Table 5.2 Tortuosity estimation: comparison of segmentation algorithms at a parity
of tortuosity quantification approach. For tortuosity ground truth, each experienced ob-
server is taken as reference in turn (Obs1, Obs2 and Obs3). The tortuosity quantification
approach used for these experiments is our MSSPLINE shown to outperform other methods
on our data set (see Table 5.1). The first two columns in each table show the perform-
ance of the others observers against the one used as reference. The other columns in each
table report tortuosity quantification performance when the following approaches are used:
manual segmentation (Manual); the proposed “SCIRD, multi-range context" segmentation
algorithm (Proposed, in bold face), based on curved-support and multi-range context filters;
the segmentation method proposed by [111], based on “locally-straight" and appearance
filters.

Ground Truth = Obs1

Performance measure Obs2 Obs3 Manual Proposed Rigamonti et al.

Acc 0.7678 0.7451 0.7448 0.7408 0.7182
Se 0.5736 0.5194 0.5426 0.5194 0.4806
Sp 0.8457 0.8219 0.8068 0.8113 0.7888

PPv 0.5729 0.5547 0.5590 0.5184 0.4745
Npv 0.8329 0.8223 0.8240 0.8204 0.8064
MSE 0.4729 0.5736 0.5736 0.5504 0.6589
MAE 0.4419 0.5116 0.4961 0.5039 0.5659

Ground Truth = Obs2

Performance measure Obs1 Obs3 Manual Proposed Rigamonti et al.

Acc 0.7791 0.7513 0.8039 0.7838 0.7327
Se 0.5736 0.5271 0.6202 0.5814 0.4806
Sp 0.8455 0.8254 0.8618 0.8478 0.8111

PPv 0.5977 0.5580 0.6262 0.5807 0.4715
Npv 0.8507 0.8317 0.8696 0.8560 0.8217
MSE 0.4729 0.5659 0.4729 0.5349 0.7829
MAE 0.4419 0.5039 0.4109 0.4574 0.5969

Ground Truth = Obs3

Performance measure Obs2 Obs1 Manual Proposed Rigamonti et al.

Acc 0.7329 0.7381 0.6828 0.7266 0.6589
Se 0.5271 0.5194 0.4496 0.5271 0.4031
Sp 0.8290 0.8275 0.7055 0.7409 0.6811

PPv 0.5495 0.5459 0.4025 0.5057 0.2946
Npv 0.7930 0.8001 0.7858 0.8286 0.7737
MSE 0.5659 0.5736 0.6899 0.6124 0.8217
MAE 0.5039 0.5116 0.5969 0.5194 0.6667

gorithm used here is our MSSPLINE, shown to outperform other methods in Table 5.1.

Experimental results suggest that modelling tortuous structures through SCIRD and using
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Table 5.3 Confusion matrices for the tortuosity estimation task obtained using the proposed
method. For tortuosity ground truth, individual observers are used in turn (Obs1, Obs2 and
Obs3).

Estimated level Estimated level Estimated level
1 2 3 4 1 2 3 4 1 2 3 4

Obs1
level

1 22 12 1 0
Obs2
level

1 23 9 2 0
Obs3
level

1 1 16 2 0
2 12 26 4 1 2 10 25 3 1 2 1 45 5 2
3 0 14 12 8 3 0 13 10 7 3 0 20 8 6
4 0 1 9 7 4 0 2 7 17 4 0 2 7 14

Table 5.4 Cohen’s kappa and modified kappa for the tortuosity estimation task. For ground
truth, individual observers are taken as reference in turn (Obs1, Obs2 and Obs3). We com-
pare the performance of the proposed method (i.e., SCIRD, multi-range context + MSS-
PLINE, indicated as Ours here) with the expert observers, in terms of Cohen’s kappa (K,
first row) and modified kappa (K/KM, second row).

GT = Obs1 GT = Obs2 GT = Obs3
Obs2 Obs3 Ours Obs1 Obs3 Ours Obs1 Obs2 Ours

K 0.42 0.34 0.33 0.42 0.36 0.43 0.34 0.36 0.28
K/KM 0.47 0.41 0.37 0.47 0.44 0.48 0.41 0.44 0.43

Table 5.5 Comparison in terms of running time for each tortuosity estimation algorithm
alone and in combination with the automated segmentation algorithm proposed herein. The
proposed spline-based curvature estimation, i.e. MSSPLINE (results in boldface), is signific-
antly faster than our previous multi-window solution, i.e. MSMW. Experiments were carried
out on Intel i7-4770 CPU @ 3.4 GHz, using MATLAB code. Each image was 384× 384
pixels.

Execution Time (140 images) MSMW MSSPLINE TD DM SCC τ5

Tortuosity (s) 7590 23.1 47.1 43 40.1 39
Segm. + Tortuosity (min) 196.5 70.4 70.8 70.7 70.7 70.7

multi-range context filters leads to a considerable improvement over conventional segment-

ation methods. This improvement is particularly remarkable as, for the first time to the best

of my knowledge, it closes the gap between automated and manual segmentation for the

tortuosity estimation task.

Confusion matrices and Cohen’s kappa. I further assess the performance of the pro-

posed fully automated tortuosity quantification system by reporting confusion matrices and

Cohen’s kappa values when each of the three observers is used in turn as reference. As

Table 5.3 shows, most of the images classified incorrectly are classified in the immediately
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following or preceding tortuosity level, a desirable property of our system, since tortuosity

represents an ordinal variable. Results in terms of Cohen’s kappa and modified kappa (i.e.

K/KM, where KM is the maximum possible K given marginal frequencies [44]) are repor-

ted in Table 5.4. Notice that given the different marginal frequencies for each tortuosity

level (whose values change depending on the observer used as ground truth), the modified

kappa represents a fairer index to assess agreement [44]. Nevertheless, I report the original

kappa values for completeness. In both cases, the proposed system matches the performance

obtained by the other expert observers, when compared to the one taken as reference.

Running time. I report running time for the tortuosity estimation algorithm alone and

used in combination with automated segmentation in Table 5.5: about 70 minutes are re-

quired to estimate image-level tortuosity for 140 images (fully automated). Thank to the

adopted spline-based curvature estimation, the running time is reduced considerably. The

current parameter setting seems to represent a good compromise between speed and tortu-

osity estimation accuracy.

Applying the system to other tortuosity quantification problems. The proposed sys-

tem was designed and developed to work on tortuous structures in general, and could poten-

tially be applied to structures other than corneal nerve fibres. Specifically, SCIRD and the

single-range context model were found particularly suitable for other curvilinear structures

as well, e.g. neurites acquired with different modalities (Section 4.2.4 and 4.3.4), therefore

presenting different characteristics in terms of contrast, resolution and context. The multi-

range context model introduced here improved performance significantly on corneal nerve

fibres; such improvements could be observed in similar scenarios, presenting non-target

structures with same appearance characteristics or low signal-to-noise ratio. The approach

for automated tortuosity quantification is highly versatile, as it is capable of identifying the

most discriminative tortuosity features which may vary for different structures and, more

importantly, for different pathologies. I maintained the segmentation and tortuosity estim-

ation modules separate to allow an easier and more effective interpretation of the results,

compared to solutions based on direct tortuosity feature extraction and image classification.

In my experience, the main source of errors in tortuosity estimation is the segmentation
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module, but training our hybrid segmentation solution requires a very limited amount of im-

ages and annotations, compared to fully-learned architectures. These choices should allow

easier adaptation within the medical imaging domain, in which image data and annotations

are not always abundant.

5.3 Tortuosity plane and confidence of the estimated tor-

tuosity level

Previously proposed methods provide typically a single tortuosity level (or coefficient

value), obfuscating the different effects of the factors considered, and limiting interpreta-

tions which could be important to the ophthalmologist for diagnosis.

Using the geometrical interpretation of the MLOR model, we can map each IVCM im-

age onto a plane (tortuosity plane or TP) whose axes are the best tortuosity measures identi-

fied automatically by the feature selection procedure (in our case, weighted mean curvatures

at spatial scales 2 and 5). Geometrically, the best weights γ and β of the MLOR model,

define the best (in the MLOR sense) linear decision boundaries separating the plane into

4 regions corresponding to the four tortuosity levels (black lines in Figure 5.5). Any new

corneal nerve image can be plotted as a point on the TP by computing the values of the two

best tortuosity measures. The region containing the new point gives the estimated tortuosity

level for the corneal nerve image.

Importantly, the TP provides also a level of confidence for the estimated tortuosity level,

quantifying the reliability of the system. This confidence is given by the probability of

belonging to one of the four regions (i.e., tortuosity levels) estimated automatically by the

MLOR model, and is intuitively proportional to the distance of the point (i.e., image) from

the linear decision boundaries. In fact, the closer the point to the boundary between two

adjacent regions, the less reliable is the estimated tortuosity level. The level of confidence

for all the points on the TP can be estimated once the system is trained (i.e. before analyzing

the target images) and color-coded for immediate, intuitive visualization.
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Figure 5.5 shows the TP obtained with the proposed method applied to a subset of

IVCM140 images during a random 20-fold cross-validation procedure. The 4 regions re-

lated to the 4 tortuosity levels are identified automatically and the best separating lines

(visualized in black) traced. Then, the two best tortuosity measures are computed on each

of the testing images and they are mapped onto the TP. Since each image belongs to a dif-

ferent tortuosity level, they are (correctly) mapped to four different regions. Visualizing the

images as points on the TP allows an immediate and consistent interpretation.

