

History and Geography of Neotropical Tree Diversity

Christopher W. Dick^{1,2*}, R. Toby Pennington^{3,4}

1. Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor, MI 48103

cwdick@umich.edu orcid.org/0000-0001-8745-9137

2. Smithsonian Tropical Research Institute Republic of Panama

3. Department of Geography University of Exeter Laver Building, North Park Road, Exeter EX4 4QE, UK

t.pennington@exeter.ac.uk 0000-0002-8196-288X

Royal Botanic Garden Edinburgh
 20a Inverleith Row, Edinburgh EH3 5LR, UK

*corresponding author cwdick@umich.edu

Key Words: tropical rain forest, savanna, tropical dry forest, tropical montane forest, long distance dispersal, community assembly

Abstract

Early botanical explorers hypothesized that biogeographic history may explain the remarkable tree diversity of Neotropical forests. In this context, we review the history of Neotropical tree diversity over the past 100 million years, focusing on biomes with significant tree diversity. We evaluate hypotheses for rain forest origins, intercontinental disjunctions, and models of Neotropical tree diversification. To assess the impact of biotic interchange on the Amazon tree flora, we examined biogeographic histories of trees in Ecuador's Yasuní forest, which suggests that nearly 50% of its species descended from "immigrant" lineages that colonized South America during the Cenozoic. Long distance and intercontinental dispersal, combined with trait filtering and niche evolution, are important factors in the community assembly of Neotropical forests. We evaluate the role of Pre-Colombian people on Neotropical tree diversity, and discuss the future of Neotropical forests in the Anthropocene.

1. Introduction

Woody plant diversity exhibits a striking latitudinal gradient, especially in the Americas. Diversity peaks in the Neotropics, which supports as many as 24,500 tree species (≥10 cm diameter) (Slik et al. 2015). The lowland rain forests of the Amazon basin harbor the highest concentration of tree diversity, with individual hectares containing up to 644 species (≥1 cm diameter) (Valencia et al. 2004). For comparison, approximately 300 tree species occur in eastern North America (Fine & Ree 2006). Explaining the local coexistence of so many tree species is a central problem of community ecology (e.g., Hubbell 2001).

Wallace (1878) hypothesized that tropical tree diversity accumulated over "countless geological ages" within climatically stable environments. He was fundamentally correct in that lowland tropical forests were not displaced by glaciers, as in Europe and North America, both of which lost many tree genera during the Pliocene-Pleistocene (Latham & Ricklefs 1993). Wallace's reference to time also suggested that tree diversity in the tropics may be older than in temperate zones, an idea that is supported by phylogenetic comparisons of North and South American tree taxa (Kerkhoff et al. 2014; though for the Southern Hemisphere temperate flora see Rezende et al. 2017).

The Pleistocene refuge hypothesis (Haffer 1969) challenged Wallace's idea by positing Quaternary climate change as a driving force of tropical speciation. In reviewing ideas about tropical plant diversification, Stebbins (1974) coined the terms "cradle" to describe elevated speciation associated with the refuge theory, and "museum" for Wallace's view of gradual species accumulation. Although these metaphors or models have multiple meanings and are not mutually exclusive (Eiserhardt et al. 2017), they draw attention to the influence of time and environmental change on biotic diversification and have provided an intellectual framework for phylogenetic studies (e.g., Richardson et al. 2001; Couvreur et al. 2011; Koenen et al. 2016). Over the entirety of the Cenozoic, the climate and geology of the Neotropics have been far from stable (Hoorn & Wesselingh 2011). The emergence of Isthmus of Panama, the formation of the Amazon river, and the uplift of the northern Andes, for example, have profoundly influenced climate, speciation and biotic interchange (Hoorn & Wesselingh 2011, Graham 2010), but the precise association of these events with biotic diversification often is unclear (Baker et al. 2014).

This review is motivated by several guiding questions: How long have Neotropical tree lineages and biomes existed to accumulate enormous species diversity? How was the Neotropical tree flora assembled? How has biogeographic history influenced the community structure and ecology of present-day Neotropical forests? How did Pre-Colombian people impact Neotropical tree diversity? What is the future of Neotropical forests in the Anthropocene?

2. Scope

We focus on four Neotropical biomes that contain significant tree diversity: (1) lowland rain forest, (2) lower to upper montane forests, and the drier vegetation types including (3) seasonally dry forest, and (4) savanna (Figure 1). Tropical rain forests have high (>25 m), closed, evergreen canopies and generally occur where annual precipitation is greater than ~2000 mm, but with little to no dry season. Most Neotropical montane forests occur between 1200 and 2800 m, although small pockets of wind-protected forest may occur at >4000 m in the Andes (Kappelle 2004). Seasonally dry forests have a closed, deciduous canopy and are typically confined to richer soils, whereas savannas occur on less fertile soils, are fire-prone, have evergreen tree cover up to 80%, and grass cover of greater than 50% (Pennington et al. 2018).

Under a standard definition (but see Feeley & Stroud 2018), the tropics are bounded by the Tropics of Cancer and Capricorn (Figure 1). These latitudes contain the most distant points from the equator in which sunlight may be directly overhead. However, tropical vegetation was not always confined to this equatorial belt. Palms and crocodilians nearly reached the Arctic Circle (60-65 N) during the Paleocene (Graham 2010, Wolfe 1975) and what we know as tropical and temperate trees mingled at mid-latitudes to form a non-analog biome known as the "Boreotropical" flora (Wolfe 1975) that extended across the northern hemisphere. We interchangeably use climatic definitions (e.g., megathermal and tropical) to describe the high latitude distribution of thermophilic taxa during much of the Cenozoic. Our assumption is that megathermal or tropical vegetation — wherever it is located — requires year-round warmth (average monthly temperature of ≥18°C for lowland plants) and an absence of frost.

3. Origin of Neotropical rain forest

As anticipated by Wallace, historical models of tropical biome distributions for South America (Jaramillo & Cardenas 2013) and globally (Fine & Ree 2006) have become valuable parameters

for predicting levels of tree diversity under a time-integrated biome area hypothesis (Fine & Ree 2006). Though no definitive evidence of modern tropical biomes exists until the Cenozoic (see below), fossil and phylogenetic evidence suggest that forms of lowland rain forest and tropical montane forest may have existed in the mid-Cretaceous, roughly 100 Ma (Burnham & Johnson 2004; Davis et al. 2005; Graham 2010, 2011; Morley 2000).

At 100 Ma, South America was beginning to separate from Africa and Laurasia was biotically connected across North America and Eurasia. Global surface air temperatures were ~7C warmer than present and sea levels were 100-300 m higher (Graham 2010). Angiosperm orders diversified, as did early palms (Couvreur et al. 2011a), understory trees, and shrubs (Davis et al. 2005) indicative of multi-strata rain forest.

Increased leaf vein density — a key innovation — enabled mid-Cretaceous angiosperms to photosynthesize and transpire more efficiently than other seed plants and dominate most terrestrial ecosystems (Boyce et al. 2010). However, large seeds indicative of shade tolerance, leaf drip tips, and large tree trunks with modern wood anatomy do not appear until the Cenozoic (Burnham & Johnson 2004, Morley 2000). Because of the extreme warmth and aridity of the equatorial tropics in the Cretaceous, proto-tropical moist forests may have been confined to mid-latitudes (Morley 2000). Indeed, gymnosperms and ferns dominate late Cretaceous floras from South America (Jaramillo & Cardenas 2013).

An essentially modern rain forest first appeared shortly after the K/T meteor impact, in the Paleogene ca. 64.1 Ma. This was Colorado's Castle Rock flora (Johnson & Ellis 2002). The earliest South American rain forest appears by 58 Ma and left many fossils in the Colombian Cerrejón flora (Wing et al. 2009). While the Castle Rock flora had many Asian affinities, Cerrejón had ca. 20% family-level overlap with present-day Neotropical rain forests. The Paleogene (Paleocene + Eocene) was a period of global expansion of angiosperm-dominated forests at mid-latitudes and the equatorial region (Jaramillo et al. 2010, Morley 2000). A second marked increase in angiosperm leaf-venation occurred at that time, providing even greater plant-climate feedback and setting the stage for the expansion of modern rain forests (Feild et al 2011). The first modern dry forests and savannas appeared much later, in the Miocene/Pliocene (Graham 2011).

The fossil record suggests that tropical forests expanded, and diversity increased, during the warmest periods of the Cenozoic (Jaramillo et al. 2010, Jaramillo & Cardenas 2013). The Cerrejón rain forest persisted through the abrupt warmth of the Paleocene-Eocene Thermal Maximum (PETM) (ca. 53 Ma) – the warmest time of the Cenozoic – in which temperatures increased by ca. 5°C over a remarkably brief 20 ky period. Although some pollen types disappeared at the PETM, some new pollen taxa appeared during this rapid warming period, maintaining diversity (Jaramillo et al. 2010). Although these authors suggested that warming may have caused evolutionary change manifested in the pollen turnover, this is unlikely because pollen morphotypes represent taxa higher than the species level (e.g., genera and families) and 20 kyr seems too brief even for new woody species to form. An alternative

4

hypothesis is that the PETM warming facilitated biome displacement and mixing which maintained tree diversity.

4. Global connections

Floristic connections between the tropical regions have long been recognized (Givnish & Renner 2004). A recent phylogenetic classification of the world's tropical forests (Slik et al. 2018) showed a close relationship between the lowland tree floras of Africa and the Neotropics, and between the montane tree communities of the Neotropics and tropical Asia. These floristic patterns can be partly explained by five intercontinental dispersal routes described below (Graham 2018), in addition to continental drift and long-distance dispersal (LDD).

