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Computational Modelling of Ceria-Based Solid Oxide Fuel Cell Electrolyte 
Materials 

Mohamed Ahmed a,b, David Rodley a, Thomas D. A. Jones a, Amin Abdolvand a, Alison 
E. Lightfoot b, Herbert Früchtl b, Richard T. Baker b

a School of Science and Engineering, University of Dundee, Dundee, DD1 4HN, UK 
b EaStCHEM School of Chemistry, University of St Andrews, St Andrews, KY16 9ST, 

UK 

A simulation methodology for calculating the lattice parameter and 
oxygen ion migration energy of ceria-based electrolyte formulations 
is devised. The results are analysed and benchmarked against 
experimentally obtained values to verify the efficacy of the 
simulation methodology. A total of 26, 2 x 2 x 2 samarium (Sm)- 
and gadolinium (Gd)-doped supercells of different compositions 
and doping profiles were modelled and simulated by molecular 
mechanics force field methods using CP2K. The results of the 
computational simulations are comparable with those obtained 
experimentally, especially when there are equal amounts of Sm and 
Gd dopants in the structure. Simulation results can also provide 
insights into the mechanisms of ionic conduction. The incongruence 
of the computational and experimental results is attributed to the 
limitations of the molecular mechanics force field methodology 
utilised, with the expectation that an ab initio density functional 
theory (DFT) calculation would yield closer conformance. 

Introduction 

Recent significant advances in materials development for solid oxide fuel cells (SOFCs), 
and modelling techniques have challenged researchers to develop streamlined 
methodologies aiming at faster and more reliable fabrication of highly efficient cells. 
Instead of adopting a trial-and-error technique to discover the optimal composition of fuel 
cell component materials, computational techniques can predict the most appropriate 
compositions in a cost-effective and timely manner. Over the years many formulations of 
SOFC electrolytes have been studied.  

A seminal first-principles study of the ionic conductivity in doped ceria indicated that 
multiple doping with different trivalent cations would yield higher ionic conductivity than 
that which would be obtained with single-species doping (1). The theory that the interaction 
between the dopant cations and the oxygen vacancies results in the relaxation of 
interatomic distances (1), and the subsequent postulate that the critical dopant ionic radius 
is a necessary but insufficient condition for enhanced ionic conductivity (2,3), led to further 
research to investigate the effect of co-doping on the ionic conductivity and the geometry 
of the cell. 
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Baker and Coles-Aldridge (4) produced singly-, doubly-, and triply-doped ceria 
crystals using Sm, Gd, and neodymium (Nd) as dopants. The concentrations of the 
individual dopants were varied but the total dopant concentration was fixed. It was 
concluded that co-doping with Sm and Gd resulted in the lowest activation energy and the 
highest conductivity in the intermediate temperature range (300 – 700 ℃) (4). Further work 
by Baker and Coles-Aldridge (5) studied two compositional series of co-doped ceria: the 
first series had equal amounts of Sm and Gd in each structure and variable total dopant 
concentration, and the second series had a fixed total dopant concentration in each structure 
but with variable amounts of Sm and Gd. Their study concluded that equal amounts of Sm 
and Gd dopants yielded higher conductivities at temperatures greater than or equal 500 ℃. 

 
The current study aims to perform an atomic-level computational simulation of a co-

doped SOFC electrolyte by modelling the Sm- and Gd-doped compositions used in (5), to 
calculate the lattice parameter and the activation (or migration) energy. The results are 
analysed and benchmarked against the results obtained experimentally in (5). Moreover, 
the study aims at showing the importance of simulation as a research tool that may 
complement or precede experiment. It precedes experiment when testing many chemical 
compositions is required without conducting the actual synthesis and lab testing of each 
composition, thereby introducing considerable time and cost savings into the research 
lifecycle. It complements experiment when a theory is needed to explain an observation by 
generating simulations of events that can occur in the femtosecond or smaller time scales. 

 
The Compositional Series 

 
In the current study, a 2 x 2 x 2 pure ceria supercell consisting of 32 cerium atoms and 

64 oxygen atoms was taken as the base undoped structure. Such a supercell would consist 
of 8 ceria unit cells (or minicubes). In line with (5), two compositional series of doped ceria 
were modelled. 

