
 

 

Nonlinear Microscopy for Failure Analysis of CMOS Integrated Circuits in 

the Vectorial Focusing Regime 

 

 

 

Marius Rutkauskas 

Submitted for the degree of Doctor of Philosophy 

 

Heriot-Watt University 

School of Engineering and Physical Sciences 

August 2017 

 

 

 

 

 

The copyright in this thesis is owned by the author. Any quotation from the 

thesis or use of any of the information contained in it must acknowledge 

this thesis as the source of the quotation or information. 



ii 

ABSTRACT 

 
This thesis focuses on the development of techniques for enhancing the spatial resolution and 

localisation precision in the sub-surface microscopy for failure analysis in semiconductor 

integrated circuits (ICs). Highest spatial resolutions are obtained by implementing solid 

immersion lenses (SIL), which provide unsurpassed numerical aperture (NA) for sub-surface 

microscopy. These high NA conditions mean that scalar diffraction theory is no longer valid and 

a vectorial focusing description should be applied to accurately describe the focal plane electric 

field distribution.  

Vectorial theory predicts that under high NA conditions a linearly polarised (LP) light focuses to 

a spot that is extended along the electric field vector, but radially polarised (RP) light is predicted 

to form a circular spot whose diameter equals the narrower dimension obtained with linear 

polarisation. By implementing a novel liquid-crystal (LC) radial polarisation converter (RPC) this 

effect was studied for both two-photon optical-beam-induced current (TOBIC) microscopy and 

two-photon laser assisted device alteration (2pLADA) techniques, showing a resolution and 

localisation improvement using the RP beam. By comparing images of the same structural 

features obtained using linear, circular and radial polarisations imaging and localisation 

resolutions both approaching 100 nm were demonstrated. The obtained experimental results were 

in good agreement with modelling and were consistent with theoretically predicted behaviour. 

Certain artefacts were observed under radial polarisation, which were thought to result from the 

extended depth of focus and the significant longitudinal field component. In any application these 

effects must be considered alongside the benefits of the symmetric field distribution in the focal 

plane. 

While SIL sub-surface microscopy offers unmatched spatial resolutions, it is prone to being 

severely degraded by aberrations arising from inaccurate dimensions of the SIL, imprecise 

substrate thickness or imperfect contact between SIL and substrate. It is in this context that 

techniques to identify and even mitigate aberrations in the system are important. A simple 

approach is demonstrated for revealing the presence of chromatic and spherical aberrations by 

measuring the two-photon autocorrelation of the pulses at the focal plane inside the sample. In 

the case of aberration free imaging, it was shown both theoretically and experimentally that the 

planes of the maximum autocorrelation amplitude and shortest pulse duration always coincide. 

Therefore, the optics of the imaging system can be first adjusted to obtain the minimum 

autocorrelation duration and then the wavefront of incident light modified to maximise the 

autocorrelation intensity, iterating this procedure until the positions of minimum pulse duration 

and maximum autocorrelation amplitude coincide.  
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 Introduction 

3.1 Motivation 

Failure analysis (FA) is an important tool in semiconductor industry aiming, to analyse failing 

parts within integrated circuit (IC) devices [1]. Its goal is not only to determine manufacturing 

flaws but also to offer suitable solutions for the IC design issues. Therefore, the FA is understood 

to have a direct impact on the IC development. This discipline consists of a wide range of 

electrical and physical means of testing, which are performed on ICs to measure, analyse and 

understand the reasons behind the device failures [2, 3]. As FA is a reactive tool of the fast 

evolving semiconductor industry it typically tries to keep up with manufacturing technology [4]. 

A constant demand of the state-of-the-art microelectronic equipment dictates the need of its 

constant development and evolution. Semiconductor industry adheres to the Moore's law and 

maintains constant scaling towards the 5-nm-technology node (Fig. 1.1) [5, 6]. Scaling is not the 

only challenge for industry to cope with as ICs tend to develop into more and more complicated 

and advanced functional designs [7]. The increasing numbers of devices inside a single chip leads 

to the higher probabilities of failures and defects in the ICs [8]. Therefore, continuous 

development of novel FA techniques is vital for manufacturers to maintain this exponential 

progress in IC industry for longer [9, 10, 11]. 

 

Figure 1.1. The progress of miniaturisation. 
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Rapidly shrinking features suggest that many FA techniques can no longer provide sufficient 

localisation resolutions to single out transistors. Other techniques pose limitations on sample 

preparation to exploit their outstanding imaging resolutions, often leading to the destruction of the 

testing device [3, 12]. 

Large number of devices inside the single IC requires increased number of metal interconnect 

layers, leading to the limitations to probing from the front side [13]. Therefore, imaging from the 

backside of the device through the thick substrate level typically is the only proper solution for 

FA [14]. 

Such requirement can be met by optical microscopy, which is employed for the sub-surface 

backside imaging of ICs through silicon using infra-red light [15]. However, the resolution of 

infra-red light optical microscopy is restricted to the diffraction limit, which is approximately 

equal to a half of wavelength (around 500 nm) of infra-red light, which is more than order of 

magnitude poorer than what is needed to localise a single transistor of the IC [16]. 

The invention of solid immersion lens (SIL) made it possible to achieve the highest sub-surface 

resolutions up to date [17-21]. The SIL is a good solution to enhance the resolution of optical 

microscopy due to its ability to increase the numerical aperture (NA) considerably up to the value 

of refractive index of the material [22]. However, this is usually not sufficient to keep up with the 

miniaturisation of the ICs and therefore additional means of imaging resolution enhancing 

techniques have to be to developed. 

Most recent efforts have developed improvements of localisation resolution by tailoring the laser 

beam illumination. Phase [23, 24], amplitude [25] and polarisation [26, 27] can be designed to 

produce a focal spot as sharp as possible. In this thesis, the vectorial focusing conditions of high 

NA systems were exploited to investigate the impact of the incident beam’s polarisation on the 

imaging and localisation resolutions. Combining the high-NA SIL imaging technique with the 

nonlinear response of the two-photon absorption makes it possible to achieve sub-100-nm 

resolutions for non-invasive backside sub-surface microscopy [25].  

3.2 Sub-surface solid-immersion microscopy 

Since the dawn of optical microscopes in early seventeenth century, optical techniques have been 

applied in a wide range of applications [28, 29]. For FA of semiconductor ICs optical microscopes 

can be both applied in front-side and backside probing [30]. The front-side imaging typically 

employs visible light, which is guided to the device layer via the front of device. Despite short 

wavelengths making it possible to image with resolutions of 200 nm without any extra effort, 

strong absorption of visible light in silicon requires polishing of the device and removing highly 

reflective metal interconnect layers, so rendering the device inoperable. Such preparation of the 
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ICs is unwanted as it leads to the destruction of the device [14]. Another approach is to exploit 

the transparency window of silicon, which starts at around 1.1 µm and perform the backside 

probing using infrared (IR) light [31]. This section now reviews the relevant optical microscopy 

techniques and its challenges for sub-surface imaging of ICs.  

3.2.1 Introduction to confocal microscopy 

The basic idea of the confocal microscopy technique is to illuminate the sample using a point light 

source and to record the response signal, which has passed the pinhole. This idea was suggested 

by Minsky in 1957 and later it was patented in 1961 [32]. The confocal microscope was invented 

with the idea to minimise stray light in the measurement [33]. Therefore, it is necessary to perform 

the lateral scan of the sample to obtain the whole image. As a result, such images are of high 

quality images over the whole area of the sample, while conventional wide-field microscope is 

limited to the illuminated area. [34]. Scanning can be initiated by either translating the sample, 

or translating the laser beam inside the sample [35].  

 

Figure 1.2. The scanning confocal microscope design (adapted from [29]). 

Sheppard and Choudhury investigated the scanning confocal microscope theoretically for the first 

time in 1977 (Fig. 1.2) [36]. Later Sheppard and Wilson demonstrated scanning microscope with 

a photomultiplier tube and novel scanning stage. They showed that sample can be scanned and a 

signal obtained with a detector of a finite size. The microscope of such design was able to produce 

high quality images of ICs [37]. If, on the other hand, both source and detector are point-like, the 

microscope becomes a confocal microscope.  

The quality of an optical microscope is described by its ability to resolve fine details of the 

sample [38]. Due to the wave nature of light and diffraction, it is impossible to produce a point 
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image of a point object. Instead it forms a bright spot of light surrounded by concentric diffraction 

rings, which is called the Airy pattern [39]. Therefore, the resolution of an optical microscope is 

restricted by the diffraction limit. The Sparrow limit defines the smallest feature that can be 

resolved with optical system [38]: 

Resolving power =  𝑘
𝜆

𝑁𝐴
=  𝑘

𝜆

 𝑛 sin𝜃
, (1.1) 

where 𝜆 is the wavelength of the incident light and NA is the numerical aperture of an optical 

system, 𝑛 refractive index of the material, 𝜃 is the half the angle of the cone of light, and 𝑘 is the 

imaging factor (0.47 for the Sparrow limit). 

As it is seen from Eq. (1.1), the resolution of the optical system depends on four parameters. 

Therefore, the following strategies can be exploited to enhance the optical resolving power: 

decrease the wavelength of the light source, increase refractive index, increase the angular 

spectrum of the incident light, decrease the 𝑘 factor [19]. 

 

Figure 1.3. Spherical aberration when light is incident through air/silicon interface (adapted from [40]). 

Clearly the maximum value of sin𝜃 = 1. The reduction of wavelength is also limited as shorter 

wavelengths are absorbed strongly, thus practical wavelengths are restricted to infrared. Only the 

𝑘 factor and refractive index modulation remain as potential promising routes to produce higher 

spatial resolutions. A few techniques were shown to be able to reduce the 𝑘 factor: 

apertures [41, 42], structured illumination [43], polarisation control [26, 44] and laterally 

interfering beams [45]. A liquid immersion objective lens is the technique appropriate to 
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increasing the refractive index by replacing the air with oil or water. This allows to obtain a slight 

improvement in resolution, which is widely used technique in the optical microscope of biological 

samples [46]. However, for FA there is no such liquid, which is close to refractive index of silicon 

(3.48). Also as light travels through the air and silicon boundary, spherical aberrations appear, 

leading to a reduction of the resolution of the optical system (Fig. 1.3) [40, 47].  

An elegant solution, which addresses both spherical aberrations and low refractive index 

problems, is the solid immersion lens (SIL). SILs provide the ability to perform backside IR light 

imaging and probing of sub-100-nm IC features [48-50]. 

3.2.2 Solid immersion lenses 

It has been always a constant struggle for scientists to deal with improving the spatial resolution. 

In 1678 Hooke was the first to propose an immersion technique. Only in 1812 Brewster suggested 

to immerse the objective lens into the liquid medium. The first immersion objective lenses were 

made around 1840 by Amici [51]. However, this liquid immersion technique is not suitable for 

semiconductor sub-surface imaging because the refractive index of semiconductors is too high 

for any liquid to even approach it. 

 

Figure 1.4. The hSIL design for IC sub-surface imaging. H – height of the SIL, D – thickness of silicon 

substrate, R – radius of the SIL. 

At last in 1990 Mansfield and Kino invented the solid immersion microscopy, which was a 

breakthrough in the semiconductor microscopy [17]. The basic idea of this technique remains the 

same as in liquid immersion microscopy. However, at the same time solid immersion microscopy 

enhances the spatial resolution by including the light, rays which are incident at angles higher 

than the critical angle. There are two types of solid immersion lenses: “central” or hemispherical 

SILs (hSIL) and “aplanatic” SILs (aSIL) [22]. 
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SILs benefit from the so called aplanatic points, which are the focal points where light can be 

focused without spherical aberrations. The rays, which are normal to the surface of the sphere, 

are not refracted at the air-SIL interface. Therefore, all these rays are collected at the centre of the 

sphere, which is considered the first aplanatic point. The second aplanatic focal position is at the 

distance 𝑧 = (𝑛1 𝑛0⁄ )𝑅 from the center of the sphere (𝑅 - radius of the sphere, 𝑛0 and 𝑛1 - the 

refractive indices of the sphere and the air). All the rays, which are refracted at the air-SIL 

interface, are coincident at this point [22]. 

hSILs are normally used for imaging structures just beneath the surface. This limitation results 

from the following Eq. (1.2), which should be fulfilled by the hSIL: 

𝐻 = 𝑅 − 𝐷, (1.2) 

here H - height of the hSIL, R - radius of the sphere and D - thickness of silicon substrate (Fig. 1.4). 

Therefore if the hSIL has 𝐻 equal to R, it can image at the depth 𝐷 equal to 0. In sub-surface 

microscopy, a SIL increases the light-gathering power of the objective lens, because it benefits 

from the first aplanatic point of the sphere (Fig. 1.4). As a result, the hSIL is chromatic aberration 

free. 

The NA can be increased by the hSIL up to the refractive index of the medium surrounding the 

imaging object. The increase of the NA leads to an improved spatial resolution, which for the 

hSIL is by a factor 𝑛 for both the lateral and longitudinal resolutions. This means that the lateral 

resolution gain when using the hSIL is equal to 𝑛. The hSIL also enhances the magnification of 

the microscope by the same factor of 𝑛. However, the best available NA with the hSIL is limited 

by the NA of the objective lens. To achieve the best values of the spatial resolution would require 

an objective lens with an NA of 1 [22, 52]. 

aSILs are used for imaging features which are lying deeper beneath the surface of the device. The 

aSIL exploits the second aplanatic position (Fig. 1.5). Each aSIL is designed for a certain 

sub-surface depth as is seen in this equation: 

𝐻 = 𝑅 (1 +
1

𝑛
) − 𝐷. (1.3) 

Also Eq. (1.3) suggests that focal position for the aSIL depends on the wavelength. This also 

means that aSIL introduces longitudinal chromatic aberration, which is not the case for the hSIL. 

The aSIL benefits from high magnification even compared with the hSIL. Also it improves the 

NA by a factor of 𝑛2 up to a maximum value of 𝑛. However, it is impossible to reach the 

maximum possible NA as it requires the rays to be incident at the angle of 90o. As NA describes 

the spatial resolution, the aSIL can improve it considerably by 𝑛2 [22]. 
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Figure 1.5. The aSIL design for IC sub-surface imaging. H – height of the aSIL, R – radius of the sphere, 

D – thickness of silicon substrate, n – refractive index, Y – radius of the aSIL base. 

The magnification of aSIL is explained as an “optical lever” effect, which has been described by 

Serrels et al [22]. It means that if the beam moves relative to the optical axes, the focal position 

inside the SIL is translated by a smaller distance. This effect is portrayed in Fig. 1.6. The 

leveraging effect differs not only for the hSIL and aSIL but also for the transverse and longitudinal 

directions too (Fig. 1.6). 

It was mentioned before that the hSIL has magnification of 𝑛 and the aSIL of 𝑛2. Therefore, for 

the hSIL the lateral leveraging factor is ∆𝑥 𝑛⁄ , while for the aSIL it is ∆𝑥 𝑛2⁄ , where ∆𝑥 denotes 

a lateral displacement of the beam [22]. 

 

Figure 1.6. (a) Lateral and (b) longitudinal lever effect for both the hSIL and the aSIL designs [22]. 

a) b) 

aSIL 

hSIL 
hSIL 

aSIL 
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3.3 Optical absorption in CMOS devices 

Optical FA techniques are based on the ability of the laser beam to locally induce changes to the 

IC under test. To better understand how the laser beam interacts with the IC first the optical 

properties of materials comprising devices must be understood. There are many metallic contacts 

in the IC, which strongly reflect light and are opaque, meaning that fraction of light, which is not 

reflected, is highly absorbed leading to the photon energy being converted to heat [53] [54]. 

Polycrystalline semiconductors, which typically form the substrate were found to behave in 

similar manner [55]. Oxides, which form epitaxy, are typically highly transparent and transmit or 

reflect light via the Fabry-Perot effect. Finally, semiconductor (transistors) optical properties are 

determined by the optical absorption coefficient, which is different for pure and doped 

silicon [15].  

3.3.1 Optical properties of silicon 

Silicon is the most common material, which is used for the manufacturing of ICs. Therefore, it is 

essential to understand its optical properties to apply lasers in various FA techniques. 

The propagation of the laser beam through silicon is determined by the single, multi-photon and 

free carrier absorption [56]. There is also a set of nonlinear optical phenomena, including the Kerr 

effect [57], the Raman effect [58], the Franz-Keldysh effect [62], which influence the propagation 

of light. This nonlinear behaviour is a cause of physical properties of silicon, such as 

centrosymmetry and anisotropy. 

 

Figure 1.7. Crystal lattice of silicon, which is a centrosymmetric cubic crystal (adapted from [55]). 

Centrosymmetric crystals have a lattice where every atom at the (x, y, z) position has an identical 

atom at the position (-x, -y, -z) (Fig. 1.7). Therefore, this type of symmetry is called inversion 

symmetry and such a crystal cannot exhibit the second order susceptibility, which is zero [55]. 
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Anisotropy is another property of silicon, which suggests that it has genuine optical characteristics 

depending on the direction of propagating light [60]. Refractive index typically varies in 

anisotropic media and depends on both the composition and the crystal structure. An anisotropic 

crystal whose refractive index is not constant can serve as a polarisation retarder. Silicon exhibits 

such anisotropic properties as the absorption of light creates an internal electric field, which 

triggers an electro-optical effect, thus which modifies the optical properties of the medium. Lin 

et al [60] has shown that absorption in silicon differs by 12% between <010> and <011> 

(Fig. 1.8) propagation direction. Another study demonstrated that anisotropy also affects the 

carrier mobility within transistors [61]. 

 

Figure 1.8. Three crystal faces in the silicon cubic lattice structure [60]. 

For undoped crystalline silicon the absorption happens only via inter-band transitions and 

therefore depends on the silicon band structure. An incident photon is absorbed only if it is of 

sufficient energy to move an electron from the valence band to the conduction band. This means 

that only photons having energy greater or equal to the bandgap energy of silicon bandgap energy 

can be absorbed, while the lower energy photons pass through the material [62]. Therefore, the 

crystalline silicon is transparent for wavelengths longer than 1.1 μm and its absorption coefficient 

for wavelengths 0.8 µm < λ < 1.06 µm is [63]: 

𝑎 = (85,01λ−1 −  77,104)2. (1.4) 

Penetration depth, where intensity reaches 1/𝑒 level, can be written as [63]: 

𝑑 =
1

𝑎
. (1.5) 
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Also it should be noted that for wavelengths, close to 1064 nm, the transmission of 

monocrystalline silicon is high, but it decreases rapidly as the wavelength gets smaller. Therefore, 

near-infrared light is a suitable choice for backside imaging FA analysis.  

However, usually silicon is p or n doped to improve the device performance. Therefore, the 

concentration of impurities also affects the optical absorption coefficient of silicon [64]. The 

optical transmission curve depicted in Fig. 1.9 shows that the increase of the concentration of 

impurities in a p-type substrate significantly reduces the optical transmission even at the near-

infrared wavelengths [65]. In this case three absorption phenomena limit the transparency of 

doped silicon: inter-band absorption, absorption by impurities and the absorption by free 

carriers [66, 67].  

Highly doped substrates limit the penetration depth of the laser wave by increasing its absorption 

coefficient. Silicon still retains relatively high transparency at the wavelengths of 1550 nm, 

1340 nm and 1064 nm, which are commonly used in various FA techniques. 

 

Figure 1.9. P-doped silicon optical transmission over wavelength for different concentrations of 

impurities (adapted from [64]). 

When incident photons hit a surface of silicon there are a few possibilities how events can develop 

after. First, the photon can be simply reflected. Another outcome is photon absorption via 

interaction with a silicon crystal lattice if photon does not have sufficient energy for optical 

absorption. The last event happens if the photon is of sufficient energy to be absorbed via 

intraband absorption. Therefore, the photon needs energy higher than the bandgap energy of 

silicon (greater than 1.12 eV or wavelength lower than 1107 nm). In this case the photon energy 

is transmitted to an electron, which is promoted from the valance band into the conduction band. 

As, a result, electron-hole pairs are generated creating excess carriers. The penetration depth of 

light in silicon and the carrier generation rate strongly depends on the absorption 

coefficient [68, 69]. 
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3.3.2 Single-photon absorption 

An optical field interacts with another optical field or even with itself by modifying the properties 

of the medium [70]. These characteristics of the medium through which an electromagnetic wave 

propagates are described by the relation between the polarisation of a material system 𝑃(𝑡) and 

the strength of an electric-field 𝐸(𝑡). This relation is linear in conventional optics: 

𝑃(𝑡) = 휀0𝜒
(1)𝐸(𝑡), (1.6) 

where 𝜒(1) is the linear susceptibility and 휀0 is the permittivity of the free space. 

In linear optics, absorption causes the intensity (𝐼) of the propagating laser beam to decay 

according to the Beer-Lambert law: 

d𝐼(𝑧)

d𝑧
= −𝑎𝐼(𝑧), (1.7) 

𝐼(𝑧) = 𝐼0exp(−𝑎𝑧), (1.8) 

where 𝑎 is the single photon absorption (SPA) coefficient. In this case the energy and momentum 

conservation laws must be satisfied. Therefore, a photon has to be of the same energy as the 

difference between the excited and the ground state of molecule or atom. The result of the process 

is an absorbed photon and an excited molecule. SPA occurs along the whole beam propagation 

direction, preventing the light from penetrating deeper into the material (Fig. 1.11). 

Free carrier absorption occurs when a photon interacts with a free carrier, which consequently 

moves to upper energy level within the same band. The free carrier density depends on the doping 

of semiconductor and can be either increased or decreased by controlling the doping 

concentration. Another cause leading to the high free carrier absorption is the supply voltage, 

which also injects additional free carriers within the bulk of the silicon. The following equation 

shows the change in absorption coefficient introduced by the free carrier absorption [71]: 

∆𝑎 =
𝜆2𝑞3

4𝜋2𝑐3휀0
∙

∆𝑁

𝑛𝑚2𝜇
, (1.9) 

where ∆𝑁 is the difference of carrier concentration, 𝑛 is refractive index, 𝑞 is charge, 휀0 is the 

permittivity of vaccuum, 𝑚 is the effective mass of carriers and μ is the carrier mobility. As it is 

seen from the Eq. (1.9) higher concentrations of free carriers lead to the higher absorption 

coefficient. 
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3.3.3 Multi-photon absorption 

The theory of two-photon absorption (TPA) was first predicted in 1931 by the Nobel prize 

laureate Maria Goeppert-Mayer [72]. However, this phenomenon was not confirmed 

experimentally until the laser was invented in 1961. Kaiser and Garrett focused a red 

(𝜆 =  694.3 nm) ruby laser beam into CaF2:Eu2+ crystals and observed a blue fluorescence light, 

which was generated during the process [73].  

As the light intensity reaches high values, nonlinear absorption becomes evident. The TPA occurs 

when two photons are absorbed by an atom or molecule simultaneously (Fig. 1.10).  

 

Figure 1.10. The energy level diagram for the one-, two- and three-photon absorption cases. 

In linear optics the nonlinear part of the polarisation is neglected while in nonlinear optics it can 

no longer be ignored. Therefore, the optical response is generalised by expressing the polarisation 

as a power series: 

𝑃(𝑡) = 휀0[𝜒
(1)𝐸(𝑡) + 𝜒(2)𝐸2(𝑡) + 𝜒(3)𝐸3(𝑡) + ⋯ ] = 

= 𝑃(1)(𝑡) + 𝑃(2)(𝑡) + 𝑃(3)(𝑡) + ⋯ . (1.10) 

The quantity 𝜒(2) is the second-order nonlinear optical susceptibility and 𝜒(3) is the third-order 

nonlinear optical susceptibility. Therefore, 

𝑃(2)(𝑡) = 휀0𝜒
(2)𝐸2(𝑡), (1.11) 

𝑃(3)(𝑡) = 휀0𝜒
(3)𝐸3(𝑡), (1.12) 

 are known as the second- and third-order nonlinear polarisations, respectively [74]. 

As it was mentioned in previous sections, second-order nonlinear interactions can be observed 

only in noncentrosymmetric media, which do not display inversion symmetry. Due to silicon 

being centrosymmetric the second order nonlinear interaction are not observed. Third-order 

nonlinear optical interactions can occur for both centrosymmetric and noncentrosymmetric 

materials [70]. 
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Figure 1.11. Beam propagation through silicon substrate for both SPA and TPA cases. 

Due to the third order nonlinearity, TPA happens in a medium with any molecular configuration. 

The susceptibility that makes the TPA possible is the imaginary part of 𝜒(3). Consequently, the 

absorption cross section 𝜎 depends linearly on the laser intensity, while for the linear case it is 

constant: 

𝜎 = 𝜎(2)𝐼, (1.13) 

where 𝜎(2) describes strength of the TPA. The absorption due to the nonlinearity is therefore 

modified such that  

𝑎 = 𝑎0 + 𝛥𝑎 = 𝑎0 + 𝑎2𝐼, (1.14) 

d𝐼(𝑧)

d𝑧
= −𝑎0𝐼(𝑧) − 𝑎2𝐼

2(𝑧), (1.15) 

where 𝑎2 is the nonlinear absorption coefficient, which is proportional to the imaginary part of 

the 𝜒(3) [75]. Eq. (1.15) shows that absorption is proportional to the square of the incident 

intensity. Therefore, TPA occurs only at the focal spot and happens through a virtual state 

(Fig. 1.11). When the photon is absorbed, an electron is excited to the virtual state. However, it 

can stay there only for a very short time (~10−15 s) as Heisenberg’s uncertainty principle should 

be satisfied: 

𝛥𝐸 ∙ ∆𝑡 ≈ ℏ. (1.16) 

TPA occurs only if another photon of the appropriate energy is absorbed before the electron falls 

down to the ground state. The probability of this phenomenon increases with the light intensity. 

Therefore, it is possible to tune the laser photon energy below the fundamental electronic band 

gap of the material, so that the linear absorption vanishes and only the TPA occurs. As a result, a 

highly localised imaging can be achieved [70, 76-78]. 
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3.4 Optical techniques for failure analysis of integrated circuits 

Circuit components in novel IC are as closely packed as never before, therefore such complicated 

design of the ICs can easily lead to a failing device. To overcome this problem ICs must be probed 

using suitable techniques to isolate a single failing transistor. It is essential not only to conduct the 

FA of the device, but also to test the electrical performance of these ICs to improve their design.  

The decrease of the feature sizes in the ICs requires an increasing performance of the 

corresponding analytical equipment. The study of defects in ICs strongly depends on their type 

and origin [1]. Of all localisation techniques available, this thesis is focused on optical probing 

techniques. Such optical techniques analyse the properties of a test device (the sample), which is 

under illumination of a laser beam. The incident laser beam can induce a temperature change, a 

density variation of the charge carriers or the electric field. The main advantage of such optical 

FA techniques, that analysis of the properties of ICs can be made while they are exercised (i.e. 

operational). As the response of the IC depends also on the electrical parameters, it allows both 

fault detection and the analysis of the device operation. In this section some failure analysis 

techniques are presented while primarily focusing on optical-based techniques. 

3.4.1 Laser thermal stimulation techniques 

Laser stimulation makes it possible to induce a thermal change into the sample device and 

therefore change its electrical properties. The main principle of this technique is to detect the 

resistance variation inside the IC. The thermal laser stimulation exploits the interaction between 

matter and the laser light when part of the absorbed energy of light is converted into heat. This 

typically occurs at highly absorbent materials (such as metals) for which the temperature rise is 

therefore significant. This approach generally employs wavelengths of around 1300 nm, making 

it possible both to avoid generating photocarriers inside the silicon and to have a local thermal 

heating of metal regions. The local increase in temperature in the IC leads to the change of 

resistance and to the generation of electric current [79]. 

Change of the resistance 

The temperature increase may cause a resistance variation of the individual features, which result 

in an overall sample resistance variation. The rise of temperature affects the number of free 

carriers involved in the electric current (electrons in the case of metals), while increasing the 

volume of the material through the thermal expansion phenomenon. Therefore, an increment of 

temperature leads to a change of the sample’s resistance. One can measure the resistance variation 

and synchronise it to the beam scanning. As a result, the sensitive areas to the laser stimulation 

can be mapped. Depending on the temperature change ∆𝑇, the change of the resistance ∆𝑅 is 

given by the equation: 



18 

∆𝑅 =
𝜌0𝐿

𝑆
(𝛼𝑇𝐶𝑅 − 2𝛿𝑇)∆𝑇, (1.17) 

where 𝜌0 is the resistivity of the material at the reference temperature, 𝛼𝑇𝐶𝑅 thermal coefficient 

of resistivity, 𝛿𝑇 the linear thermal expansion coefficient, 𝐿 is the length and 𝑆 is the area. For the 

metal case, the contribution of the thermal expansion part is much lower than that of the resistivity. 

In addition, the metal tracks are typically coated with oxide, which limits their thermal expansion 

even more. Therefore, changes in resistance will be strongly related to the change of resistivity 

and for the most cases the phenomenon of expansion may be ignored. Also, the laser thermal 

stimulation can contribute only to the positive change of temperature and the change of resistivity 

depends only on the material. Therefore, a metal which has a positive 𝛼𝑇𝐶𝑅 leads to an increase 

of the resistance. The thermal coefficient of resistivity can be negative for some cases, for example 

semiconductors, causing a negative change of resistance if the temperature increases [79]. If the 

induced resistance change depends on the expansion of the material considerably, then it is 

impossible to predict whether the resistance will increase or decrease.  

The variation of the resistance of each element affects the electrical properties of the IC, since 

voltage and current are related to resistance. By scanning the laser beam across the sample and 

mapping the variations in resistance, it is possible to accurately locate components, which show 

abnormal thermal sensitivity. These elements may be related to the presence of a defect. 

OBIRCh and TIVA techniques 

The OBIRCh and TIVA techniques are used to detect the change of the resistance induced by the 

laser beam. The OBIRCh (Optical Beam Induced Resistance Change) technique detects the 

change in the current, which is induced as the metal features are heated by the laser. During 

OBIRCh a constant voltage is applied on the device [80, 81]. Void defects (gaps in metal lines) 

exhibit a higher temperature rise than the rest of the device increasing the local resistance and thus 

lowering the current. This technique is typically exploited to reveal the open metal lines. 

However, the measured currents are low and therefore, a series of trans-impedance amplifiers is 

required, as the operating point output is affected by temperature and noise of the power supply.  

This problem can be solved by applying the thermally induced voltage alteration (TIVA) 

technique. TIVA, which differs from OBIRCh in a way how the sample under test is driven and 

the how the signal is obtained (Fig. 1.12). TIVA approach is to apply a constant current on the IC 

and detect voltage modulations introduced by the laser beam, thus highlighting the void areas of 

the IC [82, 83]. Since ICs typically operate in high impedance mode, a voltage detection can 

provide a desirable advantage as its change is of a larger extent than that for a current. However, 

the use of a constant current supply may be incompatible with alternating current devices or 
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complex ICs such as mixed signal devices. An additional disadvantage of this technique is, that 

sudden peak voltage change during the thermal stimulation may also lead to the irreversible 

breakdown of the sample. 

 

Figure 1.12. The operation principles of (a) OBIRCh and (b) TIVA techniques. 

XIVA technique 

The externally induced voltage alteration (XIVA) technique offers a way to overcome limitations 

of OBIRCh and TIVA techniques [84, 85]. This modality implements an inductor within a 

voltage variation detection scheme to achieve constant voltage bias. This inductor prevents the 

instantaneous current change as the laser stimulates the DUT. The mapping accuracy can be 

further enhanced via laser scanning and signal acquisition synchronisation [84]. Also detection 

sensitivity and noise reduction can be enhanced by implementing a signal amplification with a 

lock-in amplifier [86]. 

Seebeck effect imaging technique 

The Seebeck Effect Imaging (SEI) technique measures the change of the electrical potential 

induced by the temperature gradients [82, 87]. This effect is known as the thermoelectric power 

or the Seebeck effect. The SEI technique is used to localise an open circuit in the test device. If 

the conductor is electrically intact the potential gradient caused by the heating is compensated by 

the transistor. However, if the laser beam is incident on a conductor which is isolated from the 

transistor the electrical potential is changed. In this case, the bias condition of the transistor, which 

is connected to a stimulated conductor is changed, affecting the transistor’s saturation condition 

and the thermal dissipation. The device must be supplied with a constant current and voltage [87]. 

a) b) 
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3.4.2 Laser photoelectric stimulation techniques 

Illuminating the device with photons of sufficient energy for inter-band absorption to occur, 

generates electron-hole pairs (Fig. 1.13a). These charge carriers then contribute to the 

photocurrent and therefore this phenomenon is called the photoelectric effect. The silicon 

bandgap is 1.12 eV, which corresponds to the light of 1107 nm wavelength. Therefore, typically 

lasers generating 1064 nm wavelength light are employed.  