4.1 Boreotropical dispersal

High latitude (Laurasian) migration is an important and widely cited explanation for pantropical tree disjunctions (Lavin & Luckow 1993, Davis et al. 2002). The two northern land bridges are Beringia and the North Atlantic Land Bridge (NALB) (Wolfe 1975) (Figure 2; Table 1). Because NALB was 10 degrees lower in latitude than Beringia during the Paleocene and contained a more thermophilic flora, it is considered more likely to have facilitated tropical biotic interchange between Eurasia and North America (Graham 2018; Table 1).

Laurasian taxa dispersing between Eurasia and North America could have reached South America before the closure of the Panama Isthmus (see below) by long-distance dispersal, or though stepping-stone dispersal across the Antillean islands. However, a continuous land bridge spanning the Greater Antillean and Aves Ridge (GAARlandia) (Iturralde-Vinent & MacPhee (1999) at c. 35-33 Ma is not supported by geological evidence (Graham 2018).

Lavin and Luckow (1993) proposed a phylogenetic test of the Boreotropical dispersal hypothesis for Neotropical plants: (1) the Neotropical lineage must be nested within a tropical Asian or African clade, and (2) there must be high latitude North American fossils. Several tropical tree clades meet these criteria, including the families Melastomataceae, Burseraceae, and Meliaceae, and some clades of Lauraceae, Chrysobalanaceae, and Annonaceae (See Table 2 for references). In contrast, Malpighiaceae probably originated in South America and spread to the Paleotropics via the Boreotropical NALB (Davis et al. 2002).

Many questions about these high latitude dispersal routes remain unanswered, some of which pertain to the nature of the Boreotropical flora itself. While some authors have described the Boreotropical flora as tropical or megathermal (e.g., Johnson & Ellis 2002, Morley 2000), the seasonality of daylength and temperature made it a non-analog climate and biome. Paleogene floras along the NALB are in fact dominated by temperate angiosperms (e.g., Fagaceae, *Acer*, Betulaceae) and conifers (*Abies, Larix, Picea, Pinus,* and *Thuja*) (Graham 2018, Wolfe 1975). Graham (2018) suggested that trees in this biome had not yet evolved the distinctive tropical and temperate forms that exist today. Indeed, important tropical tree families have lineages

adapted to cold and seasonal environments. Examples in northern temperate forests include *Asomina* (Annonaceae), *Cephalanthus* (Rubiaceae), *Zanthoxylum* (Rutaceae), *Sassafras* and *Lindera* (Lauraceae), and *Catalpa* (Bignoniaceae). Possibly similar to the Boreotropical flora, Mexican cloud forests contain a mixture of tropical and temperate species such as palms, hickories (*Carya*), and maples (*Acer*) (Wendt 1993). Putative Boreotropical lineages (e.g., Melastomataceae, Lauraceae) are now common elements of tropical montane forests.

When the Boreotropical biome was most extensive (early to mid-Eocene), the NALB had already broken up and was more a stepping stone than a land bridge for thermophilic trees (Figure 1). Given the pervasiveness of oceanic dispersal (see below), it is likely that some thermophilic lineages migrated to North America via oceanic currents rather than across either boreal land bridge.

4.2 Austrotropical dispersal

During the Paleogene, Antarctica was forested and also contained a mixture of temperate and tropical plant lineages, which Graham (2018) has described as "Austrotropical". The Magellan land bridge (MLB), which connected South America and Australasia via Antarctica, lasted up to the Oligocene (ca. 37 Ma; Figure 2). Southern hemisphere taxa associated with the MLB include Cunoniaceae, Proteaceae, Myrtaceae, and some groups of Lauraceae; the conifers Podocarpaceae and Araucariaceae; and tree ferns (e.g., Cyatheaceae) (Rezende et al. 2017, Estrella et al. 2018). Relatively few southern hemisphere migrants have become important in the lowland Neotropical flora (Wilf et al. 2013), although *Weinmannia* (Cunoniaceae), *Podocarpus*, and tree ferns are important taxa in Andean montane forests.

4.3. The Great American Biotic Interchange (GABI)

During the >90 my following its separation from Africa, South America was considered to have developed an endemic biota in relative isolation from other continents (Raven & Axelrod 1974, Gentry 1982). Mexico and the Central American islands contained relatively little forest and, by the late Cenozoic, they were a refuge for the Boreotropical flora (Wendt 1993). The Isthmus of Panama (Table 1) was the first continuous land bridge of the Cenozoic connecting North and South America and its completion gave rise to the Great American Biotic Interchange (GABI).

In an influential paper, Gentry (1982) noted that Central American rain forests are dominated by widespread tree species with probable South American (Amazon basin) origins. He inferred substantial migration from South America into Central America, but little in the opposite direction except, possibly, for montane floras. Because of this asymmetry, Gentry regarded the present-day Amazon flora as Gondwanan, as described above, with little influence of migration from other tropical continents.

Recent geological advances have challenged conventional views on the age of the Isthmus and of GABI and suggest an older, mid-late Miocene land bridge (Montes et al. 2015; but see O'Dea

et al. 2016 and responses). In line with the new geological hypothesis, Bacon et al. (2015) inferred a spike of plant migration events across the Isthmus during the mid-late Miocene. The Bacon et al. (2015) study used the divergence times of widespread species and clades as a proxy for the timing of their migration between the continents. However, the origins and divergences for many of their clades may be explained by other events. For example, Bardon et al. (2013) attributed the origin of Neotropical Chrysobalanaceae to oceanic dispersal from Asia. Furthermore, the Bacon et al. (2015) study did not consider stem lineage ages (the time of earliest possible migration), meaning earlier dates of migration across the Isthmus region are feasible. This underlines that for plants an earlier land bridge might have had little relevance because any disjunctions between Central and South American can be explained by LDD (Cody et al. 2010), as discussed in the next section.

4.4 Long distance dispersal (LDD)

One of the most intriguing advances in the field of biogeography over the past two decades is an increasing acceptance of LDD as an explanation for intercontinental tropical disjunctions. Transoceanic LDD – hypothesized to be generally achieved via marine currents – is an alternative explanation to vicariance and land bridge hypotheses (Givnish & Renner 2004, Renner 2004).

An example of LDD is provided by the rain forest tree *Symphonia globulifera*, which is broadly distributed in the Neotropics and in tropical Africa. *Symphonia* has a distinct pollen type with earliest records from the Eocene (ca. 54 Ma) of west Africa. *Symphonia* pollen appears abruptly ca. 30 million years later in the mid-Miocene (ca. 15 Ma) sediments of eastern Brazil and Venezuela (reviewed in Dick et al. 2003), at which time South America was an island continent. The species has no apparent adaptations to water dispersal and its seed desiccates in salt water. A possible dispersal scenario for *Symphonia* involves rafting of living branches or trunks within the flotsam dislodged by major rivers. Successful raft-dispersal events are rare, but integrated over the span of millions of years such improbable events do occur. This mode of dispersal, also called sweepstakes or waif dispersal, is the most likely explanation for the migration of caviomorph rodents, primates, lizards and other non-swimming vertebrates to the New World (discussed in Renner 2004)

Higher-level phylogenetic studies of tropical trees have similarly concluded that marine dispersal has played a central role in pantropical distributions (e.g. Table 2). It is thought that long distance dispersal often acts in concert with conserved ecological niches, meaning that lineages tend to occupy similar environments on different continents (Crisp et al. 2009).

4.5. Immigrant lineages in the Yasuní forest — a case study

Pennington and Dick (2004) quantified the "immigrant" lineages to the 25-ha Yasuní Amazon forest dynamics plot in Ecuador (Valencia et al. 2004), where immigrants were defined as species belonging to clades that arrived from outside of South America when it was still isolated

in the Cenozoic. Along with known migrants such as such as *Symphonia*, and species from conventionally accepted temperate clades (Cannabaceae, Rhamnaceae, Rosaceae, Magnoliaceae, Styracaceae), the migrant group included clades that were previously considered likely Gondwanan (Raven & Axelrod 1974): Fabaceae, Melastomataceae, and some genera of Lauraceae and Annonaceae. The authors estimated that 21% of the Yasuní tree species, and a similar percentage of total stem numbers in the forest plot, belonged to these immigrant clades.

Recent work has revealed additional immigrant clades. In table 2, we present a revised list of the most diverse immigrant lineages and their contribution to the genus- and species-level taxonomic diversity of the Yasuní plot. The newly recognized immigrant clades include additional genera of Annonaceae (Couvreur et al. 2011) and Lauraceae (Huang et al. 2016); the families Lecythidaceae and Sapotaceae (Rose et al. 2018), Burseraceae (Weeks et al. 2005), Meliaceae (Koenen et al. 2015), Arecaceae (Baker & Couvreur 2013), Chrysobalanaceae (Bardon et al. 2013), Staphyleaceae (Harris et al. 2017), and Urticaceae (Wu et al. 2018); and the genera *Zanthoxylum* (Rutaceae) (Appelhans et al. 2018), and *Ardisia* and *Cybianthus* (Primulaceae) (Rose et al. 2018). Including the temperate immigrants mentioned previously, nearly half (547 of the 1140) of the known tree species of Yasuní descended from immigrant lineages.