 
Series 1.  The first series has equal amounts of samarium and gadolinium in each 

structure, resulting in a series of structures of different total dopant concentration. The 
amount of dopants is taken as the number of atoms that substitute the cerium atoms in the 
supercell. Naturally, a maximum of 32 dopant atoms were allowed in the structures of this 
series. The modelled structures were Sr1S0G0 (undoped structure), Sr1S1G1, Sr1S2G2, 
Sr1S8G8, and Sr1S16G16 where S and G denote samarium and gadolinium respectively, 
and the number after the symbol specifies the number atoms for the kind represented by 
the symbol. The last structure (Sr1S16G16) is a hypothetical structure where all Ce atoms 
are assumed to have been substituted by the dopant atoms which will now interact with the 
pure ceria oxygen sublattice. 

 
Series 2. The second series has equal total dopant concentration across all the structures 

in the series but with different amounts of samarium and gadolinium in each structure. The 
total number of dopant atoms was fixed at eight. Thus, the modelled structures were 
Sr2S0G8, Sr2S1G7, Sr2S2G6, Sr2S3G5, Sr2S4G4, Sr2S5G3, Sr2S6G2, Sr2S7G1, and 
Sr2S8G0. Sr2S4G4 may also belong to the first series, but it was decided to keep it as a 
member of the second series. 

 



The addition of two dopant atoms to the pure ceria crystal results in the formation of 
one oxygen vacancy as shown for samarium in Equation (1) written in the Kröger-Vink 
notation for crystal defects (6): 

 
 

𝑆𝑆𝑆𝑆2𝑂𝑂3 → 2𝑆𝑆𝑆𝑆𝐶𝐶𝐶𝐶
′ + 3𝑂𝑂𝑜𝑜× + 𝑣𝑣𝑂𝑂⋅⋅ [1] 

 
 

Therefore, each dopant atom will substitute one cerium atom, and for every two dopant 
atoms one oxygen vacancy will be formed. The structures modelled in the current study 
will therefore have the general formula shown below. 
 
 

𝐶𝐶𝐶𝐶32−(𝑥𝑥+𝑦𝑦)𝑆𝑆𝑆𝑆𝑥𝑥𝐺𝐺𝐺𝐺𝑦𝑦𝑂𝑂64−𝑥𝑥+𝑦𝑦2
[2] 

 
 
Table I shows the structure of each member in the two compositional series and its notation. 
 

TABLE I.  The Compositional Series. 
Structure Notation 
Series 1  
Ce32O64 Sr1S0G0 

Ce30Sm1Gd1O63 Sr1S1G1 
Ce28Sm2Gd2O62 Sr1S2G2 
Ce16Sm8Gd8O56 Sr1S8G8 

Sm16Gd16O48 Sr1S16G16 
  

Series 2  
Ce24Gd8O60 Sr2S0G8 

Ce24Sm1Gd7O60 Sr2S1G7 
Ce24Sm2Gd6O60 Sr2S2G6 
Ce24Sm3Gd5O60 Sr2S3G5 
Ce24Sm4Gd4O60 Sr2S4G4 
Ce24Sm5Gd3O60 Sr2S5G3 
Ce24Sm6Gd2O60 Sr2S6G2 
Ce24Sm7Gd1O60 Sr2S7G1 

Ce24Sm8O60 Sr2S8G0 
 
 
Doping Strategies Employed 
 

During the chemical synthesis of doped ceria crystals, dopants replace cerium atoms in 
random positions within the crystal. However, a remarkable feature of modelling doped 
crystal structures is the possibility of controlling the positions of dopants and oxygen 
vacancies. To exploit this computational advantage, two doping strategies (DSα and DSβ) 
were devised in order to study the effect of varying the doping profile of the crystal on its 
geometry and activation energy. Each doping strategy was applied in both compositional 
series. Both doping strategies reflect homogeneous doping by substituting cerium in 



symmetrical positions with samarium or gadolinium, and removing oxygen atoms to create 
oxygen vacancies in the nearest neighbour positions to the cation dopants (1). 