    

Figure 1.13. (a) Photoelectric effect in semiconductor and (b) current generation in nMOS transistor. 

Already excited carriers can still absorb photons leading to free carrier absorption and heating of 

the device. However, the electron-hole pairs are generated in the entire silicon substrate, while 

thermal heating via the free carrier absorption is weak and can be neglected since high carrier 

density regions are confined to a small volume. Thus, this technique is known as Photoelectric 

Laser Stimulation (PLS), which utilises the laser beam irradiation to locally induce a photocurrent 

into the active regions of the IC. These excess carriers generated by the laser beam recombine 

after a characteristic lifetime. However, if carriers appear within or close to the depletion region, 

they are dissociated by the junction potential (Fig. 1.13b) [88, 89]. 

LIVA technique 

The light induced voltage alteration (LIVA) technique employs a similar detection approach to 

the TIVA configuration and is based on constant current bias while detecting a voltage variation 

as a function of carrier stimulation. This technique is effective in imaging defects resulting from 

junctions connected to open conductors, floating nodes, junction damage and gate oxide ruptures. 

LIVA has advantage over conventional thermal variation techniques as offers a possibility to 

investigate IC circuitry by mapping logic states of transistors [90]. 

a) b) 
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OBIC and TOBIC techniques 

Optical beam induced imaging (OBIC) was first demonstrated in the 1978 by Wilson and 

Gannaway [91]. This technique is based on the carrier generation via the photon absorption 

phenomenon. The light, which has a photon energy higher than the material’s bandgap energy, is 

absorbed, thus generating carriers. In crystalline silicon, even though these carriers are generated 

they diffuse over time and recombine through non-radiative processes. As a result, no electric 

current is induced. However, it is different if the carriers are generated in the area of the junction. 

Here they experience the internal electric field, which leads them to the external circuit, thus 

generating an optically induced current. This photocurrent can be mapped as a function of the 

scanned beam position and an image of the circuit can be obtained [92]. 

OBIC imaging is suitable for the FA of semiconductor devices as it is a non-destructive 

technique [1, 93]. However, it does not necessarily offer fundamental advantages over the 

previous imaging techniques. Additionally, OBIC has one major limitation. It is not able to 

perform a depth-resolved analysis as the SPA happens along the entire propagation path of the 

beam. Therefore, a nonlinear technique, which is based on the TPA, was suggested as a promising 

approach to overcome the limitations. 

Two-photon OBIC (TOBIC) imaging was first demonstrated by Xu using a 1.3 µm femtosecond 

optical parametric oscillator [94-96]. It was showed in the previous sections, that in order to 

achieve TPA in a silicon device, the laser wavelength must be tuned to provide energy lower than 

the bandgap of the silicon substrate. This enables a laser beam to travel through the material 

without being absorbed. Therefore, carriers are no longer generated along the beam path. 

However, the laser beam has to be of a sufficient wavelength that two photons combined would 

have a higher energy than the energy of the bandgap. As TPA is proportional to the intensity-

squared, the high intensities are achieved only in the focal spot, where the TPA happens and 

generates carriers in a highly localised manner. This localisation makes it possible to acquire a 

3D map of absorption sensitivity [97]. Moreover, due to its nonlinear character TOBIC also 

produces a higher spatial resolution, since the TPA depends on the square of the incident optical 

intensity. This offers a beneficial reduction of the focal spot radius by a factor of √2 [98]. 

Laser voltage probing 

Laser Voltage Probing (LVP) is a backside optical measurement technique of device activity at a 

specific location on the ICs (Fig. 1.14). LVP measurements are time-domain measurements of 

the modulation in the operating device. When the transistor is driven with a pulse, it is switching 

between these states [99]. If the input is fast enough, the time in which the transistor operates in 

the saturation regime is very short. In the linear operating and the saturation regimes, there are 
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extra layers called inversion layer and depletion region. These layers are formed because the free 

carrier densities are changed as a result of the applied voltage [99]. This change in free carrier 

densities causes a change in the refractive index and in the absorption coefficient. When a laser is 

focused on one specific position in these regions while the transistor is switching, there is a change 

in the reflected light because of the change in refractive index and in absorption coefficient. 

Therefore, when the transistor is driven by a rectangular pulse, a modulation can be observed in 

the reflected light correlated with the voltage change in the rectangular pulse [99]. 

 

Figure 1.14. LVP technique principle. 

3.4.3 Tester based laser stimulation techniques  

Static laser stimulation techniques are approaching their limits as ICs get more and more 

complicated. Therefore, it is highly important to develop new techniques, which could be able to 

detect failing sites arising from electrical stimulation of defect.  

These tester based techniques employ the so called "Shmoo" graphs (Fig. 1.15). A Shmoo graph 

is a functional representation of the circuit according to two parameters (voltage, frequency, 

temperature, etc.) for a given test pattern. 

 

Figure 1.15. Shmoo plot with grey colour representing normal device functionality (adapted 

from [100]). 
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The aim of the tester exercising a Shmoo pattern is to create a boundary condition separating the 

area for which the IC is functional (pass) from the zone for which it fails. This technique is widely 

used in the microelectronics industries where it employed to study manufacturing 

processes [100]. 

Test vectors are applied to the device under test (DUT) and a test program is selected under which 

the DUT would be close to soft failing condition. Then this failure mode is set to run in a loop 

while the DUT is irradiated the laser. The tester detects pass-fail or fail-pass transitions and as a 

results defects leading to these transitions are detected. At each pixel the laser dwells for a 

specified number of test loops and fail/pass pattern us averaged. Synchronising the laser with the 

tester and mapping which pixels it was irradiating leads to the image of pass-fail sites.  

Laser Assisted Device Alteration (LADA) [101] and Laser Delay Variation Mapping 

(DVM) [102] techniques extended the development of dynamic laser stimulation modalities 

beyond the thermal stimulation and the pass/fail state mapping. LADA technique exploits laser 

stimulation to generate carriers inside the DUT leading to detectable time shifts of transistor 

switching events. This makes it possible to isolate transistors on the critical signal path. LADA 

will be introduced in a greater detail in Chapter 4. Also, as my own work described later in this 

thesis shows, LADA can be extended by using TPA, improving the localisation resolution 

significantly. DVM directly measures the laser induced time delay within the pass or fail state 

using a time measurement unit with a resolution in the range of picoseconds. 

3.4.4 Photon emission microscopy 

Photon emission microscopy is yet another optical FA technique, which is designed to obtain 

a weak optical signal from a failing IC device. Photons are emitted during the transistor switching 

events, which are recorded using a CCD camera. The exact location emitting photons can be 

tracked by overlaying the emission image over the confocal image of the device.  

Photon emission in semiconductors can occur due to two different reasons. The first event causing 

photoemission is a radiative relaxation phenomenon, when carriers having high kinetic energy 

relax and emit light. Reverse biased junctions of the complementary metal-oxide semiconductor 

(CMOS) devices are the source of such events, however reverse biased currents are typically very 

low. Therefore, amplification of currents is necessary to obtain radiation, which is intense enough 

to be detected. A leakage current can work as a trigger for this amplification. Another principle 

behind photon emission is the radiative band-band recombination of electrons and holes, which 

initiates electroluminescence. Recombination involves carriers from conductance and valence 

bands, meaning that this is an inter-band phenomenon. However, it rarely happens in silicon as it 

is an indirect semiconductor [103]. 
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3.5 Thesis outline 

The primary objective of this thesis is to develop backside optical failure analysis tools to increase 

the imaging resolutions while using high numerical aperture conditions. To present several 

approaches for resolution enhancement this thesis was structured in six chapters, with this 

introduction as the first chapter. 

Chapter 2 introduces theory, design and construction of the Er:fibre laser used for two-photon 

optical beam induced current microscopy. 

In Chapter 3 two-photon optical beam induced current microscopy is investigated. After a review 

of the development of vector diffraction theory, the integral representation of the focal field under 

high numerical aperture conditions is derived. In addition, implementation of the liquid crystal 

radial polarisation converter is described and TOBIC imaging results using differently polarised 

beams are presented. 

Chapter 4 explores the two-photon absorption laser assisted device alteration (2pLADA) 

technique. Detailed experimental implementation of this failure analysis technique under different 

polarisation conditions is provided and obtained experimental results are discussed. 

Chapter 5 studies aberrations under high numerical aperture imaging conditions. Here the relation 

between pulse broadening and imaging resolution is investigated both theoretically and 

experimentally. In addition, pulse measurements at the focal plane of a hemispherical solid 

immersion lens are compared with calculated spatiotemporal dynamics.  

Finally, Chapter 6 concludes this thesis with a discussion of the presented results and offers 

insights into potential improvements.  
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 Femtosecond Er:fibre laser for sub-surface imaging 

at 1550 nm 

The experimental work described in this these was based around mode-locked Er:fibre laser, 

which I refined and then amplified in a separate Er-doped fibre amplifier. Here I introduce the 

background to the laser design and operating principles. 

Optical fibres exhibit many properties that are extremely useful to produce both pulsed [1] and 

continuous wave (CW) lasers [2]. The optical fibre is a waveguide, where spatial modes can be 

guided over long distances without high loss [3]. Furthermore, the fibre can serve as a host to rare-

earth dopants which can be used as the laser gain [4]. Finally, the fibre has unique properties of 

nonlinear optical effects that lead to a self-mode-locking operation for the ultrashort pulse 

generation [5]. These properties make optical fibres the desirable medium for producing high 

power, high bandwidth ultrashort pulses. In addition, fibre lasers benefit from a compact and 

robust design, alignment-free operation, efficient heat dissipation and can be low-cost [6]. 

Therefore, fibre lasers have a high demand over the traditional solid state and gas lasers. Pulsed 

fibre lasers have a wide variety of possible applications, which depend on the required wavelength 

and pulse durations, and range from the fundamental science [7, 8] to the medical [9, 10], 

telecommunications [11, 12] and industrial [13] fields. 

The active gain medium of the fibre laser is a fibre waveguide doped with rare-earth ions such as 

neodymium (Nd3+), praseodymium (Pr3+), ytterbium (Yb3+), erbium (Er3+), thulium (Tm3+) and 

holmium (Ho3+). The generated wavelength depends on the properties of both the rare-earth ions 

and the host materials. Fibre lasers cover wavelengths from the ultra-violet to mid-

infrared [14-18]. 

The Er:fibre laser is of particular interest as it provides an emission wavelength of around 1.5 μm. 

Since this wavelength is located in the telecommunication window, Er-doped fibre lasers have 

been extensively studied. Also, ultrafast pulses from a mode-locked fibre laser operating at 

1.5 μm are interesting for imaging inside silicon ICs. This wavelength propagates inside the 

silicon with low attenuation and provides nonlinear absorption at the device layer of the chip to 

generate a photocurrent of a particular area of interest. 

Moreover, the large nonlinearity in Er:fibres can be used to create the large wavelength 

bandwidths required to generate ultrashort optical pulse durations leading to higher peak powers 

and better confinement of the focal spot, which is crucial to obtain the highest resolution for 

TOBIC microscopy.  
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4.1  The Er3+ ion 

It is essential to know the optical properties of the erbium-doped fibres before introducing the 

laser design. Erbium-doped glasses display a laser transition at around 1560 nm between the 4I15/2 

level and the 4I13/2 level of the 4f electron shell [4]. Lower 4I15/2 level is a ground state. Therefore, 

the 1560 nm transition is a part of three-level system between the 4I11/2 and the 4I13/2 states, while 

optically pumping with 980 nm. The pump is absorbed in the short-lived 4I11/2 state, where 

excitation rapidly decays via non-radiative phenomenon to the metastable 4I13/2 state. Also it can 

be directly pumped to the 4I13/2 state with the 1480 nm optical pump creating two-level system. 

However, in practice it is more complicated due to the split of levels into sub-manifolds. Sub-

levels appear as a result of Stark effect created by the electric field due to the charge distribution 

in the glass host [19] (Fig. 2.1). 

 

Figure 2.1. On the left, the details of the energy levels of the laser transition. Arrows indicate 

absorption and emission lines (adapted from [4]).  

As the differences between some of the sub-levels are comparable to the thermal energy at room 

temperature, even some higher sub-levels are populated for both ground and excited states [4]. 

Populated sub-levels in both the lower and the upper states explain the discrepancies between the 

absorption and the emission spectra (Fig. 2.2). As a result, erbium-doped glass is a quasi-three-

level system [19]. 
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.  

Figure 2.2. Emission and absorption spectra at around 1550 nm wavelength (adapted from [4]). 

Stable pumping at 980 nm can be achieved using high power laser diodes leading to intense 

optical output (Fig. 2.3). Pumping at 1480 nm has it benefits that there are no non-radiative decays 

so there is no material heating through this process. However, this design suffers from fewer fibre 

components suitable for the 1480 nm wavelength and also pump sources at this wavelength are 

not as nearly good as at 980 nm [4]. 

The 810 nm pump source is not a good choice for erbium-doped as it exhibits strong excited state 

absorption (ESA) from the upper level of the lasing transition. Also, the quantum defect is quite 

high. ESA happens when excited ion absorbs phonon [20]. 

 

Figure 2.3. Absorption spectrum for an erbium-doped fibre. The three common pumping bands 

are shown with the arrows. The level involved and the wavelength associated with it are indicated 

(adapted from [4]). 

One way to overcome the pumping issue is to co-dope an Er3+ ion with an ytterbium (Yb3+) 

ion [21, 22]. This approach exploits large absorption cross-section of the Yb3+ with an absorption 

band from 800 to 1100 nm. In this arrangement the Yb3+ ion absorbs pump photons more 
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efficiently than the Er3+ ion and transits to the 2F5/2 level. In the case of high level doping, energy 

transfer between ions can occur and the Yb3+ ion can pass excitation to the Er3+ ion 4I11/2 level, 

which almost instantly decays to the 4I13/2 (Fig. 2.4). This co-doping is often employed in the 

Er:fibre. However, back-transfer from the Er3+ ion to the Yb3+ ion can sometimes occur as well, 

thus limiting the conversion efficiency [23]. 

 

Figure 2.4. Energy transfer between the Er3+ and Yb3+ ion in a co-doped fibre [88]. 

4.2 Introduction to ultrafast fibre laser architectures  

In order to generate ultrafast optical pulses one has to employ a mode-locking technique. The 

basic example of the laser is depicted in Fig. 2.5. Here a laser resonator consists of two mirrors 

covering a gain medium, where M1 is a high reflector and M2 is an output coupler. As the laser 

is optically pumped the light generated inside the laser cavity bounces back and forth between the 

mirrors a number of times. Therefore, standing waves are formed inside the cavity, which are 

called the longitudinal modes [3].  

 

Figure 2.5. Basic configuration of a laser cavity. M1 (high reflector) and M2 (output coupler) 

mirrors. 
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In a simple configuration, these longitudinal modes will oscillate independently without any fixed 

relationship and interfere in such way that a constant intensity will be observed at the output as 

shown in Fig. 2.6a and is called CW. However, if these modes are fixed in frequency difference 

and are forced to oscillate with a fixed phase relation then they periodically interfere 

constructively producing intense output called pulse as shown in Fig. 2.6b, and the laser is said to 

be mode-locked [3]. 

 

Figure 2.6. (a) Continuous wave operation; the output of the laser is constant. (b) Pulsed 

operation; the output of the laser will be intense burst and the separation of each peak round trip 

time of the laser cavity. 

Such a standing-wave laser resonator can cause spatial hole burning when standing-wave 

intensity pattern saturates the gain, which can lead to reduction of the laser efficiency and mode 

stability. Therefore, more complex ring cavities can be implemented to avoid these limitations 

(Fig. 2.7). Fibre lasers typically exploit design of such cavities [3]. 

 

Figure 2.7. Basic configuration of a ring cavity laser. M1, M3 - high reflecting mirrors and M2 - 

output coupler. 

Laser mode-locking can be achieved using both active and passive locking techniques [24]. While 

applying the passive mode-locking case laser modes are put in phase without active control inside 

the laser cavity. In fibre lasers the passive mode-locking happens when ultrashort laser pulses are 

produced via self-amplitude modulation (SAM), which modulates the cavity loss. Passive mode-

locking in fibre lasers can be achieved using three different techniques: saturable absorber, 

nonlinear amplifying loop mirror and nonlinear polarisation rotation [25].  

a) b) 
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4.2.1 Active mode-locking 

Active mode-locking is achieved with insertion of an actively controlled element in the laser 

cavity. This element modulates either the amplitude or the phase of the light inside the cavity and 

its frequency should relate to the mode spacing. The modulator creates periodic losses in the laser 

cavity (Fig. 2.8). 

 

Figure 2.8. Temporal evolution of optical power and losses in an actively mode-locked laser 

𝑎 = 𝑎𝑟 + 𝑎𝑚[1 − cos(𝜔𝑚𝑡)], (2.1) 

where 𝑎𝑟 are the regular cavity losses and 𝑎𝑚 is the additional loss created by the modulator with 

a frequency 𝜔𝑚. 

The laser emits more light when cavity losses are lowest leading to mode-locking after successive 

round trips [25]. 

4.2.2 Semiconductor saturable absorption 

In passive mode-locking a higher loss at low power is introduced using a nonlinear component 

so that a shorter pulse with higher peak power experiences a lower loss. One possibility to achieve 

passive mode-locking is to use a saturable absorber (SA) (Fig. 2.9) [26]. A few types of SA can 

be used: semiconductor saturable absorber mirror (SESAM), saturable Bragg reflector (SBR), 

and carbon nanotubes. The SA mode-locking technique offers high repetition frequencies with 

the limited spectral width and output power. The limit is set by the damage threshold of the SA, 

which is permanently damaged if the peak intensity of the pulse exceeds it. There are other 

essential parameters of the SA while designing ultrafast lasers: the recovery time, the modulation 

depth, the bandwidth, the saturation intensity and the non-saturable losses. The recovery time of 

the SA determines whether it is a slow (nanosecond) or fast (picosecond) SA [27].  
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Figure 2.9. Representation of the SA mode-locking technique. 

When light hits a slow saturable absorber, pulse’s front edge is absorbed forming an excited state, 

which is transparent to the trailing edge. This is not sufficient to achieve mode-locking therefore, 

it is important to select a laser medium with a gain relaxation time faster than the cavity round-

trip time, but slower than the absorber recovery time. For the fast saturable absorber the recovery 

time is comparable to the duration of the optical pulse. For this case the pulse intensity also self-

modulates the loss in the cavity leading to linear and nonlinear dispersion shaping of the 

pulse [28]. 

4.2.3 Nonlinear amplifying loop mirror 

It was demonstrated that sub-picosecond pulse durations can be obtained out of the fibre laser 

while using a nonlinear amplifying loop mirror mode-locking (NALM) technique. The NALM 

is based on the Kerr effect and can be realised using a figure-of-8 laser configuration (Fig. 2.11). 

The NALM laser consists of a Sagnac interferometer and a fibre amplifier placed asymmetrically 

in the loop (Fig. 2.10) [29].  

 

Figure 2.10. The NALM operation principle (adapted from [29]).  
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The electric field coming out from the left ring is coupled into the loop and split by the 50/50 

splitter into two pulses propagating in opposite directions. When the optical power is low, the 

NALM works in the linear regime and pulses are recombined at the 50/50 splitter. However, high 

power pulses experience a nonlinear index of refraction. As the gain fibre is placed 

asymmetrically, the two pulses experience different phase shifts, which can be denoted by: 

𝛿𝜑1 =
𝜋

𝜆
𝑛𝑔𝐼𝐿, (2.2) 

𝛿𝜑2 =
𝜋

𝜆
𝑛𝐼𝐿, (2.3) 

where 𝛿𝜑1and 𝛿𝜑2 are the nonlinear phase shifts of pulses propagating in the clockwise and 

counter clockwise direction respectively, 𝜆 is a wavelength, 𝑛 is the nonlinear index of refraction, 

𝑔 is the gain coefficient, 𝐼 is the signal intensity and 𝐿 is the loop length. Amplified higher 

intensity pulses are transmitted out of the laser leading to the mode-locking, which is achieved by 

carefully adjusting polarisation of the pulse with polarisation controller (explained in next 

section) [30]. 

 

Figure 2.11. Schematic of the figure eight ring laser using a NALM saturable absorber (adapted 

from [31]). 

It has been shown that using the NALM technique pulses of 50 fs can be generated. However, 

the NALM laser allows to achieve only low repetition rates due to the long cavity (long enough 

to achieve sufficient amplification) and it has not been demonstrated to self-start [31, 32]. 
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4.2.4 Nonlinear polarisation rotation 

Another way to realise a passive mode-locking is the nonlinear polarisation rotation (NPR) 

technique. The NPR is based on intensity dependent polarisation rotation and was first 

demonstrated by K. Tamura. [33].  

First linearly polarised light is guided through the polariser, which sets the polarisation. Linearly 

polarised light is converted into elliptical after the quarter-wave plate (QWP) and propagates 

along a non-polarisation maintaining fibre. If the pulse is of high intensity, the Kerr effect occurs 

leading to the phase change between the two linear polarisation components of the elliptical 

polarisation state. This causes a nonlinear rotation of the polarisation state. The created rotation 

of the polarisation can be controlled with the waveplates to achieve a mode-locking state. The 

positions of the waveplates are tuned to obtain the maximum transmission through a polariser 

when the pulse intensity is highest. The polariser blocks low intensity pulses while transmitting 

the high peak power ones thus acting as the SA [33].  

 

Figure 2.12. The NPR technique representation. The polarisation state in centre of the Gaussian 

shape pulse is rotated as a result of high peak power leading to the nonlinear Kerr effect, while 

the lower intensity wings maintain their polarisation (adapted from [33]). 

The NPR mode-locking technique is extremely fast as it depends on the Kerr effect. Also a 

conventional Gaussian shaped pulse profile experiences a polarisation rotation within its peak, 

while wings remain unaffected (Fig. 2.12). This leads to the further shortening of the pulse and as 

a result, the shortest pulse durations without practical limit can be achieved. 

However, it is difficult to achieve a high repetition rate as a shorter cavity would lead to lower 

pulse energy, which is not sufficient for the Kerr effect to happen. Also the NPR technique is 

sensitive to the temperature and fibre curvature changes as it affects polarisation and as a result 
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waveplate positions. Therefore, the temperature stabilised construction is vital to avoid frequent 

adjustment of the waveplates. 

The described NPR technique was used to obtain mode-locking for the stretched-pulse erbium-

doped fibre laser, which is introduced in following sections and was used in TOBIC 

experiments [34]. 

4.3 Pulse shaping effects in ultrafast lasers 

Ultrashort pulse generation requires to achieve large bandwidths, because the optical pulse 

duration is directly proportional to the bandwidth [35]. This can be obtained only by the careful 

management and control of linear and nonlinear effects experienced by the pulse during the 

propagation through the dielectric media. In order to achieve the proper operation of the fibre 

laser, suitable pulse propagation conditions must be first accurately modelled and calculated 

because of the lengths of the fibre material. 

4.3.1 Dispersion 

Dispersion is one of the main properties of the fibres to be understood before designing a mode-

locked fibre laser. The dispersion in the fibre depends not only on the materials, from which it is 

made, but also waveguide characteristics like the core size and the ratio between refractive indices 

of core and cladding. The propagation constant in the fibre with a core refractive index of 𝑛1and 

a cladding refractive index 𝑛2 can be described by [36]: 

𝛽(𝜔) =
𝑛(𝜔)𝜔

𝑐
, (2.4) 

here 𝑐 is the speed of light, 𝜔 is frequency of light and 𝑛(𝜔) is the effective index of refraction. 

The propagation constant is limited within the interval of 

𝑛1𝑘 ≥ 𝛽 ≥ 𝑛2𝑘, (2.5) 

where 𝑘 =
2𝜋

𝜆
 is the wavenumber of the electromagnetic wave in vacuum. The propagation 

constant can be normalised and given by [36]: 

𝑏(𝜔) =
𝛽2 𝑘2⁄ − 𝑛2

2

𝑛1
2 − 𝑛2

2 . (2.6) 

If the most of the power is concentrated in the core and the refractive index difference is small, 

the propagation constant can be written as: 

𝛽(𝜔) = 𝑛2𝑘[1 + 𝑏(𝜔)∆𝑛], (2.7) 
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where the normalised propagation constant is expressed via normalised frequency [36]: 

𝑏(𝜔) = 1 − (
1 + √2

1 + √4 + 𝜐(𝜔)44
)

2

. (2.8) 

One can obtain the effective index of refraction while applying the previous equations:  

𝑛(𝜔) = 𝑛0(𝜔)[1 + 𝑏(𝜔)𝛥𝑛], (2.9) 

here 𝑛0(𝜔) corresponds to the material dispersion and the right term corresponds to the 

waveguide dispersion. 

The material dispersion can be calculated using the Sellmeier equation [36]: 

𝑛0(𝜆) = √1 + ∑
𝐴𝑗𝜆2

𝜆2 − 𝐵𝑗
2

𝑚

𝑖=1

≈ √1 +
𝐴1𝜆2

𝜆2 − 𝐵1
2 +

𝐴2𝜆2

𝜆2 − 𝐵2
2 +

𝐴3𝜆2

𝜆2 − 𝐵3
2  , (2.10) 

𝐴𝑗 and 𝐵𝑗 are the medium’s Sellmeier coefficients and wavelength is expressed in µm scale. 

Using the previous equation both the index of refraction and the group velocity dispersion can be 

calculated. The group velocity can be written as [36]: 

𝑣𝑔 =
d𝜔

dk
. (2.11) 

In vacuum the group velocity is equal to the phase velocity, which in a material is: 

𝑣𝑝 = 𝑐 𝑛⁄ . (2.12) 

The group velocity can be expressed via wavelength: 

𝑣𝑔 =
c

n‐λ
d𝑛
d𝜆

=
𝑐

𝑁𝑔
, (2.13) 

where 𝑁𝑔 is the group index. 

It was mentioned before that the propagation constant depends on the waveguide dispersion as 

well. The wave, which propagates inside the fibre, experiences different amounts of phase shift 

than would be the if only material dispersion were present. This waveguide dispersion occurs 

from the frequency dependent distribution of wave vectors [36].  

The group velocity dispersion (GVD) of the cavity determines how the pulse propagates in the 

fibre laser since each frequency component travels with a different speed. This effect leads to the 
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broadening of the pulse width and possibly distortion. To calculate the GVD first the propagation 

constant 𝛽(𝜔) must be expanded as a Taylor series [36]: 

𝛽(𝜔) = 𝛽0 + 𝛽1(𝜔 − 𝜔0) +
1

2
𝛽2(𝜔 − 𝜔0)

2+
1

6
𝛽3(𝜔 − 𝜔0)

3 + ⋯ , (2.14) 

where  

𝛽1 = (
𝜕𝛽(𝜔)

𝜕𝜔
)

𝜔=𝜔0

, (2.15) 

𝛽2 = (
𝜕2𝛽(𝜔)

𝜕𝜔2
)

𝜔=𝜔0

, (2.16) 

𝛽3 = (
𝜕3𝛽(𝜔)

𝜕𝜔3
)
𝜔=𝜔0

. (2.17)  

𝛽2 is the group velocity dispersion or the second order dispersion and 𝜔0 is the carrier angular 

frequency. The GVD can be calculated if the net refractive index is known: 

𝛽2 =
1

𝑐
(2

d𝑛

d𝜔
+ 𝜔

𝑑2𝑛

d𝜔2
) . (2.18) 

When a pulse propagates through fibre it is useful to introduce a dispersion length quantity, which 

is related to the GVD: 

𝐿𝐷 =
𝜏0
2

|𝛽2|
, (2.19) 

here 𝜏0 is the initial pulse duration. This equation shows that the Gaussian pulse after the distance 

𝐿𝐷 broadens by a factor of √2. It can be seen from the equation that the pulse spreads faster the 

shorter it is and the higher GVD of the material [36]. 

4.3.2 Group delay dispersion compensation 

GVD over the length of the material produces group delay dispersion (GDD). Excess GDD leads 

to pulse broadening because each ultrafast optical pulse consists of the wide bandwidth of 

frequencies, which exhibit different group velocities. Therefore, while designing a fibre laser it is 

important to ensure that GDD is compensated in order to maintain ultrashort pulse duration during 

its propagation throughout the optical system.  
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Figure 2.13. The GDD compensation using the prism pair. 

A few GDD compensation techniques were demonstrated both theoretically and experimentally. 

The first conventional approach is to use prisms to introduce a negative GDD. There are two ways 

in which this GDD compensation technique can be realised: four prisms in a single-pass 

arrangement and a prism pair in a symmetrical reflection configuration (Fig. 2.13). The prism 

GDD compensation technique can be implemented intra-cavity where the prisms are inserted 

near one of the laser cavity mirrors. Prisms introduce the negative GDD into the system to 

compensate for the positive GDD, which is created by the laser. Negative GDD is established 

through the geometrical dispersion, because of a wavelength dependent angular response of the 

prism. To exercise this technique, the prisms need to be aligned to Brewster’s angle to ensure the 

maximum transmission and the minimum Fresnel reflections of the propagating optical beam. 

Different wavelengths experience different optical paths leading to negative dispersion. The 

amount of the dispersion introduced can be controlled by tuning the separation 𝑙 and angular 

deviation 𝛽 of the incident rays [37].  

Another approach to implement GDD compensation is to use a chirped mirror within the laser 

cavity (Fig. 2.14). This technique overcomes the complexity of fine beam alignment within the 

laser system. A chirped mirror is multilayer dielectric stack of periodically alternating layers of 

different materials. The periodicity of chirped mirror typically increases with a length and 

provides a control of reflection parameter. This parameter is a function of wavelength and layer 

period, so that the different wavelengths are reflected at different depths. The longer optical path 

length cancels out the negative GDD of the pulse. Even though chirped mirrors provide easy 

insertion within the optical system they need to be carefully designed to provide the correct 

dispersion compensation as they cannot be tuned [38]. 
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Figure 2.14. The GDD compensation using the chirped mirror. 

Chirped mirrors are a free-space solution for GDD compensation. However, a similar 

configuration can be applied in the optical fibre itself. A fibre Bragg grating (FBG) can be 

fabricated in a section of the fibre to form a distributed Bragg reflector. This device is designed to 

reflect a particular range of wavelengths while at the same time transmitting the others. The FBG 

is manufactured by forming a periodic variation of the refractive index in the fibre core [39]. 

The next technique to solve GDD compensation is a simple insertion of an additional section of 

the standard telecommunications silica fibre (SMF28) into the laser system (Fig. 2.15). Silica fibre 

exhibits negative GDD, which can be used to compensate for the positive GDD if used in the 

correct length. This technique is typically applied in the erbium-doped fibre laser systems as 

optical pulses experience positive GDD in Er-doped fibre. This technique was successfully 

applied in both erbium-doped fibre laser systems and erbium fibre laser amplifiers and also was 

used to compensate GDD while constructing laser used for TOBIC experiments [40]. 

 

Figure 2.15. The dispersion compensation using the SMF28 fibre cutback. 

The magnitude of GDD introduced in the optical system can be designed during initial steps. As 

GDD depends on the refractive index variation with the wavelength, this property of the optical 

material can be tailored by increasing or decreasing the doping concentration of the gain fibre. 

Also it was demonstrated that the refractive index profile can be engineered using photonic crystal 

fibre (PCF) [41]. PCF is an optical waveguide that exploits a periodic modulation of its refractive 
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index profile to guide light. There are two possible designs of the PCF: a solid core, which is 

surrounded by an array of air holes and a hollow core surrounded by an array of air holes 

(photonic bandgap (PBG) fibre) (Fig. 2.16) [42]. The number of possible PCF designs is countless 

as it can be designed using materials with different refractive indices as well as applying different 

patterns and geometries of a periodic modulation. Therefore, there are several designs of PCF, 

which can be used to obtain a desirable GDD profile. It is even possible to achieve zero GDD 

across a broad bandwidth of wavelengths eliminating the need for the GDD compensation. 

 

Figure 2.16. Photonic crystal (left) and photonic bandgap (right) fibre designs. 

As introduced already, waveguide dispersion occurs as well. It can be compensated while using 

graded index fibres to match the group velocities and reduce the differences between delay times 

of the propagating wavevectors. 

4.3.3 Self-phase modulation 

Self-phase modulation (SPM) is a self-induced phase delay appearing due to the optical Kerr 

effect, which induces nonlinear refractive index of the medium. Nonlinearity occurs as a high 

intensity electro-magnetic field forces the anharmonic motion of bound electrons of the dielectric 

medium. Therefore, the polarisation response 𝑃 of the dielectric medium can be expressed by the 

following equation [36]: 

𝑃 = 휀0(𝜒
(1)𝐸 + 𝜒(2)𝐸2 + 𝜒(3)𝐸3 + ⋯), (2.20) 

where 휀0 is a permittivity in free space and 𝜒 is a susceptibility of the material. The first term here 

denotes the linear polarisation, which is related to the refractive index and the absorption of the 

material. The second term is the second-order nonlinearity, which is responsible for the nonlinear 

effects such as second harmonic generation and sum frequency generation. However, optical 

fibres are made from fused silica, which is a centrosymmetric material, and therefore, 𝜒(2) = 0. 