These results contrast with Gentry's (1982; p. 577) view that the contribution of Laurasian (i.e., immigrant) taxa to South American rain forest was "virtually none". The immigrant families in Table 2 include four of the five most common families across the Amazon basin (Fabaceae, Sapotaceae, Lecythidaceae, Burseraceae) and the nine most common genera (ter Steege et al. 2006). These immigrant families contribute disproportionately to the stem numbers, species diversity, and biomass of Amazon forests. Most of these clades were present in South America long before GABI, suggesting an initial origin through oceanic dispersal.

These biogeographic histories should be considered hypotheses, and they may be refuted in future studies. For example, Antonelli et al. (2009) posited a North American origin of the Rubiaceae, which was in conflict with Manns et al. (2011), whose analyses support a South American origin. Zerega et al. (2005) proposed a possible immigration history of Neotropical Moraceae, but suggested that this hypothesis needed further testing.

4.6 Biogeographic influences on community assembly

There is evidence that GABI — and biogeographic interchange more generally — has increased the functional trait and species diversity of trees in South and Central American forests. Sedio and colleagues (2012, 2013) found that 22 species of *Psychotria* on Barro Colorado Island (BCI), Panamá (Figure 3) were derived from two clades: a drought-tolerant clade that originated in South America and likely arrived in Panama via GABI, and a more mesic clade from Central America (Sedio et al. 2013). On BCI, the genus shows community phylogenetic clustering wherein the South American and Central American clades segregate along moisture gradients within the forest (Sedio et al. 2012).

That drought-tolerant trees migrated from Amazonia may seem counterintuitive, since Amazon forests tend to be wetter than the more seasonal forests of lower Central America. This may be partially explained by the fact that migrating Amazon trees had to pass through ecological barriers including the high elevation Andes — which at present do not have passes lower than ca. 2000 m — and the arid Colombian and Venezuelan savannas (Figure 3). If the high Andes were an effective barrier, only species able to tolerate drought may have successfully migrated through these drier areas north of the Cordillera (Coronado et al. 2014).

To understand community-level effects of biogeographic filtering, Bemmels et al. (2018) performed a trait-based analysis of >1000 woody plant species (trees, shrubs, and lianas) with occurrences in Yasuní Ecuador and/or BCI Panama – representing east-of- and/or west-of-Andes species and populations. The authors found that a widespread (i.e. east- and west-of-Andes) geographic distribution was correlated with population abundance - possibly providing more opportunities for dispersal under a neutral model (Hubbell 2001) - and with environmental tolerance, as reflected in their occurrence in dry habitats and at high elevations. Their study suggested that dispersal combined with trait filtering channeled Neotropical tree migration, with implications for the phylogeography of widespread rain forest species (Dick et al. 2013, Coronado et al. 2014), regional species pools, and trait diversity. For example, Bemmels et al. suggested that Central American rain forests contain more ecological generalists than Amazon forests, as initially proposed by Gentry (1982). Remarkably, 70% of the woody species studied by Bemmels et al. have widespread Neotropical distributions, and ≥25% occurred at least occasionally in dry ecoregions, including savannas. Future efforts focused on determining the geographic origins of these widespread species may further test Gentry's hypothesis.

Frequency of dispersal has implications for Hubbell's (2001) neutral theory. The spread of rain forest tree species from single, or a few, propagules is analogous to the point-mutation speciation model of neutral theory, which also provides theory to predict the rate of spread of new species by stochastic dispersal. Using neutral theory assumptions, Leigh (2007) estimated that the probability of *S. globulifera* spreading through the Amazon – even over 20 million years – was virtually zero. Leigh obtained similar probabilities for larger clades (e.g., *Ocotea* in the Lauraceae) that appeared in the Amazon basin during the Neogene. The widespread distribution of dominant tree species in Amazonia (ter Steege et al. 2013) adds to the evidence that neutral theory does not apply to a large proportion of Neotropical tree diversity. This may be because these species are not competitively neutral, or because the disturbance history of rain forest has enabled immigrants to spread faster than expected by chance processes (Pennington & Lavin 2016).

5. Patterns and drivers of regional diversification

Two approaches have been used to understand the relative roles of dispersal and regional diversification in the assembly of Neotropical tree communities – phylogenetic studies of individual clades and community phylogenetics.

In an example of the first approach, Lavin et al. (2004) used a phylogenetic analysis of woody legume clades to reconstruct biogeographic assembly within the succulent-dominated dry biome of the Antilles, the mainland Neotropics, and Africa. Genus-level disjunctions were attributed to transoceanic sweepstakes dispersal. However, rates of immigration are low, as evidenced by geographically structured phylogenies and clade endemism. Further studies of clades endemic to such tropical dry forests in the New World show similar patterns of geographic phylogenetic structure (reviewed by Pennington et al. 2009, Hughes et al. 2013) and a general pattern emerges that successful immigration may be more frequent in rain forests than it is in dry forests (Pennington & Lavin 2016).

Using a community phylogenetic approach, Coronado et al. (2015) found that tree species of seasonally dry forest communities are more strongly phylogenetically clustered than those found in rain forest and savanna communities. Strong adaptive barriers may keep migrants from becoming established in this biome – potentially because of its erratic rainfall or distinctive edaphic conditions.

Dexter et al. (2017) bridged both approaches by examining phylogenies of Amazon forest trees in *Inga*, Protieae (Burseraceae), *Swartzia* (Fabaceae), and *Guatteria* (Annonaceae), and using community phylogenetic metrics to evaluate the structure of local communities of each clade. Their study shows that tree communities within the Amazon basin have a random phylogenetic structure and are assembled by widespread dispersal (Dexter et al. 2017, Pennington & Lavin 2015, Pennington et al. 2009).

6. Andean-Amazon diversification and vicariance

An increase in tectonic activity during the Neogene (Miocene + Pliocene) generated the modern Andean-Amazon landscape (Hoorn & Wesselingh 2011). Fully half of South American plant species occur in montane and slope habitats of the Andes (45,000 species with 44% endemic; Gentry 1982; Myers et al. 2000) even though these environments are much younger and cover a sliver of area compared to the vast lowlands of Amazonia. Alpine habitats provided opportunities for stepping-stone migration by temperate plants and bursts of diversification (Hughes & Eastwood 2006, Luebert & Wiegend 2014). Canopy and understory trees speciated in the slope forests (Gentry 1982), in some cases facilitated by adaptations to communities of hummingbirds and large bee pollinators at mid-elevations (Gentry 1982; Lagomarsino et al. 2016).

The Andes may have also played an important role in rain forest vicariance. In Ecuador 30% of lowland vascular plant species are distributed east and west of the Andes (Jørgensen & León-Yánez 1999), which Raven (in Jørgensen & León-Yánez 1999) attributed to vicariance by the

uplifting Andes. This fascinating hypothesis implies that Amazon forests have maintained species and ecological associations since c. 10 MYA, when the rising northern Andes would have become too high (> c. 2500m) for lowland rain forest plants. The alternative explanation is recent or more ancient cross-Andean dispersal. Presently the high elevations of the northern Andes and aridity of the Venezuelan llanos form migration barriers for rain forest trees (Figure 3).

Based on molecular divergence-time estimates of east- and west-of-Andes populations of 12 rain forest species, Dick et al. (2013) found that nine species (including *S. globulifera*) showed genetic divergences consistent with Neogene vicariance or ancient dispersal. Interestingly, species with phylogeographic structure indicative of recent dispersal (e.g., Dick et al. 2007) are ecological generalists that occur in both rain forests and seasonally dry forests. Species able to tolerate drought may be more able to migrate through seasonally dry areas to the north of the Andes (Coronado et al. 2014) and in the lowest area of the Andean cordillera, the Huancabamba depression in northern Peru and southern Ecuador (Quintana et al. 2018).

7. Diversification processes within and among biomes

The concept of adaptive radiation has been influenced heavily by studies of islands, where it is often associated with ecological opportunity and niche shifts. However, on and between continents, some authors have suggested that plants generally track similar major habitats or biome even after long-distance dispersal and through diversification, which is the concept of phylogenetic niche conservatism (Crisp et al. 2009). When niches are conserved, allopatry provides the simplest explanation for speciation. Niche evolution, however, can be inferred when congeneric species are adapted to distinct biome types. For example, 72 of the 90 dominant woody genera of Brazilian Cerrado savannas also have species in rain forest (Pennington et al. 2006). Simon et al (2009) showed that four woody clades endemic to the Brazilian cerrado were assembled by evolutionary transitions from surrounding biomes, suggesting that adaptations readily evolved to the frequent fires in the cerrado savannas (e.g., corky bark, ability to root-sprout).

More recently, Antonelli et al. (2018), based on a meta-analysis of Neotropical angiosperm, fern, and vertebrate phylogenies, have shown that a much higher proportion (47%) of successful long-distance colonization events involved a shift in major biome (e.g., wet to dry) than those involving no biome shift (7%), contradicting the largely southern hemisphere and intercontinental study of Crisp et al. (2009). However, 46% of the colonization events in the Antonelli et al. (2018) study were ambiguous as to whether a biome shift was involved, so niche conservatism could still characterize many successful angiosperm colonization events over evolutionary timescales.

Speciation involving major niche shifts between biomes is one process of ecological speciation, and other workers have made progress on studying both abiotic and biotic niche shifts within single biomes, particularly in the Amazon rain forest. Some of the edaphic heterogeneity in the

11

Amazon basin, such as islands of white-sand vegetation (Adeney et al. 2016), has been involved in speciation in trees of the Burseraceae family (Fine et al. 2005), as inferred by sister species occurring on different soil types and by evidence for strong selective pressure by insect herbivores in different edaphic environments (Fine et al. 2004). Divergence in defenses against insect herbivores has also been implicated in diversification in the species-rich legume genus *Inga* (Kursar et al. 2009), where closely related species differ markedly in their defense traits, and where co-occurring species in a community are more divergent in defense traits than would be expected by chance, suggesting strong local selection by specialized herbivores.