First, image 1 is close to the boundary 1-2, so the confidence of tortuosity level 1 (instead

of 2) is limited; this is consistent, as some fibres appear rather tortuous for level 1. The same

considerations apply to image 3.

Second, although image 2 belongs to the tortuosity level with lowest overall accuracy

(level 2), it is mapped to the center of the corresponding TP region, and therefore the con-

fidence of the prediction is relatively high for level 2. Image 4 is classified with the highest

confidence as it clearly shows an abrupt large change (scale 5) in the direction of the second

fiber (counting from left to right), and also high-frequency changes in other fibres (scale 2).

Previous, single-scale methods would not tease out this difference.

Third, the contribution of high and low frequency turns (i.e. curvatures at scales 2 and

5) for the predicted tortuosity level can be easily deduced. For instance, images 1 and 2

show a relatively low mean curvature at scale 5, but this is higher for images 3 and 4. Then,

although image 2 is correctly assigned to tortuosity level 2, a higher mean curvature at scale

2 than image 3 is present: this suggests that, in our data set, the mean curvature at scale 2

(i.e. high frequency turns) is slightly less discriminative than the one at scale 5.

I ran a leave-one-out cross-validation simulating the scenario in which the tortuosity

of a new unseen image is assessed. For each validation, the best boundaries were estim-

ated automatically and the tortuosity level was assigned. Figure 5.6 shows the result of this

process. I use different markers to indicate the true tortuosity level of each image as per ma-

jority voting ground truth. The four clusters reflecting the tortuosity levels are clearly visible

and separated automatically by the proposed system, although some mis-classifications are

present. Notice that the maximum error made by the system is always within 1 tortuosity
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Figure 5.6 All images in IVCM140 are projected onto the tortuosity plane after a leave-one-
out cross-validation on unseen images. Markers indicate the majority voting ground truth
tortuosity level. The estimated tortuosity level corresponds to the region within which an
IVCM image is mapped. During each cross-validation the best decision boundaries (shown
in black) are computed based on the training set.

level, showing very low MSE errors. Moreover, different regions show different spread-

ing on the TP, especially in region 2 (very low) and region 4 (very high), suggesting that

intra-level tortuosity characteristics should be better investigated in future studies.

5.4 Conclusions

In this chapter I have introduced and discussed the tortuosity estimation module of the

proposed fully automated framework for image-level tortuosity estimation. This module is

based on a novel tortuosity estimation paradigm, capable of identifying the most discrim-

inative tortuosity features and their combination, among the pool of multi-scale tortuosity

measures (i.e. it does not pre-define which features determine tortuosity estimation).
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Experiments carried out on 140 images from healthy and unhealthy subjects with dif-

ferent pathologies (IVCM140), show that our segmentation module for tortuous structures

outperforms conventional methods based on the “locally-straight" assumption and learned

appearance filters. The improvement in terms of segmentation is immediately transferred

to tortuosity estimation performance. The tortuosity estimation module, based on multi-

scale spline-based curvature estimation, performs considerably better than state-of-the-art

single-index algorithms and addresses the main drawback of the previously proposed multi-

scale-multi-window approach, i.e. the speed. In fact, the proposed solution is orders of

magnitude faster than the previous one, and achieves better performance. This speed gain,

combined with the hybrid segmentation solution, makes the system fast: 30s are required to

analyse an IVCM image using MATLAB (R2014a) code on a machine equipped with Intel

i7-4770 CPU at 3.4 GHz.

Visualising the predictions made by the proposed tortuosity estimation method on a two-

dimensional plane, the tortuosity plane, offers various advantages compared with traditional

approaches providing a single number (i.e., tortuosity level or index). First, it allows a finer

(i.e., continuous) tortuosity scale compared to methods estimating tortuosity using a few

levels. Compared to approaches based on indices (i.e., providing a continuous number),

the TP provides a two-dimensional continuous tortuosity scale, thus allowing a better inter-

pretation of the estimated tortuosity. Moreover, the contribution of each tortuosity measure

into the final estimate becomes trivial (i.e., it is readily available on the axes of the plane).

Overall, the TP allows a better tortuosity stratification and the possibility to identify sub-

categories clustering in specific regions of the plane. Second, it visualises the level of con-

fidence (i.e., reliability) of the estimated tortuosity simply and intuitively, using colour and

also by the distance of a point from its closest boundaries, an aspect ignored so far. Import-

antly, the proposed method takes into account that the tortuosity grade of some images can

be estimated with less confidence compared to others.

The comparison with three experienced observers who annotated the images independ-

ently shows, remarkably, that the proposed system matches or even exceeds their perform-

ance. This opens the possibility of analysing the large volumes of images needed for screen-
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ing programs very efficiently, subject of course to further validation with much larger data

sets.

In the next chapter, I will discuss ways to improve curvilinear structure modelling and

segmentation, which could make the proposed automated tortuosity quantification frame-

work more effective.



Chapter 6

Improving Curvilinear Structure

Modelling and Segmentation

6.1 Introduction

In the previous chapters I have mainly dealt with corneal nerve fibres and neurites. Ex-

perimental results show that the proposed segmentation module achieves a level of detection

performance such that tortuosity estimation matches or exceeds the level of performance of

cornea specialists. With the aim of making the proposed system versatile, I have carried out

experiments with other curvilinear structures such as blood vessels acquired with fundus

camera and found that SCIRD tends to perform poorly on very thin structures (1 or 2 pixels

wide)1. In this chapter I discuss the reason why SCIRD tends to degrade its detection per-

formance when dealing with very thin structures (i.e. retinal blood vessels captured at low

resolution) and propose a new formulation of SCIRD, SCIRD-TS, which addresses this

problem and improves the detection of very thin structures considerably.

The proposed hybrid segmentation approach makes use of multi-range context filters.

Those filters are learned with K-means clustering due to the prohibitive cost of learning

several hundreds of filters with strategies such as convolutional sparse coding, potentially

1Curvilinear structures in IVCM100, IVCM140, BF2D and VC6 are typically wider, so SCIRD performs
well.
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leading to more discriminative filter banks. In this chapter I also discuss a novel acceleration

approach to speed-up convolutional sparse coding filter learning, which reduces consider-

ably the time needed to learn such filter banks. The benefits of reducing the training time

go beyond improving the proposed segmentation module and could be adopted by state-of-

the-art deep learning architectures (or DLAs) recently proposed.

6.2 Improving SCIRD

6.2.1 SCIRD for thin structures (SCIRD-TS)

Curvilinear structures such as blood vessels and neurites share appearance characterist-

ics which can be easily modelled, rather than learned. In recent years, important efforts

have been made in this regard and several HCFs have been proposed (e.g., Frangi [49],

Gabor [123], OOF [83]). These methods assume that a curvilinear structure is “locally

straight" and well contrasted. However, these assumptions are violated by structures such

as blood vessels and neurites, appearing fragmented, showing some level of tortuosity or

captured with low signal-to-noise ratio. As a consequence, detection performance may de-

grade significantly. I addressed these modelling issues in Chapter 4 by proposing a novel

ridge detector, SCIRD, which adds curvature and contrast invariance to that of previous

HCFs (i.e., scale, rotation and elongation).

In Chapter 4 (SCIRD), I model a curvilinear structure with a curved-support Gaussian

function. Then, the curved ridge detection is obtained by measuring the second directional

derivative along the gradient of each curved-support Gaussian. This derivation results in a

ridge detector which consists of a ratio of first and second derivatives of the curved-support

Gaussian function, thus leading to “0/0" indeterminate form in particular cases, e.g. when

the first derivatives vanish. Unfortunately, this compromises the detection of thin structures,

as shown qualitatively in Figure 6.1 and 6.2.

To address this limitation and avoid indeterminate forms, here I modify the derivation of

the curved-support ridge detector. Specifically, instead of curving the curvilinear structure

model (as done for SCIRD), I first derive a straight ridge detector. Then, I apply a non-
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linear transformation to curve the ridge detector. This new ridge detector is therefore curved

as SCIRD is, but when adopting straight filters (i.e. curvature is 0), it does not lead to

indeterminate pixel values, as shown in Figure 6.1 (third row). This improves the detection

of thin structures, as shown qualitatively in Figure 6.2.