As a result, the polarisation of the dielectric material can be described then as [36]: 
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𝑃 = 휀0(𝜒
(1) + 𝜒(2)𝐸)𝐸. (2.21) 

𝜒(3) is the third-order nonlinearity and is responsible for the third harmonic generation, four-wave 

mixing and nonlinear refraction. The nonlinear refraction or the optical Kerr effect leads to other 

nonlinear phenomena in fibres. If a strong electrical field propagates inside such material the total 

refractive index can be written as: 

𝑛 ≈ 𝑛0 +
𝜒(3)

2𝑛0
𝐸2 = 𝑛0 +

𝜒(3)

𝑛0
2𝑐휀0

𝐼, (2.22) 

where 𝑛0 is the linear refractive index, 𝑐 is the speed of light and 𝐼 is the intensity of the field. 

This expression suggests that the refractive index depends on the intensity of the field due to the 

third-order nonlinearity. The refractive index dependence on the intensity leads to other nonlinear 

effects such as SPM and cross-phase modulation (XPM). The nonlinear refractive index of the 

fused silica fibre is approximately 3×10−20 m2/W. This value is smaller than in many other 

dielectric media, however nonlinear effects are still observed as light is confined in the very 

narrow core of the fibre [36]. 

SPM creates a self-induced phase shift by the propagating electric field inside the fibre. This phase 

shift for an optical pulse can be expressed as: 

𝜑(𝑡) =
−2𝜋𝑛2𝐼(𝑡)𝐿

𝜆
, (2.23) 

where 𝐿 is the length of the fibre and 𝜆 is the wavelength of the optical beam. This result shows 

that SPM leads to the spectral broadening of the optical pulses and therefore forms optical solitons 

along with the negative dispersion of the fibres [36]. 

Third-order nonlinearity also leads to leads to the Kerr-lensing effect. A Gaussian laser beam 

experiences larger phase retardation at the more intense centre part of the beam than at its edges. 

This results in the wavefront curvature and self-focusing [36]. 

4.3.4 Optical solitons  

Optical solitons occur due to combined effects of SPM and linear dispersion. These effects can 

be tailored to counterbalance each other to obtain a “first order” optical soliton, which maintains 

its pulse shape intact throughout the full propagation length. As solitons occur due to the 

combined effect of dispersion and nonlinearity their propagation can be described by [36]: 

𝑖
𝜕𝐴

𝜕𝑧
=

𝛽2

2

𝜕2𝐴

𝜕 𝑇2
− 𝛾|𝐴|2𝐴, (2.24) 
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where 𝐴 is the amplitude of the pulse, 𝛽2 is the dispersion parameter and 𝛾 describes the SPM. 

This equation can be normalised via three dimensionless variables, 

𝑈 =
𝐴

√𝑃𝑃

, 𝜉 =
𝑧

𝐿𝐷
, 𝜏 =

𝑇

𝑇0
, (2.25) 

where 𝑃𝑃 is the pulse peak power, 𝑇0 is the pulse duration, and 𝐿𝐷 is the dispersion length. Using 

these parameters optical pulse propagation can be written [36]: 

𝑖
𝜕𝑈

𝜕𝜉
=

1

2

𝜕2𝑈

𝜕𝜏2
− 𝑁2|𝑈|2𝑈, (2.26) 

where the parameter 𝑁 is the soliton number and can be expressed: 

𝑁2 =
𝛾𝑃𝑝𝑇0

2

|𝛽2|
. (2.27), 

Eq. (2.26) can be further normalised with: 

𝑢 = 𝑁𝑈 = √𝛾𝐿𝐷𝐴, (2.28) 

𝑖
𝜕𝑢

𝜕𝜉
+

1

2

𝜕2𝑢

𝜕𝜏2
+ |𝑢|2𝑢 = 0, (2.29) 

here the first term denotes optical pulse propagation through the medium, the second term 

describes the dispersion and the third term characterises the SPM. There are multiple solutions to 

the above equation and they are described by the soliton number 𝑁.These solutions depend on 

the power and duration of the pulse and the dispersion and SPM of the material. The 𝑁 = 1 

fundamental soliton propagates through the medium without a change to its envelope, while 

higher-order solitons experience periodic pulse reshaping over a given length (soliton 

period) [36]. 

4.4 Erbium-doped fibre soliton laser 

Soliton generation inside a fibre can be exploited to obtain ultrashort laser pulses. As it was 

discussed before, certain conditions must be fulfilled to reach the soliton generation regime. It is 

necessary to balance chromatic dispersion with the Kerr effect. As it was suggested in the previous 

section, one can insert the standard silica fibre (SMF28) to introduce negative group delay 

dispersion, which compensates the positive dispersion caused by the Kerr effect [43]. If the 

correct parameters are selected, the fundamental soliton is generated. This soliton can propagate 

long distances without changing its shape [44]. If the dispersion is not properly balanced, a soliton 

exhibits periodic broadening and compression in time and frequency domains as it propagates 
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along the fibre. However, this effect also happens in well compensated systems as nonlinearity 

and dispersion are not uniformly distributed and typically varies randomly both in space and time, 

resulting in the Gaussian shaped “breathing” soliton [45]. 

Sub-picosecond pulses can be generated by the fibre soliton lasers. However, there are a few 

limitations for the system of this configuration. First, it is typical for these laser systems to operate 

in a multi pulsing regime. This is a consequence of the soliton energy quantisation, which appears 

in the laser systems with excessive gain [46]. A soliton has a maximum peak power available and 

if the pump is higher the excess power leads to the soliton break up into non-periodic multiple 

pulses. This limitation can be resolved tuning the gain and cavity length. Designing a short laser 

cavity with the fine tuning of the gain, one can reach a stable soliton regime making it possible to 

consume all the available gain through the single pulse per round-trip [47]. 

Another property of soliton lasers is the generation of non-uniform Kelly sidebands. These 

sidebands appear on the soliton spectrum at around centre peak and are generated due to the 

soliton filtering. An optical soliton experiences periodic changes in gain and loss as it propagates 

through the fibre laser and therefore, it is forced to dispense a part of its spectral content. The 

frequency bandwidth, which is removed, propagates through the system with its phase velocity. 

At each cavity round trip this dispersed frequency packet experiences destructive interference 

except at the frequencies which are phase-matched. These phase-matched frequencies form the 

non-uniform Kelly sidebands via the constructive interference [43]. 

The distribution of Kelly sidebands around the central peak of the spectral output depends on the 

pulse width, the dispersion within the cavity and the cavity length. The sidebands are located 

closer to the central peak, if the pulse duration of the soliton pulse is close to the transform 

limited [43].  

Soliton lasers have a few limitations, which may hinder the best performance of the TOBIC 

microscope. For example, it can be challenging to obtain enough power and achieve sufficient 

pulse durations to realise TPA. Therefore, an alternative stretched pulse erbium-doped fibre laser 

configuration was designed. 

4.5 Stretched-pulse erbium-doped fibre laser 

The stretched-pulse erbium-doped fibre (SPEDF) laser makes it possible to overcome issues and 

limitations, which occur in the soliton lasers. The SPEDF laser design contains both high negative 

and positive dispersion fibre segments within the cavity, which are almost perfectly balanced to 

result in slightly positive net cavity dispersion. This design provides pulse stretching in the 

positive segment (erbium-doped fibre) and then compression in the negative segment (standard 

SMF28 fibre). Therefore, pulses that propagate through the laser cavity have a low peak power 
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as the pulse widths change by an order of magnitude during one round trip. This leads to the net 

nonlinear phase shift, which is significantly reduced and thus prevents the saturation. Also the 

SPM along with the highly positively dispersive erbium fibre provides the possibility to achieve 

a strong spectral broadening leading to a wide spectral bandwidth and a high energy of the 

pulse [48]. 

 

Figure 2.17. The stretched-pulse erbium-doped fibre laser operation principle. 

Another advantage of the SPEDF lasers is that the shortest pulse widths are only maintained over 

a short part of the cavity round-trip. Therefore, the net nonlinear phase shift is limited. Typically, 

the SPEDF is designed to exploit the negative and positive-dispersion fibre boundary as an output, 

since it is the low peak power region (Fig. 2.17). As a result, the output pulses are linearly chirped 

and can be compressed using the standard SMF28 fibre, a prism pair, or the FBG.  

The SPEDF laser also benefits from the alternating stretching and compressing of the propagating 

pulse, which leads to a periodic modulation of wave vector. This suppresses the generation of 

Kelly sidebands in the output spectrum since the phase-matching condition is more difficult to 

achieve [48].  

The mode-locking and optical pulses in both soliton and stretched-pulse fibre lasers can be 

described in the time-domain using a steady-state theoretical analysis. This study considers each 

cavity element’s effect on the pulse over every cavity round-trip. The described analysis can be 

written as the Haus Master Equation [48]. For the SPEDF laser case this analysis uses a chirped 

Gaussian beam model and accounts for small nonlinear changes per cavity round trip [49]. 

Theoretical calculations assume the nonlinearity and dispersion variations within the SPEDF laser 

cavity and treat them as perturbations leading to the predictions of the absence of Kelly sidebands. 
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[(𝑔 − 𝑙) + (
𝑔

𝛺𝑔
2
+ 𝑗𝐷)

d

d𝑡2
+ 𝛾0|𝐴0|

2 (1 − 𝜇
𝑡2

𝜏0
2) − 𝑗𝛿0|𝐴0|

2 (1 − 𝜇
𝑡2

𝜏0
2)] 𝑎(𝑡) =

= −𝑗𝜓𝑎(𝑡), (2.30)

 

where 𝐷 is the average dispersion, 𝑙 is the linear loss per cavity round trip, 𝑔 is the laser gain, Ω𝑔  

is the gain bandwidth, 𝑡 represents time, 𝐴0 is the peak amplitude of the pulse, 𝛾0 describes self-

amplitude modulation, 𝜇 is the curvature of the parabolic time-dependent nonlinear phase 

shift, 𝛿0 describes the effects of SPM, 𝜏0  is the normalised pulse width, and 𝜓 is the net linear 

phase. 

The Master equation of a SPEDF laser has a chirped Gaussian solution, 

𝑢(𝑡) = 𝐴0exp (−𝑄
𝑡2

2
) , (2.31) 

where 𝑢(𝑡) denotes the complex amplitude of the oscillating electric field within the cavity and 

the complex parameter 𝑄 is acquired from the balanced Master equation. This Gaussian solution 

is in agreement with the simplified Kuizenga-Siegman theory [50], which models ultrafast pulse 

propagation and duration. 

4.6 Erbium-doped fibre amplifier  

To provide a sufficient peak power for TOBIC imaging experiments after using RP and other 

components, a fibre amplifier was constructed. 

There is a wide variety of applications for the Erbium-doped fibre amplifiers (EDFA) like optical 

frequency metrology, optical supercontinuum generation and telecommunications industry. 

Telecommunication industry was the main driving force for EDFA optimisation and 

characterisation. Fibre amplifiers provide an efficient and entirely optical alternative to amplify 

an optical signal avoiding the need to convert it to an electrical signal Also the gain bandwidth of 

EDFA perfectly covers the telecommunications C Band (1530-1565 nm), which can be slightly 

tuned to be suitable for a small part of the L Band (1565-1625 nm). The EDFA is a critical part 

in fibre optical communications as the signal has to be transmitted over a long distance, which 

causes the strong signal attenuation and therefore it needs to be periodically amplified [51]. 

Many scientific applications, such as nonlinear microscopy require the high peak powers and for 

those areas the EDFA can be the ideal solution, though sometimes sufficiently complicated to 

implement. Ultrashort pulses require the management of nonlinear effects within the optical fibre. 

This needs to be maintained very well in order to obtain ultrafast and good quality pulses and 
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short pulse durations after the amplification process. The main principle is to decrease the peak 

intensity within the fibre core. This can be done using a few different techniques: chirped pulse 

amplification, fibre core-size scaling and nonlinear pulse amplification. The chirped pulse 

amplification technique is based on pulse stretching before the amplification and compression 

afterwards. For the fibre core scaling method, the core of the amplifying fibre is manipulated to 

accommodate an increased number of modes. 

In order to obtain nonlinear pulse amplification, an optical pulse is first coupled into an Er-doped 

fibre. Then this pulse propagates within the fibre amplifier while gain, SPM and dispersion shape 

it both spectrally and temporally resulting in either a compressed or chirped pulse at the output. 

The output depends on the sign of the fibre dispersion [51].  

If chirped pulses are emitted at the output, they have to be recompressed to obtain a transform 

limited shape. This typically needs to be addressed in EDFA since Er-doped fibre exhibits the 

high positive dispersion. Also to ease the post-amplification, the input pulse can be temporally 

stretched in a length of standard telecommunication negative dispersion fibre (SMF28) before 

entering the Er:fibre. Control of the length of pre-amplification fibre allows to accurately tune and 

decrease the peak intensity of the amplified output pulses [51].  

Such EDFA configuration when the pulse is amplified using a positive dispersion nonlinear 

amplification benefits from significantly higher output pulse energies. This is a result of both the 

spectral broadening via SPM and the temporal stretching within the amplifying fibre [51, 52]. 

4.7 Construction 

The construction of the SPEDF laser is shown in Fig. 2.18. All laser components were standard 

telecommunication and optomechanical components.  

 

Figure 2.18. The construction of the stretched-pulse erbium-dope fibre laser. 
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The ring laser was forced into unidirectional operation by employing a polarisation-sensitive 

optical isolator. After the optical isolator and before the beamsplitter, waveplates were inserted. 

These waveplates were used for polarisation adjustment to initiate efficient NPR mode-locking 

operation. They were tuned to produce mode-locked operation and settings were recorded to 

reacquire similar performance if the laser needed adjustment. A combination of a QWP and a 

half-wave plate (HWP) at the exit of the isolator was used to create a state of elliptical polarisation 

before pulse propagation into the fibre. The Kerr effect rotated the polarization ellipse and with 

another QWP transformed phase modulation into amplitude modulation. The last QWP was used 

to compensate for any remaining linear birefringence in the fibre.  

The cavity had a total length of 304 cm, which comprised 190 cm of standard SMF28 

telecommunications fibre, 100 cm of OFS high concentration erbium-doped fibre (negative 

dispersion, peak absorption at 1530 nm 45-65 dB/m), and 16 cm of free-space. The Er:fibre laser 

was pumped with a 980 nm laser diode (2000CHP) from 3SPGroup which provided a pump 

power of 950 mW. The laser was operated in the forward direction and generated 70 mW average 

output power pulses at a repetition rate of 68 MHz. The obtained optical spectrum is shown in 

Fig. 2.19. 

 

Figure 2.19. The optical spectrum at the Er:fibre laser output. 

The design of the EDFA is shown in Fig. 2.20 and was constructed using standard 

telecommunication component with a help of Dr. Carl Farrell. The amplifier was pumped with 

980 nm laser diode LC962U*P(“II-VI”), which generated 750 mW in CW operation, a 

wavelength division multiplexer (WDM), a 180 cm length of erbium-doped fibre, a SMF28 

optical fibre for dispersion compensation (200 cm) and a fibre collimator. The laser diode was 

attached to the heat sink. A reel of erbium-doped fibre, SMF28 fibre and WDM were placed on 

the breadboard. The fibre collimator was attached to the holder.  
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Figure 2.20. Final Er:fibre laser configuration with EDFA. GC: collimator; FR: Faraday rotation 

isolator; PBS: polarising beam-splitter; WDM: wavelength division multiplexer (980 nm / 

1550 nm); LD: fibre-coupled 980-nm laser diode; FC-AFC: angled-fibre connector; BD: beam-

dump. 

The input laser power from the erbium-doped fibre laser was 70 mW. After nonlinear pulse 

amplification through the EDFA and after the compression through the cutback of SMF28 fibre, 

the average power measured at the output of the collimator was 190 mW and the obtained 

spectrum is shown in Fig. 2.21. 

 

Figure. 2.21. The optical spectrum at the EDFA output. 
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4.8 Pulse measurement 

The optimum performance of the mode-locked laser can be confirmed by measuring the temporal 

profile of an ultrashort pulse. In order to quantify a short event normally requires the measurement 

technique to employ a phenomenon, shorter than the event itself. There are various temporal 

profiling techniques using either an electronic or optical approach. The standard fast photodiodes 

and streak cameras based on linear techniques have a response rates on the picosecond time scale. 

Therefore, they can measure the shortest pulse durations of picosecond scale. Various techniques 

have been developed in order to measure shorter pulses [53]. A simple approach to measure 

femtosecond pulses is to use nonlinear effects to achieve optical interferometric autocorrelation. 

This can be done both in an optical crystal or semiconductor diode. Optical interferometric 

autocorrelation is performed by recording the electric field response of a light pulse against its 

time-delayed replica. This response function depends on the pulse duration and the separation of 

the two identical pulses in time. The optical autocorrelation function can be written as [53]: 

𝐴(2)(𝜏) = ∫ 𝐹(𝑡)𝐹(𝑡 − 𝜏)d𝜏

∞

−∞

(2.32) 

An autocorrelation is typically obtained either by second harmonic generation (SHG) or TPA at 

the output of the interferometer [54]. This autocorrelation function is always symmetric to time 

delay and therefore any asymmetry in the pulse is always lost. The pulse duration can be obtained 

from the autocorrelation trace by dividing the autocorrelation width by a factor depending on the 

pulse shape (Gaussian 1.414, hyperbolic Secant 1.543) [55]. 

 

Figure 2.22. Michelson interferometer setup for pulse duration measurements. BS, beam splitter; 

M1 and M2, mirror. The input beam is split into two pulses by the 50/50 beam splitter. After 

bouncing back from two mirrors M1 and M2 pulses are recombined again by the 50/50 beam 

splitter. 
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A conventional pulse splitting technique is by using a Michelson interferometer (Fig. 2.22). In 

this approach, the pulse is split in two using a 50/50 beam splitter BS. Pulses are propagated into 

two different sections of the interferometer. One pulse hits fixed mirror M1 mounted on 

translation stage and bounces back to the beam splitter. The other one is reflected by the moving 

mirror M2. Therefore, the first beam has fixed optical path length and the second one has a 

periodically varying optical path length. Both beams are then recombined again at the beam 

splitter and focused on the silicon detector. If the system is well aligned the interferometric 

autocorrelation has a peak to background ratio of 8:1. The interferometric autocorrelation is very 

sensitive to the pulse shape because of the fourth power of the electric field amplitude. Therefore, 

vibrations introduced by the delay moving mirror must be reduced [56].  

    

Figure 2.23. (a) Autocorrelation trace of the Er:fibre laser oscillator with pulse duration of 110 fs 

and (b) autocorrelation trace after EDFA with pulse duration of 140 fs. Pulse durations inferred 

from a Gaussian envelope (blue) fitted to the intensity autocorrelation trace (red). 

The obtained interferometric autocorrelation trace for Er:fibre laser and amplifier are shown in 

Fig. 2.23. These traces exhibit the proper 8:1 ratio between peak and background with the 

Gaussian fit on the intensity autocorrelation for pulse duration measurement. The full width half 

maximum (FWHM) of the pulse duration after the Er:fibre laser was 110 fs and after the EDFA 

the pulse duration was 140 fs and slightly chirped. This happened because the cutback experiment 

was done measuring pulse duration at the device layer in the IC; there the pulse duration was 

110 fs as it is discussed later in Chapter 5. 

  

a) b) 
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 High-resolution sub-surface microscopy of CMOS 

integrated circuits using radially polarised light 

5.1 Introduction 

The ever-diminishing feature sizes in complementary metal-oxide semiconductor (CMOS) 

ICs [1] demand continuous innovation so that the resolutions provided by optical sub-surface 

navigation, imaging, probing and fault localisation techniques remain useful. In combination with 

SIL imaging [2], nonlinear optical techniques including TOBIC microscopy [3-5] and 

2pLADA [6, 7] have been shown to provide the best imaging and localisation resolutions to date. 

This performance can be attributed to the intrinsically high-NA provided by silicon SILs, along 

with the nonlinear character of the image-bearing signal, which reduces the effective focal spot 

radius by a factor of √2 [8] and eliminates resolution-degrading contributions to the image from 

carriers generated outside the focal region. 

Pupil-function engineering, in which the spatial distribution of the intensity, phase and 

polarisation of the beam entering the microscope objective are manipulated, has considerable 

potential for further improving the performance of high-resolution microscopes. Various 

techniques like annular apertures [9] and polarisation control [10] have been shown to improve 

the available resolution. Cylindrical vector (CV) beams are particularly promising [11] because 

they possess unique properties in the vicinity of the focal spot that provide advantages over the 

conventionally-employed linearly and circularly polarised light [12]. In particular, the rapidly 

growing number of papers featuring some aspect of radial polarisation, with annual citations 

growing even faster, proves the high degree of interest in radial polarisation. Beams possessing 

spatially-varying polarisation properties have been shown to be useful in a wide range of 

applications including: particle trapping [13], laser machining [14], lithography [15], optical data 

storage [16] and microscopy [17]. It has been shown both theoretically and experimentally that a 

radially polarised beam, a type of CV beam, can be focused to a tighter spot in high-NA imaging 

systems [12], in principle yielding performance better than that from any other polarisation-

structured beam. 

One of the challenges of practically deploying radial polarisation in an imaging system is the need 

to generate a radially polarised beam possessing a high degree of mode purity and vector 

symmetry. There are various ways to generate a high quality radially polarised beam, including 

phase-tailored fibre [18], direct generation from lasers containing a conical prism [19], polarising 

grating mirrors [20] and spatial light modulators [21]. In this chapter, I present a research using a 

novel twisted-nematic liquid-crystal radial polarisation converter (RPC) [22, 23], which has the 

advantages of low dispersion, static operation, high laser damage threshold and simple insertion 
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and removal within the imaging system. The experimental work presented in this chapter 

demonstrates that using radially polarised illumination achieves a sub-surface imaging resolution 

equivalent to the best resolution achieved with linearly polarised light. The obtained performance 

is among the highest resolutions achieved to date in sub-surface imaging, surpassed only by 

nonlinear imaging using annular illumination [9]. Not only do these results show that the radially 

polarisation is preserved under the high-NA conditions of an aplanatic SIL, but also that radially 

polarised light provides an optimisation of the system by eliminating the need to adjust the 

polarisation state of the light for individual feature orientations. 

5.2 Scalar focusing theory 

5.2.1 Scalar resolution limits 

In Chapter 1 it was mentioned that resolving power of an optical system has a direct influence on 

the focal spot. An optical system creates the image of a point object in the focal plane, which is 

represented by its point spread function (PSF). Such two adjacent image points can be packed too 

tightly to be resolved as separate dots if their PSFs overlap too much. This resolving power is one 

of the main qualities of an imaging system, determining the minimum PSF (Airy pattern) it can 

obtain in the focal spot, which can be expressed by the following equation [24]: 

𝑑 = 1.22
𝜆

2𝑛 ∙ sin 𝜃
, (3.1) 

where 𝜆 is the wavelength of light, 𝑛 - the refractive index of the medium and 𝜃 – half the angle 

of the cone of light. Two point objects can be considered to only be resolved if the distance 

between their centres is at least the radius of the Airy disc, which is called Rayleigh criterion [25]: 

Resolving Power = 0.61
𝜆

𝑁𝐴
. (3.2) 

The Rayleigh criterion is typically used to determine the quality of imaging system. However, 

Sparrow argued that it is still possible to distinguish two point objects if they are closer than 

Rayleigh’s criterion. According to Sparrow, two point sources can be resolved when the second 

derivative of the total distribution of illuminance in the diffraction image of the two points 

vanishes on-axis. This is called Sparrow’s criterion and is given by the equation [26]: 

Resolving Power = 0.47
𝜆

𝑁𝐴
. (3.3) 

Confocal microscopy also provides axial sectioning, with the longitudinal resolution of [27]: 
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Resolving Power (longitudinal) = 0.44
𝜆

𝑛 sin2(𝜃 2⁄ )
. (3.4) 

Eq. (3.1-3.4) indicate that lateral resolution scales linearly with NA, while the longitudinal 

resolution depends approximately quadratically on the NA [27]. TPA further increases resolution 

by √2. Limits for 1550 nm wavelength nonlinear SIL microscopy is depicted in Fig. 3.1. 

 

Figure 3.1. Light beam focusing and resolution limits using 1550 nm wavelength light. 

The previously introduced resolution limits are determined by the profile of Airy disk, which is a 

result of the diffraction after a circular aperture. This diffraction is described by the Fresnel-

Kirchhoff scalar diffraction theory, which neglects the vectorial nature of light. High-NA imaging 

conditions introduce new phenomena depending on light polarisation. Here, I first introduce the 

scalar description before extending this with a discussion of vectorial theory. 

5.2.2 Scalar beams 

In order to investigate the focusing of vectorial focusing conditions of electromagnetic waves it 

is first convenient to consider the scalar wave theory [28]. Wave vector equations can be written 

in the scalar Helmholtz equation form: 

(𝛻2 + 𝑘2)𝐸 = 0, (3.5) 

where 𝐸 is the magnitude of the scalar electrical field, 𝑘 = 2𝜋 𝜆⁄  is the wave number. Solutions 

of the paraxial Helmholtz equation provides beam modes with spatially homogeneous states of 

polarisation [29]. The solution in Cartesian coordinates (𝑥, 𝑦, 𝑧) provides Hermite-Gaussian 

beams and the solution in cylindrical coordinates (𝑟, 𝜑, 𝑧) yields Laguerre-Gaussian beams [30].  
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This general solution for the electric field of the paraxial beam in Cartesian coordinates can be 

written as: 

𝐸(𝑥, 𝑦, 𝑧, 𝑡) = 𝐴(𝑥, 𝑢, 𝑧)exp[i(kz‐ωt)], (3.6) 

here 𝑧 is the axial direction of light’s propagation, ω is the frequency and t is time. It can be 

assumed that the envelope’s 𝑢 change is much larger in a scale of length than its wavelength and 

the second derivative can be neglected [31]. This is called the slowly varying envelope 

approximation, which in combination with the separation of the variables in x and y provides with 

the set of Hermite-Gaussian solutions (Fig. 3.2): 

𝐴(𝑥, 𝑦, 𝑧) = 𝐸0𝐻𝑚 (√2
𝑥

𝑤(𝑧)
)𝐻𝑛 (√2

𝑦

𝑤(𝑧)
)

𝑤0

𝑤(𝑧)
∙ 

∙ exp[−𝑖𝛷𝑚𝑛(𝑧)] 𝑒𝑥𝑝 (𝑖
𝑘

2𝑞(𝑧)
𝑟2) , (3.7) 

where 𝐻𝑚 (√2
𝑥

𝑤(𝑧)
) is the 𝑚-th order Hermite polynomial, 𝑤0 is the beam waist, 𝑤(𝑧) is the 

beam size at a distance z from the beam waist, 𝛷𝑚𝑛 is the Gouy phase shift, z0 is the Rayleigh 

range, q(z) is the complex beam parameter and 𝑟 = √𝑥2 + 𝑦2. 

When the parameters are 𝑚 = 𝑛 = 0, the Gaussian beam solution is obtained [30]: 

𝐴(𝑟, 𝑧) = 𝐸0

𝑤0

𝑤(𝑧)
exp[−𝑖𝛷00(𝑧)] 𝑒𝑥𝑝 (𝑖

𝑘

2𝑞(𝑧)
𝑟2) . (3.8) 

 

Figure 3.2. Intensity profiles of the (a) Hermite-Gaussian beams and (b) the Laguerre-Gaussian beams, 

which depend on the parameters 𝑚 and 𝑛 (columns). When these parameters 𝑚 = 𝑛 = 0, the 

fundamental mode (the Gaussian beam) is obtained (last column) [11]. 

a) 

b) 

m=1   n=4 m=3   n=1 m=0   n=0 

m=1   n=4 m=3   n=1 m=0   n=0 
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It can be demonstrated that in cylindrical the Helmholtz equation solution is Laguerre-Gaussian 

beams (Fig. 3.2) [30]: 

𝐴(𝑟, 𝑧) = 𝐸0

𝑤0

𝑤(𝑧)
exp[−𝑖𝛷(𝑧)] 𝑒𝑥𝑝 (𝑖

𝑘

2𝑞(𝑧)
𝑟2) ∙ 

∙ 𝐽0 (
𝛽𝑟

1 + 𝑖𝑧 𝑧0⁄
) exp (−

𝛽2𝑧 2𝑘⁄

1 + 𝑖𝑧 𝑧0⁄
) , (3.9) 

where 𝐽0 is the zeroth-order Bessel function of the first kind, and 𝛽 is a constant scale 

parameter. 

5.2.3 Scalar PSF 

A high-NA imaging system in the scalar diffraction case can be studied using the imaging 

configuration shown in Fig. 3.3. This case assumes focusing through a lens, which is characterised 

by an amplitude transmittance 𝐴(𝑟) and phase function 𝛷(𝑟). It was demonstrated that focusing 

under scalar approximation can be expressed via an optical field at the observation plane, which 

provides the PSF of the optical system [24]: 

𝐸(𝜂) = 2∫𝐴(𝑟)exp[𝑖𝛷(𝑟)]𝐽0(𝜂𝑟)𝑟𝑑𝑟

1

0

, (3.10) 

 

Figure 3.3. Imaging system, where a lens (L) is used to focus laser illumination (LI) on an observation plane 

(OP) with the cone angle θ and the F is filter to modulate an aperture of the lens. 
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The dimensionless coordinate 𝜂 describes the PSF at the observation plane in a way 

normalised to NA and wavelength [29]: 

𝜂 =
𝜋𝐷𝜌

𝜆𝑓
=

2𝜋𝜌𝑁𝐴

𝜆
, (3.11) 

where 𝜌 is the radial coordinate at the observation plane, 𝐷 is the lens diameter, 𝑓 is the 

lens focal distance. After normalisation the PSF function is obtained in the following 

form [32]: 

 𝐸(𝜂) = 2∫𝐴(𝑟)exp [
𝑖𝑢(𝑧)𝑟2

2
] 𝑟𝑑𝑟

1

0

, (3.12) 

where 

𝑢(𝑧) = 4𝑘𝑧𝑠𝑖𝑛2 (
𝑎

2
) =

8𝜋

𝜆
𝑠𝑖𝑛2 (

𝑎

2
) . (3.13) 

5.3 Vectorial focusing theory 

CV beams have recently gained much attention due to their interesting properties and advantages 

over the conventional linearly and circularly polarised beams. It was shown both theoretically and 

experimentally, that the radially polarised (RP) beam, a type of the CV beam, can be focused to 

a tighter spot [12]. This effect is observed due to the strong and localised longitudinal field 

component, which exists in the focal plane. Here, I present an introduction to the vectorial 

description of such beams. 

5.3.1 Cylindrical vector beams 

As it was shown in previous section, the scalar Helmholtz equation is an approximation, which 

can be applied to explain the propagation of linear monochromatic waves. However, the scalar 

theory is no longer valid for the light propagating through very small apertures, waveguides and 

it also ignores polarisation. Therefore, when an optical system benefits from high-NA the scalar 

Helmholtz equation cannot provide accurate solutions, as polarisation effects become dominant. 

The light propagation under these conditions requires to be examined as a whole electric field via 

the vector Helmholtz equation [33]: 

𝛻×𝛻×�⃗� − 𝑘𝟐�⃗� = 0, (3.14) 

where 𝑘 = 𝜔 𝑐⁄ . Then a circularly symmetric and azimuthally polarised electric field should take 

the form: 
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�⃗� (𝑟, 𝑧) = 𝑈(𝑟, 𝑧)exp[𝑖(𝑘𝑧 − 𝑤𝑡)]𝑒 𝜙, (3.15) 

where 𝑒 𝜙 is a unit vector in the azimuth direction. After inserting Eq. (3.15) in to Eq. (3.14) and 

assuming the paraxial approximation, the scalar equation is obtained:  

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑈

𝜕𝑟
) −

𝑈

𝑟2
+ 2𝑖𝑘

𝜕𝑈

𝜕𝑧
= 0. (3.16) 

This equation for azimuthal symmetry has the solution: 

𝑈(𝑟, 𝑧) = 𝐸0 𝐽1 (
𝛽𝑟

1 + 𝑖 𝑧 𝑧0⁄
) 𝑢(𝑟, 𝑧)𝑄(𝑧), (3.17) 

where 𝐸0 is a constant electric field amplitude, 𝛽 is a constant scale parameter, 𝑢(𝑟, 𝑧) is 

elementary Gaussian solution, 𝑧0 is the Rayleigh range and  𝐽1 is the first-order Bessel function 

of the first kind and 

𝑄(𝑧) = exp [−
𝑖𝛽2 𝑧 (2𝑘)⁄

1 + 𝑖 𝑧 𝑧0⁄
] . (3.18) 

         

Figure 3.4. Spatial distribution of CV beams: (a) radially polarised mode; (b) azimuthally 

polarised mode. Arrows indicate the direction of electric field. 