In the cases of both *Inga* and Burseraceae, it is not clear whether ecological selection pressure has initiated speciation - the initial impetus may be allopatry resulting from dispersal. The biogeography of both groups is heavily influenced by dispersal (Dexter et al. 2017; see above), with local communities of each comprising unrelated species such that their phylogenetic structure does not differ from random. It is possible that effective dispersal in both groups may initiate speciation by isolating peripheral populations — a peripatric speciation process (Pennington & Lavin 2016; Dexter et al. 2017) — with subsequent strong selective pressures speeding the process of population divergence leading to eventual speciation.

8. Paleoclimates: Beyond refugia

The Pleistocene refuge theory (PRT) posited that reduced precipitation during glacial periods created a rain forest/savanna matrix across Amazonia, which promoted allopatric speciation of rain forest organisms (Haffer 1969) — even acting as a speciation "pump" over numerous glacial and interglacial cycles. The theory was so broadly accepted by botanists and zoologists alike that prominent Amazon conservation efforts in the 1980s focused on areas most likely to have large numbers of endemic species, which were regarded as putative Pleistocene refuges.

The PRT endures as one of the most influential ideas of Amazon biogeography. However, many of its underlying assumptions have been challenged or discarded. For example, the extensive fragmentation of rain forest by savanna during the LGM is not supported by palynological data from one western Amazon lake (Colinvaux et al. 1996) or from the oceanic sediments near the mouth of the Amazon (Haberle 1999), which do not document increased grass pollen. Some predicted and observed areas of endemism used as evidence for the location of LGM refuges were artefacts of higher botanical collection intensity near cities and major herbaria (Nelson et al. 1990). A recent review (Fiaschi & Pirani 2009) found no evidence of areas of plant endemism in the Brazilian Amazon as predicted by the refuge model.

Despite these challenges, elements of the PRT persist and merit continued research. Glacial/interglacial cycles did impact tropical climates — for example, average tropical surface air temperatures were ca. 5°C cooler than present. It is unclear how precipitation was distributed during the LGM, however, or the vegetation's response to it — particularly in Amazonia. Some evidence suggests that species composition of Amazon rain forests changed during the last glacial. Pollen cores from the western Amazon (Colinvaux et al. 1996), for example, show an increase in *Podocarpus*, a gymnosperm more commonly found along Andean slopes. Furthermore, important clades of rain forest trees did speciate rapidly during the Pleistocene, including *Inga* (Richardson et al. 2001), *Trichilia*, and *Guarea* (Koenen et al. 2015). However, *Inga* species do not show the spatial patterns of clade endemism (Dexter et al. 2017) expected under the specific refuge model, and whether climate change was the driver for speciation in any of these groups is not clear.

A possible game-changer in the interpretation of Quaternary paleoclimates comes from isotopic data in stalagmites (speleothems) collected from Brazilian caves (Cheng et al. 2013, Cruz et al. 2005). These isotope data show fluctuations in precipitation on 20 ky cycles roughly matching the periodicity of Earth's precessional cycle. The data largely reflect dynamics of the Andean low-level jet, an air current that picks up moisture in the Atlantic and carries it across Amazonia, dropping precipitation in its return path along the Andean slopes and toward southeast Brazil. Levels of precipitation are partly controlled by the intensity of summer solar radiation over the Atlantic – hence the role of the precession. Unlike glacial-interglacial cycles, which extend only through the Quaternary, these orbital cycles are constant throughout the Cenozoic.

Precession-forced precipitation caused the western Amazon and southern Atlantic forests to be as wet or wetter during the LGM than today, while the eastern Amazon and northern Atlantic forest would have been drier (Cheng et al. 2013). This offers a different interpretation of the Colinvaux et al. (2001) finding of continuous forest cover in the western Amazon through the LGM, which the authors generalized to the broader Amazon basin. A prediction of such coupled spatial patterns of rainfall is that past biogeographic connections should occur through what is now a dry corridor separating the eastern Amazon/northern Atlantic forest, on the one hand, and the western Amazon and southern Atlantic forest on the other (Prates et al. 2016). A phylogeographic study of lizards provides some evidence of these historical connections (Prates et al. 2016), but this history has not yet been tested with respect to rain forest trees.

When modeling paleoclimatic impacts on vegetation, it is critical to consider edaphic conditions. For example, savannas occur on acid, nutrient-poor soils, and seasonally dry forests develop on higher pH, and more nutrient-rich, soils. The lack of widespread expanses of richer, high-pH soils in Amazonia, and across the Neotropics in general, may explain why suggestions of much more widespread seasonally dry forests in Pleistocene glacial periods (Prado & Gibbs 1993) have not been corroborated in all areas. Pennington et al. (2000) suggested that fragmentation of these dry forests during wet interglacial periods might have driven speciation, but dated phylogenies show pre-Pleistocene diversification (e.g., Särkinen et al. 2012) and the low floristic similarity amongst disjunct areas of dry forest and high levels of plant species endemism in each area is suggestive of long isolation.

The "vanishing refuge" model (VRM: Vanzolini & Williams 1981, Damasceno et al. 2014) invokes both geographic isolation of populations (as in standard PRT) but also ecological divergence in

13

refuge areas where, for example, forest is gradually replaced by savannas – hence the "vanishing refuge". The VRM was originally proposed to avoid an assumption of parapatric speciation models, which postulate divergence of populations in the face of gene flow, which at that time was thought to be unlikely. In an excellent paper that tests the VRM for lizard species first studied by Vanzolini and Williams (1981), Damasceno et al. (2014) outlined a series of predictions and tests for the VRM, which include paleo-habitat modelling and genetic tests for divergence in the absence of gene flow. Such genetic tests, which are needed to exclude the possibility of parapatric divergence, require hundreds of genetic loci, and such depth of data is now feasible using next-generation sequencing. We are, however, unaware of any studies in Neotropical plants that test the VRM, but it is a plausible model to explain the existence of sister species that have parapatric distributions in different habitats, for example in the rain forests of Amazonia and the cerrado savannas of central Brazil, and it should be a priority for future research.

9. Pre-Columbian human legacies (up to 1491 AD)

Deforestation and remote sensing in the SW Amazon have uncovered extensive geoglyphs established for ceremonies, indicating the existence of sophisticated societies and anthropogenic landscapes in pre-Columbian times (Watling et al. 2017). The degree to which Pre-Columbian people shaped modern forest composition is an active area of research (Clement et al 2015, Levis et al. 2017). One question relates to the impact of Pre-Columbian people on the distribution and relative abundances of tree species.

Paleobotanical evidence suggests that Pre-Columbian people expanded the geographic ranges of some important species either directly by planting or indirectly by altering ecological conditions (e.g., by burning vegetation). For example, the palm species *Mauritia flexuosa* first appears in the Venezuelan gran savanna in association with anthropogenic charcoal (Rull & Montoya 2014). By eliminating megafauna, humans removed important agents of seed dispersal of large-seeded tree species, thought to include cultivated trees such as the Brazil nut (*Bertholletia excelsa*) and edible palms (e.g. *Mauritia flexuosa*) (Doughty et al. 2016).

9.1 Domesticated forests

Ross et al. (2011) found higher local abundances of useful tree species near densely used Mayan sites than in less densely used sites – over 1000 years since the Mayans had abandoned them. This suggests a remarkable millennial-scale persistence of forest gardens. Levis et al. (2017) examined the abundance of tree species used by people within a network of >1100 Amazon forest inventory plots and found that forests near archeological sites were enriched with species used by people compared to plots farther away from archeological sites. Twenty of the 77 useful species (out of 4962 species total) are ecologically dominant ("hyperdominant") in Amazon forests. In other words, these useful species are members of a group of 227 tree species that account for ca. 50% of stems in networks of Amazon plots (ter Steege et al. 2013). The five edible palm species ranked in the top ten of most abundant tree species, with highest abundances near archeological sites. Levis et al. (2017) suggested that native cultures shaped forest structure across the entirety of the Amazon basin — an idea with broad appeal reminiscent of the Pleistocene Refuge theory during the 1990s.

In spite of this appeal, the pre-Columbian "domesticated Amazon" theory requires careful examination. First, it is difficult to disentangle recent and pre-historic influences. For example, the most abundant non-palm tree in the Amazon forest plot network is the rubber tree, *Hevea brasiliensis*, which was not especially useful for pre-industrial peoples, and only favored by people starting in the mid-19th century. Second, the Amazon forest plots are spatially correlated with archeological sites (McMichael et al. 2017b), which also overlap with high modern and historical human densities (McMichael et al. 2017a). Third, definitions for what constitutes useful or cultivated species are vague. Nearly every woody plant may have some utility, but only 14 Amazon tree species show evidence of artificial selection by humans (Clements 1999). Finally, many of the most important cultivated or used species are short-lived. Detailed demographic studies may reveal whether or not it is realistic to conclude that enriched species would persist in high abundance over the hundreds of years since European colonization.

A key approach to address some of these issues would be to expand forest plot networks to cover representative habitat types and areas remote from modern people and archeological sites. This will require greater dialog and collaboration between biologists and archeologists (Clement et al 2015). In addition, detailed phylogeographic and population genetic studies of widespread species would be powerful tools for testing whether widespread distributions predated human influences.

