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Abstract 

Anomalous experiences (such as hallucinations) are known to occur in 

healthy, non-clinical groups. Despite this, the neurocognitive mechanisms 

underlying such experiences in these groups has received little attention. This 

thesis therefore aimed to explore the relationships between anomalous experience 

and one candidate neurocognitive mechanism, cortical hyperexcitability, in non-

clinical samples. 

 

Chapters 2 and 3 explored the contribution of visual cortical excitability to 

anomalous experiences in multiple modalities, by investigating the relationship 

between trait (questionnaire) and state (pattern glare) anomalous experiences 

under transcranial direct current stimulation (tDCS) of different areas of extrastriate 

cortex; Brodmann’s areas 5 and 7, and 17-19 (targeted with electrode sites Pz and 

POz respectively). These chapters evidenced differential relationships between 

visual trait and state measures. Chapter 2 revealed a trait-state relationship a 

relationship that was influenced by anodal tDCS brain stimulation, but only in those 

predisposed to pattern glare (indicating cortical hyperexcitability). Chapters 2 and 

3 evidenced significant interactions between state experiences of pattern glare and 

tDCS condition, suggesting that these anomalous experiences vary depending on 

baseline excitability. 

 

Chapter 4 explored whether the trait-state relationships observed within the 

visual modality in the previous chapters could be extended to auditory cortex. Trait 

and state anomalous experiences were again measured using questionnaires and 

pattern glare respectively. EEG-based sensory gating was used to index state 
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auditory cortex inhibition. Chapter 4 tentatively suggested a cross modal 

relationship, with greater trait predisposition to anomalous visual experiences 

associated with greater suppression of the auditory P2 component. Greater P2 

suppression may lead to source labelling errors and so perceptual distortions. 

 

Overall, this thesis indicates intriguing subtleties in the relationships 

between trait and state measures of anomalous experience and cortical excitability, 

that are also modality-dependent.  

 

 

 

Main argument 

The main argument of this thesis is that cortical hyperexcitability is a 

possible “bottom-up” mechanism underlying anomalous experiences in the healthy 

non-clinical population (see Figure A1). Predisposition to these experiences may 

depend on baseline cortical excitability states, with those with heightened baseline 

excitability being more likely to have anomalous experiences. In contrast, those 

low to normal baseline excitability may be less predisposed to these experiences. 

If the heightened excitability occurs in visual cortex, individuals are more likely to 

have visual anomalous experiences – particularly those analogous to “positive” 

elementary hallucinations (see Figure A2). Considerable further work is needed to 

fully understand these relationships, such as teasing out the relationships between 

trait (predisposition to) and state (ongoing experience of) anomalous perceptions. 

Cortical hyperexcitability may also interfere with “top-down” forward processing to 

produce anomalous experiences in healthy groups. It is possible that cortical 

hyperexcitability within e.g. the visual network can spread to or influence 
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processing in other sensory networks, e.g. auditory. To move this research area 

forward, there is need to test and establish more precise measures or indicators of 

state cortical excitability in healthy groups.  

 

 

 

Visual abstract – Core concepts 

 

Figure A1 – Visual abstract of the proposed relationship between cortical 

excitability and perception. The top panel shows “normal” neuronal functioning, 

with balanced excitation and inhibition. This is associated with “normal” excitability 

in visual cortex and veridical everyday perception, and so little to no pattern-glare-

type visual distortions. The bottom panel shows cortical hyperexcitability, where 

excitation and inhibition are not balanced. This is associated with increased 

excitability in visual cortex, and so increased pattern glare and anomalous 

experiences.  
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Figure A2 – Visual abstract of the proposed relationship between cortical 

excitability, pattern glare (PG), and transcranial direct current stimulation 

(tDCS). It may be that baseline excitability interacts with tDCS to produce different 

effects. The top panel shows proposed relationships for the “non-PG” groups 

studied here, with low to “normal” visual excitability (scoring <1 on the PG task). 

Here, anodal tDCS excites visual neurons and increases PG experiences, whilst 

cathodal tDCS may prime visual neurons to also increase PG experiences. The 

bottom panel shows proposed relationships for the “PG” groups (with high visual 

excitability, scoring 1 or more on the PG task). In contrast to the non-PG groups, 

here anodal tDCS may not be able to excite visual neurons or may cause reversal 

effects (due to combining tDCS and PG stimulation), leading to no change or 

decreases in PG experiences. Cathodal tDCS may not be able to exert inhibitory 

effects due to deficient inhibition, leading to no change in PG experiences. 
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1 Foreword to Chapter 1 

 

Chapter 1 provides an overview of the theoretical concepts and empirical 

literature relevant to this thesis. The first section discusses the definition of 

“anomalous experiences”, arguing that terms such as “hallucination” and 

“misperception” exist along a spectrum of experience that cannot be clearly defined 

into such discrete categories. Therefore, the term “anomalous experience” is used 

to refer to unusual sensory experiences. The second section gives an overview of 

anomalous experiences in clinical and non-clinical groups, evidencing 

considerable variation in the phenomenology of these experiences in non-clinical 

individuals that is often comparable to anomalous experiences in clinical groups. 

This is followed by a brief review of the different neurocognitive mechanisms that 

have been suggested to underlie anomalous experiences across clinical and non-

clinical groups. This section concludes that cortical hyperexcitability is a promising 

and well-evidenced mechanism for anomalous experiences, and may provide a 

mechanistic bridge between such experiences in clinical and non-clinical groups. 

Following is a brief explanation of cortical hyperexcitability, including how it differs 

from normal synaptic function and its definition as used in this thesis. The evidence 

for cortical hyperexcitability in anomalous experiences across clinical and non-

clinical groups is then considered. Finally, the aim of this thesis and questions to 

be answered are outlined. 
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1 General Introduction 

1.1 What are “anomalous experiences”? 

“Anomalous experiences” (AEs) are perceptual experiences that deviate 

significantly from usual, everyday experience (Cardeña, Lynn, & Krippner, 2014). 

Anomalous experiences can occur in any sensory modality; they can be visual, 

auditory, gustatory, olfactory, tactile, somatic, proprioceptive, interoceptive, 

thermoceptive, nociceptive, mechanoreceptive, and chronoceptive (time) (Bell, 

Halligan, Pugh, & Freeman, 2011; Braithwaite, Samson, Apperly, Broglia, & 

Hulleman, 2011; Cardeña et al., 2014; Larøi et al., 2012). They can also be uni- or 

multi-modal (Braithwaite et al., 2011). The term “anomalous experience” covers a 

wide range of experience types, including hallucinations and distortions. These 

different types of experience are defined and explored below. 

 

“Hallucinations” are perceptions in any sensory modality that are not elicited 

by a corresponding external stimulus (Waters et al., 2016). Some definitions of 

“hallucinations” are unclear, such as “waking experiences which have the character 

of veridical perceptions, but are elicited in the absence of a relevant external 

stimulus” (Mitchell et al., 2017)(emphasis added). It is difficult to say what “relevant” 

means here. David (2004) provides a more detailed definition that resolves this: 
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“A sensory experience which occurs in the absence of corresponding 

external stimulation of the relevant sensory organ, has a sufficient sense of 

reality to resemble a veridical perception, over which the subject does not feel 

[they have] direct and voluntary control, and which occurs in the awake state.” 

p108 of David (2004), as quoted on p15 of Aleman & Larøi (2008), 

emphasis added 

 

Importantly, because this definition includes the phrase “corresponding 

external stimulation”, it accommodates hallucinations that are caused when a 

hallucination in one modality is caused by external stimulation of the same modality 

but does not directly correspond to the experience; i.e. where the hallucination is 

qualitatively different to the stimulus. For example, some hallucinations involve 

hearing voices when the vacuum cleaner is turned on (Kern, 2014). In this situation, 

although the auditory sense is being stimulated by an external source, the quality 

of the source (noise) does not directly correspond to the quality of the actual 

experience (voices). 

 

Aleman & Larøi (2008) also suggest an additional caveat to be included in 

David’s (2004) definition; that to be classed as a hallucination, the experience 

should be accompanied by a strong “conviction that one perceives [something]… 

even though one can be aware that [it] does not exist independent of the observer” 

(Aleman & Larøi, 2008, p. 18); in other words, having a vivid and seemingly 

veridical experience whilst potentially also having clear insight that the experience 

is not real. However, the latter suggestion is problematic because insight can 

change with the course of diseases. This occurs in Charles Bonnet Syndrome 



18 
 

(CBS), where hallucinations are sometimes not immediately recognised as 

hallucinations by the person experiencing them (Eperjesi & Akbarali, 2004; Kester, 

2009), and in schizophrenia, where insight into the unreality of experiences is often 

lacking (Chaudhury, 2010). Therefore retained insight is a problematic caveat that 

cannot be consistently applied. 

 

Further to the definitions above, hallucinations are often categorised as 

being either “simple” or “complex”. Simple hallucinations are experiences of 

rudimentary or geometric phenomena such as dots, shapes, lines, patterns such 

as grids, and flashes of light or colour, which are unformed or have intermediate 

corporeality. In contrast, complex hallucinations consist of images with definite 

form, such as people, objects, and animals (Mosimann et al., 2008).  

 

In contrast to hallucinations, “distortions” are defined as misperceptions of 

existing external sensory stimuli (and are also sometimes unhelpfully referred to 

as illusions1) (Collerton et al., 2015). For this reason, some researchers refer to 

“misperceptions” as covering distortions and other changes to existing visual 

experience. For example, Mitchell et al. (2017) define misperceptions as 

 
1 Although attempts at classifying distortions and illusions and their different types have been made since the 

19th century, the validity of these classifications remains under intense debate even today (Collerton, 

Mossimann, & Perry, 2015; Notredame, Pins, Deneve, & Jardri, 2014). Further, although generally thought to 

involve changes in visual lateral inhibition, the mechanisms underlying illusions vary widely (Eagleman, 2001). 

The relationship between illusions and anomalous experiences (such as in schizophrenia) is unclear (King, 

Hodgekins, Chouinard, Chouinard, & Sperandio, 2017), and how (if at all) these are connected to cortical 

hyperexcitability or pattern glare is not known. Therefore, a full discussion of illusions in relation to the current 

topic is outside the scope of this thesis. 
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“experiences whose relationship to stimuli in the outside world is distorted or 

changed in some way”. Similarly, Aleman & Larøi (2008) suggest that the 

distinction between a distortion and a hallucination should perhaps lie in how rare 

or unlikely the “perceptual mistake” is. They propose, for example, that mishearing 

a loud drilling sound as a scream might be a rather common mistake and therefore 

be classed as a distortion, but that hearing voices when the vacuum cleaner is on 

may be rarer and so would be termed a hallucination. 

 

However, to apply such a distinction consistently, we would need to 

systematically characterise a potentially infinite variety of anomalous experiences 

to determine the frequency of each in the population, and so this distinction is not 

practical. Further, this definition blurs with that of hallucinations outlined above, as 

some hallucinations can be the result of a stimulus which is distorted so much that 

it seems to the experiencer to be a different perception altogether. 

 

For example, for some susceptible individuals, looking at visually-irritating, 

achromatic striped patterns (such as escalator treads or venetian blinds - see 

Figure 1.1) can induce visual “distortions” such as bending, movement, or seeing 

coloured geometric shapes moving across the visual field (Haigh et al., 2013). 

These patterns can also induce somatic experiences such as pain, nausea, and 

dizziness. Some of these experiences could be understood as “misperceptions” 

(e.g. bending), however some are very different to the original stimulus and may 

be more accurately classed as “hallucination” (e.g. coloured shapes). Additionally, 

in susceptible individuals a wide range of experiences can be had, from simple to 

more complex. Some of these experiences seem completely different from, and 
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unrelated to, the original perception, despite the fact that they were indeed 

triggered by the original perception. This variation in reactions to the same stimuli 

makes it difficult to classify such experiences as definitely being either 

hallucinations or misperceptions, based on current definitions. 

 

 

Figure 1.1 – Visually-irritating stimuli and example distortions. (A) Example 

of a striped grating that can induce visual (colours, movement) and somatic 

(nausea, dizziness) symptoms in susceptible individuals, known as “pattern glare”. 

(B) Example of a “bending” visual distortion experienced as part of pattern glare. 

(C) Example of “blurring” and “colour” visual distortions. These are examples only, 

as pattern glare experiences vary widely between individuals. 

 

 

Overall, there is no clear distinction between misperceptions and 

hallucinations in the literature. Therefore, creating precise definitions that clearly 

demarcate these categories of experience is difficult. 

 

It is also difficult in real clinical cases to definitively categorise anomalous 

visual experiences as either misperceptions or hallucinations (ffytche, 2014). Such 

A B C 
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distinctions may not be practically helpful when exploring the neurocognitive 

correlates of conscious experience. Additionally, clear boundaries between 

different types of subjective perception do not exist (ffytche, 2014; Waters et al., 

2016). Instead, sensory experiences can be placed on a continuum or spectrum 

from clear, veridical vision to complex hallucination, with misperceptions and 

voluntary imagery occurring somewhere in between (Waters et al., 2016) (see 

Figure 1.2). As Collerton et al. (2012) point out, within a constructivist model of 

visual perception (which can also be applied to other senses), “there is no sharp 

boundary around any visual phenomenon” (p78) and no clear division between 

veridical perception and hallucination “both conceptually and in practice” (p84).  

 

Figure 1.2 – “Fuzzy forms of visual experience” (Waters et al., 2016). 

There are no clear boundaries between different experiences. Rather, these 

“categories” of perception all overlap to some degree. 

 

 



22 
 

Therefore, the terms “anomalous experience” or “anomalous perception” 

will be used throughout this thesis as an umbrella term. In line with current 

research, this approach takes a “spectrum” view of these experiences. “Anomalous 

experience” as used here includes misperceptions, distortions, and hallucinations, 

but does not include voluntary imagery (imagination) or dreams, as these types of 

experience are not within the scope of this thesis. Although the qualities of dreams 

and hallucinations overlap in places, there are “key differences that differentiate 

[dreams] from hallucinations” (Waters et al., 2016, p. 1102). Voluntary imagery also 

differs from anomalous experience in both phenomenological and 

neurophysiological terms2.  

 

 The term “anomalous experience” is also useful in non-clinical research for 

replacing terms such as “hallucination” that can be problematic due to associated 

stigma and clinical implications. It also covers a wide variety of experiences that 

are of interest for this thesis and associated with similar neurocognitive 

mechanisms (discussed in detail further below). The term “anomalous experience” 

has now been in use for several years and is gaining popularity in the literature, 

 
2  In contrast to hallucinations, dreams are generally separable from waking reality (Waters et al., 2016). 

Voluntary imagery and anomalous experience can be further distinguished by differences in phenomenology 

and brain activity. Auditory hallucinations are associated with activation in fronto-temporal networks related to 

language, whereas imagining auditory hallucinations activates these networks as well as supplementary motor 

areas (SMA) (Raij & Riekki, 2012). During voluntary imagery of voices, SMA activation occurs before fronto-

temporal activation, whereas these co-occur during voice hallucinations (Linden et al., 2011). SMA activation 

is thought to underlie the process of recognising self- versus externally- generated experiences (Raij et al., 

2012). Similarly, Trojano et al. (2004) observed that prefrontal activity was prominent during active imagining, 

whereas prefrontal activity was absent in Oertel et al.’s (2007) study of a hallucinating patient with psychosis. 

This may contribute to lack of perceived control over hallucinations (Linden et al., 2010; Oertel et al., 2007). 
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being used to describe both clinical and non-clinical experiences (Brett, Heriot-

Maitland, McGuire, & Peters, 2014; Cardeña et al., 2014; Pechey & Halligan, 

2012). 

 

 

1.2 Who can have anomalous experiences? 

Anomalous experiences are typically thought of as occurring in psychosis, 

however they are experienced by a wide range of clinical and non-clinical groups, 

for example in migraine, epilepsy, mood disorders, borderline personality disorder, 

dissociative disorders, delirium, dementia (e.g. neurodegenerative conditions such 

as Parkinson’s), schizotypy (predisposition to psychotic-like experiences in the 

absence of any medical condition), due to drug use or sensory deprivation, during 

delirium, or indeed in the absence of any clear neurological or psychological 

condition (Baumeister, Sedgwick, Howes, & Peters, 2017; ffytche, Blom, & Catani, 

2010; Johns et al., 2014; Larøi et al., 2012; Preti et al., 2014). 

 

Despite the fact that past literature has evidenced that hallucinations occur 

in these wide-ranging groups/conditions, very few studies have reviewed 

hallucinations trans- or extra-diagnostically – likely due to the relative infancy of 

this research area. This section gives a very brief overview of some of this work for 

context. 

 

Recent reviews have explored experiences and qualities of auditory verbal 

hallucinations, but specifically in bipolar disorder (Smith, Johns, & Mitchell, 2017) 

or bipolar and major depressive disorder (Toh, Thomas, & Rossell, 2015); from a 
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trauma-centred perspective (Luhrmann et al., 2019); in healthy voice-hearers only 

(Baumeister et al., 2017); in the context of bereavement (Castelnovo, Cavallotti, 

Gambini, & D'Agostino, 2015); as a function of sleep (Reeve, Sheaves, & Freeman, 

2015); and as a function of age in the general population (Badcock, Dehon, & Laroi, 

2017; Maijer, Begemann, Palmen, Leucht, & Sommer, 2018). Due to the novelty 

of this research area and the resulting paucity of research that includes clinical and 

non-clinical groups, the only review to compare the similarities and differences in 

auditory and visual hallucinations across clinical and non-clinical groups was 

recently published by Waters and Fernyhough (2017). This review found that, of 

the 21 hallucination characteristics usually associated with schizophrenia, “95% 

were shared with other psychiatric disorders, 85% with medical/neurological 

conditions, 66% with drugs and alcohol conditions, and 52% with the nonclinical 

groups” (Waters & Fernyhough, 2017). One excellent review by Upthegrove et al. 

(2016) explored the current clinical auditory verbal hallucination literature across 

phenomenology, psychopathology, psychological aspects, cognitive neurobiology, 

and neuroimaging. 

 

However, because hallucinations are traditionally considered as indicative 

of psychopathology or another clinical condition, very little comparative work has 

been done in non-clinical voice hearers. So, whether the process of auditory verbal 

hallucination generation is similar between voice-hearing groups remains to be 

explored (Upthegrove et al., 2016). Further, whether auditory hallucinations 

represent a true continuum of experience also remains to be established 

(Upthegrove et al., 2016), and considerably more data from non-clinical groups is 

needed for comparison (Waters & Fernyhough, 2019). Iudici et al. (2019) found 
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many similarities between clinical and non-clinical experiences, with healthy 

individuals experiencing auditory verbal hallucinations in the absence of 

psychopathology. However, this research, like much of the above, does not 

address the detail of possible neurocognitive mechanisms underlying 

hallucinations and whether these are similar between groups. Despite 

hallucinations in certain groups/conditions previously being thought of as unique to 

these populations (as has been the case historically with psychosis), recent 

research demonstrates that this is not the case (reviewed below). Hallucinations 

across these populations share several phenomenological – and mechanistic – 

similarities. 

 

To illustrate this, a brief review of anomalous experiences in non-clinical 

groups, and the clinical conditions that have contributed most significantly to our 

basic understanding of anomalous experience, is given below (but see Aleman & 

Larøi, 2008, Chapter 3 for an extensive review).  

 

 

1.2.1 Anomalous experience in non-clinical groups 

1.2.1.1 The term “non-clinical” 

In the current context, “non-clinical” groups are those that comprise 

members of the general population that have not been diagnosed as having a 

mental, neurological, or other physical health condition that would classically be 

associated with anomalous experiences. The term “sub-clinical” is sometimes used 

interchangeably with “non-clinical”, referring to individuals that are members of 

non-clinical groups who nevertheless report symptoms or experiences that are 
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consistent with certain health conditions. However, several authors suggest that 

“sub-clinical” is misleading, as it appears that many healthy people that have these 

experiences are truly healthy with no need for intervention or care (Baumeister et 

al., 2017; Brett et al., 2014; Nelson, Seal, Pantelis, & Phillips, 2013). As the current 

thesis is concerned with the occurrence of anomalous experiences in healthy 

groups, and predisposition to such experiences has not to date been evidenced as 

necessarily clinically-relevant, this thesis will use “non-clinical” to refer to 

anomalous experiences in healthy groups. 

 

Although anomalous experiences are a common feature of many 

psychological and neurological conditions, research on these experiences 

provides substantial evidence that hallucinations are also experienced by many 

people from the general population in the complete absence of any mental or 

physical health conditions, or use of substances, that would necessarily predispose 

them to such experiences (Aleman & Larøi, 2008; Aleman, Nieuwenstein, Bocker, 

& De Haan, 2001; Allen et al., 2005; Block, 2012; Johns, 2005; Laroi & Van der 

Linden, 2005). Overall, a large body of experimental research has evidenced a 

higher prevalence and wider variety of anomalous experiences in non-clinical 

groups than might be expected.  

 

1.2.1.2 General anomalous experience prevalence 

Studies exploring anomalous experiences in the general population tend to 

focus on hallucinations exclusively, with auditory and visual modalities being the 

most commonly-studied (Mitchell et al., 2017). In 1894, the Society for Psychical 

Research carried out some of the first systematic research into anomalous 
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experiences in the general population and produced the International Census of 

Waking Hallucinations in the Sane. More than 10% of respondents said they had 

experienced a sensed-presence or auditory hallucination at some point in their 

lives. Modern surveys of thousands of individuals from the general British 

population put the frequency of hallucinatory experiences – seeing or hearing 

things when others could not – at ~4-6% (Johns, 2005; Linscott & van Os, 2013). 

A review of several studies from different countries found that 7-30% of children 

and adolescents have experienced hallucinations (Boksa, 2009). Additionally, 

hallucinations of a lost loved one can occur in one-third to one-half of bereaved 

spouses (Boksa, 2009). Recent investigations in non-clinical populations estimate 

a lifetime prevalence for visual and auditory hallucinations at 3-15% and 2.5-15% 

respectively (Mitchell et al., 2017). One study that estimated the prevalence of 

psychotic-type experiences in the general population across the globe reported a 

sex-standardised prevalence of 2.4% in mid-to-high income countries and 5.5% in 

low-income countries (Nuevo et al., 2012). 

 

Some research has also demonstrated significant overlap in anomalous 

experience ratings between healthy control and psychosis groups, with Kao et al. 

(2013) finding that 14% of a non-clinical group had a higher total number of 

anomalous experiences as compared to a psychosis group. Similarly, Bell et al. 

(2011) also observed a significant overlap between 90 clinical (non-affective 

psychosis) and 193 non-clinical participants on the Cardiff Anomalous Perceptions 

Scale (CAPS; Bell, Halligan, & Ellis, 2006), which measures a range of anomalous 

experiences across sensory modalities. They found that 11.9% of the non-clinical 

sample scored above the mean of a psychosis inpatient group on the CAPS (which 
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closely matches the 11.3% of non-clinicals scoring above the psychosis mean 

observed in the original 2006 CAPS study). There were no significant relationships 

between age or sex and CAPS scores. 

 

Bell and colleagues also conducted a hierarchical analysis of CAPS scores 

to examine whether endorsing one particular item predicted a higher total CAPS 

score. This analysis revealed that endorsement of rarer items was associated with 

a greater overall CAPS score. That is, endorsing the rarest experience (“Have you 

ever heard two or more unexplained voices talking with each other?”, endorsed by 

only 1.6% of the sample) predicted endorsement of 18.3 additional items, whereas 

endorsing the most common experience (“Do you ever find that your experience of 

time changes dramatically?”, endorsed by 45.1% of the sample) predicted 

endorsement of only 10.1 additional CAPS items (Bell et al., 2011). However, 

generally this also suggests that the more experiences endorsed, the greater the 

variety of anomalous experiences overall.  

 

1.2.1.3 Visual anomalous experience 

Various studies have placed the prevalence of visual hallucinations in the 

general population, in the absence of physical or mental health problems or other 

predispositions, at between 3.2-6% (Johns, 2005; Preti et al., 2014), although this 

percentage varies widely between samples. For example, one study exploring non-

clinical visual hallucinations in detail found that 29% of participants had 

experienced at least one visual hallucination, and that 17% experienced them very 

frequently (Laroi & Van der Linden, 2005). However, complex visual hallucinations 

have been estimated to occur in as many as 30% of healthy individuals with no 
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pre-existing or predisposing physical or mental health conditions (Block, 2012). In 

a study that followed-up and surveyed the same area as the 1894 Census, visual 

hallucinations were the most commonly reported in the general population (Aleman 

& Larøi, 2008). Visual hallucination prevalence seems to decrease with age, which 

is surprising given that hallucination risk factors increase with age (e.g. sensory 

and cognitive impairment (Badcock et al., 2017)). Although low levels of perceived 

control and more negative content have been cited as hallmarks of clinical 

hallucinations (Baumeister et al., 2017), Larøi and van der Linden (2005) 

evidenced low perceived control and more negative than positive emotional 

reactions in their non-clinical participants. Importantly, and in contrast to some 

earlier studies (such as Ohayon et al., 2000), Larøi and van der Linden (2005) 

specifically recorded alcohol and/or narcotics use in their non-clinical samples and 

found that the hallucinations reported were not associated with use of these 

substances. As compared to auditory hallucinations, however, there is a relative 

dearth of studies on visual hallucinations in strictly non-clinical groups (i.e. the 

absence of any diagnosed condition or status that may predispose groups to 

anomalous experiences), making estimates of prevalence difficult. Studies tend to 

explore general population samples without controlling for potentially confounding 

factors such as substance use (including nicotine), medication, or medical status / 

physical illness, and so there is limited data on non-clinical groups that is useful for 

discerning possible neurocognitive mechanisms. 

 

1.2.1.4 Auditory anomalous experience 

Research has also shown that individuals from non-clinical groups 

experience auditory hallucinations that would traditionally be thought of as 
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indicative of psychosis – such as voices that are externalised, vivid, involuntary, 

and negative – more often than might be expected (Longden, 2017). A review by 

Johns and colleagues (2014) found that auditory verbal hallucinations had many 

similar characteristics across groups regardless of clinical status, including the 

volume, location, number of voices heard, and the underlying brain activity. 

Although relatively few studies have specifically explored auditory hallucinations in 

the general population that are not related to lifestyle factors (such as substance 

use) or health problems (e.g. sleep disorders), reviews have suggested a 

prevalence of around 13% (Johns et al., 2014). Interestingly, a recent review found 

that, overall, the subjective experience of hearing voices (e.g. vividness, negative 

valence) does not appear to differ significantly between clinical and non-clinical 

groups (Bauermeister et al., 2017). 

 

1.2.1.5 Other modalities of anomalous experience 

Ohayon (2000) found that olfactory, bodily, and gustatory hallucinations 

were experienced at least once per week by a quarter or more of individuals with 

no associated diagnoses or other health issues. Multi-sensory hallucinations are 

rarer than single sense hallucinations, although prevalence has been estimated to 

be ~19% in healthy samples (Preti et al., 2014). Sensed-presence hallucinations 

are studied less often, however a recent review found that 30-60% of adults had 

post-bereavement hallucinatory experiences, such as hearing, seeing, being 

touched by, or feeling the presence of the deceased (Castelnovo et al., 2015). 

Short-term sensory deprivation is commonly used to reliably induce temporary, 

psychotic-like experiences in healthy individuals, including auditory and visual 

hallucinations (Daniel, 2017; Daniel, Lovatt, & Mason, 2014). 
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It is important to note that estimations of hallucination prevalence vary 

widely depending on the population studied; factors such as sex, age, culture, time 

frame, stigma, and personal circumstances may influence prevalence statistics 

(Badcock et al., 2017). For example, older adults frequently convey concerns 

around disclosing hallucinations for fear of upsetting relatives or being labelled as 

“mad” or cognitively incompetent (Badcock et al., 2017). Further, many estimates 

of hallucinations rely on self-report measures, which may be subject to reporting or 

other experimental biases – although reports of hallucinations in student 

populations do not seem to be related to measures of social desirability (Laroi & 

van der Linden, 2005). Although DeVylder and Hilimire (2015) found that pre-

psychotic experience endorsement is affected by social desirability bias, this was 

with the exception of subthreshold auditory hallucinations, the only hallucinatory 

item included in the measure used (with the remaining questions linked to 

interpersonal difficulties or social anxiety, negative symptoms, and 

suspiciousness) (Liu et al., 2013). Therefore these factors must be taken into 

consideration when assessing hallucination prevalence estimates. Overall, 

research indicates a surprising, well-evidenced prevalence of anomalous 

experiences in those with no related clinical diagnosis or condition – and this is 

likely a conservative estimate, considering the many factors that may discourage 

individuals from disclosing such experiences. 

 

1.2.1.6 Psychosis continuum / schizotypy 

The frequency of anomalous or “psychotic-like” experiences in the general 

population has led many researchers to propose the “psychosis continuum”; the 
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idea that psychotic-like symptoms and traits (such as hallucinations) can occur in 

those who are otherwise healthy, and also vary along spectrums or dimensions 

(such as vividness, duration, and associated distress) in clinical and non-clinical 

groups (Park, Lim, Kirk, & Waldie, 2015; Waters & Fernyhough, 2019). Under this 

view, such a spectrum has two extremes; symptoms experienced without distress, 

dysfunction, or the need for intervention at one end, and symptoms being so severe 

that they require treatment at the other (Waters & Fernyhough, 2019). A 

predisposition to having psychotic-like experiences (including certain personality 

traits traditionally associated with psychosis) in the absence of any medical 

condition has been described as “schizotypy” (Teufel et al., 2015). An emerging 

body of evidence suggests that schizotypal features are present throughout the 

general population, supporting the idea that psychosis may lie on a continuum with 

“normality” (Teufel et al., 2015). Schizotypy studies evidence a psychosis 

continuum and the occurrence of anomalous experiences in the general 

population, and suggest that anomalous experiences can occur outside of “formal” 

psychosis. 

 

1.2.2 Anomalous experiences in clinical groups 

1.2.2.1 Migraine 

Migraine is an intense, pulsating headache that affects approximately 10-

15% of people worldwide (Coppola, Pierelli, & Schoenen, 2007; Cui, Kataoka, & 

Watanabe, 2014; NHS, 2019). The visual system is central in migraine 

pathophysiology, and so many migraine triggers are visual in nature (Bridge et 

al., 2015; Harle, Shepherd, & Evans, 2006; Shepherd, Hine, & Beaumont, 2013). 

The most common visual triggers of migraine found in everyday environments 
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include glare, flicker, and geometric patterns such as stripes, amongst others 

(see Harle et al., 2006; Shepherd et al., 2013) (see Figure 1.3).Such stimuli are 

similar to those that are epileptogenic in photosensitive epilepsy (Shepherd et al., 

2013). 

 

 

Figure 1.3 – Environmental sources of visual irritation. (A) escalator tread 

texture (sourced from flickr.com); (B) computer screen glare (sourced from 

flickr.com); (C) venetian blinds (sourced from ebay.co.uk). 

 

 

In accordance with this visually-centred pathology, large prevalence studies 

have suggested that migraine is accompanied by “aura” in ~4.4 to 22.5% of 

migraine cases. Aura denotes visual symptoms that tend to precede migraine, such 

as seeing simple shapes (such as spots), flashing lights (phosphenes) or zig-zag 

patterns (scintillations), and blind spots (scotoma) which move across the visual 

field  (Aiba et al., 2010; Evans & Aurora, 2012; Hadjikhani, 2008; Hadjikhani et al., 

2001). These visual symptoms occur in 94% of aura cases (Hadjikhani, 2008). 

Rarely, aura can also occur without migraine (Evans & Aurora, 2012). In addition 

to these relatively simple hallucinations, migraine can be associated with highly 
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complex anomalous experiences, such as auditory hallucinations (Miller, 

Grosberg, Crystal, & Robbins, 2015), Alice-in-Wonderland syndrome, hemianopic 

blindness, and out-of-body / abduction experiences (Silberstein & Young, 1995). 

 

 

1.2.2.2 Epilepsy 

Epilepsy is a seizure disorder, with seizures being the abnormal, excessive, 

and synchronous discharge of cortical neurons that occur when these neurons 

become hyperexcitable (Bromfield, 2006). Anomalous experiences, from small 

flashing coloured spots or shapes to complex hallucinations, occur at a rate of 

approximately 3% in epilepsy generally, and at a much higher rate of 14% in 

“temporal lobe epilepsy” (TLE) (see Figure 1.4). In TLE, the initial discharges can 

alter affect and perception, resulting in a variety of anomalous experiences such 

as time distortions, déjà vu, depersonalisation, sensed presence hallucinations, 

and out-of-body experiences (Persinger & Makarec, 1987; Stafstrom, 1998), with 

auditory hallucinations being the most common (and nearly exclusive to TLE) (Hug, 

Bartsch, & Gutschalk, 2011). Occipital seizures occur in around 4.6% of those with 

epilepsy and are almost always accompanied by visual hallucinations (Teeple, 

Caplan, & Stern, 2009). As one quarter of hallucinations in epilepsy are 

experienced not during but after seizures, and as anomalous “psychosis-like” 

symptoms often present before and after seizures, epilepsy can sometimes be 

mistaken for psychosis (Larøi et al., 2012). Frequent headaches and anomalous 

experiences are common to both epilepsy and migraine (Bigal, Lipton, Cohen, & 

Silberstein, 2003), and the medications used to treat these conditions overlap, 

suggesting a common neurophysiological mechanism (Bigal et al., 2003). 
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Figure 1.4 – Example of a complex visual hallucination experienced as part 

of epileptic aura. This was interpreted by the patient as being Puss in Boots with 

large colourful plumes in his hat (from Schulz, Woermann, & Ebner, 2007).  

 

 

1.2.2.3 Psychosis 

Hallucinations are a core feature of the diagnostic criteria for psychosis 

(Oertel et al., 2007; Upthegrove et al., 2016), and so it is unsurprising that 40-80% 

of individuals with a diagnosis of schizophrenia experience hallucinations (Larøi, 

2012). Because the prevalence of psychosis is thought to be approximately 0.2-

0.7%, and the percentage of the general population that experiences hallucinations 

is approximately 2-15% (likely a conservative estimate), it is clear that many more 

people experience anomalous perceptions than receive treatment for psychosis, 

and that “psychotic-like” experiences are more common in the general population 

than psychotic disorders (Kao et al., 2013; Longden, 2017; Waters et al., 2014). 
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Hallucinations in psychosis are often verbal, but can also take non-verbal forms 

such as whistling or animal sounds (Larøi et al., 2012). Verbal hallucinations occur 

in an estimated 70% of patients with schizophrenia, as compared to in 10-20% of 

the general population (Upthegrove et al., 2016). Visual hallucinations are 

experienced by approximately 27-32% of those with psychosis (Oertel et al., 2007; 

Solesvik et al., 2016; Zmigrod, Garrison, Carr, & Simons, 2016), as compared to 

6% of non-clinical individuals (Zmigrod et al., 2016). The visual hallucinations are 

usually complex and corporeal (Oertel et al., 2007; Waters et al., 2014) (see Figure 

1.5). 

 

 

Figure 1.5 – Art created by Kate Elisabeth (2017), diagnosed with 

schizophrenia at age 17. Of this image, Kate says: “This is a self-portrait. I looked 

in the mirror and my eyes did this thing. I painted it.”  
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1.2.2.4 Other clinical conditions 

Hallucinations are also common to several other clinical conditions, 

including Charles Bonnet Syndrome (CBS), delirium, and neurodegenerative 

conditions. CBS is characterised by experiencing vivid visual hallucinations due to 

decreased visual input (often caused by eye disease, such as macular 

degeneration (O'Farrell, Lewis, McKenzie, & Jones, 2010)), and people with CBS 

experience both simple and complex visual hallucinations (Block, 2012; Sacks, 

2012). Delirium is a syndrome that involves disturbed consciousness and attention, 

and can have many different causes (such as medication, alcohol withdrawal, or 

infections) (Teeple et al., 2009). “Psychotic symptoms” such as hallucinations 

affect ~43% of those with delirium, and visual hallucinations are the most common 

(Teeple et al., 2009). Because of this, delirious individuals in hospitals are 

commonly (but mistakenly) referred for psychiatric assessment (Teeple et al., 

2009). Visual hallucinations are very common in neurodegenerative diseases, 

occurring at a rate of ~30-80% in Dementia with Lewy Bodies (DLB), ~22-50% in 

Parkinson’s disease, and 13% of Alzheimer’s cases (Carter & ffytche, 2015; Teeple 

et al., 2009). 

 

 

1.2.3 Co-correlates of anomalous experience in non-clinical and clinical 

groups 

1.2.3.1 Sex 

There is conflicting evidence related to sex differences in anomalous 

experiences. In one of the first major reviews of hallucinations in the general 

population, Tien (1991) found that visual hallucinations were more common in 
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males. However a recent study suggested that there are no significant differences 

between the sexes in hallucination prevalence (Preti et al., 2014). In a revalidation 

of the CAPS questionnaire (measuring psychotic-like perceptual distortions), Bell 

et al. (2011) also found no differences between the sexes. Due to this, sex was 

recorded to characterise samples, but not controlled for, in the experimental 

chapters. 

 

1.2.3.2 Age 

In non-clinical groups, research also suggests that hallucination 

characteristics are generally invariant across age, with a slight decrease in 

prevalence as age increases (with the exception of bereavement hallucinations, 

which increase with age) (Bell et al., 2011; Preti et al., 2014). However one multi-

national study suggested that age was unrelated to hallucination prevalence 

(McGrath et al., 2015). As the current studies recruited student samples, which had 

the effect of constraining age to within a somewhat limited range, age was recorded 

to characterise samples, but not controlled for, in the experimental chapters. 

 

1.2.4 Summary 

Surprisingly, the above evidence suggests that there appears to be little to 

no difference in the actual characteristics of anomalous experience – their general 

phenomenology – between non-clinical and clinical groups. Is it clear that 

hallucinations can be experienced by individuals regardless of their clinical status, 

and calls into question whether these experiences are necessarily 

“psychopathological” (as has been historically assumed in psychiatry (Upthegrove 

et al., 2016)). For example, in one of the only published trans-diagnostic reviews, 
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Waters and Fernyhough (2017) state that, as hallucinations occur across such a 

wide number of clinical and non-clinical conditions, they are “non-specific for 

psychotic disorders”, and therefore a categorical approach that relies “solely on the 

presence of hallucinations is not useful as a diagnostic aid” (Waters & Fernyhough, 

2017, p.33). Other work has also suggested that auditory verbal hallucinations, for 

example, are now known not to necessarily be disease-related, and that making a 

distinction between “pseudo-hallucinations” (non-clinical) and “true hallucinations” 

(clinical) may not be “robust or valid” (Upthegrove et al., 2016). Such categorical 

models of anomalous experiences are inconsistent with current research, which 

instead suggests a continuum of anomalous experience prevalence and intensity 

(Bauermeister et al., 2017). However, until recently very little research has 

explored the mechanistic similarities and differences between clinical and non-

clinical hallucinations. We cannot move forward in our understanding of how these 

experiences are generated without addressing this gap. This will help us to 

understand whether there are specific mechanisms that are unique to 

psychopathology, or whether a “true” continuum model is applicable (i.e. where the 

aetiological mechanisms of hallucinations are the same across clinical and non-

clinical groups) (Upthegrove et al., 2016). Therefore, it is important to explore the 

mechanisms of anomalous experiences both trans- and extra-diagnostically.3 

 
3 The jury is still out as to whether cognitive processes such as negative emotional states and appraisals, 

coping style, and biases such as “jumping to conclusions”, necessarily contribute to increased “risk” for 

psychopathology (Johns et al., 2014). However, many individuals who have anomalous experiences will not 

seek help, because these experiences may not cause significant distress or interference in daily life 

(Baumeister et al., 2017; Johns & van Os, 2001). As recent changes to the DSM centre hallucinations as 

“almost definitional of psychosis”, it is vital that any differences in anomalous experiences between clinical and 

non-clinical groups are identified in future work to improve the accuracy of category boundaries and need-to-
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The following section reviews the various neurocognitive mechanisms 

associated with anomalous experiences, in clinical and non-clinical groups.  

 

1.3 Neurocognitive mechanisms underlying anomalous experiences 

Although the idea of hallucinations as brain-based was identified as early as 

1838, there does not yet exist a unified theory of hallucinations that encompasses 

our knowledge at multiple levels of explanation (from cellular to behavioural)4 

(Weiss & Heckers, 1999; Zmigrod et al., 2016). This persistent problem is 

“amplified by the lack of unified theories that account for hallucinations in multiple 

modalities” (Zmigrod et al., 2016), with different contents (Garrison et al., 2017), 

and across different groups (Waters et al., 2012).  

 

Various iterations of top-down and bottom-up process models have been 

proposed to explain hallucinations at a cognitive level of description (Allen, Larøi, 

McGuire, & Aleman, 2008; Hugdahl, 2009). The main cognitive models are 

memory and thought intrusion, and source misattribution (but these are not 

mutually exclusive), reviewed in more detail below. These explanations are 

sometimes complemented by discussing associated brain areas, but beyond this, 

 
treat decisions (Upthegrove et al., 2016). These questions were not explored here due to the limited scope of 

this thesis. This work is outlined to acknowledge that there are other areas that are lacking in non-clinical data 

and that will need to be explored, in addition to the question of neural mechanisms explored here, to answer 

the bigger questions of what exactly contributes to psychopathology development and so differentiates clinical 

and non-clinical groups. 

 

4 For example, Huang and colleagues (Huang, Zhuo, Xu, & Lin, 2019) recently published the first molecular-

to-connectivity perspective on auditory verbal hallucinations in schizophrenia.  
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specific neural processes are not often addressed. Neural explanations mainly 

focus on exploring changes to activity levels or excitation-inhibition balances 

in specific sensory areas during hallucinations (most often in clinical groups) 

(Allen, Larøi, et al., 2008; Hugdahl, Løberg, & Nygård, 2009). Specifically, nearly 

all current models of auditory and other modality hallucinations in schizophrenia, 

several other clinical conditions, and healthy groups emphasise hyperactivity of 

auditory sensory cortex (Allen, Larøi, et al., 2008; Badcock & Hugdahl, 2012; 

Carter & ffytche, 2015; Huang, Zhuo, et al., 2019; Huang, Datta, Bikson, & Parra, 

2019; Jardri et al., 2016; Jardri, Pouchet, Pins, & Thomas, 2011; Tranulis, Sephery, 

Galinowski, & Strip, 2008; Waters et al., 2012; Zmigrod et al., 2016). The 

perceptual content of hallucinations across modalities is likely determined by the 

location of activity in the cortex (Pang, 2016),  regardless of clinical grouping (Allen, 

Larøi, et al., 2008; Carter & ffytche, 2015), i.e. hyper-activity within primary visual 

cortex generates simple visual hallucinations, related to the function of this area. 

However, explanations that go beyond this to the neural network or cellular level in 

humans are rare, and it is not yet known whether neurocognitive models of 

hallucinations are applicable across clinical and non-clinical groups (Rollins et al., 

2019)(Upthegrove et al., 2016). Some models are beginning to incorporate multiple 

brain areas and/or functional connectivity to provide a network perspective, which 

will be outlined below. 

 

This section will give a brief overview of these cognitive and neural 

explanations across clinical and non-clinical groups, and attempt to integrate them 

where possible. It is not possible to discuss all theories of hallucinations in depth 

here due to space limitations, but see (Blom & Sommer, 2011) and (Aleman & 
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Larøi, 2008) for detailed discussions. Overall, the evidence summarised below 

suggests that some mechanisms appear related to hallucinations in clinical groups 

only, whereas hyperactivation of sensory cortices appears related to hallucinations 

in both clinical and non-clinical groups.  

 

1.3.1 Top-down / bottom-up processing  

Abnormalities in both top-down and bottom-up processes are a central 

feature of several hallucination models (see Aleman & Vercammen, 2013 for a 

review). “Top-down” processing controls and influences perception using 

contextual information (such as previous experience), whereas “bottom-up” 

processing processes raw sensory information (such as sounds) (Aleman & 

Vercammen, 2013). These top-down and bottom-up processes are also now 

commonly discussed  in terms of “predictive coding” models, which further suggest 

that accurate perception depends on ongoing interaction between top-down 

expectations, producing “predictions”, and bottom-up sensory information, 

sometimes producing “prediction error”. Influential models of hallucinations can all 

be interpreted within this top-down/bottom-up processing framework to some 

degree, which is becoming a common approach, particularly with the advent of 

predictive coding perspectives.  

 

The predictive coding model has been successfully applied to hallucinations 

in psychosis by Frith and colleagues (Fletcher & Frith, 2009) and most recently to 

hallucinations across clinical and non-clinical groups by Corlett et al. (2019). Corlett 

et al. (2019) outline an “active inference” model of hallucinations, which suggests 

that hallucinations are simply an “exaggeration of normal non-hallucinatory 
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perception, to which we are all sometimes prone” – thus characterising 

hallucinations as not inherently indicative of psychopathology and supporting 

continuum theory.  

 

These top-down/bottom-up models of hallucinations intersect with neural 

models emphasising the excitation/inhibition balance. Generally, a balance 

between bottom-up prediction errors “feeding forward” and top-down prior 

expectations “feeding back” is thought to be achieved through carefully maintained 

ratios of excitation and inhibition (Sterzer et al., 2018)(Aleman & Vercammen, 

2013), perhaps through cholinergic signalling (e.g. acetylcholine; Corlett et al., 

2019). Therefore, hallucination theories emphasising imbalances in top-down and 

bottom-up processes suggest that their respective neural substrates are decreased 

inhibition and/or increased spontaneous activity in executive control brain areas 

(interfering with source monitoring and volition), and aberrant activation of sensory 

cortices (producing the vivid perceptions) (Aleman & Vercammen, 2013; Zmigrod 

et al., 2016)(Allen, Larøi, et al., 2008; Hugdahl, 2009). For example, auditory 

hallucinations are thought to be driven by aberrant “bottom-up” activity in left 

temporal lobe, which is hyperactive due to failures of “top-down” inhibitory control 

(due to impaired functioning of prefrontal and anterior cingulate cortex, for 

example) (Hugdahl, 2009). Models suggest that hallucinations cannot be fully 

explained without attention to both of these perceptual and cognitive control 

aspects, which come together to give the experience of a vivid perception that is 

external and not self-generated (Hugdahl, 2009). 
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The key models of hallucinations are reviewed below, and can be broadly 

categorised into (1) aberrant or hyperactivation of sensory cortex, (2) memory and 

thought intrusion, and (3) source misattribution or self-recognition errors (Jardri et 

al., 2011; Waters, Woodward, Allen, Aleman, & Sommer, 2010; Zmigrod et al., 

2016). These will be contextualised within this top-down/bottom-up context where 

possible. Importantly, although top-down and bottom-up mechanisms can be 

conceptualised separately to some degree, they are concurrently active and 

interactive, and so their integration is probably necessary to satisfactorily explain 

hallucinations (Zmigrod et al., 2016).  

 

1.3.1.1 Hyperactivation of sensory cortex 

Spontaneous activation of sensory cortices in the absence of external 

stimulation is thought to underlie hallucinations in both clinical (Allen, Larøi, et al., 

2008; Diederen et al., 2011; Griffiths, 2000; Horga, Schatz, Abi-Dargham, & 

Peterson, 2014; Hugdahl, 2009; Hunter et al., 2006; Jardri et al., 2011; Kompus et 

al., 2013; Linden et al., 2011; Waters et al., 2012; Waters et al., 2014; Waters & 

Fernyhough, 2019; Zmigrod et al., 2016) and non-clinical groups (Allen, Larøi, et 

al., 2008; Diederen et al., 2011; Jardri et al., 2011; Waters et al., 2012; Waters & 

Fernyhough, 2019; Zmigrod et al., 2016). For example, direct external electrical 

stimulation of healthy temporal cortex can produce a variety of auditory 

hallucinations commonly seen in schizophrenia, such as single and multiple voices, 

music, and environmental sounds (Jones, 2010). A large meta-analysis of neural 

activation during clinical hallucinations demonstrated that increased activity above 

baseline in specific sensory cortical areas was associated with hallucinations in the 

corresponding modality, across clinical and non-clinical groups (Zmigrod et al., 
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2016). Specifically, hyperactivity in secondary auditory cortex during auditory 

hallucinations, and in secondary and association visual cortices during visual 

hallucinations, was a common finding across studies (Zmigrod et al., 2016). This 

hyperactivation of sensory cortex in the absence of external stimulation appears 

sufficient for generating these vivid but false perceptual experiences, with the 

contents determined by the sensory area activated (Carter & ffytche, 2015; Jones, 

2010; Payne, 2009; Vercammen, Knegtering, Bruggeman, & Aleman, 2011). 

 

This increased activation of brain regions over and above normal or 

expected levels is often termed “cortical hyperexcitability”. Cortical hyperexcitability 

explains hallucinations by focusing on aberrations in the excitation/inhibition (E/I) 

balance in the cortex (Blom & Sommer, 2011, pp. 43-44). A delicate E/I balance is 

necessary for all brain functioning, and each cortical area maintains its own specific 

E/I balance that supports its function (Jardri et al., 2016). Therefore, an imbalance 

in excitation/inhibition may lead to increased excitability (and/or decreased 

inhibition), and resulting hyper-activation of sensory cortices may lead to 

hallucinations (Allen, Laroi, McGuire, & Aleman, 2008; Rollins et al., 2019). From 

a predictive coding perspective, although prior expectations cannot themselves 

induce supra-threshold activity, they may instead “modulate, prime, or sensitize” 

neurons to respond more robustly to certain types of sensory information (Aleman 

& Vercammen, 2013). 