This solution corresponds to an azimuthally polarised vector Bessel-Gaussian beam solution. The 

transverse magnetic field �⃗⃗�  is also the solution of Eq. (3.14): 

�⃗⃗� (𝑟, 𝑧) = −𝐻0 𝐽1 (
𝛽𝑟

1 + 𝑖 𝑧 𝑧0⁄
)  exp [−

𝑖𝛽2 𝑧 (2𝑘)⁄

1 + 𝑖 𝑧 𝑧0⁄
]  exp[𝑖(𝑘𝑧 − 𝑤𝑡)]ℎ⃗ 𝜙 , (3.19) 

where 𝐻0 is a constant magnetic field amplitude and ℎ⃗ 𝜙 is the unit vector aligned azimuthally. 

This magnetic field solution has the corresponding electric field, which is set in the transverse 

plane and pointing in the radial direction. These solutions display complete rotational symmetry 

a) b) 
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about the direction of propagation, while for the linearly polarised Gaussian beam only the 

magnitude of the field exhibits rotational symmetry. The field illustrated in Fig. 3.4a has its 

polarisation aligned in the radial direction, which is called the radial polarisation. Similarly, the 

polarisation pattern shown in Fig. 3.4b is called the azimuthal polarisation. The linear 

superpositions of these two beams result in the generalised CV beams and they can be 

decomposed into a superposition of orthogonally polarised Hermite-Gaussian modes, as shown 

in Fig. 3.5. Due to the transverse field continuity, these CV modes feature the existence of a 

characteristic null point of the transverse field at the centre of the beam profile [30]. 

The RP beam under the paraxial conditions can be represented by a combination of two 

orthogonally polarised Hermite-Gauss modes 𝐻𝐺01 and 𝐻𝐺10 [34]:  

𝑅𝑃𝐵 = 𝐻𝐺10�⃗� 𝑧 + 𝐻𝐺10�⃗� 𝑦, (3.20) 

𝐴𝑃𝐵 = −𝐻𝐺01�⃗� 𝑧 + 𝐻𝐺01�⃗� 𝑦, (3.21) 

 

Figure 3.5. CV beams as a superposition of orthogonally polarised (1,0) and (0,1) Hermite-Gaussian modes 

(adapted from [11]). Top row is radially polarised beam and bottom row is azimuthally polarised beam. 

5.3.2 Focusing properties of CV beams 

Dipole radiation offers a simple explanation to the tight focusing of the RP beam under high-NA 

conditions. For this case, a vertically oscillating electric dipole can be assumed to exist at the focal 

point of the high-NA aplanatic objective lens, which collects and then collimates the dipole’s 

radiation. It is seen from Fig. 3.6 that the polarisation at the lens pupil is perpendicular to the 

optical axis. Therefore, the reversed system with initial radial polarisation at the pupil plane should 

recover the vertical dipole radiation in the focal field, thus providing a very tight focus [30]. 

TEM (1,0) TEM (0,1) Radial polarisation 

Azimuthal polarisation TEM (1,0) TEM (0,1) 
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Figure 3.6. Vertically oscillating electric dipole under the high-NA objective lens (adapted from [11]). 

The Richards-Wolf vectorial diffraction analysis can be applied to investigate properties and 

dynamics of the focusing CV beams [24]. The schematic to analyse the introduced problem is 

depicted in Fig. 3.7. Here the incident CV beam may have any spatial distribution and is assumed 

to have a planar wavefront at the pupil position. An aplanatic lens produces a spherical wave 

converging to the focal point [35]. 

 

Figure 3.7. Schematic of the high-NA optical system to explain the RP beam focusing properties and 

dynamics (adapted from [11]). 

The initial polarisation is defined in cylindrical coordinates (𝜌, 𝜑, 𝑧) and directed perpendicularly 

to the optical axis. Thus, the incident field can be written:  

�⃗� (𝜌, 𝜙) = 𝑙0 𝑃(𝜌)[cos𝜑0 𝑒 𝜌 + sin𝜑0 𝑒 𝜙], (3.22) 
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𝑙0 is the peak field amplitude at the pupil plane and 𝑃(𝜌) is the axially symmetric pupil plane 

amplitude function, which is normalised to 𝑙0, 𝑒 𝑥 and 𝑒 𝑦 are the unit vectors: 

𝑒 (𝜚) =  cos𝜑 𝑒 𝑥 + 𝑠𝑖𝑛𝜑 𝑒 𝑦, (3.23) 

𝑒 (𝜙) =  −𝑠𝑖𝑛𝜑 𝑒 𝑥 + 𝑐𝑜𝑠𝜑 𝑒 𝑦. (3.24) 

Amplitude distribution over the pupil is transferred on the spherical wavefront by the 

ray projection function: 

𝜌 𝑓 = 𝑔(𝜃),⁄  (3.25) 

where f  is the focal length of the lens. After refraction the polarisations are altered to: 

𝑒 𝑟 = cos𝜃(cos𝜑 𝑒 𝑥 + sin𝜑 𝑒 𝑦) +  sin𝜃 𝑒 𝑧 , (3.26) 

𝑒 𝜑 = −sin𝜑 𝑒 𝑥 + cos𝜑 𝑒 𝑦 . (3.27) 

As stated by Richards-Wolf, the electric field close to the focus is described by the diffraction 

integral over the vector field on the spherical wavefront with the radius equal to the objective lens 

focal length: 

�⃗� (𝑟, 𝜙, 𝑧) =
−𝑖𝑘

2𝜋
∬ 𝑎 (𝜃, 𝜑)𝑒𝑖𝑘(𝑠 ∙𝑟 )𝑑Ω =

−𝑖𝑘

2𝜋
∫ 𝑑𝜃 ∫ 𝑎 (𝜃, 𝜑)

2𝜋

0

𝜃𝑚𝑎𝑥

0
Ω

𝑒𝑖𝑘(𝑠 ∙𝑟 )sin𝜃d𝜑, (3.28) 

here 𝜃𝑚𝑎𝑥  is the angle of the cone of light, 𝑘 is the wavenumber and the field strength 𝑎 (𝜃, 𝜑) is 

𝑎 (𝜃, 𝜑) = 𝑙0𝑓𝑃(𝜃)[cos𝜑0 𝑒 𝑟 + sin𝜑0 𝑒 𝜑]. (3.29) 

The field has to be transformed from the Cartesian coordinates to cylindrical coordinates and the 

following equation is obtained: 

�⃗� (𝑟, 𝜙, 𝑧) =
−𝑖𝐴

𝜋
∫ d𝜃 ∫ 𝑃(𝜃) [cos𝜑0 (

cos𝜃 cos𝜑 − 𝜙𝑒 𝑟
0𝑒 𝜙

sin𝜃𝑒 𝑧

)

2𝜋

0

𝜃𝑚𝑎𝑥

0

+ sin𝜑0 (

cos𝜃 cosφ − 𝜙𝑒 𝑟
cos𝜑 − 𝜙𝑒 𝜙

0𝑒 𝑧

)] exp[𝑖𝑘(𝑧 cos 𝜃  

+𝑟 sin 𝜃 cos(𝜑 − 𝜙))]sin𝜃. (3.30) 

Finally, this expression can be simplified and generalised: 
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�⃗� (𝑟, 𝜙, 𝑧) = 𝐸𝑟𝑒 𝑟 +  𝐸𝑧𝑒 𝑧 + 𝐸𝜙𝑒 𝜙 , (3.31) 

here 𝑒 𝑟 , 𝑒 𝑧 , 𝑒 𝜑 are the unit vector along the radial, longitudinal, and azimuthal directions [30]. 

�⃗� 𝑟(𝑟, 𝜙, 𝑧) = 2𝐴 sin𝜑0 ∫ 𝑃(𝜃) sin 𝜃 cos 𝜃 𝐽1(𝑘𝑟 sin 𝜃)𝑒𝑖𝑘𝑧 cos𝜃d𝜃

𝜃𝑚𝑎𝑥

0

, (3.32) 

𝐸𝑧(𝑟, 𝜙, 𝑧) = 𝑖2𝐴 sin𝜑0 ∫ 𝑃(𝜃) sin2 𝜃 𝐽0(𝑘𝑟 sin 𝜃)𝑒𝑖𝑘𝑧 cos𝜃d𝜃

𝜃𝑚𝑎𝑥

0

, (3.33) 

𝐸𝜑(𝑟, 𝜙, 𝑧) = 2𝐴 sin𝜑0 ∫ 𝑃(𝜃) sin 𝜃 𝐽1(𝑘𝑟 sin 𝜃)𝑒𝑖𝑘𝑧 cos𝜃d𝜃

𝜃𝑚𝑎𝑥

0

. (3.34) 

Such CV beams benefit from rotational symmetrical intensity profile in the focal spot 

region (Fig. 3.8).  

 

Figure 3.8. Spatial distribution (1D and 2D) of CV beams under high-NA (3.48) focusing conditions: 

(a) radially polarised mode; (b) azimuthally polarised mode. Radially polarised beam focuses to 190 nm 

and azimuthally polarised beam focuses to 440 nm focal spot at FWHM level. 

a) b) 
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Even though the RP beam demonstrates a high resolution under the conditions of certain 

annular apertures and high NA, it was shown that radially polarised light is not always 

superior over another polarisations [36, 37]. When a radially polarised beam is focused, 

the electric field in the focal plane consists of the radial and longitudinal components. 

The longitudinal component of the RP beam depends on the angle of the cone of light and 

increases with the NA. Due to constructive interference it has a high intensity and is 

concentrated within a small spot (Fig. 3.9b). On the contrary, for a linear polarisation the 

longitudinal component is cancelled at the focal plane on the optical axis. It appears as 

two lobes, which are oriented symmetrically along the axis (Fig. 3.9a). Therefore, for the 

lower NA case (<~0.7) when the longitudinal component is dominant, the linearly 

polarised (LP) beam has the tighter spot size. However, if a high-NA objective lens is 

used, the RP beam’s spot size diminishes (Fig. 3.10) [36]. 

 

Figure 3.9. Spatial distribution (1D and 2D) of longitudinal component under high-NA (3.48) focusing 

conditions: (a) linear polarisation; (b) radial polarisation. The longitudinal component of radially polarised 

beam is concentrated in the middle while linearly polarised beam exhibits distribution of two lobes. 

 

 

a) b) 
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Moreover, Ünlü et al have recently shown that RP beams can have certain disadvantages. They 

investigated the influence of imperfect vector symmetry of RP beam on the spatial resolution. It 

is assumed that as the RP beam is guided through the microscope setup, it acquires a phase and 

amplitude term at every optical component. Therefore, the relation between Hermite-Gauss 

modes, which comprise the RP beam, is changed to: 

𝑅𝑃𝑚 = 𝐻𝐺10�⃗� 𝑥 + 𝑎𝑒𝑖𝑘𝜙𝐻𝐺10�⃗� 𝑦, (3.35) 

here 𝑎 and 𝜙 denote the cumulative relative amplitude factor and phase retardance between 

Hermite-Gauss modes. 

 

Figure 3.10. The spot size and NA relation for radially (triangles), linearly (circles) and circularly 

(rectangles) polarised beams. The longitudinal component of the radial polarisation (stars) and results from 

scalar theory (diamonds) are shown as well [36]. 

After investigation of the focusing characteristics, it was shown that the phase retardance affects 

the intensity of the longitudinal component significantly. Therefore, the lower resolution 

transverse component contributes more to the spot size. Additionally, the shape of both 

components is altered deforming the focal spot geometry and degrading the spatial resolution 

significantly. The outcome of the theoretical computation was confirmed by experimental results. 

It was noticed that Hermite-Gauss modes are retarded by ~0.3λ and as a result the intensity profile 
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was rotated 90o in comparison to the initial beam. In order to compensate the retardance, a spatial 

light modulator (SLM) was implemented into the microscope setup. The angle was fully 

compensated and the resolution significantly improved (Fig. 3.11) [38]. 

 

Figure 3.11. Laser scanning microscope image of aluminium structures on the silicon substrate. (a) No 

compensation applied. The scale bar shows a length of 2 µm. (b) After the phase retardance 

compensation [38]. 

5.3.3 Techniques to generate cylindrical vector beams 

The peculiar properties of CV beams and their potential applications stimulated a rapid growth of 

this field. Numerous ways and techniques emerged to generate CV beams. Based on their 

working mechanisms, these techniques can be classified into active and passive approaches [30]. 

Typically, active techniques rely on the laser resonators to obtain the CV beams. In this case 

various intracavity devices are employed to tune the laser in such way, that it would be forced to 

oscillate in the desired CV modes [39]. Using this approach CV beams emanate directly from the 

laser output. Usually this approach leads to CV beams with fundamental polarisation mode and 

practical switching between the modes cannot be achieved. However, active generation can 

produce both free-space and waveguide mode CV beams. While confined in a metallic 

waveguide, waveguide mode CV beams benefit from high power [30]. 

 

Figure 3.12. Laser-based scheme to generate fundamental mode CV beam using calcite and 

aperture with stop (adapted from [39]). 

a) b) 
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Intracavity devices can be axial birefringent components or axial dichroic components to provide 

a mode discrimination against the fundamental mode. Figure 3.12 shows an example of active 

CV beam generation, which employs an axial birefringent component [39]. In this setup, 

fundamental and higher-order modes are differentiated by the circular aperture and the stop. 

A calcite crystal is placed in a telescope setup with its crystal axis parallel to the optical axis of 

the cavity. Double refraction leads to the different divergence for ordinary and extraordinary 

polarisations. Therefore, the selected fundamental mode, either azimuthal or radial is 

differentiated, while one polarisation is discriminated more because of higher loss. As it is seen 

this system is capable of generating only a single fundamental mode [39].  

Another approach is to create intracavity dichroism instead of birefringence. To generate CV 

beams in such a way one has to use a conical axicon [40] or Brewster angle reflectors [41, 42]. 

These techniques use bulk intracavity devices for creating axial birefringence or dichroism. 

However, recent advances in microfabrication have made it possible to design a fine diffractive 

phase plate or polarisation selective end mirror devices [43, 44] for CV beam generation. 

Compact design of the laser cavity makes it possible to optimise for the highest power throughput 

out of the laser. In addition to those methods CV beams can also be produced with intracavity 

interferometers while using folded mirrors or prisms designs. For example, by using a Sagnac 

interferometer setup linearly polarised 𝐻𝐺01 modes are created by inserting a thin wire within the 

centre of the cavity. A dove prism aligns orthogonally polarised 𝐻𝐺10 and 𝐻𝐺01 modes, which 

combined create the CV output [45]. 

 

Figure 3.13. Generation of CV beam using radial analyser, SPE and HWP (adapted from [46]). 

Also there are passive methods to generate the CV beams in free space. Typically, these methods 

use devices with spatially variant polarisation properties to convert homogeneous polarisations 

into CV beams. The same axial birefringence and dichroism techniques can be applied to generate 

a CV beam outside the laser cavity as well [30]. Simple setups can be arranged with a radial 

analyser device (Fig. 3.13). In this case, a circularly polarised collimated beam must be used as 
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the input to the radial analyser. The output from the analyser is either a radially or azimuthally 

polarised beam with a spiral phase factor on top of it. A spiral phase element (SPE) with the 

opposite helicity is used to compensate for the phase and obtain the CV beam. A HWP can be 

inserted to rotate polarisation to the desired pattern [46]. 

Spatially variant polarisation rotation can also be utilised to easily implement CV beams within 

the optical system. In this case, linearly polarised light is typically guided through the polarisation 

tailoring device. The initial linearly polarised beam experiences polarisation rotation for different 

segments of its profile leading to the generation of a desired spatial polarisation pattern. A twisted 

nematic liquid crystal (LC) device can be used to obtain radial or azimuthal polarisations. Such a 

LC polarisation converter was used in the experiments of this thesis and its principle of operation 

will be explained later [46, 47]. 

 The LC SLM is another very popular and powerful technique to produce CV beams. The SLM 

offers the flexibility and potential to generate an almost arbitrary complex field distribution. An 

example to produce CV beams using the SLM is shown in Fig. 3.14 [48]. This setup employs 

two LC SLMs to generate complicated polarisation patterns of high purity. The first SLM is 

dedicated to correct the optical system aberrations by applying a phase modulation to the incident 

laser beam. The integration of the QWP with the second SLM essentially forms the actual 

polarisation rotator [48]. CV beams are generated and polarisation rotation is obtained by simply 

modulating the phase at each pixel on the SLM. A proper design of the phase pattern on the 

second SLM allows the input linear polarisation to be converted into any arbitrary polarisation 

distribution, including CV beams. 

 

Figure 3.14. A polarisation mode converter setup with two SLMs (adapted from [48]). 
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Also, CV beams can be produced exploiting interference phenomenon. A Mach–Zehnder 

interferometer can be combined with a spiral phase plate [49] or a spiral phase created by a LC 

SLM [50] to generate CV beams and both approaches were able to produce various CV beams. 

A single path interferometer was also demonstrated to be capable to generate CV beams and other 

more complex vector beams (Fig. 3.15) [12, 51]. 

 

Figure 3.15. Experimental setup that uses a segmented λ/2 plates polarisation converter and a near-confocal 

Fabry–Perot interferometer (NCFPI) as a mode selector to generate CV beams. OD, optical diode; HWP, 

half-wave plate; PH, pinhole; TL1, TL2, telescope lenses; PC, polarisation converter; FL, focusing lens; 

CL, collimating lens; M, four mirrors; MD, monitor diode; AS, aperture stop; MO, microscope objective; 

PD, photodiode (adapted from [12]). 

5.3.4 Pupil engineering 

As it was shown in the previous sections, the optical field at focal plane depends on the amplitude 

and phase of the incident light. Therefore, it offers a possibility to tailor focal spot by manipulating 

the light before entering the pupil of the microscope objective. Over the years several super-

resolution techniques exploiting amplitude engineering have been demonstrated: 

obscuration [52], annular apertures (Fig. 3.16) [53, 54] and continuous-amplitude filters [55-58]. 

Phase manipulation techniques are based on the diffractive optical element insertion within the 

optical system [59, 60]. Also best results can be achieved when both amplitude and phase are 

manipulated at the same time [61]. Here in this section some of the pupil engineering cases are 

discussed and the effect on the PSF is presented. 

 

Figure 3.16. Example of pupil engineering in the SIL microscopy [9]. 
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The PSF describes the two-dimensional distribution of light in the focal plane of an imaging 

system, which can be modified by using an annular aperture instead of a full opening [62]. This 

generates a Bessel like beam leading to the enhancement of the maximum amplitude of the PSF 

and the axial elongation of the PSF along the optical axis. These two effects depend on the 

dimensions of the annular aperture. Theory predicts that an infinitely narrow annular aperture 

produces a 30% narrower PSF than that of the same radius circular aperture. However, annular 

apertures generate side-lobes beside the main peak of the PSF, which are equal to 17% of the 

maximum of the main peak (Fig. 3.17). As a result, the net PSF for annular apertures is a larger 

PSF. However, for nonlinear microscopy annular apertures are still of interest since TPA, which 

depends on the square of the intensity of light, suppresses the side-lobes providing a significantly 

reduced PSF [63, 64]. 

 

Figure 3.17. Narrowing of the PSF with suppression of the lower spatial frequencies at the 

expense of the side-lobe formation: (a) single photon case, (b) two-photon response. For 

conventional microscopy an annular aperture enhances resolution from 190 nm to 140 nm 

and for nonlinear case from 135 nm to 105 nm. A dashed line represents the intensity 

profile in the focal spot under high-NA (3.48) conditions without an annular aperture, 

while a blue solid line depicts the intensity distribution using a 90% annular aperture. 

Side-lobes have negligible effect for two-photon response.  

By combining a SIL and an annular aperture, Serrels et al achieved an impressive 70 nm lateral 

super-resolution equal to 64% of the lateral resolution obtained with a circular aperture [9]. This 

pupil engineering technique can be further expanded by using it along with radially polarised 

beams. 

a) b) 
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Figure 3.18. Comparison of linearly polarised light focal spots after the insertion of annular 

aperture for (a) scalar (NA=0.1) and (b) vectorial (NA=1) regimes. 

In Fig. 3.18 the comparison between linear polarisation scalar and vectorial focusing cases is 

presented. For the vectorial focusing case a significant broadening occurs with stronger side-lobes 

showing a complicated pattern. Interesting effect happens for circularly polarised light. The use 

of the annular aperture suppresses the side-lobes but at the expense of the PSF broadening 

(Fig. 3.19).  

 

Figure 3.19. Comparison of circularly polarised light focal spots after the insertion of annular 

aperture for (a) scalar (NA=0.1) and (b) vectorial (NA=1) regimes. 

The previously introduced radial polarisation effect can be enhanced with an annular aperture. It 

blocks the centre part of the beam, which is associated with the transverse component, thus 

increasing the resolution at the expense of decreasing efficiency. Insertion of the annulus reduces 

the PSF in exchange for the elongation of the longitudinal field component. Also even though 

a) b) 

a) b) 
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typically side-lobes are formed, their amplitude is lower compared with other 

polarisations (Fig. 3.20). 

I would like to express gratitude for Prof. Derryck Reid for his help to prepare MATLAB code 

for the PSF modelling. 

 

Figure 3.20. Comparison of radially polarised light under high-NA (3.48) focusing condition 

with (a) no annular aperture and (b) with annular aperture. Top images show 2D modelling of 

PSF, while bottom images portray 3D modelling results. Both 2D and 3D results indicate PSF 

narrowing with the expense of the PSF elongation and side-lobes generation. Therefore, annular 

apertures offer improvement only for 2D TPA imaging, when side-lobes are supressed due to 

absorption dependence on square of incident light intensity.   

5.3.5 Assessing the polarisation purity of cylindrical vector beams 

It was pointed earlier that the CV beams do not always have a perfect vector symmetry and modal 

purity. Therefore, before employing the CV beam in the laser setup it is necessary to assess the 

degree of polarisation of the generated CV beam. One of the easiest and fastest ways to measure 

the degree of polarisation is by using Stokes parameters. This set of parameters describe the 

polarised light [65] and will be further discussed in this section.  

The electric vector �⃗�  consists of two components: 

𝐸𝑥 = 𝑎1 cos 𝜇𝑡 − 𝛿1, (3.36) 

𝐸𝑦 = 𝑎2 cos 𝜇𝑡 − 𝛿2, (3.37) 

a) b) 
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where 𝜇 is frequency, 𝑡 is time, 𝑎1 and 𝑎2 are the amplitudes along the x and y axes, 𝛿1 and 𝛿2 

are the phase constants. 

One can eliminate the term 𝜇𝑡 while introducing a phase difference 𝛿 to obtain the ellipse 

equation (Fig. 3.21): 

𝐸𝑥
2

𝑎1
2 +

𝐸𝑦
2

𝑎2
2 −

𝐸𝑥𝐸𝑦

𝑎1𝑎2
cos 𝛿 = sin2 𝛿 . (3.38) 

If 𝛿 = 𝑚𝜋/2 and 𝑎1 = 𝑎2, the circle equation is obtained, which means that the light is 

circularly polarised. If 𝛿 = 𝑚𝜋, then the ellipse is transformed into a straight line, which is the 

case for the linear polarisation. 

 

Figure 3.21. Polarisation ellipse, changing parameters lead to different polarisation states. Here 

is portrayed elliptically polarised light (adapted from [66]).  

As it can be seen, any polarisation can be described using amplitudes 𝑎1, 𝑎2 and phases 𝛿1, 𝛿2. 

Therefore, they can provide parameters, which can be used to calculate polarisation. These 

parameters are called Stokes parameters and can be written as follows: 

𝑆0 = 𝑎1
2 + 𝑎2

2, (3.39) 

𝑆1 = 𝑎1
2 − 𝑎2

2, (3.40) 

𝑆2 = 2𝑎1𝑎2 𝑐𝑜𝑠 𝛿 , (3.41) 

𝑆3 = 2𝑎1𝑎2 𝑠𝑖𝑛 𝛿 , (3.42) 

𝑆0 is proportional to the light intensity and is related to other parameters via equation: 
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𝑆0
2 ≥ 𝑆1

2 + 𝑆2
2 + 𝑆3

2. (3.43) 

If the Stokes parameters are known, then the degree of polarisation can be calculated by applying 

the following equation: 

𝑃 =
𝐼max − 𝐼min

𝐼max + 𝐼min
=

√𝑆1
2 + 𝑆2

2 + 𝑆3
2

𝑆0
 , (3.44) 

where 𝐼max and 𝐼min are the maximum and minimum intensity, respectively, measured behind the 

rotating analyser [66. 67].  

As will be seen later, I have used a direct measurement of the Stokes parameters to assess the 

quality of preparation of a RP beam for use in TOBIC imaging experiments. 

5.4 Implementation of radially polarised illumination for TOBIC 

microscopy 

5.4.1 Microscope layout 

 To achieve the nonlinear phenomenon of two-photon absorption a laser beam of the high peak 

power must be employed. The highest peak powers can be achieved with the mode-locked lasers. 

Furthermore, TOBIC microscopy requires femtosecond laser illumination at a wavelength longer 

than the band-gap of silicon, which is ~1.05 μm. Therefore, a mode-locked Er:fibre laser was 

chosen to perform TOBIC microscopy using the experimental scheme illustrated in Fig. 3.22. 

Operating at 1550 nm, the laser generated 110 fs pulses with a repetition rate of 68 MHz and an 

average power of 70 mW. The outgoing beam from the laser was expanded and guided through 

the RPC (manufactured in the University of Rochester) and imaged with a reducing telescope 

onto the pupil of the microscope objective (Mitutoyo, NA 0.42, ×50) that served as the backing 

objective for a silicon aplanatic SIL (Doric lenses). 

The microscope setup was configured so that the polarisation converting device could be easily 

implemented in the beam path. This requires expanding the diameter of the beam to cover a 

reasonable percentage of the LC device to obtain the best conversion to radially polarised light. 

The beam diameter after L1 was 3 mm, which was confirmed using a knife-edge beam profiling 

technique. After that the beam was expanded to a diameter of 18 mm by lenses L2 and L3. At 

this point the LC polarisation converter was added into the beam path before the beam diameter 

was reduced to 10 mm to slightly overfill the microscope objective. Both telescopes were 

constructed in a way that the beam profile after the LC device was imaged onto the pupil of the 

microscope objective (0.42 NA, magnification – ×50, width of entrance pupil – 9 mm, corrected 

for chromatic aberration from 0.48 µm to 1.8 µm). The beam was steered by gold and silver 
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mirrors, which offer maximum reflectivity for the 1.55 µm light. After the beam was guided 

through the objective lens it overfilled the SIL, and propagated into the silicon chip, which was 

mounted on xyz translation stages (ASI MS-2000). These stages provided a 40 cm range of travel 

with a resolution of 10 nm. The TOBIC signal was amplified with a low noise current 

preamplifier (Stanford Research SR570) and detected using a LabjackU6 device with a personal 

computer. 

 

 

Figure 3.22. TOBIC microscope including RPC. Mirror M2 deflected the beam into the characterisation 

apparatus (dashed box) but was removed for imaging. A linear polariser (LP) and a quarter-wave plate 

(QWP) were used to prepare different intensity distributions for the Stokes parameters measurement. Lens 

L7 imaged the far-field beam profile onto a camera. A half-wave plate (HWP) was used to prepare the 

correct incident polarisation for the RPC and for imaging experiments with only linearly- polarised light. 
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5.4.2 Device under test 

The sample used for the experiments was a 350-nm-feature-size silicon flip-chip IC. The flip-

chip architecture of the device hinders the front-side access to the device layer, which is buried 

under the five opaque metallisation layers (Fig. 3.23) [68]. Therefore, optical imaging can be 

performed only through the backside of the device or through the silicon substrate, covering the 

area of 1 cm2. To prepare the device for backside imaging it was chemically thinned and polished 

to a thickness of 85 μm. An optical microscope was used to measure and confirm the specified 

thickness. Measurement was accomplished by translating the sample through the surface of the 

substrate to the device layer. This displacement between two planes provided an optical distance, 

which was inserted in the following equation to calculate the physical thickness of the 

sample [68]: 

𝑙 = 𝑑 ∗ 𝑛, (3.45) 

where 𝑙 is the silicon substrate thickness, 𝑑 is the displacement of the stage and 𝑛 is refractive 

index of silicon. 

 

Figure 3.23. Cross-section of the device showing flip-chip architecture and 5 layers of metallisation [8]. 

The outcome of the measurement was the expected result of 85 μm. It is not enough to have a 

sample of uniform thickness as the high-resolution SIL measurements require a flat landing zone 

to establish contact with the substrate [69]. However, the thinning process and the thermal 

expansion mismatch between different materials inside the device cause a warping, which 

resembles the principle of a well-known bimetallic strip (Fig. 3.24a) [70]. A warping is the side-

effect of sample preparation and is not desirable as a poor surface quality hinders the imaging 
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resolution [71]. Therefore, a surface mapping interferometer (ZYGO NewView 6300) was used 

to measure, how badly the IC sample was affected. It was found out that device had a reasonably 

flat surface with a curvature of only 2 μm, which indicated that the sample was very suitable for 

SIL microscopy (Fig. 3.24b). 

  

Figure 3.24. Warping of integrated circuits (left), X, Z profile of the silicon substrate of the sample IC device 

(right), obtained using a Zygo NewView 6300 white-light interferometer. 

The device under test contained a standard circuitry (Fig. 3.25a) used in commercial applications 

and had a photosensitive electrostatic protection device at the input to an inverter chain spanning 

over 150 um2 (Fig. 3.25b). Eight n-doped silicon fingers were located in the active region 

(Fig. 3.25c). The fingers had widths of 4 μm and were separated by gaps of 700 nm. The tips of 

n-doped structures contained a 3 3 matrix of tungsten vias, which were spaced at a pitch of 

1.25 μm and had approximate diameters of 1 μm. Surface of the features is uneven and rough. 

   

Figure 3.25. (a) Full layout of the device. (b) The floor-plan of the area of interest and (c) n-doped silicon 

finger structures with tungsten vias on their tips [8]. 

The laser-beam-generated photocurrent was measured between ground and a pin connected to 

the active region [72]. The device remained unpowered all the time as the p-n junctions of doped 

silicon provided an internal electrical field, which is an essential condition for the photocurrent 

generation via charge carrier separation. 

a) b) c) 

a) b) 
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5.4.3 Solid immersion lenses 

The SIL is an important component of the TOBIC microscope as its design and its placement 

decides where the laser beam will be focused inside the IC. Therefore, to achieve the best imaging 

performance great care must be taken while designing and implementing the aSIL within the 

optical system.  

Equations (1.2 and 1.3) to calculate the exact dimensions of the aSIL were discussed in Chapter 1. 

They show that the aSIL’s design is dictated by the radius of the sphere, refractive index of the 

material and thickness of IC substrate. All these three parameters must be carefully chosen to suit 

the imaging system and the IC under test. 

In order to work properly the aSIL must be made from a material having the same refractive index 

as the DUT. Therefore, the aSIL must be made from silicon corresponding to the material of the 

substrate. The refractive index of silicon at a wavelength of 1.55 μm can be calculated from the 

appropriate Sellmeier equation [73], which implies a refractive index of 3.48.  

 

Figure 3.26. A free-standing aSIL under the microscope objective and positioned on the top of the area of 

interest. 

When selecting the radius of the sphere there is a trade-off to fit the aSIL under the microscope 

objective for the ability to easily move it around. As a consequence of the previous considerations, 

the radius was chosen to be 2 mm. This design allowed delicate aSIL manipulation with a 

tweezers while fitting easily between the microscope objective and the DUT. The height of the 

aSIL was calculated using the Eq. (1.3) and found to be 2.489 mm for 85 μm thickness sample. 

The height was small enough to conveniently place the lens under the microscope objective, 

which had a working distance of 13 mm (Fig. 3.26). Also, a half sphere of 2 mm radius can be 

easily inserted and roughly aligned by hand.  
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Even a perfectly designed aSIL can produce excessive amount of aberrations if it is not placed in 

precise area of the IC (Chapter 5). As a result, the faulty placement of the aSIL can lead to a poor 

quality of the image or for the most severe cases can even prevent from obtaining the image [69]. 

Therefore, after roughly placing the aSIL by hand it was moved around using vacuum tweezers 

and a µ-positioning stage. However, the nonlinear nature of the TOBIC signal complicates this 

task even more. As multi-photon absorption depends on the square of the intensity, the stages 

must position the DUT at the focal spot of the laser beam, otherwise no signal will be generated. 