10. A glimpse into the Anthropocene

Species-rich Neotropical forests have persisted over virtually the entirety of the Cenozoic, not long after the K/T impact and through periods of abrupt warmth and more gradual climate change. How will Neotropical tree diversity fare in the Anthropocene?

Increased atmospheric CO_2 and warmth are linked to extreme climatic events – droughts, floods, winds – creating more disturbance generally. A recent study showed that droughttolerant species have increased in abundance across the Amazon basin over the past 30 years (Esquivel-Muelbert et al. 2019). These drought-tolerant species, like the Amazon clade of *Psychotria* in Panama (Sedio et al. 2013), may have biogeographic origins in drier parts of the Amazon. Biogeographic mixing across regions with different soils and climates may be necessary to maintain species-rich forests under climate change, but given extensive habitat destruction by humans, this may not be possible.

Neotropical montane forests are especially vulnerable to the combined impacts of warming and habitat change. Andean tree species are already showing evidence of narrowed elevational ranges in response to anthropogenic warming (Fadrique et al. 2018), reflecting increased mortality at the lower elevations in which these species occur. The mortality may be caused by

pest pressure, drought sensitivity, or other biotic and/or abiotic factors. Understanding these causes is essential to designing conservation programs.

In addition to its effects on climate, increased atmospheric CO₂ directly affects plants by altering photosynthetic efficiency. Rising atmospheric CO₂ is hypothesized to favour growth of woody plants that photosynthesise using the C3 pathway over grasses that photosynthesise using the C4 pathway (Bond & Midgeley 2012), suggesting that "encroachment" by trees should occur in savanna types by fertilizing their growth, enabling saplings to escape fires and reach maturity. Such woody encroachment has been observed across the globe, based on both point observations on the ground (Stevens et al. 2017) and broad-scale remote sensing products (McNichol et al. 2018). This suggests that even in the absence of land use change, the balance of savanna and forest in the Neotropics will change in future.

11. Discussion

We have highlighted research on the history of tree lineages that comprise Neotropical forests, along with the history of the forests themselves, over a 100-million-year span. Important elements of this history include the diversification and dominance of angiosperms, and the development of environmental conditions favorable to tropical forests. Neotropical rain forests, in particular, have harbored species-rich tree communities beginning with their oldest Paleocene fossil records (Wing et al 2009). Dispersal was likely important in the assembly of the earliest Neotropical rain forests, as recorded in the turnover of pollen at the Paleocene-Eocene thermal maximum (PETM) (Jaramillo et al 2010), and dispersal has continued to enrich them, as exemplified by the analysis of the Yasuní forest. Such biotic interchange has impacted tree communities through biogeographic filtering and trait-based assembly over evolutionary timescales.

The Yasuní forest also illuminates the debate about historical human influence on Neotropical forests. The Huaorani people live there and hunt monkeys and other seed dispersing animals. The soils contain pottery shards 500-1000 years old, and charcoal from 7700 years ago (Valencia et al. 2004). While humans may have left their imprint on the ecology of Yasuní in unknown ways, the species and higher-level taxonomic diversity of its tree community was shaped over a period much older than the human species, and this is the case elsewhere in the Neotropics.

11.1 Museums and cradles revisited

The most abundant genus in the Yasuní plot is *Inga*, with 44 species. *Inga*'s history of explosive recent speciation epitomizes Stebbin's cradle model, with most of the 300 extant species of *Inga* having formed during the Quaternary. This history contrasts with that of *Symphonia globulifera*, which is older than the crown clade *Inga*, but has just one recognized species on two continents. *Symphonia* is an example of a depauperon (Donoghue & Sanderson 2015),

which is a lineage that has failed to diversify significantly, or one where extinction has left few species. Depauperons receive relatively less attention from ecologists and evolutionary biologists because of their low diversity. In cases like *Symphonia*, however, they may have deep cryptic genetic divergence that can help to uncover biogeographic histories. Because of their phylogenetic isolation, depauperons are unlikely to share genes with other species through hybridization and introgression, but they may have important functional traits that allow them to endure environmental changes, including climate warming (Dick et al. 2013); they may become the successful lineages of the future as climates change in uncertain ways.

In Yasuní, the legume genus *Brownea* is an example of a museum lineage that has steadily accumulated diversity over the course of the Cenozoic (Schley et al. 2018). *Guarea* and *Trichilia*, on the other hand, are young and species-rich like *Inga* (Koenen et al. 2015). Although Stebbins (1974) developed the museum and cradle dichotomy, he recognized that biomes can have both kinds of clades, and clades themselves can be museums and cradles with periods of rapid speciation and steady diversification or decline (Eiserhardt et al. 2017).

11.2 Information in the branch tips

Our review has emphasized deep-time phylogenies with passing mention of population-level studies. In many cases, higher-level phylogenies lack adequate species sampling needed to fully understand causes of shifts in diversification rates and evolutionary biome switching, and, in line with other authors (e.g., Hughes et al. 2013; Eiserhardt et al. 2018), we see great promise in working with fully sampled species phylogenies, ideally using hundreds of independent genomic loci. Some new techniques of DNA sequencing do not require high molecular weight DNA and broaden the possibility of achieving dense taxonomic sampling using herbarium specimens.

Opportunities to reconstruct more refined Neogene and Quaternary biogeographic histories are available using phylogeographic approaches, which can take advantage of the hundreds to thousands of widespread Neotropical tree species with Tertiary histories (Dick et al. 2003, 2013). Most population-level studies have been restricted to relatively abundant tree species to facilitate sampling. Reduced representation genomic sequencing can provide robust estimates of within- and among-population genetic diversity from a few individuals (Gonzales et al. 2017). This raises the possibility of studying rare species (i.e., most Amazon tree diversity) and to more carefully examine the causal mechanisms of divergence at landscape scales. Population-level approaches have been used to test Wallace's Riverine Barrier Hypothesis (Gonzales et al. 2017) and the Pleistocene Refuge Hypothesis (Barthe et al. 2017). They could also be used to test hypotheses about the timing and symmetry of GABI (Gentry 1982; Bemmels et al. 2018). Combined with densely sampled phylogenies that can pinpoint ancestor-descendent species relationships (Pennington & Lavin 2016), we see a great opportunity to use these methods to study diversification across heterogeneous edaphic landscapes, which are being revealed in new detail through remote sensing (Asner et al. 2017).

11.3 Botanical exploration

The Yasuní forest case study also highlights the value of continued botanical exploration. Since the plot was established in the mid-1990s, 20 new tree species have been described (R. Valencia, pers. comm.), including a new genus of Lauraceae, aptly named *Yasunia*. Frequent new discoveries highlight the urgency for taxonomic research, training, and further exploration. There is a need for a new generation of systematists – preferably from Latin American countries – to describe the hundreds of species that await discovery both in the field and in herbaria (Bebber et al. 2010). Unfortunately, legitimate concerns about sharing commercial benefits from biodiversity have influenced policy and made permissions to collect scientific samples much more difficult in some biodiverse countries. Large-scale clearing of tropical forests for economic exploitation continues apace, and fieldwork has never been more urgent to collect herbarium specimens and tissue for genomic analyses, which will be essential to document tropical diversity and to understand its origin and evolution.

Acknowledgements

We thank Renato Valencia and the PUCE staff for generously sharing data from the ForestGEO Yasuní forest plot; Diego Alvarado, Tiina Sarkinen and Caroline Lehmann for biome interpretations in Figure 1; and John Megahan for artwork. Many of the ideas were developed in conversations with collaborators and students, including Lúcia Lohmann, Paul Baker, Sheri Fritz, members of the Dick lab, and the "geogenomics group". Funding to CD was provided by NASA, NSF (DEB 1240869 and FESD 338694), Organization for Tropical Studies, and NEscent. RTP acknowledges NERC-funded grants NE/I028122/1, NE/N000587/1, and NERC Newton-FAPESP (NE/N01247X/1).

References

- Adeney JM, Christensen NL, Vicentini A, Cohn-Haft M. 2016. White-sand Ecosystems in Amazonia. *Biotropica* 48: 7-23
- Antonelli A, Nylander JAA, Persson C, Sanmartin I. 2009. Tracing the impact of the Andean uplift on Neotropical plant evolution. *Proceedings of the National Academy of Sciences of the United States of America* 106: 9749-54
- Antonelli A, Zizka A, Carvalho FA, Scharn R, Bacon CD, Silvestro D, Condamine FL. 2018. Amazonia is the primary source of Neotropical biodiversity. *Proceedings of the National Academy of Sciences of the United States of America* 115(23): 6034-6039
- Appelhans MS, Reichelt N, Groppo M, Paetzold C, Wen J. 2018. Phylogeny and biogeography of the pantropical genus *Zanthoxylum* and its closest relatives in the proto-Rutaceae group (Rutaceae). *Molecular Phylogenetics and Evolution* 126: 31-44
- Asner GP, Martin RE, Knapp DE, Tupayachi R, Anderson CB, et al. 2017. FOREST CONSERVATION Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation. *Science* 355: 385-88
- Bacon CD, Silvestro D, Jaramillo C, Smith BT, Chakrabarty P, Antonelli A. 2015. Biological evidence supports an early and complex emergence of the Isthmus of Panama.