 

The involvement of cortical hyperexcitability is further supported by a unique 

transdiagnostic review of the possible causal mechanisms of visual hallucinations 

(covering schizophrenia, Alzheimer’s disease, dementia with Lewy bodies, 
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Parkinson’s disease, and eye disease), which concluded that occipital and parietal 

atrophy across all patients – regardless of specific condition – could mark local 

hyperexcitability within these regions (Carter & ffytche, 2015). This is because 

atrophy may reflect changes to “internal cortical architecture” that reduce inhibitory 

control within and beyond visual areas, producing hallucinations through 

increased/decreased excitatory/inhibitory output from areas connected to visual 

processing, or increased excitation within visual areas themselves (Carter & 

ffytche, 2015). In support of this, Waters and Fernyhough (2019) reviewed the 

limited literature available that compared clinical and non-clinical auditory 

hallucinations, and concluded that whilst several mechanisms for hallucinations 

have been identified that appear discontinuous between clinical groups (such as 

dopamine synthesis, which is reduced in psychosis but not non-clinical groups 

(Upthegrove et al., 2016)), a unique candidate for a continuous mechanism 

between clinical and non-clinical groups is increased spontaneous cortical 

activation in sensory cortex corresponding to the modality of the hallucination 

(Waters & Fernyhough, 2019). Particularly, activation of auditory structures (such 

as superior temporal gyrus and bilateral inferior frontal gyri) in the absence of 

appropriate external stimulation is common to these experiences in both groups 

(Diederen et al., 2011; Kompus et al., 2013; Linden et al., 2011). This fits with 

Carter and ffytche’s suggestion that variations in the location and/or distribution of 

this hyperexcitability within the cortex likely account for variations in the content 

and complexity of visual hallucinations across conditions (Carter & ffytche, 2015). 

The authors noted that this result was surprising given the considerable 

methodological variation across the sampled studies. 
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Another line of evidence for a link between cortical hyperexcitability and 

hallucinations in both clinical and non-clinical groups comes from sensory 

deprivation research (where bottom-up input from the senses is reduced or 

completely removed). There is a well-established relationship between sensory 

degradation or deprivation and hallucinations in the corresponding modality 

(Aleman & Vercammen, 2013; Blom & Sommer, 2011). For example, visual 

hallucinations are common in blindness (such as in CBS, outlined above), and 

auditory hallucinations in deafness (Block, 2012; Sommer, Koops, & Blom, 2012; 

Yuksel, Kisa, Aydemir, & Goka, 2004). Several studies have also evidenced 

occurrence of simple and complex visual and auditory hallucinations in healthy 

individuals during sensory deprivation (Daniel et al., 2014; Mason & Brady, 2009; 

Merabet et al., 2004). The proposed neural explanation for this is that degraded or 

absent sensory input leads to increased compensatory activity within the deprived 

sensory area/s, generating hallucinations (Beniczky et al., 2002; Daniel, 2017; 

Pang, 2016). 

 

This model suggests that our everyday experience is “controlled” by 

incoming, bottom-up sensory information, with this information acting in an 

inhibitory manner to “constrain” perception. Loss of this input (or the areas that 

process this information) may therefore promote hyperexcitability in these sensory 

pathways (Daniel, 2017; Pang, 2016). This is also known as “release theory”, 

whereby a lack of inhibitory control over sensory cortex activity causes experiences 

(any priors, e.g. memories) to be “released” from the subconscious into the 

conscious (Pang, 2016). Integrating with predictive coding theory, if signals from 

external stimuli / bottom-up processing become weakened or are removed entirely, 
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internal experiences and priors (top-down processing) may become more salient 

and too strong. This may impair reality monitoring and allow internal priors to “win 

out”, causing hallucinations (Aleman & Vercammen, 2013; Corlett et al., 2019; 

Upthegrove et al., 2016)(Reichert et al., 2013).  

 

Indeed, research using deep learning artificial neural networks to model 

hallucinations in CBS has demonstrated that input degradation (equivalent to 

sensory impairment) initially leads to a decrease in neuronal activity, which is then 

compensated for by homeostatic regulators significantly increasing unit excitability 

above baseline in order to restore “balance”, causing hallucinations (Reichert, 

Series, & Storkey, 2013). 

 

Although there may be differences in patterns of hyperexcitability between 

groups or types of experiences (as suggested by Carter & ffytche, 2015), this would 

not undermine the involvement of hyperexcitability in non-clinical hallucinations per 

se, but simply mean that even hyperexcitability is a quasi-continuous mechanism 

(and so call into question fully continuous spectrum models). There is a need to 

understand the mechanisms that lead to hyperexcitability – but this issue is beyond 

the scope of this thesis. Research has evidenced hyperactivation of common brain 

networks between clinical and non-clinical groups (Diederen et al., 2011; Kompus 

et al., 2013; Linden et al., 2011), and so the concept of cortical hyperexcitability is 

an intriguing (if general) starting point from which to identify similarities and 

differences between groups. 
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Therefore, hyperactivation of sensory cortex is a common bottom-up 

aberration highlighted by models of hallucinations, particularly in the auditory 

modality. Several authors suggest that bottom-up hyperactivation in sensory cortex 

is sufficient to elicit vivid hallucinations that are experienced as involuntary and 

external (Jones, 2010; Vercammen et al., 2011). For example, hyperactivation in 

areas such as superior frontal gyri, inferior parietal lobe, and Wernicke’s could 

contribute to externality, as these areas are responsible for spatial localisation 

(Badcock, 2008; Cruz, Del Pozzo, Zar, & Hansen, 2019) and are active during 

hallucinations in both clinical and non-clinical groups (see “Network perspective”). 

A lack of local inhibition may also allow any hyperactivity to “propagate to higher 

levels of processing”, contributing to the hallucination’s perceived uncontrollability 

and “externality” (Kompus et al., 2013). Alternatively, other top-down impairments 

that have been evidenced in schizophrenia, such as imprecise prediction errors 

leading to reduced top-down control or missing efference copies, may also be 

linked to hallucinations in healthy groups (Garrison et al., 2017; Horga et al., 2014) 

– these are discussed below. 

 

However, what is missing from the literature are studies specifically 

exploring possible measures and manipulators of hallucinations and cortical 

hyperexcitability spefifically, in large, healthy samples, and in different modalities 

(Zmigrod et al., 2016). For example, although Hunter and colleagues (Hunter et al., 

2006) found that spontaneous activation in auditory cortex during silence was 

associated with activity in anterior cingulate cortex in a healthy sample – an area 

thought to be involved in attention and the “behavioural drive to produce speech” 

(Boksa, 2009) – this study did not include any hallucination measures to further 
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probe this relationship. This is a key issue with many studies in this area, and will 

be returned to in the “Integrated perspective and outstanding issues” section.  

 

1.3.1.2 Memory and thought intrusion 

This perspective highlights the role of disinhibited memories and thoughts 

(including fragments of stored representations such as words), which may “intrude” 

into conscious experience and be experienced as hallucinations (Badcock & 

Hugdahl, 2012; Zmigrod et al., 2016). Although a popular model in the past, more 

recent work has suggested that intrusive memory approaches can only explain a 

fraction of hallucination content; those including fragments of traumatic event 

memories (Jones, 2010). Outside of trauma, memory intrusions do not seem able 

to account for the majority of common auditory hallucination content, such as 

hearing voices narrating the individual’s day-to-day life, dynamic dialogues 

between the individual and voice/s (Jones, 2010), or multiple voices conversing 

(Upthegrove et al., 2016). Whilst some studies have observed activation of 

memory-related areas during hallucinations (Jardri et al., 2011), others have not 

(Diederen et al., 2011).  

 

What is also not clear in this explanation is how intrusive memories or 

thoughts (experienced as unwanted but internal, and generally caused by the 

agent) are perceived as truly hallucinatory (i.e. external, and not caused by the 

agent). Intrusive thoughts are common in many clinical conditions (such as 

obsession compulsive disorder) (Seli, Risko, Purdon, & Smilek, 2017), but are 

clearly not synonymous with hallucinations. Therefore, for intrusive memories or 

thoughts to be experienced as hallucinations, the intrusions must be labelled as 
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other-generated and external – which does not seem to be sufficiently explained 

by intrusion models. Source misattribution perspectives may offer an explanation.  

 

1.3.1.3 Source misattribution and self-recognition errors 

“Source attribution” is a specific top-down process that allows us to 

distinguish between internal and external sensory information (or “sources”). 

Deficits in this source (or reality) monitoring process may lead to non-recognition 

of or misattributions about the source of stimuli or events, such that inner 

experiences are labelled as externally-sourced and experienced as hallucinations 

(Zmigrod et al., 2016). Most proposed mechanisms of auditory verbal 

hallucinations in schizophrenia address some aspect of these inaccurate 

“self/other” distinctions or self-recognition failures (Waters et al., 2012) and 

highlight misattribution of inner speech to the external environment (Hugdahl et al., 

2009; Upthegrove et al., 2016).  

 

These explanations provide a possible mechanism by which memory and 

thought intrusions could be mislabelled as other- and externally-generated, rather 

than self- and internally-generated (Kinderman, 2011). A strength of these 

explanations is that the usual contents of inner speech – focused on the control or 

regulation of action – are similar to common contents of auditory verbal 

hallucinations, such as commenting on day-to-day life and issuing commands (“Go 

to the hospital”) (Jones, 2010). 

 

Misattribution of inner speech to the external environment may be caused 

by increased top-down processing enhancing the influence of our expectations on 
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experience, such that inner signals are stronger than bottom-up external sensory 

signals (Aleman & Vercammen, 2013). It is also possible that weakened top-down 

processing can contribute to misattribution, for example through decreased 

inhibitory control from dorsolateral prefrontal cortex and weakened activity in 

source monitoring areas (dorsal and ventral anterior cingulate, supplementary 

motor area, and cerebellum) (Allen, Larøi, et al., 2008).  

 

Additionally, some work suggests that dysfunctional connectivity between 

sensory cortices, and monitoring and volition areas, reduces the ability of these 

monitoring areas to modulate or inhibit e.g. auditory cortex activity (Jones, 2010). 

Hyperactivity of sensory cortex may contribute to increased perceived loudness 

and externality of the inner voice, and so non-recognition or misattribution of inner 

speech (Jardri et al., 2011; Jones, 2010; Vercammen et al., 2011). This may occur 

in healthy but hallucination-prone individuals in the absence of any general source 

monitoring deficits (Garrison et al., 2017). 

 

However, inner speech models face several problems. It is unclear how 

misattribution of one’s own inner speech to the environment could produce 

hallucinations experienced as the voice of another person or multiple or conversing 

voices (Jones, 2010; Upthegrove et al., 2016), or non-voice hallucinations, which 

are common and include music, whistling, blowing, clicks, and bangs, for example 

(Jones, 2010). Neuroimaging studies generally give solid support for defective 

source monitoring (of inner speech) as central to auditory verbal hallucination 

generation in schizophrenia (Jones, 2010), but the evidence is limited and mush 

less consistent for non-verbal and non-clinical hallucinations. Some research has 
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observed reality-monitoring deficits in healthy participants predisposed to visual 

hallucinations (Aynsworth, Nemat, Collerton, Smailes, & Dudley, 2017), whereas 

other work has not observed deficits in either reality monitoring or internal source 

monitoring in healthy participants predisposed to auditory hallucinations (Garrison 

et al., 2017; Kompus et al., 2013; Thoma et al., 2017). 

 

Therefore current evident suggests that hallucinations in patients are driven 

by both bottom-up hyperactivation of sensory cortex and top-down impairments, 

such as source or reality monitoring. In contrast, there is good evidence that 

hallucinations in healthy individuals are at least partly driven by the same bottom-

up aberrations (Garrison et al., 2017; Kompus et al., 2013), but mixed evidence for 

involvement of generalised top-down impairments (Waters & Fernyhough, 2019). 

These ideas are returned to in the “Integrated perspectives” section below.  

 

1.3.1.4 Forward/efference copy models 

“Efference copies” are copies of action or motor signals (such as inner or 

prepared speech) that allow self/other distinctions to be made. These efference 

copies are sent from planning to sensory brain areas, allowing the agent to 

compare predictions with sensory information or consequences, and so distinguish 

between intended/self-generated and external/other-generated events. The link 

between efference copies errors, self/other distinctions, and hallucination 

generation has been applied to schizophrenia by many researchers (Backasch et 

al., 2014; Blakemore, 2017; Pynn & DeSouza, 2013). For example, efference 

copies sent from speech production systems may act to control auditory cortex 

activity in a top-down manner, labelling prepared speech as self-generated and 
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suppressing activity of auditory cortex in response to the sound of the uttered 

speech or inner voice (Chen et al., 2011). 

 

However, there is a lack of direct evidence for this theory, in any group 

(Garrison et al., 2017). Further, as described above, evidence for self-other 

distinction deficits in non-clinical groups experiencing hallucinations is mixed 

(Waters et al., 2012), and current evidence suggests that these deficits are a 

feature of specific clinical groups such as schizophrenia (Garrison et al., 2017). 

 

1.3.2 Network perspective 

Although the neural networks involved in hallucinations have been studied 

in patients, design flaws (e.g. lack of hallucinating but healthy control group, not 

controlling for medication or patient age (Jardri et al., 2011)) and other common 

confounds mentioned above mean that these networks have not been specifically 

linked to hallucination generation or experience (rather than other clinical variables 

or symptoms, or general syndromes) in most studies. However, Diederen et al. 

(Diederen et al., 2011) evidenced a cortical network of activity during auditory 

hallucinations (“hallucinations-on” state) that was common to both clinical 

(psychosis) and non-clinical hallucinators (see Table 1.1). This network constituted 

significantly increased activation (as compared to the baseline “hallucinations-off” 

state) in frontal and temporoparietal regions involved in speech perception and 

production, and emotion. Importantly, there were no significant differences in this 

activation between the groups (Diederen et al., 2011). These findings are 

supported by other work exploring auditory hallucination networks in non-clinical 

groups (Linden et al., 2011).  
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In schizophrenia and schizophrenia spectrum disorders, auditory 

hallucination networks also involve frontal and temporoparietal areas (Allen, 

Modinos, et al., 2012; Jardri et al., 2011) (see Table 1.1). However the involvement 

of orbitofrontal cortex, hippocampus, and para-hippocampal region appear unique 

to schizophrenia (Allen, Modinos, et al., 2012; Jardri et al., 2011). This may be 

because hallucinations in clinical groups have been clearly linked with self-

monitoring deficits (Jones, 2010) and are more likely to contain intrusive or 

traumatic memories (as outlined above, and given that emotional distress and 

trauma are key in clinical diagnosis)(Gershuny & Thayer, 1999; Heriot-Maitland, 

Knight, & Peters, 2012). Therefore, Jardri et al.’s (2011) suggestion that 

hallucinations are generated through a combination of unbidden memories (that 

activate sensory cortex) and misattributions appears applicable to clinical groups 

only. 

 

Bottom-up sensory cortex hyperactivity could be caused by prediction error 

deficits (Horga et al., 2014). Horga and colleagues (Horga et al., 2014) 

demonstrated that increased activity in left auditory cortex (in the absence of 

external auditory stimuli) correlated strongly with weaker speech-based prediction 

error signals5 during active auditory verbal hallucinations, and greater hallucination 

severity (in patients with schizophrenia as compared to healthy controls). These 

weakened prediction error signals were “not better explained by any behavioural, 

neuropsychological, or sociodemographic variables, or by illness duration or 

 
5 Prediction error signals were calculated using a complex BOLD-based model that compared activity 

associated with speech versus no-speech decision trials. See (Horga et al., 2014) for full details. 
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medication status” (Horga et al., 2014). Weakened prediction errors may cause 

imprecise information to be spread/fed forward to “higher” cortical areas, such that 

top-down processes then cannot accurately attenuate activity in sensory cortex, 

leading to sustained cortical activation. However this is just one possibility, and it 

is not yet clear what factors produce the initial hyperactivity or influence its spread 

(if any), i.e. from local to wider brain areas – particularly in healthy but hallucinating 

samples. This issue will be further discussed in the empirical chapters.  

 

Top-down control processes may also be important, but these have 

received limited attention in non-clinical groups. For clinical groups, Allen et al. 

(Allen, Larøi, et al., 2008) highlight decreased top-down inhibitory control of 

perception (mediated by decreased activation of dorsolateral prefrontal cortex and 

anterior cingulate), increased influence from emotion and attention areas 

(increased activation in orbitofrontal cortex), and decreased influence of source 

monitoring and volition areas (decreased activation of middle temporal gyrus, 

dorsal and ventral anterior cingulate, supplementary motor area) (Vercammen et 

al., 2011).  

 

Aberrations in top-down control may be further exacerbated by 

dysfunctional or decreased connectivity between hyperactive sensory cortices 

(such as left temporal) and monitoring and volition areas (such as anterior 

cingulate) in hallucinators, which could contribute to misattribution errors (Allen, 

Larøi, et al., 2008; Mechelli et al., 2007).  
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Table 1.1 – Brain areas implicated in hallucinations in clinical and non-clinical groups. There is considerably more detail for auditory 

versus visual areas due to the focus of previous research on auditory hallucinations. No areas unique to non-clinical groups have 

 MODALITY LOBE AREA FUNCTION 

CLINICAL AND 

NON-CLINICAL 

GROUPS1-5, 7 

Auditory  

Temporal lobe 

Primary and secondary auditory cortex Auditory processing 

Superior temporal gyri and sulci 

(Auditory association cortex, overlaps with 

Wernicke’s area) 

Sound and speech perception, processing human 

voices 

Superior temporal pole Semantic processing and memory 

 Insula Inner speech production, emotional cognition 

Parietal lobe 
Inferior parietal lobe 

(part of Wernicke’s) 

Speech processing, emotion 

Frontal lobe 

Left precentral gyri (primary motor cortex, 

overlaps with Broca’s) 

Voluntary movement, including speech 

Bilateral inferior frontal gyri (including Broca’s) Speech production and processing, verbal imagery 

Visual  
 Primary and secondary visual cortex Visual processing 

Visual association cortex Visual processing 

CLINICAL 

GROUPS ONLY 

(SCHIZOPHRENIA, 

SCHIZOPHRENIA 

SPECTRUM 

DISORDERS)3,6, 8 

Auditory  

Temporal lobe 
Middle temporal gyri 

(Auditory association cortex) 

Speech production 

Frontal lobe 
Orbitofrontal cortex Executive control, integrates information from 

sensory and limbic areas 

Limbic lobe Hippocampus, parahippocampal region Memory, recall 

Basal ganglia Right internal globus pallidus Voluntary movement 
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yet been identified. References: (1) Diederen et al., 2011; (2) Linden et al., 2011; (3) Jardri et al., 2011; (4) Barkus et al., 2007; (5) 

Vincent et al., 2005; (6) Allen et al., 2012; (7) Kompus et al., 2013; (8) Zmigrod et al., 2016.  
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1.3.3 Integrated perspective and outstanding issues – A focus on cortical 

hyperexcitability  

Despite considerable previous research, a unified theory does not yet exist 

that uses specific neural mechanism/s to explain the various cognitive and 

perceptual features of hallucinations (Jones, 2010; Zmigrod et al., 2016). What is 

clear from the literature is that out of the multiple mechanisms and explanations for 

hallucinations that exist, some appear discontinuous and some continuous 

between clinical and non-clinical groups. Hallucinations in patient groups appear 

to be driven by both bottom-up spontaneous hyperactivation of sensory cortices 

and top-down impairments, but in healthy individuals appear to be primarily driven 

by these bottom-up aberrations (Hugdahl, 2009). Therefore, bottom-up cortical 

hyperexcitability may represent a continuous mechanism across groups (Allen, 

Modinos, et al., 2012; Waters & Fernyhough, 2019; Zmigrod et al., 2016), whereas 

top-down changes may be restricted to certain clinical categories (Hugdahl, 2009; 

Kompus et al., 2013). Research that explores practical measures and manipulators 

of cortical hyperexcitability (that could also be applied across groups) is lacking. 

The growing evidence for such experiences in healthy people requires the 

investigation of mechanisms that can explain these experiences. Therefore, this 

thesis works to bridge some of these gaps in our knowledge and models of 

hallucinations by exploring the contribution of cortical hyperexcitability to 

anomalous experience, in large non-clinical samples.  

 

It is important to again note here that this thesis limits its focus to cortical 

hyperexcitability for the above theoretical reasons (and due to practical 

constraints), however this is of course only one possible mechanism and additional 
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work will need to explore whether the other mechanisms outlined above are also 

applicable to healthy groups (and other possible continuous factors). 

 

Although Waters and Fernyhough (2019) suggest that continuity of 

experience does not equal continuity in mechanism, it appears that cortical 

hyperexcitability is certainly a possible exception and may very well bridge clinical 

and non-clinical experiences. Although brain activity associated with simple 

hallucinations in medical conditions such as acquired deafness appears localised, 

whereas activity associated with complex hallucinations in schizophrenia is 

widespread (Waters & Fernyhough, 2019), this may be due to the relative simplicity 

or complexity of anomalous experience in these groups. Elliot et al. (2009) found 

that the localisation of seizure activity in epilepsy predicted the modality of simple 

hallucinations (seizure activity in visual cortex produces visual percepts), but that 

as the complexity of the hallucinations increased, localisation became more difficult 

(Elliott, Joyce, & Shorvon, 2009). However whether such patterns also apply to 

non-clinical experiences is not yet known, and further research is required to 

determine whether the relative localisation or spread of hyperactivity is associated 

with hallucination modality and phenomenology. 

 

 

1.4 What is cortical hyperexcitability? 

1.4.1 Current definition of cortical hyperexcitability 

Cortical hyperexcitability is a form of aberrant neural activity. During normal 

functioning, a delicate balance of inhibition and excitation is usually maintained by 

homeostasis, to ensure appropriate refractory periods and neuronal firing rates and 
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so support accurate perception and appropriate functioning (Isaacson & Scanziani, 

2011; Jardri et al., 2016; Stafstrom, 1998). As excitatory processes are also 

normally modified by inhibitory processes across neuronal networks, inhibition 

“sculpts” excitation in a dynamic manner (Stafstrom, 1998). From this it follows that 

aberrations in these carefully maintained balances and processes could result in 

hyperexcitability.  

  

Cortical hyperexcitability can be defined in several ways depending on the 

level and detail of the description, and whether it is attached to a specific disorder. 

For example, hyperexcitability can occur “at one or more levels of brain function”, 

such as at the network level, at the level of the neuronal membrane or intracellular 

messenger cascades, and via changes to neurotransmitters and their receptors 

(Stafstrom, 1998, p.342). For the purpose of this thesis, however, cortical 

hyperexcitability is defined as excessive excitability of cortical neurons over 

and above expected levels, as determined by brain homeostasis and normal 

functioning. Importantly, significant activation in a specific region that would be 

expected during normal sensory stimulation or functioning, but that occurs 

spontaneously in the absence of that sensory stimulation, is here classed as 

hyperexcitability. This is because this activation is occurring above the expected 

level, where there is insufficient sensory stimulation to explain that level of activity 

(Hunter et al., 2006; Kompus et al., 2013). For example, auditory hallucinations 

have been consistently associated with activation in brain areas involved in 

processing external speech, in the absence of this speech (Allen, Larøi, et al., 

2008; Kompus et al., 2013; Shergill et al., 2001).  
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This definition was selected to be as neutral as possible (i.e. not referencing 

any specific condition or disorder) whilst also encompassing the essential criteria 

of hyperexcitability listed in the literature across conditions, disorders, and 

diagnoses. The current definition is also purposefully removed from the specific 

mechanisms that can potentially cause the hyperexcitability itself, as these are not 

the focus of this thesis, and the specific data gathered during this research also 

cannot determine which mechanism/s are causing the hyperexcitability. Even when 

removed from specific causative mechanisms, “it is useful to think about 

[hyperexcitability] as a disruption in the normal balance between excitation and 

inhibition in part or all of the brain” (Stafstrom, 1998, p.343). Although cortical 

hyperexcitability is associated with many different conditions and disorders 

(discussed below), it can occur in the brain of any person.  

 

1.5 Overview of evidence for cortical hyperexcitability as a 

mechanism underlying anomalous experiences 
This section gives a more detailed overview of evidence for the association 

between cortical hyperexcitability and anomalous experiences, in clinical groups 

(briefly, for context) and in healthy samples. 

 

1.5.1 Migraine 

Research has indicated that migraine aura clearly has a cortical origin 

(Coppola et al., 2007), and the idea that the brains of migrainers are hyperexcitable 

is a leading theory of migraine and aura pathophysiology (Bridge et al., 2015; 

Coppola & Schoenen, 2012; Cosentino, Fierro, & Brighina, 2014a; Datta, Aguirre, 

Hu, Detre, & Cucchiara, 2013; Eikermann-Haerter & Ayata, 2010; Hadjikhani, 
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2008)6. Cortical spreading depression (CSD) is thought to be the 

electrophysiological correlate of migraine aura (Block, 2012; Charles & Baca, 2013; 

Goadsby, 2001). CSD involves an initial wave of glial depolarisation that spreads 

across the cortical surface, followed by reduced or suppressed cortical activity in 

the wake of the depolarisation (Block, 2012). Aberrant neuronal excitability may 

predispose individuals with migraine to CSD, with the initial wave of excitation in 

occipital cortex producing the aura (Evans & Aurora, 2012). A generalised 

imbalance in the levels of excitation and inhibition may also exist in migraine 

(Bridge et al., 2015). This imbalance may be due to, for example, deficits in 

glutamatergic (excitatory) and GABAergic (inhibitory) signalling, which may also 

increase cortical vulnerability to CSD (Bridge et al., 2015; Zielman et al., 2017). 

 

1.5.2 Epilepsy 

In epilepsy, a disruption to the balance of excitation and inhibition in the 

brain leads to hyper-excitability and hyper-synchronisation of neurons, which 

generates seizures (Devinsky, Vezzani, Najjar, De Lanerolle, & Rogawski, 2013; 

 
6 There remains some debate in the literature as to whether the cortex is hyper- or hypo-excitable in migraine 

generally, or whether there is an overall condition of “hyper-responsiveness” (Consentino et al., 2014; Coppola 

et al., 2012). Migraine has distinct stages; prodromal or pre-ictal, ictal, post-ictal, and inter-ictal, with each 

stage presenting unique electrophysiological features (Aurora & Wilkinson, 2007), and so it is likely that the 

state of the cortex varies from hypo- to hyper-excitable across stages (Coppola et al., 2007) with excitation-

inhibition imbalances (Bridge et al., 2015) varying accordingly. Of interest to this thesis is the state of the visual 

cortex during aura specifically, and whether the underlying neural mechanisms evidence a continuity of 

mechanism for hallucinations across different populations. Therefore, the debate surrounding this issue will 

not be expanded upon here (but see Aurora & Wilkinson (2007), Consentino et al. (2014), and Coppola et al. 

(2007) for reviews). 
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Stafstrom, 1998). Early research suggested that spontaneous neuronal firing may 

cause epileptic hallucinations (Russell & Whitty, 1955). Accordingly, artificial 

stimulation of temporal lobe seizure foci are associated with various anomalous 

experiences, such as auditory misperceptions, complex visual hallucinations (e.g. 

of complete scenes), déjà vu, and sensed presence and out-of-body experiences 

(Elliott et al., 2009; Heydrich, Marillier, Evans, Blanke, & Seeck, 2015; Persinger & 

Makarec, 1987; Schulz et al., 2007).  

 

Both migraine aura and epilepsy are thought to be caused by 

hyperexcitability, and can present with similar clinical symptoms and comorbidities 

(Belcastro, Striano, & Parisi, 2013; Bigal et al., 2003). It is well known that stimulus-

induced (“reflex”) seizures can occur as a consequence of viewing epileptogenic 

visual stimuli (the “photoparoxysmal response”), most commonly flicker and high 

contrast striped patterns – and this is caused by cortical hyperexcitability of primary 

visual cortex (Ferlazzo, Zifkin, Andermann, & Andermann, 2005), as in migraine 

(see Figure 1.1 above). Further evidencing this overlap, the term “migralepsy” has 

been coined to refer to epileptic seizures with migraine-like features (Belcastro et 

al., 2013). For example, in a case of migralepsy, visual aura was experienced along 

with déjà vu and olfactory hallucinations (fresh laundry) followed by seizure 

(Belcastro, 2013). Other recent work has also demonstrated a common 

hyperexcitability syndrome in epilepsy and migraine (De Simone et al., 2007; 

Mantegazza & Cestèle, 2018; Zarcone & Corbetta, 2017).  

 



65 
 

1.5.3 Psychosis 

Hallucinatory experiences associated with various psychoses, such as 

schizophrenia, are also related to “excess excitability” in sensory areas (Block, 

2012, p.85; Jardri et al., 2016). Numerous studies have evidenced a relationship 

between sensory cortex hyperactivity and hallucinations within corresponding 

senses in psychosis (Allen, Larøi, et al., 2008; Dierks et al., 1999; Homan et al., 

2014; Oertel et al., 2007; Silberstein & Young, 1995; Silbersweig et al., 1995; 

Waters et al., 2014). Other research has suggested that visual hallucinations in 

psychosis may be caused by an underlying generalised cortical hyperexcitability7 

(Csaszar, Kapocs, & Bokkon, 2019), which may interfere with bottom-up sensory 

processing by increasing system noise, and so lead to increased focus on or 

responsiveness to internal stimuli and reduced responsiveness to external stimuli 

(Spencer et al., 2004; Upthegrove et al., 2016).  

 

The role of hyperexcitability in hallucinations in schizophrenia is supported 

by a number of meta-analyses finding significant reductions in auditory 

hallucinations using low-frequency repetitive transcranial magnetic stimulation 

(rTMS) over Wernicke’s area in left temporo-parietal cortex (Cole, Green Bernacki, 

Helmer, Pinninti, & O'Reardon, 2015; Slotema, Aleman, Daskalakis, & Sommer, 

2012; Slotema, Dirk Blom, Hoek, & Sommer, 2010; Tranulis et al., 2008). This type 

of stimulation is thought to reduce excitability of targeted cortex, and so Tranulis et 

 
7 This hyperactivity may arise due to dysregulated GABAergic, glutamatergic, and serotonergic signalling 

(Jardri et al., 2016). Interestingly, hallucinations are typically induced in healthy individuals using drugs that 

target the functioning of these same neurotransmitters, suggesting their dysregulation may be responsible for 

hallucinations generally (Rolland et al., 2014).  
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al. (Tranulis et al., 2008) suggest these findings strongly support abnormal 

hyperactivity models of hallucinations.  

 

However, there are several other possible functional mechanisms for 

hallucinations in psychosis, including erroneous self-monitoring processes (as 

discussed above) and increased activity in deep brain structures in addition to 

sensory cortices (Allen, Larøi, et al., 2008). It has been suggested that deep 

structure hyperactivity generates or modulates hallucinations, whilst sensory 

cortex hyperactivity determines their perceptual content (Allen, Larøi, et al., 2008; 

Silbersweig et al., 1995). The influence of these other mechanisms may explain 

why the duration of hallucination-reducing rTMS effects appears to be less than 

one month (which is surprising given that rTMS treatment involves intensive daily 

treatments for two to four weeks (Slotema et al., 2012)). This could suggest that 

even intensive treatment is not sufficient to alter system excitability long-term, 

and/or that the factors mentioned above are not addressed by this rTMS treatment 

and so continue to influence hallucination generation. So, although cortical 

hyperexcitability plays a key role, addressing this alone will not offer a complete 

mechanistic explanation (or treatment solution). 

 

1.5.4 Other clinical conditions 

There are also several mechanistic similarities for other clinical conditions. 

Hyperactivation of visual areas above baseline during visual hallucinations in CBS 

has been evidenced by ffytche et al. (1998) and others (Coltheart, 2018; Painter, 

Dwyer, Kamke, & Mattingley, 2018; Reichert et al., 2013). Across CBS, 

schizophrenia, and neurodegenerative disease, atrophy of visual areas (occipital, 
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parietal, and temporal cortices) may give rise to hyperexcitability through loss of 

inhibitory neurons or modulatory control (de-afferentation) between network areas 

(Carter & ffytche, 2015).  

 

1.5.5 Non-clinical groups 

1.5.5.1 Behavioural studies 

Several studies have linked cortical hyperexcitability to anomalous 

experiences in non-clinical groups. This section provides an overview of some of 

the key and most recent contributions to this literature. 

 

Behaviourally, several studies have evidenced a relationship between 

cortical hyperexcitability and aberrant perceptions in non-clinical samples, using 

psychophysical experiments (Braithwaite, Broglia, Bagshaw, & Wilkins, 2013; 

Braithwaite, Broglia, Brincat, et al., 2013; Braithwaite, Marchant, Takahashi, Dewe, 

& Watson, 2015; Braithwaite, Mevorach, & Takahashi, 2015; Fong, Takahashi, & 

Braithwaite, 2019; Georgeson, 1976; Pearson et al., 2016). For example, it is 

possible to induce hallucinations and distortions in non-clinical participants using 

achromatic, square-wave striped “pattern glare” stimuli, which are thought to irritate 

the visual cortex and induce hyperexcitation of visual neurons8 (Bargary, Furlan, 

Raynham, Barbur, & Smith, 2015; Evans & Stevenson, 2008; Huang et al., 2003; 

Wilkins, 1995; Wilkins et al., 1984). Patterns presented at 3 cycles per degree (cpd) 

of visual angle are the most visually irritating and can induce epileptiform 

 
8 Although there is good empirical evidence that pattern glare induces hyperexcitation of visual neurons 

(Huang, Cooper, Santana, Kaufman, & Cao, 2003; Huang et al., 2011), it should be noted that pattern glare 

is an indirect indicator / correlate of cortical hyperexcitability only.   
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discharges (as measured by electroencephalogram) in those with photosensitive 

epilepsy (Evans & Stevenson, 2008). According to Meldrum and Wilkins (1984, as 

cited in Evans & Stevenson, 2008, p. 297), these striped gratings “should produce 

a concentrated excitation... compromising the shared inhibitory processes... 

Patterns of stripes may therefore cause a high level of cortical stimulation leading 

to a breakdown in cortical inhibition... the neural excitation could be responsible for 

visual perceptual distortions”. This has been supported by other work suggesting 

that hyperexcitation is due to dysfunctional inhibition in visual cortex, both in 

primary cortex and beyond to areas responsible for processing motion and colour 

(Georgeson, 1976; Wilkins et al., 1984). Additionally, work on pattern glare by Fong 

et al. (2019) evidenced a significant positive relationship between state pattern 

glare scores and trait predisposition to aura-like hallucinatory experiences in a 

healthy group.  

 

A possible criticism of pattern glare and the claim that it indicates 

hyperexcitability of visual cortex, is that pattern glare stimuli can cause non-visual 

somatic sensations such as pain and nausea (Fong et al., 2019). However, in a 

study comparing migrainer and non-clinical groups, Fong et al. found a relationship 

between pattern glare experiences and trait measures of heightened visual 

sensitivity and discomfort in the migrainer group only. It is possible that the visual 

hyperexcitability induced by the stimuli impacts on vestibular and trigeminovascular 

networks to produce somatic experiences (Fong et al., 2019; Noseda, Jakubowski, 

Kainz, Borsook, & Burstein, 2011). Therefore rather than suggesting that pattern 

glare is unrelated to visual hyperexcitability, these findings indicate that the effects 

of the induced hyperexcitability can be widespread.  
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Similarly to Fong et al. (2019), Pearson et al. (2016) demonstrated that it is 

possible to induce simple visual hallucinations in healthy participants using simple 

visual stimuli. Presenting a flickering white ring imposed over a black background 

induces the experience of hallucinatory pale grey blobs rotating around the ring 

(with these also spontaneously switching direction) in all participants. This study 

also used monocular versus binocular stimulus presentations to demonstrate that 

these effects were cortically- rather than retinally-mediated, and computational 

neural field modelling to suggest that spontaneous activity in primary visual cortex 

was the most likely mechanism (Pearson et al., 2016). 

 

1.5.5.2 Brain stimulation studies 

Various brain stimulation paradigms have been used to explore the 

relationship between cortical excitability and anomalous experiences, including 

transcranial direct current stimulation (tDCS) and TMS. One study that combined 

the pattern glare task with tDCS over primary visual cortex found evidence of 

increased excitability in a non-clinical sample – that is, as the efficacy of anodal 

stimulation increased, the efficacy of cathodal stimulation decreased (Braithwaite, 

Mevorach, et al., 2015). Moreover, increased trait predisposition to anomalous 

experience (as measured by questionnaire) was specifically associated with 

increased pattern glare scores under excitatory stimulation only, suggesting that 

the trait of being predisposed to hallucinations is associated with brains that are 

more easily excitable and more difficult to inhibit due to dysfunctional inhibitory 

mechanisms (Braithwaite et al., 2015b). 
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However only a small number of studies have explored pattern glare in non-

neurological samples (Braithwaite et al., 2015b), or the relationship between 

pattern glare and anomalous experience using tDCS, and so these results are 

tentative. Further, as Braithwaite and colleagues point out, both tDCS and pattern 

glare stimuli can be viewed as stimulating the visual system. Therefore, additional 

work that explores different manipulations of these variables is needed to fully 

clarify these relationships (such as different stimulation durations, and online 

versus offline stimulation). Additionally, this study stimulated primary visual cortex, 

and so further iterations of this study should look to stimulate other visual areas to 

determine whether the relationships observed here are replicable. These issues 

will be addressed in this thesis. 

 

Several studies have linked cortical hyperexcitability and anomalous 

experience by successfully reducing phosphene thresholds (making their 

occurrence more likely) by using tDCS, TMS, or combined tDCS-TMS to excite 

visual cortex in healthy groups (Antal, Kincses, Nitsche, & Paulus, 2003a; Antal, 

Kincses, Nitsche, & Paulus, 2003b; Antal, Kincses, Nitsche, Bartfai, & Paulus, 

2004; Antal, Nitsche, & Paulus, 2001; Battelli, Black, & Wray, 2002). Inducing 

perception of phosphenes using TMS has often been used “as a measure of visual 

cortex excitability”, and “a reduced threshold for phosphene perception... implies 

greater excitability and vice versa” (Ekkert, Noreikaitė, Valiulis, & Ryliškienė, 2019). 

Accordingly, inhibitory rTMS over visual cortex has been successfully used to 

suppress both visual and auditory hallucinations (Lefaucheur et al., 2014). 
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1.5.5.3 Brain recording studies 

Electroencephalography (EEG) has mainly been used to explore visual 

hallucinations in healthy participants after inducing these experiences using 

hallucinogens targeting serotonergic signalling (such as psilocybin) (daSilva 

Morgan, Elder, ffytche, Collerton, & Taylor, 2018). A common correlate of visual 

hallucinations in these cases is decreased occipital alpha-band power, indicating 

increased excitability (daSilva Morgan et al., 2018). However, in addition to 

changes in cortical excitability, decreased occipital alpha-band power and 

increased gamma-band power during hallucinogen-induced visual hallucinations 

suggest the involvement of increased selective attention and “formation of 

conscious perceptions via access to attentional processes” respectively (daSilva 

Morgan et al., 2018). The neural mechanisms behind these are not yet known. This 

also highlights the limited explanatory power of cortical hyperexcitability alone.  

 

Vivid and complex visual and auditory hallucinations can also be induced in 

healthy individuals using sensory deprivation (Aleman & Vercammen, 2013; Block, 

2012; Boksa, 2009), which is thought to produce hallucinations through increasing 

excitability of sensory cortex (as discussed above; see Daniel, 2017). As sensory 

deprivation can produce transient “psychotic-like” experiences in non-clinical 

populations (such as perceptual distortions), it has been used as an experimental 

model of psychosis (Daniel, 2017). Daniel (2017) suggested that elevated cortical 

hyperexcitability may play a role in this hallucination proneness, with decreased 

baseline theta, alpha, and beta activity (as measured by EEG) observed in those 

highly prone to hallucinations thought to reflect poor inhibitory processing and 

weakened homeostatic control, as compared to a low hallucination prone group. 

Those most prone to hallucinations also reported significantly more experiences 
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associated with cortical hyperexcitability (as indexed by the Cortical 

Hyperexcitability index; Braithwaite, Marchant, et al., 2015). 

 

Similarly, a decline in auditory functioning is associated with auditory 

hallucinations in otherwise healthy older adults with hearing loss (Badcock et al., 

2017). Cortical hyperexcitability is the most common explanation for the observed 

increases in cortical activity observed during hallucinations associated with 

sensory decline (Badcock et al., 2017). Although there are other possible 

explanations, these are not at the neural level. Genetics may play a role, but there 

is currently insufficient evidence that predisposition to hallucinations specifically is 

heritable; cognitive inhibitory and reality-monitoring processes (as discussed 

above) are important, but there is little evidence for these in healthy groups or work 

that relates these to underlying neural mechanisms; and cognitive dysfunction may 

not be sufficient to explain hallucination generation specifically (Badcock et al., 

2017).  

 

1.5.5.4 Brain imaging studies 

Interestingly, recent neuroimaging work has found activation of similar 

auditory networks during auditory verbal hallucinations in individuals with 

psychosis and non-clinical voice hearers, with no significant differences in 

activation patterns between the groups (Badcock & Hugdahl, 2012; Diederen et al., 

2011; Larøi et al., 2012; Linden et al., 2011). Increased predisposition to 

spontaneous auditory activity may be the neural substrate of such experiences in 

both clinical and non-clinical groups (Badcock & Hugdahl, 2012). Recently, Abid et 

al. (2016) induced hallucinatory experiences of “magnification” (stimuli seeming 
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enlarged) in healthy participants using two types of static concentric circle stimuli; 

one set in grey, and one with checkerboard borders. Abid et al. observed significant 

activations in extrastriate cortex (Brodmann’s areas 17, 18, and 19) concordant 

with experiences of hallucinatory magnification when these stimuli were presented 

(as compared to viewing baseline stimuli), suggesting increased excitation of visual 

neurons (Abid et al., 2016). 

 

Further evidence comes from “signal detection tasks”, which are often used 

to explore auditory hallucination proneness in non-clinical groups. These involve 

participants listening to white noise imbedded with snippets of clear or at-threshold 

(difficult to detect) speech or with no speech at all. Scheper et al. (2016) found that 

speech “misperceptions” – hearing speech in white noise where none exists – are 

associated with decreased alpha-band activity over temporal regions, indicating 

high excitability. This is consistent with findings on auditory hallucinations in clinical 

groups (Maran, Grent-‘t-Jong, & Uhlhaas, 2016).  

 

However, there is still too little research that explores the mechanisms 

underlying non-clinical hallucinations to make any firm conclusions (Diederen et 

al., 2011; Larøi, 2012). Further work is needed that explores the neural 

mechanisms of hallucinations in non-clinical groups specifically – particularly in 

visual and other modalities. Diederen and colleagues (2011) suggest that the 

contributing mechanisms may be “pathophysiological”, however there is not 

currently enough evidence to confirm this – especially as similar mechanisms and 

experiences have been identified in both clinical and non-clinical groups.  
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Overall, these findings support cortical hyperexcitability as one potential 

neural substrate for anomalous experiences in non-clinical populations. Indeed, in 

a review of auditory hallucinations in schizophrenia and healthy populations, 

Waters et al. (2014) suggest abnormal, spontaneous activation of auditory 

networks as the first step of auditory hallucination generation across groups.  

 

1.5.6 Schizotypy 

The anomalous perceptions experienced as part of schizotypy have also 

recently been linked to hyperexcitability, although there are far fewer studies 

exploring this as compared to schizophrenia. For example, Ferri et al. (2017) 

explored the relationship between schizotypy (focusing on unusual perceptual 

experiences) and excitability, using spectroscopy to measure Glu/GABA 

concentrations and indexing the E/I balance using gene variants associated with 

GABA and glutamate signalling, in a healthy sample. The “temporal binding 

window” (TBW) was also measured. This provides an indication of the time window 

within which external and internal stimuli are “bound” together, and abnormally 

large TBWs are thought to contribute to erroneous integration and so abnormal 

perceptual experiences in both psychosis and schizotypy (Ferri et al., 2017). 

Evidence strongly suggests that this process depends on balances in excitatory 

and inhibitory neurotransmission (Ferri et al., 2017). It was found that higher 

glutamate concentrations combined with E/I balances shifted towards inhibition 

were associated with narrower TBW and fewer unusual perceptual experiences, 

whereas higher glutamate concentrations and E/I balances shifted towards 

excitation were associated with wider TBW and more unusual perceptual 

experiences (Ferri et al., 2017). This supports the idea of deficient inhibition and 
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increased excitation leading to anomalous experiences, here through decreased 

temporal precision and increased (but indiscriminate) saliency of both internal and 

external stimuli, even in healthy individuals. This also suggests that increased Glu 

concentration is not sufficient to increase excitation – the E/I balance must also be 

shifted towards excitation to influence the TBW and perception. 

 

 

1.6 Conclusion and aims 

Hyperexcitability may be responsible for a wide variety of hallucinatory 

experiences (Block, 2012). The available research linking cortical hyperexcitability 

to anomalous experiences generally is extensive, but still fairly limited in non-

clinical groups (as this group has received little attention until recent years). Based 

on the research above, it may be that specific mechanisms or patterns of 

hyperexcitability are unique to certain types of hallucinations in certain groups – 

which may not match with current clinical groupings. To begin to answer these 

questions, it is necessary to gather more basic data on hyperexcitability and its 

correlates in non-clinical groups. 

 

A key issue with previous hallucination research and theory is the strong 

influence of psychiatric perspectives and wide use of clinical samples, such that 

most models can only explain hallucinations in specific conditions or modalities. 

Mechanisms of auditory verbal hallucinations in schizophrenia dominate the 

literature. These models are difficult to reconcile with hallucinations in other 

conditions and in healthy groups, particularly because clinical data is confounded 

by illness duration and chronicity, comorbidity, medication use, and cognitive 
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dysfunction, for example (Allen, Modinos, et al., 2012). Due to these issues, much 

previous research has lacked both precision in teasing out the mechanisms 

underlying hallucinations specifically (as opposed to those underlying general 

clinical syndromes) (Rollins et al., 2019), and data on hallucinations in multiple 

modalities (Zmigrod et al., 2016) from large, healthy samples.  

 

Therefore, the overall aim of this thesis was to further explore the 

contribution of cortical hyperexcitability to anomalous experiences in non-clinical 

samples. This thesis sought to answer the following questions: 

 

• What, if any, are the relationships between trait and state measures9 

of anomalous experiences and cortical hyperexcitability? 

 

• Are there differences in these relationships depending on whether 

trait-state or state-state comparisons are made? 

 

• Are there differences in these relationships depending on whether 

uni-modal or cross-modal comparisons are made? 

 

 
9 Use of the terms “trait” and “state” to refer to measures and experiences, as in this thesis, is common in 

anomalous experience research (Dewe, Watson, Kessler, & Braithwaite, 2018; Fong, Law, Braithwaite, & 

Mazaheri, 2020; Fong et al., 2019; Kühn & Gallinat, 2012; Smith et al., 2013; Wright, Fowler, & Greenwood, 

2018). “Trait” measures are those assessing general predisposition to anomalous experiences, usually 

through retrospective ratings of previous experiences, whereas “state” measures ask individuals to detail 

their current, in-the-moment experiences, or quantify “online” correlates or manipulations of experiences 

(Smith et al., 2013; Thoma et al., 2017). 
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• Are specific types of trait anomalous experience related to different 

state measures of cortical hyperexcitability? 

 

 

Foreword to Chapter 2 

 

Building on previous research, this chapter explored whether previously 

identified trait-state relationships between anomalous experiences and pattern 

glare under tDCS of primary visual cortex (Braithwaite et al., 2015b) could be 

extended to extrastriate visual cortex. This allowed investigation of the influence of 

different stages in the visual hierarchy on both trait and state experiences of 

aberrant perceptions. In order to investigate a wide range of non-clinical 

anomalous experience, questionnaires that focused on visual and multiple 

modalities were used. 

 

Based on previous work (Braithwaite, Mevorach, et al., 2015), it was 

hypothesised that positive correlations between trait and state measures of 

anomalous experience and excitability would be observed in a continuous manner 

across the sample. Such findings would suggest that trait-state relationships are 

mediated in a similar way by tDCS over striate and extrastriate visual cortex. 

Additionally, it was expected that anodal stimulation would be facilitated by the pre-

existing high baseline excitability in those with high scores on a pattern glare task 

(which is a reliable indicator of cortical hyperexcitability; Evans & Stevenson, 2008; 

Harle et al., 2006) and so increase pattern glare experiences. Further, this pre-

existing excitability would decrease the efficacy of cathodal (inhibitory) stimulation 
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to decrease pattern glare experiences. In contrast, those with low scores on the 

pattern glare task (and so low to moderate excitability) would display the anodal-

excitation effect to a lesser degree, and a relatively robust cathodal-inhibition 

effect, due to hypothesised intact inhibitory mechanisms. This would suggest that 

both striate and extrastriate cortex respond in a similar way to tDCS, and that the 

efficacy of tDCS is influenced by baseline excitability. 

 

An edited version of Chapters 2 and 3 has been submitted as one journal 

article to Cognitive, Affective, and Behavioural Neuroscience. 

 

Materials relevant to these chapters (consent / screening forms, and 

questionnaires) are presented in Appendices A – G. Computational current flow 

models of tDCS for Chapters 2 and 3, which were not included in the submitted 

manuscript, are presented in Appendix H.  
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2 Chapter 2 

2.1 Introduction 

Perceptual experiences that deviate significantly from usual, everyday 

experience are known as “anomalous experiences” (Cardeña et al., 2014). 

Anomalous experiences can occur in any sensory modality; and can also be multi-

modal (Braithwaite & Dent, 2011; Braithwaite et al., 2011; Cardeña et al., 2014; 

Larøi et al., 2012). The term “anomalous experience” covers many types of 

perceptual aberration, including hallucinations and distortions. Hallucinations are 

perceptions in any sensory modality that are not elicited by a corresponding 

external stimulus (Waters et al., 2016). In contrast, distortions are misperceptions 

of existing sensory stimuli (Collerton et al., 2015). These experiences can be 

placed on a spectrum from veridical perception  to complex hallucination, with 

misperceptions and voluntary imagery occurring somewhere in between (Bentall, 

2003; Collerton, Perry, & McKeith, 2005; McCreery, 2006; Waters et al., 2016).  

 

A wide variety of anomalous perceptions are experienced by people with 

various neurological and psychiatric conditions, including migraine with aura, 

psychosis, epilepsy, and Charles Bonnet syndrome (Braithwaite, Marchant, et al., 

2015; Braithwaite, Mevorach, et al., 2015; Heydrich et al., 2015; Siddiqui & Khan, 

2016; Smith, Wright, & Bennett, 2015; Waters et al., 2014). Anomalous 

experiences can also occur in a variety of altered states, such as during sensory 

deprivation and delirium, and as a result of substance use (Cowan, Dietrich, Kim, 

& Zald, 2015; Daniel et al., 2014; Perry, Ashton, & Young, 2002). However, even 

in the absence of any kind of clinical diagnosis or altered state, these strange 

experiences are relatively common in the general population (Baumeister et al., 
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2017; Johns & van Os, 2001; Ohayon, 2000; Preti et al., 2014; van Os & 

Reninghaus, 2016). Studies with very large sample sizes have estimated 

prevalence at 7.3% for auditory verbal hallucinations (Kråkvik et al., 2015) and 

5.2% for visual or auditory hallucinatory experiences unrelated to sleep 

disturbances, alcohol or drug use (McGrath et al., 2015). This estimate rises to 

38.7% when a broader range of experiences are considered, such as olfactory, 

haptic, gustatory, out-of-body, and sleep-related hallucinations (Ohayon, 2000). 