 
DSα.  The first doping strategy places one dopant atom in two or more of the eight 

minicubes of the 2 x 2 x 2 supercell for Series 1 structures except for the Sr1S8G8 structure, 
where two dopant atoms of different kinds are placed in each minicube. The positions of 
the dopants are chosen to be symmetrically equivalent. For Series 2, DSα places one dopant 
atom in each minicube starting with one gadolinium atom in each minicube for the 
Sr2S0G8, and then progressively replacing one gadolinium atom with one samarium atom 
in each of the subsequent structures of this series until there is one samarium atom in each 
minicube for the Sr2S8G0 structure. In all cases, the removed oxygen atoms are chosen to 
be the nearest neighbour to the dopant atom(s). 

 
DSβ.  The second doping strategy, denoted DSβ, places the dopants exclusively in four 

diametrical minicubes, allowing the dopants to be as far as possible from each other. 
However, for structure Sr1S1G1, the dopants are placed in the same minicube to 
differentiate it from the same structure in the first doping strategy DSα. 

 
 

Computational Methodology 
 
Software 

 
The computations were carried out using CP2K (a free and open-source program 

available from www.cp2k.org) version 7.0. CP2K is a computational chemistry and solid-
state physics software package that can perform simulations on the atomic level (7). Cryst 
(8) is a software package which can convert between various file formats of crystals in 
addition to creating neighbour lists for specific elements in a crystal that are within user – 
specified distances. It also introduces dopants and vacancies at various lattice positions and 
creates input files to carry out nudged elastic band (NEB) calculations for CP2K and other 
computational chemistry packages. 

 
The crystal structure of the cerium dioxide unit cell utilized in this study was obtained 

from the Crystallography Open Database (COD) in the Crystallographic Information File 
(.cif) format (Filename: 4343161.cif). This experimentally obtained structure shows that 
the cell is cubic and belongs to the 𝐹𝐹𝑆𝑆3�𝑆𝑆 space group, and has a 5.40972 Å cell parameter 
(9). As the unit cell of cerium dioxide has four formula units of CeO2, the 2x2x2 supercell 
consists of 32 cerium atoms and 64 oxygen atoms. 

 
Cell Optimization 
 

Cell optimization is an iterative computational procedure where initial values for the 
lattice parameter and the atomic coordinates serve as inputs. After the optimization 
procedure has converged, the optimized lattice parameter and atomic coordinates are 
output to a file. The initial values for the pure ceria crystal are taken from the .cif file. Cell 
optimization is then carried out on the pure ceria crystal. Doped structures are obtained by 
replacing cerium atoms with dopant atoms and removing oxygen atoms from the optimized 
pure ceria crystal. 

 

http://www.cp2k.org/


The components of the long-range potential were modelled using the soft particle mesh 
Ewald (SPME) sums method and 3D Fast Fourier Transforms (FFT) (10,11). A fixed cut-
off is used to compute the direct sum, and a Cardinal B-spline interpolation followed by 
Euler exponential spline interpolation to get smooth approximations of the energies, forces, 
and positions (10). 

 
Owing to the high polarizability of the oxide ion, the short-range potential components 

are modelled using the DIPole Polarizable Ion Model (DIPPIM) (12), which consists of 
overlap repulsive interactions between electrons, damped dispersion attractive van der 
Waals interactions, and polarization interactions (13–15). The polarization interactions are 
calculated using Born – Mayer – Huggins – Fumi – Tosi Damped (BMHFTD) potential in 
terms of the Tang – Toennies dispersion damping function (13,14,16,17). 

 
The geometry and cell optimization were carried out using the conjugate gradient 

method, which carries out line search in directions that obey the orthogonality condition 
for the Hessian matrix of the preceding step and the take account of the current negative 
gradient and the previous search direction (18). CP2K uses a combination of golden section 
search and Brent’s methods (19) to accelerate the convergence towards the minimum point. 

 
The KEEP_SYMMETRY keyword in the &CELL_OPT section in the CP2K input 

files was set to TRUE and the SYMMETRY keyword in the &CELL section was set to 
CUBIC in order to preserve the geometry of the resulting optimized supercell in the cubic 
form in order to simulate the experimental results obtained by X-Ray Diffraction (XRD) 
of pure and doped ceria powder and pellets showing that the crystals retain their cubic 
𝐹𝐹𝑆𝑆3�𝑆𝑆 structures after synthesis (4,5). 