Let us model a straight ridge-like structure by means of a multivariate zero-mean (n-D)

Gaussian function with diagonal covariance matrix,

G(ϕϕϕ;σσσ) =
1√

(2π)n ∏
n
i=1 σ2

i

exp

(
−

n

∑
i=1

ϕ2
i

2σ2
i

)
(6.1)

where ϕϕϕ =(ϕ1,ϕ2, . . . ,ϕn) represents a point in the {ϕ} coordinate system, and σσσ =(σ1,σ2, . . . ,σn)

describes the standard deviation in each direction. A ridge detector can be obtained by meas-

uring the contrast between the part inside and outside the ridge [49]. This can be achieved

by measuring the second derivative with respect to the variables along which we observe

the ridge-like profile. Using the separability property of the n-D Gaussian, one can compute

the second derivative with respect to each variable and then combine the results (e.g. by

summing up all the contributions). The second derivative of G(ϕϕϕ;σσσ) with respect to the

variable ϕ j has the form

Gϕ jϕ j(ϕϕϕ;σσσ) = G(ϕϕϕ;σσσ)

[
1

σ2
j

(
ϕ2

j

σ2
j
−1

)]
. (6.2)

If we assume (without loss of generality) that the structure shows a ridge-like profile only

with respect to the coordinate ϕ j, the function Gϕ jϕ j(ϕϕϕ;σσσ) represents a ridge detector for

straight structures. To extend this ridge detector to curved objects, we can consider a non-

linear transformation T : Rn 7→ Rn with T (xxx) =ϕϕϕ = (ϕ1,ϕ2, . . . ,ϕn) of the form

ϕ j = x j +
n−1

∑
i=1

k jix2
i , 2 ≤ j ≤ n (6.3)

and ϕ1 = x1, where k ji ∈ R and xi are the coordinates of a point in the new {x} coordin-

ate system. In the 2-D case (i.e. n = 2), applying the transformation T in Eq. (6.3) to
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Figure 6.1 First row: ideal thin structure (1 pixel wide); second row, from left to right:
SCIRD filter, SCIRD response and its cross-sectional profile along the blue line; third row,
from left to right: SCIRD-TS filter, SCIRD-TS response and its cross-sectional profile along
the blue line. Notice that while the SCIRD response is approximately 0 on the thin structure
(i.e. SCIRD does not detect it), the SCIRD-TS one is maximum, hence leading to a correct
detection.

Gϕ jϕ j(ϕϕϕ;σσσ) in Eq. (6.2), leads to the general form of a SCIRD-TS filter:

F(xxx;σσσ ,k) =
1

σ2
2 Z(σσσ)

[
(x2 + kx2

1)
2

σ2
2

−1
]

exp
(
−

x2
1

2σ2
1

)
exp

(
−
(
x2 + kx2

1
)2

2σ2
2

)
, (6.4)
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where k21 (curvature parameter) is indicated as k for compactness.

To make the ridge detector rotation invariant, SCIRD-TS filters can be simply rotated by

θ , applying the rotation matrix to (x1,x2). Therefore, we will indicate a SCIRD-TS filter as

F(xxx;σσσ ,k,θ).

A pre-defined convolutional filter bank can be generated by spanning the range of the

free parameters σ1, σ2, k and θ . Similarly to SCIRD (Section 4.2.2), contrast normalisation

can be adopted for SCIRD-TS as well. Then, the unsupervised version of SCIRD-TS can

be simply obtained by computing the maximum projection over all the filter responses,

while the supervised one can be built by using SCIRD-TS filter bank responses as input to

a classifier (e.g. Random Forest).

6.2.2 Experiments and results

Data sets. I employed four benchmark data sets to validate SCIRD-TS detection per-

formance. They include two of the most used data sets to validate retinal blood vessel

segmentation, DRIVE (Section 3.2.5) and STARE (Section 3.2.6), and two data sets show-

ing neurites, BF2D (Section 3.2.3) and VC6 (Section 3.2.4), used as benchmark in recent

work [111, 121, 122].

Performance evaluation protocol. I adhere to the evaluation protocol adopted in [111,

121, 122], among others. Specifically, given the noticeable imbalance between true neg-

atives (TNs) and the other measures of the contingency matrix, i.e. true positives (TPs),

false negatives (FNs) and false positives (FPs)2, I adopt PRCs to assess segmentation per-

formance. I compare SCIRD-TS detection performance with widely used HCFs (i.e. Gabor

[123], Frangi [49], OOF [83]) and SCIRD (Section 4.2.2).

Parameter setting. Parameters for SCIRD-TS, SCIRD and baseline methods were tuned

independently to achieve their best performance on each data set, to provide a fair compar-

ison. All the experiments were carried out on a laptop equipped with Intel i7-4702 CPU at

2.2GHz and 16GB RAM (MATLAB implementations, R2014a).

2The number of true background pixels is much higher than that of true vessel or neurite pixels in the
images.
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Results and discussion. Figure 6.3 shows the segmentation performance on the four

data sets in terms of precision-recall curves for SCIRD-TS, SCIRD and state-of-the-art and

widely used HCFs. The proposed SCIRD-TS outperforms SCIRD (and the other HCFs

baselines) on the four data sets, as it detects thinner structures not detected by SCIRD.

Notice that the biggest improvement is observed on DRIVE and STARE data sets (retinal

blood vessels) which include a large number of very thin vessels. The improvement is less

noticeable on the other two data sets, as the resolution with which curvilinear structures are

imaged is higher, therefore there are not so many very thin vessels. Nevertheless, SCIRD-TS

matches or exceeds the detection performance of SCIRD on those data sets, thus suggesting

that better detection performance on very thin structures does not worsen the detection of

large ones.

6.3 Improving unsupervised filter learning

Most of the existing methods for automated curvilinear structure segmentation rely on

HCFs designed to model local geometric properties of ideal tubular shapes. Today research

is moving towards DLAs given their excellent results on several challenging tasks, as shown

by Bengio et al. [17], Kavukcuoglu et al. [75], Kontschieder et al. [76], and Krizhevsky et

al. [78], among others. In medical image analysis, DLAs have been used for segmentation

by Brebisson and Montana [21], Ciresan et al. [34, 35], Li et al. [90] and Kamnitsas et

al. [73], among others, but also for other applications, such as predicting Alzheimer’s dis-

ease by Payan and Montana [107] (refer to Schmidhuber [117] for a comprehensive review).

Experimental results show that lower layers of DLAs with convolutional structure (e.g.

convolutional neural networks, or CNN) tend to learn a subset of filters similar to well-

known HCFs (e.g. Gabor filters, see [24, 63, 75, 78, 89, 121]). This is also the case for

convolutional sparse coding (henceforth, CSC) as shown in Figure 6.4. Therefore, I argue

that employing such complex architectures to learn filters similar to HCFs is inefficient; a

more efficient approach would be learning only appearance characteristics not included in

the hand-crafted models. On the other hand, HCFs often require manual parameter tuning



6.3 Improving unsupervised filter learning 90

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
  

0
.4

0
.5

0
.6

0
.7

0
.8

0
.91

R
e
c
a
ll

Precision

B
F
2
D

G
A

B
O

R

F
R

A
N

G
I

O
O

F

S
C

IR
D

S
C

IR
D

−
T

S

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
  

0
.4

0
.5

0
.6

0
.7

0
.8

0
.91

R
e
c
a
ll

Precision

D
R
I
V
E

G
A

B
O

R

F
R

A
N

G
I

O
O

F

S
C

IR
D

S
C

IR
D

−
T

S

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
  

0
.4

0
.5

0
.6

0
.7

0
.8

0
.91

R
e
c
a
ll

Precision

S
T
A
R
E

G
A

B
O

R

F
R

A
N

G
I

O
O

F

S
C

IR
D

S
C

IR
D

−
T

S

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
  

0
.4

0
.5

0
.6

0
.7

0
.8

0
.91

R
e
c
a
ll

Precision

V
C
6

G
A

B
O

R

F
R

A
N

G
I

O
O

F

S
C

IR
D

S
C

IR
D

−
T

S

Fi
gu

re
6.

3
Pe

rf
or

m
an

ce
ev

al
ua

tio
n

in
te

rm
s

of
pr

ec
is

io
n-

re
ca

ll
cu

rv
es

(p
ix

el
-l

ev
el

se
gm

en
ta

tio
n)

fo
rs

ev
er

al
H

C
Fs

on
B

F2
D

,D
R

IV
E

,
ST

A
R

E
an

d
V

C
6

da
ta

se
ts

.



6.3 Improving unsupervised filter learning 91

which does not guarantee optimal performance, while DLAs are capable of finding the best

setting automatically.

Recently, an auto-context framework (multi-layer) based on unsupervised filter learning

has been shown to outperform CNN and modifications [51] on curvilinear structure seg-

mentation in the medical domain [120, 122]. The framework proposed in [120, 122] relies

on filters learned through CSC [111, 121], but learning them is very time-consuming as re-

ported in [111] (several days to learn 121 filters using MATLAB code and state-of-the-art

machines). Therefore, the filter bank learned at the first layer is kept unchanged across the

other ones, due to the prohibitive cost of learning layer-specific filter banks[122]. This limit-

ation is particularly relevant for medical imaging applications, where the visual appearance

of curvilinear structures may vary significantly and the range of acquisition modalities may

lead to different image characteristics in terms of contrast and noise. As a consequence,

re-training could be necessary to achieve good performance.

Motivated by the above and inspired by the observation that filters learned by CSC

for curvilinear structure segmentation are often similar to well-known HCFs, I propose an

efficient approach to learning CSC filters.

This work differs fundamentally from recent acceleration methods like those reported

by Heide et al. [63], Bristow et al. [24], and Bao et al. [12, 13], which rely on efficient

mathematical formulations to solve the CSC optimisation problem. Such methods typically

initialise filters with random values or by a discrete cosine transform (henceforth, DCT).

While this solution is general, it does not exploit prior knowledge about the target curvilinear

structure and its appearance.

Unlike previous methods, I achieve CSC acceleration by a novel warm-start initialisa-

tion strategy based on SCIRD-TS. Specifically, the proposed warm-start strategy identifies

the optimal set of initial filters from a large amount of HCFs generated by spanning the

range of parameters related to the structures of interest. It is worth noting that setting the

ranges for HCF parameters is very intuitive, as they represent geometric properties of the

target structure and their effects can be checked visually. These filters are then refined by

using CSC to incorporate specific properties of the structures (e.g. retinal blood vessels,
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Figure 6.4 A filter bank learned using convolutional sparse coding with random initialisa-
tion. The DRIVE data set was used for this experiment.

neurites) of a specific data set. Intuitively, the speed-up is achieved by learning only the

“properties" which have not been modelled and by refining the ones already modelled (e.g.

width or elongation).