Even complex hallucinations such as out-of-body experiences are also 

experienced by psychologically-healthy individuals (Braithwaite, Broglia, Bagshaw, 

et al., 2013; Braithwaite, Broglia, Brincat, et al., 2013; Braithwaite & Dent, 2011; 

Braithwaite et al., 2011). Overall, research indicates a surprisingly high prevalence 

of anomalous experiences in samples of the psychologically-healthy general 

population.  

 

 

2.1.1 Cortical hyperexcitability and anomalous experience  

Across neurological, psychiatric, and non-clinical groups, there exists a 

wealth of research linking increased cortical excitability to anomalous perceptual 

experiences, including but not limited to migraine with aura (Palmer, Chronicle, 

Rolan, & Mulleners, 2000), epilepsy (Panayiotopolous, 1999), Charles Bonnet 

syndrome (CBS) (Burke, 2002), psychosis (Baumeister et al., 2017), 

depersonalisation and derealisation (Schicho & Pogarell, 2014), visual stress 

(Braithwaite, Mevorach, et al., 2015), and miscellaneous cases of spontaneous 

hallucinations in healthy individuals with no clear tractable pathology (Barkus, 

Stirling, Hopkins, McKie, & Lewis, 2007; Braithwaite, Broglia, Brincat, et al., 2013; 
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Braithwaite et al., 2011). Hyperexcitability has also been related to  both “positive” 

and “negative” anomalous experiences (such as experiencing shapes or colours 

imposed on the visual field and temporary blind spots, scotomas, and tunnel vision 

respectively) (Chen et al., 2011; Cosentino, Fierro, & Brighina, 2014b; Dobry & 

Sher, 2013; Eikermann-Haerter & Ayata, 2010; Lauritzen, 2001; Simpson, 

Goadsby, & Prabhakar, 2013). The vivid visual hallucinations experienced in CBS 

are thought to be the result of deafferentation and hyperexcitability of extrastriate 

cortex, caused by lesions to visual pathways or macular degeneration (Burke, 

2002; Carter & ffytche, 2015; ffytche et al., 1998; Jang et al., 2011; Pang, 2016). 

Hyperactivation of extrastriate cortex is also thought to be central to the visual 

hallucinations experienced in dementia with Lewy bodies (Taylor et al., 2011).  

 

Braithwaite and colleagues have evidenced  signs of elevated cortical 

excitability in non-clinical hallucinators using both behavioural and brain stimulation 

methods (Braithwaite, Broglia, Bagshaw, et al., 2013; Braithwaite, Broglia, Brincat, 

et al., 2013; Braithwaite, Mevorach, et al., 2015; Braithwaite & Takahashi, 2015; 

Fong et al., 2019; Takahashi & Braithwaite, 2015). A recent multi-disciplinary 

review highlighted the central role of an imbalance in cortical excitation and 

inhibition in hallucinations, with increased excitation and/or decreased inhibition 

being consistently associated with hallucinations across the literature on 

schizophrenia (Jardri et al., 2016). 

 

Brain stimulation methods such as TMS have been used to induce and 

manipulate hallucinatory experiences in both healthy and clinical groups. Evidence 

from migraine patients, for example, suggests that these individuals have a pre-
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existing neural vulnerability to episodes of increased excitability, which may 

underlie hallucinatory aura experiences (Aurora, Ahmad, Welch, Bhardhwaj, & 

Ramadan, 1998; Battelli et al., 2002). In support of this hypothesis, visual and 

auditory hallucinations can be successfully suppressed using inhibitory repetitive 

TMS (rTMS) of the primary visual cortex and temporoparietal cortex respectively 

(Lefaucheur et al., 2014). Collectively, research suggests that elevated levels of 

neural excitability are associated with increased predisposition to anomalous 

experiences. This is unsurprising given that stable conscious experience depends 

heavily on a delicate balance between inhibitory and excitatory networks, with 

disruptions in this balance leading to altered consciousness (Vaitl et al., 2005). 

 

Neuro-imaging methods such as functional magnetic resonance imaging 

(fMRI) have also provided evidence of correlation between hyper-excitation of 

specific extrastriate visual areas and hallucination phenomenology (ffytche et al., 

1998). Recent fMRI research has supported this relationship in other groups and 

modalities. In adolescents experiencing brief psychotic episodes, auditory, visual, 

and multi-modal hallucinations were correlated with increased blood oxygenation 

level-dependent signal in the corresponding sensory cortices (Jardri, Thomas, 

Delmaire, Pins, & Delion, 2012). Several state studies have evidenced increased 

activation in speech-related areas during auditory hallucinations in schizophrenia 

(Jardri et al., 2011), and this relationship has also been evidenced in non-clinical 

groups, with no significant differences between clinical and non-clinical participants 

(Diederen et al., 2011).  
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2.1.2 Behavioural measures of cortical hyperexcitability 

The “pattern glare” task has been widely used as a behavioural proxy 

measure of visual cortical hyperexcitability (Huang et al., 2003; Huang et al., 2011; 

Wilkins, Huang, & Cao, 2004). Pattern glare refers to a collection of  experiences 

(including distortions, sensitivity, pain, and elementary hallucinations) that can be 

induced by exposure to viewing certain visual stimuli, such as striped patterns 

(gratings) (Monger, Wilkins, & Allen, 2015). A high-contrast grating with 

approximately three cycles per degree (cpd) of visual angle can induce visual 

discomfort and anomalous sensory experiences in susceptible observers, these 

experiences include visual distortions – such as bending lines, shimmering, 

zooming, – hallucinations such as coloured halos, and anomalous bodily 

sensations such as, dizziness, and nausea (Allen, Evans, & Wilkins, 2012; 

Braithwaite, Mevorach, et al., 2015; Chu, Im, Chung, & Oh, 2011).  

 

Experiencing these pattern-induced phenomena is thought to reflect an 

increased degree of cortical excitability. By this account, the gratings are thought 

to over-stimulate neurons in the visual cortex resulting in aberrant and anomalous 

perceptions (Braithwaite, Marchant, et al., 2015; Haigh et al., 2013; Huang et al., 

2011; Monger, Shah, Wilkins, & Allen, 2016). Consistent with this, pattern glare 

has been observed in migrainers experiencing aura (Huang et al., 2003; Monger 

et al., 2015; Shepherd et al., 2013) and in individuals on the autistic spectrum who 

experience visual stress (Ward et al., 2017). Research by Huang and colleagues 

(2011) used fMRI to evidence hyperneuronal activity in the visual cortex of 

migrainers in response to pattern glare gratings, supporting the relationship 

between a generalised hyperexcitability and anomalous perceptions. Furthermore, 
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excess cortical activation, and so visual discomfort, was significantly reduced in 

migrainers through the use of tinted lenses, which are thought to reduce 

hyperexcitation in visual regions by redistributing the aberrant neural activity 

(Monger et al., 2015). Interestingly, this reduction primarily occurred in areas 

anterior to V1, suggesting that hyperexcitability in extrastriate areas can influence 

anomalous perceptions (Huang et al., 2011). Experiences of pattern glare also 

occur in non-clinical samples, and are associated with predisposition to 

experiencing complex hallucinations such as out-of-body experiences (Braithwaite, 

Broglia, Bagshaw, et al., 2013; Braithwaite, Broglia, Brincat, et al., 2013; 

Braithwaite et al., 2011). 

 

Brain -stimulation and -imaging methods have also been used to index 

cortical hyperexcitability. TMS has been widely used to alter phosphene thresholds 

by manipulating excitability levels, in both clinical and non-clinical groups (Battelli 

et al., 2002; Boroojerdi, Bushara, et al., 2000; Brighina, Piazza, Daniele, & Fierro, 

2002). Migrainers have significantly lower phosphene thresholds and more 

vivid/sustained phosphenes than controls (as indexed by TMS over V5) (Battelli et 

al., 2002), and migraine prophylaxis can increase phosphene thresholds by 

decreasing excitability of visual cortex (Mulleners, Chronicle, Vredeveld, & Keohler, 

2002). Additionally, inhibitory rTMS is effective in neutralising the excessive cortical 

excitability that can result from occipital stroke, leading to a reduction in associated 

chronic visual hallucinations (Rafique, Richards, & Steeves, 2016). Using a 

combined TMS-fMRI paradigm with healthy volunteers, Boroojerdi et al. (2000) 

showed that light deprivation leads to significantly increased visual cortical 
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excitability and decreased phosphenes thresholds, again evidencing a link 

between excitability and anomalous perceptions even in non-clinical groups. 

 

There exist several questionnaire measures that attempt to quantify the rate 

and range of trait-based anomalous experiences, such as the Cardiff Anomalous 

Perceptions Scale (CAPS) (Bell et al., 2006), Cambridge Depersonalisation Scale 

(CDS) (Seirra & Berrios, 2000), and Launay Slade Hallucinations Scale Revised 

(Morrison, Wells, & Nothard, 2001). Until recently, no validated multi-factor 

screening measure existed that sought to quantify a range of perceptual 

experiences that have been specifically related to visually-induced cortical 

hyperexcitability in the literature. To rectify these issues, the Cortical 

Hyperexcitability index (CHi) (Braithwaite, Marchant, et al., 2015) was developed 

to provide a proxy measure of predisposition to anomalous experiences thought to 

be associated with cortical hyperexcitability. Exploratory factor analysis of the CHi 

suggested a three-factor structure, with different types of anomalous experience 

clustering into separate but correlated factors: visual sensitivity and discomfort; 

“positive” aberrations (additions to visual experience, such as phosphenes); and 

“negative” aberrations (loss of visual experience, such as scotoma and tunnel 

vision) (see Materials for detail) (Braithwaite, Marchant, et al., 2015).  

 

 

2.1.3 Transcranial direct current stimulation (tDCS) 

Given the apparent relationship between cortical excitability and anomalous 

experience, experimental methods for manipulating excitability levels can provide 

valuable insight into the mechanisms underlying anomalous perceptions. One such 
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method is transcranial direct current stimulation (tDCS), a non-invasive brain 

stimulation method that can alter baseline cortical excitability levels in human 

cortex (Braithwaite, Mevorach, et al., 2015; Jacobson, Koslowsky, & Lavidor, 

2012)The exact biophysical mechanisms by which tDCS exerts its effects are still 

unclear (Lauro et al., 2014). It is thought that anodal stimulation produces an 

excitatory effect by depolarising cell membranes and so increasing the likelihood 

of spontaneous neuronal firing, whilst cathodal stimulation decreases excitability 

by hyperpolarising cell membranes and so decreasing the likelihood of 

spontaneous firing (Braithwaite, Mevorach, et al., 2015; Jacobson et al., 2012; 

Lauro et al., 2014). TDCS may influence membrane potentials of cortical areas 

directly beneath electrodes as well as neural activity in adjoining regions (Lauro et 

al., 2014). Although the online effects of tDCS are thought to be influenced solely 

by changes in membrane potential, synaptic mechanisms – such as changes to 

NMDA receptors and modulation of GABAergic and glutamatergic synapses – and 

cell morphology may also contribute to the online- and offline- effects of tDCS 

(Miranda, Callejón-Leblic, Salvador, & Ruffini, 2018; Stagg & Nitsche, 2011). 

 

Modulating baseline excitability through tDCS is associated with various 

behavioural and cognitive effects, in both clinical and non-clinical brains 

(Dedoncker, Brunoni, Baeken, & Vanderhasselt, 2016; Lauro et al., 2014). In 

cognitive tasks, the anodal-excitation effect is regularly significant, whereas the 

cathodal-inhibition effect is rather weaker and less consistent (Dedoncker et al., 

2016; Jacobson et al., 2012; Lauro et al., 2014). TDCS has also been used to 

successfully manipulate phosphene thresholds in healthy subjects, with anodal and 
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cathodal stimulation of visual cortex reducing and increasing thresholds 

respectively (Antal et al., 2003a).  

 

Despite the success of tDCS methods for investigating the effects of 

excitability changes, only one study has used tDCS to investigate manipulations of 

cortical hyperexcitability and variations in pattern glare experiences (Braithwaite, 

Mevorach, et al., 2015). Here, anodal stimulation of primary visual cortex was 

significantly associated with increased anomalous perceptions indicated by a 

pattern glare task. Additionally, the greater the individual response to anodal 

stimulation, the smaller the response to cathodal stimulation – suggesting that 

excitable cortices are easier to excite and more difficult to suppress, consistent 

with a hyperexcitable cortex (Braithwaite, Mevorach, et al., 2015). 

 

Similarly, recent studies have also provided evidence that baseline factors 

(such as habitual brain states and individual differences in excitability) interact with 

tDCS to modulate its behavioural effects, prompting reconsideration of the 

traditional anodal-excitation cathodal-inhibition assumption. Visual working 

memory (VWM) studies have evidenced considerable inter-individual variability in 

behavioural responses to tDCS, based on performance. Some participants show 

the expected anodal-excitation (VWM task facilitation) and cathodal-inhibition 

(VWM task impediment) effects (Hsu, Juan, & Tseng, 2016), however in other 

studies anodal tDCS enhances visual working memory capacity in low- but not 

high-performing participants (Juan, Liang, Miggleton, Tseng, & Hsu, 2017; Tseng 

et al., 2012).For others, the positive or negative impacts on task performance from 

anodal stimulation were associated with the same direction of effect from cathodal 
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stimulation (Hsu et al., 2016). These studies suggest that receptivity to, and the 

effects of, tDCS depend on individual baseline states (Hsu et al., 2016). 

 

Furthermore, state-dependent effects on visual experience have been 

observed using TMS over visual cortex. Silvanto et al. (2007) found that adapting 

participants’ visual systems to colour resulted in phosphenes of the same colour, 

which may reflect a facilitation effect in affected neurons. With no exposure to 

adapting colour stimuli, phosphenes appeared colourless, as all neurons were at a 

similar “baseline” level of activation when TMS was applied and so were activated 

equally. More recently, (Silvanto, Bona, Marelli, & Cattaneo, 2018) combined TMS 

over primary visual cortex with various visual priming tasks (which rely on changes 

to neural excitability) as brain state manipulators. In this study, low or high baseline 

performance on a visual priming task was associated with TMS-induced facilitation 

or impairment respectively, suggesting that baseline excitability significantly 

influences TMS efficacy and resultant behavioural effects. These finding suggest 

that baseline states vary considerably across participants and directly impact both 

receptivity to and the effects of brain stimulation (Hsu et al., 2016; Silvanto et al., 

2018; Silvanto et al., 2007). and so it is vital to take state factors into account in 

tDCS application, analysis, and interpretation. Moreover, combining manipulation 

of both brain states and tDCS parameters moves beyond conventional approaches 

that assume all neurons are stimulated and respond indiscriminately, and allows a 

more fine-grained examination of the neuronal mechanisms underlying specific 

cognitive functions (Romei, Thut, & Silvanto, 2016). The current study will address 

this by exploring the relationships between state- and trait-based measures and 
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tDCS stimulation in individuals arguably displaying diverse levels of predisposition 

to anomalous perceptions. 

 

 

2.1.4 Overview of the current study 

Many pattern-glare experiences suggest the involvement of extrastriate 

cortex and are not restricted to what we might assume is the involvement of V1 

alone (i.e., motion effects and colours). In addition, the imaging study by Huang 

and collegaues (2011) demonstrated that the largest reduction in heightened 

activation from wearing tinted lenses was principally-mediated anterior to visual 

cortex (extrastriate cortex; V2, V3, V3a, V4). Other findings have shown that visual 

anomalies experienced in migraine are likely associated with dysfunctions in visual 

processing that lead to a spreading wave of hyperexcitability, which extends 

beyond primary visual cortex to extrastriate areas (Shibata, 2007; Shibata, 

Yamane, Otuka, & Iwata, 2008). 

 

By stimulating primary visual cortex (Oz), a previous tDCS investigation 

revealed evidence for increased cortical hyperexcitability in non-clinical groups 

predisposed to anomalous experiences (Braithwaite, Mevorach, et al., 2015).  

Although the anode was placed over Oz in this study, it is possible, based on 

current tDCS models, that the majority of this stimulatory field impacted on regions 

between the Oz and Cz electrodes (i.e. visual association cortex) in addition to 

those directly underneath them (Datta, Truong, Minhas, Parra, & Bikson, 2012; 

Miranda et al., 2018; Santhouse, Howard, & ffytche, 2000; Shibata, 2007; Shibata 

et al., 2008; Wurzman, Hamilton, Pascual‐Leone, & Fox, 2016). If true, then this 
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would unite the imaging findings to the nature of pattern glare experiences, and 

findings from brain-stimulation studies supporting the notion that pattern-glare 

experiences may reflect contributions from extrastriate cortex. In addition, the 

development of recent new questionnaire measures now allows us to determine 

relationships, if any, between potential background trait-based and state-based 

effects. 

 

Extending previous studies, the current investigation explored whether 

signs of cortical hyperexcitability exist beyond primary visual cortex and can be 

revealed by tDCS brain stimulation targeting higher cortical regions, and whether 

such experiences are associated with predisposition to anomalous hallucinatory 

experience. This would imply that the neural vulnerabilities underlying 

predisposition to pattern-glare phenomena, and anomalous elementary 

hallucinatory experience, do indeed extend into higher extra-striate regions – even 

for non-clinical groups.  

 

If cortical hyperexcitability in extra-striate cortex is associated with 

predisposition to anomalous perceptions, then those scoring higher on the CHi 

measure should also experience an increased intensity of sensory distortions 

associated with the state-based pattern glare task (where participants rate 

experiences of distortions online, as they experience them, rather than 

retrospectively rating their trait-based predisposition).  This would also provide 

more objective evidence that the CHi is a reliable proxy measure of anomalous 

experiences associated with cortical hyperexcitability. In addition, individuals 

whose cortices respond more readily to anodal stimulation may also display 
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reduced efficacy of cathodal stimulation in relation to the intensity of experiences 

induced from the state-based task (Study 2), as has been shown previously 

(Braithwaite, Mevorach, et al., 2015) – but now also extending into higher-level 

extrastriate cortex and with different stimulation parameters. Inclusion of a state-

based behavioural measure of anomalous experiences will allow us to explore 

whether this state factor does indeed interact with tDCS responsiveness, as 

suggested by existing literature. Following traditional models of tDCS efficacy, 

individuals with high baseline excitability (as indicated by pattern glare ratings) 

would be expected to experience more intense state-based visual distortions in the 

anodal stimulation condition, as this stimulation may be facilitated by underlying 

hyperexcitability. However, given the above work on the state-dependency of 

tDCS, we hypothesise that high and low pattern glare scorers will respond 

differently to tDCS. 

 

Several studies have successfully used brain stimulation of occipital and 

occipitoparietal cortices to induce visual distortions and hallucinations – including 

a variety of simple and complex hallucinatory experiences (Selimbeyoglu & Parvizi, 

2010). Electrode site Pz (targeting Brodmann’s area 5 and 7 – occipital parietal 

cortex) is of particular interest as the functions of BA 5 and 7 correspond to several 

of the visual distortions experienced in the pattern glare task. Activation in BA7 has 

been observed when participants view moving patterns, in addition to V5 in BA19 

(Barbur, Watson, Frackowiak, & Zeki, 1993), and different types of movement are 

commonly-experienced distortions of pattern glare stimuli (such as shimmering, 

zooming, jitter). As BA7 also serves as a convergence point for visual and 

proprioceptive functions, it is plausible that hyperexcitability in this area may be 
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responsible for aberrant bodily experiences, such as distortions of perceived bodily 

position and nausea.  

 

To assess state-based levels of cortical hyperexcitability, participants 

completed a computerised version of the pattern glare test (Braithwaite, Broglia, 

Bagshaw, et al., 2013; Braithwaite, Broglia, Brincat, et al., 2013; Braithwaite, 

Mevorach, et al., 2015). For a measure of trait-based predisposition to anomalous 

perceptions, participants also completed the CAPS (to gain a broad overview of 

individual predisposition to anomalous experiences in various modalities) and the 

newly-devised CHi questionnaire measure. Study 1 examined the effects of 20 

mins of anodal tDCS stimulation (contrasted with a sham condition). Study 2 

examined the effects of 10 mins of anodal, cathodal, and sham tDCS. The 

stimulatory montages varied in terms of active brain locations and stimulation 

duration across the studies (see Materials). 

 

 

2.2 Methods 

2.2.1 Participants 

Eighty-six participants took part in Study 1. Of these, 68 (79%) were female 

and 72 (84%) were right-handed. Participant age ranged from 18 to 39 years (x̄ = 

20.1, σ = 3.0). All participants were undergraduate/postgraduate students, 

research assistants, or support staff from the University of Birmingham (UK), 

recruited through advertisements on the Research Participation Scheme and the 

my.bham university portal. Participants received research credits or monetary 
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compensation in return for participation. A self-report screening questionnaire was 

administered at the start of each study to ensure that participants did not meet any 

of the exclusion criteria, which were: a neurological or psychiatric condition, 

personal or family history of seizure/epilepsy/recurrent fainting; seizures of 

unknown origin, compromised vision or physical state (including excessive 

caffeine/alcohol consumption the previous night; metal or medical implants 

(cochlear implant, pacemaker, medication pump, surgical clips); taking any 

prescribed or unprescribed medication that may interfere with cognitive function; 

on-going anti-malarial treatment; regular sleep disruption/disorders (such as 

insomnia); and previous significant head injury, concussion, or eye-surgery. 

Individuals who may be/were pregnant, or had taken part in more than one brain 

stimulation study in the past six months, were also not eligible to participate. 

Informed consent was obtained from participants using a consent form that 

described the nature of the study, potential benefits and risks, and participant 

compensation. The study was approved by the Ethics Committee of the University 

of Birmingham [ERN_12-0446R]. 

 

Based on previous work estimating occurrence of anomalous experiences 

in the general population at 5% (McGrath et al., 2015), we used Cochran’s sample 

size formula to calculate the needed sample size (where Z = Z value, p = estimated 

proportion of the population with this attribute, q = p-1, and e = α value (0.05)): 

𝑛0 =
𝑍2𝑝𝑞

𝑒2
 

This gives: 

𝑛0 =
(1.96)2(0.05)(0.95)

(0.05)2
= 73 
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Therefore a sample of at least 73 participants was needed. Effect sizes are 

indicated for relevant comparisons in the Results section (as correlation 

coefficients, and Hedges’ g for t-tests due to different sample sizes (Lakens, 

2013)).  

 

 

2.2.2 Materials 

2.2.2.1 Cortical Hyperexcitability index (CHi) 

The CHi (Braithwaite, Marchant, et al., 2015) is a psychometrically-validated 

proxy measure of cortical hyperexcitability, consisting of 27 items. All CHi 

questions feature two response dimensions; “frequency” and “intensity”. For each 

item, participants give responses to these two dimensions along a 7-point Likert 

scale (1-7; 1 = “Never”/”Not at all”, 7 = “All the time”/”Extremely intense”).  CHi 

questions relate to the presence, intensity, and frequency of experiences from 

three distinct but inter-correlated factors: (1) heightened visual sensitivity and 

discomfort; (2) “negative” visual aberrations (decreases in or loss of visual 

information); and (3) “positive” visual aberrations (“additions” to visual experience) 

(see Braithwaite et al., 2015). Factor 1 exclusively reflects experiences of a 

heightened sensory sensitivity to certain environmental stimuli or properties, which 

can cause discomfort, irritation, and pain. Factor 1 consists of 13 items. Factor 2 

(six items) largely relates to negative aura-type visual disturbances, such as 

narrowing of or loss of information from the visual field, blind spots (scotoma), and 

macropsia/micropsia (Braithwaite, Marchant, et al., 2015). Factor 3 (five items) 

relates to experiences of positive aura-type experiences, such as seeing shapes, 

lights, and colours imposed on the visual field. Such experiences are associated 
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with disorders that have aberrant neural activity as a core feature, such as epilepsy 

and migraine with aura (Badawy, Simon, Vogrin, Lai, & Cook, 2013; Belcastro et 

al., 2013; Eikermann-Haerter & Ayata, 2010). Factor 3 also contains a question 

related to out-of-body experiences (OBEs), defined in this study as a phenomenon 

in which the experiencer can view the world from a vantage point outside of their 

physical body. OBEs have been reported as part of migraine aura (Braithwaite et 

al., 2011; Podoll & Robinson, 1999). 

 

Both “positive” (Factor 3) and “negative” (Factor 2) aberrations have been 

associated with cortical spreading depression (CSD) models of migraine aura in 

humans (Eikermann-Haerter & Ayata, 2010; Goadsby, 2001; Lauritzen, 2001). 

Specifically, CSD involves an initial wave of spontaneous depolarisation in visual 

cortex followed by a wave of neural suppression (Charles & Baca, 2013). Evidence 

suggests that the initial over-excitation of neurons is associated with “positive” 

visual aberrations, whilst “negative” symptoms may be caused by the following 

wave of neural depression (Braithwaite, Marchant, et al., 2015; Charles & Baca, 

2013; Eikermann-Haerter & Ayata, 2010; Hadjikhani et al., 2001). 

 

 

2.2.2.2 Cardiff Anomalous Perceptions Scale (CAPS) 

The CAPS (Bell et al., 2006) is a 32-item, psychometrically-validated 

measure of predisposition to anomalous experiences across sensory modalities. 

Participants respond to each question via a binary “yes/no” response scale. If 

participants indicate “yes” for any question, they then rate their experience on three 

sub-scales – distress, intrusiveness, and frequency – all on 5-point Likert scales (1 
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= not at all distressing/distracting, very infrequent; 5 = very 

distressing/distracting/frequent).  

 

Factor analysis of CAPS components suggested three factors, one of which 

was related to “temporal lobe disturbance” (including experiences linked to non-

psychotic temporal lobe epilepsy and disturbances associated with seizure (Bell, 

Halligan, & Ellis, 2007)). This “Temporal Lobe Experience” (TLE) factor of the 

CAPS contains items related to anomalous perceptual experiences that are 

commonly reported by individuals with temporal lobe epilepsy during pre-seizure 

aura (Braithwaite, Broglia, Bagshaw, et al., 2013; Braithwaite, Broglia, Brincat, et 

al., 2013). Such experiences are not limited to clinical populations, and are known 

to also occur in the general population to an attenuated degree (Persinger & 

Makarec, 1987). Previous research has demonstrated a link between scores on 

the TLE component and OBEs in non-clinical samples (Braithwaite, Broglia, 

Bagshaw, et al., 2013). The “non-TLE” component comprises scores from all 

remaining CAPS items including those that loaded onto the factors of 

chemosensation (CS) and clinical psychosis (CP). (CAPS items that also appeared 

on the CHi were removed from CAPS data before analysis.) 

 

 

2.2.2.3 Pattern-glare (PG) task 

For the PG task, three separate types of achromatic, horizontally-striped 

gratings were presented in one block (with a chequerboard grating presented 

during the PG practice trial).  
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Each grating type differed with regard to its spatial frequency (SF); gratings 

were either non-irritating chequerboard (practice trial) (approx. 0.5 cpd both 

horizontally and vertically) (Braithwaite, Mevorach, et al., 2015), “low” (baseline, 

approx. 0.7 cpd), “medium” (critical stimulus, approx. 3 cpd), or “high” (approx. 14 

cpd) (see Figure 2.1). The low-frequency stimulus functioned to break up 

presentations of the more irritating gratings (medium- and high-frequency), prevent 

habituation, and act as a contrast for the medium- and high- frequency gratings. 

The low-frequency also acts as an index of suggestibility, and so although there 

will inevitably be some positive responses from participants when viewing this 

grating, these responses should be relatively low in number and consistent across 

the sample (Braithwaite, Mevorach, et al., 2015). The Michelson contrast was 0.7 

for all stimuli. All gratings featured a small fixation point in the centre, and were 

presented centrally and separately for 12s (stimulus diameter = 12cm) at a fixed 

distance of 80cm (visual angle = 8.53 x 11.0 degrees). In the experimental PG task, 

the low, medium, and high gratings were each presented three times, making a 

total block of 9 trials. Grating presentation order was randomised each time the 

experimental program was run, with the restriction that the same grating could not 

be presented twice in a row. Each PG trial began with the presentation of a blank 

grey screen for 8s. The trial stimulus was then presented for 12s. Participants were 

instructed to focus on the fixation point for the duration of stimulus presentation. 

The spacebar could be pressed to remove the stimulus from view if it was too 

uncomfortable to fixate and pressed again to make the stimulus reappear and allow 

the trial to continue. Spacebar presses were recorded as an additional measure of 

visual discomfort. 
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At the end of the viewing period, the stimulus was removed from the screen 

and participants were presented with various questions relating to their 

experiences during the viewing of the grating. Participants were asked to indicate 

whether they had experienced any associated visual distortions (AVDs) (such as 

shimmering, flickering, nausea, coloured halos, etc. – see Table 2.1) when viewing 

the stimulus, and to rate the intensity of each of these distortions along a Likert 

scale from 0 (“Not at all”) to 6 (“Very intense”). Each AVD was explicitly defined to 

participants, and a list of descriptions for all AVDs was provided for participants to 

ensure response accuracy. It was emphasised that participants were free to pick 

as few (including none) or as many AVDs as necessary. Finally, participants were 

asked whether they experienced the AVDs in the left or right visual fields, or equally 

across the visual field (if participants did not experience any AVDs, they selected 

“no effect”). The screen then cleared, and the above procedure repeated until the 

end of the block. 

 

Figure 2.1 – Pattern glare task stimuli; A = checkerboard (practice trial), B 

= low-frequency grating (baseline), C = medium-frequency grating. The high-

frequency grating is not shown, as this grating aliases on a small scale and so is 

difficult to faithfully reproduce here. (Images sourced from PG task program).  
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Question Response 

Did you experience 

any of the following? 

Pain 

Shadowy shapes 

Shimmering 

Flickering 

Bending 

Blue 

Red 

Green 

Blue 

Yellow 

Nausea 

Unease 

Dizziness 

Faint 

Headache 

Illusory stripes 

Zooming 

Jitter 

Physical eye strain 

Light-headedness 

Were the effects 

greater in the: 

Left visual field 

Equal 

Right visual field 

No effect 

 

Table 2.1 – An overview of questions asked during the computerised PG 

task used in the present study. Each experience was rated on a Likert scale of 

intensity from 0-6. All questions were repeated for all stimuli. 

 

 



100 
 

Before completing the main PG task, participants completed two practice 

trials that proceeded as described above, in order to familiarise themselves with 

the task. Practice trials included the checkerboard grating only. 

 

2.2.2.4 Transcranial direct-current stimulation (tDCS) 

tDCS was delivered through a battery-driven constant current stimulator 

(Magstim DC-Stimulator Plus – Magstim Ltd., UK), via a pair of conductive rubber 

electrodes covered by saline-soaked (83mM or 3% NaCl) sponges (25cm2) (see 

Figure 2.2). Electrodes of different sizes have varying effects on the stimulated 

sites. 5x5cm electrodes were chosen to maximise specific stimulation of the 

chosen areas whilst avoiding excessive stimulation of adjoining sites (i.e. from 

using larger electrodes) or increasing the variability of effects (i.e. by using smaller 

electrodes) (Nitsche et al., 2008). For example, electrodes of 35cm2 may deliver 

stimulation that is not sufficiently focal (Shin, Foerster, & Nitsche, 2015). Wide 

strapping (3MTM CobanTM self-adherent wrap) was used to keep electrodes in place 

on the head, as narrow rubber straps can put centralised pressure on electrodes 

and cause the edges to rise up, decreasing contact and increasing current density 

(Horvath, Carter, & Forte, 2014). 

 

Participants took part in all tDCS conditions and were blinded to the 

condition – a sham condition contributed towards effective blinding, and the tDCS 

machine display was hidden from participants throughout the experiment.  tDCS 

conditions were  randomised. Time between tDCS sessions was at least 48 hours 

(maximum = 1 week) to maximally reduce the likelihood of any carry-over effects 

between sessions. 



101 
 

 

In Study 1, to excite extrastriate cortex, the anode was placed over Pz and 

the cathode placed over Cz (vertex) using the standard international 10/20 

electrode positioning system (TransCranial Technologies, 2012). A midline 

montage was chosen to target both hemispheres (TransCranial Technologies, 

2012), with a Cz reference point in accordance with recommendations from tDCS 

literature (Antal et al., 2004; Peters, Thompson, Merabet, Wu, & Shams, 2013; 

Reinhart, Xiao, McClenahan, & Woodman, 2016). A bicephalic arrangement was 

used, as monocephalic setups have been found to produce results no different to 

sham, and extracephalic reference electrodes may require greater current 

densities to produce cognitive effects (which may have safety implications due to 

current passing through the brainstem, or lead to greater discomfort for 

participants). In the sham condition, electrodes were positioned at the same 

locations. All participants received offline anodal stimulation for 20 minutes (1.5mA, 

0.06mA/cm2, 30s fade in/out) or sham stimulation for <1 minute (10s fade in/out, 

30s stimulation up to 1.5mA). This montage was chosen for several reasons. 

Previous research using tDCS over visual areas in healthy participants generally 

used stimulation durations of between 10-20 minutes (Antal et al., 2004; 

Braithwaite, Mevorach, et al., 2015; Chadaide et al., 2007; Viganó et al., 2013), 

with a duration of 10 minutes being sufficient to shift excitability up to 10 minutes 

post stimulation (Antal et al., 2003a). For the current study, stimulation duration 

was set at 20 minutes, in line with previous research that successfully altered 

pattern glare experiences using tDCS (Braithwaite, Mevorach, et al., 2015). In 

visual tDCS studies on healthy subjects, stimulation intensity is typically 1-1.5mA, 

and current density is typically 0.04-0.06mA/cm2 (Chadaide et al., 2007; Marshall, 
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Esterer, Herring, Bergmann, & Jensen, 2015; Nitsche & Paulus, 2000; Walsh, 

2013). These levels are sufficient to increase or decrease excitability for at least 

five minutes post-stimulation, whilst being safe and preventing participant 

discomfort (Nitsche & Paulus, 2000; Walsh, 2013). Some work has also suggested 

that participant blinding becomes ineffective at 2mA stimulation intensity, as at this 

level participants are able to accurately judge the stimulation condition above 

chance level (likely due to increased scalp sensations. During the sham condition, 

participants were stimulated for a very short amount of time (<1 min) to give the 

experience of tDCS-related sensations (such as tingling and heating) without also 

inducing any discernible cognitive effects that could alter task responses (Nitsche 

et al., 2008). Thirty seconds of stimulation during the sham condition ensures 

sufficient scalp sensations such that distinguishing between sham and active 

stimulation conditions is more difficult (Gandiga, Hummel, & Cohen, 2006). To 

maintain consistency between conditions, participants immediately completed the 

behavioural task 20 minutes after stimulation onset in both conditions. 

 

Figure 2.2 – tDCS montage from Study 1. 
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Only anodal and sham stimulation conditions were included in Study 1. 

There were two reasons for this decision. First, the most recent meta-analysis on 

the topic  has revealed that  while anodal stimulation appears to often have 

significant effects in cognitive studies, cathodal stimulation does not produce 

consistent and reliable effects (Jacobson et al., 2012). Second, in the only available 

study that closely resembles the current one, Braithwaite et al. (2015) found no 

significant differences between pattern glare effects under sham and inhibitory 

tDCS conditions – thus providing a sound premise for the decision here. 

 

Pattern glare (PG) task stimuli were presented on a HP p1230, 20” monitor 

(30.7x40.5cm, 1600x1200 screen resolution, 85Hz refresh rate). The present study 

utilised  the same computerised version of the PG task reported previously 

(Braithwaite, Mevorach, et al., 2015). The PG task was run using a custom E-Prime 

2.2 program in a dimly-lit laboratory, in which the main source of illumination was 

the computer monitor. A small desk lamp, directed away and positioned far from 

participants, provided minimal background lighting. Participants used the keyboard 

and mouse to input task responses. 

 

 

2.2.3 Design and Procedure 

The current study used a within-participants repeated measures design. 

Current research suggests that circadian rhythms play an important role in 

regulating cortical excitability, and that the results of studies using transcranial 

electric stimulation may be unreliable if the circadian influence on excitability is not 

accounted for (Ly et al., 2016). Therefore, participants always took part in all 
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sessions of the experiment at the same time of day (± 1hr); i.e. if Participant 1 

started their first session at 2pm, their remaining sessions would start from 1-3pm. 

In the study, participants: (i) completed the screening questionnaire, (ii) read the 

study information and gave consent, (iii) had the tDCS electrodes positioned on 

the head and tDCS started, (iv) completed selected questionnaire measures, (v) 

completed the PG task 20 minutes after stimulation onset, and (vi) were debriefed 

by the experimenter (after session 2) (see Figure 2.3). Experimental timings are 

shown in Figure 2.4. 

 

Figure 2.3 – Procedure of Study 1. In all cases, the CAPS or CHi 

questionnaires were completed within 20 minutes. 

 

 

 

 

 

Figure 2.4 – tDCS and behavioural task timings for Study 1 (PG task 

mean duration = 7 mins). 
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2.2.3.1 Data analysis 

Following the protocol from the original study, CHi scores were corrected by 

subtracting 1 from each response to reflect a scale from 0-6 for each response 

dimension (corrected CHi score range = 0 – 324). CHi frequency and intensity 

subscale scores were pooled across questions for analysis. 

 

For the CAPS measure, scores were pooled across the frequency subscale 

for each question (CAPS score range = 0 – 160). Previously, CAPS scores have 

been coded as binary Yes/No responses (Braithwaite et al., 2011), however the 

“frequency” scale scores were used as these give information both on whether or 

not phenomena were experienced and also a more fine-grained rating of the 

frequency of that experience. For the current analyses, CAPS scores were also 

split into TLE and non-TLE experiences (Braithwaite, Broglia, Bagshaw, et al., 

2013; Braithwaite, Broglia, & Watson, 2014; Braithwaite, Mevorach, et al., 2015). 

 

Corrected means were calculated for all questionnaire factors by dividing 

raw factor scores by the number of factor questions. This calculation prevents 

inaccurate score comparisons by accounting for the fact that there are differing 

numbers of questions per factor. 

 

For PG task data, summed and mean intensity ratings for all anomalous 

visual distortions (AVDs) endorsed for each stimulus type were calculated by 

adding all intensity ratings for all visual distortion for each grating type, and dividing 

by the number of grating presentations (3). 
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The PG low-frequency (“baseline”) grating is not intended to be highly 

visually irritating (even for those with high visual sensitivity) and is used only as an 

index of suggestibility or response bias in the PG task (Braithwaite, Mevorach, et 

al., 2015; Evans & Stevenson, 2008; Wilkins et al., 1984), and so ratings for this 

grating were discarded from formal analysis. Participants with excessively high 

(outlier) ratings for this grating were also discarded from analysis (as this indicates 

some degree of suggestibility or response bias) – specifically, any participant with 

PG ratings greater than x̄ ± 2SD for the sham (baseline) condition (two-standard 

deviation band method) (Bloom, Fischer, & Orme, 2009). 

 

To further compare differences in PG ratings, delta (Δ) values were 

calculated by subtracting mean AVD intensity ratings for high-frequency gratings 

from mean AVD intensity ratings for medium-frequency gratings. This is denoted 

as M-HΔ and provides a very conservative estimation of experiences possibly 

reflecting cortical hyperexcitability. This method of analysis also follows the 

conclusions of Evans & Stevenson (2008); that pattern glare can be indexed either 

by ratings for the medium-frequency grating alone (the more traditional approach), 

or by calculating the M-HΔ (as in the current study). The M-HΔ (or the “3-14 cpd 

difference”) is suggested to be a more reliable quantifier of “true” pattern glare; 

distortions related to visual hyperexcitability specifically. This is because, although 

some of the non-clinical population can experience a greater number of distortions 

when viewing the high frequency grating as compared to the medium frequency 

grating (Conlon & Lovegrove, 2001), distortions from the high frequency grating 

are likely to reflect optical rather than cortical processes (e.g. image appearing 

blurry or fuzzy) (Evans & Stevenson, 2008). It is distortions induced by the medium 
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frequency grating that have been strongly evidenced to reflect underlying visual 

cortical hyperexcitability (Evans & Stevenson, 2008; Harle et al., 2006). Subtracting 

high from medium grating scores therefore acts as a control for optical factors 

(Evans & Stevenson, 2008). The M-HΔ score further controls for order effects, as 

grating presentation order can influence the number of distortions seen. Presenting 

the medium grating before the high grating can result in seeing more distortions in 

the high grating (due to inducing cortical hyperexcitability with the medium grating), 

whereas no similar interference is found when presenting the high before the 

medium grating (Evans & Stevenson, 2008). Evans and Stevenson (2008) found 

no effect of grating presentation order on M-HΔ scores. 

 

 A M-HΔ score ≥ 1 therefore indicates a high level of general visual 

discomfort (with more distortions experienced when viewing medium-frequency 

stimuli), whereas a M-HΔ score ≤ 0 indicates low or moderate visual discomfort 

(Evans & Stevenson, 2008). To explore how individual baseline states influence 

the effects of tDCS, participants were split into “pattern glare” (M-HΔ ratings ≥ 1) 

and “no pattern glare” groups (M-HΔ ratings ≤ 0) using baseline M-HΔ ratings from 

the sham condition, in line with previous work (Evans & Stevenson, 2008; Hsu et 

al., 2016). 

 

Using SPSS, Pearson’s correlation coefficients were generated from 

questionnaire and PG data comparisons (corrected for multiple comparisons using 

the False Discovery Rate (FDR) tool from SDM Project (2019)), and two-tailed 

student’s t-tests were also performed to assess significant differences. Bayesian 

analysis was also performed where relevant. Bayesian analysis determines the 
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predictive accuracy of the null or alternative hypotheses given the data collected, 

and grades the evidence in favour of these hypotheses on a continuous scale 

(Keuschke, 2011; Wagenmakers et al., 2018). Unlike common frequentist 

approaches that define probability as the limit of an event’s frequency over a large 

number of trials, Bayesian analysis interprets probability as “the subjective 

experience of uncertainty” and takes into account as much prior information as 

possible when calculating likelihoods (van de Schoot et al., 2014). Bayesian 

analysis produces a “Bayes Factor” (BF10), which can be thought of as indicating 

the “intensity” of the evidence (Wagenmakers et al., 2018). A BF10 < 1.0 reflects 

evidence in favour of the null hypothesis, whereas a BF10 > 1.0 reflects evidence 

in favour of the alternative hypothesis (Dewe, Watson, & Braithwaite, 2016). For 

example, a BF10 of 10 can be understood to mean that the data are 10 times more 

likely to occur under the alternative than under the null hypothesis, whereas a BF10 

of 0.10 indicates that the data are 10 times more likely to occur under the null than 

under the alternative hypothesis (Dewe et al., 2016; Wagenmakers et al., 2018). 

Therefore, larger BF10 values indicate greater evidence in favour of the alternative 

hypothesis, with BF10>3 being moderate, BF10>10 being strong, and BF10>100 

being decisive (Rouder, Morey, Speckman, & Province, 2012). Bayesian analysis 

was performed using the JASP v0.8.6 software package (JASP Team, 2018). 

 

 

2.3 Results 

Data from 14 participants were excluded based on outlier ratings for the low-

frequency grating. No other outliers were identified, so that the final sample 
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included data from 72 participants (61 (85%) female; 57 (79%) right-handed; x̄ age 

= 19.8 years (σ = 2.0, range = 18-29)). 

 

 

2.3.1 Questionnaires 

2.3.1.1 CHi 

Descriptive statistics for CHi questionnaire scores are shown in Table 2.2. 

The current sample produced an overall mean CHi score of 51.4, with endorsement 

of items on all three factors. 

 

 

 

 
Table 2.2 – Descriptive statistics for CHi questionnaire factor scores. Each factor 

mean is corrected for the number of questions per factor. 

 
 
 

The proportion of participants endorsing any of the experiences covered by 

the CHi was explored (i.e. any non-zero responses, so that percentages reflect 

 Overall 

Heightened 

sensitivity & 

discomfort 

Negative 

aberrations 

Positive 

aberrations 

Mean 51.4 14.5 0.9 1.8 

SEM 3.5 1.1 0.1 0.2 

σ 29.7 9.3 1.0 1.3 

Range 121.0 38.5 4.4 6.7 
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endorsement of one or more question/s per factor). Mean endorsement of items 

was 52%, with 44% for heightened visual sensitivity and discomfort, 14% for at 

least one negative aberration, and 30% for at least one positive aberration. 

 

 

2.3.1.2 CAPS 

Descriptive statistics for CAPS questionnaire scores are shown in Table 2.3. 

A mean total TLE score of 1.8 indicates a relatively low degree of anomalous 

perceptual experience associated with the anomalous experiences represented on 

CAPS in the current sample. 

 

 Mean total score 

 TLE Non-TLE 

Mean 1.8 3.7 

SEM 0.2 0.4 

σ 1.6 3.2 

Range 7.2 12.8 

 

Table 2.3 – Descriptive statistics for CAPS questionnaire scores. Each 

factor mean is corrected for the number of questions per factor. TLE = Temporal 

Lobe Experience factor; non-TLE = remaining questions. 

 

 

Differences in corrected CAPS factor scores were explored using a paired 

t-test. This suggested significant differences between CAPS TLE and non-TLE 
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scores (t(71)= 6.42, p<0.0001, BF101000, Hedges’ g=0.60), showing that 

participants endorsed significantly more non-TLE-type than TLE-type experiences 

(when corrected for the difference in the number of items on both components). 

 

 

2.3.2 Pattern glare and tDCS 

To explore effects of tDCS on PG ratings, delta values were calculated 

between the ratings for the medium frequency minus the high frequency gratings 

(M-HΔ). The PG ratings attained under the tDCS sham condition will represent PG 

ratings that occurred without brain stimulation. Comparing M-HΔ AVD intensity 

ratings between conditions (Figure 2.5) using a paired t-test suggested no reliable 

difference in PG ratings (t(71)= 0.451, p=0.65 (ns), BF10=0.14, Hedges’ g=0.05). 

Anodal stimulation did not significantly affect PG ratings when collapsed for the 

whole sample. 

 

Figure 2.5 – Mean M-HΔ AVD intensity ratings under sham and anodal 

tDCS. Error bars = standard error of the mean. 
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2.3.3 Pattern glare, tDCS, and questionnaires 

2.3.3.1 Trait-based analysis 

The relationships between questionnaire ratings and PG M-HΔ AVD 

intensity ratings under sham and anodal conditions were explored using Pearson’s 

correlations (corrected for multiple comparisons using FDR) (see Table 2.4). To 

ensure that no extreme values would overly influence a Pearson’s correlation 

model, Cook’s distances were calculated for all variables. These suggested no 

significant outliers in CHi or CAPS factor scores, or PG M-HΔ AVD intensity ratings 

(no Cook’s distances ≥ 1) and so a Pearson’s model was used (Field, 2013; Finch, 

2012; Tabachnick & Fidell, 2001). 

 

The positive aberrations subscale of the CHi measure correlated 

significantly with pattern glare M-HΔ AVD intensity ratings during anodal 

stimulation (r=0.31, p<0.01) (see Table 2.4). This was supported by a Bayes Factor 

giving moderate support to the alternative hypothesis over the null (BF10=4.1). This 

suggests that as predisposition to report positive aberrations increased, the 

efficacy of tDCS to increase those experiences also increased. No correlations for 

other CHi or CAPS subscales were significant. 
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   Mean AVD intensity: M-HΔ 

   Sham Anodal 

CHi 

Heightened sensitivity 0.20 0.16 

Negative aberrations 0.02 0.04 

Positive aberrations 0.10 0.31* 

CAPS 
TLE -0.08 0.05 

Non-TLE 0.03 0.02 

 

Table 2.4 – Pearson’s correlations between mean questionnaire scores 

and pattern glare AVD intensity ratings (*p=0.009) (corrected for multiple 

comparisons using FDR, corrected p-value=0.009).  

 

 

2.3.3.2 State-based analysis 

To further explore this relationship, data were split into “PG” and “non-PG” 

groups using sham M-HΔ PG ratings (PG = M-HΔ PG ratings ≥ 1, non-PG = M-HΔ 

PG ratings ≤ 0) (see Figure 2.6). This gave 47 participants in the PG group and 25 

participants in the non-PG group. (For additional information, data for the low 

frequency grating can be seen in Appendix M). 

 

Paired t-tests within the PG and non-PG groups suggested significant 

differences between sham and anodal M-HΔ PG ratings (PG: t(46) = 3.108, 

p=0.003, BF10=10.28, Hedges’ g=0.46; non-PG: t(24) = -3.425, p=0.002, 

BF10=17.35, Hedges’ g=0.78) (FDR corrected p value=0.003), suggesting that 
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stimulation condition significantly influenced state experience within groups. That 

is, anodal stimulation significantly decreased PG ratings in the PG group, but 

significantly increased PG ratings in the non-PG group. 

 

Visual inspection of the data (see Figure 2.6) also suggested different 

directions of tDCS effect between groups. The PG group seemed to be more 

predisposed to perceptual aberrations in both sham and anodal conditions, with 

more positive M-HΔ scores as compared to the non-PG group. These differences 

could not be tested statistically due to initially using PG scores to split groups, 

however this pattern of opposite directions of tDCS effects between groups is 

interesting nonetheless.  

 

 

 

 

 

 

 

 

 

 

Figure 2.6 – Mean AVD M-HΔ intensity ratings split by pattern glare groups, 

under each tDCS condition (PG = M-HΔ PG ratings ≥ 1 (n=47), non-PG = M-HΔ 

PG ratings ≤ 0 (n=25)). Sham = PG baseline. Error bars = standard error of the 

mean. Brackets show significant differences within groups, *p<0.01. 
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To give further insight into the influence of tDCS on PG scores, PG 

intensity ratings for the medium and high gratings were graphed (see Figure 2.7). 

For the non-PG group, this suggested that the relative increase in M-HΔ PG 

score (towards zero) from sham to anodal stimulation seen in Figure 2.6 was 

driven by a slight increase scores for the medium grating, and a decrease in 

scores for the high grating. For the PG group, this suggested that the relative 

decrease in M-HΔ PG score from sham to anodal stimulation seen in Figure 2.6 

was driven by a decrease in scores for the medium grating specifically. No formal 

statistical analysis was performed here, as the M-HΔ measure is the key 

measure for this analysis and has several strengths over analysing raw scores 

(see Study 1 Data Analysis). This also avoids making further unnecessary 

multiple comparisons, as this data is already multiply compared through the PG-

tDCS analysis using M-HΔ scores, which are derived from raw scores. 