In order to place the aSIL precisely on the top of area of interest, the following procedure was 

implemented. First, the IC was scanned with the beam of the maximum power to peak up the 

TOBIC signal without using the aSIL. When an image was acquired, the power level was 

gradually dropped as the sample was brought to the focus. This z-position of the stage must be 

changed when introducing the aSIL in the optical path (Fig. 3.27). The change in z-position while 

imaging with and without aSIL can be accurately calculated. 

 

Figure 3.27. Laser beam focusing with and without aSIL. 

The laser beam exhibits refraction at the air and silicon interface, while focusing it without the 

SIL. It not only changes the cone angle of the light but also restricts the maximum available NA. 

This difference between the cone angles in air and in the silicon can be calculated using Snell’s 

law. Applying the small angle approximation provides the following result for the focal spot 

distance in air and in silicon: 

∆𝑧1 ≈ 85µm∙ (1 −
1

𝑛
) = 60.6 µm. (3.46) 
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Next one can calculate the distance between focal positions in air and in silicon, when the SIL is 

used for imaging. The extreme ray angle (α) can be calculate from the right-angled triangle: 

sin 𝛼 =
𝐻 − 𝑅

𝑅
= 0.245. (3.47) 

After obtaining the angle (α) 14o one can estimate the distance between focal positions with and 

without SIL: 

∆𝑧 = ∆𝑧1 + ∆𝑧2 = 60.6 µm +
𝑌

tan𝛼
− 85 µm = 7.67 mm. (3.48) 

 

Figure 3.28. Total internal reflection for poor SIL-substrate contact case. 

Moving sample by this distance closer to the objective lens ensures that the TOBIC signal is 

generated after placing the SIL. This angle also provides the maximum NA, which can be 

exploited from the objective lens while SIL is in use: NA=sin𝛼 = 0.24. 

Once the sample was in correct z-position the SIL could then be moved in x and y 

directions to obtain the maximum TOBIC signal level. 

   

Figure 3.29. (a) Base of the surface of the SIL, which shows bulging of the surface of 1.6 μm, (b) good SIL 

example. 

a) b) 
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Another critical quality of the SIL is the roughness and flatness of the base. The maximum contact 

between the SIL and the IC needs to be established. A poor contact leads to total internal reflection 

of some rays while passing SIL-air boundary and therefore limiting the resultant NA (Fig. 3.28). 

Therefore, a surface mapping interferometer (ZYGO NewView 6300) was used to measure the 

flatness of the SIL’s base to ensure that the good optical contact can be established. It was found 

that SILs degrade over time due to stress on their surface and exhibit severe distortion of their 

base. Fig. 3.29a shows the degraded SIL, which has curved base, and Fig. 3.29b depicts a good 

example of another SIL. To ensure the maximum optical contact, the tip of the SIL was pressed 

onto the IC surface using plastic tweezers. 

5.4.4 Liquid-crystal polarisation converters 

For the laser beam conversion to the radially polarised beam a LC beam shaper was used. The 

device was designed to work for 1.55 µm wavelength and was manufactured in the University of 

Rochester [74]. The LC converter comprised of two glass substrates and the inner surface of each 

of the substrates was coated with photoalignment material, which dictates the twist angle of the 

nematic LC. The nematic LC was inserted between the substrates (Fig. 3.32). The photoalignment 

layers were aligned using a polarised UV source and a mask. LC crystals injected in the device 

adjust to the orientation of the cells formed by the UV irradiation through the mask. The LC 

device consists of two substrates and in each of this substrate molecule orientation is different as 

it is shown in Fig. 3.30. When linearly polarised light is propagating through such LC device light 

experiences polarisation twist if its polarisation is at right angle to orientation of molecules. 

Therefor vertically and horizontally polarised light exhibits different polarisation twist by 

different substrates leading to either azimuthally or radially polarised output (Fig. 3.30). Also, the 

device thickness must be carefully chosen for the particular wavelength for which device is meant 

to work. In Fig. 3.30 the actual device is shown [75]. 

 

Figure 3.30. (a) A schematic of assemble cell, (b) actual device of 51 mm diameter [75].  

a) b) 

51 mm 
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The LC devices had a small feature of 300 µm size, where the polarisation was not determined. 

Due to manufacturing limits, a defect line running along the diameter parallel to the axis appears. 

This defect is caused by destructive interference of two opposite field contributions of equal 

amplitude over the same spatial region, as illustrated in Fig. 3.31. The line width is dictated by the 

fabrication process [75, 76].  

Even though the polarisation converters had a disclination line, it was compensated with an 

appropriate phase step on the outer surface of substrate. 

 

Figure 3.31. Explanation of the polarisation discontinuity (adapted from [75]). 

In order to have axially symmetric beams with the desired phase distribution, a phase step is 

introduced. A phase step is a substrate with built-in step, which creates different optical paths to 

compensate the phase shift [75]. There are three possible designs of the phase step. The simplest 

one is a separate external plate (Fig. 3.32a). However, it has a disadvantage that it must be aligned 

every time the device is used. To overcome this problem, the phase step can be manufactured on 

the external side of the substrate (Fig. 3.32b). Another approach is to form the internal phase step 

but in this case only one polarisation can be used and means that the device can provide only 

either radial or azimuthal polarisation [75]. In the nonlinear TOBIC microscope the RPC with the 

external integrated phase step was used. 

 

Figure 3.32. Three types of the phase step: (a) external, (b) external integrated, (c) internal (adapted 

from [75]). 

a) 
b) c) 
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5.4.5 Resolution measurement technique 

An edge response of the atomically sharp n-doped finger was used to evaluate the lateral spatial 

resolution of the nonlinear imaging system. The variation of the TOBIC signal as the beam is 

scanned across the metal-semiconductor interface enables one to measure the resolution. The 

photocurrent gives the strongest response when the whole laser beam is focused into the 

semiconductor finger. However, when the beam is scanned towards the metal region the TOBIC 

signal gradually diminishes (Fig. 3.33a). Therefore, it is possible to obtain a cross-section of the 

active area when a line scan across a physical edge of an n-doped finger is performed. This signal 

response is a combination of the point spread function and the physical edge function. As the 

physical edge is a step function, the intensity of the signal 𝑆 can be expressed as a function of the 

spatial characteristics of the focused Gaussian beam [77]: 

𝑆(𝑟) = ∫ 𝐼(𝑟)d𝑟

𝑟=∞

𝑟=𝑒𝑑𝑔𝑒

, (3.49) 

where 𝐼(𝑟) is intensity of the Gaussian beam. The imaging resolution of the optical system can 

then be defined from the shape of the curve, which is generated by the response of the TOBIC 

signal and can be described as the integral of a Gaussian function: 

𝑓(𝑥) ∝ ∫ exp(𝑎𝑥2)

+∞

−∞

d𝑥, (3.50) 

where 𝑓(𝑥) is the curve of the TOBIC signal and x is the lateral position of the beam. 

 

Figure 3.33. (a) TOBIC signal response while scanning laser beam across metal-semiconductor interface, 

(b) lateral resolution measurement across the edge of the n-doped finger. 

 

 

a) b) 
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Therefore, the numerical integral of Gaussian function can be fitted on the dataset obtained from 

the TOBIC measurement. A fitting was performed using a multi-dimensional least-squares 

minimisation algorithm, which simultaneously optimises the width of the point spread function 

distribution and its centre position. The MATLAB script was written to obtain the Gauss error 

function after each linescan. The optimised parameters provided the FWHM of the underlying 

Gaussian function, which is taken as the resolution value as is shown in Fig. 3.33b [68].  

5.5 Results and discussion 

5.5.1 Evaluation of radial polarisation converter 

To investigate the performance of the LC device, a linear polariser and when required, a QWP 

were placed into the beam path just after the radial polariser in order to calculate a figure-of-merit 

called the degree of polarisation (DOP). The radial polariser was tested in a transmission setup 

using laser light from the Er:fibre laser with a centre wavelength of 1.55 µm. This transmission 

setup included the radial polarisation converter and polarising elements to manipulate and then 

analyse the radially polarised light in the near and far fields. The experimental setup is shown in 

Fig. 3.34. The light leaving the Er:fibre laser was linearly polarised and collimated with a beam 

diameter of 3 mm at lens, L1 using a 300 mm focal length lens. A HWP and a beam expander 

(L2 and L3) were then employed before the radial polariser to rotate the polarisation state of the 

beam and to expand the beam diameter from 3 mm to 18 mm. To avoid generating spherical 

aberration, achromatic lenses were used.  

 

Figure 3.34. Radial polarisation characterisation setup. 
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The HWP made it possible to dictate the angle of the linear polarisation with respect to the 

orientation of the radial polarisation converter. Furthermore, the beam was expanded to fill more 

of the RPC and so obtain higher polarisation purity. After the LC device, the beam was reduced 

to a diameter of 9 mm using the lenses L4 and L5 and imaged onto an IR Find-A-Scope camera 

where intensity distribution images were recorded. The DOP is evaluated by calculating a set of 

values known as Stokes parameters (Eq. 3.44), which are obtained by measuring the light 

intensity distributions after the linear polariser and after a QWP. Fig. 3.35 shows the recorded 

intensity distributions that were used to calculate the Stokes parameters and DOP. 

 

Figure 3.35. Intensity distributions of the polarisation elements of the radially polarised beam. 

The recorded fluence distributions were used to calculate the Stokes parameters, which implied a 

highly radially polarised beam of 94 ± 4% purity with 90% efficiency. Furthermore, Fig. 3.36 

shows the near field and far field images of the beam after the radial polariser without any other 

polarising elements in the path. These intensity distributions are close to what should be expected, 

albeit there appears to be a disclination line imaged on the near field image. However, the far-

field image does show some resemblance to a doughnut shaped intensity distribution, which is 

what one would expect from radially polarised light imaged in the far field for a low-NA focusing 

conditions. 

 

Figure 3.36. (a) Near field and (b) far field intensity distribution of the radially polarised beam. 

a) b) 
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5.5.2 Numerical modelling of the point spread function 

In this section numerical modelling results are presented, while focusing the laser beam under 

high-NA conditions. The top row of Fig. 3.37 presents the theoretical intensity distributions of 

the linearly and radially polarised light before (inset) and after (main figure) the objective-SIL 

combination. The Leutenegger method [78] was employed to calculate these distributions and 

used experimentally consistent values of wavelength and NA. From these images it is apparent 

that linear illumination focuses to an approximately elliptical focal spot with its major axis aligned 

parallel to the electric field vector, whereas for radially and circularly polarised beams the focal 

spot is symmetrical.  

 

Figure 3.37. Columns, from left to right: linearly polarised light, with electric field parallel then 

perpendicular to the longer finger edge; circularly polarised light; radially polarised light. Top row: 

theoretical electric field intensity in the focal plane and (inset) electric field intensity before the pupil; bottom 

row: corresponding cross-section of the calculated electric field intensity. 

Line-cuts through the calculated PSFs are shown in the bottom row, together with full-width at 

half-maximum diameters. To allow a more meaningful comparison with the experimental two-

photon absorption data, the PSF diameters are expressed as √2× the diameter of the squared PSF. 

The obtained values suggest that the linear polarisation should outperform any other in high-NA 

imaging. However, it has the major disadvantage that the resolution in the orthogonal direction is 

degraded severely by 80%. Also the radially polarised beam is only poorer by 3% off but can 

offer a significant advantage over linear polarisation as the same resolution can be achieved for 

features of any orientation. Circular polarisation benefits from a symmetrical focal spot but it 

offers resolution around 25% poorer than radial. However, simple insertion and handling of the 

QWP can prove to be useful for certain applications. These results are consistent with previously 

published calculations given by Zhan and correlate well with a theory discussed in the previous 

chapters [11]. 
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5.5.3 TOBIC measurements 

Before the experimental work of TOBIC microscopy, confocal microscopy was 

demonstrated to compare the same region inside the chip using an aplanatic SIL. 

Fig. 3.38a shows the confocal image of the area of the chip introduced in Fig. 3.25, while 

Fig. 3.38b shows the same area but obtained via TOBIC. The TOBIC image appear less 

noisy since detector via confocal imaging mode detects strongly attenuated signal as the 

beam should pass the microscope twice. Fig. 3.38a suggests that finger structures have 

rough and uneven surface. 

 

Figure 3.38. (a) Confocal and (b) TOBIC images of the same sensitive area inside the device obtained using 

aplanatic SIL. 

Figure 3.39 shows the 1-D confocal line-scan image along with a least-squares Gauss-error 

function fit to estimate a resolution value described in Chapter 3.4.5. Error bars in Fig. 3.39b are 

obtained from signal to noise ratio, which resulted in 12% error. A least-squares Gauss-error fit 

introduced 12%, which is consistent to the signal to noise error and was estimated from residual 

values. Therefore, confocal imaging regime provides 220 ± 26 nm resolution (linear polarisation) 

which agrees very well with Sparrow limit of 223 nm. It is necessary to note here, that resolution 

obtained with confocal imaging technique is lower as TOBIC microscopy is further enhanced √2 

times by exploiting TPA. 

a) b) 
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Figure 3.39. (a) Line-cut of the finger structure in the confocal imaging regime with (b) a least-squares 

Gauss-error fit over edge for resolution estimation (linear polarisation).  

Figure 3.40 shows line-cut of silicon finger, acquired via TOBIC technique using linear 

polarisation. This area was chosen for analysis because the silicon-metal interfaces at the finger 

edges are sharp, therefore provide a convenient resolution target. Background noise level was 

used to estimate measurement error of each data point in the line-cut as it is shown in Fig. 3.40. 

Signal to noise ratio indicated 3.7 % error value.   

 

Figure 3.40. Example how error resulting from signal to noise ratio is estimated. 

Experimental examples of the imaging quality achieved using linear, circular and radial 

polarisation are shown in Fig. 3.41, which presents TOBIC images of the n-doped silicon finger 

structures acquired using optimised linear polarisation (Fig. 3.41a); circular polarisation 

(Fig. 3.41c) and a radially polarised beam (Fig. 3.41d). Visualisation of the 3×3 matrix of tungsten 

vias is more distinct using radial and circular polarisations, which both benefit from a symmetrical 

focal spot. With linear polarisation, the elongation of the focal spot along the direction of the 

electric field causes the vias pattern to appear more blurred in either the horizontal or vertical 

direction. 
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Figure 3.41. TOBIC images acquired for (a) linear parallel; (b) linear orthogonal; (c) circular and (d) radial 

polarisations of the n-doped silicon finger structures depicted in Fig. 3.25. Yellow crosses indicate the 

nominal tungsten via positions inferred from the device CAD. 

Figure 3.42 shows line-cuts along the direction shown in Chapter 3.5.2, acquired by illuminating 

the sample with four different states of polarisation: two orthogonal linear polarisations (Fig. 3.42, 

Columns 1 and 2), circular polarisation (Fig. 3.42, Column 3) and radial polarisation (Fig. 3.42, 

Column 4).  The 1-D line-scan image is shown along with a least-squares Gauss-error function 

fit, from which a resolution value was obtained as described previously in Chapter 3.4.5. In 

Fig. 3.42, Column 1 shows the data for the incident linear electric field polarisation lying parallel 

to the longer dimension of the fingers, while in Column 2 the data were acquired with the 

orthogonal linear polarisation, in Column 3 the data were obtained with circularly polarised light 

and in Column 4 using radially polarised light. 

 

Figure 3.42. Columns, from left to right: linearly polarised light, with electric field parallel then 

perpendicular to the longer finger edge; circularly polarised light; radially polarised light. Top row: 

experimental data showing a least-squares Gauss-error fit over a line-cut of n-doped silicon finger edge; 

bottom row: extended line-cut data showing the region (red shading) used for the Gauss-error analysis. 
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Fig. 3.43. shows plots of the root-mean square (RMS) fitting error as a function of the FWHM 

for each polarisation case. The percentage of RMS fitting error is around 2% and is smaller than 

the error appearing due to signal to noise ratio (3.7%). 

 

Figure 3.43. Plots of the root-mean square fitting error as a function of the FWHM. 

 Inspection of the line-cuts in Fig. 3.42 reveals that, when linearly polarised light is used, the gap 

between the fingers is better resolved when the electric field vector is oriented parallel to the edge 

of the fingers as compared with an orientation orthogonal to the long finger edges. The elongation 

of the focal spot along the electric field direction results in a measured resolution of 165 ± 6 nm 

for the orthogonal case, which is reduced by 25% to 122 ± 5 nm while using parallel polarisation. 

The achieved result corresponds well with previously reported performance [10]. Imaging using 

the RPC produced a resolution value of 126 ± 5 nm, which is equal to the optimised linear 

polarisation case within a small error. This result is significantly better than that achieved with the 

orthogonal linear polarisation state and could be further improved if the degree of polarisation 

were increased, as noted by Yurt et al, who observed that imperfect vector symmetry of the 

radially polarised beam can degrade the spatial resolution [38]. Circular polarisation yielded a 

130 ± 5 nm spatial resolution, which is reproduces the value of radial and linear polarisations to 

within an error, however it is not expected to significantly improve by using various techniques 

like pupil engineering. A comparison between the theoretical and experimental data shows the 

same relative magnitudes but the experimental values are consistently lower. This difference can 

be attributed to the local dielectric environment inside the device perturbing the focal-plane field, 
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and to the fact that the knife-edge type resolution measurement integrates power across the full 

width of the PSF, rather than performing a true line-cut. 

Insertion of the RPC device and waveplates introduce slight change of the incident power used 

for TOBIC microscopy. The RPC was measured to attenuate laser power by 10%. Therefore, it 

was necessary to investigate whether power attenuation increase or decrease the performance of 

the TOBIC microscope. Series of results were recorded with different attenuations, which showed 

that it can be only slight resolution suppression due to power attenuation (Fig. 3.44). 

 

Figure 3.44. Plot showing resolution dependence on the laser power delivered to the sample. 

In Fig. 3.45 I present, for the case of illumination using optimised linear polarisation, the variation 

of the resolution value as the focal position of the device-under-test was adjusted. A smoothly 

varying monotonic trend is observed, indicating the expected behaviour and providing strong 

evidence that the high spatial resolutions achieved are genuine and do not result from noise or 

other image artefacts. Also while changing polarisation state one must make sure that sample is 

brought back in the focal position and what the measurements are conducted in the focal plane. 

Therefore, it is critical to repeat the z-scan prior each experiment. 

  

Figure 3.40. Resolution values obtained while changing the laser beam focal position relative to 

the sample (symbols) and cubic fit to the data (red line). 
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3.6 Conclusions 

In this chapter it was shown that high lateral resolutions can be achieved in sub-surface nonlinear 

microscopy while using radially polarised beams. It was demonstrated experimentally that using 

radially polarised illumination achieves a sub-surface imaging resolution equivalent to the best 

resolution achieved with linearly polarised light. This illumination condition was implemented 

with a high-throughput RPC device, which eliminated the need to adjust the polarisation state of 

the light to specifically optimise the resolution for individual feature orientations. The design of 

the nonlinear microscope presented in this chapter was able to achieve sub-surface imaging 

resolutions in the region of 100 nm, which are among the best up to date and are surpassed only 

by nonlinear microscopy complemented with annular illumination [9]. The TOBIC microscope 

introduced in this chapter could be further enhanced with the insertion of an annular aperture, 

which is expected to further improve the obtained resolutions. Especially for radial polarisation 

case, pupil engineering can have a high impact by enhancing the contribution of the longitudinal 

on-axis electric field component at the focus [12]. Modelling suggests that an improvement of 

between 10% – 30% should be possible.  
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Two-photon laser-assisted device alteration in 

CMOS integrated circuits using linearly, circularly and 

radially polarised light 

6.1 Introduction 

The progressive decrease in feature sizes of complementary metal-oxide semiconductor (CMOS) 

ICs means that diagnostic solutions for spatial fault localisation within these devices must be 

continuously refined to remain relevant for the prevailing technology node. LADA, which was 

introduced in Chapter 1.4.3 with other FA techniques, is a well-established imaging/analysis 

modality used to isolate interaction sites of timing-critical transistors [1]. In its original form, 

LADA employed a CW laser and therefore provided no detailed temporal information [2, 3], 

however it was recently shown how this limitation can be overcome by using TPA induced by 

an infrared femtosecond laser [4]. In this earlier work it was demonstrated how TPA, which 

generates electron-hole pairs within the active CMOS layer, could be synchronised with the 

internal clock of the device to allow a race condition to reveal speed-limiting transistor-switching 

evolution with a timing resolution below 10 ps [3]. 

In this chapter the role of the polarisation state of the excitation light in 2pLADA performance is 

discussed. Previously, it was shown that the OBIC lateral resolution is significantly enhanced by 

TPA due to the effective narrowing of the PSF associated with the nonlinear character of TPA [5]. 

The resolution achieved in sub-surface CMOS imaging is also considerably enhanced by using a 

SIL [6] and the highest resolutions can be achieved by combining TPA with SIL imaging [7]. 

Under the high values of NA associated with SIL microscopy it is known that the polarisation 

state of the incident light plays a significant role in determining the image resolution [8]. The 

conventionally employed linearly polarised light forms an approximately elliptical focal spot [9], 

extended along the electric field vector of the light, implying that RP illumination could be used 

to reduce the PSF area further, since RP light experiences no equivalent PSF distortion under 

high-NA focusing [10].  

In the following sections the outcomes of 2pLADA imaging using various polarisation states are 

detailed. Linear, circular and radial polarisations were employed to investigate how 2pLADA 

imaging resolution depends on the electric field distribution of the incident light. The imaging 

system employed a liquid-crystal RPC [11, 12] to generate a radially polarised beam with a high 

degree of mode purity, and in a way which allowed easy insertion and removal of the RPC to 

facilitate direct comparisons between different polarisation states of the incident light. 
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6.2 Radiation effects on silicon circuits 

This section introduces the photocurrents induced in the elementary devices as well as their 

influence on transistor switching times. To understand the interaction between the laser generated 

photocurrents and the semiconductor devices, the physical phenomena behind them are 

explained. First, this section introduces the laser beam induced photocurrent effect on n-channel 

MOSFET (nMOS) and p-channel MOSFET (pMOS) transistors. 

6.2.1 Ultrashort laser pulse interaction with ICs 

Incident light on a device causes two effects to occur: generation of electron-hole pairs and 

heating of the device. Localised photocurrents within the device are generated by absorbing 

photons, which are of sufficient energy to span the bandgap of silicon (1.12 eV), and so generate 

electron-hole pairs. The photo-generated currents affect the timing of a transistor either directly 

by assisting a load capacitance to charge and discharge or indirectly through the local perturbation 

of electric potential while altering the transistor’s operating point [1]. The localised heating effect 

is based on affecting the local charge carrier mobility and reducing the net driving strength of the 

transistor. This leads to a slowdown of the signal transition edges. However, the maximum 

temperature modulation by the laser is only a few tens of degrees [13], and the delay variation is 

very weak compared to the propagation through the transistor [14, 15]. As a result, the 

photoelectric effect is dominant over the weak thermal stimulation, which can usually be 

neglected [16, 17]. 

The laser stimulation via SPA generate excess carriers within the active area of the 

semiconductor. These excess carriers have a characteristic lifetime, after which they recombine 

via non-radiative processes. However, if excess carriers are generated inside the depletion region 

they are dissociated by the potential, leading to a localised photocurrent. This photocurrent 

temporally modifies the switching times of the CMOS inverters [18]. 

The CMOS inverters are described by their characteristic propagation delay times (time delay 

between input and output). The propagation delay times determine the signal delay variation 

during the transistor switching events from low to high (𝑡𝑃𝐿𝐻) and from high to low (𝑡𝑃𝐻𝐿). 𝑡𝑃𝐿𝐻 

and 𝑡𝑃𝐻𝐿 describe the required time for the signal to reach 50% of the total signal level. The 

propagation delay formulae for a CMOS inverter are given as: 

 𝑡𝑃𝐿𝐻 = 0.52
𝐶𝐿𝑉𝐷𝐷

𝐼𝐷𝑆𝐴𝑇𝑛
, (4.1) 

 𝑡𝑃𝐻𝐿 = 0.52
𝐶𝐿𝑉𝐷𝐷

𝐼𝐷𝑆𝐴𝑇𝑝
, (4.2) 
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where 𝐶𝐿 is the load capacitance, 𝑉𝐷𝐷is the supply voltage and 𝐼𝐷𝑆𝐴𝑇𝑛 and 𝐼𝐷𝑆𝐴𝑇𝑝 are the 

saturation currents for nMOS and pMOS transistors. 

The overall propagation delay through the CMOS inverter is the average of the two values: 

 𝑡𝑃𝐷 =
𝑡𝑃𝐻𝐿 + 𝑡𝑃𝐿𝐻

2
. (4.3) 

𝑉𝐷𝐷 and 𝐶𝐿 are not affected by the laser beam, however the charge and discharge time of the load 

capacitance depends on the generated photocurrent [19]. 

The induced photocurrent affects the timing properties of device by directly assisting the charging 

or discharging of a load capacitance (Fig. 4.1). pMOS and nMOS transistors exhibit different 

characteristics and the locally induced photocurrent can be used to advance or delay the timing of 

inverters. This approach can be applied to monitor the performance-limiting sections within the 

critical signal path of IC [20-22]. 

 

Figure 4.1. Delay variation caused by the laser beam incident on a delay chain [20]. 

The acquired delay variation at the output depends on the rising and the falling edges, the number 

of the inverters within the chain and the stimulated device type (nMOS and pMOS). Fig. 4.2 

shows the stimulation of a pMOS transistor, which experiences the advance at the rising edge of 

the output for low to high transition. The laser stimulation generates the additional current within 

the pMOS transistor and enhances its driving strength. This decreases the charging time of the 

load capacitance leading to a faster switch of the transistor. The effect on the nMOS transistor is 

the opposite. When the transistor is going from “off” to “on” state, the additional photocurrent 

subtracts from the nMOS current and thus slows down the switch on the nMOS device. The same 

effect alters the charging time of the output load capacitance when the signal is transitioning from 

the high signal state to the low signal state. Therefore, the discharge time of the load capacitance 

for the pMOS transistor increases (slowdown of the device) while for the nMOS device the 

additional photocurrent leads to the faster discharge time (speed up of the device) [1, 22-24]. 
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Figure 4.2. The effect of laser impulse on the rising edges of a single inverter output. The blue 

arrow depicts the rising edge of the pMOS transistor and the green arrow depicts rising edge for 

the nMOS transistor. 

Introducing high current into the device can affect the global response of the sample and alter the 

response time of even unilluminated sites. To overcome this problem, CW lasers have to be 

replaced with pulsed lasers, which have high peak powers but low average powers and affect ICs 

in a highly localised manner [23]. 

The laser stimulation of ICs can be also applied to inject soft faults into internal nodes of the 

device. Typically, this soft faults appear in memory elements, such as static random-access 

memories (SRAMs) or flip-flops. The generated photocurrent increases the signal voltage of the 

memory element transistor. This voltage alters the logical output of the flip-flop or single event 

upset (SEU) in the signal value causing an error in the device [25]. Ultra-fast lasers can be 

employed to drive the soft fault injection technique for the analysis of SEUs. The laser pulse 

simulates the response of a memory cell as if a heavy ion or cosmic ray is incident into the device, 

which may cause a corrupt logic signal and lead to the failures of the device [26]. 

Another application for ultrashort laser pulses is the soft fault injection technique to track down 

the switching event of the transistor. An ultrashort pulse can be locked to the external trigger 

provided by the tester to perform a time mapping of the sensitive areas of the device and record 

the event that is responsible for faulty operation [27]. A more thorough discussion on single-event 

effects (SEE) is presented in the following section. 

6.2.2 Single event effects 

Single-event effects are a type of radiation effects caused by the impact of a single energetic 

particle such as a heavy ion [28, 29]. Energetic particle events occur randomly and can appear in 

any sensitive node within the device. The incident particle interacts with the silicon lattice and 

transfers energy to the silicon atom generating electron-hole pairs (Fig. 4.3a). Typically, the heavy 

pMOS       nMOS 
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particle leaves a track of electron-hole pairs along its path. These electron-hole pairs can 

recombine, however the carriers, which do not recombine, can be transported through the silicon 

by drift and diffusion mechanisms. This generates the transient current, which can disrupt the 

operation of the device. The reverse-biased junctions are the most sensitive parts of the device, 

where the electron-hole pairs are the most likely to contribute to the transient current [30]. 

 

Figure 4.3. Charge generation and collection phases in a reverse-biased junction and the resultant 

current pulse caused by the passage of a high-energy ion. [30]. 

If the heavy particle strikes close to the depletion region, electron-hole pairs are rapidly separated 

by the electric field leading to the high transient current. This form the funnel shaped potential 

(Fig. 4.3b), which size depends on the doping of the substrate (larger for lower doping) and 

incoming particle energy. This energy is known as the linear energy transfer (LET), which 

describes the amount of energy distributed per unit of distance along the particle path [30]. 

The perturbed potential leads to the enhancement of the drift (charge collection) extending the 

depletion region deeper in the substrate. This event happens rapidly in the timescale of 

nanosecond and causes a transient current spike (Fig. 4.3). After that only slow diffusion 

phenomenon drives the charge collection, which happens over hundreds of nanoseconds until all 

the excess carriers are collected or recombined (Fig. 4.3c). The high transient current can change 

the logic state on the sensitive memory elements and cause the system to fail [31-33]. 

Single event upset 

It was introduced in the previous section that the charge collection mechanism in ICs typically 

appears in reverse-biased junctions due to the presence of the strong electric field in the depletion 

region. An additional charge can be collected by the diffusion process, which forces carriers 

outside of the depletion region to return to the junction. A parasitic bipolar transistor introduces 

another collection mechanism, which is known as the bipolar amplification [34]. These three 

charge collection mechanisms can contribute to SEEs and lead to the logic upset, significant 

voltage change, or alteration of stored information causing SEU to occur [35]. SEUs do not only 
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appear in the space equipment or when the high levels of radiation are present. Cosmic rays also 

consist of many energetic particles that can generate SEUs in terrestrial equipment.  

In CMOS circuits, the “off” transistors struck in the junction area by a heavy ion of high enough 

LET are prone to lead to SEUs. SEUs are events in which an incident particle can strike a key 

node within a device resulting in a local ionisation that can cause a change of state [34]. The 

probability of the SEU to happen depends on factors like the node capacitance, the operating 

voltage and the speed of the feedback circuit [36]. The node capacitance together with the channel 

resistance acts as a low pass filter that may reduce the rising slope and magnitude of the induced 

current pulse. With downscaling of technology and feature sizes, the operational voltage of a 

device is also decreased. This means that less charge is needed to induce an SEU. Increasing the 

capacitive load is therefore a known design technique to reduce the sensitivity as the technology 

nodes gets smaller [37]. 

Combined, parameters like these define the amount of charge or energy needed to flip the bit of 

a memory cell. This is also referred to as the critical energy, 𝐸𝑐𝑟𝑖𝑡, or critical charge, 𝑄𝑐𝑟𝑖𝑡. SEUs 

can be induced if a charge larger than the critical charge has been collected by the sensitive 

node [38]. 

The dominant mechanism of energy loss by a charged particle passing through a material is 

Coulomb scattering by the atomic electrons of the material, as the nucleus size is very small. 

Nevertheless, nuclear interactions play an important role prior to the creation of an SEU and will 

be discussed in this section. 

A measure for the energy loss of a particle per unit length is the stopping power. The stopping 

power can be related to the number of electron-hole pairs produced per unit length along the 

particle’s track. [36]. The stopping power is dependent on the kinetic energy and charge of the 

particle. Except for very low energies, the higher the charge of the ion the higher is the stopping 

power. Therefore, the α-particle has a higher stopping power than the proton. After travelling a 

certain distance in the material, the ion eventually loses all its energy and comes to rest [37].  

Highly energetic neutrons and protons can collide even with the nucleus of the target material and 

induce a nuclear reaction. Compared to the Coulomb interactions nuclear reactions are rare 

events. However, due to a large number of SRAM cells in modern devices, significant particle 

fluxes, and the long exposure times, those collisions happen often [37]. 

Interactions between a proton or neutron and a nucleus can be either elastic or non-elastic. In an 

elastic interaction the incident and outgoing particles are the same. Due to the small amount of 

momentum transfer in an elastic collision they are considered to only play a minor role of SEU 

rates [34]. In a non-elastic interaction additional particles can be created and emitted from the 

reaction. One or several of the particles may be emitted with the right direction and enough energy 
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to reach a sensitive transistor. It is typically the recoil ion or an α-particle that possesses enough 

stopping power to induce an SEU [37].  