 
CP2K was instructed to generate neighbour lists in the &NEIGHBOR_LISTS section 

of the input file in order to show the distances between all the atoms in the supercell in 
order to select the proper positions of the vacancies relative to the positions of the dopant 
atoms when building up the doping profile. The positions of the symmetrically equivalent 
atoms were determined using SPGLIB (20) which is a library to find crystal symmetries 
written in C (https://atztogo.github.io/spglib/). The library function 
spg_get_symmetry_with_collinear_spin was used to get the symmetrically equivalent 
positions. 

 
Cell optimization for the doped ceria for each of the structures in the two compositional 

series devised for this study and for each doping strategy was performed to obtain the lattice 
parameter of each structure. The positions of the dopant atoms and oxygen vacancies are 
specified in the &CELL subsection of the input file. The dopant atoms substitute cerium 
atoms, and the oxygen vacancies are created by deleting the corresponding oxygen atoms 
from the crystal structure. 

 
Activation Energy 

 
To estimate the activation energies associated with hopping of an oxygen ion from a 

specific site to a neighbouring site in the structures studied, the following steps were 
applied: 

1. The positions of the dopant atoms in the pure crystal were assigned. 
2. The neighbour list of all oxygen atoms at a distance within 3.0 Å was generated. 

https://atztogo.github.io/spglib/


3. The climbing image nudged elastic band (CI-NEB) method was applied to 
determine all activation barriers for a nearest-neighbour oxygen moving to a 
vacancy position in the doped crystal. 

4. The average energy barrier was calculated. 
 

The nudged elastic band is a method of the harmonic transition state theory used for 
finding the minimum energy path (MEP) between two conformations of a crystal (21,22). 
In this work, it was used to describe an oxide ion hopping from an initial position into a 
final position in an oxygen vacancy. 
 

Each crystal structure was scanned for all energy barriers (or saddle points) to the 
migration of each oxygen atom to its neighbouring oxygen vacancy, generated in the 
‘neighbour_list’ file (created by the cryst program as described above), to estimate the 
activation energy. This was done utilizing a bash script looping over all possible initial and 
final positions. The script reads the positions of each two neighbouring oxygen atoms in 
the ‘neighbour_list’ file and creates a CP2K input file to run a nudged elastic band (NEB) 
computation to find the energy barrier to the migration of one of the oxygen atoms to the 
vacant position of the other. The results of the computation, namely the energies at the 
initial, saddle, and final positions are added to the ‘barriers.dat’ file. Due to the simple 
nature of the barrier and the “climbing image” method used to locate the energy maximum 
of the transition, it was sufficient to specify three replicas in each NEB calculation. The 
end points of the elastic band were also optimized using the geometric DIIS (Direct 
Inversion in the Iterative Space) method (18), as requested through the 
OPTIMIZE_END_POINTS keyword. 

 
The average energy barrier of each structure is calculated from the formula (18): 
 
 

〈𝐸𝐸𝑏𝑏〉 = −𝑘𝑘𝑘𝑘 𝑙𝑙𝑙𝑙 �
1
𝑀𝑀
�𝐶𝐶−

𝛥𝛥𝛥𝛥𝑖𝑖
𝑆𝑆𝑆𝑆

𝑘𝑘𝑘𝑘

𝑀𝑀

𝑖𝑖=1

� [3] 

 
 
where 𝛥𝛥𝐸𝐸𝑖𝑖𝑆𝑆𝛥𝛥  is the difference between the saddle point energy and the band initial and 

final energies for the oxygen neighbour pair 𝑖𝑖, and M is the number of energy barriers; in 
this study 𝑀𝑀 = 384 and 𝑘𝑘 = 500℃. As the migration enthalpy dominates at temperatures 
of 500℃ or higher (1,5), a temperature of 500℃ was selected in this study for the 
calculation of the Boltzmann factor and the partition function. 

 
Statistical Analysis 
 

Tests for statistical significance of the difference between the means of two samples 
were carried out using 2-sample Student’s t-test for the mean with the condition of 
statistical significance taken as p < .05. The calculations were done using Minitab® 20. 
 