Proceedings of the National Academy of Sciences of the United States of America 112: 6110-15

- Baker PA, Fritz SC, Dick CW, Eckert AJ, Horton BK, et al. 2014. The emerging field of geogenomics: Constraining geological problems with genetic data. *Earth-Science Reviews* 135: 38-47
- Baker WJ, Couvreur TLP. 2013. Global biogeography and diversification of palms sheds light on the evolution of tropical lineages. I. Historical biogeography. *Journal of Biogeography* 40: 274-85
- Bardon L, Chamagne J, Dexter KG, Sothers CA, Prance GT, Chave J. 2013. Origin and evolution of Chrysobalanaceae: insights into the evolution of plants in the Neotropics. *Botanical Journal of the Linnean Society* 171(1): 19-37.
- Barthe S, Binelli G, Herault B, Scotti-Saintagne C, Sabatier D, Scotti I. 2017. Tropical rainforests that persisted: inferences from the Quaternary demographic history of eight tree species in the Guiana shield. *Molecular Ecology* 26: 1161-74
- Bebber DP, Carine MA, Wood JR, Wortley AH, Harris DJ, et al. 2010. Herbaria are a major frontier for species discovery. Proceedings of the National Academy of Sciences of the United States of America 107: 22169-71
- Bemmels JB, Wright SJ, Garwood NC, Queensborough SA, Valencia R, W. DC. 2018. Filterdispersal assembly of lowland Neotropical rainforests across the Andes. *Ecography* 41: 1763-75
- Bond WJ, Midgley GF. 2012. Carbon dioxide and the uneasy interactions of trees and savannah grasses. *Philosophical Transactions of the Royal Society B-Biological Sciences* 367: 601-12
- Burnham RJ, Johnson KR. 2004. South American palaeobotany and the origins of Neotropical rainforests. *Philosophical Transactions of the Royal Society B.* 359: 1595-610
- Boyce CK, Lee JE, Feild TS, Brodribb TJ, Zwieniecki MA. 2010. Angiosperms helped put the rain in rainforests: the impact of physiological evolution on tropical biodiversity. *Annals of the Missouri Botanical Garden* 97(4): 527-540.
- Chanderbali AS, Van der Werff H, Renner SS. 2001. Phylogeny and historical biogeography of Lauraceae: evidence from the chloroplast and nuclear genomes. *Annals of the Missouri Botanical Garden* 88: 104-34
- Couvreur TLP, Pirie MD, Chatrou LW, Saunders RMK, Su YCF, et al. 2011. Early evolutionary history of the flowering plant family Annonaceae: steady diversification and boreotropical geodispersal. *Journal of Biogeography* 38: 664-80
- Cheng H, Sinha A, Cruz FW, Wang XF, Edwards RLA, et al. 2013. Climate change patterns in Amazonia and biodiversity. *Nature Communications* 4
- Clement CR. 1999. 1492 and the loss of Amazonian crop genetic resources. I. The relation between domestication and human population decline. *Economic Botany* 53(2): 188-202.
- Clement CR, Denevan WM, Heckenberger MJ, Junqueira AB, Neves EG, et al. 2015. The domestication of Amazonia before European conquest. *Proceedings of the Royal Society B-Biological Sciences* 282: 32-40

- Cody S, Richardson JE, Rull V, Ellis C, Pennington RT. 2010. The Great American Biotic Interchange revisited. *Ecography* 33: 326-32
- Colinvaux PA, de Oliveira PE, Moreno JE, Miller MC, Bush MB. 1996. A long pollen record from lowland Amazonia: forest and cooling in glacial times. *Science* 274: 85-88
- Coronado, ENH, et al. 2014. *Ficus insipida* subsp *insipida* (Moraceae) reveals the role of ecology in the phylogeography of widespread Neotropical rain forest tree species. *Journal of Biogeography* 41(9): 1697-1709.
- Coronado ENH, Dexter KG, Pennington RT, Chave J, Lewis SL, et al. 2015. Phylogenetic diversity of Amazonian tree communities. *Diversity and Distributions* 21: 1295-307
- Couvreur TLP, Forest F, Baker WJ. 2011a. Origin and global diversification patterns of tropical rain forests: inferences from a complete genus-level phylogeny of palms. *BMC Biology* 9
- Couvreur TLP, Pirie MD, Chatrou LW, Saunders RMK, Su YCF, et al. 2011b. Early evolutionary history of the flowering plant family Annonaceae: steady diversification and boreotropical geodispersal. *Journal of Biogeography* 38: 664-80
- Cruz FW, Burns SJ, Karmann I, Sharp WD, Vuille M, et al. 2005. Insolation-driven changes in atmospheric circulation over the past 116,000 years in subtropical Brazil. *Nature* 434: 63-66
- Davis CC, Bell CD, Mathews S, Donoghue M. 2002. Laurasian migration explains Gondwanan disjunctions: evidence from Malpighiaceae. *Proceedings of the National Academy of Sciences of the United States of America* 99: 6833-37
- Davis CC, Webb CO, Wurdack KJ, Jaramillo CA, Donoghue MJ. 2005. Explosive radiation of malpighiales supports a mid-Cretaceous origin of modern tropical rain forests. *American Naturalist* 165: E36-E65
- Dexter KG, Lavin M, Torke BM, Twyford AD, Kursar TA, et al. 2017. Dispersal assembly of rain forest tree communities across the Amazon basin. *Proceedings of the National Academy of Sciences of the United States of America* 114: 2645-50
- Dick CW, Abdul-Salim K, Bermingham E. 2003. Molecular systematic analysis reveals cryptic tertiary diversification of a widespread tropical rain forest tree. *American Naturalist* 162: 691-703
- Dick CW, Bermingham E, Lemes M, Gribel R. 2007. Extreme long-distance dispersal of the lowland tropical rainforest tree *Ceiba pentandra* L. (Malvaceae) in Africa and the Neotropics. *Molecular Ecology* 16: 3039-49
- Dick CW, Lewis SL, Maslin M, Bermingham E. 2013. Neogene origins and implied warmth tolerance of Amazon tree species. *Ecology and Evolution* 3: 162-69
- Donoghue MJ, Sanderson MJ. 2015. Confluence, synnovation, and depauperons in plant diversification. New Phytologist 207: 260-74
- Doughty CE, Wolf A, Morueta-Holme N, Jorgensen PM, Sandel B, et al. 2016. Megafauna extinction, tree species range reduction, and carbon storage in Amazonian forests. *Ecography* 39: 194-203
- Eiserhardt WL, Couvreur TL, Baker WJ. 2017. Plant phylogeny as a window on the evolution of hyperdiversity in the tropical rainforest biome. *New Phytologist*
- Eiserhardt WL, Antonelli A, Bennett DJ, Botigue LR, Burleigh JG, et al. 2018. A roadmap for global synthesis of the plant tree of life. *American Journal of Botany* 105: 614-22

- Esquivel-Muelbert A, Baker TR, Dexter KG, et al. 2019. Compositional response of Amazon forests to climate change. *Global Change Biology*; 25:39–56.
- Fadrique B, et al. 2018. Widespread but heterogeneous responses of Andean forests to climate change. *Nature* 564(7735): 207-+.
- Feeley KJ, Stroud JT. 2018. Where on Earth are the "tropics". *Frontiers of Biogeography*, 10.1-2, e38649
- Feild TS, Brodribb TJ, Iglesias A, Chatelet DS, Baresch A, et al. 2011. Fossil evidence for Cretaceous escalation in angiosperm leaf vein evolution. *Proceedings of the National Academy of Sciences of the United States of America* 108: 8363-66
- Fiaschi P, Pirani JR. 2009. Review of plant biogeographic studies in Brazil. *Journal of Systematics* and Evolution 47: 477-96
- Fine PVA, Daly DC, Villa Muñoz G, Mesones I, Cameron KM. 2005. The contribution of edaphic heterogeneity to the evolution and diversity of Burseraceae trees in the western Amazon. *Evolution* 59: 1464-78
- Fine PVA, Ree RH. 2006. Evidence for a time-integrated species-area effect on the latitudinal gradient in tree diversity. *American Naturalist* 168: 796-804
- Gentry A. 1982. Neotropical floristic diversity: phytogeographical connections between Central and South America. Pleistocene climatic fluctuations or an accident of Andean orogeny? Ann. Mo. Bot. Gard. 69: 557-93
- Givnish TJ, Renner SS. 2004. Tropical intercontinental disjunctions: Gondwana breakup, immigration from the boreotropics, and transoceanic dispersal. *International Journal Of Plant Sciences* 165: S1-S6
- Graham A. 2010. A natural history of the New World: The ecology and evolution of plants in the Americas. University of Chicago Press. 408 pp.
- Graham A. 2011. The age and diversification of terrestrial New World ecosystems through Cretaceous and Cenozoic time. *American Journal of Botany* 98: 336-51
- Graham A. 2018. Land Bridges: Ancient Environments, Plant Migrations, and New World Connections. pp. 288. Chicago: University of Chicago Press.
- Haberle SG. 1999. Late Quaternary vegetation and climate change in the Amazon basin based on a 50,000 year pollen record from the Amazon fan, ODP site 932. *Quaternary Research* 51: 27-38
- Haffer J. 1969. Speciation in Amazonian forest birds. Science 165: 131-37
- Hoorn C, Wesselingh F, eds. 2011. Amazonia, Landscape and Species Evolution: A Look into the Past. Chichester, West Sussex, U.K.: Wiley-Blackwell.
- Huang JF, Li L, van der Werff H, Li HW, Rohwer JG, et al. 2016. Origins and evolution of cinnamon and camphor: A phylogenetic and historical biogeographical analysis of the Cinnamomum group (Lauraceae). *Molecular Phylogenetics and Evolution* 96: 33-44
- Hubbell SP. 2001. *The Unified Neutral Theory of Biodiversity and Biogeography*. Princeton: Princeton University Press.
- Harris AJ, Chen PT, Xu XW, Zhang JQ, Yang X, Wen J. 2017. A molecular phylogeny of Staphyleaceae: Implications for generic delimitation and classical biogeographic disjunctions in the family. *Journal of Systematics and Evolution* 55: 124-41