Importantly, any previously proposed CSC solver for filter learning could be adopted in

our framework (e.g. [14, 24, 63]). For this reason, the proposed acceleration method could

be combined with state-of-the-art (and future) fast CSC solvers.
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Figure 6.5 Block diagram of the proposed method. Notice that all the curvilinear structures,
represented in the space S as blue and red dots, are copied in the other spaces as well (to
show their original position), and they are shown in light blue and light red, respectively.

6.3.1 Optimal warm-start strategy

Let S ⊆ Rp be the space of all the curvilinear structures in a particular data set, and

assume that a subset s of them can be detected by using SCIRD-TS filters in the space

F ⊆ Rp (Figure 6.5). The parameter ranges of these SCIRD-TS filters can be estimated

easily, e.g. by visual inspection of the curvilinear structures in S. Sampling such parameter

ranges with regular spacing (i.e., fixed sampling step) guarantees better approximations of

the filters in F as the sampling step δ vanishes. Let F ∈ Rp be the space generated by

such sampling procedure. So, the first step of the proposed warm-start strategy consists of

generating t SCIRD-TS filters in F (t > s, in general) by sampling regularly and densely

(i.e., small sampling step) its parameter ranges.

Using the entire set of SCIRD-TS filters generated in the previous step is clearly infeas-

ible (t > 20,000 with our parameter setting). So, we need to reduce the cardinality of F and

represent it with filters in a new space F̂ with a much lower cardinality K ≪ t, while still

preserving a good representation of F (hence of F). A key requirement for the success of

sparse coding dictionary learning strategies is building incoherent dictionaries (e.g. [13]).

The mutual incoherence of a dictionary D can be defined as



6.3 Improving unsupervised filter learning 94

µ(D) = min
i ̸= j

∥∥di −d j
∥∥2

2 , (6.5)

where di and d j are two different dictionary elements (or atoms) arranged as column vectors.

So, a high value of µ(D) for the learned dictionary is desirable. Moreover, since our overall

target is to accelerate CSC, the cardinality reduction should be fast, so that most of the train-

ing time is spent on the CSC phase. Of course, sampling uniformly and sparsely SCIRD-TS

parameter ranges would be fast, but it would not guarantee high dictionary incoherence.

The compression approach I adopt here to identify the set of K prototype filters which

represent optimally (in the sense of minimising the quantisation error) the original SCIRD-

TS space F is K-means clustering using Euclidean distance3. K-means clustering offers: (1)

an optimal compression approach for any chosen K, thus meeting the requirement of good

representation of the original SCIRD-TS space; (2) the desirable high mutual incoherence

(i.e. high inter-cluster Euclidean distance)4; (3) a fast compression algorithm (run time

negligible compared to the CSC phase). So, if we indicate with f(i) the i-th SCIRD-TS filter

in F (f(i) is F(xxx;σσσ ,k,θ) in Eq. (6.4) arranged as a column vector), the second step of the

proposed warm-start strategy consists of solving the optimization problem

argmin
D,c

∑
i

∥∥∥Dc(i)− f(i)
∥∥∥2

2
(6.6)

subject to ||c(i)||0 ≤ 1,∀i = 1, . . . ,mD and ||d( j)||2 = 1,∀ j = 1, . . . ,K, where c(i) is the code

vector related to the i-th original SCIRD-TS filter f(i), and d( j) is the j-th column of the

dictionary D of prototype filters (examples in Figure 6.7, first column). In our experiments,

we adopt the fast K-means optimisation algorithm proposed by Coates and Ng in [36]5.

Careful seeding discussed in [8] is used to initialise the clusters.

3I adopt the same distance used for the CSC phase.
4It is worth noting that optimising Equation (6.6) is not exactly the same as optimising Equation (6.5). In

fact, Equation (6.6) guarantees (locally) optimal distance among all cluster centres/filters (i.e. on average),
while Equation (6.5) requires that the minimum distance among the filters is high. Nevertheless, using K-
means often leads to filter banks with high incoherence.

5Notice that this algorithm does not guarantee convergence to the global minimum but to a local one, so
the compression is locally optimal.
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6.3.2 Refining the prototype filters by CSC

I refine the filter bank obtained with the warm-start strategy by CSC. Specifically, I

optimise the following objective function [111]:

argmin
{D( j)}
{M( j)

i }

N

∑
i=1

∥∥∥∥∥Pi −
K

∑
j=1

D( j) ∗M( j)
i

∥∥∥∥∥
2

2

+λ

K

∑
j=1

∥∥∥M( j)
i

∥∥∥
1

, (6.7)

where Pi is the i-th original image patch to reconstruct (N patches in total), D( j) is the j-th

refined filter (K filters in total), M( j)
i can be regarded as the j-th component (map) of the

representation related to Pi and λ is the sparsity (regularization) parameter. Filters, original

image patches and representation maps are arranged as matrices. The symbol ∗ indicates

convolution.

In essence, the goal of this CSC optimisation is to minimise the total reconstruction er-

ror computed by approximating each original image patch using the current filter bank. The

reconstruction is obtained by finding a sparse representation of the current patch (the second

term in Eq. (6.7) penalises the ℓ1-norm of each component of the representation). Since the

objective in Eq. (6.7) is not convex, several optmisation strategies can be employed. For

instance, Rigamonti et al. [111] adopted a proximal algorithm, ISTA (Iterative Shrinkage

Thresholding Algorithm) [11, 106]. To speed-up the optimisation, I adopt a faster proximal

method, FISTA [14]. Moreover, I compute the high number of convolutions in the Four-

ier domain by exploiting fast Fourier transform algorithms. Finally, I adopt a batch-based

optimisation strategy as done, for instance, in [87, 128].

6.3.3 Impact of the warm-start strategy on CSC optimisation

I provide a brief analysis of the computational complexity of CSC optimisation, in terms

of number of multiplications, to better investigate the impact of the proposed warm-start

strategy on the running time.
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Let I1 ∈Rr1×c1 and I2 ∈Rr2×c2 be two images (or patches) we want to convolve. Due to

the high number of convolutions involved in the CSC optimisation, I compute them in the

Fourier domain, hence requiring the following steps:

1. Padding I1 and I2 with zeros so that they have the same size r3 × c3, where r3 and c3

are the closest powers of 2 larger than r1 + r2 −1 and c1 + c2 −1, respectively;

2. Computing the Fourier transform (DFT) of the two images;

3. Multiplying the DFTs of the two images;

4. Computing the inverse Fourier transform (IDFT) of the result.

Considering that a DFT (and also an IDFT) requires 6r3c3 log2(r3c3) real multiplications

[121], and that a complex multiplication requires 3 real multiplications, a single convolution

would require 3r3c3(6log2(r3c3)+1) multiplications.

The fast proximal method (FISTA) I adopt to optimise Eq. (6.7) alternates between the

optimisation w.r.t. the K filters (D( j)) and the maps (M( j)
i ) for each patch Pi:

Optimisation w.r.t. the filters. This can be obtained by gradient descent, which

amounts to computing K convolutions between the residual error of reconstruction and the

related K maps, as the second term of Eq. (6.7) vanishes [32]. The total number of multi-

plications needed to perform this step is therefore6 3Kr3c3(6log2(r3c3)+1).

Optimisation w.r.t. the maps. From a computational complexity perspective, this step

requires the computation of the gradient of the first term in Eq. (6.7) w.r.t. the maps M( j)
i

and a soft-thresholding (proximal operator of the l1 norm [32, 106]). Again, the gradient

can be computed efficiently by convolving the K filters with the residual error of recon-

struction [32], hence requiring 3Kr3c3(6log2(r3c3)+1) multiplications. In addition, the K

soft-thresholding operations require Kr3c3 multiplications [24].

Since we optimise over N patches (also called “mini-batch" in batch-based optimisation

strategies [87, 102, 128]) and iterate several times (every pass over all the N patches is

denoted as “epoch", Ne), the total number of multiplications required to optimise Eq. (6.7)

6One could pre-compute the DFT of the residual error and reduce the number of multiplications further.
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is:

Ne ×N × [6Kr3c3(6log2(r3c3)+1)+Kr3c3]. (6.8)

The number of patches N, the number of filters K and the dimension of the filters are

application-dependent. Once the optimisation algorithm is fixed (FISTA, in this case), the

only other parameter which could have a significant impact on the complexity is the number

of epochs Ne (multiplicative factor). I demonstrate experimentally in the next section that

initialising CSC with the proposed warm-start strategy reduces Ne (and often achieves lower

reconstruction errors, thus potentially leading to more discriminative filter banks).

6.3.4 Experiments and results

Data sets. I employed four benchmark data sets to validate the proposed CSC accel-

eration strategy. They include two of the most popular data sets to validate retinal blood

vessel segmentation, DRIVE [125] and STARE [66], and two data sets showing neurites,

BF2D and VC6, used as benchmark in recent work [111, 121, 122]. Poor and variable

contrast, low-resolution, non-uniform illumination, structure fragmentation, irregularities

in the staining process (VC6), confounding non-target structures (e.g. optic disk, exudates

and haemorrhages in DRIVE; blob-like structures in BF2D and VC6) make these data sets

particularly challenging for automatic segmentation.