Nevertheless, these trends are interesting and will be returned to in the 

discussion.  
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Figure 2.7 – Bar graph showing pattern glare intensity scores for each 

grating type (medium, high) for the non-PG and PG groups, in each tDCS 

condition (sham, anodal). Error bars = standard error of the mean. 

 

 

2.3.3.3 State-trait sub-group analysis 

Pearson’s correlations between these sub-groups and CHi “positive 

aberrations” subscale scores suggested significant correlations between CHi and 

PG ratings for the PG group only (Sham: r=0.44, p<0.01, BF10=18.11; Anodal: 

r=0.41, p<0.01, BF10=8.97), with non-PG correlations insignificant (Sham: r=-0.19, 

p=0.365, BF10=0.37, Anodal: r=0.29, p=0.159, BF10=0.64) (see Table 2.5 and 

Figure 2.8). The Bayes’ Factors strongly support the frequentist statistics. BF 

values for the PG group correlations give strong support to the alternative 

hypothesis over the null, i.e. that there is a correlation between these variables, 

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

Medium High Medium High

P
at

te
rn

 g
la

re
 in

te
n

si
ty

 s
co

re

Sham

Anodal

Non-PG PG



117 
 

whereas BF factors for the non-PG group give support to the null hypothesis over 

the alternative (there is no correlation). These results suggest that the positive 

correlation seen for the whole sample above (Table 2.4) is driven by the “PG” group 

specifically.  

 

 

  PG Non-PG 

  Sham Anodal Sham Anodal 

CHi Positive aberrations 0.44* 0.41* -0.19 0.29 

 

Table 2.5 - Pearson’s correlations between mean CHi “positive aberrations” 

scores and pattern glare AVD intensity ratings, split by PG/non-PG groups 

(*p<0.01, FDR corrected p value=0.02). 
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Figure 2.8 – Scatterplots of CHi Factor 3 “Positive Aberrations” scores against M-HΔ AVD intensity ratings, under sham and anodal 

tDCS conditions. Dotted lines show linear trendlines. It is interesting to note the opposite direction of correlation between the 

groups (although formal statistical comparisons cannot be made between groups).  
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2.4 Discussion 

The present study investigated the effects of tDCS brain stimulation of 

extrastriate cortex on anomalous visual experiences, as indicated by a state-based 

pattern glare task and trait-based questionnaire measures. Experiences were 

assessed under sham (no stimulation) and anodal stimulation conditions.  

 

It was hypothesised that if tDCS can sufficiently manipulate cortical activity 

in more anterior extrastriate cortex, and these networks are important for the 

generation or mediation of anomalous perceptions, then stimulation would 

significantly impact the intensity of the pattern-glare ratings reported. It was also 

hypothesised that this effect would be associated with a trait-based predisposition 

to anomalous perceptions, which were quantified by the CAPS and CHi measures, 

and state-based predisposition as quantified by pattern-glare. 

 

There were no reliable effects of anodal brain stimulation on pattern-glare 

experiences (relative to the sham baseline condition) when viewed across the 

whole sample. While this result may suggest that tDCS did not influence pattern 

glare experiences, the correlation with the CHi measure and PG-subgroup analysis 

modifies this view. Study 1 demonstrated that the “Positive Aberrations” factor of 

the CHi correlated significantly with pattern-glare effects, but only under anodal 

stimulation conditions. PG-subgroup analysis revealed that this relationship was 

carried by the PG group, with this correlation observed for both sham and anodal 

stimulation conditions. No significant correlation was observed between this CHi 

factor and pattern glare for the non-PG group. This suggests that a predisposition 

to certain trait-based positive aberrations is associated with more intense state-
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based anomalous experience at baseline (sham) and under anodal tDCS. In 

contrast, trait-based visual aberrations do not appear related to state-based 

anomalous experience in the non-PG group (with low/typical excitability). Further, 

anodal stimulation appears to act in the expected “excitatory” effect in the non-PG 

group only. 

 

We suggest that this provides additional tentative evidence that 

predisposition to certain forms of hallucinatory experience appears to reflect a 

more excitable extrastriate cortex in non-clinical groups, such that baseline 

excitability influences the efficacy and effects of tDCS (returned to in the general 

Discussion). Therefore both trait screening and state measures may be useful for 

identifying individual differences and predispositions that have implications for the 

efficacy of brain-stimulation (see General Discussion). 
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Foreword to Chapter 3 

 

Chapter 3 further explored the limits and parameters of the effects observed 

in Study 1 in a completely new sample, by reducing the tDCS stimulation period 

before the PG task commenced, and using a new stimulatory site, POz10. It should 

be noted that presenting aversive gratings is, in and of itself, a form of stimulation, 

in that such gratings are thought to over-stimulate visual neurons (Wilkins & Evans, 

2010). In those predisposed to elevated levels of cortical hyperexcitability, this 

mechanism is thought to be responsible for aberrant perceptions (Wilkins & Evans, 

2010). Therefore, both tDCS and the pattern glare stimuli themselves are sources 

of visual neuron stimulation. This is important, as recent tDCS research suggests 

that tDCS effects depend more on stimulation duration than intensity (Monte-Silva 

et al., 2013; Vignaud, Mondino, Poulet, Palm, & Brunelin, 2018). Longer tDCS 

stimulation durations (>20 minutes) are associated with current polarity reversal 

(where anodal can become cathodal, and vice versa, which may contribute to null 

effects; see Paulus (2011) and Walsh (2013)), and one recent study found that 30 

minutes of anodal tDCS did not increase cortical excitability at all (whilst 20 minutes 

did) (Vignaud et al., 2018).  These findings may help to explain, at least in part, 

what we observed here for the PG group in Study 1.  

 

 
10 One methodological benefit of moving the site to POz is reducing the potential for scalp shunting between 

electrodes placed too close together (as the return electrode is at Cz) (Jackson, 2015; Santos et al., 2016). 

While it appears that we did not experience this in Study 1, it was prudent to make such changes here in light 

of other additional methodological differences. 
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Study 1 involved 20 minutes of tDCS followed by ~7 minutes of pattern glare 

(~27 minutes of total stimulation). The stimulation duration was determined 

primarily by a previous study which reported reliable effects when stimulating 

primary visual cortex (with a sample that also scored higher on trait-based 

measures of anomalous perceptions: see Braithwaite, Mevorach, et al. (2015)). 

Although a reliable effect did emerge here in Study 1, this was highly selective for 

one factor on one questionnaire (positive aberrations on the CHi). One possible 

post-hoc rationalization of this is that the stimulation duration might have been too 

long and worked against the potential to reveal the full impact of possible effects 

(as some work has suggested that stimulation durations of ≥20 minutes may result 

in stimulation effect reversals) (Batsikadze, Moliadze, Paulus, Kuo, & Nitsche, 

2013; Monte-Silva et al., 2013; Nitsche, Polania, & Kuo, 2015). 

 

To examine this issue, stimulation time in Study 2 was reduced to 10 

minutes to avoid potentially over-stimulating visual neurons and causing neuronal 

counter-regulation (Monte-Silva et al., 2013). Previous work on modulating visual 

cortex excitability has provided some evidence that seven minutes of tDCS at 1mA 

intensity is sufficient to induce visual changes lasting up to 10 minutes after 

stimulation (Antal et al., 2001). A recent fMRI study demonstrated that 10 minutes 

of anodal tDCS at 1mA over visual cortex, whilst participants viewed achromatic 

visual stimuli, was sufficient to induce a significant increase in BOLD signal (as 

compared to sham) localised to occipital-parietal areas (Alekseichuk, Diers, 

Paulus, & Antal, 2016). Work with migrainers with aura has also shown that 10 

minutes of anodal stimulation over Oz is sufficient to increase cortical excitability 

and lower phosphene thresholds (Chadaide et al., 2007). 
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Additionally, some tDCS literature suggests  online stimulation (ongoing 

stimulation during the behavioural task) can be more effective with cognitive tasks 

(Walsh, 2013), and so online stimulation was implemented in Study 2. This also 

allowed us to explore the effects of combining stimulation from two sources; tDCS, 

and pattern glare stimuli. A new stimulatory site was chosen to investigate whether 

the tDCS effects found in Study 1 would extend to another area of extrastriate 

cortex, BA 17-19 (targeted by stimulation site POz). Evidence from neuroimaging 

research suggests that extrastriate cortex can become hyperexcitable in response 

to pattern glare stimuli (Huang et al., 2011). Other work on the relationship between 

hyperexcitability and pattern-glare-type anomalous experiences suggests that 

diffuse effects of tDCS stimulation over primary visual cortex may propagate to 

extrastriate cortex (Braithwaite, Mevorach, et al., 2015). 

 

Furthermore, given the results of Study 1, a cathodal condition was included 

in Study 2 to generate additional data comparison points, explore any potential 

“inhibitory” effects in addition to “excitatory” ones, and act as an “active control” 

condition, in accordance with recent literature recommendations (Cogiamanian, 

Marceglia, Ardolino, Barbieri, & Priori, 2007; Parkin, Ekhtiari, & Walsh, 2015; 

Walsh, 2013). Previous studies have shown that while anodal stimulation can 

excite the primary visual cortex, cathodal stimulation (typically thought of as 

inhibitory) failed to produce any reliable effects (Braithwaite, Mevorach, et al., 

2015; Jacobson et al., 2012; Parkin et al., 2015). In the context of the current 

investigation this makes intuitive sense, in that any effects of cathodal stimulation 

will be competing with both the stimulation from the visual presentation of an 
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irritative/aversive pattern and the potential co-presence of elevated predisposition 

to cortical excitability in the first place (which may itself reflect a failure of inhibitory 

neuronal processes). Administering a cathodal condition in Study 2 allowed for a 

direct assessment of this, in a new and independent large sample. A cathodal 

condition also allowed further exploration of the differential effects of baseline 

excitability on tDCS response observed in Study 1. 
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3 Chapter 3 

3.1 Methods 

3.1.1 Participants 

Seventy-nine participants took part in Study 2. Of these, 73 (92%) were 

female and 69 (87%) were right-handed. Participant age ranged from 18 to 31 

years (x̄ = 20, σ = 2.4). The participant recruitment and compensation process were 

the same as in Study 1. Study 2 applied the same exclusion criteria process as in 

Study 1, as well as excluding any potential participant with sleep disorder/s, regular 

users of recreational drugs, smokers (regularly smoking the equivalent of at least 

one cigarette every day (including vaping)), or users of nicotine products (patches, 

gum, vaping). These additional controls were introduced because recreational drug 

use (such as cocaine and ecstasy/MDMA), nicotine intake, and circadian rhythms 

are known to influence cortical excitability (Bauernfeind et al., 2011; Cowan et al., 

2015; Hanlon et al., 2015; Huber et al., 2013; Ly et al., 2016; 

Thirugnanasambandam et al., 2011). Sleep deprivation is known to induce 

psychotic-like symptoms, and has even been suggested as an experimental model 

system for psychosis (Meyhofer, Kumari, Hill, Petrovsky, & Ettinger, 2017). 

 

The same sample size calculation was used as in Study 1, such that a 

minimum of 73 participants were required. Effect sizes for each comparison are 

reported in the Results section. 
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3.1.2 Materials 

3.1.2.1 Questionnaire measures 

Study 2 used the same questionnaire measures as Study 1, the CHi and the 

CAPS. 

 

3.1.2.2 Pattern-glare (PG) task 

Study 2 used the same PG task as outlined and detailed for Study 1. 

 

3.1.2.3 tDCS 

The following changes to the stimulation paradigm were utilised relative to 

Study 1. Study 2 included three stimulation conditions; sham, anodal, and cathodal. 

Computational modelling of current flow also suggests that tDCS combines across 

all stimulation sites to produce a “net” effect across the cortex, and so it is important 

to include both cathodal and anodal conditions to aid identification of the source of 

the observed effects (Cogiamanian et al., 2007; Parkin et al., 2015; Walsh, 2013). 

In the anodal condition, the anode was placed over POz and cathode placed over 

Cz (vertex) using the International 10/20 electrode positioning system 

(TransCranial Technologies, 2012). In the cathodal condition, the cathode was 

placed over POz and anode over Cz (see Figure 3.1). In the sham condition, 

electrodes were positioned at the same locations as in the anodal condition. All 

subjects received anodal or cathodal stimulation for 10 minutes (1.5mA, 

0.06mA/cm2, 10s fade in/out), or sham stimulation for <1 minute (10s fade in/out, 

30s stimulation up to 1.5mA). Stimulating at POz was both theoretically-and 

methodologically-motivated; increasing the distance between the anode and 
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cathode decreases the extent of current being shunted through the scalp as 

opposed to through the brain (Miranda, Lomarev, & Hallett, 2006). The same 

stimulation intensity was used, and a shorter stimulation duration of 10 minutes 

was chosen to decrease the possible chance of reversing the intended effect (as 

outlined above). Current density was unchanged from Study 1. To maintain 

consistency between conditions, participants now completed the behavioural task 

5 minutes after stimulation onset in all conditions (see Figure 3.2) and so 

stimulation continued “online” for 5 mins during the task. 

 

 

 

 

Figure 3.1 – tDCS montage used in the current study. (A) represents 

electrode montage during anodal and sham stimulation, and (B) represents the 

cathodal stimulation montage. 
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3.1.3 Design and procedure 

A within-participants repeated measures design was used. As in Study 1, 

circadian influence was partially controlled for through regulating session start time. 

Participants: (i) completed the screening questionnaire, (ii) read the study 

information and gave consent, (iii) completed the questionnaires, (iv) completed 

the practice PG task, (v) had the tDCS electrodes placed on the head and tDCS 

stimulation started, (vi) completed the PG task 5 minutes after stimulation onset, 

and (vii) were debriefed by the experimenter (after session 3) (see Figure 3.2). 

Questionnaire order was randomised. A timeline can be seen in Figure 3.3. 

 

 

Figure 3.2 – Procedure of the current experiment. (Q) = one of the CHi or 

CAPS (randomised). 
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Figure 3.3 – tDCS and behavioural task timings for Study 2. 

 

 

3.1.4 Data analysis 

The same data analysis procedure was used as in Study 1. 

 

 

3.2 Results 

Outliers for the PG task were defined as any total PG ratings for the low-

frequency gratings in the sham (baseline) condition greater than x̄ ± 2SD for the 

total sample (two-standard deviation band method) (Bloom et al., 2009). Data from 

four participants were excluded on this basis, so that the final sample included data 

from 75 participants (66 (88%) female; 69 (92%) right-handed; x̄ age = 19.5 years 

(σ = 2.4, range = 18-31)). 

 

 



130 
 

3.2.1 Questionnaires 

3.2.1.1 CHi 

Descriptive statistics for CHi questionnaire scores are shown in Table 3.1. 

A mean total CHi score of 47.5 occurred for the present sample. Factor 1 

(“heightened sensitivity”) accounts for a large proportion of the overall score (68%) 

and positive aberrations (such as visual hallucinations) are more common than 

negative aberrations (losses of visual information).  This descriptive pattern follows 

that reported for Study 1. 

 

Table 3.1 – Descriptive statistics for CHi questionnaire factor scores. Each 

factor mean is corrected for the number of questions per factor. 

 

 

The proportion of participants endorsing any of the experiences covered by 

the CHi was explored. This revealed a 48% mean endorsement of CHi items, and 

that 46% had experienced heightened visual sensitivity and discomfort, 13% had 

experienced at least one negative aberration, and 29%, at least one positive 

 Overall 

Heightened 

sensitivity & 

discomfort 

Negative 

aberrations 

Positive 

aberrations 

Mean 47.5 13.2 0.8 1.7 

SEM 3.2 1.0 0.1 0.2 

σ 28.0 8.8 1.2 1.4 

Range 146 46.7 7.1 6.3 
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aberration.  An independent-samples t-test revealed that the total CHi scores 

reported here were not significantly different than those observed for Study 1 

(t(145)= 0.82, p=0.42 (ns), BF10=0.24, Hedges’ g=0.14). 

 

 

CAPS 

Descriptive statistics for CAPS questionnaire scores are shown in Table 3.2. 

A mean total TLE score of 1.1 indicates a low degree of anomalous perceptual 

experience associated with this factor in the current sample. 

 

 

 Mean total score 

 TLE Non-TLE 

Mean 1.1 0.7 

SEM 0.1 0.1 

σ 1.1 0.8 

Range 5.5 4.5 

 

Table 3.2 – Descriptive statistics for mean CAPS frequency scores. Each 

factor mean is corrected for the number of questions per factor. TLE = Temporal 

Lobe Experience factor; non-TLE = remaining questions. 

 

 

Differences in corrected CAPS factor scores were explored using a paired 

t-test. This suggested a significant difference between CAPS TLE and non-TLE 
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scores (t(71)= 4.14, p<0.001, BF10=224, Hedges’ g=0.75), with TLE scores being 

higher than non-TLE scores. An independent-samples t-test showed that total 

CAPS TLE scores were significantly higher in Study 1 (x̅ = 1.8) than in Study 2 (x̅ 

= 1.1) (t(145)= 3.39, p=0.001, BF10=30, Hedges’ g=0.06). CAPS non-TLE scores 

were also significantly higher in Study 1 (x̅ = 3.7) than in Study 2 (x̅ = 0.7) (t(145)= 

3.45, p=0.001, BF10=36, Hedges’ g=0.32).  

 

 

3.2.2 Pattern glare, tDCS, and questionnaires 

3.2.2.1 State-based analysis 

To explore effects of tDCS on PG ratings, delta values (M-HΔ) were 

calculated. PG ratings attained under tDCS sham represent baseline PG ratings. 

As in study 1, when data was collapsed across the sample as a whole, there were 

no significant differences in PG ratings between conditions (see Figure 3.4). 
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Figure 3.4 – Mean M-HΔ AVD intensity ratings under sham, anodal, and 

cathodal tDCS, for the whole sample. Error bars = standard error of the mean. 

 

 

 To explore these effects in more detail, as above, data was again split by 

M-HΔ PG score, with M-HΔ PG ratings ≥ 1 representing the “pattern glare” group 

(n=40) and M-HΔ PG ratings ≤ 0 representing the “non-pattern glare” group (n=35) 

(Evans & Stevenson, 2008). (For additional information, low frequency grating data 

split by PG group can be seen in Appendix M).  

 

Differences in M-HΔ AVD intensity ratings between stimulation conditions 

and groups were explored using a repeated-measures ANOVA. The condition of 

sphericity was met (p=0.228). Results revealed a significant effect of PG group on 

overall M-HΔ AVD intensity ratings (F(1, 73)=54.36, p=0<0.001) (although this is 

to be expected given grouping method), and a significant interaction between PG 

group and tDCS condition (F(2, 146)=4.584, p=0.012, BF10=3.45). Therefore, 
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stimulation condition significantly affected PG intensity ratings, dependent on PG 

group (see Figure 3.5). 

 

 

Figure 3.5 – Mean AVD M-HΔ intensity ratings split by pattern glare groups, 

under each tDCS condition (“PG” = M-HΔ PG ratings ≥ 1 (n=40), “non-PG” = M-

HΔ PG ratings ≤ 0 (n=35)). Sham = PG baseline. Error bars = standard error of the 

mean. Brackets show significant differences, *p<0.01. 

 

 

Within the non-PG group, post-hoc paired t-tests (p value FDR corrected to 

0.01) suggested significant differences in M-HΔ ratings between the sham and 

anodal conditions (t(34) = -2.904, p=0.006, BF10=6.23, Hedges’ g=0.56) and 

between the sham and cathodal conditions (t(34) = -2.887, p=0.007, BF10=6.01, 

Hedges’ g=0.49), however there was no significant difference in M-HΔ ratings 

between the anodal and cathodal conditions (t(34) = 0.414, p=0.681, BF10=0.20, 
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Hedges’ g=0.08). However, within the PG group, post-hoc t-tests suggested no 

significant differences in PG ratings between any of the tDCS conditions (all 

p>0.05).   

 

 Visual inspection of the data (see Figure 3.5) also suggested different 

directions of tDCS effect between groups. The PG group seemed to be more 

predisposed to perceptual aberrations in general, with more positive M-HΔ scores 

as compared to the non-PG group in all tDCS conditions. These differences could 

not be tested statistically due to initially using PG scores to split groups, however 

this pattern of opposite directions of tDCS effects between groups is nevertheless 

interesting.  

 

To give further insight into the influence of tDCS on PG scores, PG 

intensity ratings for the medium and high gratings were graphed (see Figure 3.6). 

For the non-PG group, this suggested that the relative increase in M-HΔ PG 

score (towards zero) from sham to anodal and cathodal stimulation seen in 

Figure 3.5 was driven by a small increase in scores for the medium grating 

specifically. For the PG group, this suggested that the null effect of stimulation 

condition on M-HΔ PG scores seen in Figure 3.5 was driven by lack of change in 

scores across medium and high gratings equally. No formal statistical analysis 

was performed here, as the M-HΔ measure is the key measure for this analysis 

and has several strengths over analysing raw scores (see Study 1, Data 

Analysis). This also avoids making further unnecessary multiple comparisons, as 

this data is already multiply compared through the PG-tDCS analysis using M-HΔ 
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scores, which are derived from raw scores. Nevertheless, these trends are 

interesting and will be returned to in the discussion.  

 

Figure 3.6 – Bar graph showing pattern glare intensity scores for each grating 

type (medium, high) for the non-PG and PG groups, in each tDCS condition 

(sham, anodal). Error bars = standard error of the mean. 

 

 

3.2.2.2 Trait-based analysis 

The relationship between questionnaire and PG intensity ratings across 

tDCS conditions were explored using Pearson’s correlations. Analyses showed no 

significant correlations between any questionnaire scores and pattern glare M-HΔ 

AVD intensity ratings, under any stimulation condition (p>0.05 for all comparisons). 

Therefore, additional subgroup analyses were not conducted on this data. 
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3.3 Discussion 

Building on Study 1, the present study investigated the effects of tDCS brain 

stimulation on anomalous visual experiences, which were measured by a state-

based pattern glare task and trait-based questionnaires. Experiences of visual 

distortions were assessed under sham (no stimulation), anodal, and cathodal tDCS 

conditions. As in Study 1, there were no significant differences in the intensity of 

visual distortions between stimulation conditions when collapsed across the entire 

sample. However, significant differences in the tDCS responsiveness were again 

observed when data was split into “PG” and “non-PG” groupings based on sham 

(baseline) pattern glare ratings. This indicates that the tDCS stimulation conditions 

do not straightforwardly translate to the traditionally expected effects. For example, 

in the PG group, anodal stimulation did not act in the expected “excitatory” manner, 

and cathodal stimulation did not act in the expected “inhibitory” manner.  

 

Further, a trend for opposite directions of tDCS effect was again observed 

for the different pattern glare groups. For the PG group, there were no significant 

differences in pattern glare ratings between stimulations conditions. Anodal and 

cathodal tDCS appeared to have a null effect on state-based visual distortions in 

this group, with neither condition significantly affecting pattern glare experiences 

as compared to sham. In the non-PG group, both anodal and cathodal stimulation 

significantly increased pattern glare intensity as compared to sham stimulation. 

There were no significant differences between pattern glare ratings in the anodal 

and cathodal conditions. 
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3.4 General Discussion 

Study 1 explored the effects of 20 mins anodal tDCS over Pz (contrasted 

with a sham condition) on state-based pattern glare experiences. Study 2 explored 

the effects of 10 mins anodal and cathodal stimulation over POz (contrasted with 

sham) on state-based pattern glare experiences. These effects were compared 

with measures of trait-based predisposition to anomalous experiences (CHi and 

CAPS questionnaires) in both studies. 

Study 1 demonstrated a positive correlation between the “Positive 

Aberrations” CHi factor and pattern glare intensity, for the PG group only. Both 

studies demonstrated differences in tDCS responsiveness and pattern glare 

intensity within groups that did not appear to follow the traditionally expected 

directions of effect for each tDCS condition. That is, anodal stimulation did not 

necessarily act in an “excitatory” manner for all groups and so increase pattern 

glare experiences (as initially expected). These and other key findings are explored 

further below. 

 

Anomalous experience questionnaires 

CHi score descriptives from the current studies closely resemble those from 

the CHi’s debut paper (Braithwaite, Marchant, et al., 2015), and total CHi scores 

were also not significantly different between Studies 1 and 2. In contrast, CAPS 
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findings were less consistent between studies11. Notably, the Study 2 sample was 

much less predisposed to CAPS-type experiences than the Study 1 sample, and 

compared to previous work (Braithwaite, Mevorach, et al., 2015). The reasons for 

this are not entirely clear. One suggestion is that anomalous visual experiences 

associated with latent cortical hyperexcitability may be more common and 

consistent in the general population as compared to CAPS-type experiences. This 

makes sense given that the CHi measures relatively elementary visual 

experiences, whereas as the CAPS measures multi-modal, more complex 

anomalous perceptions. Further work is needed to establish the generalisability of 

these patterns.  

These results demonstrate that a variety of anomalous perceptions can and 

do occur in the absence of any apparent neurological or psychological condition or 

disorder. Previous research into the prevalence of anomalous experiences in the 

healthy general population supports the idea that anomalous experiences 

(including hallucinations and aberrant perceptions) are distributed as a continuum 

in the general population (Allen et al., 2005; Baumeister et al., 2017; Braithwaite et 

al., 2011; Heriot-Maitland et al., 2012; Johns, 2005; Johns & van Os, 2001; Kao et 

al., 2013; Pearson et al., 2016; van Os & Reninghaus, 2016; Waters & Fernyhough, 

2017).  

 

PG ratings under tDCS 

 
11 Note, this effect occurred when questions that featured on both the CHi and CAPS were removed from the 

CHi so that they were not repeated across measures (to avoid artificial inflation of correlations). 
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Results from both Study 1 and 2 suggested no reliable effects of tDCS on 

endorsement of pattern glare experiences (relative to the sham) when the analysis 

was collapsed across the whole sample. However, grouping data into “pattern 

glare” (PG) and “non-pattern glare” (non-PG) groups suggested significant 

differences in PG experiences within these groups, and a trend of opposite 

directions of tDCS responsiveness between these groups. Although the results of 

Studies 1 and 2 are not directly comparable due to design differences, these 

patterns are nevertheless interesting. 

For the PG group in Study 1, anodal stimulation decreased the intensity of 

pattern glare experiences (and hence, the underlying excitability giving rise to 

them) relative to baseline. In contrast, in Study 2, anodal and cathodal stimulation 

appeared to have a null influence on pattern glare experiences (as compared to 

baseline) for this group. For the non-PG group, in Studies 1 and 2, both anodal and 

cathodal stimulation significantly increased pattern glare experiences (pushed 

scores towards 0) as compared to baseline. Given previous work evidencing 

interactions between baseline states and tDCS efficacy (Hsu et al., 2016; Romei 

et al., 2016; Silvanto et al., 2018), we suggest that individual differences in state 

baseline excitability could explain some variation in the sample responses here. 

We expand on this in more detail below. 

 

Baseline excitability mediates tDCS efficacy 

As there were no significant differences in the intensity of visual distortions 

between stimulation conditions in either study when collapsed across the entire 
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sample, it is tempting to suggest that tDCS did not in fact alter cortical excitability. 

However, we suggest this is unlikely for several reasons. First and foremost, 

features of the current designs, such as stimulation intensity, duration, and 

montage, have successfully altered visual cortex activity or visual perception in a 

host of previous studies (Antal et al., 2003b; Antal et al., 2004; Antal et al., 2001; 

Braithwaite, Mevorach, et al., 2015), with significant effects (Braithwaite, 

Mevorach, et al., 2015; Ding et al., 2016; Sood, 2016). These factors were carefully 

considered during study design. Furthermore, in both studies we observed 

selective tDCS effects and significant within-group differences, with similar tDCS 

effects for the non-PG group between studies (despite a difference in montage). 

Although the differences in montages must be kept in mind when interpreting 

results, such that direct comparison between studies is not possible, it seems 

reasonable that the tDCS montages were successful in exciting/inhibiting 

extrastriate cortex here. We suggest that our findings illustrate the influence of 

baseline excitability on tDCS and task responsiveness.  

A typical assumption in tDCS brain stimulation research is that anodal 

stimulation tends to “excite” neurons while cathodal stimulation tends to “inhibit” 

them (Bikson, 2016), yet present findings demonstrate that the reality is far more 

complex. While this relationship may be true for some participants, it does not hold 

across all individuals – especially when screening for certain factors (something 

missing from many previous tDCS studies). Current results indicate that, for 

extrastriate cortex, the excitation/inhibition effects are not so straightforward. 

Differential effects of tDCS over striate and extrastriate visual cortex may be due 

to differences in excitatory/inhibitory (E/I) balance across cortical regions/layers 

(Yang & Sun, 2018), function (Alekseichuk et al., 2016), and network dynamics 
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(D'Souza, Meier, Bista, Wang, & Burkhalter, 2016) between these areas. Recent 

research has also demonstrated that brain stimulation can have different effects 

depending on baseline cortical excitability (Alekseichuk et al., 2016; Boroojerdi, 

Bushara, et al., 2000; de Graaf, Duecker, Stankevich, Ten Oever, & Sack, 2017; 

Jacobson et al., 2012; Silvanto et al., 2018). Moreover, tDCS over higher 

extrastriate areas will interact with ongoing cortical activity in this region, and also 

affect recurrent feedforward/feedback processes between visual and other brain 

areas (Gilbert & Li, 2013). Therefore, stimulating at different processing “stages” 

(i.e. at striate and extrastriate cortex) may produce different effects, and further 

work is needed to explore this fully. 

 

A key finding here for the PG group was that anodal stimulation had an 

inhibitory effect in Study 1, and a null effect in Study 2. This latter result may be 

due to the reduced stimulation time in Study 2 (10 mins) as compared to Study 1 

(20 mins), or to an interaction between tDCS and viewing pattern glare stimuli 

during stimulation in Study 2. For example, because extrastriate cortex can 

become hyperexcitable in response to visually-aversive or pattern glare stimuli, 

and during visual hallucinations (Hadjikhani et al., 2001; Huang et al., 2011), 

simultaneous tDCS and viewing of pattern glare stimuli may have interacted to 

produce the observed effects here. These effects are unlikely to reflect basic ceiling 

effects (where pattern glare stimuli excite the cortex to the extent that tDCS cannot 

exert any effect), as it is unlikely that non-clinical samples would reach an 

“absolute” background ceiling state that renders tDCS ineffective (Braithwaite, 

Mevorach, et al., 2015). Further, Study 1 demonstrated a significant inhibitory 

effect of anodal tDCS for the PG group. It may be that, in Study 2, this effect was 
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masked or nullified in Study 2 by increased excitability from viewing pattern glare 

stimuli during tDCS, triggering “non-additive mechanisms” and so reversing or 

nullifying any inhibitory effects (Bortoletto, Pellicciari, Rodella, & Miniussi, 2015; 

Schabrun, Chipchase, Zipf, Thickbroom, & Hodges, 2013).  

Alternatively, the concept of “neural noise” may explain Study 2 results (as 

this explanation is most relevant for explaining interactions between concurrent 

tDCS and tasks (Bortoletto et al., 2015)). Under this framework, tDCS effects will 

depend on the signal-to-noise ratio (SNR), where the signal is neural activity 

relevant to the task and the noise is random background neural activity (Bortoletto 

et al., 2015). As tDCS influences ongoing neural activity and targets large 

populations of neurons fairly indiscriminately, its efficacy can be understood as 

altering the signal-to-noise ratio across these neurons. Neurons that are highly 

excitable and close to “saturation” in response to the task (signal) will respond least 

to excitatory stimulation, whereas neurons that are less activated by the task will 

respond most to this stimulation and influence task performance/effects (Bortoletto 

et al., 2015). Combined with pre-existing imbalances in excitability between PG 

groups, this may provide an explanatory framework for some of the current 

findings.  That is, those with “high” excitability (PG group) may be less influenced 

by anodal stimulation when viewing pattern glare stimuli (as the response is 

already close to saturation), and also by cathodal stimulation due to an “excitable” 

default system threshold and deficient inhibition (Braithwaite, Mevorach, et al., 

2015). Under this view, the PG group cannot be influenced as readily by tDCS, and 

so there is little SNR change. In contrast, in those with low to moderate excitability 

(non-PG group), pattern glare stimuli would not cause initial hyper-activation of the 

relevant networks and so they may be more readily influenced by anodal tDCS. In 
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this group, cathodal stimulation may have excitatory effects by “priming” neurons 

by reducing thresholds for subsequent anodal stimulation, as seen in motor studies 

(Lang et al., 2004; Schabrun et al., 2013), so that excitability is increased once 

excitatory stimuli (such as pattern glare) are applied/presented (Christova, Rafolt, 

& Gallasch, 2015). Such an interaction may have increased the intensity of PG 

experiences in the non-PG group.  

Despite this research, many previous tDCS studies have focused on whole 

samples without accounting for state factors (e.g. by stratifying participants into 

subgroups). This may explain why some meta-analyses have reported no 

significant tDCS effects (Horvath, Forte, & Carter, 2015; Medina & Cason, 2017). 

Not accounting for baseline excitability or other factors now known to influence 

tDCS responsivity (such as time of testing – see Methods) may mask tDCS effects 

or skew data interpretation. Pre-existing excitation/inhibition balances will 

determine the net effect of brain stimulation, and may be related to differences in 

brain states such as alertness (Krause & Kadosh, 2014). This pre-existing balance 

will also influence network flexibility and the functionality of specific brain areas 

(Krause & Kadosh, 2014). Several studies have now demonstrated that 

behavioural tDCS effects are dependent on individual baseline performance 

(Benwell, Learmonth, Miniussi, Harvey, & Thut, 2015; Hsu et al., 2016; Juan et al., 

2017). By taking into account possible individual differences in baseline excitability 

in our analysis, we evidenced significant relationships between PG data and 

questionnaire scores in Study 1 for a specific group (suggested to have high 

background excitability), and within PG group data in Study 2. Under the concept 

of a “continuum” of cortical hyperexcitability as a factor in hallucination proneness 

(Braithwaite, Mevorach, et al., 2015), differences in latent cortical excitability 
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across individuals will create heterogeneity in both individual predisposition to 

anomalous experiences and responses to tDCS (with tasks also interacting with 

tDCS efficacy). Therefore, future research should consider the influence of 

participants’ baseline excitability and possible tDCS response variations by cortical 

area. Future studies of brain stimulation may also benefit from individual-difference 

stratification, to determine more complex interactions between individual brains 

and fixed stimulatory montages.  

 

Questionnaires and PG ratings under tDCS 

First and foremost, a significant correlation between the CHi “Positive 

Aberrations” factor and pattern glare experiences was observed in Study 1, but for 

the PG group only. This suggests a relationship between trait predisposition to 

elementary visual anomalous experiences and state anomalous perception, 

specifically in those with latent levels of hyperexcitability. This finding is supported 

by previous work in non-clinical groups (Braithwaite, Mevorach, et al., 2015) and 

migrainers (Fong et al., 2019).  

There were no significant relationships between pattern glare ratings and 

the “Heightened Visual Sensitivity and Discomfort” (HVSD) or “Negative 

Aberrations” factors of the CHi. Although caution should be expressed when 

interpreting null results (though the Bayes factors allow some speculation here), it 

might be the case that these types of experiences have their basis in more posterior 

brain regions to those stimulated here, with the possibility that at least some of the 

HVSD items may also be driven by pre-cortical (i.e. ocular) factors (as suggested 
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by Conlon & Lovegrove, 2001; Conlon, Lovegrove, Chekaluk, & Pattison, 1999; 

Evans & Stevenson, 2008; Harle & Evans, 2004; Wilkins et al., 1984). Therefore, 

brain stimulation directed towards extrastriate cortex may have been somewhat 

benign for these items. Furthermore, the Negative Aberrations factor received very 

little endorsement (the lowest of all the factors) in both studies, which may reflect 

how rare such experiences were in these samples and that they were simply not 

sufficiently present for possible associations to emerge.  

It is also interesting to note that data from both studies did not support a 

relationship between CAPS questionnaire scores and pattern glare under any of 

the stimulation conditions. This contrasts with previous work that has observed a 

reliable correlation between TLE-type and pattern glare experiences under tDCS 

(Braithwaite, Mevorach, et al., 2015). However, in comparison the current studies 

used a different set of montages and a different method of analysing pattern glare 

ratings, via a medium-high grating comparison (M-HΔ) rather than focusing on 

medium-frequency gratings as compared to the summed baselines (low + high 

frequency). The lack of correlation between CAPS and PG scores here may also 

be due to items on the CAPS measure describing complex and generally non-

visual hallucinations, whereas PG-type distortions are more directly linked to 

hyperexcitability associated with visual stress and simple visual distortions.  

In contrast to Study 1, no correlations were observed in Study 2 between 

the CHi questionnaire measure and pattern glare experiences. Although this may 

be viewed as a possible point of contention, it should be noted that Study 2 used 

a very different stimulatory montage (different duration before starting the task, 

different electrode location) and so cannot be cast as a direct replication of Study 
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1. However, at the very least, this result suggests that predisposition to trait-based 

anomalous experience may not always be directly coupled to the occurrence of 

state-based anomalous experience. In line with this, it has been suggested that the 

actual “state” of hallucinating, and the “trait” of being an individual who is 

predisposed to hallucinations, may involve contributions from different brain 

networks and regions (Smith et al., 2013).  A meta-analysis of state and trait 

aspects of auditory hallucinations in schizophrenia found a clear dissociation of 

brain regions involved in state- versus trait-hallucinatory experiences, with the state 

of experiencing hallucinations involving speech production areas such as Broca’s, 

area and the trait of hallucination proneness involving auditory cortex (Kühn & 

Gallinat, 2012). Cortical inhibition (as indicated by P50 evoked potentials) has also 

been shown to have differential relationships to state- and trait-anomalous 

experience in patients with schizophrenia, with this measure being related to trait, 

but not state, reports of hallucination severity (Smith et al., 2013). 

It may be that a similar relationship is at play in the current studies, with 

relationships between questionnaire scores and pattern glare being mediated 

differently by activity in Brodmann’s areas 17-19 (targeted by electrode at site POz) 

as compared with Brodmann’s areas 5 and 7 (targeted by electrode at site Pz). 

Excitability changes in Brodmann’s areas 5 and 7, but not Brodmann’s areas 17-

19, may moderate the relationship between state experiences of, and trait 

predisposition to, anomalous perceptions. In contrast, excitability changes within 

Brodmann’s areas 17-19 may moderate state anomalous experience (such as 

pattern glare), but this may share less of a relationship to trait predisposition. This 

makes sense given the lower-level, primary visual function of areas 17-19, as 

compared to the higher-level integrative function of areas 5 and 7 (Cavanna & 
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Trimble, 2006). The degree of hyperexcitability present in specific cortical regions 

may provide an indicator of or mediate the relationship between trait/state 

predisposition to anomalous experiences, even in non-clinical groups, but 

additional work is needed to corroborate this.  

Therefore, current findings support the contention that at least some of the 

factors of the CHi measure are a useful proxy measure of cortical hyperexcitability 

in non-clinical individuals, and that the CHi is a useful co-variate that is sensitive to 

differences in visual cortical excitability (indicated here by PG-grouping). Results 

suggest that trait predisposition to anomalous experience can be related to online 

aberrant perception, with predisposition to simple hallucinations being associated 

with increased cortical hyperexcitability. Furthermore, differences in state aberrant 

visual experiences depending on tDCS condition were observed within groups. We 

suggest that these differences in tDCS efficacy depend on differences in 

participants’ baseline excitability – though this relationship appears complex. For 

example, in those with low or typical baseline excitability, anodal stimulation has 

the “traditionally”-predicted excitatory effects. However, in those with high baseline 

excitability of extrastriate cortex and who are predisposed to trait-based anomalous 

experiences, anodal stimulation appears to either reduce excitability (appearing to 

act akin to cathodal stimulation), or have no effect. Therefore, our new findings 

here cannot be explained merely by the notion that a brain prone to anomalous 

perceptions is necessarily more ‘reactive’ to tDCS stimulation. The current studies 

extend previous work by providing evidence for the presence of a hyperexcitable 

cortex in those who are predisposed to anomalous experiences, but now extending 

beyond primary visual cortex into extrastriate cortex and in the non-clinical 
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population. The degree of hyperexcitability present in specific cortical areas may 

differentially mediate trait and state predispositions.  

 

3.4.1 Limitations and future directions 

Both studies presented here used random sampling methods of 

predominantly undergraduate populations. Predisposition to hallucinations was a 

random factor and was free to vary across our studies here – and may go some 

way to explaining the diverse effects found. One future direction might be to 

specifically target non-clinical hallucinators directly to ensure that a reasonably 

sized group of individuals reporting reasonably frequent and intense experiences 

are represented. Such approaches might facilitate a stronger coupling between 

trait based and state-based factors, as trait-based aspects would be represented 

more strongly for comparison. 

 

As discussed above, strong inferences cannot be made when comparing 

PG and tDCS results between Studies 1 and 2 due to differences in the design 

parameters. Formal comparisons could also not be made between PG groups due 

to PG scores being used to split groups initially. Therefore any discussion that 

theoretically connects these results is speculative at this stage, and further work is 

needed to clarify these relationships. 

 

Study 1 did not utilise a cathodal condition. This decision was based on the 

observation that previous work found no significant influence of cathodal 

stimulation on pattern-glare experiences, and cathodal stimulation is also 
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notoriously unreliable in cognitive studies (Jacobson et al., 2012; Nitsche et al., 

2008). However, including a cathodal condition in Study 2 and contrasting pattern-

glare experiences in the manner outlined here did provide additional data points, 

and allowed more detailed exploration of tDCS effects. To clarify the influence of 

baseline excitability on tDCS efficacy and anomalous experiences, additional tDCS 

research that systematically varies stimulation parameters (stimulation type, 

intensity, duration, etc.) with other objective co-variates is needed. Additionally, 

future work could employ multi-channel tDCS (MtDCS) in order to improve 

stimulation focality (Ruffini, Fox, Ripolles, Miranda, & Pascual-Leone, 2014; Ruffini, 

Ripolles, & Vall, 2015; Shin et al., 2015). For example, MtDCS devices that control 

current flow using multiple small electrodes can provide more focal stimulation and 

allow greater control over both the intensity and spatial distribution of the electric 

field over target regions, as compared with conventional bipolar montages 

(Miranda et al., 2018; Ruffini et al., 2014; Ruffini et al., 2015). 

 

Current electrical field modelling studies of tDCS efficacy suggest that 

variables such as cerebrospinal fluid thickness, cortical gyri/sulci morphology, and 

skull thickness may influence inter-subject variability (Miranda et al., 2018). 

Recently, Huang et al. (2017) conducted the first study that validated current-flow 

models of electric fields induced via tDCS, using intracranial EEG recordings from 

implanted subdural electrodes in epilepsy patients. Current-flow model parameters 

were adjusted (such as skull and brain conductivity) to reflect actual electric field 

distributions, so that model predictions were highly accurate even across subjects 

(Huang et al., 2017). Therefore future iterations of this study may benefit from the 
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use of similar advanced modelling, to attempt to account for these sources of 

variability and more accurately predict tDCS effects. 

 

A recent transdiagnostic review of the contribution of hyperexcitability to 

visual hallucinations concluded that variations in types or locations of brain 

hyperexcitability may account for the heterogeneity of hallucination content 

experienced by people across contexts (Carter & ffytche, 2015). To clarify the 

specific contribution of hyperexcitability to anomalous experiences, a key focus of 

future research must be exploring and quantifying the different types and 

mechanisms of hyperexcitability. For example, some potential contributors to 

hyperexcitability in epilepsy and migraine are glial dysregulation (Devinsky et al., 

2013), the photoparoxysmal response (Ferlazzo et al., 2005), brain inflammation 

(Vezzani, Aronica, Mazarati, & Pittman, 2013), inhibition dysregulation (Aurora, 

Barrodale, Tipton, & Khodavirdi, 2007; Gunthorpe, Large, & Sankar, 2012), lack of 

habituation (Coppola & Schoenen, 2012), and cortical spreading depression (Cui 

et al., 2014). To move forward, the field requires detailed, systematic explorations 

of the mechanisms that alter brain activity within specific functional areas, and how 

these are related to specific types of anomalous experience in non-clinical 

populations. 

 

One systematic review of the features of hallucinations across diagnoses 

suggested that further research is needed to determine the similarities and 

differences in phenomenological features of hallucinations across diagnostic and 

non-clinical groups (Waters & Fernyhough, 2017). Similarly, exploring the 

similarities and differences in hyperexcitability between clinical and non-clinical 
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populations, and trans-diagnostically, will provide valuable clues as to the 

biophysiological correlates of anomalous experience (Carter & ffytche, 2015). 

 

 

3.5 Conclusions 

The current studies provide evidence that individuals predisposed to 

elevated intensities of pattern-glare experiences also display signs of increased 

cortical hyperexcitability extending to extrastriate cortex. Study 1 revealed a 

relationship between a trait-based measure and state-based positive anomalous 

perceptions that were influenced by anodal tDCS brain stimulation, but only in 

those predisposed to pattern glare. Studies 1 and 2 evidenced relationships 

between state experiences of pattern glare and altered state excitability levels 

across all participants. These findings are consistent with an increased 

predisposition to anomalous experience being associated with cortical 

hyperexcitability. Importantly, tDCS responsivity appears to vary considerably 

depending on baseline excitability. Brain stimulation offers an established and 

practical way to explore the relationship between hyperexcitability and anomalous 

experience, but as with any constantly evolving field, future research should aim to 

systematically determine how baseline and task-induced excitability influence both 

tDCS responsivity and hallucinatory predisposition. 
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Foreword to Chapter 4 

 

The previous two chapters explored the contribution of visual cortical 

excitability to anomalous experiences in visual and other modalities. This was 

investigated by manipulating state cortical excitability in extrastriate cortex, 

measuring state and trait anomalous experiences, and exploring the influence of 

baseline cortical excitability on these measures. Chapter 2 evidenced a 

relationship between trait-based “positive aberrations” factor of the CHi measure 

and state-based pattern glare scores under sham and anodal stimulation, but only 

for those with high PG scores (i.e. those with hyperexcitable visual cortices). 

Significant trait-state relationships were restricted to comparisons within the visual 

modality – comparing visual pattern glare scores with the multi-modal trait measure 

CAPS revealed no significant relationship. Chapters 2 and 3 also evidenced 

significant relationships between state-based pattern glare scores and tDCS type 

(anodal, cathodal) that were dependent on PG group, across two different 

stimulatory montages. Again, these relationships were restricted to comparisons 

within the visual modality. Overall, these results suggest that tDCS efficacy and 

pattern glare experiences are dependent on baseline excitability.  

 

A question arising from these findings is how hyperexcitability in other 

cortical areas contributes to anomalous experiences in other modalities. For 

example, might hyperexcitability as measured in auditory cortex be associated with 

auditory anomalous experiences only? If so, this would suggest that 

hyperexcitability and its effects can be “restricted” to certain cortical areas and 

associated modalities. Alternatively, might hyperexcitability measured in one 
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modality (e.g. auditory) be associated with anomalous experiences in another (e.g. 

visual)? If so, this would suggest a relationship between hyperexcitability across 

cortical areas and modalities, and that hyperexcitability as measured in one 

modality may not be restricted there and can influence, or is at least related to, 

experience in other modalities. Very little such cross-modal research currently 

exists. In the previous chapters, comparing experiences in the visual modality with 

those in multiple modalities may have obscured specific cross-modality 

relationships. 

  

Therefore, to explore whether the relationships observed in Chapters 2 and 

3 could be extended to the auditory modality, Chapter 4 investigated whether a 

state measure of auditory cortex inhibition was related to trait and state measures 

of anomalous experience and cortical hyperexcitability in visual and other 

modalities. Here, auditory inhibition was measured using an EEG-based “repetition 

suppression” task. Repetition suppression is a process by which the nervous 

system attenuates its response to repetitions of the same stimulus, to prevent 

informational overload (Boutros, Belger, Campbell, D’Souza, & Krystal, 1999; Park 

et al., 2015; Patterson et al., 2008; Wan, Thomas, Pisipati, Jarvis, & Boutros, 

2017), and can therefore be conceived as indicating cortical inhibition or reflecting 

the E/I balance (Dalecki, Johnstone, & Croft, 2015; Hirano et al., 2010). Repetition 

suppression has been linked by numerous EEG studies to anomalous experiences 

in clinical groups (Keil, Roa Romero, Balz, Henjes, & Senkowski, 2016; Smith et 

al., 2013; Thoma et al., 2017)(see Appendix O), but few have investigated this link 

in non-clinical samples. In Chapter 4, this state-based repetition suppression 

measure was correlated with trait questionnaire measures of anomalous 
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experience and a state measure of visual cortical hyperexcitability (pattern glare 

task), to investigate trait-state and state-state relationships cross-modally.  

 

Chapters 2 and 3 of this thesis showed that trait-state relationships 

(between trait anomalous experience and state visual aberrations) seem to exist 

for comparisons within the visual modality only, and not when comparing visual 

and multi-modal measures. It may be that comparing experiences in a single 

modality with experiences in multi-modalities obscures specific relationships 

between individual modalities (and therefore, the networks that process this 

information). Furthermore, only some anomalous experiences have been 

specifically associated with cortical hyperexcitability in the literature, and so the 

most accurate comparisons will be between questionnaires that are based in the 

concept of cortical hyperexcitability and measures of cortical inhibition. Therefore, 

it was tentatively hypothesised that Chapter 4 would evidence a relationship 

between trait visual anomalous experiences specifically associated with cortical 

hyperexcitability, and state auditory inhibition. If no relationship between state 

visual and auditory measures of hyperexcitability is observed in Chapter 4, this 

would suggest that hyperexcitability may be restricted within modalities somehow 

and does not necessarily impact processing in other modalities, in a new non-

clinical sample.  