- Hughes C, Eastwood R. 2006. Island radiation on a continental scale: Exceptional rates of plant diversification after uplift of the Andes. *Proceedings of the National Academy of Sciences of the United States of America* 103: 10334-39
- Hughes CE, Pennington RT, Antonelli A. 2013. Neotropical Plant Evolution: Assembling the Big Picture. *Botanical Journal of the Linnaean Society* 171: 1-18
- Iturralde-Vinent MA, MacPhee RDE. 1999. Paleogeography of the Caribbean region: Implications for Cenozoic biogeography. New York: Bulletin of the American Museum of Natural History.
- Jaramillo C, Cardenas A. 2013. Global Warming and Neotropical Rainforests: A Historical Perspective. Annual Review of Earth and Planetary Sciences, Vol 41 41: 741-+
- Jaramillo C, Ochoa D, Contreras L, Pagani M, Carvajal-Ortiz H, et al. 2010. Effects of Rapid Global Warming at the Paleocene-Eocene Boundary on Neotropical Vegetation. *Science* 330: 957-61
- Johnson KR, Ellis B. 2002. A Tropical Rainforest in Colorado 1.4 Million Years After the Cretaceous-Tertiary Boundary. *Science* 296, 2379–2383.
- Jørgensen PM, León-Yánez S. 1999. *Catalogue of the vascular plants of Ecuador*. St. Louis: Missouri Botanical Garden.
- Kappelle M 2004. Tropical montane forests. In *Encyclopedia of Forest Sciences*, ed. J Burley, J Evans, JA Youngquist, pp. 1782-93. Oxford, UK: Elsevier
- Kerkhoff AJ, Moriarty PE, Weiser MD. 2014. The latitudinal species richness gradient in New World woody angiosperms is consistent with the tropical conservatism hypothesis.
 Proceedings of the National Academy of Sciences of the United States of America 111: 8125-30
- Koenen EJM, Clarkson JJ, Pennington TD, Chatrou LW. 2015. Recently evolved diversity and convergent radiations of rainforest mahoganies (Meliaceae) shed new light on the origins of rainforest hyperdiversity. New Phytologist 207: 327-39
- Kursar TA, Dexter KG, Lokvam J, Pennington RT, Richardson JE, et al. 2009. The evolution of antiherbivore defenses and their contribution to species coexistence in the tropical tree genus Inga. Proceedings of the National Academy of Sciences of the United States of America 106: 18073-78
- Lagomarsino LP, Condamine FL, Antonelli A, Mulch A, Davis CC. 2016. The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae). New Phytologist 210: 1430-42
- Latham RE, Ricklefs RE. 1993. Continental comparisons of temperate-zone tree species diversity In *Species diversity in Ecological Communities*, ed. RE Ricklefs, D Schluter, pp. 294-314. Chicago: University of Chicago Press
- Lavin M, Luckow M. 1993. Origins and relationships of tropical North America in the context of the boreotropics hypothesis. *American Journal of Botany* 80: 1-14
- Lavin M, Schrire BP, Lewis G, Pennington RT, Delgado-Salinas A, et al. 2004. Metacommunity process rather than continental tectonic history better explains geographically structured phylogenies in legumes. *Philosophical Transactions of the Royal Society of London Series B-Biological Sciences* 359: 1509-22

Leigh EGJ. 2007. Neutral theory: a historical perspective. *Journal of Evolutionary Biology* 20: 2075-91

- Levis C, Costa FRC, Bongers F, Peña-Claros M, Clement CR, et al. 2017. Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. *Science* 355: 925-31
- Luebert F, Wiegend W. 2014. Phylogenetic insights into Andean plant diversification. *Frontiers in Ecology and Evolution* 2: article 27
- Manns U, Wikstrom N, Taylor CM, Bremer B. 2012. Historical biogeography of the predominantly Neotropical subfamily Cinchonoideae (Rubaceae): Into or out of America? *International Journal of Plant Sciences* 173: 261-89
- McMichael CNH, Feeley KJ, Dick CW, Piperno DR, Bush MB. 2017a. Comment on "Persistent effects of pre-Columbian plant domestication on Amazonian forest composition". *Science* 358 (6361) 8347-8348
- McMichael CNH, Matthews-Bird F, Farfan-Rios W, Feeley KJ. 2017b. Ancient human disturbances may be skewing our understanding of Amazonian forests. *Proceedings of the National Academy of Sciences of the United States of America* 114: 522-27
- McNicol IM, Ryan CM, Mitchard ETA. 2018. Carbon losses from deforestation and widespread degradation offset by extensive growth in African woodlands. *Nature Communications* 9
- Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J. 2000. Biodiversity hotspots for conservation priorities. *Nature* 403(6772): 853-858.
- Montes C, Cardona A, Jaramillo C, Pardo A, Silva JC, Valencia V, Ayala C, Pérez-Angel LC, Rodriguez-Parra LA, Ramirez V, Niño H. 2015. Middle Miocene closure of the Central American Seaway. *Science* 348, 226–229
- Morley RJ. 2000. Origin and Evolution of Tropical Rain Forests. West Sussex: John Wiley & Sons Ltd.
- Muellner AN, Savolainen V, Samuel R, Chase MW. 2006. The mahogany family "out-of-Africa": Divergence time estimation, global biogeographic patterns inferred from plastid rbcL DNA sequences, extant, and fossil distribution of diversity. *Molecular Phylogenetics and Evolution* 40: 236-50
- Nazareno AG, Dick CW, Lohmann LG. 2017. Wide but not impermeable: Testing the riverine barrier hypothesis for an Amazonian plant species. 26: 3636-48
- Nelson BW, Ferreira CAC, Dasilva MF, Kawasaki ML. 1990. Endemism centers, refugia and botanical collection density in Brazilian Amazonia. *Nature* 345: 714-16
- O'Dea A, et al. 2016. Formation of the Isthmus of Panama. Science Advances 2(8): e1600883.
- Pennington RT, Lehmann CER, Rowland LM. 2018. Tropical savannas and dry forests. *Current Biology* 28: R541-R45
- Pennington RT, Dick CW. 2004. The role of immigrants in the assembly of the South American rainforest tree flora. *Philosophical Transactions of the Royal Society of London Series B-Biological Sciences* 359: 1611-22
- Pennington RT, Lavin M. 2016. The contrasting nature of woody plant species in different Neotropical forest biomes reflects differences in ecological stability. *New Phytologist* 210: 25-37
- Pennington RT, Lavin M. 2017. Dispersal, isolation and diversification with continued gene flow in an Andean tropical dry forest. Molecular Ecology 26: 3327-29

- Pennington RT, Lavin M, Oliveira A. 2009. Woody Plant Diversity, Evolution, and Ecology in the Tropics: Perspectives from Seasonally Dry Tropical Forests. *Annual Review of Ecology Evolution and Systematics* 40: 437-57
- Pennington RT, Prado DE, Pendry CA. 2000. Neotropical seasonally dry forests and Quaternary vegetation changes. *Journal of Biogeography* 27: 261-73
- Prado DE, Gibbs PE. 1993. Patterns of species distributions in the dry seasonal forests of South America. Ann. Missouri Bot. Gard. 80: 902-27
- Prates I, Xue AT, Brown JL, Alvarado-Serrano DF, Rodrigues MT, et al. 2016. Inferring responses to climate dynamics from historical demography in Neotropical forest lizards. *Proceedings of the National Academy of Sciences of the United States of America* 113: 7978-85
- Raven PH, Axelrod DI. 1974. Angiosperm biogeography and past continental movements. Annals of the Missouri Botanical Garden 61: 539-673
- Renner SS. 2004. Plant dispersal across the tropical Atlantic by wind and sea currents. International Journal of Plant Science 165: S23-S33
- Renner SS, Clausing G, Meyer K. 2001. Historical biogeography of Melastomataceae: The roles of tertiary migration and long-distance dispersal. *American Journal of Botany* 88: 1290-300
- Rezende VL, Dexter KG, Pennington RT, Oliveira AT. 2017. Geographical variation in the evolutionary diversity of tree communities across southern South America. *Journal of Biogeography* 44: 2365-75
- Richardson JE, Pennington RT, Pennington TD, Hollingsworth PM. 2001. Rapid diversification of a species-rich genus of Neotropical rain forest trees. *Science* 293: 2242-45
- Rose JP, Kleist TJ, Lofstrand SD, Drew BT, Schonenberger J, Sytsma KJ. 2018. Phylogeny, historical biogeography, and diversification of angiosperm order Ericales suggest ancient Neotropical and East Asian connections. *Molecular Phylogenetics and Evolution* 122: 59-79
- Ross NJ. 2011. Modern tree species composition reflects ancient Maya "forest gardens" in northwest Belize. *Ecological Applications* 21: 75-84
- Rull V, Montoya E. 2014. Mauritia flexuosa palm swamp communities: natural or human-made? A palynological study of the Gran Sabana region (northern South America) within a Neotropical context. Quaternary Science Reviews 99: 17-33
- Särkinen T, Pennington RT, Lavin M., Simon MF, Hughes CE. 2012. Evolutionary islands in the Andes: persistence and isolation explain high endemism in Andean dry tropical forests. *Journal of Biogeography* 39: 884–900.
- Schley RJ, Estrella M, Pérez-Escobar OA, Bruneau A, Barraclough T, Forest F, Klitgård B. 2018. Is Amazonia a 'museum' for Neotropical trees? The evolution of the *Brownea*. *Molecular Phylogenetics and Evolution* 126 (2018) 279–292
- Schrire BD, Lavin M, Lewis GP. 2005. Global distribution patterns of the Leguminosae: insights from recent phylogenies. *Biologiske Skrifter* 55: 375-422
- Sedio BE, Paul JR, Taylor CM, Dick CW. 2013. Fine-scale niche structure of Neotropical forests reflects a legacy of the Great American Biotic Interchange. *Nature Communications* 4: 2317