Performance evaluation. Since the CSC optimisation problem aims to find a sparse

representation for each original image patch minimising the total reconstruction error, I first

assessed the performance in terms of reconstruction error and time to convergence. Then, I

evaluated segmentation performance.

• Reconstruction error and time to convergence. For these experiments, I randomly

sampled 1,000 49× 49 image patches from the original images (i.e. the “batch")

from the training set of DRIVE, BF2D and VC6 separately and measured the total

reconstruction error against the number of epochs7. For STARE, I excluded the 20

manually segmented images used for assessing segmentation performance and car-

7In batch-based optimisation strategies, an epoch represents one pass over the entire batch.
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ried out this experiment on the 377 images left. I compared the performance of the

proposed initialisation strategy against the random one, adopted in most of the related

work, e.g. [24, 63, 111, 121], and DCT-based one, adopted in [12, 13]. I used the

same batch for the proposed method and the baselines for fair comparison. To assess

the influence of the dictionary size on the total reconstruction error I ran experiments

for banks including 49, 100 and 144 learned filters.

• Segmentation. To assess segmentation performance, I convolve each image with the

K learned filters and represent each pixel with the K local responses (i.e. K-D feature

vector). Then, I give this feature vector as input to a random forest classifier to in-

fer the probability of each pixel of belonging to a curvilinear structure. For DRIVE,

BF2D and VC6, the training set was formed by pixel samples from the provided train-

ing images; for STARE, I adopted a leave-one-out cross-validation on the 20 images

manually segmented, as typically done in the literature (e.g. [89, 123]). I adhere to

the evaluation protocol adopted in [111, 121, 122], and compute PRCs and AUPRC

to assess segmentation performance. In addition to the baselines adopted above (i.e.

CSC with random and DCT initialisation), I compared the proposed method’s per-

formance with widely used HCFs (i.e. Gabor [123], Frangi [49], OOF [83]), SCIRD,

and the combination method proposed by Rigamonti et al.[111].

Parameter setting. I report here the setting for the warm-start strategy, the CSC phase

and the classifier.

• Warm-start strategy. Parameter ranges for generating the large SCIRD-TS filter bank

were set manually by visually inspecting DRIVE training images, with the idea of

covering a suitable range in terms of width, elongation, curvature and rotation resol-

ution. I adopted a conservative setting (i.e., wide ranges and high resolution) without

careful tuning or specific optimisation. In particular, σ1 = [1,10] with step 0.5,

σ2 = [1,10] with step 0.5 (filters are forced to be elongated, i.e. filters with σ2 >σ1 are

discarded), k = [−0.1,0.1] with step 0.025 and θ = [15,180] with step 15 degrees. To

test the generalisation of these settings, I adopted them for BF2D, VC6 and STARE as
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well, although they contain different curvilinear structures (neurites vs retinal blood

vessels) and resolution. I set the number of K-means iterations to 100, although a few

tens are typically sufficient (with negligible impact on the total time to convergence of

the proposed acceleration strategy). I assessed the influence of the number of filters

(i.e., K) on the reconstruction performance using K ∈ {49,100,144}. For compar-

ison, the maximum number of CSC filters learned in [120] (the current benchmark on

DRIVE) is 121.

• CSC phase. When random initialisation is used, setting the sparsity parameter λ

manually is not trivial. In fact, low values tend to produce noisy filters, whereas

high ones lead to a slow convergence. I found λ = 2 to yield good results on the

DRIVE data set; I investigated the impact of different λ values and report the results

below. To test robustness, I used the same value for BF2D, VC6 and STARE as well.

• Classifier. I trained a RF using 144-D feature vectors (i.e. number of learned filters

K = 144) with 100 trees for each data set, to achieve a good compromise between

segmentation performance and processing time. Each tree’s depth was set automatic-

ally, by evaluating the out-of-bag error during training. I randomly sampled 200,000

training instances from the training partition of each data set to build the related RF

model.

I adopted the same filter size used in [111, 120, 121], i.e. 21× 21 pixels, for all the data

sets, as size was not found to affect performance significantly on the data sets used. All the

experiments were carried out on a laptop equipped with Intel i7-4702 CPU at 2.2GHz and

16GB RAM (MATLAB R2014a).

Reconstruction error and time to convergence. In Table 6.1 I report the total time

to convergence for CSC using the acceleration method and the baselines, for each data set

and dictionary size. I observe that (1) the time to run our warm-start strategy is negligible

compared to the total time to run CSC (i.e. a few seconds against tens of minutes); (2) the

proposed CSC acceleration takes much less time to obtain discriminative filter banks than

conventional CSC initialisation strategies, e.g. up to 82% less time, when 144 filters are
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learned. Remarkably, the proposed acceleration strategy does not compromise performance

either in terms of reconstruction error or segmentation performance. Figure 6.6 shows the

total reconstruction error against the number of epochs needed to achieve convergence for

the proposed initialisation method and the baselines, for the four data sets and different dic-

tionary size. I notice that (1) the warm-start strategy based on SCIRD-TS achieves both the

lowest total reconstruction error and the fastest convergence on each data set and for each

dictionary size8; (2) initialising the filter bank with DCT (as done in [12, 13]) does not lead

to either faster convergence or lower reconstruction error compared to random initialisation,

for data sets including curvilinear structures9; (3) although the adopted SCIRD-TS paramet-

ers were set using DRIVE training images, the total reconstruction error on BF2D, VC6 and

STARE is always lower, and sometimes substantially, than random initialisation, suggesting

good generalisation. Reconstruction error and time to convergence. In Table 6.1 I report

the total time to convergence for CSC using the acceleration method and the baselines, for

each data set and dictionary size. I observe that (1) the time to run our warm-start strategy is

negligible compared to the total time to run CSC (i.e. a few seconds against tens of minutes);

8In Figure 6.6 (“DRIVE - 144 FILTERS") random initialisation achieves slightly less reconstruction error,
with a substantially higher number of epochs.

9Bao et al. [12, 13] adopted DCT initialisation for general purpose applications, such as image compres-
sion.

Table 6.1 Total time to convergence (in minutes) for the CSC phase initialised with the
proposed method (Prop.), and the baselines. In brackets, the proposed warm start processing
time (in seconds).

DRIVE Number of learned filters BF2D Number of learned filters
Method 49 100 144 Method 49 100 144
Random 167 458 1085 Random 152 290 1062

DCT 167 242 2049 DCT 198 418 1474
Prop. 51(6) 106(11) 195(16) Prop. 58(6) 141(11) 247(16)

VC6 Number of learned filters STARE Number of learned filters
Method 49 100 144 Method 49 100 144
Random 132 374 467 Random 120 291 466

DCT 345 734 743 DCT 313 397 751
Prop. 54(6) 117(11) 203(16) Prop. 61(6) 94(11) 159(16)
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(2) the proposed CSC acceleration takes much less time to obtain discriminative filter banks

than conventional CSC initialisation strategies, e.g. up to 82% less time, when 144 filters are

learned. Remarkably, the proposed acceleration strategy does not compromise performance

either in terms of reconstruction error or segmentation performance. Figure 6.6 shows the

total reconstruction error against the number of epochs needed to achieve convergence for

the proposed initialisation method and the baselines, for the four data sets and different dic-

tionary size. I notice that (1) the warm-start strategy based on SCIRD-TS achieves both the

lowest total reconstruction error and the fastest convergence on each data set and for each

dictionary size10; (2) initialising the filter bank with DCT (as done in [12, 13]) does not

lead to either faster convergence or lower reconstruction error compared to random initial-

isation, for data sets including curvilinear structures11; (3) although the adopted SCIRD-TS

parameters were set using DRIVE training images, the total reconstruction error on BF2D,

VC6 and STARE is always lower, and sometimes substantially, than random initialisation,

suggesting good generalisation.

Figure 6.7 illustrates how the initial filter banks generated using the proposed warm-start

strategy were refined by the adopted CSC approach on each data set. A large subset of filters

is left unchanged or refined lightly (in terms of width and elongation, for instance), while

other filters are modified significantly to reduce the reconstruction error and compensate for

the part HCFs are not capable to model. This observation confirms the underlying hypo-

thesis that a well-designed HCF bank includes already a large portion of the filters suitable

for curvilinear structures segmentation in the medical domain, and that the proposed ap-

proach (optimal warm-start) obtains highly discriminative filter banks in a more efficient

way compared to conventional initialisation.

Segmentation. Figure 6.8 shows the segmentation performance on the four data sets in

terms of PRCs for state-of-the-art and widely used HCFs (i.e. Gabor [123], Frangi [49],

OOF [83]), SCIRD, SCIRD-TS, the combination approach proposed by Rigamonti et al.

10In Figure 6.6 (“DRIVE - 144 FILTERS") random initialisation achieves slightly less reconstruction error,
with a substantially higher number of epochs.

11Bao et al. [12, 13] adopted DCT initialisation for general purpose applications, such as image compres-
sion.
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Table 6.2 Comparison in terms of AUPRC, F-measure, Jaccard index and training time (in
minutes), between random, DCT-based and the proposed initialisation strategy (denoted as
“Ours").