 

Further, previous research has suggested that repetition suppression 

deficits represent a functional correlate of schizophrenia neuropathology 

specifically (Bodatsch, Brockhaus-Dumke, Klosterkotter, & Ruhrmann, 2015; Park 

et al., 2015). However, repetition suppression has been related to anomalous 
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experiences in healthy groups as well (Anokhin, Vedeniapin, Heath, Korzyukov, & 

Boutros, 2007; Croft, Lee, Bertolot, & Gruzelier, 2001b; Kisley, Noecker, & 

Guinther, 2004; Park et al., 2015), and the amount of suppression overlaps 

considerably between clinical and non-clinical groups (Coffman, Haigh, Murphy, & 

Salisbury, 2017; Patterson et al., 2008). Under the continuum view, mechanisms 

for anomalous experience may be shared between clinical and non-clinical groups. 

Therefore if repetition suppression deficits are also apparent in a healthy sample, 

and are linked to anomalous experience predisposition, this would evidence 

mechanistic continuity across groups.  

 

Materials relevant to this chapter (consent / screening forms and 

questionnaires) are presented in Appendices I – L. 
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4 Chapter 4 

4.1 Introduction 

4.1.1 Repetition suppression 

The ability to quickly detect and adapt to novel, deviant, and repeated stimuli 

is fundamental to human auditory processing (Grimm & Escera, 2012). This can 

be achieved through “sensory gating”; the “ability of the brain to modulate its 

sensitivity to incoming stimuli” (Boutros et al., 1999). This allows important and 

redundant stimuli to be distinguished (Park et al., 2015; Patterson et al., 2008). The 

purpose of sensory gating is to prevent the flooding of higher cortical areas with 

unimportant sensory information (Möller et al., 2007).  

 

One type of sensory gating is “repetition suppression”; a measure of the 

reduction in neural activity in response to repeated stimuli (Grill-Spector, Henson, 

& Martin, 2006). This is thought to reflect the “pre-attentional habituation of 

responses to repeated sensory input”, where a much-reduced neural response to 

repeated stimuli reflects strong recurrent inhibitory mechanisms (Patterson et al., 

2008). Repetition suppression can therefore be conceived as a type of “gating-out” 

process. In healthy brains there is usually a 70% reduction in response to a 

repeated second stimulus relative to the first (Shaikh et al., 2015), and this gating 

is usually highly stable and reliable in healthy neurotypical controls (Thoma et al., 

2017). When measured using auditory stimuli, repetition suppression can therefore 

be conceived as a measure of auditory cortex inhibition (Grill-Spector et al., 2006; 

Hirano et al., 2010). 
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The various neural mechanisms underlying repetition suppression are all 

thought to depend on changes to the excitation/inhibition balance at some stage: 

firing-rate adaptation, where temporarily reduced excitability leads to reduced 

probability of neural spiking; synaptic depression, where temporary reductions in 

pre-synaptic neurotransmitter release lead to reduced synaptic efficacy; and long-

term depression and potentiation, long-term decreases and increases in 

synaptic efficacy due to multiple stages/mechanisms (e.g. reduced Ca2+ 

concentration, changes to gene expression and protein synthesis) (Grill-Spector et 

al., 2006). 

 

As balanced excitation and inhibition is required for accurate perception (as 

outlined in the Introduction - seeAleman & Vercammen, 2013; Isaacson & 

Scanziani, 2011; Jardri et al., 2016; Stafstrom, 1998), it is no surprise that repetition 

suppression abnormalities have been linked to perceptual aberrations. Some 

individuals cannot appropriately “gate” (or filter) out signals from irrelevant or 

redundant sensory information, which may result in excessive information 

becoming salient and being attended (Keil et al., 2016; Patterson et al., 2008). This 

could lead to sensory overload, hallucinations, and cognitive deficits (Park et al., 

2015; Keil et al., 2016). Because of this, sensory gating generally and repetition 

suppression specifically are key ideas used to explain deficits in attention and 

perception as part of schizophrenia. Numerous studies have investigated sensory 

gating and repetition suppression in schizophrenia (Coffman et al., 2017; 

Randeniya, Oestreich, & Garrido, 2018; Rentzsch, Shen, Jockers-Scherübl, 

Gallinat, & Neuhaus, 2015), however relatively few have examined the relationship 

between repetition suppression and predisposition to positive symptoms such as 
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hallucinations specifically (Keil et al., 2016). Despite this, some recent research 

has indeed observed relationships between deficient repetition suppression and 

trait hallucinatory disposition (questionnaire-based) in patients with schizophrenia 

(Micoulaud-Franchi et al., 2014; Smith et al., 2013). One study also found that 

poorer repetition suppression was associated with greater severity of active 

auditory hallucinations occurring during EEG recording (Thoma et al., 2017). 

Importantly, Hirano et al. (2010) suggested that deficits in repetition suppression in 

left hemisphere may contribute to a hyperexcitable response to voices, and so 

auditory hallucinations, in schizophrenia. 

 

Although far fewer studies have examined the relationship between 

repetition suppression and anomalous experience in non-clinical groups 

predisposed to anomalous experiences, there is some evidence that repetition 

suppression can also be impaired in healthy individuals, and may similarly lead to 

perceptual abnormalities (Croft, Lee, Bertolot, & Gruzelier, 2001a; Kisley et al., 

2004; Oestreich et al., 2016). Of the studies outlined in Appendix O, which gives 

an overview of previous work that has correlated repetition suppression and 

symptom measures, only two (Croft et al., 2001 and Park et al., 2015) analysed 

this relationship in healthy control or schizotypy groups. Therefore there is a data 

gap here that needs addressing.  

 

Comparatively, there is little evidence that other forms of “gating-out”, such 

as prepulse inhibition (PPI), are associated with anomalous experiences. PPI is 

whereby “a weaker prestimulus (prepulse) inhibits the reaction to a subsequent 

strong stimulus (pulse)” (Wan et al., 2017). There is no consistent evidence that 
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PPI “deficits” are associated with clinical course or specific symptoms of 

schizophrenia (or schizotypy), including positive symptoms (Swerdlow, Weber, Qu, 

Light, & Braff, 2008; Wan et al., 2017). 

 

For example, recently Mena et al. (2016) found no correlations between PPI 

and any positive or negative symptoms in schizophrenia patients. Similarly, in a 

healthy sample Abel et al. (2004) found no relationship between PPI deficits and 

schizotypy symptoms (including unusual experiences). Further, although Kumari 

et al. (2008) observed a correlation between PPI deficits and psychosis-proneness 

in healthy individuals, the latter was measured using the “Psychoticism” subscale 

of the Eysenck Personality Questionnaire, which focuses on personality traits and 

does not include any items on anomalous experiences. 

 

Instead, PPI may be more related to psychosis-specific executive or 

cognitive dysfunction / disorganisation, or poor global functioning (Kohl, Heekeren, 

Klosterkötter, & Kuhn, 2013; Kumari, Peters, et al., 2008; Swerdlow et al., 2008; 

Wan et al., 2017). For example, Kumari et al. (2008) suggested that PPI deficits 

may be specifically related to the perceived controllability of hallucinations in 

schizophrenia, and did not find any relationships between PPI and any other aspect 

of auditory hallucinations or other symptom dimensions. Further, in this study pre-

pulse latencies were significantly correlated with duration of illness, again 

suggesting a specific clinical relationship. Similarly in healthy individuals with high 

schizotypy, a recent review suggested that PPI deficits were related to cognitive 

(working memory, attention, and executive) dysfunction, but did not present any 

evidence of a link between PPI and positive or negative symptoms (Giakoumaki, 
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2012). However, other research has failed to find associations between PPI and 

cognitive deficits in schizophrenia when correcting for multiple comparisons 

(Hasenkamp et al., 2011). Therefore these relationships are still unclear.  

 

Therefore, PPI deficits may be related to cognitive dysfunction specifically 

(regardless of clinical diagnosis) and are not related to positive symptoms or 

anomalous experiences, in either clinical or non-clinical groups. Unlike repetition 

suppression deficits, it appears that PPI deficits are not continuously distributed as 

a possible “risk factor” for anomalous experiences in clinical and normal 

populations. This thesis is concerned with exploring possible correlates of 

anomalous experiences specifically, that may be applicable across clinical and 

non-clinical groups, and so PPI is not a good candidate. Based on the above, 

repetition suppression was identified as the most suitable measure of auditory 

inhibition for correlating with anomalous experiences in a non-clinical sample. 

 

Previous research has given support to the notion that repetition 

suppression deficits are related to anomalous experiences in both clinical (Thoma 

et al., 2017) and non-clinical (Croft et al., 2001a; Kisley et al., 2004; Oestreich et 

al., 2016) groups. However, comparatively there is much less non-clinical than 

clinical data. Further work is needed to determine whether repetition suppression 

could indeed represent a mechanistic correlate of anomalous experiences 

regardless of clinical status. This would extend the psychosis continuum model 

(Baumeister et al., 2017; Guloksuz & van Os, 2017; Stip & Letourneau, 2009) by 

evidencing a mechanistic continuum to complement the already well-evidenced 

phenomenological continuum. Some previous research has suggested that 
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repetition suppression deficits represent a functional correlate of schizophrenia 

spectrum neuropathology (Bodatsch et al., 2015; Brockhaus-Dumke et al., 2008; 

Park et al., 2015), however without sufficient complementary data from non-clinical 

groups who also experience anomalous perceptions, we cannot be certain that this 

is accurate. Therefore, this chapter sought to fill this gap by exploring possible 

relationships between repetition suppression and anomalous experiences, in a 

new, healthy sample. 

 

The following sections outline the “paired-click” paradigm that is commonly 

used to measure repetition suppression across different ERP components and the 

neurophysiological mechanisms underlying repetition suppression as measured by 

this paradigm, and explore the current evidence for relationships between 

repetition suppression deficits and AEs in clinical and non-clinical groups. 

 

4.1.2  Measuring repetition suppression using the “paired-click” paradigm 

The onset of a sound stimulus evokes a stereotypical P50-N1-P2 

component complex (Pratt, Starr, Michalewski, Bleich, & Mittelman, 2008). 

Therefore, repetition suppression specifically has been classically explored using 

the “paired-click” paradigm. This is an event-related measure of inhibition and 

repetition suppression in the auditory cortex (Möller et al., 2007; Patterson et al., 

2008). The task involves presenting an identical pair of auditory “click” stimuli in 

close succession, usually 500ms apart. The polarities of the evoked potentials 

occurring in response to both the first (S1) and second (S2) clicks are measured 

and compared to estimate repetition suppression, i.e. the extent to which S2 is 

suppressed relative to S1. 
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S1 elicits an initial excitatory response and activates inhibitory pathways 

which will suppress the response to S2, and so S2 represents a test of the strength 

of recurrent cortical inhibitory mechanisms (Anokhin et al., 2007; Patterson et al., 

2008). Two common methods for calculating repetition suppression responses are 

as a ratio (S2/S1), and as a difference (S2-S1), with research still debating which 

is the most reliable (Dalecki et al., 2011; Keil et al., 2016, suppl. material)). 

However, the S2-S1 difference is thought to reflect S1 amplitude more than S2 

suppression (Dalecki et al., 2011), and the S2/S1 ratio is suggested to be a more 

reliable measure of repetition suppression specifically (Boutros, Gjini, Urbach, & 

Pflieger, 2011). 

 

Traditionally, responses to auditory clicks are measured at approximately 

50ms post-stimulus, known as the P50 wave (or auditory P1) (Keil et al., 2016; 

Light et al., 2010; Luck, 2014; Patterson et al., 2008), and so comparing the P50 

response to these repeated clicks allows us to measure “P50 suppression”. 

However, repetition suppression can also be observed in other EEG components, 

most commonly the N1 and P2 components (Anokhin et al., 2007; Boutros et al., 

2011; Grau, Fuentemilla, & Marco-Pallares, 2007; Grimm & Escera, 2012; 

Rosburg, 2018b). A brief overview of suppression responses for each of the key 

components is given below. 

 

4.1.2.1 P50 component 

A healthy, neurotypical brain suppresses the P50 wave evoked by the 

second click (as compared with the first click), particularly if the second click arrives 
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within 500ms of the first. This reflects adaptive repetition suppression of the 

irrelevant or redundant sensory information that is S2, resulting in a smaller P50 

ratio (Keil et al., 2016; Park et al., 2015; Patterson et al., 2008). P50 suppression 

is thought to result from inhibitory signals suppressing activity of the primary 

generators of the P50 response (in the temporal lobes, with some later involvement 

from frontal lobes occurring approximately 10ms later), such that gating is 

observable in the resulting ERPs (Korzyukov et al., 2007). 

 

In contrast, abnormal repetition suppression and a larger P50 ratio – 

reflecting a smaller response difference between S1 and S2 caused by lack of 

suppression of S2 – is observed in those with schizophrenia, suggesting that the 

brain is not “gating” redundant sensory information due to deficits in cortical 

inhibition (Keil et al., 2008; Light et al., 2010; Patterson et al., 2008). This can lead 

to sensory overload (Dalecki et al., 2011). In support of this, in those with 

schizophrenia, Popov et al. (2011) found that poor P50 suppression was restricted 

to S2 abnormalities, and that improvements to this suppression (achieved through 

cognitive training focused on improving auditory-verbal discrimination) were 

confined to S2 amplitudes specifically. This supports the “inhibitory return” theory 

of suppression, whereby S1 activates recurrent inhibitory mechanisms that result 

in an attenuated network response to S2 (Popov et al., 2011).  

 

4.1.2.2 N1 and P2 components 

Similar repetition suppression effects can be also observed for the N1 and 

P2 ERPs, using the same methodology (Anokhin et al., 2007; Boutros et al., 2011; 

Grau et al., 2007; Grimm & Escera, 2012; Rosburg, 2018b). The P50, N1, and P2 



165 
 

show the most prominent amplitude deflections in response to paired click stimuli, 

however the N1 and P2 suppression measures are thought to be more reliable due 

to much larger deflections than for the P50 (Rosburg, 2018). Additionally, the 

suppression ratios for P50, N1, and P2 components are not correlated, and so 

likely represent distinct features or phases of repetition suppression (Boutros et al., 

2011). Anokhin et al. (2007) suggested that both N1 and P2 may be useful gating 

measures or endophenotypes for future studies exploring repetition suppression 

and psychopathology (Anokhin et al., 2007). As such, studies on repetition 

suppression in schizophrenia and related topics have recently begun to include N1 

and P2 component measures (Boutros et al., 2011).  

 

With regards to the N1 component, both early (~80-100ms; left and right 

temporal) and late (~130-140ms; frontal anterior and fronto-left temporal) 

activations are thought to contribute (although these activations overlap spatially 

and temporally, to a degree) (Grau et al., 2007). The N1 frontocentral 

subcomponents are thought to be generated by the supratemporal auditory cortex 

(Onitsuka, Oribe, Nakamura, & Kanba, 2013), a vertex subcomponent generated 

by an unknown site, and a laterally-distributed subcomponent generated by 

superior temporal gyrus (Luck, 2014). However, several additional areas have 

been identified as contributing to the N1, with the strongest N1 responses after 

temporal areas observed in parietal and cingulate cortices (Boutros et al., 2011). 

 

Within the N1 component, the involvement of early areas is thought to 

facilitate the detection of basic stimulus features, whereas late involvement of 

frontal areas may suggest initiation of top-down mechanisms that modulate 
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stimulus salience (Grau et al., 2007) or novelty. Therefore early, pre-attentive 

processing may be reflected by both the P50 and N1 components. However, the 

N1 also reflects some later, frontal processing that is partly distinct from the P50 in 

mediating repetition suppression (Boutros et al., 1999; Pereira et al., 2014). Other 

work has suggested that N1 reflects match/mismatch categorisations, or an 

orienting response (Sur & Sinha, 2009). Interestingly, at S1 presentation both early 

and late areas are activated, however after S2 presentation only right and left 

temporal cortices remain active (and to a lesser degree), such that these “early” 

contributors adapt (decrease in activity) whereas “late” contributors are actively 

suppressed (Grau et al., 2007). Indeed, Boutros et al. (2011) found that frontal 

regions exhibited the strongest N1 repetition suppression (including left superior 

frontal gyrus, left orbitofrontal cortex, and inferior frontal gyrus). 

 

Therefore, N1 repetition suppression is a measure of both suppressed 

frontal activation (reduced top-down modulation) and decreased (habituated) 

temporal activation (Boutros et al., 2011; Grau et al., 2007). Accordingly, N1 

suppression is thought to rely on changes to the balance between excitation and 

inhibition in temporal cortex (Javitt, 2015). 

 

As with the N1 wave, the auditory P2 wave is also involved in updating 

sensory contexts. For example, it is larger when target stimuli are infrequent; in 

oddball paradigms, oddballs elicit a larger P2 response (Luck, 2014). However, this 

effect for P2 only occurs when stimuli features are fairly simple (Luck, 2014). 

Although early work focused on a combined N1/P2 vertex potential, more recent 

work supports these components as functionally and temporally distinguishable 



167 
 

and independent (Crowley & Colrain, 2004; Ferreira-Santos et al., 2012; Pereira et 

al., 2014). 

 

The P2 component peaks ~150-200ms post-stimulus and likely has several 

source generators, with these mainly residing in associative auditory temporal 

regions; however frontal and inferior parietal cortices may also contribute within the 

same time window (Ferreria-Santos et al., 2012). The P2 is thought to represent 

early stages of “forward processing”, where signals are passed to higher cortical 

areas for processing of meaning (Ranson, 2014). As such, the P2 likely reflects 

comparisons between predicted and actually-perceived states or events, and the 

match or mismatch between these (Ferreria-Santos et al., 2012). Accordingly, P2 

suppression is usually observed in response to self-generated sounds that have 

short ISIs, aiding the identification of self-initiated stimuli (Sanmiguel, Todd, & 

Schroger, 2013). Despite this providing a potential link to auditory hallucinations 

caused by self-other misattributions, little research has explored the role of P2 in 

schizophrenia or hallucinations across groups (Ferreria-Santos et al., 2012). 

 

A schematic of expected repetition suppression for the P50, N1, and P2 

components in healthy and schizophrenia groups is shown in Table 4.1 
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Figure 4.1 – Schematic of expected repetition suppression patterns in healthy 

controls and schizophrenia (SZC) groups, for first (S1) and second (S2) stimuli 

presentations. For healthy controls, S2 responses are suppressed as compared to 

S1 responses. For individuals with schizophrenia, S1 responses are decreased as 

compared to controls, and S2 responses resemble S1 data and are not suppressed 

to the same degree (based on Figure 3 from Gooding, Gjini, Burroughs, & Boutros, 

2013; and data from van Tricht et al., 2015). 
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4.1.3 Repetition suppression and anomalous experiences in clinical and 

non-clinical groups 

It is thought that repetition suppression deficits may be caused by cortical 

hyperexcitability resulting from defects in neuronal inhibition (Patterson et al., 2008; 

Rosburg, 2018). For example, functional deficits in repetition suppression may be 

mediated by a reduction of by inhibitory -aminobutyric acid (GABA) interneurons 

or GABAergic tone, which could reduce cortical inhibition so promote a general 

hyperexcitability across the cortex (Becker, 2004; Freedman, 2014; Hirano et al., 

2010; Möller et al., 2007; Smucny et al., 2013; Vlcek, Bob, & Raboch, 2014).12 

Research has also implicated the dysregulation and hyperactivation of dopamine 

(acting on D2 receptors) and serotonin (acting on 5HT2 and 5HT3 receptors) 

systems (Becker, 2004; Uhlhaas & Singer, 2015; Vlcek et al., 2014). 

 

Therefore, the roles of the excitation/inhibition (E/I) balance and GABAergic 

signalling are often highlighted in repetition suppression research. If the E/I balance 

is disturbed, this could lead to impairments in sensory processing, resulting in 

increased salience of abnormal and/or internal states, and so hallucinations (Jardri 

et al., 2016; Keil et al., 2016; Uhlhaas & Singer, 2015). This theory has also been 

supported outside of schizophrenia, to explain hallucinations in neurodegenerative 

diseases and delirium, for example (Burghaus, Eggers, Timmermann, Fink, & 

Diederich, 2012). 

 
12 This reduced GABAergic function may be caused by deficits in inhibitory nicotinic cholinergic activity in the 

hippocampus. Cholinergic stimulation of hippocampal CA3-4 GABAergic interneurons usually stimulates 

release of GABA, which acts on CA3 pyramidal neurons to block excitatory glutamate release, reduce 

cortical responses, and so “gate” redundant information (Vlcek et al., 2014). 
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4.1.3.1 P50 

4.1.3.1.1 Non-clinical groups 

Several studies have observed effective suppression in healthy participants 

(i.e. a much-reduced neural response to S2 as compared to S1), as would be 

expected in this group (Brockhaus-Dumke et al., 2008; Hazlett et al., 2015; 

Patterson et al., 2008). Usually, there is a 70% reduction in response to S2 as 

compared to S1 in heathy control groups (Shaikh et al., 2015).   

 

Several studies have linked high schizotypy to reduced P50 suppression, 

however results have been mixed in relation to positive, negative, and cognitive 

disorganisation symptoms. Although Park et al. (2015) found that the greater the 

P50 deficit, the higher the overall schizotypy score, Croft et al. (2001a) found that 

poorer P50 suppression was associated with increased abnormal perceptual 

experiences only, and not other schizotypal symptoms. Park et al. (2015) did not 

find any association between P50 deficits and specific positive- or negative-type 

dimensions. Park and colleagues suggest that this may be due to using a different 

measure of schizotypy as compared to other studies (the Oxford-Liverpool 

Inventory of Feelings and Experiences (O-LIFE; (Mason & Claridge, 2006)), and 

the fact that different experiences will overlap across different dimensions between 

questionnaires. 

 

However, these results may also be because the O-LIFE measure of 

schizotypy does not explore anomalous experiences in sufficient detail and in a 

way that is appropriate for non-clinical samples. O-LIFE questions on unusual 
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experiences are largely related to cognitive aberrations such as delusions and 

magical thinking, with any other anomalous experiences (such as sensory 

distortion) addressed rather superficially. Only a few questions explicitly address 

hallucinations in specific senses. This issue will be addressed in the current study 

by using questionnaires that explore a variety of anomalous experiences in detail, 

and using non-clinical language. This is important because clinical language could 

negatively bias honest self-report; for example, negative stigma around 

“symptoms” of mental health problems could lead to social desirability bias (see 

“Overview of current study” for further discussion). 

 

Further, the O-LIFE questionnaire is a trait-based measure of anomalous 

experience, and as with many other investigations into anomalous experience in 

non-clinical groups, no state-based measure was used by Park et al. There is very 

little work exploring the relationships between state-based measures of anomalous 

experience and repetition suppression. Smith et al. (2013), for example, observed 

no relationship between P50 suppression and a state-based auditory 

hallucinations rating scale in those with schizophrenia, but did find that greater P50 

suppression deficits were associated with greater severity of trait-based auditory 

hallucinations. This highlights a differential relationship for P50 suppression 

between trait predisposition to and state experience of auditory hallucinations. This 

is supported by work suggesting that state hallucinations tend to involve speech 

production areas, whereas trait predisposition is associated with earlier auditory 

processing in auditory temporal cortex – a central generator of the P50 (Kühn & 

Gallinat, 2012; Smith et al., 2013). Therefore including both state and trait 

measures in the current study will provide needed data to compare with these 
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clinical findings and inform our understanding of these relationships in non-clinical 

groups.  

 

4.1.3.1.2 Clinical groups 

Overall, research suggests that schizophrenia patients have much larger 

P50 ratios (i.e. similar responses to both S1 and S2) as compared to controls 

(Brockhaus-Dumke et al., 2008; Hazlett et al., 2015; Patterson et al., 2008). 

Generally, individuals with schizophrenia show only a 20-50% suppression in the 

response to S2 relative to S1 (Shaikh et al., 2015).  

 

Some work has suggested that deficits in P50 repetition suppression may 

reflect early sensory dysfunctions in those with schizophrenia, caused by aberrant 

connectivity and communication between brain areas that process lower-level 

sensory information and its integration – which are mediated by inhibitory, 

excitatory, and cholinergic systems (Smucny et al., 2013; Vleck et al., 2014). 

Repetition suppression deficits may also reflect increased neural noise 

(unsynchronised, spontaneous background neural activity), which obscures 

relevant signals and so decreases the signal-to-noise ratio. Positive symptoms in 

particular are thought to be the result of attempts to cope with such  aberrant neural 

activity, which could lead to an inability to filter out or inhibit redundant sensory 

information (such as repeated stimuli) (Smucny et al., 2013)(Bodatsch et al., 2015; 

Keil et al., 2016). This could in turn prevent accurate sensory processing and 

efficient top-down control, and lead to sensory overload and hallucinations 

(Powers, Mathys, & Corlett, 2017; Smucny et al., 2013; Thoma et al., 2017; 

Uhlhaas & Singer, 2015). In line with this, Keil et al. (2016) found that greater 
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sensory gating deficits and aberrant neural synchronisation were associated with 

more severe positive symptoms in schizophrenia. Further, the failure to label inner 

speech as being self-generated may be caused by pre-frontally-mediated 

executive control going “offline” and temporal lobe processing becoming 

predominant (Thoma et al., 2017).  

 

4.1.3.1.3 Clinical/non-clinical group comparisons 

Although many clinically-focused studies include control groups, few studies 

have compared P50 suppression between clinical and non-clinical groups in detail. 

In a unique meta-analysis, Patterson and colleagues (2008) compared results 

across 39 studies of P50 suppression ratios in schizophrenia and control groups, 

and found a mean difference in P50 suppression ratios of 46% between 

schizophrenia and control groups. 

 

Accordingly, repetition suppression has been argued to reflect psychosis or 

schizophrenia stage and severity specifically (Bodatsch et al., 2015). However, as 

most of those who present with psychotic-like symptoms or are seen as “at-risk” 

for psychosis do not go on to develop psychosis, these types of experiences are 

argued to be a functional correlate of schizophrenia spectrum neuropathology, 

rather than a schizophrenia “prodrome” (Bodatsch et al., 2015; Park et al., 2015). 

This is supported by findings that P50 suppression is significantly impaired in, but 

not different between, those who are at-risk for psychosis, “truly prodromal”, and 

medication-free first-episode patients (Brockhaus-Dumke et al., 2008).  
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However, Patterson et al. (2008) also found that 40% of P50 suppression 

ratios for controls were within the same range as schizophrenia patients. Some 

studies have also reported abnormal suppression in controls, and normal 

suppression in schizophrenia patients on anti-psychotic medication (Patterson et 

al., 2008). Furthermore, Keil et al. (2016) did not observe significant differences in 

P50 suppression between their schizophrenia patients and control groups. Whilst 

Park et al. suggest that this finding raises questions about the specificity of the P50 

measure, it could be argued that this observation supports an alternative viewpoint 

that is in line with the general proposal of this thesis; that this simply reflects natural 

variation along a spectrum of predisposition to anomalous experiences and cortical 

hyperexcitability. If suppression deficits are present in those with schizotypy 

(Chang, Arfken, Sangal, & Boutros, 2011; Croft et al., 2001a; Park et al., 2015), 

and those who experience anomalous perceptions but are otherwise healthy, then 

it does not follow that suppression deficits reflect specific neuropathologies per se. 

Accordingly, some research suggests that P50 deficits may indicate deficient 

repetition suppression and predisposition to psychotic-like symptoms across 

diagnoses (Sánchez-Morla et al., 2008). Therefore it may be hypothesised that 

healthy individuals who have anomalous experiences akin to (attenuated) positive 

symptoms would also exhibit slight suppression deficits in comparison to those who 

do not have these experiences (or have them less frequently). It may be that 

suppression deficits are common to all individuals experiencing perceptual 

aberrations, and not just those with schizotypy or schizophrenia. 

 

Some work has suggested using evoked potentials to place individuals at-

risk for psychosis into risk groups (Bodatsch et al., 2015). However, it may also be 
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possible (and in fact more accurate) to use evoked potentials to identify individuals 

who are predisposed to experiencing anomalous perceptions, outside of specific 

clinical diagnoses. If P50 repetition suppression deficits are observed in healthy 

individuals in the current study, and are related to anomalous experiences, this 

would suggest that repetition suppression should be conceptualised as a marker 

of predisposition to anomalous experiences rather than to clinical conditions or 

pathologies specifically.  

 

4.1.3.2 N1 and P2 

4.1.3.2.1 Non-clinical groups 

There is very limited research on N1 and P2 repetition suppression as 

related to anomalous experience in non-clinical groups. Several studies have 

linked N1 suppression with perceived agency over actions and the ability to make 

self/other distinctions. Specifically, greater N1 suppression after speech onset, for 

example, may serve to label this speech as self-generated and reduce the 

likelihood that the agent’s senses are overwhelmed or distracted by self-generated 

activity (Baess, Horváth, Jacobsen, & Schröger, 2011; Oestreich et al., 2016). For 

instance, one notable study from Oestreich et al. (2016) observed deficient N1 

suppression in response to self-initiated (via button press) auditory tone stimuli in 

non-clinical participants with high schizotypy scores, suggesting that these action-

binding deficits are not unique to schizophrenia and supporting the psychosis 

continuum hypothesis (Whitford et al., 2018). This connects with models 

suggesting that deficient action-outcome binding may result in inner speech being 

perceived as external (hallucinations) (Poonian, McFadyen, Ogden, & Cunnington, 

2015). 
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In healthy samples, two studies have also evidenced a relationship between 

abnormal P50/N1 suppression and poor “perceptual modulation” (experiencing 

sensory information flooding)/increased awareness of background noises, 

respectively (Anokhin et al., 2007; Kisley et al., 2004). 

 

To the best of the author’s knowledge, no studies exist that investigate the 

relationship between P2 suppression and anomalous (or similarly categorised) 

experiences in healthy groups alone, outside of those acting as controls in clinical 

studies (which are outlined below). 

 

4.1.3.2.2 Clinical groups 

Deficits in N1 suppression in clinical groups are thought to arise from 

changes to N-methyl-d-aspartate–type glutamate receptor (NMDAR) function, 

although there is far less research into this relationship than for mismatch negativity 

(Javitt, 2015) or the P50 component. NMDAR antagonists (which inhibit NMDAR 

function) and NMDAR deficits have been linked to early-stage N1 auditory and 

visual processing deficits in both monkey models of, and humans with, 

schizophrenia (Javitt, 2015). Such deficits in low-level processing may “generalise 

upwards” to disturb higher-level processing (Butler et al., 2005).  

 

There is very little work on the neural mechanisms of the P2 component. 

One study in mice suggested that suppression of mouse P80 (equivalent to the 

human P2) in response to auditory tones was improved by administering 

olanzapine, an anti-psychotic with high affinity for dopamine and serotonin 
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receptors (Lajtha, 2009). However, olanzapine mediated its entire effect by 

increasing S1 response, rather than enabling adaptive suppression of S2 (Lajtha, 

2009). 

 

As with P50, several studies have evidenced a relationship between 

repetition suppression deficits as indexed by N1 and P2, and sensory processing 

abnormalities (Crowley & Colrain, 2004; Gjini, Arfken, & Boutros, 2010)(Anokhin et 

al., 2007). However, there is far less research on these components relative to the 

abundance of P50 research. 

 

An early study by Boutros et al. (1999) showed that patients with 

schizophrenia exhibit suppression deficits across P50, N1, and P2 components, 

implying that repetition suppression is impaired across multiple stages of sensory 

processing. More recently, van Tricht et al. (2011) observed significantly reduced 

N1 responses to single tones in a high-risk group who transitioned to psychosis 

(versus non-transitioning and control groups). Several other studies have 

evidenced similar deficits in N1 suppression in those with schizophrenia (Gjini et 

al., 2010; Javitt, 2015; Laurent et al., 1999; Lepock et al., 2018; Roth, Pfefferbaum, 

Kelly, Berger, & Kopell, 1981; Whitford et al., 2018).  

 

However, neither Boutros et al. (1999) nor van Tricht et al. (2011) correlated 

suppression deficits with specific symptom types for the clinical groups, and no 

symptom data was collected for the control group in van Tricht’s study, precluding 

between-group comparisons. As such, N1 deficits may not be a marker of disease 

progression (as suggested by van Tricht and others; see Lepock et al., 2018), but 
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of specific symptoms. Additional data on these measures from non-clinical groups 

is needed to make conclusions here. 

 

In those studies that have explored the relationships between N1 and P2 

suppression deficits and perceptual aberrations specifically, there are mixed 

results. Some have failed to find an association (Brockhaus-Dumke et al., 2008), 

whereas others have (Rosburg, 2018b; Thoma et al., 2017). In a systematic review 

of the role of N1 in schizophrenia, Rosburg (2018b) concluded that there is some 

evidence of a relationship between lower N1 response amplitudes / deficient N1 

suppression and acute auditory verbal hallucinations, but not other symptom types. 

Conversely, Thoma et al. (2017) found that significantly impaired suppression 

ratios for P50, N1, and P2 components during auditory verbal hallucinations were 

not associated with trait hallucination scores. Thoma et al. (2017) actually found 

that improved N1 gating predicted greater trait severity of auditory verbal 

hallucinations in patients with schizophrenia, but only when auditory hallucinations 

were not simultaneously present. Why might better suppression predict more 

severe hallucinations? Thoma et al. (2017) suggest this may be due to either over-

compensation of corrective inhibitory mechanisms, or due to hallucination 

formation leading to reduced processing of external versus internal stimuli – or 

perhaps both. However, these suggestions are speculative and require further 

investigation, particularly as intact suppression supposedly represents normal 

functioning.  

 

Also relating suppression to hallucinations, Grau et al. (2007) argued that 

auditory N1 suppression is a measure of both suppressed frontal activation 
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(reduced top-down modulation) and decreased (habituated) temporal activation. 

Accordingly, Chen et al. (2011) suggested that neural synchrony between speech 

production (Broca’s) and processing (auditory cortex) areas acts as the “neural 

instantiation” of motor command efference copies, which allow self/other 

distinctions. These copies of action or motor signals (such as inner or prepared 

speech) are sent from planning to sensory brain areas, and allow the agent to 

distinguish between intended/self-generated and external/other-generated 

movement. For example, Chen et al. (2011) demonstrated that higher neural 

synchrony between speech production and processing areas prior to speech onset 

was correlated with greater N1 suppression after speech onset. Therefore, this 

enhanced synchrony may serve to label the prepared speech as self-generated, 

which in turn leads to greater suppression of the auditory cortex N1 response to 

the sound of the uttered speech or inner voice. This reduces the likelihood that the 

agent’s senses are overwhelmed or distracted by self-generated activity. Under 

this explanation, efference copies sent from speech production systems act to 

control auditory cortex activity in a top-down manner (Chen et al., 2011). Linking 

the above concepts, Kort et al. (2017) demonstrated that, in both healthy controls 

and those with schizophrenia, NMDAR dysfunction (via blockade) reduced N1 

suppression during predicted speech (talking). 

 

Related to inhibition, Ambrosini et al. evidenced a lack of habituation in 

visual evoked potentials (VEPs) (N1-P1, P1-N2) recorded over Oz in migrainers 

with aura (but not healthy controls) when viewing repeated visually-irritating stimuli 

(Ambrosini, Coppola, Iezzi, Pierelli, & Schoenen, 2017; Schoenen, Wang, Albert, 

& Delwaide, 1995). Importantly, the amplitudes of these VEPs in migrainers with 
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aura actually increased with repetition (but decreased in controls) (Schoenen et al., 

1995). This is suggestive of aberrations in the networks controlling repetition 

sensitivity in clinical groups, with reduced or no repetition suppression occurring – 

perhaps due to deficient inhibition (Schoenen et al., 1995) or top-down control of 

visual cortex (Demarquay & Mauguiere, 2016).  

 

4.1.3.2.3 Clinical/non-clinical group comparisons 

Notably, one recent study by Coffman et al. (2017) found no differences in 

P50, N1, or P2 repetition suppression between those with schizophrenia and 

healthy controls, with intact suppression evident in both groups. However, this 

result may be due to the paradigm used, which was not a paired-click task with 

500ms ISI but instead a five-tone task with 750ms between blocks. Therefore the 

“S1” in this study was always slightly suppressed, and so direct comparisons with 

“true” repetition suppression results cannot be made (Coffman et al., 2017). 

Additionally, data on positive and negative symptoms were only gathered for the 

patient group in this study, and so again comparisons between these symptoms 

and suppression deficits could not be made. 

 

Interestingly, one study comparing repetition suppression in cocaine-

dependent patients and healthy controls found that poorer P2 suppression was 

associated with increased experiences of perceptual aberrations in patients, but 

with social anhedonia in controls (Gooding et al., 2013). This suggests that deficits 

in repetition suppression may be related to different processes in patient and 

control groups. This study also illustrates the value of directly comparing clinical 

and non-clinical groups to give new perspectives on these relationships. 
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4.1.3.3 Outstanding issues 

As highlighted by the above literature, considerably little research has 

explored the relationship between repetition suppression across different ERP 

components and specific experiences, particularly in healthy groups. This means 

that conclusions cannot be made regarding which repetition suppression deficits, 

if any, are unique to specific clinical conditions or symptoms. A considerable 

number of studies suggest that certain suppression deficits may be used as 

neurobiological markers or endophenotypes of various clinical conditions (such as 

Earls, Curran, & Mittal, 2016; Johannesen et al., 2005; Park et al., 2015), but these 

hypotheses cannot be verified if comparisons are not made with non-clinical groups 

who exhibit similar symptoms in the absence of diagnoses and other confounding 

variables. Considerable interest in the psychosis spectrum has arisen in recent 

years, however additional research is needed to conclude whether the well-

evidenced experiential continuum is supported by a mechanistic continuum. 

 

For example, the use of medication is a significant confounder in clinical 

EEG research, influencing general EEG measurement (Ferreira-Santos et al., 

2012; Hyun, Baik, & Kang, 2011; Oestreich et al., 2016), and possibly inducing the 

low-frequency EEG abnormalities often observed in schizophrenia patients 

(Ranlund et al., 2014). So, in medicated groups it can be difficult to conclude 

whether observed EEG data are specific to clinical groups or symptoms, or are in 

fact caused by the medication itself. Therefore, medication free non-clinical groups 

can offer valuable data that is not confounded by either acute or chronic effects of 

medication, or illness. 
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Repetition suppression is conventionally explored with a 500ms delay 

between S1 and S2. However, such paradigms are limited as they do not provide 

data on the extent and/or limits of the suppression effect. A mechanistic continuum 

theory may predict that, in those predisposed to anomalous experiences, repetition 

suppression would become more inefficient as severity of hallucinations increases, 

for example. By extension, it could also predict that repetition suppression deficits 

become less apparent as ISI increases – because tones that are very close 

together in time  are more “difficult” to accurately gate (higher processing demand), 

whereas tone that are further apart in time are relatively “easier” to gate (lower 

processing demand). Therefore, in a healthy, well-functioning sample, suppression 

deficits may be more (or only) apparent for “difficult” (shorter) ISIs. Some previous 

work has explored ranges of repetition suppression values and their test re-test 

reliability in healthy participants (Fuerst, Gallinat, & Boutros, 2007), but very little 

work has explored how suppression patterns change with varying inter-stimulus 

intervals (ISIs) between S1 and S2. The majority of research has fixed the ISI at 

500ms. Early work suggested that this ISI allows most accurate discrimination 

between participants with schizophrenia and non-clinical controls (Nagamoto, 

Adler, Waldo, & Freedman, 1989) – however this approaches the matter in a 

discrete way (clear clinical/non-clinical divide) rather than the continuous manner 

proposed here, and also does not account for the influence of anomalous 

experience on repetition suppression. This chapter will address this by using varied 

ISIs between S1 and S2, to increase our understanding of the impact that ISI may 

have on suppression effects in non-clinical individuals predisposed to anomalous 

experiences. 
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4.1.4 Overview of the current study 

This study will build on previous research by exploring P50, N1, and P2 

repetition suppression in a non-clinical group that is not necessarily schizotypal. 

Rather, this study is concerned with examining whether both state and trait 

anomalous experiences are associated with deficits in repetition suppression in the 

absence of any clinical diagnosis. These relationships will be tested in the current 

study using anomalous experience questionnaires (trait measure) and a pattern 

glare task (state measure; a correlate of visual cortical hyperexcitability), in addition 

to the paired-click task (state measure, deficits in which may indicate cortical 

hyperexcitability) (Hirano et al., 2010; Vlcek et al., 2014). No previous studies have 

explored the relationship between repetition suppression and pattern glare 

experiences in non-clinical participants. The current study also builds on Chapters 

2 and 3 (Marchant, Mevorach, & Braithwaite, under review) to explore whether the 

theorised relationship between cortical hyperexcitability and predisposition to 

anomalous experience in non-clinical samples can be extended from visual to 

auditory cortex, and whether there are distinct relationships between trait and state, 

or specific types of, anomalous experiences and ERP measures. 

 

If anomalous experiences across clinical and non-clinical groups have 

shared neurophysiological mechanisms, then healthy groups predisposed to such 

experiences may also exhibit repetition suppression deficits (albeit to an attenuated 

degree) (Oestreich et al., 2016; Whitford et al., 2018). The majority of previous 

(albeit clinical) work might suggest that that greater deficits in auditory suppression 

(and so inhibition) would be correlated with increased self-report of trait anomalous 
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experiences. However, Thoma et al. (2017) found the opposite; that improved N1 

gating predicted greater trait severity of auditory verbal hallucinations in patients 

with schizophrenia. Therefore, a firm directional hypothesis for the relationship 

between repetition suppression and trait/state measures in a healthy group cannot 

be made here. 

 

Both previous work, and Chapters 2 and 3, suggest that auditory/visual trait 

and state anomalous experiences are related to hyperexcitability in the 

corresponding modality’s “early” sensory versus “late” cortical areas, respectively 

(i.e. in auditory/primary visual cortex, versus Broca’s/extrastriate) (Kühn & Gallinat, 

2012). As the central generators of auditory repetition suppression are in temporal 

lobe (an “early” area), we might therefore expect that suppression deficits would 

be associated with trait, but not state, anomalous experience (Korzyukov et al., 

2007). Previous research has indeed shown this, with P50 suppression deficits 

being related to trait, but not state, anomalous experiences in those diagnosed with 

schizophrenia (Smith et al., 2013). This chapter will build on this, exploring cross-

modal trait-state comparisons and in a healthy sample. 

 

As there are mixed results in the literature concerning how positive- and 

negative-type experiences are related to repetition suppression (particularly P50) 

in non-clinical participants, the current study will use questionnaires that explore a 

wide variety of anomalous experiences, across modalities (and that are not 

necessarily derived from clinical diagnoses), and use non-clinical language 

appropriate for the current sample. Particularly, the “Cortical Hyperexcitability index 

II” (see Methods) explores experiences that are empirically evidenced as being 
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related to cortical hyperexcitability (Fong et al., 2019). Even though all CHi-II-type 

experiences are associated with the general concept of cortical hyperexcitability, 

different groups may experience specific clusters of anomalous experience (Fong 

et al., 2019), possibly due to variation in the type (and/or location) of cortical 

excitability (Carter & ffytche, 2015). Given the recency of Fong et al.’s work, 

exploring the CHi-II’s correlation with EEG here will provide further insight into its 

utility (as in Fong et al., 2020). 

 

The current study will employ a pattern glare task, as substantial evidence 

exists that the visual aberrations induced by the striped grating stimuli in this task 

(such as colour and motion) are mediated by cortical hyperexcitability (Braithwaite, 

Broglia, Brincat, et al., 2013; Braithwaite, Mevorach, et al., 2015; Fong et al., 2019; 

Huang & Zhu, 2017; Huang et al., 2011; Wilkins, Tang, Irabor, Baningham, & 

Coutts, 2008; Wilkins, 1995; Wilkins et al., 1984; Wilkins & Evans, 2010).  

 

Using a healthy, non-clinical group significantly reduces the confounding 

factor of medication. The current study also excludes regular users of recreational 

drugs, and tobacco or nicotine products (including cigarettes, gum, patches, and 

vaping). Early repetition suppression may be facilitated by nicotine intake (Wan, 

Crawford, & Boutros, 2007)(Park et al., 2015), and nicotine consumption and 

withdrawal alters both corticospinal and intra-cortical excitability levels in humans 

(Grundey et al., 2013). Nicotine also interacts with several other neurotransmission 

systems implicated in the regulation of cortical excitability, such as dopamine, 

serotonin, GABA, and glutamate (Grundey et al., 2013). Nicotine use has not been 
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controlled for in many past studies exploring P50 suppression, which may have 

compromised findings (Wan et al., 2017). 

 

 

4.2 Methods 

4.2.1 Participants 

27 participants took part in the study. Of these, 24 (89%) were female and 

24 (89%) were right-handed. Participant age ranged from 18 to 30 years (x̄ = 21.4, 

σ = 3.2). All participants were undergraduate or postgraduate students from the 

University of Birmingham (UK). Participants received research credits or monetary 

compensation in return for participation. 

 

Exclusion criteria included in study advertisements excluded any potential 

participant with: a neurological or psychiatric condition, personal or family history 

of seizure/epilepsy/recurrent fainting; compromised vision or physical state 

(including excessive caffeine/alcohol consumption the previous night; sleep 

disorder/s; regular users of recreational drugs; smokers (regularly smoking the 

equivalent of at least one cigarette every day (including vaping)), or users of 

nicotine patches/gum; metal or medical implants (cochlear implant, pacemaker, 

medication pump, surgical clips); taking any prescribed or unprescribed medication 

that may interfere with cognitive function; on-going anti-malarial treatment; very 

little sleep the previous night; and previous significant head injury, concussion, or 

eye-surgery. A screening questionnaire was administered at the start of each 

session to ensure that participants did not meet any of these exclusion criteria. 
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Informed consent was obtained from participants using a consent form that 

described the nature of the study, potential benefits and risks, and participant 

compensation. Participants were given the opportunity to have any questions 

answered to their satisfaction before signing the form in the presence of the 

researcher. The study was approved by the Ethics Committee of the University of 

Birmingham [ERN_15-0887]. 

 

 

4.2.2 Materials 

4.2.2.1 Questionnaire measures 

4.2.2.1.1 Cortical Hyperexcitability Index II 

The Cortical Hyperexcitability Index II (CHi-II; Fong et al., 2019) is a 

parametrically- and empirically-validated proxy correlate of cortical 

hyperexcitability, consisting of 26 items. All CHi-II questions feature two response 

dimensions; “frequency” and “intensity”. For each item, participants give responses 

to two dimensions along a 7-point Likert scale (0-6; 0 = “Never”/”Not at all”, 6 = “All 

the time”/”Extremely intense”). 

 

CHi-II questions relate to the presence, intensity, and frequency of 

experiences from three distinct but inter-correlated factors: “Heightened Visual 

Sensitivity and Discomfort” (HVSD; 11 items), “Aura-Like Hallucinatory 

Experiences” (AHE; 9 items), and “Distorted Visual Perception” (DVP; 6 items). 

The HVSD factor relates to sensory sensitivity in response to environmental 

sources of irritation, such as lights and certain patterns. These visual stress 
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symptoms, which can include somatic discomforts such as nausea, are directly 

related to cortical hyperexcitability (Fong et al., 2019). Items on the AHE factor 

relate to low-level, elementary positive hallucinations (such as phosphenes, 

flashes of light and colour) and negative-type hallucinatory experiences (loss of 

visual information, such as tunnel vision and blind spots). The DVP factor contains 

items related to “distortions” of visual perception (such as changes to the shape 

and colour of objects, people, and the environment) and complex hallucinations 

such as out-of-body experiences. (The full CHi-II questionnaire can be seen in 

Appendix K). 

 

4.2.2.1.2 Cardiff Anomalous Perceptions Scale (CAPS) 

The same version of the CAPS was used as in the previous two chapters. 

 

4.2.2.1.3 Multi-modality unusual sensory experiences questionnaire (MUSEQ) 

The MUSEQ is a recently developed self-report trait measure that assesses 

unusual sensory experiences across six modalities; auditory, visual, olfactory, 

gustatory, bodily sensations, and sensed presence experiences (Mitchell et al., 

2017). This measure was developed to be useable by both clinical and non-clinical 

groups, and so uses non-clinical language. The MUSEQ has been validated using 

a large sample of 1300 participants. A small clinical group of 32 participants with 

schizophrenia spectrum disorder or bipolar disorder provided data showing that the 

MUSEQ could discriminate between the clinical and non-clinical groups tested, 

with the clinical groups scoring significantly higher on both the overall MUSEQ 

(mean = 79) and on each subscale as compared to controls. However, there was 

some overlap in the frequency distributions of clinical and non-clinical group 
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scores, supporting the notion of an anomalous experience continuum (Mitchell et 

al., 2017). Test re-test reliability, conducted with 96 participants, showed that the 

MUSEQ had stable internal consistency over time (tests 6 months apart). 

 

The MUSEQ consists of 43 items, with each item rated on a 5-point Likert 

scale from 0 (“Never – Never happened”) to 4 (“Frequently – At least monthly”). 

MUSEQ items can also be split into six different modality-based factors: auditory 

(7 items), visual (8 items), olfactory (8 items), gustatory (8 items), bodily sensations 

(8 items), and sensed presence experiences (4 items). Items explore various 

anomalous experiences under each modality, for example: “Sounds were louder 

than they would normally be” (auditory); “I thought of a smell and I could almost 

smell it for real” (olfactory); “I have felt the presence of a relative or friend who has 

passed away” (sensed presence). The items under each modality were created to 

represent a wide range of experiences, from broad sub-clinical sensory 

experiences (such as “My eyes have played tricks on me”) to hallucinations (such 

as “I saw people, faces, or animals, and then found that nothing was there”). The 

original MUSEQ study found that all factors were positively inter-correlated, 

suggesting that greater endorsement of items in one modality was associated with 

greater endorsement of items in other modalities. (The full MUSEQ questionnaire 

can be seen in Appendix L). 
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4.2.2.2 Psychophysical task 

4.2.2.2.1 Pattern Glare (PG) task 

The same stimuli and procedure for the PG task were used as in the 

previous chapters. 

 

 

4.2.2.3 EEG procedure and paired-click task 

EEG was recorded using an ANT Neuro eegosportsTM amplifier, 64-channel 

AgCl ANT Neuro Waveguard caps, and LE-200 eego software (v. 1.6.1, ANT 

Neuro). A custom montage was used to record from 8 of the available 64 electrode 

locations: FPz, M1, M2, Cz, Pz, FCz, C5, C6. EEG was recorded continuously at 

a 2048Hz sampling rate. Online recordings used a common reference CPz which 

was later re-referenced offline to the mastoid electrodes. All impedances were 

reduced to ≤20kΩ before recording began. Data was high-passed at 0.3Hz and 

low-passed at 30Hz. 