 
 
 

 



Results and Discussion 
 
Lattice Parameter 

 
It was specified to CP2K that the cell geometry shall be kept cubic during the cell 

optimization run. Thus, the lengths of the three resulting cell vectors for each structure 
shall be equal, and the lattice parameter can be calculated from any one of them. CP2K 
shows the output cell vectors in the &CELL section of the ‘{Project_Name}-1.restart’ file. 
Since a 2 x 2 x 2 supercell was modelled, the lattice parameter is equal to half the value of 
the cell vector. 

 
Figures 1 – 4 compare the trends in the variation of the lattice parameter as a function 

of the samarium mole fraction in the computational results obtained in this work and the 
experimental results obtained in (5). When constructing these figures, the experimental 
data was assumed to be identical for both DSα and DSβ doping strategies. As with the 
experimental plots, the computational plots show the strong linear dependence of the lattice 
parameter on the dopant concentration according to Vegard’s law (4,5,9,23,24). 

 

 
 
Figure 1.  Comparison of the computational and experimental variation of the lattice 
parameter with Sm mole fraction for compositional Series 1 and doping strategy DSα.   
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Figure 2.  Comparison of the computational and experimental variation of the lattice 
parameter with Sm mole fraction for compositional Series 1 and doping strategy DSβ.   
 

 

 
 
Figure 3.  Comparison of the computational and experimental variation of the lattice 
parameter with Sm mole fraction for compositional Series 2 and doping strategy DSα. 
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Figure 4.  Comparison of the computational and experimental variation of the lattice 
parameter with Sm mole fraction for compositional Series 2 and doping strategy DSβ. 

 
 
Specific to the computational plots, it can be noted that both doping strategies result in 

a similar trend within each compositional series, i.e., DSα and DSβ exhibit the same trend 
in the lattice parameter results of Series 1 (Figures 1 and 2) when varying total dopant 
concentration, and they exhibit the same trend in the lattice parameter results of Series 2 
(Figures 3 and 4). It was also found that the difference in the values of the Series 1 lattice 
parameter for DSα compared with those of DSβ was statistically nonsignificant (p > .05), 
while the difference in the values of the Series 2 lattice parameter was statistically 
significant (p = .005). This result indicates that if the total dopant concentration is kept 
constant while the amounts of individual dopants are not equal, then the kind, amount, and 
the position of each individual doping species, and, consequently, the position of the 
oxygen vacancies will all determine the lattice parameter of the doped crystal. On the other 
hand, if the individual doping species are added in equal amounts, their position within the 
crystal will not play a significant role in determining the lattice parameter of the crystal. 
The importance of making these inferences based on computational modelling cannot be 
overemphasized. 

 
On comparing the lattice parameter results of the computational and experimental work, 

an evident feature in the results for Series 1 is that the domain of computational results is 
much wider than that of the experimental results; from 0 to 0.5 mol fraction Sm for DSα, 
and from 0 to 0.25 mol fraction Sm for DSβ versus from 0.05 to 0.13 mol fraction Sm for 
experimental results. This demonstrates the flexibility in carrying out more “experiments” 
computationally on the same system. Despite the obvious difference in the extents of the 
domains of the experimental and computational lattice parameter results of Series 1, the 
graphical trends are the same for both DSα and DSβ, and, more importantly, the differences 
between the computational and experimental values of the lattice parameter of Series 1 are 
statistically nonsignificant (p > .05) for both DSα and DSβ. 

 

5.4200

5.4220

5.4240

5.4260

5.4280

5.4300

5.4320

5.4340

0.00 0.05 0.10 0.15 0.20 0.25

La
tt

ic
e 

Pa
ra

m
et

er
 (Å

)

Mole Fraction Sm

Series 2 (Computational) Series 2 (Experimental)



On the other hand, the evident feature in the results for the lattice parameter of Series 
2 is that the graphical trends of the computational and experimental results are 
contradictory. However, it was found that the differences between the computational and 
experimental values of the lattice parameter of Series 2 are still statistically nonsignificant 
(p > .05) for DSα but significant (p = .015) for DSβ. These mixed results reflect the 
naturally random doping strategies of the compositions that are prepared experimentally in 
the laboratory; there is no equivalent for DSα and DSβ in the experimental benchmark. But 
the emergence of mixed results for the lattice parameters of Series 2 and not in Series 1 
should be expected considering the theoretical postulate stated above, viz., the position of 
the dopants is the primary factor that determines the lattice parameter when the total dopant 
concentration is fixed (Series 2), while it has a negligible or no effect otherwise (Series 1). 
DSα, being less restrictive in the placing of dopants and vacancies inside the crystal than 
DSβ, is thus more representative of the random dopant and vacancy locations elicited in 
the laboratory and, therefore, shows nonsignificant difference in the lattice parameter from 
the experimental benchmark despite their apparently opposite graphical trends. 