DRIVE Performance measure
Method AUPRC F-measure Jaccard Time
Random 0.85 0.77 0.62 1085

DCT 0.84 0.76 0.61 2049
Ours 0.87 0.79 0.64 195

BF2D Performance measure
Method AUPRC F-measure Jaccard Time
Random 0.83 0.77 0.62 1062

DCT 0.83 0.76 0.61 1474
Ours 0.84 0.76 0.62 247

VC6 Performance measure
Method AUPRC F-measure Jaccard Time
Random 0.81 0.74 0.59 467

DCT 0.77 0.70 0.54 743
Ours 0.83 0.76 0.62 203

STARE Performance measure
Method AUPRC F-measure Jaccard Time
Random 0.84 0.75 0.58 466

DCT 0.83 0.74 0.57 751
Ours 0.86 0.77 0.60 159

[111] and CSC initialised with random initialisation (as done by [24, 63, 111, 121, 122]),

DCT initialisation (as done by [12, 13]) and the proposed warm-start strategy. First, due

to their modelling limitations and suboptimal parameter setting, HCFs are outperformed

by methods based on discriminative filter learning. Second, precision-recall curves suggest

that our acceleration strategy leads to filter banks matching or even exceeding the segment-

ation performance of CSC strategies initialised randomly or with general purpose HCFs

(i.e. DCT), while converging in much less time. This is confirmed by quantitative results

in terms of AUPRC, F-measure, Jaccard Index (aka Intersection Over Union, or IOU) and

time needed to converge reported in Table 6.2. Qualitative comparisons (probability maps)

with the best performing baseline (i.e. random initialisation) are reported in Figure 6.9.
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Table 6.3 Influence of the sparsity parameter λ on the segmentation performance (AUPRC)
of the proposed initialisation method (Prop.) and the best baseline method (Random) on
DRIVE.

λ

Init. method 0.2 2 20
Random 0.8418 0.8515 0.8461

Prop. 0.8638 0.8676 0.8655

I investigated the influence of the sparsity parameter (λ ) on the segmentation perform-

ance when the random and the proposed initialisation strategy are employed. Specifically,

I repeated the experiments increasing and decreasing λ by a factor 10 compared to the ad-

opted setting (i.e. λ = 0.2 and λ = 20, respectively) on the DRIVE data set. Experimental

results (Table 6.3) suggest that CSC initialised with our warm-start strategy is more robust

against this critical parameter setting, compared to random initialisation, an important ad-

vantage in terms of adaptation to different data sets.

It is worth noting that this segmentation pipeline is single-layer, yet it achieves the same

level of performance as the multi-layer architecture proposed by Sironi et al. [122] on

DRIVE (F-measure = 0.79); the latter is based on CSC filter banks leveraged by an auto-

context regression pipeline recently improved by a post-processing strategy and shown to

achieve state-of-the-art segmentation performance [120]. However, the authors report that

learning a different convolutional filter bank for each layer of this auto-context architecture

is “prohibitively expensive" [122], hence they learn a single filter bank (121 filters) and

use it for all the layers. Given the speed-up obtained by using the proposed acceleration

strategy (without performance degradation for reconstruction and segmentation), (1) a con-

volutional filter bank could be learned for each layer to model higher-order properties of

curvilinear structures and potentially improve segmentation performance; (2) alternatively,

the proposed acceleration strategy could significantly reduce its training time and therefore

speed-up adaptation to other data sets.
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6.4 Conclusions

In this chapter I have discussed methods to improve modelling and segmentation of cur-

vilinear structures, with particular emphasis on the tortuous ones (target structures). Spe-

cifically, I have motivated the limit of the detection performance of SCIRD (indeterminate

forms at the middle of straight filters) and proposed a novel formulation that rectifies this

problem. Then, driven by experimental observations on the filter banks learned by state-of-

the-art algorithms for supervised and unsupervised filter learning, I have proposed a novel

approach to accelerate CSC for filter learning. The benefits of speeding up CSC could be

directly employed to learn more discriminative multi-range context filters in the proposed

segmentation module (although the current results seem to suggest that tortuosity estimation

performance is already at the level of cornea specialists). More importantly, this acceleration

could unlock the potential of DLAs based on auto-context, among the current state-of-the-

art curvilinear structure segmentation approaches.

In the next chapter I will briefly summarise this thesis, discuss the limitations of the

proposed tortuosity quantification framework and suggest potential solutions to explore in

the future.
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Figure 6.6 Experiments: reconstruction error and time to convergence. Performance
evaluation in terms of total reconstruction error for CSC with random, DCT and SCIRD-TS
initialisation. Each row shows the influence of the dictionary size on the total reconstruction
error, for each data set. Optimisations were stopped at convergence.
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Figure 6.7 Visualisation of a CSC-refined SCIRD-TS filter bank. SCIRD-TS filter banks
obtained after the fast warm-start strategy (first column), refinement by CSC (second
column) and difference (third column) for DRIVE, BF2D, VC6 and STARE (refer to Table
6.1 for time to convergence). Some of the original filters are unchanged, while most of the
others are only modified in length or width.
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Chapter 7

Conclusions, Discussion and Future

Work

7.1 Introduction

In this chapter I review and summarise the work presented in this thesis. I also dis-

cuss the limitations of the proposed tortuosity estimation system and suggest potential solu-

tions/extensions to explore in the future.

7.2 Summary of the thesis

Several studies have reported correlations between various diseases and the tortuos-

ity of anatomical curvilinear structures. Such studies are often based on time-consuming,

manual annotations and subjective, visual assessments, thus reducing repeatability and inter-

observer agreement. I have addressed these problems by proposing a fully automated frame-

work for image-level tortuosity estimation with application to corneal nerve fibres in IVCM.

The proposed system includes two modules: segmentation and tortuosity estimation.

The former relies on a hybrid segmentation method combining an appearance model, based

on a scale and curvature invariant ridge detector (SCIRD), with a context model, includ-

ing multi-range learned context filters. The latter is based on a novel tortuosity estimation
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paradigm, which identifies the most discriminative tortuosity features and their combina-

tion, from the pool of multi-scale tortuosity measures.

I have validated each module of the system separately and compared their performance

with state-of-the-art algorithms performing the same task (i.e. segmentation or tortuosity

estimation). Then, I have assessed the tortuosity estimation performance of the whole sys-

tem and compared with that of baseline methods and cornea specialists. Finally, I have

assessed the impact of the segmentation module on the tortuosity estimation performance

and compared it with manual and traditional segmentation approaches.

Experiments on tortuosity estimation (i.e. the target application) have been carried out

on 140 images from healthy subjects and subjects with different pathologies. This data

set represents the largest ever adopted to validate a fully automated system for corneal

nerve fibre tortuosity estimation. To the best of my knowledge, the largest previous data

set included 30 images only. Importantly, I assessed tortuosity estimation performance with

4 levels, whereas to the best of my knowledge, previous studies discriminated among 3

classes, at most.

Experimental results show that the proposed segmentation module for tortuous struc-

tures outperforms conventional methods based on the “locally-straight" assumption and

learned appearance filters. The improvement in terms of segmentation is immediately trans-

ferred to tortuosity estimation performance. The tortuosity estimation module, based on

multi-scale spline-based curvature estimation, performs considerably better than state-of-

the-art single-index algorithms and addresses the main drawback of the previously proposed

multi-scale-multi-window approach, i.e. speed. In fact, the proposed solution is orders of

magnitude faster than the previous one, and achieves better performance. This speed gain,

combined with the hybrid segmentation solution, makes the system fast: 30s are required to

analyse an IVCM image (384 × 384 pixels) using a standard computer with MATLAB.

The comparison with three experienced observers who annotated the images independ-

ently shows that the proposed system matches or exceeds their performance (Section 5.2.4).

These pilot-level experiments indicate the feasibility of large screening programs, subject

of course to further validation with much larger data sets.
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Although my target application was corneal nerve fibre tortuosity estimation, I have

carried out experiments on other structures such as retinal blood vessels and neurites with

the aim of making the proposed system versatile. To this end, I have provided a detailed

discussion about our system parametrisation and guidelines to set its parameters.

The following sections summarise the detailed contents of the thesis.

7.2.1 Curvilinear structure modelling and segmentation

Chapter 4 focussed on the segmentation module of the fully automated system for tor-

tuosity estimation. A hybrid approach to curvilinear structure segmentation was adopted,

with the aim of making the solution suitable to analyse large volumes of images efficiently.

Specifically, it combined a curved-support model-based ridge detector (SCIRD) with multi-

range learned context filters.

Modelling a tortuous curvilinear structure by means of a curved-support Gaussian, I

derived a ridge detector measuring the contrast between the part inside and outside the ridge,

extending the basic idea of traditional (i.e. locally-straight) ridge detectors. Experiments

carried out on 3 challenging and diverse data sets showed that SCIRD outperforms state-of-

the-art HCFs.

To compensate for the inevitable modelling limitations of HCFs I proposed to combine

SCIRD with learned context filters. This has multiple advantages, including the efficient

modelling of inter-object relationships without employing expensive (in terms of running

time) multi-layer architectures, such as auto-context. First, I showed that learning context

filters is more discriminative than learning appearance ones, as recently proposed. Second,

I have discussed the main limitations of adopting single-range context filters and proposed

an efficient way of overcoming them by learning multi-range context filters. Experimental

results on the target data set (IVCM140) showed that the combination of SCIRD with multi-

range context filters outperforms a hybrid approach and several state-of-the-art HCFs.