Single event transient 

A single event transient (SET) is a transient pulse in the logic path of an IC. Similar to an SEU, 

an SET is induced by a charge deposition of a single ionising particle. An SET can be propagated 

along the logical path where it was created. It may be latched into a register, latch or flip-flop 

causing their output value to change. Most devices are highly resistant to SETs due to the large 

capacitive loading of the single path [39]. Compared to SEUs, SETs are therefore considered a 

negligible problem and are not treated in this thesis. 

Single event latchup 

Latch-up event (SEL) is typically caused by the parasitic activation of a structure resembling a 

thyristor composed of two NPN and PNP bipolar transistors. The latch-up can be initiated by a 

voltage spike, high operating current or a heavy ion. An SEL is often the cause of more severe 

faults than that of a soft error because a power-reset is required. The SEL can cause a permanent 

damage to the device by creating a short-circuit if it is not limited on time.  

The SEL rate increases significantly with not only higher supply voltage and operating current 

but also with operating temperature. However, lower voltage and temperature control of the 

device leads to the poor performance of the IC. 

In order, to avoid this undesirable effect there are ways to mitigate SEL, such as the ring guard 

and the shallow trench isolation. Resistance limits current, however, this makes the design of the 

device more complicated as the required current limit must be specified. Also, a large resistance 

will affect the proper performance of a circuit, while a small value may fail to provide protection. 

The second technique to prevent SEL is using cut-off circuits based on the current comparison.  

The failure event causing a latch-up can be visualised using the photon emission technique. Also, 

the OBIC technique can detect latch-ups by triggering them intentionally with the help of 

electron-hole pairs generated by the radiation of the laser beam and highlighting the sensitive 

areas of the device, which may need to be redesigned [40]. 

Single event function interrupt 

Single Event Function Interrupt (SEFI) typically indicates a pseudo-hard error within IC. SEFI 

temporally alters the device implemented functionality such as a loss of configuration capability, 

placement in test mode and a lock-up. Usually to recover from SEFI requires a power reset. The 

SEFI cross section is typically orders of magnitude lower than the SEU cross section [39].  
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Single event burnout 

ICs do not have an intrinsic mechanism to amplify the currents generated by a single event strike, 

therefore Single Event Burnout (SEB) occurs only under certain conditions. SEU has to create a 

sufficient charge within the device to initiate avalanche multiplication, which sustains the current 

flow for minimum time to lead to localised self-heating [41]. This temperature change modifies 

the current-voltage characteristic of the diode around the strike point, such that the current 

becomes locally self-sustaining. The self-sustaining current eventually spreads throughout the 

device due to higher particle mobility in the cooler parts of IC, supporting the ever increasing 

current until permanent damage through melting or cracking of the device occurs [42].  

Single event gate rupture 

Single Event Gate Rupture (SEGR) occurs when the energetic particle strikes the drain node in 

the body area of the epitaxial region, which is at the surface. Two response mechanisms can cause 

SEGR in the IC: dielectric and epitaxial.  

The dielectric SEGR happens when a high positive charge accumulates close to the Si-SiO2 

interface. The charge builds up rapidly on the order of picoseconds time scale and leads to the 

high electric field, which can cause a breakdown if it exceeds the critical oxide breakdown field. 

The breakdown caused by SEGR produces permanent damage to the device.  

The epitaxial response distorts depletion field in the epitaxial region forming the funnel shape 

potential, leading to the appearance of the electric field between epitaxial and dielectric layers. If 

this excess electric field strong enough, the irreversible dielectric breakdown occurs [43 - 45]. 

Single event hard error 

The single event hard error (SEHE) occurs in memory devices, typically SRAMs, where a single 

bit becomes stuck in a certain state due to permanent or semi-permanent damage caused by 

ionising radiation. Stuck bits cannot be fixed with a power cycle, however the bit may anneal over 

time and start to function once more [46]. 

6.2.3 General SEE testing approaches 

As SEEs usually occur in space environments, testing is rather expensive under these conditions. 

There are three types of high-flux sources for terrestrial IC testing of SEEs: particle accelerators, 

lasers, and X-ray generators [47, 48]. 

Particle accelerators 

The original sources for terrestrial testing and the closest comparison to actual space environments 

are particle accelerators. These devices produce energetic ions which can then be used to excite 

carriers in IC. Most particle accelerators use a broad beam, where particles arrive at random 
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intervals, across a large region (2 cm2). A variety of facilities with different ion masses and 

energies allow for robust characterisation of a wide variety of different environments and effects. 

Also, there are possibilities to use a smaller region of exposure. Microbeam particle studies have 

shrunk the window of opportunity to 3.7 mm2. These devices are able to raster over the region of 

interest [49]. However, this approach has its limitations to the energy range of particles that can 

be used in this setup. Particle accelerators are usually an expensive IC testing technique. 

Pulsed X-ray technique 

Focused X-Ray testing is a relatively recent technique for single event testing, and is still under 

development [50]. X-Ray irradiation has two main advantages: the carrier generation region can 

be made to closely match that of a variety of ions and energies, and has the ability to transmit 

radiation through metal layers. The major issue is that X-Ray irradiation will generate trapped 

charge in device oxides, which can lead to malfunction of the device [51].  

Pulsed laser technique 

A main task for the pulsed laser testing technique is to simulate conditions similar to those when 

a heavy particle strikes the IC. Laser stimulation can generate carriers and create excess charge 

within the device leading to appearance of SEEs. These later can be used to track down the 

fundamental mechanisms responsible for their generation. The SEE response is recorded at the 

different z planes and with varying laser pulse energy. The obtained map of SEEs can be 

compared with a CAD design of the IC and sensitive transistors can be identified [52]. The use 

of ultrashort pulse lasers improves the localisation resolution by reducing the diffusion length of 

the photogenerated carriers.  

Many SEEs appear under certain timing conditions, which mostly occur during the transistor’s 

switching events. Therefore, it is highly important to inject carriers at the right time to fully 

understand the dynamics of the IC. Temporal aspect of ultrashort pulses makes it possible to 

synchronise the arrival of laser pulses with the tester clock. Such time-resolved carrier injection 

technique determines a time window when the device is vulnerable to SEEs with the high 

picosecond resolution accuracy [53, 54]. 

Also, ultra-short pulses allow to deposit large amounts of energy over very short periods of time 

leading to the high peak powers. This is very useful for SEE analysis as laser pulses can generate 

charge densities, which exceed even those generated by the most energetic cosmic rays. 

Therefore, it is possible to perform very sensitive analysis and simulate permanent failures like 

SEBs and SELs [55, 56].  

For many SEUs to occur, an energetic particle is required to generate excess carriers within two 

nodes. Therefore, particles must be incident at the angles close to a grazing angle. Laser light can 
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simulate such conditions by moving the test device out of the focus in order to hit both nodes at 

the same time. However, such option requires to increase the pulse power to obtain the similar 

charge densities. [56]. 

6.2.4 LADA and 2pLADA techniques. 

This section introduces the laser-based analytical technique known as LADA, which is 

qualitatively similar to previously introduced SDL but which differs in both approach and 

application [1]. Unlike other dynamic analysis techniques, LADA provides the ability to quickly 

isolate critical signal paths and their limiting elements. LADA can accurately (individual logic 

gate level) track down the defects, which appear in the device functionality and are not produced 

during manufacture [57-58].  

LADA 

The basic concept of LADA technique is introduced in this section. As other dynamic techniques, 

LADA is based on the functionality test. To implement such test, the circuit is first characterised 

by obtaining a Shmoo plot, which determines the impact of two parameters on the functionality 

of the circuit. Most often, these two parameters are the operating frequency of the IC and the 

supply voltage. For each selected voltage and frequency value, a functional test is carried out and 

provides the value of the parameters where the circuit is functional (passing) or non-functional 

(failing). The Shmoo provides the functionality limit of the device. Therefore, IC sample has to 

be biased close to the IC pass-fail boundary for the obtained fixed voltage and frequency settings. 

This pass-fail transition, combined with the exact coordinates of the point of impact of the incident 

laser beam affects the timing of a transistor located within the critical signal path (the longest path 

between input and output), such that the change in maximum operating frequency can be 

detected (Fig. 4.4). [1]. It was introduced in the previous sections how laser pulse alters the 

transistor’s timing properties. 

 

Figure 4.4. The LADA concept: A scanning laser affects a critical-path transistor’s characteristics, 

thereby changing signal timing sufficiently to cause transitions in the device’s pass-fail condition. 
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When the DUT is operated in a pass-fail boundary condition, even small changes in timing within 

the critical path can lead into a transition from pass to fail or fail to pass states, depending on the 

DUT’s bias and increase or decrease in delay. A CW near-infrared wavelength laser is typically 

used for LADA and is either raster scanned across the area of interest as the automatic test 

equipment runs a test pattern or is precisely set at the suspected area of interest. During each test 

cycle, the passing or failing state of the DUT is resolved and a signal indicating the state of the 

device is triggered by the tester. This pass-fail trigger is synchronised to the laser spot position in 

the IC [1].  

The amount of timing perturbation is directly related to the laser power introduced in the 

transistor. Therefore, the laser power can be tuned to reach the threshold of LADA signature 

appearance. This makes it possible to determine the relative sensitivity of the test device in a 

highly accurate fashion. Lasers operating at high frequencies are able to be synchronised with 

tester clocks on a high-resolution timescale of tens of picoseconds or less [1]. 

It was demonstrated that the pMOS device is more affected than the nMOS transistor. Also, most 

of the electrons are injected within the n-well junction of the pMOS transistor. These electrons 

exhibit strong diffusion and thus increase the effective spot radius leading to the inability to isolate 

the single LADA signatures of the nMOS or pMOS transistors (Fig. 4.5a). This limitation of the 

LADA technique can be overcome by expanding it to the TPA and introducing 2pLADA [1], 

which is the subject of the research carried out for this thesis. 

2pLADA 

Femtosecond near-infrared laser illumination can deliver sufficient levels of optical peak power 

for the TPA phenomenon to occur. As mentioned before, TPA depends on the square of the 

irradiation intensity and therefore happens only in the vicinity of the focal spot. As a result, the 

beam is not absorbed along its path and no carriers are generated. This addresses the problem for 

the requirement to focus light through a thick substrate while imaging ICs. Moreover, the 

absorption in a highly localised volume produces a strong signal in the focal spot, while shrinking 

the PSF at the same time. This can be further enhanced by combining TPA with a pulse-to-DUT 

synchronisation scheme when the arrival of femtosecond laser pulses could be locked and 

temporally shifted with relatively to the automatic test equipment (ATE) clock frequency with 

picosecond precision [59]. 

As was discussed in the previous section, conventional LADA exhibits a single polarity signature, 

which is typically biased towards the pMOS transistor due to its favourable light-matter 

interaction sensitivity [1]. However, 2pLADA can produce highly localised LADA signatures 

when a pulse arrives at the inverter’s switching event. This reveals both individual pMOS and 
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nMOS transistors and unlike LADA does not exhibit a strong pMOS dominance (Fig. 4.5b). 

Moreover, 2pLADA achieves higher signal acquisition rates, since the higher peak power of the 

mode-locked laser pulses makes it possible to perturb and visualise weaker LADA sites more 

easily without introducing too much average power and damaging the device [59].  

 

Figure 4.5. (a) LADA and (b) 2pLADA sites, obtained from the DUT by the thesis author in Freescale 

Semiconductor with the DCG Systems FA tool “Meridian IV”. LADA technique exhibits strong pMOS 

transistor’s dominance (black passing signature), which hinders the localisation of nMOS transistor (white 

failing signature). 2pLADA produces highly localised signatures revealing both pMOS and nMOS 

transistors. 

In addition to the enhanced localisation capabilities provided by 2pLADA, the use of 

synchronised laser pulses makes it possible to temporally resolve the switching evolution of 

individual transistors. This was demonstrated by irradiating two neighbouring logical elements in 

terms of electrical signal propagation. Then the strongest 2pLADA signatures were recorded, 

which happened to be at the different delay to the test loop trigger. Pulses were shown to arrive 

at Site A (B) 2.92 ns (3.06 ns) after with a timing accuracy <10 ps. This result was found to have 

a precise agreement with theoretical modelling results [59]. 

Another capability of the 2pLADA technique is that the high peak power delivered by the 

femtosecond laser can also temporarily disturb the prescribed digitisation in the memory cells. 

This can lead to the generation of the previously described SEUs. These defects can be recorded 

in the same LADA image, where they produce strong signatures [59]. 

 

a) b) 
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6.3 Raman-shifted femtosecond Yb:fibre laser for 2pLADA at 1280 nm 

In order to implement 2pLADA a suitable laser irradiation source had to be employed. Therefore, 

in this section a special Raman soliton Yb:fibre femtosecond laser, developed for 2pLADA is 

introduced. Such an Yb:fibre laser design was chosen as it enabled the generation of ultrashort 

femtosecond laser pulses at 1280 nm wavelength with a repetition rate of 100 MHz. These 

parameters were suited very well for the 2pLADA application as the 1280 nm wavelength is a 

perfect choice because is long enough for TPA in silicon and short enough to enable high 

localisation resolutions. Femtosecond pulse durations are necessary to obtain high peak powers 

to initiate TPA and the 100 MHz repetition rate is suitable to lock the laser to the ATE (tester) 

clock frequency.  

6.3.1 Yb3+ optical properties 

Ytterbium is a rare earth ion, which is an established dopant to provide a laser generation in fibres. 

The attractiveness of the Yb3+ ion as a gain material is because of its simple energy level structure. 

The Yb3+ ion has a ground level 𝐹7 2⁄
2  with four Stark sub-levels and the metastable excited state 

𝐹5 2⁄
2  with three sub-levels [60-63]. Therefore, there is no ESA at either the pump or lasing 

wavelength, which is apparent in the Er3+ ion as discussed in Chapter (2..1). Yb3+ has a large 

separation between the ground and the excited states preventing nonradiative phonon decay. This 

allows higher concentration doping even into the high energy phonon silica fibres to reach very 

efficient lasing. Moreover, the Yb3+ absorption and emission spectra are very broad as shown in 

Fig. 4.6, and also they slightly depend on the glass materials used [64]. 

 

Figure 4.6. Yb3+ absorption and emission spectra. 
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The broad absorption allows a wide choice of high-power pump sources. The absorption 

spectrum has two peaks at 915 nm and 975 nm, which match the output wavelengths of 

commercially available laser diodes. Most of these laser diodes have linewidths of a few 

nanometres, which can be too wide for efficient pumping for other gain media. Even 

though the pumping with the 975 nm source is more efficient but it requires active cooling 

as a slight shift in the wavelength can result in a significant change in absorption. This is 

less critical for a 915 nm pump source [62].  

The broad emission spectrum makes it possible to achieve a tunable laser generation and a 

broadband amplification. The development of fibre gratings also enables a narrow linewidth 

operation at the desired wavelengths. Finally, the emission and pump wavelengths are close, 

leading to a low quantum defect and less heat generation within the system [65]. 

6.3.2 Soliton self-frequency shifting 

Solitons have been introduced in Chapter 2 and were shown to possess unique features. Solitons 

not only preserve their pulse shape as they propagate along the fibre but also can be shifted via 

the soliton self-frequency shift by changing the input power. This phenomenon can be used 

to generate new frequencies, which can be useful for optimising the wavelength of the 

pulsed laser used for FA. 

In this section only fundamental solitons are considered since higher-order solitons are not stable 

and break into several bands, including one or several red-shifted fundamental solitons and blue-

shifted nonsolitonic radiation [66]. 

 

Figure 4.7. Example of increasing soliton redshift with increasing input power (adapted 

from [67]). 
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Shift of the main soliton frequency can only appear by frequency-dependent losses or gain in the 

fibre. If the soliton is of sufficient bandwidth, the Raman scattering amplifies the lower frequency 

components at the expense of the high frequency components resulting in red-shifting of the 

soliton. This effect is known as the soliton self-frequency shift (SSFS) and depends on both the 

peak power of the soliton and its bandwidth. If the soliton spectrum overlaps with the Raman gain 

spectrum it is possible to derive an equation [67, 68]: 

∆𝜔(𝑧) =
−8|𝛽2|𝑇𝑅

15𝑇0
4 𝑧, (4.5) 

where ∆𝜔(𝑧) is the expected frequency shift over propagation distance 𝑧, 𝛽2 is group velocity 

dispersion, 𝑇𝑅 is characteristic Raman response time and 𝑇0 is characteristic soliton time related 

to its pulse duration 𝑇𝐹𝑊𝐻𝑀 = 2ln (1+√2)𝑇0. The parameter 𝑇𝑅 is related to the Raman 

response function of the medium 𝑅(𝑡), which takes into account the electronic and vibrational 

Raman response [69]: 

𝑇𝑅 = ∫ 𝑡𝑅(𝑡)d𝑡

∞

−∞

. (4.6) 

As it can be seen from Eq. (4.6), the redshift increases linearly over the distance, so the longer the 

fibre, the higher the final frequency shift at the output (Fig. 4.7). Also the overall redshift has an 

inverse quartic dependence on soliton pulse duration. Therefore, even a small decrease of the 

duration and peak power of the pulse translates to an enhanced frequency shift, since the soliton’s 

peak power 𝑃0 is related to the pulse duration 𝑇0 as [70]: 

𝑃0 =
|𝛽2|

𝛾𝑇0
, (4.7) 

where 𝛾 is a nonlinear coefficient. 

SSFS forms the basis of Raman supercontinuum generation when the high power pulse breaks 

up into several solitons and nonsolitonic radiation. Therefore, a broad spectrum of pulse durations 

propagates inside the fibre, which leads to a range of total frequency shifts and the net result of 

the generation of a smooth extended continuous spectrum, or supercontinuum [71]. 

6.3.3 Raman-shifted femtosecond Yb:fibre laser construction 

The Yb:fibre laser employed for the 2pLADA experiments was designed and built by Dr. Carl 

Farrell. It was shipped to the USA for experiments, which I carried out at Freescale and DCG 
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Systems. The laser was designed to work in a ring cavity configuration, which is shown 

in Fig. 4.8.  

  

Fig. 4.8. Schematic of the Raman-soliton laser source. WDM, wavelength-division multiplexer; 

YDF, ytterbium-doped fibre; CL, collimator; λ /2, half-wave plate; λ/4, quarter-wave plate; ISO, 

isolator; PBS, polarising beam splitter; FIL, interference filter; HR, high reflector; M, curved 

mirror; LD, laser diode; PMC, polarisation maintaining combiner; GTI, Gires-Tournois 

interferometer; PCF, photonic crystal fibre; AL1- AL3, aspheric lenses. The laser generated 

1280 nm pulses with an average power of 20 mW. Inset: laser spectrum, showing a centre 

wavelength of 1278 nm and a bandwidth of 13 nm. 

The fibre section consisted a 19 cm length of highly doped Yb fibre with a 4.5 cm length 

collimator spliced onto both ends. Therefore, the total length of the fibre section was 28 cm. The 

free-space section was designed to be ∼190 cm long and contained the components required to 

achieve mode-locking via NPR [72]. Two QWP and a HWP were used to control the 

directionality of the polarisation leaving the fibre and the polarising beam-splitting cube worked 

as an output coupler. A 10 nm bandwidth spectral filter was inserted at an angle to transmit a 

centre wavelength of 1030 nm. The laser was pumped by two 675 mW and 976 nm diodes, which 

were polarisation combined into a single fibre using a PM combiner. The pump power was 

coupled into the Yb fibre with the 78% efficiency through two dichroic mirrors highly 

transmitting 976 nm and highly reflecting 1030 nm light. The optical isolator was inserted to 

ensure the unidirectional propagation of light within the ring cavity. Also in the free-space section 

a curved mirror was placed along with two high reflectors. The curved mirror imaged the mode 

from the first collimator into the other, yielding an improved coupling efficiency. The suitable 

curvature of the imaging mirror was chosen using ABCD matrix model and was found to be 

500 mm radius of curvature.  
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Figure 4.9. The optical spectrum of the mode-locked Yb:fibre laser. 

The optimised Yb:fibre laser had an output power of 350 mW at a 100 MHz repetition rate. The 

measured optical spectrum and interferometric autocorrelation of the laser are shown in Fig. 4.9. 

As it can be seen, the spectrum cannot be described by common Gaussian or Secant profiles. 

Therefore, a fitting procedure was performed to estimate the duration and shape of the pulses at 

the output. For this, the optical spectrum was recalibrated into frequency through the addition of 

quadratic and cubic spectral phase before conducting a Fourier transformation to obtain the pulse 

shape. The autocorrelation of this pulse was numerically calculated and matched with the 

experimental data while changing the quadratic spectral phase. The obtained pulse was found to 

be of 1.3 ps duration. The pulse was heavily chirped and therefore, Gires-Tournois interferometer 

(GTI) mirrors were used to compensate GDD and acquire transform limited pulses. By using 10 

bounces of the mirrors and one reflection from the steering mirror the pulse was compressed to 

the value of 160 fs (Fig. 4.10). 

 

Figure 4.10. Autocorrelation of the 1030 nm pulses after 10 bounces on the GTI mirrors.  
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Next, these de-chirped pulses were coupled with 75% efficiency into a highly nonlinear PCF. The 

resulting super-continuum contained chirp-free Raman-soliton pulses at the desired wavelength 

of 1280 nm, which were then isolated by using a thin-film long-pass filter with a cut-off 

wavelength of 1200 nm (Fig. 4.11a). Finally, the filtered 1280 nm pulses were coupled into a 

polarisation-maintaining delivery fibre, after which they were measured to have durations of 

200 fs (Fig. 4.11b) and an average power of 20 mW. 

 

Figure 4.11. (a) The optical spectrum of the SSFS Yb:fibre laser with (b) the corresponding 

interferometric autocorrelation. 

6.3.4  Repetition rate stabilisation to an external clock 

The pulse repetition frequency of the Yb:fibre laser was locked to an external 100-MHz clock 

supplied by the tester. The locking scheme is depicted in Fig. 4.12. A small part of the light after 

the GTI mirrors was deflected into a fast photodiode. The signal from the fast photodiode was 

filtered using a < 500-MHz low-pass filter and locked to a tester using mixer (MiniCircuits ZFL-

500LN). The resultant beat was passed through a PI controller and through a high-voltage 

amplifier before reaching the piezo driving the placement of collimator in the cavity. 

 

Figure 4.12. The schematic of the repetition rate locking of the Yb:fibre laser.  

A 9-µm-travel piezo element was included in the cavity by placing it in the collimator’s 

translation stage, and, due to the stretching of the laser cavity to accommodate the PZT, the 

resulting Yb:fibre laser now had a pulse repetition frequency of 100 MHz, which could be 

modified over a range of ~500 Hz. 

a) b) 
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6.4 Implementation of 2pLADA 

6.4.1 Description of the device under test 

The device under test was a proprietary 28 nm bulk silicon test device containing production logic 

blocks. To run a test on the device it was modified to engineer a race condition. The race was 

created by reducing the time between the rising edges of a capture clock pair. The race was then 

between the clock pair timing and the propagation time through the connecting data path logic. 

Using a capture clock pair, it was possible to bias the test close to a 50% fail probability boundary 

after each successive test loop of 21 µs. The DUT was provided by Freescale Semiconductor. 

6.4.2 ATE Tester 

An ATE is a system that applies tests to a DUT and makes a pass or fail decision. An ATE can 

be a simple computer, or a complex equipment containing several sophisticated testing 

instruments to test complex ICs. An ATE is widely used in electronics manufacturing after 

production of electronic components and systems. ATEs can also be used to test electrical 

equipment and automotive electronic modules. They are used for radar and other applications of 

wireless communication in the military [73]. 

 

Figure 4.13. LTX Credence D10 Diamond Series Tester. 

Typically, for semiconductor failure analysis ATE architecture consists of a main controller, the 

synchronisation of signal source and detection devices.  

The DUT is physically connected to the ATE through a custom interface adapter. The ATE 

computer uses modern computer language (such as C, C + +, Java and Smalltalk, or Labview) 

and additional control statements.  

The ATE used in experiments were LTX Credence D10 Diamond Series Tester (Fig. 4.13), 

provided by the DCG Systems. The Credence D10 operating system provides an easy to use 

environment and gives a general software platform for test while supporting a variety of industrial 

standards. This tester exercised the race condition in the chip and monitored its control. Also it 

performed observation and acquisition of the fail rate of the DUT.  



125 

6.4.3 Microscope configuration 

The experimental arrangement of the 2pLADA microscope is shown in Fig. 4.14. Femtosecond 

pulses at 1280 nm were delivered from the laser through a 4-m polarisation maintaining fibre to 

a collimation module which presented a beam of diameter 4 mm into the telescope system used 

before the RPC. The collimation module also contained a beam-splitting cube used for the 

deflection of the returning laser beam to the detector. Lenses L1 and L2 formed a telescope used 

to increase the diameter of the beam before the RPC device, whose 20 mm aperture made it 

necessary to use an expanded beam. A second telescope formed by lenses L3 and L4 then reduced 

the beam to a diameter matching the aperture of the galvanometer mirrors of the laser-scanning 

microscope (LSM) module. The LSM employed an integrated silicon SIL objective which 

provided 350 magnification and NA = 2.45. A scalar calculation of the PSF full-width-half-

maximum diameter using the Sparrow criterion for the 2pLADA microscope with 1280 nm 

incident wavelength and NA = 2.45 provides a resolution of 260 nm, however this value takes no 

account of the resolution improvement due to the effect of nonlinear absorption. 

 

Figure 4.14. 2pLADA microscope layout. The beam to the module is delivered using a 

polarisation maintaining fibre, where it enters through a PBS. The PBS and its associated detector 

are used for confocal imaging to navigate to the area of interest in the DUT. After this, the beam 

is collimated using lens L1 and is expanded using lenses L2 and L3 and guided through the RPC 

device. Mirrors M1 and M2 are used to fold the layout and to deflect the beam into the reducing 

telescope (L4-L5), which images it onto the galvanometer mirrors of the LSM scan module. The 

beam is then guided to the 350 silicon SIL microscope objective (NA = 2.45). A HWP and a 

QWP were used just before the microscope objective to prepare the incident polarisation for the 

imaging experiments. 
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The DUT was a proprietary 28-nm-feature-size bulk silicon test device (VDD = 0.8 V, clock 

frequency = 50 MHz). The device was engineered to perform a logic operation, which was 

previously described in [3]. By controlling the supply voltage, the fail rate was set to 50% and 

typically several hundred 2pLADA images of a region of pMOS and nMOS transistors were 

recorded using a pixel dwell time of 32 μs and an image size of 512  512. 

This microscope configuration was implemented in the Freescale Semiconductor. FA lab in 

Austin, Texas.  

RP Module design 

The RPC had to be installed in an industrial FA device “Meridian IV” manufactured by the DCG 

Systems. To successfully achieve this, while respecting the restricted space available for the RPC 

installation, it was necessary to design a custom module. The final design of the RP module is 

shown in (Fig. 4.15), the design of the RPC module was a result of the collaborative work with 

DCG Systems. Many parts of the module were designed and 3D printed at Heriot-Watt 

University. Achromatic lenses were used in the telescopes to minimise chromatic and spherical 

aberrations. 

 

Figure 4.15. RP module design.  
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6.5 Results and discussion 

6.5.1 Polarisation-state dependence of 2pLADA spatial resolution 

2pLADA images were obtained using the microscope described previously by averaging 600 

frames, with an approximate acquisition time of 300 seconds. Separate images were recorded 

using parallel linear, orthogonal linear, circular and radial polarisations. In Fig. 4.16 an overview 

image of a 2pLADA measurement for pMOS and nMOS transistors is depicted, showing the 

region of interest (red box) used for the quantitative measurements, which are described later. 

 

Figure 4.16. Confocal image of the active area of the device. The zoomed-in area (field of view 

1.5×1.0 µm) is shown for each of the different polarisation states.  

Figure 4.17 shows the 2pLADA images obtained under different incident polarisation conditions 

for the region of interest indicated in Fig. 4.16. PMOS and nMOS exhibit opposite 2pLADA 

signature polarities, therefore absolute delay profiles were drawn. To increase accuracy of data 

analysis a background was subtracted from the data. The images in the top row of Fig. 4.17 

include the pMOS and nMOS transistors overlay from the computer-aided design (CAD) image 

as yellow rectangles, while the bottom row shows corresponding horizontal line-cuts across the 

centre point of the feature, which allow localisation resolution values to be inferred using a least-

squares Gauss error function fit [74]. The CAD overlay indicates a separation between the 

transistors of 117 nm, which appears to be most clearly resolved when linear polarisation is used 

with its electric field parallel to the transistor channel. This is an expected result because the point 

spread function is longer in the direction parallel to the electric field and narrower in the 

orthogonal direction [8]. Comparable localisation resolution also appears to be possible 

(Fig. 4.17, bottom row, column 4) when using radially polarised light, which in principle can 

provide the same PSF width as optimised linear polarisation. 

It was compared how closely the 2pLADA signals correlated with the transistor regions defined 

by the CAD layout by evaluating a normalised overlap integral between the 2pLADA signal and 
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the area bounded by the left rectangle in the Fig. 4.17 images. The area in the right rectangle was 

not included in the calculation because in this region the 2pLADA signal was noisier and very 

sensitive to the relative delay of the laser pulses. It should be noted also that the right rectangle 

corresponded to the nMOS well, which typically exhibited a weaker and more timing-critical 

LADA response [3]. The overlap integral was highest for the case of radial polarisation and was 

normalised to 1.0, giving values for the other cases of 0.82, 0.91 and 0.86. Error for the overlap 

integral was estimated from signal to noise ratio to be of 13%. Despite the improved correlation 

between the CAD and the 2pLADA image for radial polarisation, additional artefacts are evident 

when using RP illumination, for example there is substantial distortion and elongation of the 

image when compared with linear polarisation case. It is well known that RP illumination exhibits 

a strong longitudinal component, which can be advantageous by making the focal positioning 

less critical. The same effect may cause the LADA signal to be generated over an extended depth 

in the DUT, resulting in a skew in the shape of the 2pLADA image, however the exact cause of 

the observed distortion is currently unclear. As expected, circular polarisation resolves the gap 

between the transistors less well than with optimised linear polarisation but with a performance 

similar to non-optimised linear polarisation [75]. 

 

Fig. 4.17. Top row: 2pLADA images of pMOS and nMOS transistors obtained using 600 averages 

and the linear / circular / radial polarisation states indicated in red. The rectangles show the pMOS 

and nMOS transistors overlay from the CAD image. Bottom row: corresponding absolute line-

cut profiles of the active sites. The red shading depicts the transistor footprints from CAD and the 

green dashed lines show the region used for the localisation resolution calculation (see text). The 

overlap integrals between the CAD layout and the 2pLADA images were normalised to the 

highest overlap value and were (left to right) 0.82±0.11, 0.91±0.12, 0.86±0.11 and 1.0±0.13. 

 



129 

The transition of the 2pLADA signal across the gap between pMOS and nMOS transistors 

(indicated by the green dashed lines in Fig. 4.17) was used as the basis for making a quantitative 

estimate of the localisation resolution in each case by fitting a Gaussian error function, as shown 

in Fig. 4.18. The fitting error resulted in the 10 %, which is lower than that of signal to noise ratio. 

The line-cuts in the 2pLADA signal (Fig. 4.18) reveal that the gap between the transistors is best 

resolved for electric field polarisations parallel to the gap, as expected from theory [9] and 

previous TOBIC experiments [8]. This polarisation leads to a resolution of 99 ± 13 nm, which is 

decreased by 46% to 144 ± 19 nm when using the orthogonal linear polarisation. Imaging using 

radially polarised light produced a resolution value of 120 ± 16 nm, the next best resolution value 

after that obtained using optimised linear polarisation. This poorer RP resolution may be due to 

the measurement error and due to the purity of the RP state being less than 100%. The measured 

value was 94% and Yurt et al [76] have observed this can be a source of artefacts when using RP 

illumination. When circular polarisation was used the resolution remained of the same quality 

133 ± 17 nm within a small error. 

In summary, while the best localisation resolution was obtained using linearly polarised and RP 

illumination, circular polarisation benefits from a symmetrical focal spot and is free of the 

artefacts which are apparent when imaging using radial polarisation. 

 

Figure 4.18. Line-cuts of the 2pLADA images of the active area for different polarisation states, 

recorded between the green dashed lines depicted in Fig.4.17 and fitted with a Gauss error 

function fit. 
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The carrier injection responsible for 2pLADA occurs due to two-photon absorption, an effect 

whose strength depends on the intensity of the laser pulses. Consequently, a strong sensitivity to 

focal position is expected because of the associated change in the area of the focused beam in the 

device. 