 
Still, the limitations of the computational methodology utilized in calculating the lattice 

parameter in this study cannot be overlooked. The cell optimization computation was 
carried out without taking the temperature, the bonding between the elements comprising 
the crystal, and the variation of the coordination number of the cations due to the variation 
in the position of the oxygen vacancies into consideration. 

    
Activation Energy 

 
Unique to the computational methodology is the ability to calculate the energy barriers 

(or saddle points) for each ionic hop, which cannot be obtained experimentally. The sets of 
all energy barriers for each of the studied 26 structures are given in 26 different ‘barriers.dat’ 
files. An excerpt from the contents of a ‘barriers.dat’ file is shown in Figure 5, where the 
first two numbers in each line are the positions of the oxide ion and the oxygen vacancy, 
and the third, fourth, and fifth numbers in each line are the initial, saddle, and final energy 
states of the hop, respectively, in Hartree (1 Hartree = 27.211 eV). 

 

 
Figure 5.  An excerpt from an exemplary ‘barriers.dat’ file showing the positions of the 
oxide ion and vacancy in addition to the initial, saddle, and final energy states.  

 
Figures 6 and 7 show the energy profiles of DSα and DSβ structures, respectively. The 

introduction of a dopant into the pure crystal causes a decrease in the saddle point energy. 
The energy needed for an oxide ion to migrate into any vacancy in the undoped structure 
Sr1S0G0 is higher than that needed for doped structures. Moreover, for the undoped 
structure, the same amount of energy is needed for hopping into any neighboring vacancy. 
However, with increasing doping concentration the energy barriers are reduced, resulting 
in higher ionic conductivity. 

7 34 -115.096458767 -115.075526369 -115.097430565 
7 57 -115.096434435 -115.065117942 -115.098534381 
8 9 -115.096407793 -115.065890964 -115.096407730 
8 10 -115.096434641 -115.082790905 -115.096434641 
8 11 -115.096434651 -115.070052300 -115.097120168 
8 23 -115.096434480 -115.078110839 -115.096978626 



 
 
Figure 6.  Energy profiles showing computed saddle points for all compositional series 
with doping strategy DSα.   



 
Figure 7.  Energy profiles showing computed saddle points for all compositional series 
with doping strategy DSβ.   

 
 
The two modelled doping strategies result in different distributions of the energy 

barriers within the crystal for the same structure. For example, comparing the lightly doped 



structure Sr1S1G1 in DSα and DSβ doping strategies, the energy barriers are more 
graphically “dispersed” for DSβ than for DSα; the energy required for oxide ions to hop 
into vacancies is more variable in case the dopant separation distances are maximised 
(Figure 7) than when they are less restrictively distributed (Figure 6). Such remarkable 
variation in the energy profiles of the oxide ion hops within a single structure could 
introduce an error in the calculation of the activation energy. It is interesting to note that 
the hypothetical Sr1S16G16 structure where cerium atoms are fully substituted by the 
dopants (Figure 6) provide the lowest energy profile of all calculated structures. 

 
The shapes of the energy profiles of Series 2 structures in Figures 6 and 7, where the 

total dopant concentration is fixed and the Sm:Gd ratio is varied, are remarkably similar. 
The increase in Sm causes the energy barriers to exhibit more variation, with such variation 
significantly more pronounced, again, in DSβ than in DSα. Also, for DSβ (Figure 7), the 
dispersion starts to decrease with Sm:Gd is at 7:1 and the energy profile of Sr2S8G0 is 
very similar to that of Sr2S0G8. This means that singly doped structures could provide a 
more accurate estimation of the activation energy from energy profiles than doubly doped 
structures. 