As discussed in Chapter 5, the improvement in terms of segmentation performance

(compared to traditional segmentation approaches based on locally-straight assumption)
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transfers immediately to tortuosity estimation performance, hence motivating the need for

the proposed algorithms.

7.2.2 Tortuosity estimation

Chapter 5 discussed the tortuosity estimation module of the proposed fully automated

tortuosity estimation system. To overcome the limitation of previous work on automated

tortuosity estimation (Chapter 2.3), a machine learning approach was adopted. First, a

multi-scale tortuosity representation of each curvilinear structure within an image is ad-

opted. Second, image-level tortuosity representations are obtained by weighted averaging

(where fibres’ lengths were used as weights). Third, a wrapper-based feature selection ap-

proach was employed to automatically identify the best combination of tortuosity measures

and their relative weight. This had the important advantage of making the proposed sys-

tem versatile and capable of adapting itself to different curvilinear structures and tortuosity

characteristics which may vary among pathologies. Finally, a novel visualisation tool for

tortuosity interpretation has been introduced and its advantages have been discussed.

Experiments on the target data set (IVCM140) showed that the proposed tortuosity es-

timation approach outperforms state-of-the-art tortuosity indices, based on a postulated tor-

tuosity definition, hence justifying the need for a versatile solution such as the one proposed.

Remarkably, the proposed fully automated tortuosity estimation system matches and some-

times exceeds the level of performance of cornea specialists when compared against each

other. Moreover, the adoption of a spline-based curvature estimation algorithm makes tor-

tuosity estimation fast, as only 30s are required to estimate the tortuosity of a whole image

on average.

7.2.3 Improving curvilinear structure modelling and segmentation

Chapter 6 focussed on improving the segmentation module (often the major cause of

errors).
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First, I noticed the limitation of SCIRD in detecting very thin structures such as ret-

inal blood vessels acquired with fundus camera around the fovea. With the aim of making

the proposed system versatile, I proposed and validated a different formulation of SCIRD,

SCIRD-TS. Experiments with retinal blood vessels and neurites showed that SCIRD-TS

improves considerably the detection of very thin vessels, hence tackling the limitation of

SCIRD, without degrading the performance when dealing with wider structures such as

neurites acquired at high resolution.

Second, motivated by the recent success of convolutional sparse coding for filter learning

with application to curvilinear structure segmentation, I have discussed a novel approach to

address its main limitation: slow training time. The acceleration strategy is based on an

optimal warm-start strategy which leverages the modelling efforts of the proposed SCIRD-

TS HCFs. Experiments with 4 data sets, including retinal blood vessels and neurites showed

that the proposed acceleration strategy reduces the time to learn convolutional filter banks

considerably compared to traditional initialisation approaches: about 3 hours are required

to learn highly discriminative filter banks (on a standard laptop), compared to days needed

to learn such filters with a traditional approach. This speed-up would allow learning a

large quantity of multi-range context filters that are potentially more discriminative than the

ones currently adopted, based on K-means clustering. Although the current segmentation

solution seems to provide good segmentation results, the possibility of modelling context

with more effective solutions may be needed to achieve specialist-level tortuosity estimation

performance with other data sets.

7.3 Contributions

In this thesis I proposed a fully automated system for quantifying the tortuosity of curvi-

linear structures in medical images. I contributed to the existing literature of both curvilinear

structure segmentation and tortuosity estimation; the key contributions can be summarised

as follows,
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• Novel hand-crafted ridge detectors, SCIRD (Scale and Curvature Invariant Ridge De-

tector) and SCIRD-TS (SCIRD for very Thin Structures), which are simultaneously

rotation, scale, contrast, elongation and, unlike the others, curvature invariant (Sec-

tions 4.2 and 6.2).

• Efficient solutions to incorporate single- and multi-range context information (i.e.

inter-object relationships) for curvilinear structure segmentation, without increasing

the computational cost compared with approaches based only on appearance inform-

ation (Sections 4.3 and 4.4).

• A novel approach to accelerate convolutional sparse coding for unsupervised filter

learning, based on leveraging carefully designed hand-crafted features (Section 6.3).

• A multi-scale approach to tortuosity quantification, shown to be more suitable to tor-

tuosity estimation than previous, single-scale ones (Section 5.2.1).

• A new paradigm to tortuosity definition based on machine learning, designed to be

more versatile than fixed, postulated definitions or indices (Section 5.2).

7.4 Limitations of the proposed tortuosity estimation sys-

tem and future work

In this section I discuss the main limitations of the proposed system and suggest possible

solutions to explore in the future.

7.4.1 Segmentation module

Although the curved-support ridge detector, SCIRD, can be easily extended to 3-D cur-

vilinear structures by modelling them with 3-D curved-support Gaussians, the number of

filters to be employed could be very high and pose problems of storage and speed. Three

solutions could be explored.
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First, ridge detection could be split in two phases: for each sub-volume of the 3-D image,

(1) apply local eigenvalue decomposition to obtain the principal directions; (2) apply 2-D

SCIRD to a certain amount of 2-D slices containing the principal direction pointing along

the structure.

Second, investigate steerability [53] (or an approximation thereof) to reduce the number

of 3-D filters to be employed.

Third, similar to the solution proposed in the warm-start strategy (Section 6.3.1) to com-

press the original SCIRD space into a smaller one, creating a large 3-D filter bank spanning

the range of parameters characterising the curvilinear structures under analysis and then

approximate this filter bank with a much smaller one. Minimising the reconstruction error

would be the first approach to try, but others could be investigated.

7.4.2 Tortuosity estimation module

Although IVCM140 is, to my best knowledge, the largest ever used data set for image-

level corneal nerve fibre tortuosity estimation, it is still small to adopt more complex ma-

chine learning solutions compared to the simple MLOR model. Once a much larger data

set and image-level annotations become available, an ordinal regressor based on SVM or

decision forest could lead to better classification performance.

7.4.3 Interpretation of tortuosity estimates

The use of the tortuosity plane yields a better interpretation of the tortuosity estimation

results in various ways. However, the automatic feature selection procedure, running on a

different data set including different curvilinear structures and pathologies, could identify a

combination of more than 2 tortuosity measures as optimal. If the best combination iden-

tified includes more than 3 tortuosity measures, a 3-D volume would not be sufficient to

visualise the tortuosity space. In that case, a solution could be the use of bar plots, where

each bar would be a specific tortuosity measure. Alternatively, the multi-dimensional feature

space could be projected onto a 2-D or 3-D space by means of a mapping transformation.
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7.4.4 Experiments

Tortuosity has been investigated with qualitative and semi-quantitative approaches for

several other structures in the human body, as discussed in Section 1.1. In these cases,

the proposed system could be employed to increase repeatability and eliminate subjectiv-

ity. Although the system could be adapted to work on different curvilinear structures and

acquisition modalities, as discussed in Section 5.2.4, testing tortuosity estimation perform-

ance in pilot-level studies would be an important preliminary step. Once the latter have been

carried out, the current system could be deployed to analyse large volumes of image data,

such as the one included in the UKBiobank repository of fundus camera images [95]. The

end goal would be investigating tortuosity as biomarker in several pathologies for which no

study has been carried out so far.

Moreover, since the proposed system offers promising segmentation performance, other

morphometric parameters of curvilinear structures could be extracted and investigated; for

instance, the density of corneal nerve fibres within IVCM images, currently measured with

semi-automated approaches.
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[129] Ţălu, Ş. and Giovanzana, S. (2012). Image analysis of the normal human retinal
vasculature using fractal geometry. HVM Bioflux, 4(1):14–18.



Bibliography 127

[130] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society. Series B (Methodological), pages 267–288.

[131] Trucco, E., Azegrouz, H., and Dhillon, B. (2010). Modeling the tortuosity of ret-
inal vessels: does caliber play a role? IEEE Transactions on Biomedical Engineering,
57(9):2239–2247.

[132] Trucco, E., Ruggeri, A., Karnowski, T., Giancardo, L., Chaum, E., Hubschman, J. P.,
al Diri, B., Cheung, C. Y., Wong, D., Abràmoff, M., Lim, G., Kumar, D., Burlina, P.,
Bressler, N. M., Jelinek, H. F., Meriaudeau, F., Quellec, G., MacGillivray, T., and Dhil-
lon, B. (2013). Validating retinal fundus image analysis algorithms: Issues and a pro-
posalvalidating retinal fundus image analysis algorithms. Investigative Ophthalmology
& Visual Science, 54(5):3546.

[133] Tu, Z. and Bai, X. (2010). Auto-context and its application to high-level vision tasks
and 3d brain image segmentation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 32(10):1744–1757.

[134] Turior, R., Onkaew, D., Uyyanonvara, B., and Chutinantvarodom, P. (2013). Quanti-
fication and classification of retinal vessel tortuosity. SCIENCE ASIA, 39(3):265–277.

[135] Wang, J. J., Liew, G., Wong, T. Y., Smith, W., Klein, R., Leeder, S. R., and Mitchell,
P. (2006). Retinal vascular calibre and the risk of coronary heart disease-related death.
Heart, 92(11):1583–1587.

[136] Wilson, C. M., Cocker, K. D., Moseley, M. J., Paterson, C., Clay, S. T., Schulenburg,
W. E., Mills, M. D., Ells, A. L., Parker, K. H., Quinn, G. E., et al. (2008). Computer-
ized analysis of retinal vessel width and tortuosity in premature infants. Investigative
Ophthalmology & Visual Science, 49(8):3577–3585.