 

The paired-click task involves participants listening to brief (10ms) auditory 

“clicks” (white noise, generated using Matlab) through headphones, presented in 

pairs (Stimulus 1 (S1) and Stimulus 2 (S2)). For the paired-click task, auditory 

stimuli were presented in one block using an auditory data file generated from a 

custom Matlab script. S2 was presented after a randomised delay of 400ms, 

600ms, or 800ms after S1 presentation. A total of 300 click pairs were presented 

with 5s inter-stimulus interval (total task time = 28mins 30s, approximately 100 

pairs with each delay type). Clicks were presented binaurally through headphones 

at 55dB. 
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EEG data was collected in a sound-proofed chamber to reduce noise 

interference as much as possible. The temperature of this chamber was 

maintained at a comfortable level via the in-built cooling system to prevent 

participants perspiring, which can cause problems with EEG recording (Light et al., 

2010). During the paired-click task, lights in the booth were switched on to reduce 

participant fatigue or sleepiness. During EEG recording, participants were asked 

to stay awake, alert, and as still and relaxed as possible (to reduce electrical 

interference from muscle movements). 

 

Participants sat in a comfortable chair in front of a computer monitor in the 

sound-proofed booth. Headphones were fitted and adjusted for participant comfort 

and to ensure the speakers were aligned directly over participant’s ears for good 

sound transfer. The top band of the headphones was pulled away from the EEG 

cap as much as possible so that it did not rest on top of the cap and introduce noise 

into the EEG signal. Before beginning the main experiment, the sound stimuli were 

briefly played to participants to ensure they could hear the stimuli clearly. The task 

was explained to participants and they were given the opportunity to ask questions. 

Once participants were comfortable and ready to begin, the experimenter left the 

room and the door to the sound booth was closed to reduce external noise 

interference.  The auditory stimuli file was then played whilst EEG data was 

recorded. Participants watched a film or television show of their choice, without 

sound but with subtitles, for the duration of the paired-click task (similar to previous 

experiments; see Graux, Bidet-Caulet, Bonnet-Brilhault, Camus, & Bruneau, 

2014). This served to keep participants awake and alert for the duration of the 
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experiment, without directing their attention explicitly to or away from stimuli. 

Participants were told that they did not have to actively attend or ignore stimuli. 

This setup is in line with conventional repetition suppression paradigms that do not 

explicitly manipulate attention (Rosburg, 2018). 

 

During recording, monitors placed within and without of the booth allowed 

the researcher and participant to communicate if needed, and for the researcher 

to observe participants within the booth to ensure accordance with task instructions 

(for example, that participants were alert and not moving excessively) and 

participant wellbeing. Signal quality was also monitored throughout data collection 

to ensure that any interference or issues were recognised and dealt with 

immediately. 

 

 

4.2.2.4 Other 

PG task stimuli were presented on a Dell P2210 20” monitor (30x47.5cm), 

1680x1050 screen resolution, 59Hz refresh rate. The present study employed the 

same computerised version of the PG task used in previously published 

experiments (Braithwaite, Mevorach, et al., 2015). Both tasks were run using 

custom E-Prime 2.2 and Matlab programs in a sound-proofed room. For the PG 

task, the main source of illumination was the computer monitor, and participants 

used the keyboard and mouse to input task responses. For the repetition 

suppression task, participants were not required to make any responses to task 

stimuli. 
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4.2.3 Design and Procedure 

 All participants completed all study measures (questionnaires, tasks, 

and EEG recording). 

 

Figure 4.2 – Procedure of the current study. Participants were first 

screened, and eligible participants gave informed consent. Questionnaires were 

split into two blocks to reduce participant fatigue (*Qs 1 & 2 = blocks 1 and 2). The 

order and number of questionnaires (CHi-II, CAPS, MUSEQ) in each block was 

randomised for each participant. Before EEG, participants completed the PG task 

(practise and main). The EEG recording system was then set up. After a brief initial 

baseline recording period (of eye blinks, facial muscle movement, etc. for use in 

artifact removal), participants were moved to the sound-proofed booth and the 

paired-click task was explained. EEG was recorded continuously whilst participants 

completed the paired-click task. Finally, participants were debriefed. 
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Figure 4.3 – Timings of the main components of the current study. 

 

 

4.2.4 Data analysis 

4.2.4.1 Questionnaires  

The same procedure for scoring the CAPS was used as in the previous two 

chapters. 

 

To score the CHi-II, frequency and intensity dimensions were pooled across 

questions for analysis. Mean CHi-II total and factor scores were calculated by 

dividing total scores by the number of questions (maximum score per question = 

12, score range = 0 – 312). 

 

To score the MUSEQ, scores were pooled across questions to give an 

overall score (maximum score per question = 4, score range = 0 – 172). Individual 

MUSEQ factors were not explored (due to small sample size and so limited power). 
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Corrected means were calculated for all questionnaire subscales by 

multiplying raw factor scores by the ratio of factor questions to total questions. This 

calculation prevents inaccurate score comparisons by accounting for the fact that 

there are differing numbers of questions per factor.  

 

 

4.2.4.2 Pattern glare task 

The same procedure for analysing PG task data was used as in the previous 

two chapters, with the exception of splitting the sample into “pattern glare” (positive 

M-HΔ ratings) and “no pattern glare” groups (zero or negative M-HΔ ratings) using 

M-HΔ ratings. The small number of participants in the current study precluded such 

a split. In the study design phase, comparisons in all chapters and studies were 

planned to be continuous, based on previous work finding continuous relationships 

between trait and state measures of anomalous experience in both non-clinical 

(Braithwaite, Broglia, Bagshaw, et al., 2013; Braithwaite, Broglia, Brincat, et al., 

2013; Braithwaite, Mevorach, et al., 2015; Croft et al., 2001a; Gooding et al., 2013) 

and clinical samples (Gooding et al., 2013; Laurent et al., 1999; Rosburg, 2018b; 

Roth et al., 1981; Thoma et al., 2017). The PG split conducted in the previous two 

chapters was a later addition recommended by a manuscript reviewer, well after 

data collection for the current chapter was complete. Further, the number of 

participants recruited for the current chapter was based on previous work exploring 

relationships between repetition suppression measures and anomalous 

experience questionnaires. A PG-split in the current chapter would produce a 

“pattern glare” group of only five participants; far too small for meaningful analysis. 
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In place of a PG split, a median split based on PG scores was considered. 

This would allow consideration of the PG variable as categorical rather than 

continuous, similar to the PG-split method outlined above. However, splitting the 

sample based on the median M-HΔ score of -8 resulted in two groups of n=13 with 

mean M-HΔ scores of -7.1 (σ = 21.6) and -8.3 (σ = 25.3). An independent samples, 

two-tailed t-test suggested that these group scores were not significantly different 

from each other (t(24) = .133, p=0.895) – and so such a split would also not 

produce any meaningful results. This general issue is further considered in the 

Discussion. 

 

 

4.2.4.3 EEG data 

Data were processed using the EEG Lab (Delorme & Makeig, 2004) and 

FieldTrip (Oostenveld, Fries, Maris, & Schoffelen, 2011) Matlab toolboxes. The 

EEG data was first segmented into epochs of 1100ms, starting 100ms before the 

S1 stimulus onset and ending 1000ms post-stimulus onset. Next, movement, eye-

blink, and other artifacts were removed by screening channels for extreme values 

(-75 to +75μV threshold) and manual visual inspection of data, leaving 93% of data 

to be included in waveform averaging. The EEG data was then segmented again 

to 400ms epochs taken around S1 and S2 onsets, starting 50ms before stimulus 

onset and ending 350ms post-stimulus onset. The P50, N1, and P2 components 

were taken from the FCz electrode using average mastoid reference. P50, N1, and 

P2 amplitudes were defined as the largest peak amplitude with an interval of 40-

60ms, 90-110ms, and 150-210ms after the first (S1) and second (S2) stimulus in 

each paired click respectively. The latency interval for calculating the mean 
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amplitude of these components was based on visual inspection of the data, 

independent of condition (i.e delay between S1 and S2) and stimulus type (S1 and 

S2).  Average amplitudes at S1 and S2, per participant and condition (delay type), 

were extracted based on the intervals defined above. 

 

For all repetition suppression analyses, S2/S1 ratios were used, as these 

give a more reliable indication of the relationship between the S1 and S2 data as 

compared to considering S1 or S2 alone (Chang et al., 2011; Park et al., 2015), or 

S2-S1 differences (Chang et al., 2011; Gooding et al., 2013). This is because 

S2/S1 ratios should reflect attenuated S2 responses regardless of S1 amplitudes 

(Boutros et al., 2011; Gooding et al., 2013), whereas S2-S1 differences are not 

proportional and may be more representative of or skewed by S1 responses 

(Boutros et al., 2011). 

 

 Suppression for P50, N1, and P2 was calculated as a ratio (S2/S1). For all 

ERPs, a larger ratio (further away from 0, positive or negative) indicates weaker 

suppression, whereas a smaller ratio (closer to 0) indicates greater suppression. 

Repetition suppression ratios are represented as percentages by calculating 100 

x (1-(S2/S1)).  

 

 

4.2.4.4 Comparisons between questionnaire and EEG data 

Based on available data, it is possible to make the clear hypothesis that CHi-

II scores would be correlated with repetition suppression in the current chapter. 

The CHi-II and repetition suppression measures are both strongly connected to the 
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concept of cortical hyperexcitability. Repetition suppression is a stable and well-

evidenced measure of auditory cortical inhibition that depends on the E/I balance 

(Grill-Spector et al., 2006; Hirano et al., 2010; Javitt, 2015; Light et al., 2010; 

Patterson et al., 2008; Rosburg, 2018b; Thoma et al., 2017). The CHi and CHi-II 

questionnaires were constructed with the specific aim of bringing together visual 

experiences whose relationships with cortical hyperexcitability are well evidenced 

in the literature (see Braithwaite, Marchant, et al., 2015; Fong et al., 2019). In 

support of this, Chapter 2 evidenced a significant positive correlation between 

pattern glare and CHi scores. Other work has also provided similar evidence (Fong 

et al., 2019) and supported the relationship between elevated pattern glare scores 

and other anomalous experiences (Braithwaite, Broglia, Bagshaw, et al., 2013; 

Braithwaite, Mevorach, et al., 2015). Fong et al. (2019) suggested that the 

individual factors of the CHi-II may represent unique but related aspects of the 

general concept of cortical hyperexcitability. For example, both healthy and 

migrainer groups with high pattern glare scores tend to have high AHE factors 

scores, suggesting that pattern glare-type visual cortical hyperexcitability is 

associated with elementary visual hallucinations and somatic sensations such as 

nausea (Fong et al., 2019). However, the HSVD factor and pattern glare scores 

were only associated in a migrainer group (which may be related to 

hyperexcitability of trigeminovascular pain networks). The DVP factor was not 

associated with pattern glare at all – and these experiences may be driven by a 

“wider range of abnormal neural activities” than the AHE and HSVD factors (Fong 

et al., 2019). Therefore, it is possible that distinct relationships may also be 

apparent between the CHi-II factors and auditory excitability, as measured via 

repetition suppression. 
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However, a similarly clear hypothesis could not be made for the 

relationships between the CAPS / MUSEQ and repetition suppression measures. 

In contrast to the CHi-II, there is insufficient evidence in the literature to suggest 

that state auditory cortical hyperexcitability is as strongly related to CAPS- and 

MUSEQ-type experiences as to CHi-II-type experiences. Indeed, Chapters 2 and 

3 of this thesis evidenced no relationships between a visual state measure of 

anomalous experience (pattern glare) and trait CAPS questionnaire scores. No 

previous studies have compared CAPS or MUSEQ scores with auditory repetition 

suppression measures. Further, both the CAPS and MUSEQ are also multi-modal 

questionnaires, which introduces a considerable degree of variability into 

comparisons – particularly with a uni-modal repetition suppression measure. 

Although the CAPS can be subdivided into “TLE” and “non-TLE” factors, both 

include experiences in several modalities. The MUSEQ has been fractionated into 

six uni-modal subscales (Mitchell et al., 2017), however the small sample size here 

does not provide the statistical power needed to make many multiple comparisons 

based on subscale splits. Therefore, in the current chapter, comparisons between 

repetition suppression and CAPS / MUSEQ total scores were exploratory only. 

Current results will be useful preliminary data to inform the direction of future work. 

 

Effect sizes are indicated for relevant comparisons (as correlation 

coefficients, and Cohen’s d for pairwise t-tests due to equal sample sizes (Lakens, 

2013)).  

 

 



200 
 

 

4.3 Results 

As before, outliers for the PG task were defined as any total PG ratings for 

the low-frequency gratings in the sham (baseline) condition greater than x̄ ± 2SD 

for the total sample (two-standard deviation band method) (Bloom et al., 2009). No 

data needed to be excluded on this basis. Data from 1 participant was excluded 

due to an EEG data file error, so that the final sample included data from 26 

participants; 23 (88%) female; 23 (88%) right-handed; x̄ age = 21.5 years (σ = 3.2, 

range = 18-30). 

 

 

4.3.1 Questionnaires 

4.3.1.1 CHi-II 

Descriptive statistics for CHi-II questionnaire scores are shown in Table 4.1. 

The current sample produced an overall mean CHi-II score of 59.5, with 

endorsement of items on all three factors. 
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Table 4.1 – Descriptive statistics for CHi-II questionnaire total and factor 

scores. Each factor mean is corrected for the number of questions per factor. 

 

 

 

Table 4.2 – CHi-II total and factor mean scores split by percentiles of CHi-II 

total score. Factor means are corrected for the number of questions per factor. 

 

 

 

 Overall 

Heightened 

sensitivity & 

discomfort 

Aura-like 

hallucinatory 

experiences 

Distorted 

visual 

perception 

Mean 59.5 13.5 2.6 1.3 

SEM 8.2 1.8 0.5 0.3 

σ 42.0 9.4 2.6 1.4 

Range 144 33.7 8.4 5.2 

 N Overall 

Heightened 

sensitivity & 

discomfort 

Aura-like 

hallucinatory 

experiences 

Distorted visual 

perception 

25th  7 28.0 5.8 1.0 0.0 

50th  6 46.5 10.5 2.0 1.0 

75th  12 83.7 20.0 4.0 2.0 

95th  1 149.5 33.3 7.7 5.0 
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CAPS 

Descriptive statistics for CAPS questionnaire scores are shown in Table 4.3. 

A mean total TLE score of 1.6 indicates a relatively low degree of this type of 

anomalous perceptual experience in the current sample. 

 

 

 Mean total score 

 TLE Non-TLE 

Mean 1.6 2.1 

SEM 0.3 0.5 

σ 1.6 2.7 

Range 5.8 8.1 

 

Table 4.3 – Descriptive statistics for CAPS questionnaire scores. Each 

factor mean is corrected for the number of questions per factor. TLE = Temporal 

Lobe Experience factor; non-TLE = remaining questions. 

 

 

Differences in CAPS factor scores were explored using a paired t-test. This 

suggested a significant difference between CAPS TLE and non-TLE scores (t(25)= 

-3.56, p=0.002, Cohen’s d=0.23, BF10=23.7), showing that participants endorsed 

significantly more non-TLE-type than TLE-type experiences. 
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4.3.1.2 MUSEQ 

Descriptive statistics for MUSEQ questionnaire scores are shown in Table 

4.4. The current sample produced an overall mean MUSEQ score of 36.6, with 

endorsement of items on all factors. Sensed presence was the rarest experience, 

with only two participants endorsing questions on this factor. 

 

 

 Sum Auditory Visual Olfactory Gustatory 
Bodily 

sensations 

Sensed 

presence 

Mean 36.6 1.5 1.4 1.0 1.1 1.3 0.2 

SEM 5.6 0.2 0.2 0.2 0.2 0.2 0 

σ 28.6 0.9 1.1 1.2 1.2 1.2 0.2 

Range 101.1 3.3 3.9 3.7 4.7 4.7 0.6 

 

Table 4.4 – Descriptive statistics for MUSEQ questionnaire total and factor 

scores. Each factor mean is corrected for the number of questions per factor. 
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4.3.1.3 Pattern glare 

Descriptive statistics for pattern glare scores are shown in Table 4.5. To 

explore PG scores further, delta values were calculated between the scores for the 

medium frequency minus the high frequency gratings (M-HΔ). Only five 

participants had a M-HΔ score ≥ 1, indicating a fairly low incidence of pattern glare 

in the current sample. 

 

 

 Mean AVD intensity 

 Medium High M-HΔ 

Mean 34.0 41.7 -7.7 

SEM 8.0 8.3 4.5 

σ 40.8 42.4 23.1 

Range 200 168 107 

 

Table 4.5 – Descriptive statistics for mean total AVD intensity scores. 

  

 

 

 

4.3.1.4 Questionnaires and pattern glare 

Spearman’s correlations suggested no significant relationships between 

questionnaire and pattern glare scores (see Table 4.6).  
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 Pattern Glare M-HΔ 

CHi-II mean total -0.20 

CAPS mean total 0.04 

MUSEQ mean total -0.02 

 

Table 4.6 – Spearman’s correlations between questionnaire total scores 

and pattern glare M-HΔ scores. None of the relationships were statistically 

significant.  

 

 

 

4.3.2 Repetition suppression 

ERPs were grand averaged across all participants and trials, for each 

condition. 

 

 

 

 

 

 

 

Figure 4.4 – Grand mean averaged ERPs in each condition (400ms, or 

600ms, 800ms delay between S1 and S2), showing P50, N1, and P2 components. 

 

μV 

secs 
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Cook’s distances were calculated for all ratio data in all components. Two 

outlier values were identified in the P50 data (Cook’s distances ≥ 1) from two 

participants; one with a ratio of 704.7 in the 400ms condition, and one with a ratio 

of -76.0 in the 600ms condition. These outliers were removed from further P50 

analysis. No outliers were identified in the N1 and P2 data (all Cook’s distances < 

1). Table 4.7 shows descriptives for P50, N1, and P2 ratio data (with outliers 

removed). P50 standard deviations and ranges demonstrate this data was highly 

noisy as compared to N1 and P2 data. 

 

 P50 N1 P2 

 400 600 800 400 600 800 400 600 800 

Mean 0.2 0.9 1.1 0.2 0.9 0.4 0.8 0.8 0.9 

SEM 0.4 0.7 0.5 0.1 0.5 0.1 0.1 0.1 0.0 

σ 2.2 3.3 2.4 0.5 2.4 0.4 0.5 0.3 0.2 

Range 9.9 18.6 10.2 2.5 13.2 1.8 2.5 1.8 0.9 

Table 4.7 – Descriptive statistics for P50, N1, and P2 ratio data. 

 

Three separate repeated measures ANOVAs were performed for each of 

the P50, N1, and P2 components (in line with previous work: Rentzsch et al., 2015) 

to explore the relationships between condition (400ms, 600ms, or 800s ISI / delay 

between stimulus pairs) and stimulus (S1, S2) EEG amplitude data. 
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4.3.2.1 P50 

The assumption of sphericity was met for both condition (χ2 (2) = 3.405, 

p=0.182) and the condition x stimulus interaction (χ2 (2) = 4.604, p=0.100). 

 

ANOVA results suggested no significant main effect of condition (ISI) 

(F(2,50) = .573, p=0.567, BF10 = 0.01), but a significant main effect of stimulus (S1 

or S2) (F(1,25) = 8.078, p=0.009, Cohen’s d=-0.56, BF10 = 17.07). This suggests 

no difference in amplitudes as a function of condition, but a significant difference 

in amplitudes as a function of stimulus (i.e. first and second presentations). There 

was no significant interaction between condition and stimulus (F(2,50) = 1.338, 

p=0.272, BF10 = 0.33), suggesting no differences in S1 and S2 amplitudes as a 

function of time between their onset.  

 

Figure 4.5 shows the mean and spread of suppression ratios in the 400ms, 

600ms, and 800ms delay conditions for the P50 ERP.  
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Figure 4.5 – Mean suppression ratios (S2/S1) for all participants in the 

400ms, 600ms, and 800ms delay conditions for the P50 ERP. X = condition mean. 

A larger ratio (further away from 0, positive or negative) indicates weaker 

suppression, whereas a smaller ratio (closer to 0) indicates greater suppression. 

The two outlier P50 ratios (as indicated by Cook’s distances ≥ 1) are not shown in 

this figure to improve readability (as these extreme values significantly altered the 

scales and display). 

 

 

4.3.2.2 N1 

The assumption of sphericity was met for both condition (χ2 (2) = 3.157, 

p=0.207) and the condition x stimulus interaction (χ2 (2) = 0.866, p=0.649).  

 

ANOVA results suggested no significant main effect of condition (i.e. ISI 

between tones) (F(2) = 1.402, p=0.256, BF10 = 0.08), but a significant main effect 
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of stimulus (F(1) = 76.88, p<0.001, Cohen’s d=-1.72, BF10 >1000). Again this 

suggests no difference in amplitudes as a function of condition, but a significant 

difference in amplitudes as a function of stimulus (i.e. first and second 

presentations). There was no significant interaction between condition and 

stimulus (F(2) = 1.033, p=0.363, BF10 =0.19), suggesting that there was no 

difference in the amplitude of the S1 and S2 as a function of time between their 

onset.  

Figure 4.6 shows mean and spread of suppression ratios in the 400ms, 

600ms, and 800ms delay conditions for the N1 ERP. On average, S2 responses 

were suppressed by 77% at 400ms delay, 63% at 600ms delay, and 73% at 800ms 

delay. 

Figure 4.6 – Mean suppression ratios (S2/S1) for all participants in the 

400ms, 600ms, and 800ms delay conditions for the N1 ERP. X = condition mean. 

A larger ratio (further away from 0, positive or negative) indicates weaker 

suppression, whereas a smaller ratio (closer to 0) indicates greater suppression. 

No outliers were identified in N1 data (all Cook’s distances < 1). 
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4.3.2.3 P2 

No outliers were identified in the data by Cook’s distances (all Cook’s 

distances < 1). The assumption of sphericity was met for both condition (χ2 (2) = 

0.325, p=0.850) and the condition x stimulus interaction (χ2 (2) = 1.330, p=0.514). 

 

ANOVA results suggested no significant main effect of condition (F(2) = 

2.235, p=0.118, BF10 =0.12), but a significant main effect of stimulus (F(1) = 33.99, 

p<0.001, Cohen’s d=1.14, BF10 >1000). Again this suggests no difference in 

amplitudes as a function of condition, but a significant difference in amplitudes as 

a function of stimulus (i.e. first and second presentations). Interestingly, here we 

did find a significant interaction between condition and stimulus (F(2) = 3.880, 

p=0.027, BF10 =2.17). This suggests significant differences in S1 and S2 

amplitudes as a function of the time between their onsets. 

 

Post-hoc paired t-tests suggested significant differences between S1 and 

S2 mean amplitudes in all conditions (400: t(25) = 4.516, p<0.001, Cohen’s d=0.89, 

BF10 = 210.05; 600: t(25) = 4.401, p<0.001, Cohen’s d=0.86, BF10 = 160.65; 800: 

t(25) = 3.644, p=0.001, Cohen’s d=0.72, BF10 = 28.70, Bonferroni corrected p value 

≤0.017). There were no significant differences in S1 amplitudes between 

conditions, however S2 amplitudes were significantly different between the 400ms 

and 600ms versus 800ms conditions only (400/800: t(25) = -2.870, p=0.008, 

Cohen’s d=0.56, BF10 = 5.56; 600/800: t(25) = -2.893, p=0.008, Cohen’s d=0.57, 

BF10 = 5.83; Bonferroni corrected p value ≤0.008).  
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Figure 4.7 shows mean and spread of suppression ratios in the 400ms, 

600ms, and 800ms delay conditions for the P2 ERP. On average, S2 responses 

were suppressed by 29% at 400ms delay, 30% at 600ms delay, and 13% at 800ms 

delay. 

 

Figure 4.7 – Mean suppression ratios (S2/S1) for all participants in the 

400ms, 600ms, and 800ms delay conditions for the P2 ERP. X = condition mean. 

A larger ratio (further away from 0, positive or negative) indicates weaker 

suppression, whereas a smaller ratio (closer to 0) indicates greater suppression. 

No outliers were identified in P2 data (all Cook’s distances < 1). 
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collapsed across all conditions for further analysis. For the P2, as significant 

differences were observed between the 400/600ms and 800ms conditions but not 

between the 400 and 600ms conditions, ERP data was collapsed across the 

400ms and 600 conditions (P2_a), with 800ms condition data (P2_b) analysed 

separately. 

 

4.3.3.1 Repetition suppression and CHi-II 

Cook’s distances suggested two outliers (Cook’s distance >1) for linear 

correlations between CHi-II factor scores and S2/S1 ratios in one participant’s data. 

This participant’s data was subsequently removed from all further analysis. 

 

Spearman’s correlations between total CHi-II factor scores and S2/S1 ratios 

suggested two significant relationships (see Table 4.8), between the HVSD factor 

and P2_b S2/S1 ratio (r(26) = -0.446, p = 0.026, BF10=1.61), and between the DVP 

factor and P2_a S2/S1 ratio (r(26) = -0.601, p = 0.001, BF10= 7.16) (see Figure 

4.8). Only the latter survived Bonferroni correction for 12 tests to p<0.006. 
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  HVSD AHE DVP 

N1 Coefficient -.066 .174 .183 

 Sig. (2-tailed) .759 .405 .381 

P2_a Coefficient -.326 -.349 -.601** 

 Sig. (2-tailed) .112 .087 .001 

P2_b Coefficient -.446* -.081 -.072 

 Sig. (2-tailed) .026* .933 .731 

 

Table 4.8 – Table of Spearman’s correlation coefficients and p values for 

comparisons between CHi-II factor scores and EEG S2/S1 ratio scores N1 (pooled 

across all delay conditions), P2_a (pooled 400ms and 600ms delays), and P2_b 

(800ms delay) components. *p<0.05, **p<0.001. Bolded statistics survived 

Bonferroni correction for 12 tests to p<0.006.  
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Figure 4.8 – Scatter plot of relationship between CHi-II DVP factor total 

score and S2/S1 ratio for the EEG P2_a component (pooled 400ms and 600ms 

delay condition data). As CHi-II DVP factor score increases, S2/S1 ratio tends 

towards 0 – i.e., higher scores on the DVP factor are associated with greater S2 

suppression (relative to S1). ** p<0.001. The two identified outliers (Cook’s 

distance >1) were not included in this analysis.  

 

4.3.3.2 Repetition suppression and CAPS / MUSEQ 

As outlined above, the relationships between repetition suppression and 

CAPS / MUSEQ measures were investigated with exploratory analysis only. 

Scatterplots did not indicate any relationships, with trend lines flat for all 

comparisons (see Suppl. Figures 1-2 in Appendix N). 
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4.3.3.3 Repetition suppression and pattern glare 

Spearman’s correlations between pattern glare M-HΔ scores and S2/S1 ratios for 

N1, P2_a, and P2_b components suggested no significant relationships between 

these variables (p>0.05 for all comparisons) (see Suppl. Figure 3 in Appendix 

N). 

 

 

4.4 Discussion 

This chapter aimed to explore whether hyperexcitability may be “supra-

modal”; that is, whether the trait-state and state-state relationships observed within 

the visual modality in Chapters 2 and 3 could be extended to cross-modal 

comparisons (visual-auditory). This question was addressed by comparing an 

auditory, state “paired-click” measure (which indicates the degree of inhibition in 

auditory cortex) with visual trait and state measures of anomalous experience 

(questionnaires and a pattern glare task). These comparisons suggested a 

relationship between repetition suppression and distorted perceptual experiences, 

however this is to be taken with caution due to the sample size. Findings are 

discussed in more detail below. 

 

4.4.1 Questionnaire measures 

Overall, questionnaire data supports the notion that healthy individuals can 

experience anomalous perceptions traditionally be associated with clinical, 

neurological, or other medical diagnoses – an observation made by several studies 

in recent years (Heriot-Maitland et al., 2012; Pechey & Halligan, 2012; Preti et al., 

2014). This study extends previous work by utilising two new measures (the CHi-II 
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and MUSEQ) and providing evidence of anomalous experiences from these 

measures in a healthy sample. These results lend further credence to the concept 

of an experiential psychosis continuum (Baumeister et al., 2017; Johns & van Os, 

2001; van Os & Reninghaus, 2016). 

 

The mean CHi-II score of 59.5 (17%) observed here suggests that the 

current sample are moderately predisposed to anomalous experiences associated 

with cortical hyperexcitability, supporting previous work conducted using an earlier 

version of the CHi (Braithwaite, Marchant, et al., 2015). This value was only very 

slightly lower than that reported by the original CHi-II paper (64.6; 18%) (Fong et 

al., 2019), despite differences in sample sizes (26 here versus 300+ in Fong et al.). 

This tentatively supports the notion of a fairly consistent overall level of these 

experiences in non-clinical undergraduate student populations. However, as the 

CHi-II has only at present been employed by Fong et al. (2019) and this thesis, 

further research is needed to clarify the frequency and phenomenology of these 

experiences in non-clinical groups. In the general population, the lifetime 

prevalence of anomalous experiences varies widely at 5-40% (Maijer et al., 2018; 

McGrath et al., 2016; Mitchell et al., 2017; Ohayon, 2000), but although several 

studies have explored the prevalence of hallucinations in very large samples (see 

Larøi et al., 2019; McGrath et al., 2016; Maijer et al., 2018; Ohayon et al., 2000), 

these have not focused on experiences that have been empirically linked to cortical 

hyperexcitability in the literature. A widescale survey of general population samples 

using the CHi-II would provide valuable data for comparison with previous work, 

and much-needed information about the frequency and mechanisms of this 
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phenomenon in non-clinical groups, particularly if paired with more objective co-

correlates such as fMRI. 

 

The current sample experienced a rate of CAPS-type anomalous 

experiences comparable with some previous work (Lien et al., 2015). The CAPS 

aims to specifically measure experiences associated with temporal lobe 

disturbance, which “has been linked to almost every “stage” on the psychosis 

continuum” (Bell et al., 2006), and TLE-type were present in the current sample 

(albeit to a relatively low degree, as is expected in non-clinical groups), thus 

evidencing the presence of “psychotic-like symptoms” in a healthy sample and 

supporting previous work (Lien et al., 2015; Parra & Argibay, 2016). 

 

An overall mean MUSEQ score of 36.6 was again slightly lower than that 

observed in the original MUSEQ study (50.5; Mitchell et al., 2017). In the current 

study, as expected, auditory and visual experiences were the most common, which 

contrasts with Mitchell et al. (2017) finding that auditory and bodily sensation 

experiences were the most frequent, followed closely by visual experiences. These 

findings support other research showing that anomalous experiences in the 

auditory, visual, and bodily modalities are most common in the general population 

(McGrath et al., 2016; Ohayon et al., 2000). 

 

Interestingly, three participants here had MUSEQ scores above the mean 

score of the clinical group (79) from Mitchell et al. (2017). Similarly, Mitchell et al. 

also found a degree of overlap in the frequency distributions of their clinical and 

non-clinical groups, and this has been observed for other measures, such as the 
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CAPS, as well (Bell et al., 2011). Therefore, the MUSEQ and CAPS’ ability to 

reliably discriminate clinical from non-clinical participants is not guaranteed, and 

current results further evidence an overlap in the frequency of anomalous 

experiences between these groups. To the best of the author’s knowledge, this 

study is the first to use the MUSEQ in a new, non-clinical population since the 

original publication. 

 

Due to the relative novelty of the CHi-II and MUSEQ measures, further work 

is needed to explore the relative frequency of different types of experiences in the 

general non-clinical population, and further comparisons with different clinical 

populations are needed. These measures also have slightly different aims. The 

CHi-II was developed with the specific aim of quantifying latent cortical 

hyperexcitability by exploring related visual experiences, building on the original 

CHi measure (Braithwaite, Marchant, et al., 2015). The MUSEQ was developed to 

provide a comprehensive measure of anomalous experiences across modalities, 

and give needed attention to modalities that are under-researched (such as 

olfactory, gustatory, and bodily sensation experiences) (Mitchell et al., 2017). 

Therefore variation in scores between these measures in expected, but requires 

further investigation. It is important that future work focuses on dissociating 

possible mechanisms and identifying how these may contribute differently to 

different anomalous experiences. 

 

4.4.2 Pattern glare 

The pattern glare task is argued to reflect latent cortical hyperexcitability of 

visual cortex (Fong et al., 2019), with positive and zero/negative M-HΔ differences 
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suggesting high and moderate/low visual irritability respectively (Evans & 

Stevenson, 2008). For the pattern glare task, an overall M-HΔ score of -7.7 

suggests a relatively low degree of pattern glare and inferred visual cortical 

excitability in the current sample on average – which is to be expected in a non-

clinical sample. Although there was also a wide range of M-HΔ scores (from -62 to 

+45) in the current sample, evidencing large variability in individual pattern glare 

experiences), most participants scored close to or below zero which suggests low 

pattern glare in the majority of this sample (see Table 4.5). Similar patterns have 

been seen in previous work. For example, Fong et al. (2019) used the same PG 

task and method of score calculation as in the current study, and found a similar 

mean M-HΔ score of -8 in the “low” pattern glare group of a non-clinical sample 

(whereas the “high” group score was 3.9). The bias in the current sample towards 

low pattern glare scores could be rectified in future by focusing on obtaining a 

sample that more equally represents low and high pattern glare scores, to enable 

more accurate comparisons with other measures.  

 

4.4.3 Questionnaires and pattern glare 

Current results suggested no significant correlations between any 

questionnaire measure and pattern glare M-HΔ scores, which contrasts with 

previous work (Braithwaite, Broglia, Brincat, et al., 2013; Fong et al., 2019). 

However, the lack of relationship observed here may be due to the relatively low 

levels of hyperexcitability in the current sample (as discussed above). Although 

Chapter 2 and previous work have found significant relationships between trait and 

state aberrant experience when considering these variables continuously 

(Braithwaite, Broglia, Bagshaw, et al., 2013; Brockhaus-Dumke et al., 2008; Croft 
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et al., 2001a; Park et al., 2015; Smith et al., 2013; Thoma et al., 2017), these used 

larger sample sizes and/or patient groups with very frequent or intense 

experiences. Therefore, collapsing pattern glare scores across the sample as a 

whole may have obscured possible relationships. Both Chapters 2 and 3, and Fong 

et al. (Fong et al., 2019),  stratified samples into high and low pattern glare groups 

(indicating baseline excitability) to reveal nuances in trait-state relationships. 

However additional data is needed to clarify these relationships (see Future 

research directions).  

 

4.4.4 Repetition suppression 

4.4.4.1 P50 

We did not observe a P50 suppression effect in our data set. In contrast to 

expectations, there was no suppression of S2 relative to S1 for any of the delay 

conditions when considering the sample as a whole. This is surprising, given that 

repetition suppression is a core feature of normal brain functioning (Gotts, Chow, 

& Martin, 2012; Grotheer & Kovacs, 2016). 

 

Although experimental confounds such as use of medication and nicotine 

may have obscured the P50 signal (Patterson et al., 2008) by interfering with brain 

function and cognition (particularly the E/I balance (Bauernfeind et al., 2011; 

Grundey et al., 2013; Grundey et al., 2012; Thirugnanasambandam et al., 2011)), 

these factors were controlled for as far as possible in the current study. Any reports 

of recreational drug use, use of prescribed or unprescribed medication known to 

influence perception, or nicotine (in any form), precluded participation (although 

these were self-reported). 
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Failure to observe P50 suppression here may be accounted for by large 

variability in P50 responses in the current sample, particularly for the 600ms delay 

condition (see Table 4.7). Significant variability has also been observed in other 

studies examining P50 responses in both clinical and non-clinical groups 

(Patterson et al., 2008). This variability contributes to “noisy” data, which may be 

why the P50 has notoriously low test-retest reliability (Fuerst et al., 2007; Rosburg, 

2018b). This, combined with small amplitude deflections for the P50 component 

(Rosburg, 2018), likely led to no clear suppression being observed here. 

 

 So are previous P50 findings reliable, and what does this imply for future 

research; should the P50 be used, or not? Might a different measure be more 

appropriate? It is likely that P50 deficits are more pronounced in clinical groups, 

and that these are due to factors such as drug or medication use, or illness 

chronicity (Ferreira-Santos et al., 2012; Hyun et al., 2011; Ranlund et al., 2014). 

Research does suggest that the P50 is not as reliable a measure as other 

components, such as the N1 and P2 (Rosburg, 2018a). However, it may be that 

these components simply have different relationships with anomalous experiences 

or other symptoms in different groups, such that P50 may be relevant in clinical but 

not non-clinical groups. However the current sample size is small, and so further 

work is needed to determine which components are the most reliable and which 

correlate with anomalous experiences specifically, in both clinical and non-clinical 

groups. 
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4.4.4.2 N1 

In contrast to the P50, current results evidence clear suppression of N1 

responses to S2 as compared to S1 for all delay conditions. However, there were 

no significant differences in suppression between conditions; S2 was suppressed 

to a similar degree across all conditions. 

 

These results suggest intact and functioning repetition suppression in the 

current sample as a whole, which is expected given that the current sample 

consists of healthy individuals. Accordingly, a large meta-analysis suggested that 

N1 repetition suppression (as measured by S2/S1 ratios) is significantly impaired 

in patients with schizophrenia as compared to healthy controls (Rosburg, 2018). 

However, as other studies have shown a significant decrease in S1 but not S2 N1 

response amplitudes in patients (as compared to controls), it is likely that the 

difference between these groups for the S2/S1 ratio is skewed by S1 differences. 

Therefore, it is not repetition suppression per se that is deficient in those with 

schizophrenia, but rather the initial response of the auditory cortex to S1 (Rosburg, 

2018). 

 

This deficit may be due to deficient or prolonged refractory periods 

(Rosburg, 2018), where incomplete recovery of the generators of the N1 

component means that subsequent responses are weaker (Pereira et al., 2014). 

Interestingly, Rosburg (2018) suggests that these deficits and prolonged refractory 

periods may be associated with predisposition to hallucinations. Research 

suggests that auditory verbal hallucination symptoms are exclusively linked to N1 

suppression, with no other symptoms (negative, cognitive, emotional, or degree of 
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hostility) being significantly associated (Rosburg, 2018). Usually, the N1 auditory 

cortex response is suppressed during talking, which may help to distinguish self- 

from other-generated sounds during speech (Wang et al., 2014). Further, it is 

possible that these phenomena may be linked by cortical hyperexcitability. If N1 

response deficits are a result of prolonged refractory periods, then a general, 

persistently heightened level of excitability in the cortex would prevent complete 

neuronal recovery and result in weaker responses to stimuli. However, this is 

purely speculative, as these relationships have not yet been investigated in either 

clinical or non-clinical aberrant experience. 

 

Data also suggest that the N1 response is not sensitive to the time delay 

between repeated stimuli, within the time windows investigated here. This is in line 

with expectations; the auditory N1 is known to display strong repetition 

suppression, and this is proposed to reflect the refractory periods of responding 

neurons in auditory cortex (Hsu, Hamalainen, & Waszak, 2014). Repetition 

suppression paradigms usually use an inter-stimulus interval (ISIs) of around 

500ms (Boutros et al., 2011). Recently, Pereira et al. (2014) observed decreasing 

N1 response amplitudes with decreasing ISIs (6000, 3000, 1000, and 600ms) in a 

repeated single-tone paradigm (suggesting greater suppression with shorter ISIs). 

However, Pereira et al. did not specifically investigate the degree of N1 

suppression at S2 for these ISIs, or any ISI below 600ms; indeed, little work has 

explored changes in repetition suppression with varying ISIs. Here, we evidence 

N1 suppression at three different but short ISIs (400, 600, and 800ms). It would 

therefore be interesting to further explore the limits of this effect by using additional 

ISIs (of, for example, from the earliest N1 subcomponent at 100ms post-stimulus 
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(Luck, 2014) up to 6000ms (as in Pereira et al., 2014)) or even 10s (at which point 

the initial N1 response strength is restored (Javitt, 2015)), to map the onset and 

decay of N1 suppression. 

 

Furthermore, current results suggest that direct or focused attention to 

stimuli is not required in order to see this N1 suppression effect, as in the current 

study participants did not pay direct attention to the stimuli but instead listened 

passively. This supports previous work; Hsu et al. (2014), for example, found that 

the suppression of N1 in response to repeated stimuli was independent of 

attention, suggesting that N1 suppression reflects the spontaneous filtering-out of 

redundant sensory input (Grimm & Escera, 2012).  

 

4.4.4.3 P2 

There was also clear evidence of suppression of the P2 response to S2 

relative to S1, across all conditions. Interestingly, for this ERP there were also 

differences in the degree of suppression between conditions. S2 was suppressed 

to a similar degree (relative to S1) in both the 400ms and 600ms delay conditions, 

however S2 was suppressed to a lesser degree in the 800ms delay condition. 

These results are again in line with expectations for a healthy sample with 

“effective” repetition suppression, with increasing “recovery” or “re-sensitising” of 

neuronal responses at 800ms. As above, this could be explained by refractory 

periods, where responses to closely repeated stimuli are suppressed or reduced 

due to incomplete recovery of the generators that underlie these ERP components, 

such that subsequent responses are weaker (Pereira et al., 2014). 
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A recent meta-analysis concluded that P2 amplitude reductions in response 

to single tones appear to be dependent on ISI, such that patients exhibit reduced 

P2 responses for shorter ISIs (relative to controls) but there is no difference in 

responses between patients and controls for larger ISIs (Ferreira-Santos et al., 

2012) – perhaps as gating is “easier” for larger ISIs (as outlined above). It would 

therefore be interesting to investigate this ISI-dependent effect on P2 suppression 

in non-clinical groups with high and low predisposition to anomalous experiences, 

which has not yet been explored. This would build on work from Ranson (2014), 

who found that both increased schizotypy and experiences of non-clinical auditory 

hallucinations were associated with increased P2 amplitudes (in response to single 

tones), to determine if these relationships could be extended to experiences in 

other modalities and using measures other than schizotypy. Interestingly, Ranson 

(2014) observed that increased schizotypy and hallucination scores were related 

to greater P2 amplitudes in “listen-self” versus “listen-other” conditions, suggesting 

a bias towards internal signals at the expense of external ones. 

 

With regards to attention, current results are broadly in line with previous 

work. Hsu et al. (2014) suggested that repetition suppression for P2 is observable 

when attention is moderate, abolished when attention is explicitly directed away 

from stimuli, and “masked” by the effects of attention when attention is intensely 

focused towards stimuli. As there was clear P2 suppression at 400 and 600ms ISIs 

in the current study, attention here was likely at the “moderate” level; participants 

were not explicitly instructed to either attend or ignore stimuli, but rather passively 

listen. 
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4.4.5 Repetition suppression and questionnaires 

The current study found a significant negative correlation between S2/S1 

ratio and CHi-II factor 3 (DVP), for the P2_a ERP component only (where P2 

amplitudes in response to clicks in the 400ms and 600ms delay condition were 

pooled). This suggests that as CHi-II DVP score increases, S2/S1 ratio trends 

towards 0, implying that greater predisposition to perceptual distortions is 

associated with greater suppression of S2 relative to S1, for this component. (A 

BF10 statistic of 22 lends moderate support to this relationship, over the null 

hypothesis.) The DVP factor of the CHi-II specifically measures perceptual 

distortions, both visual and bodily (as it includes a question on out-of-body 

experiences). As such the DVP factor has been conceptualised as a measure of 

both interoceptive and exteroceptive perceptual distortion (Fong et al., 2019). 

Although the direction of this correlation contradicts the expectation that 

anomalous experiences are associated with deficits in repetition suppression, 

some previous work can elucidate these findings. 

 

First and foremost, research has evidenced a relationship between 

anomalous experience and forward processing as indexed by the P2 component. 

As outlined above, the P2 component is thought to reflect the match or mismatch 

between predicted and actually-perceived states or events (Ferreria-Santos et al., 

2012). A match may be indicated by suppressed P2, which helps to identify a 

stimulus as self-generated, whereas a mismatch may be indicated by enhanced 

P2, identifying a stimulus as other-generated (Timm, Schönwiesner, Schröger, & 
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SanMiguel, 2016). Errors in this processing (at the prediction or perception stages, 

or both) may lead to inaccurate self/other labelling. 

  

These mechanisms may underlie current findings, with greater suppression 

of S2 indicating increased suppression of external signals in favour of processing 

internal ones. Accordingly, Sanmiguel et al. (2013) concluded that P2 suppression 

is a more direct measure of sensory predictions than N1 suppression, and aids the 

identification of self-initiated stimuli. As such, increased P2 suppression may bias 

processing away from external information towards internal stimuli, leading to 

decreased reality monitoring or “control” of perception by external stimuli. This may 

contribute to distortions of interoception, multi-sensory integration, and conscious 

experience; such as out-of-body experiences (which feature on the DVP factor). 

The role of P2 in such higher-level experiences makes sense given that generators 

of the auditory P2 likely reside in secondary (association) auditory cortices 

(Sanmiguel et al., 2013). 

 

However, as the current study explored P2 repetition suppression as 

opposed to single tone responses, and for external sounds only, further work would 

be needed to clarify these relationships. Previous findings regarding the 

relationship between P2 responses and self/other-generated sounds are 

inconsistent (Knolle, Schröger, & Kotz, 2013; Wang et al., 2014). Also, some 

models of auditory hallucinations suggest that elevated resting state activity and 

hyperexcitability in the auditory cortex could interfere with forward processing, and 

lead to similar neural responses to self- and other-generated sounds, such that 

internally-generated sounds are interpreted as externally-generated (Northoff & 



228 
 

Qin, 2011; Ranson, 2014). Therefore, studies exploring ERPs in response to both 

internally- and externally- generated stimuli, and considering baseline excitability, 

are needed. This could be achieved by including a resting-state condition in future 

ERP studies, for example. 

 

In contrast to the current findings, Gooding et al. (2013) found a positive 

correlation between auditory P2 repetition suppression and anomalous 

experiences; deficient P2 repetition suppression was associated with increased 

body-based perceptual aberrations, in a group of abstinent but cocaine-dependent 

patients (Gooding et al., 2013). However, this result is complicated by this 

“abstinent” status. In the short term, cocaine use increases cortical excitability and 

so promotes seizures and hallucinations (Boutros et al., 2005; Corominas-Roso et 

al., 2013). However, chronic, long term cocaine use (as seen in addiction) is known 

to decrease baseline cortical excitability by disrupting the balance between 

excitatory (Glu) and inhibitory (GABA) neurotransmitters – and this effect persists 

into abstinence (Boutros et al., 2005; Gjini, Ziemann, Napier, & Boutros, 2012; 

Hanlon et al., 2015). This suppression effect is thought to be a compensatory 

mechanism that protects against persistently enhanced excitability (mediated by 

increased intracortical GABA) (Boutros et al., 2005; Flavel, White, & Todd, 2012). 

Therefore, long-term use of and then abstinence from cocaine in Gooding et al. 

(2013) would have significantly influenced patients’ baseline cortical excitability – 

which may explain the contrast between Gooding’s study and the current findings. 

The link between deficient suppression and perceptual distortions in abstinent 

cocaine users may be moderated by a generalised decrease in cortical excitability. 

Reciprocally, the link between intact suppression and perceptual distortions in the 
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current healthy sample may be moderated by a generalised increase in cortical 

excitability. However, no firm conclusions can be made, as Gooding et al. did not 

control for baseline excitability or nicotine use (which has significant effects on 

cortical excitability: Brunelin, Hasan, Haesebaert, Nitsche, & Poulet, 2015; 

Grundey et al., 2013; Grundey et al., 2012). 

 

Another possible explanation for this result is that the lack of S2 suppression 

in fact represents high “neural fatigue” in the responding neurons. That is, 

persistently heightened excitability in auditory cortex (expected in those 

predisposed to anomalous experience) leads to an extreme response to S1, 

followed by neural fatigue (reduced synaptic efficiency) and so an inability to 

respond to S2. This inefficient synaptic response would manifest as a decreased 

or suppressed response. This is known as the “neural fatigue” model of repetition 

suppression, where repeated stimulations exhaust the responsive capabilities of 

task- or stimulus-relevant neurons (Grill-Spector et al., 2006). Therefore here, P2 

“suppression” may not represent active repetition suppression or suppression per 

se, but rather the degree of neural fatigue present. Under this explanation, 

persistently heightened excitability would be associated with both increased neural 

fatigue and predisposition to anomalous experience. 

 

In line with this, Thoma et al. (2017) found that greater suppression of the 

N1 S2 was associated with more severe hallucinations, in patients with 

schizophrenia. The authors suggest two possible explanations. Intact or increased 

S2 suppression may occur as (i) a compensatory inhibition mechanism that 

attempts to reduce processing of stimuli that could trigger hallucinations, and/or (ii) 
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be a consequence of predisposition to anomalous experience, where processing 

of external stimuli is suppressed in favour of increased processing of internal 

stimuli (which could decrease reality-monitoring and self-other distinctions) 

(Thoma et al., 2017). In a similar vein, current results could be the consequence of 

both: (i) increased auditory inhibition, compensating for a heightened sensitivity to 

external stimuli that could contribute to anomalous experience, and/or (ii) increased 

suppression of processing of external stimuli in favour of internal events. Here, it 

would follow that greater predisposition to these experiences would result in 

greater compensatory inhibition.  

 

With the exception of P2_a suppression and CHi-II DVP factor, none of the 

other comparisons between CHi-II factor scores and repetition suppression were 

significant. Therefore although previous work supports the logical possibility that 

individuals experiencing anomalous perceptions similar to the “positive” symptoms 

experienced by clinical groups may experience slight deficits across measures of 

repetition suppression (P50, N1, P2), albeit to a lesser degree than clinical groups, 

current results do not evidence this for all components – at least when considering 

these variables continuously. 

 

The cross-modality comparisons made here between state and trait 

measures also have important implications. Here, trait visual perceptual distortions 

were correlated with state inhibition or neural fatigue in auditory cortex (which may 

reflect self/other predictions and/or perceptions). Therefore, it appears that 

relationships between trait anomalous experience and state excitability may be 

supra-modal; i.e. changes to the E/I balance in one sensory modality may influence 
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changes in other modalities. Previous work has suggested trait-state relationships 

within single modalities, such as between trait visual anomalous experiences and 

state hyperexcitability of visual cortex in non-clinical samples (Braithwaite, 

Mevorach, et al., 2015; Fong et al., 2019), and between trait auditory anomalous 

experience and state disinhibition of auditory cortex in patients with schizophrenia 

(as indexed by P50) (Smith et al., 2013). However, the current chapter provides 

tentative evidence of a cross-modal relationship between anomalous experience 

and changes to the E/I balance.  