 
There are some energy profiles that show “overlap”; for different hops of the same final 

and initial energies, two or more different saddle points may exist (for example, structures 
Sr2S1G7 and Sr2S7G1 in Figure 6, and Sr2S8G0 in Figure 7). This signifies that the 
position of the vacancies plays an important role in determining the ionic conductivity. 

 
Figures 8 – 11 compare the trends in the variation of the activation energy as a function 

of the samarium mole fraction from the computational results obtained in this work with 
the experimental results in (5). 

 
 

 
 
Figure 8.  Comparison of the computational and experimental variation of the activation 
energy with Sm mole fraction for compositional Series 1 and doping strategy DSα. 
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Figure 9.  Comparison of the computational and experimental variation of the activation 
energy with Sm mole fraction for compositional Series 1 and doping strategy DSβ. 

 
 

 
 
Figure 10.  Comparison of the computational and experimental variation of the activation 
energy with Sm mole fraction for compositional Series 2 and doping strategy DSα. 
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Figure 11.  Comparison of the computational and experimental variation of the activation 
energy with Sm mole fraction for compositional Series 2 and doping strategy DSβ. 

 
 
The graphical trends of the computational results of the activation energy for Series 1 

are similar for DSα and DSβ (Figures 8 and 9) as well as for Series 2 (Figures 10 and 11). 
The differences in the computational values of the activation energy between DSα and DSβ 
are nonsignificant (p > .05) for both Series 1 and Series 2. This result signifies that the 
positions of dopants and vacancies within the structures of the same compositional series 
do not affect the activation energy of a specific structure. 

 
The domain of the computational results of the activation energy for Series 1 is much 

wider than that of the experimental results (see Figures 8 and 9). Thus, the graphical trends 
of the computational and experimental results appear to be different, but the statistical 
analysis of the differences between the computational and the experimental results shows 
that the differences are nonsignificant (p > .05) for both DSα and DSβ structures. This 
means that the activation energy results obtained computationally are comparable with the 
experimental results when the doped crystals have equal amounts of dopants. Moreover, it 
should be noted that the computational results identified a minimum value of activation 
energy (maximum conductivity) at equal doping mol ratio of Sm and Gd of 0.3; a result 
that was not obtained experimentally due to the limited dopant mol domain of the 
experiment. 

 
On the other hand, the graphical trends of the computational and experimental results 

of the activation energy for Series 2 appear to be similar (see Figures 10 and 11), but the 
statistical analysis of the differences between the computational and the experimental 
results shows that the differences are significant (p < .05) for both DSα and DSβ structures. 
There is a discrepancy between computational and experimental activation energy results 
when the amounts of dopants in a crystal are not equal. 
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The limitations imposed on the computational procedure of the activation energy, such 
as limiting the number of images (or replicas) in the NEB calculation to 3 images and 
utilizing non-random doping profiles may have contributed to mixed results for the 
activation energy. 

  
 

Conclusion 
 

The results of the computational simulations are comparable with those obtained 
experimentally, especially if there are equal amounts of Sm and Gd dopants in the structure. 
The simulations were able to show that the positions of dopants are crucial in determining 
the lattice parameter of the doubly-doped crystal if the amounts of the two dopants are 
unequal, while they play a minor role if the amounts of dopants are equal. Simulation also 
showed that the positions of vacancies determine the energy barriers to oxide ion migration 
within the crystal. Computational modelling can contribute to our understanding of the 
ionic conduction within the electrolyte crystal. 

 
The incongruence of the computational and experimental results can be minimised by 

avoiding the limitations of the molecular mechanics force field methodology utilised in 
this study: it is expected that an ab initio density functional theory (DFT) calculation would 
yield closer conformance. Also, computational results can be improved if the simulation 
closely models the experimental setup. It is believed that simulation would yield more 
accurate results for the lattice parameter and the activation energy if the doping strategies 
were confined to an explicitly random positioning of the dopants inside the crystal. 
Considering the temperature and the bonding between atoms would improve the lattice 
parameter results and increasing the number of images in the nudged elastic band (NEB) 
method would improve the activation energy results. 

 
To improve computational results, the use of computationally intensive procedures will 

be needed, but with the fast emergence of new technologies that enhance the processing 
power of parallel computing systems, more rigorous calculations will soon be possible. 
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