[137] Wong, T. Y. and Mitchell, P. (2004). Hypertensive retinopathy. New England Journal
of Medicine, 351(22):2310–2317.

[138] Zhao, Y., Rada, L., Chen, K., Harding, S., and Zheng, Y. (2015). Automated ves-
sel segmentation using infinite perimeter active contour model with hybrid region in-
formation with application to retinal images. IEEE Transactions on Medical Imaging,
34(9):1797–1807.



Appendix A

Further Work Carried Out During the

Project

A.1 Investigating the biological factors generating tortuos-

ity

In this thesis I have applied a machine learning approach to tortuosity definition, which

has the advantage of being versatile and adapt to different curvilinear structures and patho-

logies. In this section, I discuss the work related to a definition of tortuosity based on its

physiological genesis. In particular, I investigate if and what haemodynamic factors are re-

lated to tortuosity. This work was carried out in collaboration with Prof. Dr A. Pries, Dr B.

Reglin and their research group at Charité - Universitätsmedizin Berlin (DE).

A.1.1 Related work

A well-known reason for vascular tortuosity is increased blood pressure [33, 59, 62,

68, 80]. For this reason, Kylstra et al. [80] modelled the deformation of a blood vessel

experimentally, using a latex tube resting on a horizontal surface. Their experiment was

mainly focussed on the observation of shape changes of the tube as result of increasing the

pressure inside. They observed that the diameter is more sensitive to changes in pressure
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when the pressure is below a certain level. Above this level, buckling occurs and tortuosity

increases more rapidly than diameter.

Along with pressure, growth was deemed to be another explanation for buckling or tor-

tuosity. In particular, when a vessel has its end-points fixed, growth beyond a certain level

would inevitably lead to buckling and tortuosity. Jackson et al. [68] investigated this aspect

thoroughly with rabbit carotid arteries and found that tortuosity increased only after very po-

tent growth inputs. Their explanation was that most arteries, for instance, exhibit substantial

in situ axial stretch of 40% to 60%. So, they first need to off-load this axial strain before

buckling. To investigate the consequences of a partial off-loading of longitudinal tension

on the shape of vessels they reduced the axial stretch in rabbit carotid arteries from 60% to

30% using interposition grafts. They observed: (1) no normalisation of axial strain within

12 weeks; (2) all the arteries displayed tissue growth and remodelling that caused tortuosity

(despite persistent and lower axial stretch); (3) changes in the vessels structure (enlarge-

ment of Internal Elastic Lamina or IEL fenestrae1). Repeating the same experiment with

an inhibitor preventing changes in vessels structure they observed no tortuosity, suggesting

that structure is strongly related to tortuosity. This important observation led to complex

mathematical tortuosity models that take into account the tissue surrounding the vessel wall

[59].

Recently, Hathout and Do [62] investigated which shape properties distinguish physiolo-

gical from abnormal tortuosity. Based on an optimality criterion (i.e. minimising the av-

erage curvature per unit length2) they found that tortuous vessels deviating from a sine-

generated curve are abnormal.

A.1.2 Materials

A mesentery network3 including 389 vessels (131 arteries, 132 veins, 126 capillaries)

was made available by our collaborators at Charité - Universitätsmedizin Berlin (DE). As
1The IEL is a key layer of the vessel wall [112]. It includes holes (finestrae) which contribute to the overall

stiffness of a vessel.
2This minimises the changes of direction for the blood flowing through the tortuous vessel.
3The mesentery is a fold of membranous tissue that arises from the posterior wall of the peritoneal cavity

and attaches to the intestinal tract.
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(a) (b)

Figure A.1 (a) mesentery network used to investigate biological factors related to tortuosity,
(b) full resolution mesentery network obtained by interpolating (using splines) sampling
points along each vessel.

can be observed in Figure A.1(a), the network shows a variety of tortuosity characteristics

and therefore it is suitable for this study. For each vessel, a number of haemodynamic para-

meters have been measured or simulated: pressure (Pre), wall shear stress (Wss), diameter

(Dia), blood velocity (BV), blood flow (BF), viscosity (Vis), hematocrit (Hem), oxygen

partial saturation (PO2), oxygen saturation (SO2) and wall thickness (Wt). In addition, I

measured local vessel density (Den), as clinical collaborators hypothesize it could be re-

lated to tortuosity.

Points along each vessel at high sampling rate have been manually placed by the clinical

collaborators and cubic splines were used to reconstruct the whole network (Figure A.1(b)).

Although this data set does not include curvilinear structures such as retinal blood ves-

sels, corneal nerve fibres or neurites (mainly due to data availability) used throughout the

thesis, the analysis carried out could give useful insights into the genesis of tortuosity, in

general.



A.1 Investigating the biological factors generating tortuosity 131

 

 

10

20

30

40

50

60

(a)

 

 

10

20

30

40

50

60

(b)

Figure A.2 Tortuosity maps obtained by colour encoding the mean curvature at spatial scale
1 (a) and 10 (b).

A.1.3 Methods

I computed the tortuosity measures described in Section 5.2.1. To set the maximum spa-

tial scale to consider, I plotted tortuosity maps for each measure, as shown by the example

in Figure A.2 (tortuosity is encoded with colour).

Density was measured as the ratio of the total vessel length (i.e. the total number of

vessel pixels) over the area of a squared neighbourhood4. To assign a value to each vessel,

the squared neighbourhood was centred on its central point. Vessel width is not taken into

account when measuring density. An example of density map is shown in Figure A.3.

Then, I measured correlation with each haemodynamic factor separately and in combin-

ation, using a lasso-based regressor [130] to identify the weights automatically.

4A 1000 × 1000 region was used as neighbourhood.
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Figure A.3 Density map of the mesentery network in Figure A.1(b).

A.1.4 Experiments and results

Associations have been tested in two ways: (1) finding the combination of tortuosity

measures associating best with each individual haemodynamic parameter, and (2) finding

the combination of haemodynamic parameters associating best with a tortuosity definition.

Table A.1 reports the correlations related to the experiment (1). These results suggest

that tortuosity is related to: pressure, wall shear stress, diameter, blood velocity, viscosity

(although the correlation with the hematocrit is not as high5), partial but not full oxygen

saturation and wall thickness for the arteries; diameter, blood flow, hematocrit (for viscosity

correlation is lower) and density for the veins; viscosity (but not hematocrit), partial and full

oxygen saturation and density for the capillaries.

It is worth noting that the definition of tortuosity found automatically by the lasso-based

regression strategy changes among the haemodynamic parameters and the type of vessel.

This is likely due to different structural characteristics of the blood vessels (arteries, veins

and capillaries are functionally and structurally different) and potentially due to the differ-

5Viscosity and hematocrit levels correlate very well, based on the input from our clinical collaborators.
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Table A.1 Experiment (1): measure the correlation of the best combination of tortuosity
features with each haemodynamic parameter separately. “NS" replaces correlations whose
p-value was greater than 0.01.

Pre Wss Dia BV BF Vis HEM PO2 SO2 Den Wt

Art 0.46 0.48 0.48 0.45 0.37 0.47 0.38 0.47 0.26 NS 0.48
Vei NS 0.26 0.47 0.24 0.51 0.33 0.41 0.23 0.28 0.49 0.39
Cap NS 0.38 0.36 NS 0.29 0.50 NS 0.46 0.45 0.41 NS

ent impact of the specific haemodynamic factor on tortuosity. So, they seem to suggest

that adopting a versatile algorithm to re-define tortuosity for different tortuosity estimation

problems is needed.

Another important observation is that correlations between each tortuosity measure and

each haemodynamic factor (not reported here for compactness) are typically not very high

(i.e. < 0.3), thus suggesting that tortuosity is caused by a combination of haemodynamic

factors. To investigate this point further, I have run experiments with the lasso-based re-

gression strategy to find the combination of haemodynamic factors correlating best with

a tortuosity measure. For example, if we use as tortuosity definition the combination of

tortuosity measures giving the highest correlation with a single haemodynamic factor for

the arteries (I chose Wss giving 0.48), we find that the best combination of haemodynamic

parameters includes all but the density (with different coefficients of the linear combination,

of course) and correlation increases to 0.64.

A.1.5 Conclusions

Tortuosity remains very difficult to define objectively. Experiments suggest that fixed

definitions adopted so far in the literature are not suitable ways to define tortuosity. In this

thesis I have proposed a versatile solution to define tortuosity, capable of identifying the best

combination of basic tortuosity measures automatically and for each specific problem. Ex-

periments in the previous chapters were based on ground truth provided by expert observers,

hence based on perception and subject to inter-observer variability.
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In this section I have investigated some of the biological parameters that could poten-

tially cause tortuosity in a mesentery network with the aim of having a better understanding

of the basic tortuosity measures to adopt (and potential modifications). Pilot-level exper-

iments seem to confirm that: (1) tortuosity definitions should be versatile and adaptable

for different curvilinear structures (e.g. arteries, veins or capillaries); (2) tortuosity does

not seem to be caused by a single haemodynamic factor, but it is rather influenced by a

combination of them.

Further experiments should be carried out in order to understand how each haemody-

namic factor influences tortuosity with the aims of (1) improving tortuosity modelling and

transfering these findings to image-level tortuosity estimation; (2) establishing what implic-

ations a tortuous structure has for the parameters regulating vital functions in the human

body.
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