 

4.4.5.1 Repetition suppression and pattern glare 

Similarly, there were no significant relationships between repetition 

suppression and pattern glare measures, suggesting that state auditory inhibition 

is not associated with state experiences of aberrant visual perception, in the current 

non-clinical sample. If hyperexcitability occurs as a general, brain-wide state, it may 

be expected that increased excitability in one modality would indicate increased 

excitability in another (discussed further in Chapter 5, Future research 

directions). However current results suggest this is not necessarily the case. 

 

However, Smith et al. (2013) also found no relationship between state P50 

deficits and state-based experiences of auditory hallucinations (as reported using 

a state-dependent hallucinations rating scale), in people with schizophrenia. The 

current study evidences a similar lack of relationship, now between modalities. 

Further, Smith et al. (2013) suggested that auditory repetition suppression may 

better indicate trait predisposition to, rather than state experience of, auditory 
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anomalous experience – which is supported by current results, but now cross-

modally.  

 

In contrast to this, Thoma et al. (2017) did observe state-state relationships 

in those with treatment resistant hallucinations; significant repetition suppression 

deficits across P50, N1, and P2 components were apparent during active auditory 

verbal hallucinations. However the contrast between Thoma and Smith et al.s’ 

findings may be due to the type of state measure used, with Smith et al. using a 

questionnaire-based measure of state auditory hallucinations (and the current 

studying using a task-based measure of state visual anomalous experience). 

Therefore future research should seek to determine why there may be differences 

in state-state relationships depending on the methodology used. It may be that 

state-state relationships between measures of excitability and anomalous 

experience are only observable if these variables are measured simultaneously 

(such as in Thoma et al.’s study). This would somewhat control for the influence of 

other brain states and/or baseline activity (which vary widely from moment to 

moment) on conscious experience (as discussed in Chapters 2 and 3). 

Methodologically, the validity and applicability of different state measures needs to 

be assessed, for example by comparing data for questionnaire-, task-, and evoked 

potential-based measures.  

 

Additionally, “state” indicators of abnormal perception (such as temporary 

activity changes in speech perception networks) are thought to be less stable than 

“trait” indicators of abnormal perception (as modulated by early rather than late 

areas), as these trait indicators can better discriminate between hallucinators and 
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non-hallucinators (Kühn & Gallinat, 2012). However so far this has only been 

evidenced for clinical hallucinators, and so it is vital that additional data on these 

indicators in non-clinical hallucinators is obtained for comparison.  

 

 

4.4.5.2 Limitations 

As little previous work has explored the relationship between anomalous 

experience and P2 suppression specifically, the possibilities outlined here are 

tentative. Intact repetition suppression is traditionally viewed as indicating an 

efficiently functioning brain, and so additional studies are needed to clarify how 

such suppression could instead be linked to dysfunctional processing and 

anomalous perception. These experiences are likely the result of several 

concurrent processes and/or deficits, and this study addresses just one of these. 

 

One limitation of this chapter is the small sample size, which led to some 

comparisons being underpowered. Future experiments should recruit larger 

samples with a wide range of scores on anomalous experience measures, to 

explore whether trait-state relationships are truly continuous or are only apparent 

at “extremes” of these measures. The current sample size was determined through 

review of previous studies correlating EEG-based repetition suppression with 

questionnaire measures in both clinical and non-clinical groups. Healthy control 

groups had a mean sample size of 27 (see Appendix O). However, the trends 

identified here remain useful and will inform future work. Depending on the planned 

analyses in future work, power calculations should be used to determine an 

appropriate sample size. Larger samples could be stratified into subgroups (such 
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as low and high questionnaire or task scorers, using subscales where needed), or 

fractionated to make single-modality comparisons (such as comparing trait auditory 

or visual anomalous experience with auditory or visual ERPs). As cortical 

hyperexcitability and anomalous experiences are, by definition, rare in non-clinical 

as compared to clinical populations, future studies could also focus on recruiting 

non-clinical individuals with very frequent or intense anomalous experiences 

(which should be feasible, as surprisingly high percentages of non-clinical groups 

report such experiences (Waters & Fernyhough, 2017)). 

 

 

4.5 Conclusions 

As in the previous two chapters, this study provided evidence of healthy 

individuals experiencing anomalous perceptions in the absence of traditionally-

predisposing factors (such as psychopathological, neurological, or other medical 

conditions). This supports a large body of emerging research on the psychosis 

continuum, where “psychotic-like” experiences such as hallucinations occur 

throughout the general population without necessarily being associated with 

psychosis or other psychopathologies. 

 

With regards to ERPs, in contrast to other work, this study did not observe 

P50 suppression. This was likely due to large variability in P50 ratios across 

participants, which has also been observed in previous reviews of P50 

suppression. However, repetition suppression was clear for the N1 and P2 ERP 

components across 400, 600, and 800ms delay conditions, indicating intact 

repetition suppression in this sample within the studied time window. 
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This chapter provided new evidence of differential relationships between 

trait and state measures of anomalous experience in a healthy sample. Results 

give tentative evidence that greater predisposition to anomalous experiences is 

associated with greater P2 suppression. Previous work has suggested that P2 

suppression is associated with labelling stimuli as self-generated. Therefore here, 

increased P2 suppression may bias processing away from external stimuli and 

towards internal ones, which could lead to errors in source labelling or multi-

sensory integration and so perceptual distortions (Thoma et al., 2017). These 

errors may be made more likely by baseline cortical hyperexcitability, which has 

been hypothesised to interfere with forward processing. The literature suggests 

multiple possible mechanisms for how increased P2 suppression could be 

associated with increased predisposition to anomalous experience. For example, 

neural fatigue may be responsible; where pre-existing heightened excitability leads 

to an extreme response to S1 followed by fatigue (reduced synaptic efficacy) and 

so an inability to respond to S2. It is also possible that increased inhibition may act 

as a compensatory mechanism for increased excitability and/or processing of 

stimuli that could potentially trigger hallucinations (Thoma et al., 2017). These 

results are, however, preliminary. 

 

Results did not evidence a relationship between two state measures of 

visual anomalous experience and auditory cortex inhibition. This is broadly in line 

with previous work, which failed to observe state-state relationships within single 

modalities. However, further work is needed to explore these relationships more 

fully for within- and between-modality comparisons, which have not been 
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sufficiently studied in non-clinical groups predisposed to anomalous experiences 

for firm conclusions to be made here. 
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5 General Discussion 

 

In this chapter, an overview of the thesis and the key findings from each 

chapter are given. Contributions to the literature and implications are then outlined, 

followed by limitations and strengths of the thesis. Future research directions are 

suggested, and the chapter is concluded with final remarks. 

 

 

5.1 Thesis overview and key findings 

There is currently limited knowledge about the neural mechanisms of 

anomalous experiences in non-clinical populations. This knowledge is particularly 

sparse for the visual modality, and possible relationships between modalities (such 

as visual-auditory) have also not been explored. The overall aim of this thesis was 

to address this significant gap by exploring whether cortical hyperexcitability of 

visual (Chapters 2 and 3) and auditory (Chapter 4) cortices was related to 

anomalous experiences across modalities, in three separate non-clinical samples. 

This section gives an overview of the empirical studies in each of these chapters, 

and summarises key findings. 

 

 

5.1.1 Chapter 2 

5.1.1.1 Overview 

The aim of this chapter was to explore the contribution of visual cortical 

excitability to anomalous experiences in visual and other modalities, by 
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investigating the relationship between trait (questionnaire) and state (pattern glare) 

anomalous experiences under tDCS of extrastriate cortex (targeted by stimulating 

electrode site Pz). Trait questionnaires covered visual (CHi) and mixed modality 

(CAPS) anomalous experiences. A pattern glare task was used as a correlate of 

excitability; this task measures state anomalous experiences thought to be caused 

by hyperexcitability of visual cortex. This study explored whether those who are 

more predisposed to anomalous experiences during pattern glare (indicating 

higher baseline cortical hyperexcitability) would respond differently to tDCS. In this 

study, a sample of 86 non-clinical participants underwent 20 mins of single-blind 

anodal and sham tDCS of extrastriate cortex (anode at Pz and cathode at Cz). 

Twenty minutes after tDCS onset, participants completed a computerised pattern 

glare task. For analysis, the sample was split into non-PG (low/moderate 

excitability) and PG (high excitability) groups based on pattern glare scores. 

 

5.1.1.2 Key findings 

Chapter 2 suggested that state-based pattern glare scores were dependent 

on PG group, with significant differences in tDCS effects between groups. In the 

PG group, anodal stimulation decreased PG scores relative to sham. In the non-

PG group, anodal stimulation increased PG scores relative to sham. This suggests 

that tDCS affected participants differently based on their state-based baseline 

excitability (indicated by PG scores).   

 

Results also revealed significant correlations between state-based pattern 

glare scores and the trait-based “positive aberrations” factor of the CHi measure 

under sham and anodal stimulation, but only for those with high PG scores. 
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Therefore, higher state PG scores – indicating heightened baseline excitability – 

predict greater trait experiences of anomalous perceptions to some degree. 

 

Together, these results suggest that trait screening and state measures may 

be useful for identifying individual differences that may impact tDCS efficacy. 

Considering even non-clinical samples as a whole may ignore potentially important 

differences in baseline excitability, which will influence tDCS efficacy and impact 

variable comparisons if not controlled for.  

 

 

 

5.1.2 Chapter 3 

5.1.2.1 Overview 

Building on Chapter 2, the aim of Chapter 3 was to explore whether the 

relationship observed between visual cortical excitability and anomalous 

experiences in Chapter 2 could be extended to a different area of extrastriate 

cortex, BA 17-19 (stimulatory site POz). In this chapter, the relationship between 

trait (questionnaire) and state (pattern glare) anomalous experiences during tDCS 

over site POz was investigated. The same measures of trait (questionnaires) 

anomalous experience were used as in Chapter 2, to allow direct comparison 

between the results for these variables. However, it should be noted that as several 

tDCS parameters were changed from Chapter 2 to 3, tDCS results are not directly 

comparable between these chapters. In this chapter, a completely new sample of 

79 non-clinical participants underwent single-blind anodal, cathodal, and sham 

tDCS brain-stimulation of a different extrastriate cortex location (anodal and sham 
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stimulation = anode at POz, cathode at Cz; cathodal stimulation = anode at Cz, 

cathode at POz). Given that results differed by stimulation condition and group in 

Chapter 2, a cathodal condition was included here to generate additional data 

points. To explore “online” effects of tDCS, as recommended by newer tDCS 

literature, participants completed the PG task five minutes after tDCS onset. This 

new sample was again split into non-PG (low/moderate excitability) and PG (high 

excitability) groups based on pattern glare scores, to explore whether those 

predisposed to anomalous experiences during pattern glare (indicating higher 

baseline cortical hyperexcitability) would respond differently to tDCS over a 

different cortical location.13 

 

5.1.2.2 Key findings 

As in Chapter 2, differential relationships between tDCS condition and PG 

groups were observed in Chapter 3 – this time using a completely different 

stimulatory montage. In contrast to Chapter 2, in the PG group, both anodal and 

cathodal tDCS appeared to have a null effect on PG experiences. In the non-PG 

group, both anodal and cathodal tDCS appeared to have an excitatory effect, 

increasing PG intensity. This again suggests that tDCS affected participants’ PG 

experiences differently based on their baseline excitability (as indicated by PG 

scores). 

 
13 As other aspects of the stimulatory design were also changed to accord with newer tDCS literature and 

recommendations, it is important to note here that Chapter 3 was not intended as a direct replication of 

Chapter 2 over a different cortical area. These differences in design mean that the results of Chapters 2 and 

3 cannot be directly compared, and any theoretical integration of these results as discussed here is currently 

speculative. 
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In contrast to the first study, however, results from this study did not suggest 

any relationship between state-based pattern glare scores and trait questionnaire 

measures of anomalous experience. Therefore, state pattern glare experiences, 

as manipulated by stimulation of site POz, cannot be used to predict trait 

anomalous experiences. This is in line with research showing that the mechanisms 

sub-serving state-trait relationships are mediated differently (Smith et al., 2013; 

Kuhn & Gallinat, 2012). It may be that “lower” or earlier areas in the visual hierarchy 

(BA 17-19; targeted by electrode at site POz) moderate state experience only, 

whereas “higher” areas such as BA 5 and 7 (site Pz) moderate the relationship 

between state and trait experience. Overall, these results again support using state 

measures as screening tools to identify individual differences that may impact 

tDCS efficacy at the time of testing. However, as noted in the Chapter 3 discussion, 

because Chapter 2 and 3 used different stimulatory montages and so cannot be 

directly compared, this integrated theoretical explanation of results is speculative 

at present. 

 

Chapters 2 and 3 both evidenced a relationship between state experiences 

of pattern glare and altered state excitability (indicated by PG scores) across all 

participants, with two different tDCS montages both affecting participants 

differently depending on this state excitability. These findings support the notion 

that a hyperexcitable brain predisposes even non-clinical individuals to anomalous 

visual experiences, now extending beyond primary visual cortex into extrastriate 

cortex. These findings also highlight complex interactions between baseline 
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excitability and anodal versus cathodal tDCS effects, which require further 

clarification. 

 

5.1.3 Chapter 4 

5.1.3.1 Overview 

Building on Chapters 2 and 3, the aim of Chapter 4 was to explore whether 

the trait-state relationships observed within the visual modality in the previous 

chapters could be extended to auditory cortex; that is, whether trait-state 

relationships exist between measures of visual and multi-modal anomalous 

experience, and auditory inhibition. This would suggest cross-modal interactions 

between these variables. As in previous chapters, trait and state anomalous 

experiences were measured using questionnaires and pattern glare respectively. 

To index state auditory cortex inhibition, an EEG-based “paired-click” paradigm 

was used to measure a form of sensory gating: repetition suppression. Deficits in 

repetition suppression are associated with cortical hyperexcitability (Grill-Spector 

et al., 2006; Hirano et al., 2010; Vlcek et al., 2014). 

 

In this study, a new sample of 27 healthy participants underwent EEG 

recording to collect data on repetition suppression. Participants listened to 300 

pairs of brief 10ms clicks, with click 2 randomly presented at a 400ms, 600ms, or 

800ms delay after click 1 (such that there were 100 pairs of clicks per delay type). 

P50, N1, and P2 component peak amplitudes were analysed. Participants also 

completed the pattern glare task and questionnaire measures on trait anomalous 

experience. Alongside the CAPS measure, to build on previous chapters, an 

improved version of the CHi measure was used (the Cortical Hyperexcitability 
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index II (CHi-II; Fong et al., 2019)), and an additional measure of multi-modal 

experience was added; the Multi-modal Unusual Sensory Experiences 

Questionnaire (MUSEQ; Mitchell et al., 2017).  

 

5.1.3.2 Key findings 

In line with previous chapters, questionnaire scores evidenced experience 

of anomalous perceptions in a healthy sample. In agreement with previous work, 

data from the MUSEQ questionnaire suggested that auditory and visual 

experiences are most common in non-clinical samples.  

 

Results did not evidence P50 repetition suppression in this sample, which 

is likely due to large variability in P50 amplitudes across participants. For the N1 

and P2 components, significant suppression of S2 was observed across all delay 

conditions, indicating intact repetition suppression. 

 

Correlational analyses comparing repetition suppression and pattern glare / 

questionnaire scores suggested only one significant relationship; a negative 

correlation between CHi-II DVP score and P2 component at 400ms and 600ms 

delays. This result suggests that greater state suppression of P2 is associated with 

increased trait predisposition to perceptual distortions (including OBEs), and 

provides a cross-modal link between changes to the E/I balance and anomalous 

experience. As P2 suppression is associated with distinguishing self-generated 

events and may bias processing towards internal stimuli, greater P2 suppression 

may lead to decreased reality monitoring and increased perceptual distortions. 

Cortical hyperexcitability may contribute to these experiences by interfering with 
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these processes (Ranson, 2014; Sanmiguel et al., 2017; Thoma et al., 2017). This 

extends previous work that has observed similar trait-state relationships within 

modalities only (Fong et al., 2019; Smith et al., 2013). 

 

No state-state relationships between auditory inhibition and visual pattern 

glare were found. This accords with previous work which did not observe state-

state relationships between auditory measures (Smith et al., 2013). Interestingly, 

Smith et al. suggest that auditory repetition suppression may better indicate trait 

predisposition to, rather than state experience of, anomalous perceptions – which 

is supported by the current findings. However a key determinant of whether state-

state relationships are observed may be the method by which state experience is 

measured – and so this requires further research.  

 

5.2 Contributions to the literature and implications 

The contributions made by this thesis to the current literature are outlined 

below, including methodological and theoretical implications. 

 

5.2.1 Evidence of anomalous experience in healthy populations (All 

chapters) 

Chapters 2 to 4 provided substantial additional evidence for the occurrence 

of a range of visual (CHi, CHi-II, and pattern glare) and multi-modal (CAPS and 

MUSEQ) anomalous experiences in three new non-clinical samples. In Chapter 4, 

data was gathered on two recently developed measures of anomalous experience 

– the CHi-II (Fong et al., 2019) and the MUSEQ (Mitchell et al., 2017). At the time 
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of writing, this is only the second time that these scales have been used in empirical 

work after their initial publication. Chapter 4 provided exploratory comparisons 

between these scales and other correlates of anomalous experience and cortical 

inhibition, to explore their utility in this area of research.  

 

These chapters also evidence anomalous experiences in non-clinical 

samples after screening for several potentially confounding factors that have likely 

influenced the results of previous studies on anomalous experience in both clinical 

and non-clinical groups. These include use of medication, nicotine, and other 

recreational drugs (which can contribute to anomalous experiences and interfere 

with cortical excitability) (Bauernfeind et al., 2011; Cowan et al., 2015; Grundey et 

al., 2013), cognitive dysfunction (which is common in those with long-term 

psychopathology / neurodegenerative disease), and extraneous effects of illness 

presence and chronicity. Previous findings on the neural correlates of anomalous 

experiences, particularly hallucinations in clinical groups, may be confounded by 

one or several of these variables. For example, abnormal dopamine synthesis has 

been observed in several studies on clinical hallucinations, however Howes et al. 

(2013) found that dopamine synthesis was not altered in healthy voice hearers as 

compared to controls. Therefore, changes to dopamine synthesis may not be 

directly involved in hallucination generation (Howes et al., 2013). This illustrates 

how restricting exploration of anomalous experience to clinical groups may 

confound our conclusions about their substrates. 
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5.2.2 Effects of tDCS stimulation over extrastriate cortex (Chapters 2 and 

3) 

The research outlined in this thesis contributes to knowledge on the effects 

of tDCS over extrastriate cortex, providing evidence that this method can 

manipulate cortical excitability and experiences of pattern glare in non-clinical 

samples. This extends previous work that has evidenced similar effects in non-

clinical primary visual cortex (Braithwaite et al., 2015). Previous studies using fMRI 

have also evidenced hyperexcitability of extrastriate areas in migraine with aura 

(Huang et al., 2003, 2011). Together with the current work, this implies that 

manipulations of excitability in extrastriate cortex may be linked with anomalous 

experiences in both clinical and non-clinical groups.  

 

Furthermore, methodologically, this thesis shows that tDCS is an effective 

and practical way of manipulating excitability in extrastriate visual cortex, with 

Chapters 2 and 3 tentatively evidencing specific effects of this stimulation for 

conscious experience dependant on the area stimulated. One implication of this is 

that tDCS is a useful method for exploring excitability changes in non-clinical 

participants, and that comparing responses to tasks during tDCS can reveal 

interesting individual differences in tDCS responses, which may be linked to 

baseline excitability. 

 

5.2.3 Importance of baseline excitability (Chapters 2 and 3) 

Chapters 2 and 3 provide evidence that baseline excitability interacts with 

tDCS and visual stimuli to produce differential effects. That is, state PG experience 

is affected differently by tDCS type (anodal, cathodal) depending on baseline PG 
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score; “high” and “low/moderate” PG groups appeared to respond very differently 

to tDCS (although these relationships could not be formally tested). These patterns 

of group differences, and the significant differences within groups, are here 

attributed to differences in baseline cortical excitability. Numerous studies have 

demonstrated that PG effects are cortically-mediated and indicate increased visual 

cortex excitability (Braithwaite, Mevorach, et al., 2015; Huang & Zhu, 2017; Huang 

et al., 2011). Therefore, the current results provide an important contribution to the 

literature on interactions between baseline excitability and tDCS efficacy, as well 

as expanding our limited knowledge of how these factors interact with hallucination 

proneness in non-clinical groups. 

 

An important implication of these results is that brain stimulation 

experiments must give consideration to baseline excitability. Chapters 2 and 3 

suggest that the PG task may prove a useful method for screening participants 

when conducting brain stimulation experiments on visual processing. The 

computerised PG task only takes ~7 minutes to run, with basic analysis being 

relatively straightforward, and so offers a quick and practical way to estimate and/or 

control for baseline excitability of visual and visual association cortex. Accounting 

for this will reduce the confounding influence of baseline excitability on 

experimental results, and enable more precise conclusions to be made about the 

brain mechanisms responsible for changes to conscious perception. As seen here, 

anodal stimulation is not necessarily “excitatory”, and cathodal stimulation is not 

necessarily “inhibitory” – as has been assumed in the tDCS literature until recent 

years (Bikson, Rahman, & Datta, 2012). Therefore accounting for baseline 

excitability will provide further insight into the mechanisms underlying tDCS and 
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task responsivity in different stimulation paradigms. It would be interesting to 

explore, for example, whether baseline excitability as indicated by the PG task 

could predict differential effects of tDCS for other types of task, such as working 

memory which has been shown to be influenced by baseline excitability (Hsu et al., 

2016). 

 

5.2.4 New perspectives on trait- and state- anomalous experience and 

cortical hyperexcitability (All chapters) 

A further contribution of this thesis is new insight into trait-state 

relationships. In Chapters 2 and 4, a continuous relationship between trait and 

state measures of anomalous perceptions and cortical excitability was evidenced. 

This suggests that changes to the E/I balance (increased activity in extrastriate 

cortex and increased inhibition in auditory cortex) are associated with increased 

predisposition to anomalous experience. Furthermore, Chapter 2 suggested that 

trait and state anomalous experience were significantly related only for a group 

with high baseline excitability (indicated by pattern glare scores). However, such a 

relationship was not apparent in Chapter 3 – although excitability of a different area 

of extrastriate cortex was manipulated here and using a very different stimulatory 

design. Overall, these results suggest that trait-state relationships may vary 

depending on the sensory modality and/or associated networks being studied. 

 

In line with and extending previous work (Smith et al., 2013), Chapters 2 

and 3 together suggest the interesting possibility that relationships between trait 

and state anomalous experience within the visual modality may be mediated 

differently by activity in different extrastriate areas. Specifically, “earlier” visual 
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areas may moderate state anomalous experience, whereas “later” areas may 

moderate trait predisposition. Therefore, the degree of brain hyperexcitability 

present in specific cortical regions may differentially affect trait and state 

predispositions, even in healthy groups. Although this interpretation must be taken 

with caution due to the different stimulatory montages used in Chapters 2 and 3, 

this is a novel finding that requires further investigation.  

 

Chapter 4 further contributes to our knowledge of trait-state relationships 

between modalities in non-clinical participants, with the novel finding that that 

auditory repetition suppression is related to trait predisposition to perceptual 

distortions specifically, in a non-clinical sample. Specifically, increased auditory 

inhibition as measured by the P2 component is associated with increased 

perceptual distortions. This extends findings from Chapters 2 and 3, and evidences 

some degree of supra-modal interaction between the networks involved in trait and 

state anomalous experience. Although these findings are tentative, it is particularly 

interesting that they evidence a link between two phenomena associated with 

self/other processing – the P2 component, and OBEs. It is possible that greater 

suppression of the auditory P2 component could bias processing towards internal 

stimuli, and lead to decreased reality monitoring and increased perceptual 

distortions. Background cortical hyperexcitability may contribute to these 

experiences by interfering with stimuli processing. Together with the other chapters 

of this thesis, these results suggest the interesting possibility that “extremes” of 

either excitation and/or inhibition could alter processing and contribute to 

perceptual distortions – but this hypothesis requires further research. 
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5.2.5 Utility of the CHi/CHi-II for predicting state anomalous experience 

(Chapters 2 and 4) 

The significant trait-state relationships observed between pattern glare and 

CHi scores in Chapter 2, and between repetition suppression and CHi-II scores in 

Chapter 4, provide evidence of a relationship between cortical hyperexcitability and 

trait predisposition to anomalous experiences in non-clinical groups. This improves 

our ability to determine the types of experiences a healthy individual may be 

predisposed to, when their baseline excitability is high. Methodologically, this 

suggests that the CHi-II is likely to prove a useful correlate in studies of anomalous 

experiences, and offers a quick and practical way of gauging excitability in any 

group of participants. However, this thesis is among the first research to evidence 

these relationships, and so additional work is needed to verify the consistency of 

this effect and whether it can be extended to other cortical areas (within and 

between other modalities). 

 

5.2.6 Continuity of experience, continuity of mechanism? 

Overall, all three experimental chapters contribute support for the notion of 

a “fully dimensional” psychosis continuum of experience, where anomalous 

experiences are spread throughout the population and are not necessarily related 

to clinical or medical conditions (as supported by Nelson et al., 2013). This is an 

important contribution to this literature, as it further evidences the occurrence of 

these experiences in non-clinical samples across a range of modalities. These 

results also demonstrate that non-clinical samples can shed light on anomalous 

experience mechanisms, whilst avoiding many confounds expected when working 
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with clinical groups (such as hospitalisation, medication, and cognitive deficits) 

(Nelson et al., 2013). 

 

Although additional evidence is needed to make firm conclusions, 

continuous trait-state relationships were observed in Chapters 2 and 4. Therefore, 

results lend some support the notion of a mechanistic continuum to match this 

“experiential” continuum. That is, a continuum of trait hyperexcitability may underlie 

a continuum of state anomalous experience (although this hyperexcitability may be 

localised or attenuated as compared to clinical groups).  

 

However, Chapters 2 and 3 also showed that state-state relationships were 

observable only when considered discontinuously, as baseline excitability 

(indicated by pattern glare) predicted differing experiences of anomalous 

perceptions that were dependent on tDCS condition. It may be that the general 

relationship is continuous, but that specific types of anomalous experiences are 

more strongly associated with specific types or locations of cortical excitability. 

Considering state-state relationships continuously may therefore obscure subtle 

differences. Indeed, no state-state relationship between pattern glare and auditory 

repetition suppression was observed in Chapter 4 when considering these 

relationships continuously. To clarify this, further work should examine both 

anomalous experiences and changes to cortical excitability in more detail. 

 

Previous work has suggested that increased spontaneous cortical activation 

in the sensory cortex corresponding to the modality of the hallucination is a unique 

candidate for a continuous mechanism between clinical and non-clinical groups 



252 
 

(Waters & Fernyhough, 2019). However, further work is needed to tease out subtle 

relationships and differences in these patterns when considering trait and state 

measures of anomalous experience, particularly cross-modally. This thesis 

suggests that there may be different mechanisms underlying trait versus state 

experiences. 

 

 

5.3 Future research directions 

5.3.1 Further explore relationships between “trait” and “state” anomalous 

experience 

This thesis provides evidence for a trait-state relationship between 

predisposition to perceptual distortions and measures of cortical excitability (PG 

and repetition suppression). Studies exploring relationships between trait and state 

anomalous experience in healthy samples do not often analyse modality specific 

relationships and their implications. Studies relating repetition suppression to a 

wide range of anomalous experiences in non-clinical samples also remain scarce 

(e.g. Croft et al., 2001; Park et al., 2015). Pattern glare has received greater 

attention in non-clinical studies, however the exact mechanisms of these 

experiences have still not been explored in detail in non-clinical groups, which limits 

the conclusions that can be made about trait-state relationships. Several studies 

have investigated how repetition suppression is related to the general schizotypy 

syndrome (e.g. Wan, Crawford, & Boutros, 2006; Wan et al., 2007), but very few 

focus on “positive” symptoms such as hallucinations. Further, this thesis did not 

provide evidence for a state-state relationship between visual and auditory 
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measures of cortical excitability and anomalous experience. This accords with 

previous work that has not observed state-state relationships within the auditory 

modality (Smith et al., 2013). However, similar studies are few and far between. 

 

To further clarify state-state relationships, it would be interesting to correlate 

state hallucinations and state visual repetition suppression. This could be achieved 

using fMRI, for example, with which previous work has observed both repetition 

suppression and enhancement in extrastriate visual cortex in response to repeated 

facial stimuli, in healthy volunteers (de Gardelle, Waszczuk, Egner, & Summerfield, 

2013). Interestingly, De Gardelle found that signal suppression and facilitation were 

associated with “lower” and “higher visual regions, and bottom-up (prediction) 

versus top-down (prediction error) processes, respectively (de Gardelle et al., 

2013). These findings highlight the need to explore cortical inhibition and excitation 

at different stages in processing hierarchies. Combining this with the research 

outlined above, future work could explore how state measures such as repetition 

suppression and enhancement are related to interpretation of external and internal 

signals, and whether these correlate with anomalous experience.  

 

Future studies should seek to characterise relationships between a wider 

range of trait and state anomalous experience measures. Some research has 

explored the neural networks underlying both trait and state anomalous 

experiences (Kühn & Gallinat, 2012), however this work is focused on auditory 

verbal hallucinations in patients with schizophrenia. Additional work in other clinical 

groups and non-clinical samples (which allow for better control of the many 

confounding factors in patient research) will allow us to determine what networks 
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underlie trait predisposition and state experiences of different types of anomalous 

perceptions, how these networks interact, and potential trans- and extra-diagnostic 

similarities and differences. Possible methods for addressing this are explored 

below. 

 

5.3.2 Systematically explore tDCS effects in non-clinical groups  

This thesis evidences considerable complexity in the responses of non-

clinical groups to tDCS and concurrent psychophysical tasks. Therefore, future 

research should systematically explore the effects of tDCS on conscious 

experience, such as through tasks indexing cortical excitability and/or anomalous 

experience (such as pattern glare or the simple flickering ring paradigm from 

Pearson et al., 2016). Stimulation parameters (such as site, duration, types), and 

whether stimulation is concurrent with the task or not (online vs offline), should be 

varied systematically to compare effects. Intensity could also be varied, however 

stimulation at 2mA tends to produce significantly more unwanted side effects (such 

as burning, tingling, itching) which impacts study blinding and participant comfort 

(O'Connell et al., 2012) – and so intensity should be varied cautiously. However, 

new computational methods for modelling current flow should also be used where 

possible to inform montage design (such as with Spheres, available at 

https://www.parralab.org/spheres/ (Dmochowski, Bikson, & Parra, 2012), or Roast, 

available at https://www.parralab.org/roast/ (Huang, Datta, et al., 2019) – see 

Appendix H), for example to account for how individual differences in brain 

architecture can influence current flow. For example, gyri and sulci morphology has 

considerable inter-individual variability and likely influences tDCS efficacy due to 

the differing orientations of the stimulated cells (Datta et al., 2009; Datta et al., 
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2012). Therefore, computational modelling of current flow using anatomical scans 

will be useful for this future work (as in Huang et al., 2013). 

 

5.3.3 Determine utility of methods for indexing state baseline excitability 

Very few studies have explored the relationships between the E/I balance 

and non-clinical anomalous experience, and so this will be a key area of 

development for the future. To achieve this, we must establish methods for 

accurately determining E/I balances in human cortex, and for correlating these with 

psychological measures. 

 

Based on the results of this thesis, PG task scores can be used to group 

participants and indicate likely variation in tDCS responsiveness – likely due to 

variation in baseline excitability between groups. However, additional research that 

compares group responses to additional tDCS stimulation paradigms and other 

tasks could inform us of the possible applications and limits of these for indicating 

state baseline excitability. As the PG task is visually-focused, it will be important to 

identify additional state measures applicable to other senses – such as the auditory 

repetition suppression paradigm used here. Visual repetition suppression 

paradigms are rare and inconsistent across the literature, however Jones (2016) 

developed a basic visual paradigm comparable to the auditory paired-click 

procedure that should prove useful for future work. Each trial of this task involves 

a white circle flashed twice on a black background, 50ms apart – similar to its 

auditory counterpart. Based on previous work and this thesis, accounting for 

baseline excitability would allow increased precision for detecting and 
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understanding relationships between brain activity and anomalous perceptions in 

non-clinical groups. 

 

Further research on other methods of assessing excitation/inhibition levels 

in different parts of the cortex in non-clinical individuals would also be useful. 

Recommended standardised protocols would enable direct comparisons between 

studies. Although light deprivation has previously been employed to decrease 

phosphene thresholds by increasing baseline excitability (Boroojerdi, Bushara, et 

al., 2000), there is considerable inter-individual variation in changes to phosphene 

levels at different time points using this paradigm. One participant’s threshold 

reduced by 10% and plateaued after 45 mins deprivation, but another’s was 

reduced by 25% with no evidence of plateau even after 180 mins deprivation 

(Boroojerdi et al., 2000). Therefore this method does not increase excitability to the 

same degree across participants. Furthermore, it is not an indicator, but a 

manipulation, of excitability.  

 

Spectroscopy also presents an intriguing possible method of modelling 

neurotransmitters related to the E/I balance (such as glutamate and GABA) in 

specific cortical areas. This has only been explored in clinical groups so far (Bridge 

et al., 2015; Zielman et al., 2017), and similar data on non-clinical groups who are 

predisposed to anomalous experience is needed for comparison.  

 

Deep brain electrodes are useful for determining neural activity in clinical 

groups (such as where they have been implanted to control epileptic seizures or 

Parkinsonian temors), but this invasive approach is not possible in non-clinical 
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groups. One promising complementary method is measuring alpha-band power 

over occipital sites using EEG, as decreases in alpha power here correlate with 

decreased phosphene thresholds induced via TMS and so indicates increased 

excitability in healthy participants (Romei et al., 2008). 

 

5.3.4 Further explore network activity and dynamics underlying 

hyperexcitability in healthy brains 

Further to the above, it would be interesting to extend the current work 

through additional modality specific and cross-modal comparisons, which would 

require large samples that can be split into subgroups and still retain statistical 

power. In this thesis, visual-visual (as in Chapters 2 and 3) and visual-auditory 

(Chapter 4) comparisons revealed some significant associations, whereas visual-

multimodal (Chapters 2 and 3) and auditory-multimodal comparisons (Chapter 4) 

did not. However, current data cannot determine whether this hyperexcitability is 

localised to visual cortex or generalised to other cortical areas. Therefore, there is 

a need to further explore excitability beyond single modality comparisons, and 

associated network dynamics in different areas of the human cortex, to understand 

possible reciprocal relationships and why cortical hyperexcitability in one modality 

may not necessarily extend or be related to hyperexcitability in another modality. 

This may be a consequence of the brain’s homeostatic mechanisms, which likely 

maintain E/I balances within a workable range in different modalities / relevant 

sensory cortices, particularly in “healthy” brains (Adesnik, 2018; Yang & Sun, 

2018). It may be that, in some cases, baseline or trait hyperexcitability is localised 

to one cortical region and is prevented from spreading by cortical homeostasis or 

architecture, and so may be restricted to affecting the corresponding modality. This 
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may be comparable to those who experience partial (localised) seizures, which 

tend to be associated with hallucinations in the corresponding modality only 

(Stafstrom, 1998). Alternatively, in other cases a spreading hyperexcitability may 

explain the presence of multi-modal, complex hallucinations – such as in the 

generalised hyperexcitability combined with cortical spreading depression seen in 

migraine (Mastria et al., 2018), or spreading seizures as part of TLE (Persinger & 

Makarec, 1987; Stafstrom, 1998). Further work is needed to determine how 

changes to network activity and dynamics influence uni- or multi-modal 

hallucinations in non-clinical groups. Additional research is also needed to 

determine how E/I imbalances are regulated and limited in healthy brains (such as 

through homeostasis, cortical architecture, and other “control” systems).  

 

5.3.5 Compare non-clinical and clinical groups using consistent methods 

After determining which methods are most appropriate and practical for 

assessing baseline excitability levels, future work should aim to recruit both non-

clinical and clinical samples within the same studies to allow for direct comparison 

of mechanisms and variable outcomes. Large variation in the methods previously 

used to explore anomalous experiences and the associated neural mechanisms 

between different groups makes comparisons challenging. With mounting 

evidence for anomalous experiences in non-clinical individuals, future studies 

should make a point of including hallucination-prone healthy groups and non-

hallucinating clinical groups as controls. This will give greater insight into any 

potential similarities and differences in the mechanisms of anomalous experience 

between these groups. 
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Further, studies need to move beyond exploring schizotypy and give needed 

attention to a wider variety of anomalous experiences. Many studies in non-clinical 

groups tend to employ questionnaire measures focused on schizotypal positive, 

negative, and depressive “symptoms”, with mixed results. No consistent 

relationship has been evidenced between positive symptoms (such as 

hallucinations) and P50 deficits in schizotypy specifically (Park et al., 2015). 

Interestingly, Fong et al. (2019) found no relationship between the “Community 

Assessment of Psychic Experiences” (CAPE) measure of schizotypy and pattern 

glare task scores, whereas AHE CHi-II factor scores were significantly and 

positively related to pattern glare scores. This suggests that visual, pattern-glare-

type cortical hyperexcitability is associated with increased “aura-type” anomalous 

experiences (i.e. phosphenes, scotomas, flashes of colour, etc.), but not with 

broader schizotypal experiences.  

 

With regards to trait excitability, using established measurement paradigms 

such as resting state EEG or default mode network (DMN) activity via fMRI could 

be helpful. The DMN refers to a network of resting-state activity, and increased or 

decreased DMN activity directly influences the brain’s responsiveness (Mayhew, 

Ostwald, Porcaro, & Bagshaw, 2013). There has also recently been keen interest 

in how the DMN is related to schizophrenia, with associated symptoms thought to 

be the result of DMN hyperconnectivity (Hu et al., 2017). Simultaneous EEG-fMRI 

recording may offer a valuable tool for investigating interactions between baseline 

and state/task-induced excitability, across groups. For example, baseline E/I 

balance in auditory-visual networks can be reflected in interactions between 

increases/decreases in alpha power and positive/negative BOLD responses 
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(associated with visual or auditory stimulation) (Mayhew et al., 2013). Mayhew at 

al. found that, when pre-stimulus alpha power was low (indicating high cortical 

excitability), a checkerboard visual stimulus elicited a greater, positive V1 BOLD 

response. By comparison, high pre-stimulus alpha power (indicating increased 

inhibition) was associated with a negligible V1 response. Similarly, decreased 

alpha-band power over occipital sites has been shown to correlate with decreased 

thresholds for inducing phosphenes via TMS (Romei, Rihs, Brodbeck, & Thut, 

2008).  

 

5.3.6 Record phenomenology and appraisals of anomalous experience 

longitudinally in non-clinical groups 

Exploring these characteristics of hallucinations more fully in non-clinical 

groups will enable us to understand why hallucinations are sometimes benign and 

sometimes require intervention and treatment. What exactly causes these benign 

experiences to (sometimes) become “clinically relevant” is not yet fully understood. 

Research has suggested that individual interpretations of and emotional reactions 

to anomalous experiences may have substantial impacts on coping and outcomes, 

with significant differences in distress between clinical and non-clinical groups 

(Badcock et al., 2017; Bell et al., 2011; Howes et al., 2013; Iudici et al., 2019; 

Upthegrove et al., 2016). Other work has shown that clinical groups are more likely 

to endorse delusional or threatening explanations for their experiences, whereas 

non-clinical groups endorse rationalising explanations (Johns & van Os, 2001; 

Underwood, Kumari, & Peters, 2016). This, combined with previous working 

demonstrating that anomalous experience phenomenology (and perhaps 

mechanisms) are not significantly different between clinical and non-clinical 
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groups, could suggest that it is not the actual experience of hallucinating that is 

problematic, but the interpretation of this experience (Underwood et al., 2016). 

Therefore a question to answer is, do clinical populations more often have 

experiences that are likely to cause distress (i.e. very negative or vivid 

hallucinations), or are clinical populations simply more predisposed to negatively 

interpreting hallucinations regardless of their content, or a combination of both, as 

compared to non-clinical populations? 

 

The direction of these relationships is not clear, and they may in fact be 

reciprocal. Therefore, future research should focus on tracking anomalous 

experience phenomenology and emotional/causative appraisals in non-clinical 

groups longitudinally, combined with repeated measures of stress and anxiety. 

This would also enable identification of any individuals who do go on to develop 

psychopathologies. Research should also consistently record ratings of anomalous 

experiences along several sub-spectra, such as frequency, intensity, duration, 

arousal, emotional valence, perceived externality and control, etcetera. This will 

allow us to compare these experiences more directly with those from clinical 

groups, and determine what possible courses of action can be taken to prevent 

hallucinations from becoming a source of stress or anxiety and intruding on 

people’s daily lives. 
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5.4 Thesis limitations and strengths 

5.4.1 Limitations 

One limitation of this thesis is that the study samples were taken from the 

student population at an affluent university. Therefore, these results cannot be 

generalised to populations that are dissimilar to these samples, e.g. groups that 

are not university educated. However, limiting samples to students constrained the 

age of participants to within a fairly narrow range (18-31, x̄ = 20 years across all 

studies) and so somewhat limited the influence of variation in results due to age. 

Additionally, Bell et al. (2011) broadly replicated the range of CAPS scores 

previously seen in a student sample (Bell et al., 2006) in a much more varied 

sample, including participants from various socioeconomic brackets. In Bell et al. 

(2011), the percentage of non-clinical participants scoring above the mean of a 

group with psychosis was 11.9%, closely matching the 11.3% reported in Bell et 

al. (2006). This suggests that although there may be some limitations to using 

student samples, in the case of anomalous experience these samples appear to 

give a fair estimation that may be applicable to other groups. It is important to note, 

however, that this may be truer for hallucination-type experiences than for other 

experiences related to cortical hyperexcitability in the literature, such as visual 

stress. Results from student samples are likely to be skewed for questions on 

Factor 1 of the CHi and CHi-II questionnaires, which relate to visual stress, as this 

can be induced by screens (e.g. computers, smart phones) and by indoor 

environments with fluorescent or bright lights. Modern students spend a 

considerable amount of time using technology and in these environments. That 

being said, Fong et al. (2019) did not find a relationship between high pattern glare 

task scores and the CHi-II “heightened visual sensitivity and discomfort” factor 
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scores. This factor addresses anomalous experiences induced by irritating 

environments such as indoor and fluorescent lights, and from working on 

computers. Therefore, it is unlikely that this factor influenced the results observed 

in the current studies, despite it likely being higher in students as compared to the 

general population, as it appears to be less directly related to cortical 

hyperexcitability-induced anomalous experience. However again, future work 

should ensure to measure any environmentally-induced visual discomfort (such as 

by using the CHi-II), perhaps also taking into account screen-usage.  

 

An additional limitation was the small sample recruited for Chapter 4, such 

that conclusions are tentative. The sample size was determined from conventions 

in EEG repetition suppression studies (see Patterson et al., 2008). However, 

Chapter 4 still revealed interesting relationships between anomalous experience 

and auditory cortical inhibition. To build on this, future studies could, for example, 

screen participants using the pattern glare task or a specified questionnaire 

measure, so that a large number of “extreme” low and high scorers can be recruited 

to the main study, for increased precision. This should prove practically achievable, 

as Chapters 2 and 3 included 47 and 40 participants in the “high” PG group 

respectively.  

 

An additional aspect of this thesis which may be considered a limitation is 

the complexity of the relationships studied. Despite this, this thesis has revealed 

some interesting findings that can be logically explained within current theoretical 

frameworks. These findings also significantly extend the current literature, as 

outlined above. However, there is still uncertainty and limited literature available in 



264 
 

several key areas related to this thesis, such as: baseline excitability and E/I 

balance in different cortical areas and networks in healthy individuals; the exact 

biophysical mechanisms by which tDCS exerts its effects, and its interaction with 

baseline excitability and ongoing activity in neural networks; mechanisms 

responsible for possible cortical hyperexcitability in healthy individuals; consensus 

on the types and mechanisms of cortical hyperexcitability underlying anomalous 

experience in clinical groups; neural mechanisms underlying pattern glare in 

healthy individuals (as much of the research base focuses on migraine); and 

relationship between trait and state predisposition to anomalous experience, in 

both clinical and non-clinical groups. This thesis cannot definitively determine the 

full story of these relationships – however it does move our understanding forward 

and provide a foundation for exploring these in more detail. Future studies may 

wish to approach the outstanding questions identified by this thesis at a more basic 

and fundamental level – such as systematically varying tDCS parameters to 

explore its effects on conscious experience and brain activity (using fMRI, for 

example) in clinical and non-clinical groups. 

 

 

5.4.2 Strengths  

The central strength of this thesis is that it extends the knowledge and theory 

underpinning state-trait and state-state relationships between a range of 

anomalous experiences and cortical excitability, in non-clinical groups. Very little 

research has explored these relationships in healthy participants outside of 

schizotypy. As a construct, schizotypy does not allow accurate study of the broad 

range of anomalous experiences known to occur in healthy individuals, due to 
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focusing on those associated with schizophrenia specifically (and sometimes 

including other domains such as delusions, which can muddy relationships). In this 

thesis, a wide range of anomalous experiences were explored across several 

modalities by using trait questionnaires designed for non-clinical groups. 

Additionally, state excitability was approached from different angles, being 

measured or manipulated using pattern glare, tDCS, and EEG-based repetition 

suppression. This thesis therefore has important implications for future work in this 

area; it can inform and guide selection of the most appropriate measures or 

manipulators of excitability, whilst also highlighting their potential limitations.  

 

A further strength of this thesis is that it takes into account, and builds on, 

recent advances in the brain stimulation literature that highlight the importance of 

baseline excitability in participant responsivity (Silvanto et al., 2018; Silvanto, 

Cattaneo, Battelli, & Pascual-Leone, 2008). This thesis not only adds to the 

evidence for the role of baseline excitability in mediating tDCS efficacy, but also 

extends previous work that has found relationships between tDCS of primary visual 

cortex and anomalous experience predisposition (Braithwaite et al., 2015). A 

persisting assumption in brain stimulation research is that anodal stimulation is 

“excitatory” and cathodal stimulation is “inhibitory”. However, recent work (Romei 

et al., 2016; Silvanto et al., 2018) and this thesis provide evidence to the contrary. 

Given our ever-advancing ability to model stimulation flow in the brain 

computationally, future work will no doubt continue to reveal the complexity of 

tDCS-brain interactions and how baseline excitability can influence hallucinatory 

predisposition (e.g. Corlett et al., 2019).  
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Despite some possible limitations, the current sample also has several 

strengths. The samples are sizeable in Chapters 2 and 3, providing good variation 

of responses and power for the analyses conducted. The samples in all empirical 

chapters are free from many of the confounding factors from patient groups that 

may have impacted comparisons with non-clinical or control groups in other studies 

on anomalous experience, such as psychopathological illness chronicity and low 

socioeconomic status (Martins et al., 2012; Ranlund et al., 2014), and medication, 

nicotine, and other recreational drug use (which can interfere with cortical 

excitability: Bauernfeind et al., 2011; Cowan et al., 2015; Hanlon et al., 2015; 

Thirugnanasambandam et al., 2011). Cognitive dysfunction or impairment is a 

common feature of psychopathology and other medical conditions in which 

hallucinations also occur (Aarsland, 2016; Green, 2016; Lenka, Hegde, 

Jhunjhunwala, & Pal, 2016; Russell, Harper, Allen, Baldwin, & Burns, 2018), 

however as anomalous experiences can also occur in healthy individuals, these 

factors represent confounds when exploring the mechanisms underlying 

hallucination. The impact of these factors is much reduced by using healthy 

samples, and so this is a key strength of this thesis. 

 

Sample age is also a strength here, given that adolescence and early 

adulthood are known to be a critical period for the development of many mental 

health conditions, such as psychosis (Marin, 2016; Paus, Keshavan, & Giedd, 

2008). This thesis addressed the need to explore anomalous experiences in 

healthy individuals of this age, adding valuable data on these experiences to the 

literature. The fact that a considerable degree of AEs was observed in this age 

group here contributes to the need to determine whether there are any unique 
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characteristics of anomalous experience in clinical groups, and the factors that 

potentially contribute to mental health decline.  

 

 

5.5 Concluding remarks 

This thesis explored whether anomalous experiences are associated with 

cortical hyperexcitability in non-clinical samples, and whether there are differences 

in this relationship depending on how these factors are measured and manipulated. 

The influence of trait- and state-based, and uni- versus multi-modal, comparisons 

were investigated. The empirical chapters built on previous work by using multiple 

measures of trait anomalous experiences that explored a wider variety of 

experiences than are usually considered in similar research, across multiple 

modalities. State cortical excitability was also approached from different angles – 

using a psychophysical task, tDCS, and EEG-based repetition suppression – and 

in different modalities. Overall, this thesis demonstrates that relationships between 

anomalous experience and cortical excitability differ depending on the trait / state 

and modality comparisons made. 

 

This thesis therefore raises some interesting questions around the 

interactions between different types of anomalous experiences and cortical 

excitability, with trait and state experiences / relationships possibly being 

subserved by different mechanisms or networks. This highlights the need for 

clarification of the neural processing underpinning specific trait and state measures 

and experiences, so that their interactions can be more fully understood. Future 

studies should further consider how these interactions may differ by modality and 
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the type or location of cortical hyperexcitability. To answer these questions, and 

interrogate the relationships observed here, additional studies on non-clinical 

groups are needed, using simultaneous neuro-imaging or -recording and 

psychophysical tasks. These approaches will enhance our understanding of the 

similarities and differences in neurocognitive mechanisms underlying anomalous 

experience across clinical and non-clinical groups. 
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7 Appendices 
 

Appendix A 
 

CONSENT TO PARTICIPATE IN RESEARCH ON CORTICAL HYPEREXCITABILITY AND VISUAL 
DISTORTIONS 

School of Psychology, University of Birmingham 
 
What is the purpose of this study? 
The purpose of the study is to examine biases of latent cortical hyper‐excitability between 
individuals who report visual distortions or hallucinations and those that do not, using a form of 
brain stimulation called transcranial direct current stimulation (tDCS). 
 