The focal sensitivity was investigated by changing the relative position between the backing 

objective and the integrated SIL. As Fig. 4.19 illustrates, the 2pLADA localisation resolution 

displayed a clear minimum over a region of around 3 µm, corresponding to a change in the focal 

position inside the device of around 250 nm. These data provided a means of ensuring that the 

focal position had been repositioned consistently in the DUT as these localisation resolution 

measurements were repeated using different polarisation states. Also the recorded focal 

dependence of the 2pLADA resolution over the focal position has a similar form to that expected 

from TPA microscopy. This is an important result, which supports 2pLADA nonlinearity, in 

contrast to Erington et al [77] who reported that the LADA fail rate using 1300 nm CW laser 

showed a linear relationship while the same 28 nm node DUT was under investigation. This linear 

behaviour was explained and shown to happen due to heating of the device. Free carrier 

absorption (FCA) is responsible for this effect, which takes place in the heavily doped source and 

drain regions [78]. 

 

Figure 4.19. Example of the focal influence on the 2pLADA lateral resolution, obtained using 

parallel linear polarisation.  

6.5.2 Time-resolved imaging using 2pLADA 

The other novel aspect of 2pLADA is its sensitivity to the relative timing between the laser pulses 

and the clock signal within the DUT, an important feature which uniquely provides detailed 

temporal information about the switching of individual transistors. It was therefore essential to 

synchronise the laser pulse arrival with the transistor switching event occurring at the 2pLADA 

site. This was investigated by recording a number of 2pLADA images as the delay was adjusted, 

then extracting corresponding localisation resolution values from these images. As can be seen 
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from Fig. 4.20, delay adjustments of < 10 ps led to a noticeable degradation of the localisation 

resolution from its minimum value. This is expected as the best localisation is obtained when an 

arriving laser pulse affects a transistor, which is turned on by the electrical signal, thus leading to 

the higher probability to perturb pass/fail rate. 

 

Figure 4.20. Example of the delay dependence of the 2pLADA lateral resolution, obtained using 

parallel linear polarisation.  

6.5.3 Observations of single-event upsets 

In this section observations of SEUs induced by TPA are presented. Fig. 4.21 shows SEU 

signatures using a SIL microscope objective. There is a 2pLADA site, which is surrounded by 

the cluster of intense white failing sites. It was necessary to determine how the fail rate of the test, 

pixel dwell time or delay time affected the appearance of the SEUs. However, all tests were 

negative and were found that these conditions do not have any impact on SEUs. This means that 

SEUs are not related with a race condition like 2pLADA but instead predefined flip-flops, which 

obtain the wrong logical value under the illumination of intense laser field. 

 

Figure 4.21. 2pLADA site (black passing signature) surrounded by SEUs (failing white dots). 
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It was noticed during experiment that SEUs unlike 2pLADA sites, changed their width while 

performing the z-scan. To investigate their behaviour z-scans were done for linear, radial and 

circular polarisations (Fig. 4.22). It can be seen that when the incident beam arrives at the device 

layer first there are no SEUs but their intensity grows exponentially. However, as the beam is 

passing the device layer the intensity of SEUs decrease much slower. This effect may appear due 

to the defocused beam interaction with the layer of SEUs. As can be seen from Fig. 4.22, when 

SEUs are affected by the RP beam they change their intensity much more slowly, because of the 

extended longitudinal component of the RP beam. It is also important that these trends show 

nonlinear behaviour, which is expected from the TPA.  

 

Figure 4.22. SEU intensity (width) against the focal position inside the DUT. Red line depicts the 

RP beam, blue – circular polarisation and black – linear polarisation.  

6.6 Conclusions 

The results presented here represent the first detailed assessment of the role of laser polarisation 

in 2pLADA imaging. Linear polarisation showed a clear advantage for analysing advanced ICs 

as long as the preferred polarisation direction could be identified, which in fact can easily be 

established if the polarisation is readily rotatable, e.g. using a HWP. The linear and radial 

polarisations provided the best lateral localisation resolutions compared to the circular 

polarisation. In principle, radially polarised light should have the advantage of producing a PSF 

with circular symmetry, in contrast to the approximately elliptical shape generated in linear 

polarisation case. However, our results using radial polarisation indicated a distortion of the 

2pLADA signature, which appears to be a measurement artefact which is not observed in 

2pLADA images recorded with the other polarisation states. This effect may result from the 

strong longitudinal electric field component of the radially polarised beam interacting with deeper 

features in the DUT, however more measurements are needed to understand the origin of this 

behaviour. In less advanced process technologies circular polarisation may be useful due to its 

symmetric performance and absence of artefacts, even though it provides poorer localisation 
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resolution. Nevertheless, radial polarisation still promises even better resolution as it is more 

amenable than other polarisations when incorporating apodization which would then outperform 

linear polarisation under conditions of NA higher than the value of 2.45 used in this work. 
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 Spatio-temporal aberrations in sub-surface solid-

immersion microscopy 

7.1 Introduction 

Many applications require femtosecond pulses to illuminate the sample with the highest possible 

light intensity. In order to achieve this, tight focusing is necessary while ensuring the pulse 

remains undistorted in both space and time, so that it has a transform limited time duration and a 

diffraction limited focused spot size. [1-4] Modern microscope objective lenses are normally well 

corrected for all spatial aberrations, however in some implementations aberrations arise elsewhere 

in the imaging system which were not anticipated in the original lens design. [5] In a nonlinear 

microscope, uncorrected spatial aberrations not only degrade the lateral and axial resolution of 

the system, but also couple into the time domain to stretch the pulses beyond their minimum 

transform-limited durations [6]. In particular, two common spatial aberrations significantly affect 

the pulse durations: chromatic aberration remaps the arrival times at the focal plane of the different 

colours in the pulse, while spherical aberration leads to another remapping based on the radial 

position of components of the pulse [7].  

 

Figure 5.1. Spatio-temporal dynamics of the beam after an ideal lens [8]. 

The spatiotemporal profile of the beam without aberrations or material dispersion is presented in 

Fig. 5.1. It shows the beam propagation in the vicinity of the focal spot at different distances from 

the focus. Here the colour represents the centre frequency of the pulse, which is constant both in 

space and time because no distortions are present. The white dots show the wavefront dynamics 

of the propagating beam [8]. When no distortions are present the laser beam is focused at the 

geometric focus and the spatiotemporal profile is symmetric [9].  
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Figure 5.2. The beam focusing with a lens under chromatic aberrations [8]. 

Figure 5.2 shows a simulation of the focus of a lens with chromatic and spherical aberrations. The 

figure illustrates that the pulse can exhibit a very complex spatiotemporal shape when common 

lens aberrations are present. Due to chromatic aberration the pulse's colour splits in 𝑥, 𝑡 and 𝑧 for 

a beam propagating along the z-axis, which leads to a narrower local bandwidth [8]. The narrower 

bandwidth means a longer pulse duration. Also due to the aberrations, the spot size is far from 

being diffraction limited, as would be needed for most applications. Even in optical systems with 

perfect dispersion compensation, chromatic aberrations can lead to severe pulse distortion [1]. 

In this chapter, a technique to identify and to potentially address the problem of aberrations in 

sub-surface microscopy is presented. As has been previously described, nonlinear microscopy 

has been applied to sub-surface imaging of CMOS ICs using the TOBIC technique [10-12]. Since 

optically-based fault localisation normally proceeds by backside imaging through the silicon 

substrate of the IC and into the device layer of the chip, SIL microscopy is an important 

technique [13]. However, SIL microscopy in a high refractive index medium like silicon 

(n = 3.48) requires the dimensions of the SIL to be precisely fabricated for a given substrate 

thickness (typically around 100 µm), otherwise even for 10 nm discrepancies spherical 

aberrations will be encountered [14]. The type of SIL used (i.e. central or aplanatic) determines 

the severity of tolerancing errors in the SIL design or non-uniformity in the substrate 

thickness [15]. It is commonly observed that the aplanatic design, while generally providing 

superior resolving power to the central SIL, is substantially (around 10x) more sensitive to 

fabrication errors than the central SIL [16], meaning that uncorrected aberrations may remain in 

a system which was otherwise correctly designed. It is in this context that techniques to identify 

and even mitigate aberrations in the system are important. 
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7.2 Theory of aberrations 

In this section an overview of aberration theory will be given. Presenting first the geometrically 

derived Seidel Aberrations and then moving to the Zernike Polynomials. 

7.2.1 Seidel aberrations 

The wavefront of the beam propagating through a real lens can have a complex form, since there 

are generally errors introduced in the lens design, manufacturing or assembly processes. Each 

point of the object has a quasi-spherical wavefront converging from the exit pupil (𝑥, 𝑦) toward 

the paraxial image point (𝑥0, 𝑦0) (Fig. 5.3). Therefore, the wavefront can be expanded as a power 

series [16]: 

𝑊(𝑥, 𝑦, 𝑥0) ≅ 𝑊(𝑥2 + 𝑦2 , 𝑥𝑥0 , 𝑥0
2) = 𝑎1(𝑥

2 + 𝑦2) +

+𝑎2𝑥𝑥0 + 𝑎3𝑥0
2 + 𝑏1(𝑥

2 + 𝑦2)2 +

+𝑏2𝑥𝑥0(𝑥
2 + 𝑦2) + 𝑏3𝑥

2𝑥0
2 + 𝑏4𝑥0

2(𝑥2 + 𝑦2) + 𝑏5𝑥𝑥0
3 + 𝑏6𝑥0

4 . (5.1)

 

The first term of Eq. (5.1) represents defocus, a longitudinal shift of the centre, while the second 

term is a transverse shift - tilt. The third term leads to a phase shift, which is constant across the 

exit pupil. This term does not affect the wavefront and therefore, does not affect the image. For 

monochromatic light, these three terms typically have coefficients equal to zero. However, they 

are non-zero for broadband light and cause the chromatic aberrations, which are explained in 

Section 5.2.5 [17-18]. 

 

Figure 5.3. Coordinate frame for a wavefront converging from the exit pupil coordinates toward 

the image plane (adapted from [16]). 
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The last six terms with coefficients 𝑏𝑛 are of fourth degree when describing wavefront 

aberrations, and are of third degree when describing transverse ray aberrations. Therefore, they 

are known as third-order aberrations. Also, there exist higher order terms of fifth- and seventh-

order aberrations. The third-order aberrations are known as Seidel aberrations, called after the 

variables used by Seidel in his earlier work [19]. 

The Seidel aberrations are expressed in polar coordinates 𝑦 = 𝜌 sin 𝜃 and 𝑥 = 𝜌 cos 𝜃 in the 

pupil plane. The radial coordinate 𝜌 is typically normalised to be equal to 1 at the pupil plane. The 

coordinate 𝑥0 is also normalised to 1 at the maximum field position. Therefore, using polar 

coordinates, the wavefront can be written as follows: 

𝑊(𝑥0, 𝜌, 𝜃) ≅ ∑ 𝑊𝑘𝑙𝑚𝑥0
𝑘 𝜌𝑙 cos𝑚 𝜃

𝑗,𝑚,𝑛

=

𝑊200𝑥0
2 + 𝑊111𝑥0 𝜌 cos 𝜃 + 𝑊020𝜌

2 + 𝑊040 𝜌
4 + 𝑊131𝑥0 𝜌

3 cos 𝜃 +

+𝑊222𝑥0
2 𝜌2 cos2 𝜃 + 𝑊220𝑥0

2 𝜌2 + 𝑊311𝑥0
3 𝜌 cos 𝜃, (5.2)

 

with 𝑘 = 2𝑗 + 𝑚, 𝑙 = 2𝑛 + 𝑚. 

This can be expressed using Seidel coefficients [16]: 

𝑊(𝑥0, 𝜌, 𝜃) =
1

8
𝑆1𝜌

4 +
1

2
𝑆3𝑥0

2 𝜌2 𝑐𝑜𝑠2 𝜃 +
1

4
(𝑆3 + 𝑆3)𝑥0

2 𝜌2 +
1

2
𝑆5𝑥0

3 𝜌 𝑐𝑜𝑠 𝜃. (5.3) 

Spherical aberration 

Spherical aberration can be defined as the change of the focal point with a change of aperture. 

The field variable 𝑥0 does not occur in the spherical aberration description meaning that spherical 

aberration is constant over the field. The rays from an axial object cross the axis in front of or 

behind the focus if the angle is high enough. The point at which the rays propagate through the 

edge of the aperture intersect the axis is called the marginal focus (Fig. 5.4). While the point at 

which the rays propagate through the region near the centre of the aperture (paraxial rays) cross 

the axis is called the paraxial focus [19]. 

The aberration components for transverse ray aberration for the spherical aberration case are: 

휀𝑥 = −
4𝑅𝑊040

ℎ
𝑥(𝑥2 + 𝑦2), (5.4) 

휀𝑦 = −
4𝑅𝑊040

ℎ
𝑦(𝑥2 + 𝑦2), (5.5) 
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where ℎ is the pupil radius and R is the radius of curvature of the spherical wavefront. As the 

aberration is symmetrical about the optical axis, the transverse aberration due to third-order 

spherical aberration can be written as [16]: 

휀𝑥 = 휀𝑦 = −
4𝑅𝑊040

ℎ
𝜌3. (5.6) 

 

Figure 5.4. A simple converging lens with spherical aberration. The rays further from the axis are 

brought to a focus nearer the lens (adapted from [16]). 

Since the focal point is shifted it results in a PSF, which is elongated in the axial direction. 

Therefore, as the observation plane is shifted by distance 휀𝑧 the wavefront aberration can be 

expressed as follows [16]: 

∆𝑊 = 𝑊040𝜌
4 +

휀𝑧ℎ
2

2𝑅2
𝜌2, (5.7) 

where 휀𝑧 is positive if the shift is away from lens (+𝑧 direction). The effect of the focal shift on 

the size of the image equivalent to adding a linear term for the transverse aberration [15]: 

휀𝑥 = 휀𝑦 = −
4𝑅𝑊040

ℎ
𝜌3 −

휀𝑧ℎ

𝑅
𝜌. (5.8) 

Since the image plane is shifted, there is a position for which the elongation is a minimum, which 

is called the circle of least confusion. The circle of confusion is a patch of the focused light caused 

by imperfect focusing conditions. Fig. 5.4 shows that this corresponds to the position where the 

ray from the pupil crosses the caustic [19]. The circle of least confusion is positioned three-

quarters of the distance from the paraxial focus to the marginal focus, and therefore, it has the 

radius of one-quarter the radius of the image at the paraxial focus 𝑅𝑊040 ℎ⁄  and as a result the 

wavefront aberration is [16]: 
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∆𝑊 = 𝑊040(𝜌
4 − 1.5𝜌2). (5.9) 

The PSF of a circular aperture was introduced in Chapter 3 with the Eq. (3.12). For the spherical 

aberration case it can be modulated by [16]: 

𝜗(𝜌) = exp [i
2𝜋

𝜆
𝑊040𝜌

4] , (5.10) 

with defocus it becomes 

𝜗(𝜌) = exp [i
2𝜋

𝜆
(𝑊040𝜌

4 + 𝑊020𝜌
2)] . (5.11) 

Figures 5.5 and 5.6 compare diffraction patters with and without spherical aberration. 

 
Figure 5.5. Diffraction pattern of a circular pupil with no spherical aberration present. 

 
Figure 5.6. Diffraction pattern of a circular pupil with spherical aberration. 
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Coma 

Coma is defined as the variation in the image magnification along the aperture. This aberration 

creates comet like images when the rays passing through the centre of a lens are imaged at a 

different height than those passing through the edges. [19]. Coma typically occurs only for a 

beam, which is not on the optical axis and aberration increases with angle and distance from the 

optical axis. The transverse aberration components for this case are [16]: 

휀𝑦 = −
2𝑅𝑊131

ℎ
𝑥0𝑥𝑦 = −

𝑅𝑊131

ℎ
𝑥0𝜌

2 𝑠𝑖𝑛 2𝜃 , (5.12) 

휀𝑥 = −
𝑅𝑊131

ℎ
𝑥0(3𝑥

2 + 𝑦2) = −
𝑅𝑊131

ℎ
𝑥0𝜌

2(2 + 𝑐𝑜𝑠 2𝜃). (5.13) 

Coma cannot be fixed by shifting the focal position. However, it can be shifted in the lateral 

direction to decreases the coma effect on the wavefront. 

Sometimes coma aberration may appear for a beam, which is propagating on axis, which can be 

a result of the optical system misalignment with tilted and decentred components [16]. 

Fig. 5.7 shows how the position at which rays appear on a coma patch depends on the location at 

which the ray propagates through the lens [19]. 

 

Figure 5.7. The relationship between the position of a ray in the lens aperture and its position in 

the coma patch. The diameters of the circles in the image are proportional to the square of the 

diameters in the aperture (adapted from [16]). 

Astigmatism 

In order to describe astigmatism, it is useful to introduce the descriptions of tangential and sagittal 

rays. A plane containing the optical axis is known as the tangential plane. Therefore, rays that lie 

in this plane are called tangential rays. The tangential ray passing through the centre of the 

entrance pupil is called the principal ray (Fig. 5.8). The sagittal plane contains the principal ray 

and is perpendicular to the tangential plane. Rays that do not lie in either the tangential or sagittal 

planes are called skew rays [19]. 

a a' a' a 

b 

b' 
b' 

b 

Lens aperture Coma patch 

     60 
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In the case of astigmatism, wavefront aberration does not occur in the sagittal plane, however in 

the tangential plane the wavefront experiences the additional curvature since the aberration 

depends quadratically on 𝑥. The curvature in the 𝑥 section increases with the square of the field 

angle. Astigmatism appears when during the fabrication of the lens its optical surface is made 

slightly cylindrical, instead of perfectly spherical. As a result, the wavefront propagating through 

the surface has a different radius of curvature in two perpendicular directions [16]. 

 

Figure 5.8. Visualisation of astigmatism, depicting the tangential and sagittal foci (adapted 

from [16]). 

For astigmatism, the components of transverse aberration are 

휀𝑦 = 0, (5.14) 

휀𝑥 = −
2𝑅𝑊222

ℎ
𝑥0

2𝑥 = −
2𝑅𝑊222

ℎ
𝑥0

2𝜌 𝑐𝑜𝑠 𝜃 . (5.15) 

Therefore, the image is stretched to 4𝑅𝑊222𝑥0
2 ℎ⁄  at the meridional plane. This aberration can 

be mitigated by a focal shift, which improves the image. Along with a wavefront aberration the 

transverse aberration becomes [16]: 

∆𝑊 = 𝑊222𝑥0
2𝑥2 +

휀𝑧ℎ
2

(2𝑅2)(𝑥2 + 𝑦2)
. (5.16) 

The focal shift can be designed to be 

휀𝑧

𝑅
=

2𝑅𝑊222𝑥0
2

ℎ2
. (5.17) 

For this case a stretched image is formed at the sagittal plane, which leads to the result that all rays 

pass through two orthogonal lines (Fig. 5.8). The vertical line (the sagittal astigmatic focal line) 
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is the focus for rays from the y section and the horizontal line (tangential focal line) is the focus 

for rays from the x section.  

The best image is generally observed at the half distance between the astigmatic foci. At this focal 

position the smallest PSF is formed and therefore it is called the circle of least confusion [19].  

Field curvature 

The fourth Seidel aberration depends on a pupil diameter as a focal shift does, however it depends 

on the square of the field magnitude. If there are no other aberrations, true images are formed on 

a curved image surface, called the Petzval surface with a curvature of 4𝑅2(𝑊220/ℎ
2) (Fig. 5.9). 

This gives the aberration the name of “field curvature”. Astigmatism and field curvature always 

appear together since they both depend on the squared magnitude of the field [16, 19]. 

If astigmatism does not occur, the sagittal and tangential image surfaces coincide and are formed 

on the Petzval surface. However, when astigmatism is present, the tangential image surface is 

three times further from Petzval surface as the sagittal image surface is, and both are on the same 

side of the Petzval surface (Fig. 5.9) [16].  

 

Figure 5.9. Field curvature (adapted from [16]). 

Distortion 

The last Seidel aberration is distortion, which shifts the image’s position by a distance [16]: 

휀𝑥 = −
𝑅𝑊311

ℎ
𝑥0

3. (5.18) 

Cube of the image coordinate leads to the distortion of the image. This leads to the effect that the 

image of any straight line is curved with the increase of curvature depending on the radial 

distance. The effect can be visualised with a square placed symmetrically with respect to the 
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optical axis and by shifting each point radially an amount proportional to the cube of its distance 

from the centre (Fig. 5.10) [16]. 

 

Figure 5.10. Distortion aberration (adapted from [16]). 

7.2.2 Zernike polynomials 

It is usually convenient to express wavefront data in polynomial form. Zernike polynomials are 

often used for this approach since they contain terms, which have the similar form to the observed 

aberrations [16]. However, Zernike polynomials are not always the best polynomials used for 

fitting data. For example, these polynomials have little value when taking into account air 

turbulence. As a result, in the experimental results additional terms must be added to Zernike 

polynomials to accurately represent alignment errors [20, 21].  

Zernike polynomials are of high interest for a few reasons. First, they are one of an infinite number 

of complete sets of polynomials in two real variables, 𝜌 and 𝜃′ that are orthogonal in a continuous 

trend over the interior of a unit circle [16].  

Next Zernike polynomials have three properties that distinguish them from other sets of 

orthogonal polynomials. First, they have rotational symmetry, which leads to a polynomial 

product of the form  

𝑅(𝜌)𝐺(𝜃′), (5.19) 

where 𝐺(𝜃′) is a set of trigonometric functions repeating every 2π radians: 

𝐺(𝜃′) = 𝑒±𝑖𝑚𝜃′
, (5.20) 

where 𝑚 is any positive integer or zero. 

Also it fulfils the requirement that even when the coordinate system is rotated by an angle α the 

polynomial always keep the same form [16]: 

𝐺(𝜃′ + 𝛼) = 𝐺(𝜃′)𝐺(𝛼). (5.21) 

The second characteristic of Zernike polynomials is that the function must be a polynomial in 𝜌 

of degree 𝑛 and contain the power of no less than 𝑚. 
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The third property is that 𝑅(𝜌) depends on 𝑚 and is even if 𝑚 is even or odd if 𝑚 is odd. 

The radial polynomials can be obtained from Jacobi polynomials 𝑅𝑛
𝑚(𝜌). Thus having 

properties of [16]: 

∫ 𝑅𝑛
𝑚(𝜌)𝑅𝑛′

𝑚(𝜌)𝜌𝑑𝜌
1

0

=
1

2(𝑛 + 1)
𝛿𝑛𝑛′ , (5.22) 

𝑅𝑛
𝑚(1) = 1. (5.23) 

The radial polynomial can be expressed via: 

𝑅2𝑛−𝑚
𝑚 (𝜌) = 𝑄𝑛

𝑚(𝜌)𝜌𝑚, (5.24) 

𝑄𝑛
𝑚(𝜌) can be written generally as 

𝑄𝑛
𝑚(𝜌) = ∑(−1)𝑠

(2𝑛 − 𝑚 − 𝑠)!

𝑠! (𝑛 − 𝑠)! (𝑛 − 𝑚 − 𝑠)!
𝜌2(𝑛−𝑚−𝑠)

𝑛−𝑚

𝑠=0

. (5.25) 

Typically, the radial polynomials are combined with sines and cosines, which give the final 

Zernike polynomial series for the wavefront [16]: 

𝑊 = ∆𝑊̅̅ ̅̅ ̅ + ∑ [𝐴𝑛𝑄𝑛
0(𝜌) + ∑ 𝑄𝑛

𝑚(𝜌)𝜌𝑚(𝐵𝑛𝑚 𝑐𝑜𝑠 𝑚𝜃′ + 𝐶𝑛𝑚 𝑠𝑖𝑛 𝑚𝜃′) 

𝑛

𝑚=1

]

∞

𝑛=1

, (5.26) 

where ∆𝑊̅̅ ̅̅ ̅ is the mean wavefront, and 𝐴𝑛, 𝐵𝑛𝑚, and 𝐶𝑛𝑚 are individual polynomial coefficients, 

𝑛 is the radial order and 𝑚 is the meridional frequency. 

For a symmetrical optical system, the wave aberrations are symmetrical around tangential plane 

and as a result only even functions of 𝜃′ are allowed [16]. 

The first 9 Zernike shapes are shown in Fig. 5.11. The root-mean-square (RMS) wavefront 

aberration indicates the quality of the optical system. The value of the Zernike coefficient is the 

RMS wavefront of that aberration type. According to the Marechal criterion, a diffraction-limited 

imaging system requires a RMS wavefront error less than 𝜆/14 [22]. The Marechal criterion 

states that an optical system is considered to be well corrected for aberrations if the normalised 

intensity at focus is greater than or equal to 0.8, which relates to an RMS wavefront error [16]. As 

a result, for the case of imaging through silicon, the system residual RMS error should be less 

than 110 nm using 1550 nm illumination. 
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Figure 5.11. First 9 Zernike shapes on a unit circle, arranged vertically by radial order and horizontally 

by meridional degree. Colours represent normalised deflection of the shape with blue [16]. 

 

n M No. Polynomial Aberration 

0 0 1 1 Piston 

1 -1 2 Psinθ Tip 

1 1 2 Pcosθ Tilt 

2 -24 √6 p2sin20 Astigmatism, axis ±45ᴑ 

2 0 3 2p2-1 Defocus 

2 2 √6 p2cos20 Astigmatism, axis 0ᴑ and 90ᴑ 

3 -3 2√2 p3sin30 Trefoil 

3 -1 2√2 (3p3-2p) sin20 Vertical coma 

3 1 2√2 (3p3-2p) cos20 Horizontal coma 

3 3 2√2 p3cos30 Trefoil 

4 -4 √10 p4sin40 Quadrafoil 

4 -2 √10 (4p3-3p2) sin20 2nd order astigmatism 

4 0 √5 6p4-6p2+1 3rd order spherical 

4 2 √10 (4p4-3p2) cos20 2nd order astigmatism 

4 4 √10 p4cos40 Quadrafoil 

Table 5.1. Zernike radial polynomials [16]. 
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7.2.3 Relationship between Zernike polynomials and third-order aberrations 

First-order wavefront properties and third-order wavefront aberration coefficients can bem 

obtained from the first nine Zernike polynomials coefficients [16]: 

𝑊(𝜌, 𝜃′) = 𝑍0 + 𝑍1𝜌 𝑐𝑜𝑠 𝜃′ + 𝑍2𝜌 𝑠𝑖𝑛 𝜃′ + 𝑍3(2𝜌
2 − 1) +

+𝑍4𝜌
2 𝑐𝑜𝑠 2𝜃′ + 𝑍5𝜌

2 𝑠𝑖𝑛 2𝜃′ + 𝑍6(3𝜌2 − 2)𝜌 𝑐𝑜𝑠 𝜃′ +

+𝑍7(3𝜌
2 − 2)𝜌 𝑠𝑖𝑛 𝜃′ + 𝑍8(6𝜌

4 − 6𝜌2 + 1). (5.27)

 

The aberrations and properties corresponding to these Zernike terms are shown in Table 1. The 

wavefront can be expanded via the field-independent wavefront aberration coefficients [16]: 

𝑊(𝜌, 𝜃) = 𝑊11𝜌 𝑐𝑜𝑠 𝜃 + 𝑊20𝜌
2 + 𝑊40𝜌

4 + 𝑊31𝜌
3 𝑐𝑜𝑠 𝜃 + 𝑊22𝜌

2 𝑐𝑜𝑠2 𝜃 . (5.28) 

These terms do not depend on the field, therefore, they are not exact Seidel aberrations. 

Interferometer for the wavefront measurement can only produce data of a single field point. This 

makes field curvature to appear as focus, and distortion to appear as tilt [19]. Therefore, a number 

of field points must be measured to determine the Seidel aberrations. The first- and third-order 

field-independent wavefront aberration terms are acquired from Zernike polynomials [16]: 

𝑊(𝜌, 𝜃′) = 𝑍0 − 𝑍3 + 𝑍8                               Piston 

+𝜌√(𝑍1 − 2𝑍6)
2 + (𝑍2 − 2𝑍7)

2                                              

×𝑐𝑜𝑠 [𝜃′ − 𝑡𝑎𝑛−1 (
𝑍2 − 2𝑍7

𝑍1 − 2𝑍6
)]  +                      Tilt             

+𝜌2 (2𝑍3 − 6𝑍8 ± √𝑍4
2 + 𝑍5

2) ±                       Focus          

±2𝜌2 √𝑍4
2 + 𝑍5

2𝑐𝑜𝑠2 [𝜃′ −
1

2
𝑡𝑎𝑛−1 (

𝑍5

𝑍4
)]             Astigmatism 

+2𝜌3 √𝑍6
2 + 𝑍7

2𝑐𝑜𝑠2 [𝜃′ − 𝑡𝑎𝑛−1 (
𝑍7

𝑍6
)]                Coma              

               +6𝜌4𝑍8 .                                                    Spherical (5.29) 
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7.2.4 Strehl ratio 

The maximum intensity for the case without the presence of aberration is formed at the lens focal 

point, which is called the diffraction focus. For small aberrations the diffraction focus can be 

obtained by modifying the wavefront with proper amount of tilt and defocus to acquire the 

minimum wavefront change [22]. 

The ratio of the intensity at the focal point in the presence of aberrations, divided by the intensity 

for no present aberration, is called the Strehl ratio (SR), which is given by [16]: 

SR =
1

𝜋2
|∫ ∫ 𝑒𝑖2𝜋∆𝑊(𝜌,𝜃)𝜌𝑑𝜌𝑑𝜃

1

0

2𝜋

0

|

2

, (5.30) 

where ∆𝑊 in units of waves is the wavefront aberration relative to the reference sphere for 

diffraction focus. The Eq. (5.30) may be expanded in series [16]: 

SR =
1

𝜋2
|∫ ∫ [1 + 𝑖2𝜋∆𝑊 +

1

2
(𝑖2𝜋∆𝑊)2 + ⋯]𝜌𝑑𝜌𝑑𝜃

1

0

2𝜋

0

|

2

. (5.31) 

If the aberrations are very small, the third-order and higher-order powers of terms 2𝜋∆𝑊 can be 

neglected. This simplifies SR expression to the form of [16]: 

SR ≈ 1 − (2𝜋𝜎)2, (5.32) 

𝜎 = ∆𝑊2̅̅ ̅̅ ̅̅ − (∆𝑊̅̅ ̅̅ ̅)2, (5.33) 

where 𝜎 is in units of wavelenghts. Therefore, when the aberrations are small, the SR is smaller 

than the ideal value by an amount proportional to the wavefront deformation. 

Eq. (532) is suitable for SRs as low as about 0.5. A more accurate approximation for most types 

of aberration is [16]:. 

SR ≈ 𝑒−(2𝜋𝜎)2 ≈ 1 − (2𝜋𝜎)2 +
(2𝜋𝜎)4

2!
+ ⋯ , (5.34) 

which is suitable for SRs as small as 0.1.  

7.2.5 Chromatic aberrations 

As stated before, the index of refraction depends on the wavelength of light, so focusing properties 

of optical systems and elements also a function on a wavelength. Chromatic aberration occurs for 

two cases: 1. paraxial image-forming property variation with wavelength and 2. aberration 

dependence on wavelength [16].  
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Figure 5.12. Longitudinal chromatic aberration (adapted from [16]). 

Typically, the first type of chromatic aberration significantly affects the system and is dominant 

over the second type chromatic aberration. The Gaussian optics properties of any optical system 

depend only on the position of principal planes and focal planes. Chromatic aberrations appear 

when the location of any of the planes is wavelength-dependent [19]. 

 
Figure 5.13. Lateral chromatic aberration (adapted from [16]). 

Longitudinal chromatic aberration is the change of focal point with wavelength. The refractive 

index is higher for shorter wavelengths than it is for long wavelengths. Therefore, shorter 

wavelengths experience stronger refraction at each surface of a lens (Fig. 5.12) [19]. As a result, 

shorter wavelength rays are focused closer to the lens than the longer wavelength rays. This 

distance along the optical axis between the produced focal points is known as the axial or 

longitudinal chromatic aberration. As a result, the focal point has a yellowish dot (formed by the 

orange, yellow, and green rays) and a purplish halo (formed by the red and blue rays). Therefore, 

if the screen is moved toward the lens, the central dot turns to blue; if it is moved away, the central 

dot changes to red.  
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Also, an optical system can produce images of varying dimensions depending on wavelength or 

form a rainbow for the off-axis image. The difference in the dimensions depending on colour is 

known as lateral chromatic aberration (Fig. 5.13) [16]. 

7.2.6 Aberrations of a simple lens 

In many optical systems the main cause of the aberrations is a simple thin lens. The third-order 

aberrations for a thin lens can be calculated using the previously introduced equations [19]. 