- Sedio BE, Wright SJ, Dick CW. 2012. Trait evolution and the coexistence of a species swarm in the tropical forest understorey. *Journal of Ecology* 100: 1183-93
- Simon MF, Grether R, de Queiroz LP, Skema C, Pennington RT, Hughes CE. 2009. Recent assembly of the Cerrado, a Neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. *Proceedings of the National Academy of Sciences of the United States of America* 106: 20359-64
- Slik JWF, et al. 2015. An estimate of the number of tropical tree species. *Proceedings of the National Academy of Sciences of the United States of America* 112(24): 7472-7477.
- Slik JWF, et al. 2018. Phylogenetic classification of the world's tropical forests. *Proceedings of the National Academy of Sciences of the United States of America* 115(8): 1837-1842.
- Stebbins GL. 1974. Flowering plants: evolution above the species level. Belknap.

Stevens N, Lehmann CER, Murphy BP, Durigan G. 2017. Savanna woody encroachment is widespread across three continents. *Global Change Biology* 23: 235-44

- ter Steege H, Pitman NC, Sabatier D, Baraloto C, Salomao RP, et al. 2013. Hyperdominance in the Amazonian tree flora. *Science* 342: 1243092
- ter Steege H, Pitman NCA, Phillips OL, Chave J, Sabatier D, et al. 2006. Continental-scale patterns of canopy tree composition and function across Amazonia. *Nature* 443: 444-47
- Valencia R., et al. (2004). Yasuní Forest Dynamics Plot, Ecuador. Pages 609-620 in *Tropical Forest Diversity and Dynamism*. E. Losos and E. G. Leigh. (eds) Chicago, The University of Chicago Press.
- Vanzolini PE, Williams EE. 1981. The vanishing refuge: a mechanism for ecogeographic speciation. *Papéis Avulsos de Zoologia* 34: 251-55
- Wallace AR. 1878. Tropical nature and other essays. New York and London: Macmillan.
- Watling J, Iriarte J, Mayle FE, Schaan D, Pessenda LCR, et al. 2017. Impact of pre-Columbian "geoglyph" builders on Amazonian forests. *Proceedings of the National Academy of Sciences of the United States of America* 114: 1868-73
- Weeks A, Daly DC, Simpson BB. 2005. The phylogenetic history and biogeography of the frankincense and myrrh family (Burseraceae) based on nuclear and chloroplast sequence data. *Molecular Phylogenetics and Evolution* 35: 85-101
- Wendt T. 1993. Composition, floristic affinities, and origins of the canopy tree flora of the Mexican Atlantic slope rain forests In *Biological Diversity of Mexico, Origins and Distribution*, ed. TP Ramamoorthy, R Bye, A Lot, J Fa, pp. 595-680. New York: Oxford Univ. Press
- Wing SL, Herrera F, Jaramillo CA, Gomez-Navarro C, Wilf P, Labandeira CC. 2009. Late Paleocene fossils from the Cerrejon Formation, Colombia, are the earliest record of Neotropical rainforest. *Proceedings of the National Academy of Sciences of the United States of America* 106: 18627-32
- Wolfe JA. 1975. Some aspects of plant geography of northern hemisphere during the Late Cretaceous and Tertiary Annals of the Missouri Botanical Garden 62: 264-79
- Wu ZY, Liu J, Provan J, Wang H, Chen CJ, et al. 2018. Testing Darwin's transoceanic dispersal hypothesis for the inland nettle family (Urticaceae). Ecology Letters 21: 1515-29
- Zerega NJC, Clement WL, Datwyler SL, Weiblen GD. 2005. Biogeography and divergence times in the mulberry family (Moraceae). *Molecular Phylogenetics and Evolution* 37: 402-16


Tables and Figures

Migration route	Summary Description	
North Atlantic Land Bridge (NALB)	Continuous land between Europe and North America until c. 59 Ma. Migration of subtropical and warm temperate taxa until early Eocene (>65 to c. 47 Ma).	
Beringian Land Bridge (BLB)	Possible land bridge during warm-temperate Paleogene, though primarily of temperate deciduous taxa. BLB developed throughout the Tertiary.	
Antillean Land Bridge (ALB) (GAARlandia)	Archipelago for stepping stone dispersal since latest Eocene, but with no strong evidence of being a continuous land bridge.	
Magellan Land Bridge (MLB)	Possible land bridge for dispersal of "Austrotropical" (1) elements during the Paleogene.	
Isthmus of Panama	Conventional first emergence of Isthmus at 3.5 Ma, but with some geological and biogeographic evidence suggesting mid-Miocene connections.	

Table 1. Putative land bridges available for intercontinental dispersal of plants into theNeotropics. Descriptions and timelines mainly follow Graham et al. 2018.

Migrant clade* (ref)	# migrant genera (species)	Migration hypotheses
Fabaceae (1)	37 (114)	Late Cretaceous origin in Madrean-Tethyan biome implying Boreotropical and oceanic dispersal to SA
Lauraceae (2)	12 (75)	Boreotropical origin of <i>Cinnamomum/Persea</i> groups. Early Miocene LDD of species-rich <i>Ocotea</i> (18 spp)
Melastomataceae (3)	10 (63)	Boreotropical origin; Oligocene marine dispersal into South America.
Sapotaceae (4)	7 (53)	Indo-Malaysian origin of stem (ca. 102 Ma) and crown clade (ca. 58 Ma) with some Boreotropical fossils
Annonaceae (5)	13 (39)	Boreotropical and marine dispersals from NA and Africa to SA. Ages of two main clades ~ 65.5 Ma (LBC), ~32.8 (SBC).
Meliaceae (6)	5 (37)	Crown origin ~59 Ma in OW, possibly of deciduous and tropical montane ancestors. Marine dispersal to Neotropics.
Arecaceae (7)	15 (23)	Early divergence in Laurasia (~100 Ma) with 4 dispersals to SA from NA (~80 Ma and ~40 Ma) and Africa (~65 Ma).
Chrysobalanaceae (8)	4 (21)	Single (marine) dispersal from Paleotropics ~28 Ma for Neotropical clade
Burseraceae (9)	5 (18)	Paleocene NA origin (stem ~60 Ma)
Lecythidoideae (4)	5 (13)	Neotropical clade stem (~59 Ma) and crown clade (~43 Ma) with sister clades in OW

Table 2. Immigrant clades in the Yasuní forest inventory plot. Column 2 indicates number ofgenera and species in the plot. Column 1 references: (1) Schrire et al. 2005; (2) Chanderbali etal. 2001, Huang et al. 2016; (3) Renner et al 2001; (4) Rose et al. 2018; (5) Couvreur et al. 2011;(6) Koenen et al. 2015; (7) Baker and Couvreur 2013; (8) Bardon et al. 2013; (9) Weeks et al.2005;.SA = South America; NA = North America; OW = Old World

Figure 1: Schematic map adapted from Olson et al. (2001; BioScience 51, 933–938), but with their tropical ecoregions reclassified into tropical montane forest, rain forest, savanna, and dry forest biomes. Classification of savanna and dry forest follows Pennington et al (2018). Because of scale, small areas of some biomes embedded within other biomes (e.g., isolated savannas in Amazonia, patches of dry forest within Brazilian savannas) cannot be depicted.

Commented [CWD1]: Note a revised figure 1 is being developed. I am leaving this as a placeholder.

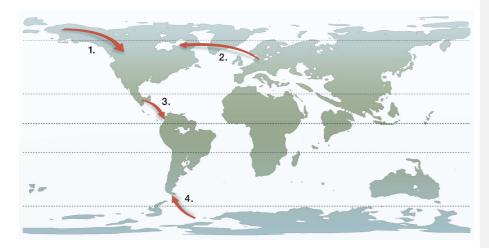


Figure 2. Eocene land surface map (50 Ma) showing the locations of intercontinental migration corridors: (1) Beringia, (2) North Atlantic Land Bridge; (3) Antillean land bridge (Gaarlandia); (4) Magellan Land Bridge. Map adapted from Scotese CR, Wright N, 2018. PALEOMAP Project https://www.earthbyte.org/paleodem-resourcescotese-and-wright-2018/

Figure 3. Detail of Figure 1 showing northwest South America. Ecological dispersal barriers that impede biotic interchange for rain forest trees (green) east and west of the Andes include montane forest (light brown) and savannas (peach) and dry forest (light green). Forest

inventory plots mentioned in text: (1) Barro Colorado Island (BCI), Panama; (2) Yasuní Forest Dynamics Plot.