Therefore, the third-order spherical aberration introduced by a thin lens can be written as: [16]: 

𝑊𝑠𝑝ℎ =
ℎ4𝛷3

32𝑛0
{(

𝑛

𝑛 − 1
)
2

+
(𝑛 + 2)

𝑛(𝑛 − 1)2
+ [𝐵 +

2(𝑛2 − 1)

𝑛 + 2
𝐶]

2

−
𝑛

𝑛 + 2
𝐶2} , (5.35) 

where ℎ is diameter of the pupil, 𝑛0 is refractive index of surrounding environment, 𝑛 is refractive 

index of lens, 𝛷 is power, 𝐶1 and 𝐶2 are curvatures of lens surfaces, 𝐵 is the shape factor 

𝐵 =  (𝐶1 + 𝐶2)/(𝐶1 − 𝐶2), 𝐶 is the conjugate variable 𝐶 = (𝑈1 + 𝑈2
′)/(𝑈1 − 𝑈2

′), and 𝑈1 

and 𝑈′2 are defined in Fig. 5.14 [16]. 

 

Figure 5.14. Angles for incident and refracted ray for the thin lens case (adapted from [16]). 

The shape factor 𝐵 is zero for a lens, which has both surfaces of the same curvature (equi-convex). 

It also is 1 for a plano-convex lens, when the rays are incident on the convex surface, and is equal 

to -1 when the rays are incident on the plano-surface. For equal conjugates, the conjugate variable 

𝐶 is zero. If the object is at the focus 𝐶 = 1, and if the object is at infinity 𝐶 = −1 [16]. 

If the medium surrounding the lens is air (𝑛 = 1), and the lens is made from glass (𝑛 = 1.5) and 

𝐶 = ±1 the minimum spherical aberration [16]: 

𝑊𝑠𝑝ℎ𝑚𝑖𝑛
= 0.264 ℎ 𝑁𝐴3. (5.36) 

The minimum coma for a thin lens in air is 
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𝑊𝑐𝑜𝑚𝑎 =
ℎ 𝑁𝐴2�̅�

4
(

1

𝑛 + 2
) . (5.37). 

The expression for a thin lens astigmatism in air can be written as 

𝑊𝑎𝑠𝑡𝑖𝑔 =
1

2
(ℎ 𝑁𝐴 �̅�2). (5.38) 

7.2.7 Aberrations in solid immersion lens microscopy 

For SIL microscopy there are several sources for possible aberrations: substrate thickness error, 

SIL fabrication error, off-axis aberration from beam scanning and index mismatch from different 

materials [23]. Due to the high NA, any mismatch between the SIL imaging depth and the sample 

thickness generates significant spherical aberration. In the case of a hSIL (central SIL), the 

tolerance to mismatch is relatively high, whereas for the aplanatic configuration the tolerance to 

mismatch is relatively low. The SIL tolerance to thickness mismatch is depicted in Fig. 5.15 for 

both types of SIL configuration by comparing the SRs.  

 

Figure 5.15. Comparison of SRs between hSIL (red) and aSIL (blue) to sample thickness error 

tolerance (adapted from [15]). 

As it was mentioned before a SR of 0.8 or higher is considered to be of a well aligned and 

compensated optical system [22]. If the SILs are designed to work at the 100 µm depth sample 

with similar, the hSIL can tolerate up to 50 µm of sample thickness error, while the aSIL's 

(aplanatic SIL) tolerance to thickness mismatch is only about 5 µm. Due to both SIL and sample 

thickness tolerance in fabrication and polishing, it is difficult to obtain a perfect thickness match 
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to locate the object in the aplanatic plane. A thickness mismatched sample mainly introduces 

spherical aberration that lowers the peak intensity and adds side-lobes to the focal spot, 

consequently reducing the measured signal intensity and imaging quality [24, 25]. As can be seen 

from Fig. 5.15 for the aSIL the tolerance of thickness mismatch is better when the substrate is too 

thin than when it is too thick. Therefore, it is a good strategy, when preparing the sample, to keep 

polishing down the substrate if there is any doubt that substrate is of the correct thickness. 

7.3 Experimental investigation of spatio-temporal aberrations 

In sub-surface TOBIC microscopy the spatial aberrations described in Section 5.2 also affect the 

pulse duration and peak power, both parameters which can be revealed by using the photocurrent 

induced in the integrated circuit to measure the autocorrelation profile of the pulses. In this section 

it is shown that in a nonlinear microscopy system the effects of chromatic and spherical 

aberrations are revealed by a difference in the focal positions corresponding to the shortest pulse 

duration and the minimum lateral resolution. Interpreting experimental results from a high-

numerical-aperture two-photon microscope using spatio temporal model it that the two-photon 

autocorrelation of the pulses at the focal plane can be used to minimise both the chromatic and 

spherical aberrations of the system. Based on these results, a possible optimisation strategy is 

proposed whereby the objective lens is first adjusted for minimum autocorrelation duration, then 

the wavefront before the objective is modified to maximise the autocorrelation intensity. 

7.3.1 Pulse measurement at the focus of the SIL microscope 

Illuminated with near-infrared femtosecond pulses, the microscope uses the TOBIC effect to 

produce images, which are maps of the photocurrent generated by the device as the location of 

the focal spot is raster scanned across the chip. The experimental set-up is illustrated in Fig. 5.16. 

A mode-locked Er:fibre operating at 1550 nm wavelength was employed to perform the TOBIC 

microscopy. The laser generated 140 fs pulses with a repetition rate of 68 MHz and an average 

power of 200 mW.  

The TOBIC signal depends quadratically on incident peak intensity [10], so the CMOS device 

itself provides a nonlinear response, which is suitable for pulse-duration estimation by recording 

g2(τ), the interferometric second-order autocorrelation profile [26]. By inferring the 

autocorrelation width at the focal plane it is possible to compensate and manipulate the pulse chirp 

before entering the pupil of the focusing optics. This offers a way of reducing the durations of the 

laser pulses while providing aberration free imaging at the focal plane and maximizing the two-

photon signal. As shown later with measurements of the lateral imaging resolution, the 

autocorrelation durations recorded at out-of-focus planes provide a metric which can be used to 

find optimal focusing by conducting a sequence of rapid autocorrelation measurements. 
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Figure 5.16. TOBIC microscope. Mirror M1 deflected the beam into the Michelson interferometer. 

The beam from the Er:fibre laser was collimated by lens L1 before entering a Michelson 

interferometer in which the pulses were split into two time-delayed replicas which could later be 

recombined in the device to yield the interferometric autocorrelation function. At the output of 

the interferometer the beam was expanded to a diameter of 9.8 mm using a telescope (lenses L2 

and L3) to overfill the 8.4-mm-diameter of the microscope objective (NA 0.42, 20x). An 

adjustable aperture was inserted immediately before the objective lens to allow spherical 

aberration to be diagnosed by performing finite-aperture experiments, in which the NA of the 

imaging system was moderately reduced. To conduct the resolution measurements without 

interference effects, the moving mirror M2 was blocked.  

The nonlinear TOBIC microscope incorporated a silicon hSIL, which takes advantage of the first 

aplanatic point of the sphere [13]. The diameter of the hSIL was chosen to be 4 mm and it was 

cut to a height of 1.73 mm. The design and the basic working principle of the hSIL have been 

described before in Chapters 1 and 2. The inclusion of the silicon SIL in the imaging system 

enhanced the NA of the microscope by a multiple of the refractive index of silicon (3.48) to 

NA 1.46.  

The device used for the experiments was a 350-nm-feature-size CMOS IC., which was 

introduced in the Chapter 3. The laser-generated photocurrent was measured between ground and 

a pin connected to the active region [27]. The device remained unpowered at all times. The sample 

was mounted on a computer controlled motorised 3-axis translation stage (ASI MS-2000), which 

had a (16½ x 23 x 9) cm travel range with a minimum physical step of 10 nm. 
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Fig. 5.17. Characterisation of the of the Er:fibre laser showing (a) the optical spectrum and (b) the 

autocorrelation profile at the output. The FWHM pulse duration was 140 fs, inferred from a Gaussian 

envelope (blue) fitted to the intensity autocorrelation trace (red). 

Before conducting pulse duration measurements using the device itself, the laser operation was 

characterised by measuring its spectral distribution (Fig. 5.17a) and the autocorrelation at the laser 

output (Fig. 5.17b). The two-photon autocorrelation was recorded using a silicon photodiode and 

the spectrum was measured with a real-time laser spectrum analyser. The two-photon 

autocorrelator was extensively discussed in the Chapter 2. The laser was optimised to have the 

shortest pulse durations (corresponding to near-transform-limited pulses) at the device layer 

inside the silicon chip. Therefore, it can be seen in Fig. 5.17b that the pulses measured directly 

after the laser output had a noticeable (and negative) chirp. 

An edge response at the silicon-metal transition of one of the finger structures was used to evaluate 

the lateral spatial resolution of the nonlinear imaging system. The resolution measurement and 

error estimation technique is presented in Chapter 3. The FWHM of the underlying Gaussian 

function gives the resolution limit of the system. Example data are shown in Fig. 5.19a indicating 

a 345 ± 17 nm spatial resolution. 

Resolution measurements were performed as the device was moved through the focal plane of 

the microscope. Two datasets were recorded, one with an unrestricted pupil (Fig. 5.18b, "open 

aperture") and a second with the aperture before the pupil reduced to a diameter of 2 mm 

(Fig. 5.18b, "closed aperture"). The zero position corresponds to where the PSF FWHM was 

smallest (a value of 345 ± 17 nm), and values of z > 0 indicate moving the sample further from 

the objective lens. The presence of spherical aberration causes the PSF FWHM minimum to shift 

when the aperture is closed, and this is observed in the data in Fig. 5.18b. The data also show the 

expected broadening of the PSF FWHM due to the decrease in NA when the aperture is closed. 

In the following section this spatial behaviour is correlated with time-domain measurements 

based on two-photon autocorrelation. 
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Figure 5.18. (a) Data showing a least-squares Gauss-error fit over a line-cut of n-doped silicon finger edge, 

(b) resolution values obtained while changing the laser beam focal position relative to the sample (blue line 

closed aperture, green line open aperture). 

7.3.2 Observation of focal-dependent spatio-temporal effects 

In a two-photon microscope the autocorrelation signal contains two distinct pieces of information. 

As already introduced, the pulse duration estimated from the autocorrelation width provides 

insights into the chromatic and spatial aberrations, but the autocorrelation intensity at zero delay 

is also correlated with the peak intensity at the focus, which is sensitive to both spatial and 

temporal distortions. This analysis is based on two parameters: 1. the pulse duration estimated 

from the TPA fringe-averaged autocorrelation, G2(τ) = < g2(τ) >; and 2. the maximum amplitude 

of G2(τ). The aim of the analysis is to understand how the minimum pulse duration and the 

maximum autocorrelation signal amplitude vary as a function of the defocusing. For the data 

fitting the MATLAB Curve Fitting Toolbox™ was applied in two steps: firstly, by fitting a 

Gaussian envelope to G2(τ), it provided an estimate of the pulse duration at every defocusing 

position; and secondly, by using a polynomial fit to the ensemble of pulse duration measurements, 

it was used to reveal the dependence of pulse duration on defocus, including appropriate 

confidence bounds. The minimum pulse duration and the maximum of the G2(τ) autocorrelation 

amplitude were extracted from the fitting results as a function of the defocusing. In order to 

estimate the intensity autocorrelation, G2(τ), from the fringe resolved interferometric 

autocorrelation traces, g2(τ), a filtering process based on a Fourier Transform methods was 

applied. g2(τ) was Fourier transformed and then a low-pass filter was applied to extract the fringe-

averaged function, G2(τ). The G2(τ) shown in red colour in Figure 5.19, was fitted with a Gaussian 

function, IG(τ), applying the MATLAB Curve Fitting Toolbox™, shown in blue. The FWHM 

pulse durations were estimated assuming Gaussian pulse intensity profiles a deconvolution factor 

of √2. 

a) b) 
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Figure 5.19. Interferometric autocorrelation (g2(τ), black) measured at the focus of the microscope, shown 

with the fringe-averaged autocorrelation (G2(τ), red) and corresponding Gaussian fit (IG(τ), blue). 

The autocorrelation amplitude was defined as the peak value of g2(τ) with respect to the base line 

(Fig. 5.19.). The same filtering and fitting criteria were applied to measure the pulse duration and 

the autocorrelation amplitude as a function of focal position, generating corresponding datasets 

describing the variations of pulse duration and autocorrelation amplitude with defocus. 

A near-infrared (Plan APO Mitutoyo 20X) long working distance microscope objective was used 

in all the experiments to focus the pulsed beam. This objective had a wavelength correction from 

the visible to near-infrared (1800 nm) and was corrected for an infinite conjugate, i.e. a plane 

wavefront incident on the objective.  

The behaviour of three distinct optical systems was analysed as the device was scanned through 

the focal plane. The first system comprised the 20x microscope objective (MO) and the central 

SIL (hSIL) described before, and employed an adjustable aperture ("closed aperture") located in 

front of the objective lens. The next was identical except has no aperture, and the third was simply 

the microscope objective with no SIL and no aperture. 

Objective lens and SIL with a closed aperture 

The results are presented in Fig. 5.20. These calculations and fits were performed collaboratively 

by Dr. M. Rosete-Aguilar and Dr. J. Garduño-Mejía. The relative focal position for z=0 was 

located at the maximum of the Gaussian fitting of the autocorrelation amplitude. Polynomial 

fitting to the pulse durations shown in Fig. 5.20a. indicates that the minimum duration is located 

at z = 90 µm. The solid black circles indicate the experimental data, obtained with the procedures 

described previously and the black line is a second-order polynomial fit using a least squares fit. 

The blue dashed lines indicate the prediction bounds of the lower and upper values of the 

associated interval, defined by the uncertainty around the predicted fit. The level of certainty for 

the calculations is 90%. The data points outside the prediction bounds (red stars) were excluded 

from the fitting process, for instance the point at around z = -90 µm in Fig. 5.20a. 
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Figure 5.21. Effects of defocusing for a system comprising an objective lens, SIL and a closed aperture. (a) 

Pulse-duration dependence on defocus, where the solid black circles are experimental data and the black 

line is a second-order polynomial fit. The interval delineated by the blue dashed lines indicates the 

prediction bounds with a level of certainty of 90%. (b) Autocorrelation amplitude dependence on defocus, 

where the solid black circles are experimental data and the black line is a Gaussian fit. The blue dashed 

lines indicate the 90% certainty bounds as in (a). 

In Fig. 5.21b, the experimentally measured autocorrelation amplitude is plotted as a function of 

defocus, together with a least-squares Gaussian fit to the data. It can be seen that the points fit well 

to the Gaussian, where the maximum amplitude is located at z = 0 µm.  

From these results, the position for the maximum autocorrelation signal amplitude is at z = 0 µm, 

whereas the shortest pulse duration is at z = 90 µm, a difference of 90 µm. This result indicates a 

problem with either spherical aberration or propagation time difference (PTD) or both [6], where 

PTD describes the temporal broadening of the pulse introduced by chromatic aberration.  

Objective lens and SIL with no aperture  

Treating the data in the same way as described in the previous section, a second-order polynomial 

fit (Fig. 5.22a.) revealed that the position for the shortest pulse duration with aperture removed 

was at z = 105 µm. As before, the relative focal position for z = 0 µm was also defined at the 

maximum of the Gaussian fitting of the autocorrelation amplitude (Fig. 5.22b.). Again, this result 

indicates a problem with either spherical aberration or chromatic aberration, or both. 

  

Figure 5.22. Effects of defocusing for a system comprising an objective lens, SIL but no aperture. (a) Pulse-

duration dependence on defocus, and (b) autocorrelation amplitude dependence on defocus. For definitions 

of symbols and lines see Fig. 5.21. 
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Objective lens with no SIL or aperture 

The analysis was repeated for a final time using data obtained with only the objective lens and 

with no SIL or aperture. In Fig. 5.23a, the pulse duration is plotted as a function of relative focal 

position z (μm). In Fig. 5.23b the experimentally measured autocorrelation amplitude is plotted 

as a function of relative focal position z (μm), together with a least-squares Gaussian fit to the 

data..  

A second-order polynomial fit reveals that pulse duration does not change with z whereas the 

Gaussian fit to the autocorrelation amplitude shows the maximum amplitude located at z = 0 μm. 

Previously published modelling results from García-Martínez et al [6] showed that the maximum 

autocorrelation signal amplitude is located at the position where spherical aberration is the 

smallest, which in turn gives the position for the best spatial resolution. In other words, by locating 

the maximum autocorrelation signal amplitude, the best spatial resolution position will be located. 

The same authors also showed that the positions corresponding to the minimum pulse duration 

and the maximum autocorrelation amplitude always coincide for an aberration-free lens, whereas 

a difference in positions indicates the presence of aberrations or group velocity dispersion, GVD. 

With these theoretical results in mind, the difference in the positions of minimum pulse duration 

and maximum autocorrelation signal amplitude with a closed aperture (Fig. 5.21) and without an 

aperture (Fig. 5.22) indicate that chromatic aberration, spherical aberration or GVD are present. 

Assuming that the microscope objective is an optical system highly corrected for spherical 

aberration and chromatic aberration, the aberrations must therefore arise from either the SIL or 

from an aberrated incident wavefront on the objective lens or both.  

  

Fig. 5.23. Effects of defocusing for a system comprising an objective lens with no SIL lens or aperture. (a) 

Pulse-duration dependence on defocus, and (b) autocorrelation amplitude dependence on defocus. For 

definitions of symbols and lines see Fig. 5.21. 

The modelling in reference [6] uses two approximations: 1. the scalar diffraction theory and, 2. 

the bandwidth of the pulse, 𝛥𝜔, is smaller than the angular frequency of the carrier, 𝜔0 i.e., 

𝛥𝜔 𝜔0⁄ ≪ 1. The numerical aperture for the systems presented in Fig. 5.21, Fig. 5.22 and 

Fig. 5.23 are 0.35, 1.46 and 0.42 respectively. Only the systems with NA of 0.35 and 0.42 are 
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well described by the scalar diffraction theory, whereas the system with NA of 1.46 is not. The 

second approximation is satisfied in all cases, since the ratio between the bandwidth and the 

angular frequency of the carrier of the pulses is 𝛥𝜔 𝜔0⁄ = 0.019, assuming 120 fs at 1.55 μm 

pulses modulated by a Gaussian envelope. The experimental results presented in Fig. 5.23a for 

the objective lens with no SIL lens show that the pulse duration does not change with z. Previous 

experiments reported in the literature [20,21], with lenses that satisfy both approximations, show 

that large monochromatic aberrations and defocus do not change pulse duration, so the 

experimental results presented in Fig. 5.23a agree with previous experimental results. These 

results are not sufficient to conclude if the incident wavefront on the objective lens is well 

corrected or not. On the other hand, the experiment with the objective lens and SIL lens with a 

closed aperture also satisfies both approximations, and the experimental results presented in 

Fig. 5.21a show a change in pulse duration along z direction, therefore deduction that the SIL lens 

induces the change in pulse duration along z direction can be made.   

It is apparent that SIL lens introduces spherical aberration, chromatic aberration and variation of 

group velocity dispersion across the aperture of the lens. On the other hand, a poorly corrected 

incident wavefront on the objective lens will produce an aberrated wavefront incident on the SIL 

lens, which in turn will increase even more the aberration introduced by the not quite 

hemispherical condition. In the experiment the GVD introduced by thickness material is 

compensated but a variation of GVD across the aperture may remain. 

Although the SIL lens is introducing spherical, chromatic aberration and a variation of GVD, 

however, large aberrations in the incident wavefront on the objective lens can be potentially 

introduced by the singlet lenses in a beam expanding telescope prior to the objective lens. 

7.4 Conclusions  

These results are the first example of applying the theoretical insight from [6] in a nonlinear 

microscope. The approach offers a potentially simple means of detecting and potentially 

minimising whole-system aberrations by iteratively optimising the objective lens position and the 

illumination wavefront until the minimum difference has been found between the positions of 

minimum pulse duration and maximum autocorrelation signal. The inclusion of a motorised stage 

to actuate the objective position, together with a liquid-crystal spatial light modulator (SLM) to 

control the wavefront before the objective lens would form the basis for this approach. 

Autocorrelation data recorded in only a few seconds would be sufficient to construct amplitude 

and pulse duration scans similar to those in Fig. 5.22. The difference in the positions of minimum 

duration and maximum intensity would provide a metric on which an optimisation strategy could 

be based. A simple hill-climbing approach in which the SLM was used to apply defocus or 
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another low-order aberration could be investigated.  Stochastic optimisation methods such as 

simulated annealing or genetic algorithms would offer a more general solution [30], in which the 

SLM would be used to randomly perturb the wavefront and gradually drive the error towards 

smaller values.  In this way the optical system before the microscope could be adjusted to 

minimise its contribution to the aberrations of the whole system, leaving only the intrinsic 

aberrations of the sample and objective-SIL lens combination. 
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 Conclusions and future developments 

This chapter concludes the thesis by summarising all the experimental work and results presented 

in the previous chapters. Here a discussion is provided to explain the novelty, significance and 

context of achieved results in the field of the IC failure analysis. Also directions and guidelines 

for the future work to enhance and further extend our results on nonlinear sub-surface microscopy 

are given. 

8.1 Technical summary and conclusions 

Chapter 2 introduced the Er:Fibre laser, which was used as an illumination source. This laser was 

chosen as it suits the TOBIC application very well. The Er:Fibre laser generates a wavelength of 

1550 nm, which fits in the silicon transparency window, while at the same time enables TPA as 

two photons combined have the energy higher than the silicon bandgap. Also the Er:Fibre laser 

generates pulses of 110 fs, which are short enough to produce a high peak power in the vicinity 

of the focal spot, which is necessary for the TPA to occur. The simple and inexpensive design of 

the Er:Fibre laser as well as its reliability and straightforward operation provided a practical laser 

system with which to implement the nonlinear microscope. 

In Chapter 3 nonlinear TOBIC microscope is described, which was constructed for IC imaging. 

The main goal in this work was to explore the possibility to further improving the lateral resolution 

of the SIL enhanced TOBIC microscope. Building upon the previous findings of the significant 

polarisation influence on the focal spot shape and size [1], theoretical calculations were performed 

for illumination under the high NA conditions for various polarisation cases. The expected 

findings suggested that a RP beam had the potential to improve the imaging localisation 

resolution. Therefore, a LC RPC was introduced in the nonlinear microscope to test the modelling 

results experimentally. It was found that using the RP beam under high NA imaging conditions 

it was possible to produce as small a focal spot as with LP light. It was possible to achieve this 

result only with a high degree of polarisation purity of the RP beam, which was measured using 

Stokes parameters to be 94%.  

The obtained imaging resolutions correlated well with other theoretical calculations and 

experimental results [2]. While radial polarisation makes it possible to achieve a comparable 

lateral resolution to that level of linearly polarised illumination, it has the major advantage 

providing this resolution in all directions. This leads to an improvement of the nonlinear 

microscope system by way of eliminating the need to adjust polarisation for single feature 

orientations. 
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The achieved resolutions were in the 100 nm range, which are surpassed only by nonlinear 

microscopy complemented with annular illumination [3]. Modelling results of such a system, 

were presented in Chapter 3 and predicted even further resolution improvement for the RP beam 

using an annular aperture. As the RP beam consists of radial and longitudinal components, pupil 

engineering makes it possible to suppress the lower resolution provided by the radial 

component [4]. Therefore, later in this chapter further enhancement of the nonlinear TOBIC 

microscope using annular aperture along with the RP beam was proposed. 

Chapter 4 expanded the study of the benefits of certain polarisation states from imaging to 

localisation of errors. Here, the influence of the polarisation was explored for the first time in the 

context of the timing-resolved 2pLADA failure analysis technique. To obtain higher localisation 

resolutions it was decided to construct a laser, which would generate a shorter wavelength than 

1550 nm. As a result, a Raman soliton laser generating 1280 nm wavelength and 140 fs was 

constructed. To implement the RPC in the 2pLADA tool, a custom-designed RP module was 

installed in the industrial failure analysis system (Meridian IV).  

Experiments once again proved that the quality of the spatial localisation depends on the 

polarisation state. Also it was found that the spatial localisation of the 2pLADA site depended on 

the temporal overlap between the optical pulses (laser) and electrical (ATE) pulses. Again, as in 

TOBIC microscopy, linear polarisation showed a clear advantage as long as the preferred 

polarisation direction could be identified. The RP beam provided the best localisation resolution 

benefiting from its symmetrical focal spot, however it led to a distortion of the 2pLADA 

signature, which was attributed to the strong longitudinal electric field component.  

Measurements at different focal depths (z-scans) revealed the nonlinear nature of the 2pLADA 

signal using the pulsed Raman soliton laser, which is not the case for the CW laser, where free 

carrier absorption (FCA) dominates [5]. However, further investigation is necessary to evaluate 

the FCA influence on 2pLADA signature. Therefore, multiphoton microscopy was proposed to 

be a good tool to overcome the drawbacks of possible FCA. 

Chapter 5 examined spatio-temporal aberrations arising in the sub-surface nonlinear microscope 

and presented experimental validations for the previous theoretical calculations [6], which 

ultimately offered a straightforward optimisation strategy for the imaging system. By comparison 

with theory it was shown that the simple measurement of the pulse autocorrelation at the test 

device provided information about both spherical and chromatic aberrations inside the 

microscope, correlating with the position of the optimum spatial resolution. These can be 

diminished by optimising the objective lens position and the wavefront of the incident beam so 

that the maximum amplitude of the autocorrelation signal and shortest pulse duration would 
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coincide at the same focal position. Also there are other means to mitigate aberrations and some 

of the promising techniques for the sub-surface imaging are suggested later in this chapter. 

8.2 Future work 

The project’s goal to achieve the highest possible localisation resolution for failure analysis is a 

constant struggle with the ever shrinking feature sizes of the ICs. Therefore, it is essential to offer 

a few techniques, which could make it possible to push the presented research further and greatly 

improve the localisation resolutions to keep pace with the semiconductor industry’s demanding 

requirements. 

Annular apertures 

The performance of pupil-plane amplitude filters in nonlinear sub-surface microscopy has been 

successfully demonstrated before and a reduction from 100 nm to 70 nm using an obscuration 

disc was achieved [3]. A similar approach can be introduced in the current microscope design, 

easily improving the imaging resolution. In Chapter 2 the effects of radial polarisation along with 

annular apertures were theoretically modelled suggesting further improvements of the resolution. 

Therefore, annular apertures are an attractive and simple technique to further improve the fault 

localisation resolution. This effect can be enhanced by introducing phase masks with SLMs as 

well. This approach has been proposed and shown experimentally, though not yet in the defect 

injection failure analysis techniques [7, 8]. 

Radially polarised higher-order Laguerre-Gaussian beam 

  

Fig. 6.1. Microscopy using RP higher-order Laguerre-Gaussian beam [12]. 

It has recently been demonstrated that a RP higher-order Laguerre-Gaussian beam can be focused 

to a tight focal spot, which is laterally smaller and longitudinally longer [9]. This needle shaped 

beam compared with a linearly polarised beam or circularly polarised beam can be focused to 

a tighter spot [10]. It was presented before in Chapter 3 and 4 that the liquid crystal polarisation 

converter can be used to convert a linearly polarised beam into an RP beam. By inserting the SLM 

and applying a six-ringed mask to it, a higher-order RP beam is obtained [11], which can yield 

super-resolution performance (Fig. 6.1) [12]. 
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Subtraction microscopy 

There is another approach in which CV beams can be used to produce high-resolution imaging. 

The so-called subtraction imaging using radially and azimuthally polarised beams was 

demonstrated by [13]. This technique exploits the fact that the focal spot created by the radially 

polarised beam consists of longitudinal and radial electric field components. As it was 

demonstrated in Chapter 2, the longitudinal component produces a sharp and high-resolution 

lateral spot, while the radial component forms a doughnut-shaped pattern. This pattern is very 

similar to that created by the focused azimuthally polarised beam. Therefore, if the azimuthal 

pattern is subtracted from the radial pattern, the remainder is a high-resolution pattern formed by 

the longitudinal component (Fig. 6.2). This effectively leads to the improvement of the spatial 

resolution [13]. This is a simple technique to implement as the image processing is quite easy and 

the AP beam can be generated by rotating the linear polarisation of the incident light to the RPC 

by 90o, which can be performed with a simple rotation of the HWP by 45o. 

 

Figure 6.2. (a) Intensity profiles of the RP beam at the focal plane and (b) Intensity profiles radial 

component of the RP beam and azimuthal component of the AP beam. (c) Comparison between 

the PSF of the LP beam and the PSF of the subtraction imaging. (d) Intensity profiles of simulated 

images shown in (e) and (f); (e) the confocal image using LP and (f) using subtraction 

imaging [13]. 

a) 

 

 

b) 

c) d) 

f) 

e) 
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Aberration mitigation 

Another possible enhancement of nonlinear microscope using SLM can be done with aberration 

mitigation. As it was predicted in Chapter 4, the optical system before the microscope objective 

could be adjusted to minimise its contribution to the aberrations of the whole system. This can be 

done with the help of an SLM. The SLM simply would have to generate a phase and amplitude 

pattern to obtain shortest pulse duration and maximum autocorrelation signal amplitude at the 

same longitudinal z position. This would automatically give the highest aberration free point 

spread function of the system. 

Yet another approach for aberration suppression would be to employ wavefront detector and 

feedback it using the SLM or the deformable mirror as it was previously done by Y. Lu et. al. [14]. 

Another promising technique for aberration mitigation is based on orthogonal mode 

decomposition, regardless of the distribution of the optical aberrations. This approach can be used 

to restore the optimal focal spot in live. This technique can be understood as an interplay between 

energy conservation and constructive interference effects. The optimal focal sport leads to the 

increase in the energy density at the selected point. This method is able to compensate all time-

invariant aberrations, from weak aberrations to scattering from highly turbid media (Fig. 6.3). 

This optimisation technique was previously demonstrated for the optical micromanipulation, 

which is highly sensitive to aberrations [15]. 

 

Figure 6.3. Demonstration of the optimisation method. (a) Amplitude and phase of the modes. 

(b) Optical setup basic principle. (c) Focal spot before and after applying the phase 

correction [15]. 

 

 

a) 

 

 

b) 

 

 

c) 
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Multiphoton absorption microscopy 

K. Erington et. al. [5] showed that free carrier absorption plays important role in LADA signature 

generation. It was demonstrated that a 1300 nm CW laser shows linear LADA behaviour, which 

is unrelated to TPA. This effect is caused by free carrier absorption in highly doped regions, while 

heating the sample at the same time. Free carrier absorption can reduce the benefits obtained using 

the 2pLADA technique, therefore it is essential to investigate further what effect it has on the 

pulsed lasers. Also it would be beneficial to use multiphoton absorption, which would have a 

lower probability for the free carrier absorption. The recent advancements in mid-infrared OPO 

reaching wavelengths of 12 µm (Fig. 6.4), with pulse durations of femtosecond scale and powers 

of tens of milliwatts, using orientation-patterned gallium phosphide (OP-GaP) gain material [16] 

can be of particular interest to explore multiphoton absorption dynamics of silicon, maybe with 

the potential to increase localisation resolutions in 2pLADA technique. As up to now the 

nonlinear properties of silicon were investigated only up to the wavelength of 6 µm [17]. 

However, the resolution would degrade to around 500 nm.  

Also as suggested in [17], TPA in silicon at the wavelength around 2.1 µm occurs at the highest 

rate with the lowest free carrier absorption. Therefore, this wavelength could be of particular 

interested for sub-surface microscopy of ICs while still imaging in the TPA regime. However, the 

trade-off in resolution would be 210 nm instead of 160 nm.  

 

Figure 6.4. Idler (top) and signal (bottom) spectra obtained using OP-GaP gain media [16]. 
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Translation microscopy (TRAM) 

The last technique, which could greatly increase the sub-surface resolution is the so-called 

translation microscopy (TRAM) technique. While super-resolution microscopy techniques like 

stimulated emission depletion technique (STED) and atomic force microscopy (AFM) are hardly 

implemented in the sub-surface microscopy, the novel TRAM technique offers simple approach 

to achieve super-resolutions. In TRAM, the super-resolution is achieved applying signal 

processing techniques to a set of diffraction-limited low-resolution images obtained by translating 

the sample in the XY plane (Fig. 6.5). One of the advantages of this modality that the sample can 

be shifted in multiple directions without the need of exact step sizes. Therefore, the TRAM 

technique can be easily applied in the current nonlinear microscope, which is already equipped 

both with sample scanning stages and galvanometer mirror scanner. As a result, TRAM can be 

performed by moving the sample with the stages and then obtaining an image rapidly by 

employing the beam scanner. 

It was recently shown that TRAM can achieve up to a 7-fold increase in lateral resolution in a 

cellular environment. In a sub-surface imaging context this would mean, that sub-100-nm 

resolutions for IC imaging without using the SIL or of the range of 10 nm with the SIL could be 

achieved [18].  

 

Figure 6.5. Schematic illustration of translation microscopy (TRAM). This technique is based on 

obtaining multiple shifted images. This data then used to compute and resolve the super-resolution 

image. 
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