What does this study involve? 
This study will take place over two sessions. Participants will first be screened for their suitability 
to take part. In each session, the researcher will use tDCS to pass a weak electrical current through 
an area of the brain (parietal cortex) for 20 minutes whilst participants complete some 
questionnaires for measuring proneness to visual irritability, distortions, and other anomalous 
perceptions. Participants will then complete a computerised task involving the presentation of 
patterned discs, known as the “pattern‐glare” task. This task requires participants to view some 
stimuli and then provide a series of ratings for each stimulus (via the computer). 
 
Will you be paid to participate in this study? 
In exchange for your participation in both sessions of this study, you will earn 2.5 credits toward 
your RPS participation requirements. Credits will be awarded after completion of both sessions. 
 
Other important information you should know: 
 

• Benefits from participation: You will not benefit directly from participating in this study, but 
your participation may provide you with the indirect benefit of learning more about this 
research project and experimental psychology in general. 

 

• Risks associated with participation: 
o tDCS – tDCS involves the application of weak electric currents (generated by a 9‐volt 

battery) to alter the likelihood that neurons in the brain will fire. The actual current 
entering the brain during tDCS is very small. tDCS has been used safely in hundreds of 
experimental studies, and is completely safe to use within the  parameters established 
by previous investigations. Please be aware, however, that tDCS may cause some slight 
and temporary discomfort. You may notice some mild tingling or itching where the 
electrode is placed on the scalp. It is also possible that you may feel tired after 
stimulation and experience itching where the electrode was. It is possible you may 
also experience some slight nausea or headache. These effects are temporary and 
tDCS has not been known to cause any permanent negative effects. It is not known 
absolutely that these are the only known risks associated with tDCS, and therefore 
there may be some unknown risks associated with application of tDCS. Please make 
sure to report any adverse effects you experience during the experiment to the 
researcher. 
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o Pattern-glare task – you will view some briefly‐presented stimuli which you may find 
irritating  

 

• Withdrawal from the study: You may choose to stop your participation in this study at any 
time. Your decision to stop your participation will have no effect on your academic standing. 
Should you decide to withdraw from the study, your compensation will be prorated to reflect 
the portion of the study that you have completed.  Your data will be destroyed immediately 
on withdrawal.  Participants can decide to have their data withdrawn up to one week after the 
end of the experiment.    

 

• Data collection: The data collected in this study will include (i) the responses that you make 
on the questionnaires and the task described above, (ii) basic performance in terms of ratings, 
(iii) basic demographic information about you (e.g., sex, age, schooling).  The data collected in 
this study will be used only for the purpose described in this form, and will be available only 
to the researcher and principal investigator listed in this consent form.  Raw data gathered 
from this study will be maintained for 10 years as required by regulations, following the 
publication of empirical articles or communications describing the results of the study. 

 

 

• Confidentiality: Every effort will be taken to protect the names of the participants in this study. 
Your identity will not be recorded as part of your data, and will not be revealed in any 
publication that may result from this study; your consent form will not be stored with your 
data, to ensure that your identity cannot be linked in any way to your data. All information you 
provide will be kept confidential, except as governed by law. 

 
Who should you call with questions about this study? 
Questions or concerns about this study may be directed to the staff member in charge of this 
research project: 
Dr Jason Braithwaite (email: J.J.braithwaite@bham.ac.uk – telephone: ). 
 
 

CONSENT (please tick)     

I have read the 
above 

information and 
have been given 

an opportunity to 
ask questions 

I agree to 
participate in this 

study 

Participant 
Name 

Participant 
Signature 

Researcher 
Name 

Researcher 
Signature 

      

      

      

      

      

      

      

      

mailto:J.J.braithwaite@bham.ac.uk
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Appendix B 
 

The Selective Attention and Awareness Laboratory 
School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT 

 

Screening & Safety Questionnaire 
 

If you agree to take part in this study, please answer the following questions. The information 
you provide is for screening purposes only and will be kept completely confidential. 

 YES NO 

Have you ever suffered from any neurological or psychiatric conditions?   

          If YES please give details (nature of condition, duration, current medication (if any): 
 

Have you ever had a significant head/brain injury or surgery, or concussion?   

Do you have photosensitive epilepsy?   

Have you ever suffered from any other form of epilepsy, febrile convulsions 
in infancy, or had recurrent fainting spells? 

  

         If YES please give details: 
 

Does anyone in your immediate or distant family suffer from epilepsy?   

         If YES please state your relationship to the affected family member: 

Do you suffer from migraines?   

Have you ever undergone a neurosurgical procedure (including eye 
surgery)? 

  

         If YES please give details: 

Do you currently have any of the following fitted to your body (please 
circle)? 
Cochlear implant        Heart pacemaker       Medication pump         Surgical 
clips        Other 

  

Is there any chance you may be pregnant?   

Are you currently taking any unprescribed or prescribed medication?   

         If YES please give details: 

Are you currently undergoing anti‐malarial treatment?   

Have you had any alcohol in the last 12 hours?   

         If YES please estimate how many units and how long ago: 

Have you had any tea, coffee, energy drinks, or other sources of caffeine, in 
the last 12 hours? 
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         If YES please estimate how many cups/cans of each and how long ago: 

Have you used recreational drugs in the last 24 hours?   

Did you have very little sleep last night?   

Do you have any skin problems or conditions?   

        If YES please give details:   

Have you ever participated in a tDCS/TMS study before?   

        If YES please indicate the last time you participated in a tDCS/TMS study: 

 
Handedness:  Left / Right Date of Birth ____/____ /____      Age: ____  Sex: F/M 
 
 
Degree course: Undergraduate / Postgraduate / Other 
Subject/Area: ______________________ 
 
 
I confirm that the above information is accurate to the best of my knowledge. 
 
PARTICIPANT 

Name (in block capitals): 
..................................................................………................................ 
 

Signed: ............................................................................  Date: 
…................................. 
 
RESEARCHER 

Signed: ............................................................................  Date: 
…................................. 

 

Screening & Safety Questionnaire – Session 2 
 

If you agree to take part in this study, please answer the following questions. The information 
you provide is for screening purposes only and will be kept completely confidential. 

 
 YES NO 

Are you currently taking any unprescribed or prescribed medication?   

         If YES please give details: 

Are you currently undergoing anti‐malarial treatment?   

Have you had any alcohol in the last 12 hours?   

         If YES please estimate how many units and how long ago: 

Have you had any tea, coffee, energy drinks, or other sources of caffeine, 
in the last 12 hours? 
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         If YES please estimate how many cups/cans of each and how long ago: 

Have you used recreational drugs in the last 24 hours?   

Did you have very little sleep last night?   

Do you have any skin problems or conditions?   

        If YES please give details:   

Have you ever participated in a tDCS/TMS study before?   

        If YES please indicate the last time you participated in a tDCS/TMS study: 

 
I confirm that the above information is accurate to the best of my knowledge. 
 
PARTICIPANT 

Name (in block capitals): .............................................................………................................ 
 

Signed: ............................................................................  Date:............................. 
 
RESEARCHER 

Signed: ............................................................................  Date: ............................ 
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Appendix C 
 

CONSENT TO PARTICIPATE IN RESEARCH ON CORTICAL HYPEREXCITABILITY AND VISUAL 
DISTORTIONS 

School of Psychology, University of Birmingham 
 
What is the purpose of this study? 
The purpose of the study is to examine biases of latent cortical hyper‐excitability between 
individuals who report visual distortions or hallucinations and those that do not, using a form of 
brain stimulation called transcranial direct current stimulation (tDCS). 
 
What does this study involve? 
This study will take place over three sessions. Participants will first be screened for their suitability 
to take part and complete some questionnaires for measuring proneness to visual irritability, 
distortions, and other anomalous perceptions.  In each session, the researcher will use tDCS to 
pass a weak electrical current through an area of the brain (parietal cortex) for 15 minutes. 
Participants will then complete two computerised tasks involving; (1) the presentation of a visual 
illusion, and (2) the presentation of patterned discs, known as the “pattern‐glare” task. This second 
task requires participants to view some stimuli and then provide a series of ratings for each 
stimulus (via the computer). 
 
Will you be paid to participate in this study? 
In exchange for your participation in both sessions of this study, you will earn 3.5 credits toward 
your RPS participation requirements, or £20. Credits / cash will be awarded after completion of all 
sessions. 
 
Other important information you should know: 
 

• Benefits from participation: You will not benefit directly from participating in this study, but 
your participation may provide you with the indirect benefit of learning more about this 
research project and experimental psychology in general. 

 

• Risks associated with participation: 
o tDCS – tDCS involves the application of weak electric currents (generated by a 9‐volt 

battery) to alter the likelihood that neurons in the brain will fire. The actual current 
entering the brain during tDCS is very small. tDCS has been used safely in hundreds of 
experimental studies, and is completely safe to use within the  parameters established 
by previous investigations. Please be aware, however, that tDCS may cause some slight 
and temporary discomfort. You may notice some mild tingling or itching where the 
electrode is placed on the scalp. It is also possible that you may feel tired after 
stimulation and experience itching where the electrode was. It is possible you may 
also experience some slight nausea or headache. These effects are temporary and 
tDCS has not been known to cause any permanent negative effects. It is not known 
absolutely that these are the only known risks associated with tDCS, and therefore 
there may be some unknown risks associated with application of tDCS. Please make 
sure to report any adverse effects you experience during the experiment to the 
researcher. 

o Pattern-glare task – you will view some briefly‐presented stimuli which you may find 
irritating.  
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• Withdrawal from the study: You may choose to stop your participation in this study at any 
time. Your decision to stop your participation will have no effect on your academic standing. 
Your data will be destroyed immediately on withdrawal.  Participants can also decide to have 
their data withdrawn up to one week after the end of the experiment.    

 

• Data collection: The data collected in this study will include (i) the responses that you make 
on the questionnaires and the task described above, (ii) basic performance in terms of ratings, 
(iii) basic demographic information about you (e.g., sex, age).  The data collected in this study 
will be used only for the purpose described in this form, and will be available only to the 
researcher and principal investigator listed in this consent form.  Raw data gathered from this 
study will be maintained for 10 years as required by regulations, following the publication of 
empirical articles or communications describing the results of the study. 

 

 

• Confidentiality: Every effort will be taken to protect the names of the participants in this study. 
Your identity will not be recorded as part of your data, and will not be revealed in any 
publication that may result from this study; your consent form will not be stored with your 
data, to ensure that your identity cannot be linked in any way to your data. All information you 
provide will be kept confidential, except as governed by law. 

 
Who should you call with questions about this study? 
Questions or concerns about this study may be directed to the staff member in charge of this 
research project: 
Dr Jason Braithwaite (email: J.J.braithwaite@bham.ac.uk – telephone: ). 
 
By signing below, you confirm that you have: completed the screening questionnaire; received 
enough information about the study; had the opportunity to ask questions; received satisfactory 
answers to any questions asked; and also understand that you are free to leave the study at any 
time without having to give a reason. By signing you also confirm that the nature, purpose, and 
possible consequences of the outlined procedures have been explained and that you are happy 
to participate. 
 
 

 CONSENT 

Ppt. ID 
I agree to 

participate 
in this study 

Participant Name Participant Signature Researcher Signature 

     

     

     

     

     

     

     

 

mailto:J.J.braithwaite@bham.ac.uk
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Appendix D 
 

Selective Attention and Awareness Laboratory 
School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT 

 

Screening & Safety Questionnaire 
 

If you agree to take part in this study, please answer the following questions. The information 
you provide is for screening purposes only and will be kept completely confidential. 

 

 YES NO 

Have you ever suffered from any neurological or psychiatric conditions?   

               If YES please give details (nature of condition, duration, current medication (if any): 
 

Have you ever had a significant head/brain injury or surgery, or concussion?   

Do you have photosensitive epilepsy?   

Have you ever suffered from any other form of epilepsy, febrile convulsions in 
infancy, or had recurrent fainting spells? 

  

               If YES please give details: 
 

Does anyone in your immediate or distant family suffer from epilepsy?   

               If YES please state your relationship to the affected family member: 

Do you suffer from migraines?   

Have you ever undergone a neurosurgical procedure (including eye surgery)?   

               If YES please give details: 

Do you currently have any of the following fitted to your body (please circle)? 
Cochlear implant        Heart pacemaker       Medication pump         Surgical clips        
Other 

  

Is there any chance you may be pregnant?   

Are you currently taking any un‐prescribed or prescribed medication?   

               If YES please give details: 

Are you currently undergoing anti‐malarial treatment?   

Have you had any alcohol in the last 12 hours?   

If YES please estimate how many units and how long ago: 

Have you had any tea, coffee, energy drinks, or other sources of caffeine, in the last 
12 hours? 

  

               If YES please estimate how many cups/cans of each and how long ago: 

Do you regularly use any recreational drugs? If YES please specify:   

Have you used recreational drugs in the last 24 hours?   

Are you a smoker (do you regularly smoke at least 1 cigarette a day, every day), or do 
you use nicotine patches / gum? 

  

Did you have very little sleep last night?   

Has your regular sleep pattern been disturbed during the past week?   



305 
 

                                        If YES please give details: 
 

Do you have any skin problems or conditions?   

                                       If YES please give details: 

Have you ever participated in a tDCS/TMS study before?   

               If YES please indicate the last time you participated in a tDCS/TMS study: 

 
 
 

Handedness:  Left / Right Date of Birth: ____/____/____       Age: ____   Sex: F/M 
 

Ethnicity: Please circle your ethnicity (people’s ethnicity describes their feeling of belonging, and 
attachment to, a distinct group of a larger population that shares e.g. their ancestry, language, 

religion, etc.): 
 

Caucasian Latino/Hispanic Middle Eastern 

African Caribbean South Asian 

East Asian Mixed (please indicate) Other (please indicate) 

 
 

Longest lifetime country of residence: ___________________ 
Please estimate duration (e.g. years): __________ 

 
 

Degree course (e.g. BA, MSc, PhD): ________ 
Subject/Area: ______________________ 

 
 

I confirm that the above information is accurate to the best of my knowledge. 
 

Session 1 Name Signature Date 

Participant    

Researcher    

 

Screening & Safety Questionnaire – Sessions 2 & 3 
 Session 2 Session 3 

 YES NO YES NO 

Are you currently taking any un‐prescribed or prescribed 
medication? 

  
  

         If YES please give details:   

Are you currently undergoing anti‐malarial treatment?     

Have you had any alcohol in the last 12 hours?     

         If YES please estimate how many units and how long 
ago: 

  

Have you had any tea, coffee, energy drinks, or other 
sources of caffeine, in the last 12 hours? 
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         If YES please estimate how many cups/cans of each 
and how long ago: 

  

Have you used recreational drugs in the last 24 hours?     

Did you have very little sleep last night?     

Do you have any skin problems or conditions?     

        If YES please give details:   

Have you ever participated in a tDCS/TMS study before?     

       If YES please indicate the last time you participated in 
a tDCS/TMS study: 

 
 

 
I confirm that the above information is accurate to the best of my knowledge. 

 

Session 2 Signature Date 

Participant   

Researcher   

 
 

Session 3 Signature Date 

Participant   

Researcher   
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Appendix E 
 

Information sheet for participants in TDCS or TACS experiments 

 

Dear Research Participant, 

You are being invited to take part in a research study. Before you decide whether or not to 

take part, it is important for you to understand why the research is being done and what it will 

involves. Please take time to read the following information carefully. Your participation at this 

research will help benefit understanding in the areas of knowledge about the cognitive and 

perceptual function of our brains. This information sheet broadly describes the behavioral 

experimental procedures and should be read as part of the information sheet regarding the 

stimulation procedure. If you have any further questions, please do not hesitate to ask. The 

research procedure described below has been approved by the University of Birmingham ethics 

committee.  

 

What is Transcranial Current Stimulation (TDCS or TACS)? 

TDCS is a method of stimulating the brain of conscious human subjects through the scalp. 
It was discovered more then a 100 years ago and has been used by scientists and clinicians ever 
since.  

We would apply TDCS to safely and reversibly influence brain activity. Two electrodes are 

attached to your head, held in place with an elastic strap. They are connected to the device that 

passes a very small current though the brain. The TDCS device is battery operated, completely 

isolated from the mains electricity supply. There is no risk of electrocution. The current is very 

small (1-2mA) and is barely noticeable.  

TACS is very similar but instead of the constant, direct, current used in TDCS, an 

alternating current is used. There are no additional risks associated with TACS and most people 

cannot tell which form of stimulation they are receiving.  

The effects of stimulation on your behavior and cognition are imperceptible; they can only 

be detected by detailed analysis of the data and wear off within 45-60 minutes after the end of 

stimulation. 

However, you may feel a tingling sensation under one or both electrode. This is a little like 
the tingle you get if you put your tongue onto a battery.  

For your safety you will be asked to fill out a TDCS/TACS Safety Screening Questionnaire, 
prior to being exposed to any stimulation.  

 

 

Can the experiment be interrupted? 

Yes. You are free to leave the experiment at any stage. Even if you withdraw you will be 
paid the time you have spent on the study.   

Please be aware that any information you provide on the TDCS/TACS checklist and 
throughout the experiment will remain confidential. The behavioural data obtained during the 
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experiment will be coded using random number (i.e. your anonymity will be kept). You have the 
right to ask for your data to be removed from the study at any time.  

 

Are there potential risks of TDCS or TACS? 

Transcranial current stimulation (TDCS or TACS) is a safe technique. But there are some 

small risks, which are described below. These risks are based on recent reviews [1,2] of over 209 

studies of TDCS sessions with over 3800 participants. There are no published reviews of the risks 

of TACS; however, the high frequency of stimulation does not add any additional risk to that of 

the TDCS protocol, as the stimulation does not cause the neurons to fire. The only published paper 

assessing safety has reported no issues [3]. 

1. Itching or tingling: The most common report – by 62% of participants [2] – is that of a 

tingling sensation under the electrodes. This is present during and shortly after the period of 

stimulation, and has no adverse effects or risks. A small proportion of participants report this 

sensation as burning (9%) or discomfort (11%), although they scored the burning or painful 

sensation as quite mild (under 2 on a 5-point scale from none too intense) [1]. 

2. Fatigue: The next common report – by 35% of participants – was of tiredness during the 

stimulation, and 25% reported this continued afterwards. The authors of the study suggest 

this may be due to the prolonged and uninteresting tasks the participants were doing [1]. 

3. Headache: 10-15% of participants reported a headache after the stimulation [1,2]. Such 

headaches are usually mild and can be treated with normal over-the-counter painkillers, if 

required. There is no evidence that TDCS leads to any change in frequency or severity of 

headaches.  

Overall, less than 20% of the participants rated the stimulation procedure as mildly unpleasant 

and 80% reported that it was not unpleasant [1]. 

4. Irritation of the skin: Because of contact between the skin and the electrodes, there is a 

risk of electrochemical irritation. Our use of saline-soaked sponge pockets that surround 

conductive rubber electrodes minimizes any chemical irritation of the skin. We expect less 

than 1 in 20 participants to have slight irritation to the skin (with redness under the electrode) 

that will resolve naturally within minutes or up to 1 hour.  

 5. Skin burns: Electrical stimulation has the potential to burn the skin. We use stimulation 

currents that are 1/200th (half of 1%) of the level that might cause direct tissue damage. We 

have never experienced skin burns in several hundred applications of TDCS. However, daily 

repeated TDCS has been reported to cause significant skin irritation under the electrodes in a 

small number of cases. In addition, skin irritation and scalp burns have been reported when 

TDCS is applied after vigorous skin abrasion to reduce its impedance (a technique that we do 

not use). We will visually inspect the skin before applying the electrodes, to avoid stimulation 

of damaged or scratched skin.  

The risk of skin burns is very low – we have had no incidences from the hundreds of 

stimulation sessions that we have performed (less than 1% risk).  
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6. Seizures: TDCS/TACS has the potential to excite the brain and induce brief seizures, 

although this has never yet occurred, to our knowledge. These seizures are related to epileptic 

seizures but are short-lasting localised fits rather than grand mal epileptic seizures. They can 

be confused with syncope – a temporary faint or swoon – induced by anxiety.  

The risk of a seizure is very low – there have been no reported incidences that we know of 

from the thousands of stimulation sessions that have taken place in many research 

laboratories or clinical units (0% risk).  

We use published safety guidelines and expect the risk to be very low. Stimulation-

induced seizures would be expected to last between tens of seconds to several minutes. There 

is no evidence to suggest that a stimulus-induced fit would be followed by any spontaneous 

fits – hence there is no evidence of any long term effect. Moreover, a seizure would occur at 

the time of experimental stimulation, if at all. So there is no risk of a delayed seizure outside 

of the care of the experimenter. 

 

Are there any reasons why I should not take part in this study? 

Some people, especially those with a history of epilepsy, may be prone to have a seizure 

related to an epileptic fit. It is therefore important that you do not volunteer for these experiments 

if you have a psychiatric or neurological disease, or if you or anyone in your immediate family has 

ever had a seizure.  

As TDCS/TACS uses an electric current it is very important that you do not volunteer if you 

have any metal devices such as cochlea implants or cardiac pacemakers. Metal implants in the 

head (excluding standard orthodontic braces, fillings, etc.) would also exclude you from the study.  

Localised skin damage under the stimulation electrodes may increase the risk of irritation 

of the skin, and this may mean that we will exclude you from the study. We will ask you if you 

currently have any skin diseases, and we will inspect the condition of the skin under the 

electrodes. 

As a safety precaution you should not volunteer if you have previously participated in two 

or more previous TMS or TDCS/TACS experiments in the last 6 months.  

You should also not volunteer if you are pregnant.  

If you are uncertain about any of these points, please ask the researcher.  

 

What does the procedure involve? 

In a typical TDCS/TACS study we will measure your responses while (or immediately after) 

we stimulate your brain using very mild electrical stimulation (see above for more details). 

Therefore it is very important to keep focused and alert through out the study. The study may 

span across multiple sessions, carried out in different days each lasting ½ - 1 hour.  

In some cases we may include a sham stimulation session. In this session we will start 

stimulating but immediately switch the stimulator off. As TDCS or TACS stimulation is very mild it 
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is unlikely that you would be able to differentiate between sham and real stimulation sessions. 

We use the sham condition as a control, to insure that any effects we observed are due to the real 

stimulation and not to other non-specific experimental effects. 

At the end of the final session you will be debriefed and the aims of the research will be 

explained to you in details. We will also inform whether you experienced a sham session and in 

which session it was.  

We request that 24 hours before each session you avoid alcohol consumption or the use 

of any recreational drugs and avoid drinking caffeinated coffee 2 hours before the sessions. This 

is required for your safety as both alcohol and caffeine may interact with the brain stimulation 

you will be exposed to. At the end of each session you will be asked to refrain from driving for at 

least 2 hours after the stimulation ended.  

 It is up to you to decide whether or not to take part. If you do decide to take part you will 

be given this information sheet to keep and be asked to sign a consent form. If you decide to take 

part you are still free to withdraw at any time and without giving a reason. In other words, you 

are free to decide not to take part in this study, and you would be free to leave it at any stage. If 

the latter, you will be asked to decide on the future use of your data that was already collected. 

You will be assigned course credit/compensation money based on the number of sessions you 

participated in.  

Your behavioral performance would be analyzed as part of a group of anonymous 

volunteers. For our internal record, information you provide in the safety questionnaire and the 

consent form will kept in a lock cupboard and will be destroyed after 10 years.  

The results of the study you took part in are published in international and national 

research journals and a summary of them is available on the Internet. Please refer to the 

researcher web page for further details.  
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Appendix G 
 

Introduction 
This questionnaire asks questions about sensations and perceptions you may have experienced. 

Some of the experiences are unusual, some of them are more everyday. 

 

We realise circling answers may not always represent your experience as accurately as you might 

like. However, we would ask you to circle the answers that most closely match your experience and 

avoid missing any questions out. 

 

We would appreciate it if you could be as honest as possible when giving your answers. 

 
The only experiences we are not interested in are those that may have occurred whilst under the 

influence of drugs. 

 

Instructions 
Each item has a question on the left hand side. Please read the question and circle either YES or NO 

 

• If you circle NO please move straight on to the next question. 

• If you circle YES please rate the experience in all of the three boxes on the right hand side of 

the item by circling a number between 1 and 5. 

 

These ask about how distressing you found the experience, how distracting you found it, and how 

often the experience occurs. 

 

Example questions 
You do not need to answer these questions, they are just examples to illustrate the instructions. 

 
Do you ever notice that lights seem to flicker on and off for no reason ? 

 
 
 

 

YES 
 
 

If YES please rate on 

right hand side. 

 
 

Do you ever feel that the sound on the TV or radio seems unusually quiet ? 

 
 
 

NO YES 

 
If YES please rate on 

right hand side. 

 

NO 

Not at all 

distressing 
   Very 

distressing 

1 
Not at all 

distracting 

2 3 4 5 
Completely 

intrusive 

1 
Happens 

hardly at all 

2 3 4 5 
Happens all 

the time 

1 2 3 4 5 

 

Not at all 

distressing 
   Very 

distressing 

1 
Not at all 

distracting 

2 3 4 5 
Completely 

intrusive 

1 
Happens 

hardly at all 

2 3 4 5 
Happens all 

the time 

1 2 3 4 5 
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Not at all 

distressing 

1 
Not at all 

distracting 

1 
Happens 

hardly at all 

1 

Very 

distressing 

5 
Completely 

intrusive 

5 
Happens all 

the time 

5 

2 3 4 

NO YES 

2 3 4 
If YES please rate on 

right hand side. 

2 3 4 

2 

 

1) Do you ever notice that sounds are much louder than they normally would be ? 
 
 
 
 

NO YES 
 
 

If YES please rate on 

right hand side. 

 
 

2) Do you ever sense the presence of another being, despite being unable to see 

any evidence ? 
 
 
 

 

NO YES 
 
 

If YES please rate on 

right hand side. 

 
 

3) Do you ever hear your own thoughts repeated or echoed ? 
 
 
 
 

NO YES 
 
 

If YES please rate on 

right hand side. 

 
 

4) Do you ever see shapes, lights or colours even though there is nothing really 
there ? 

Not at all 

distressing 
   Very 

distressing 

1 
Not at all 

distracting 

2 3 4 5 
Completely 

intrusive 

1 
Happens 

hardly at all 

2 3 4 5 
Happens all 

the time 

1 2 3 4 5 

 

Not at all 

distressing 
   Very 

distressing 

1 
Not at all 

distracting 

2 3 4 5 
Completely 

intrusive 

1 2 3 4 5 
Happens 

hardly at all 
   Happens all 

the time 

1 2 3 4 5 

 

Not at all 

distressing 
   Very 

distressing 

1 
Not at all 

distracting 

2 3 4 5 
Completely 

intrusive 

1 
Happens 

hardly at all 

2 3 4 5 
Happens all 

the time 

1 2 3 4 5 

 



Not at all 

distressing 

1 
Not at all 

distracting 

1 
Happens 

hardly at all 

1 

Very 

distressing 

5 
Completely 

intrusive 

5 
Happens all 

the time 

5 

2 3 4 

NO YES 

2 3 4 
If YES please rate on 

right hand side. 

2 3 4 

3 

 

5) Do you ever experience unusual burning sensations or other strange feelings in 
or on your body ? 

 

 

NO YES 
 
 

If YES please rate on 

right hand side. 

 
 

6) Do you ever hear noises or sounds when there is nothing about to explain them ? 
 
 
 
 
 
 

NO YES 
 
 

If YES please rate on 

right hand side. 

 
 

7) Do you ever hear your own thoughts spoken aloud in your head, so that someone 
near might be able to hear them ? 

 

 

NO YES 
 
 

If YES please rate on 

right hand side. 

 
 

8) Do you ever detect smells which don’t seem to come from your surroundings ? 

Not at all 

distressing 
   Very 

distressing 

1 
Not at all 

distracting 

2 3 4 5 
Completely 

intrusive 

1 
Happens 

hardly at all 

2 3 4 5 
Happens all 

the time 

1 2 3 4 5 

 

Not at all 

distressing 
   Very 

distressing 

1 
Not at all 

distracting 

2 3 4 5 
Completely 

intrusive 

1 2 3 4 5 
Happens 

hardly at all 

   Happens all 

the time 

1 2 3 4 5 

 

Not at all 

distressing 
   Very 

distressing 

1 
Not at all 

distracting 

2 3 4 5 
Completely 

intrusive 

1 
Happens 

hardly at all 

2 3 4 5 
Happens all 

the time 

1 2 3 4 5 

 



Not at all 

distressing 

1 
Not at all 

distracting 

1 
Happens 

hardly at all 

1 

Very 

distressing 

5 
Completely 

intrusive 

5 
Happens all 

the time 

5 

2 3 4 

NO YES 

2 3 4 
If YES please rate on 

right hand side. 

2 3 4 

4 

 

9) Do you ever have the sensation that your body, or a part of it, is changing 
or has changed shape ? 

 

 

NO YES 
 
 

If YES please rate on 

right hand side. 

 
 

10) Do you ever have the sensation that your limbs might not be your own or might 

not be properly connected to your body? 
 
 
 

 

NO YES 
 
 

If YES please rate on 

right hand side. 

 
 

11) Do you ever hear voices commenting on what you are thinking or doing ? 
 
 
 
 

NO YES 
 
 

If YES please rate on 

right hand side. 

 
 

12) Do you ever feel that someone is touching you, but when you look nobody is 
there ? 

Not at all 

distressing 
   Very 

distressing 

1 
Not at all 

distracting 

2 3 4 5 
Completely 

intrusive 

1 
Happens 

hardly at all 

2 3 4 5 
Happens all 

the time 

1 2 3 4 5 

 

Not at all 

distressing 
   Very 

distressing 

1 
Not at all 

distracting 

2 3 4 5 
Completely 

intrusive 

1 2 3 4 5 
Happens 

hardly at all 

   Happens all 

the time 

1 2 3 4 5 

 

Not at all 

distressing 
   Very 

distressing 

1 
Not at all 

distracting 

2 3 4 5 
Completely 

intrusive 

1 
Happens 

hardly at all 

2 3 4 5 
Happens all 

the time 

1 2 3 4 5 

 



Not at all 

distressing 

1 
Not at all 

distracting 

1 
Happens 

hardly at all 

1 

Very 

distressing 

5 
Completely 

intrusive 

5 
Happens all 

the time 

5 

2 3 4 

NO YES 

2 3 4 
If YES please rate on 

right hand side. 

2 3 4 

5 

 

13) Do you ever hear voices saying words or sentences when there is no-one 
around that might account for it ? 

 

 

NO YES 
 
 

If YES please rate on 

right hand side. 

 
 

14) Do you ever experience unexplained tastes in your mouth ? 
 
 
 
 
 
 

NO YES 
 
 

If YES please rate on 

right hand side. 

 
 

15) Do you ever find that sensations happen all at once and flood you with 
information ? 

 

 

NO YES 
 
 

If YES please rate on 

right hand side. 

 
 

16) Do you ever find that sounds are distorted in strange or unusual ways ? 

Not at all 

distressing 
   Very 

distressing 

1 
Not at all 

distracting 

2 3 4 5 
Completely 

intrusive 

1 
Happens 

hardly at all 

2 3 4 5 
Happens all 

the time 

1 2 3 4 5 

 

Not at all 

distressing 
   Very 

distressing 

1 
Not at all 

distracting 

2 3 4 5 
Completely 

intrusive 

1 2 3 4 5 
Happens 

hardly at all 

   Happens all 

the time 

1 2 3 4 5 

 

Not at all 

distressing 
   Very 

distressing 

1 
Not at all 

distracting 

2 3 4 5 
Completely 

intrusive 

1 
Happens 

hardly at all 

2 3 4 5 
Happens all 

the time 

1 2 3 4 5 

 



Not at all 

distressing 

1 
Not at all 

distracting 

1 
Happens 

hardly at all 

1 

Very 

distressing 

5 
Completely 

intrusive 

5 
Happens all 

the time 

5 

2 3 4 

NO YES 

2 3 4 
If YES please rate on 

right hand side. 

2 3 4 

6 

 

17) Do you ever have difficulty distinguishing one sensation from another ? 
 
 
 
 

NO YES 
 
 

If YES please rate on 

right hand side. 

 
 

18) Do you ever smell everyday odours and think that they are unusually strong ? 
 
 
 
 
 
 

NO YES 
 
 

If YES please rate on 

right hand side. 

 
 

19) Do you ever find the appearance of things or people seems to change in a 
puzzling way, e.g. distorted shapes or sizes or colour ? 

 

 

NO YES 
 
 

If YES please rate on 

right hand side. 

 
 

20) Do you ever find that your skin is more sensitive to touch, heat or cold than 

usual ? 

Not at all 

distressing 
   Very 

distressing 

1 
Not at all 

distracting 

2 3 4 5 
Completely 

intrusive 

1 
Happens 

hardly at all 

2 3 4 5 
Happens all 

the time 

1 2 3 4 5 

 

Not at all 

distressing 
   Very 

distressing 

1 
Not at all 

distracting 

2 3 4 5 
Completely 

intrusive 

1 2 3 4 5 
Happens 

hardly at all 
   Happens all 

the time 

1 2 3 4 5 

 

Not at all 

distressing 
   Very 

distressing 

1 
Not at all 

distracting 

2 3 4 5 
Completely 

intrusive 

1 
Happens 

hardly at all 

2 3 4 5 
Happens all 

the time 

1 2 3 4 5 

 



Not at all 

distressing 

1 
Not at all 

distracting 

1 
Happens 

hardly at all 

1 

Very 

distressing 

5 
Completely 

intrusive 

5 
Happens all 

the time 

5 

2 3 4 

NO YES 

2 3 4 
If YES please rate on 

right hand side. 

2 3 4 

7 

 

21) Do you ever think that food or drink tastes much stronger than it normally 
would ? 

 

 

NO YES 
 
 

If YES please rate on 

right hand side. 

 
 

22) Do you ever look in the mirror and think that your face seems different from 

usual ? 
 
 
 

 

NO YES 
 
 

If YES please rate on 

right hand side. 

 
 

23) Do you ever have days where lights or colours seem brighter or more intense 
than usual ? 

 

 

NO YES 
 
 

If YES please rate on 

right hand side. 

 
 

24) Do you ever have the feeling that of being uplifted, as if driving or rolling over a 

road while sitting quietly ? 

Not at all 

distressing 
   Very 

distressing 

1 
Not at all 

distracting 

2 3 4 5 
Completely 

intrusive 

1 
Happens 

hardly at all 

2 3 4 5 
Happens all 

the time 

1 2 3 4 5 

 

Not at all 

distressing 
   Very 

distressing 

1 
Not at all 

distracting 

2 3 4 5 
Completely 

intrusive 

1 2 3 4 5 
Happens 

hardly at all 

   Happens all 

the time 

1 2 3 4 5 

 

Not at all 

distressing 
   Very 

distressing 

1 
Not at all 

distracting 

2 3 4 5 
Completely 

intrusive 

1 
Happens 

hardly at all 

2 3 4 5 
Happens all 

the time 

1 2 3 4 5 

 



Not at all 

distressing 

1 
Not at all 

distracting 

1 
Happens 

hardly at all 

1 

Very 

distressing 

5 
Completely 

intrusive 

5 
Happens all 

the time 

5 

2 3 4 

NO YES 

2 3 4 
If YES please rate on 

right hand side. 

2 3 4 

8 

 

25) Do you ever find that common smells sometimes seem unusually different ? 
 
 
 
 

NO YES 
 
 

If YES please rate on 

right hand side. 

 
 

26) Do you ever think that everyday things look abnormal to you ? 
 
 
 
 
 
 

NO YES 
 
 

If YES please rate on 

right hand side. 

 
 

27) Do you ever find that your experience of time changes dramatically ? 
 
 
 
 

NO YES 
 
 

If YES please rate on 

right hand side. 

 
 

28) Have you ever heard two or more unexplained voices talking with each other ? 

Not at all 

distressing 
   Very 

distressing 

1 
Not at all 

distracting 

2 3 4 5 
Completely 

intrusive 

1 
Happens 

hardly at all 

2 3 4 5 
Happens all 

the time 

1 2 3 4 5 

 

Not at all 

distressing 
   Very 

distressing 

1 
Not at all 

distracting 

2 3 4 5 
Completely 

intrusive 

1 2 3 4 5 
Happens 

hardly at all 
   Happens all 

the time 

1 2 3 4 5 

 

Not at all 

distressing 
   Very 

distressing 

1 
Not at all 

distracting 

2 3 4 5 
Completely 

intrusive 

1 
Happens 

hardly at all 

2 3 4 5 
Happens all 

the time 

1 2 3 4 5 

 



Not at all 

distressing 

1 
Not at all 

distracting 

1 
Happens 

hardly at all 

1 

Very 

distressing 

5 
Completely 

intrusive 

5 
Happens all 

the time 

5 

2 3 4 

NO YES 

2 3 4 
If YES please rate on 

right hand side. 

2 3 4 

9 

 

29) Do you ever notice smells or odours that people next to you seem unaware of ? 
 
 
 
 

NO YES 
 
 

If YES please rate on 

right hand side. 

 
 

30) Do you ever notice that food or drink seems to have an unusual taste ? 
 
 
 
 
 
 

NO YES 
 
 

If YES please rate on 

right hand side. 

 
 

31) Do you ever see things that other people cannot ? 
 
 
 
 

NO YES 
 
 

If YES please rate on 

right hand side. 

 
 

32) Do you ever hear sounds or music that people near you don’t hear ? 

Not at all 

distressing 
   Very 

distressing 

1 
Not at all 

distracting 

2 3 4 5 
Completely 

intrusive 

1 
Happens 

hardly at all 

2 3 4 5 
Happens all 

the time 

1 2 3 4 5 

 

Not at all 

distressing 
   Very 

distressing 

1 
Not at all 

distracting 

2 3 4 5 
Completely 

intrusive 

1 2 3 4 5 
Happens 

hardly at all 
   Happens all 

the time 

1 2 3 4 5 

 

Not at all 

distressing 
   Very 

distressing 

1 
Not at all 

distracting 

2 3 4 5 
Completely 

intrusive 

1 
Happens 

hardly at all 

2 3 4 5 
Happens all 

the time 

1 2 3 4 5 
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Chapter 2 

 

 

Figure H.i – Current flow model for the stimulatory montage used in Chapter 2. 

Setup for both anodal and sham stimulation: Anode at Pz, Cathode at Cz, 1.5mA, 

current density = 0.06mA/cm2. Anodal stimulation = 20 minutes, 30s fade in/out; 

Sham stimulation = 30s, 10s fade in/out. V/m = electric field magnitude. 

 

 

 

 

 

 

 

 

Appendix H 
Computational current flow models of tDCS, for Chapters 2 and 3. Current 

flow models were computed using Spheres (Dmochowski et al., 2012), a free 

software package for simulating tDCS current flow in the brain. Applied scalp 

current is expressed as brain current flow through a linear combination of spherical 

harmonics (see Dmochowski et al., 2012). 
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Figure H.ii – Current flow model for the stimulatory montage used in Chapter 3, 

for both anodal and sham stimulation: Anode at POz, Cathode at Cz, 1.5mA, 

current density = 0.06mA/cm2. Anodal stimulation = 10 minutes, 30s fade in/out; 

Sham stimulation = 30s, 10s fade in/out. Cathodal stimulation model not shown. 

V/m = electric field magnitude.  

 

 

 

 

 

 

 

 

 

 

 

Chapter 3 
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CONSENT TO PARTICIPATE IN RESEARCH ON CORTICAL HYPEREXCITABILITY AND VISUAL 
DISTORTIONS 

School of Psychology, University of Birmingham 
 
What is the purpose of this study? 
The purpose of the study is to examine biases of latent cortical hyper‐excitability between 
individuals who report hallucinations as compared to those that do not, using a form of brain 
recording called electroencephalography (EEG). The experiment will last approximately 1 hour 30 
minutes (up to 2 hours). 
 
What is EEG? 
Electroencephalography (EEG) is a technique widely used in neurology, with no known risks. The 
electrical activity generated by your brain is recorded by small electrodes which are placed on 
your scalp. Gel will be added to your scalp. You should not wear any hair products (gel, spray, 
etc.) on the day of the experiment. 

What does this study involve? 
During this session, you will first be screened for your suitability to take part and complete some 
questionnaires for measuring proneness to anomalous perceptions. You will complete a 
computerised task called the “pattern glare” task, which involves viewing some striped patterns. 
This task will take less than 10 minutes. The researcher will then set up the EEG equipment to 
record your brain activity. While your brain activity is being recorded, you will complete a 
computerised task that involves listening to some “click” sounds through headphones. This task 
will last for around 30 minutes. During the task you will be able to watch the TV show or movie of 
your choice (from a selection, with subtitles & no sound). After the task, the EEG electrodes will 
be removed and the study will be finished. The experimenter will then debrief you.  
 
Will you be paid to participate in this study? 
In exchange for your participation in this study, you will earn 1 credit per hour toward your RPS 
participation requirements, OR £8 per hour. 
 
Other important information you should know: 

• Benefits from participation: You will not benefit directly from participating in this study, but 
your participation may provide you with the indirect benefit of learning more about this 
research project and experimental psychology in general. 

• Risks associated with participation: 
You will encounter no greater risks of discomfort than those incurred in routine daily activities. 
EEG – There are no known risks associated with EEG recording. You may experience some very 
mild irritation on the skin under the electrodes, but this will dissipate once the electrodes and 
gel are removed. Pattern-glare task – you will view some briefly‐presented stimuli which you 
may find irritating. 

• Withdrawal from the study: You may choose to stop your participation in this study at any 
time. Your decision to stop your participation will have no effect on your academic standing. 
Your data will be destroyed immediately on withdrawal. If you withdraw you will be 
compensated for the portion of the study you have completed. Participants can also decide to 
have their data withdrawn up to one week after the end of the experiment. 

Appendix I 
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• Data collection: The data collected in this study will include (i) the responses that you make 
on the questionnaires and the task described above, (ii) basic performance in terms of ratings, 
(iii) basic demographic information about you (e.g., sex, age).  The data collected in this study 
will be used only for the purpose described in this form, and will be available only to the 
researcher and principal investigator listed in this consent form.  Raw data gathered from this 
study will be maintained for 10 years as required by regulations, following the publication of 
empirical articles or communications describing the results of the study. 

• Confidentiality: Every effort will be taken to protect the names of the participants in this study. 
Your identity will not be recorded as part of your data, and will not be revealed in any 
publication that may result from this study; your consent form will not be stored with your 
data, to ensure that your identity cannot be linked in any way to your data. All information you 
provide will be kept confidential, except as governed by law. 

 
 
Who should you call with questions about this study? 
Questions or concerns about this study may be directed to the researcher (Rachel Marchant, 
email: rem393@bham.ac.uk) or the staff member in charge of this research project: Dr Ali 
Mazaheri (email: MazaherA@adf.bham.ac.uk – telephone: ). 
 
 

CONSENT 

 I have read and understood the above information. 
 

 I have been given an opportunity to ask questions and received satisfactory 
answers. 

 
 I understand that I am free to leave this study at any time without having to give 

a reason. 
 

 I understand that data collected during the study will be looked at by researchers 
from the University of Birmingham. I give permission for these individuals to 
have access to my data. I understand that my data will be stored anonymously. 

 
 I agree to participate in this study. 

 
 

  

  

Participant Name  Participant Signature and 

Date 

 

Rachel Marchant  

  

Researcher Name  Researcher Signature and 

Date 

mailto:rem393@bham.ac.uk
mailto:MazaherA@adf.bham.ac.uk
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Appendix J 
Selective Attention and Awareness Laboratory 

School of Psychology, University of Birmingham, Edgbaston, Birmingham, B15 2TT 
 

Screening & Safety Questionnaire 
 

If you agree to take part in this study, please answer the following questions. The information 
you provide is for screening purposes only and will be kept completely confidential. 

 

 YES NO 

Do you currently suffer from any neurological or psychiatric conditions?   

               If YES please give details (nature of condition, duration, current medication (if any)): 
 

Have you ever had a significant head/brain injury or surgery, or concussion?   

Do you have photosensitive epilepsy?   

Have you ever suffered from any other form of epilepsy, febrile convulsions in 
infancy, or had recurrent fainting spells? 

  

               If YES please give details: 

Does anyone in your immediate or distant family suffer from epilepsy?   

               If YES please state your relationship to the affected family member: 

Do you suffer from migraines?   

Have you ever undergone a neurosurgical procedure (including eye surgery)?   

               If YES please give details: 

Do you have any ocular (eye) conditions (e.g. astigmatism, colour blindness, 
optic neurosis)? 

  

Are you currently taking any un‐prescribed or prescribed medication?   

               If YES please give details: 

Are you currently undergoing anti‐malarial treatment?   

Have you had any alcohol in the last 12 hours?   

               If YES please estimate how many units and how long ago: 

Have you had any tea, coffee, energy drinks, or other sources of caffeine, in the 
last 12 hours? 

  

               If YES please estimate how many cups/cans of each and how long ago: 

Do you regularly use any recreational drugs? If YES please specify:   

Have you used recreational drugs in the last 24 hours?   

Are you a smoker (do you regularly smoke at least 1 cigarette a day, every day), 
or do you use nicotine patches / gum? 

  

Did you have very little sleep last night?   

Has your regular sleep pattern been disturbed during the past week?   

                If YES please give details: 
 

Do you have any skin problems or conditions?   

                If YES please give details: 
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Handedness:  Left / Right Date of Birth: ____/____/____    Age: ____      Sex: F/M 

 
 

Ethnicity: Please circle your ethnicity (people’s ethnicity describes their feeling of belonging, and 
attachment to, a distinct group of a larger population that shares e.g. their ancestry, language, 

religion, etc.): 
 

White/Caucasian Latino/Hispanic Middle Eastern 

African Caribbean South Asian 

East Asian Mixed (please indicate) Other (please indicate) 

 
 

Do you consider yourself to be fluent in English? Yes / No 
 
 

Longest lifetime country of residence: ___________________ 
Please estimate duration (e.g. years): __________ 

 
 

Degree course (e.g. BA, MSc, PhD): ________ 
Subject/Area: ______________________ 

 
 
 

I confirm that the above information is accurate to the best of my knowledge. 
 

Session 1 Name Signature Date 

Participant    

Researcher Rachel Marchant   
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Appendix K 

The Cortical Hyperexcitability index-II (CHi_II) 

Chun Yuen Fong, Chie Takahashi, Jason J Braithwaite 
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323 
 

Appendix L 
Multi-Modality Unusual Sensory Experiences Questionnaire (MUSEQ)  

We now know that both healthy people and people with medical or psychological conditions report having strange or unusual 

experiences. These experiences range from being very subtle to quite obvious. We want to find out more.  Please answer all 

questions by placing a tick or cross (✓ or X) in the most appropriate response box. There are no right/wrong answers and your 

responses are kept confidential.  

 AUDITORY     

There have been times when…  

Never 

(0) 
(Never 

happened)  

Hardly Ever 
(1) 

(Once or 

twice in my 

life)  

Rarely 

 (2) 
(Once or 

twice a year)  

Occasionally 
(3) 

(A few times a 

year)  

Frequently 
(4) 

(At least 

monthly)  

1. My ears have played tricks on me            

2. Sounds were louder than they normally would be            

3. I thought of a song and could almost hear it with distinct clarity            

4. I was in a crowd or with other people and heard my name being 

called, only to find that I was mistaken  

          

5. I have heard my phone ring then found that it wasn’t ringing at all              

6. I could hear sounds, music, or noises that other people could not 

hear  

          

7. I have heard a person’s voice and then found that no-one was 

there  

          

VISUAL     

8. My eyes have played tricks on me            

9. I found that lights or colours seem brighter or more intense than 

they normally would be  
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10. I thought of people, objects, or landscapes, and could almost 

see their image in front of my eyes             

          

11. I have looked at a patterned object (e.g., wallpaper, curtains,  
tiled floor) and a figure or face has emerged    

          

12. I have seen lights, flashes, or other shapes that other people  
could not see                                        

          

13. I looked at an object and it transformed itself before my eyes 

into something else  

          

14. I saw a brief image of an object, animal, or person pass me by 
in my peripheral vision, but when I looked there was nothing there 

          

15. I saw people, faces, or animals, and then found that nothing 
was  
there                                                     

          

 

 

OLFACTORY  

There have been times when…  

Never 

(0) 
(Never 

happened)  

Hardly Ever 
(1) 

(Once or 

twice in my 

life)  

Rarely 

 (2) 
(Once or 

twice a year)  

Occasionally 
(3) 

(A few times a 

year)  

Frequently 
(4) 

(At least 

monthly)  

16. My nose (sense of smell) has played tricks on me            

17. I thought that everyday smells were unusually strong            

18. I thought of a smell and I could almost smell it for real            

19. Common smells seemed unusually different            

20. I noticed the smell of smoke, burning, or gas when there was 

nothing there  

          

21. I have suddenly been struck by an unpleasant or disgusting 

smell that no-one else could smell  
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22. I have suddenly been struck by a very pleasant smell that no-

one else could smell  

          

23. I have been struck with the smell of odd things which I 

interpreted as death, colours, or ghosts  

          

GUSTATORY  

24. My sense of taste has played tricks on me            

25. I thought that food or drink tasted stronger than it normally 

would  

          

26. I thought of a taste and found that I could taste it in my mouth 

as if it was real  

          

27. I ate the same food as another person and thought it tasted off, 

but the other person did not seem to think so  

          

28. I have consumed food or drink and it tasted like something 

completely different  

          

29. I had nothing in my mouth but I suddenly tasted something very 

confusing which faded very quickly  

          

30. I had nothing in my mouth but I suddenly tasted something 

unpleasant which was really persistent  

          

31. I had nothing in my mouth but I suddenly tasted something very 

pleasant which was really persistent  

          

 

 

BODILY SENSATIONS  

There have been times when…  

Never 

(0) 
(Never 

happened)  

Hardly Ever 
(1) 

(Once or 

twice in my 

life)  

Rarely 

 (2) 
(Once or 

twice a year)  

Occasionally 
(3) 

(A few times a 

year)  

Frequently 
(4) 

(At least 

monthly)  

32. My body senses have played tricks on me            
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33. I found my skin to be more sensitive to cold, heat, or touch than 

usual 

          

34. I thought of a touch or other sensations on my skin and almost  
felt it on my skin  

          

35. I have experienced the sensation that my body (or part of my 

body) was different in shape or size  

          

36. I could feel burning, tingling, scraping, or heat on my skin, 

although there was nothing causing it  

          

37. I have felt things moving or crawling on or under my skin            

38. I have experienced the sensation that something was pressing 

on my skin, or that I was holding an object in my hand, but then 

found there was nothing there  

          

39. I have felt someone or something touching me, but when I 

turned to look there was nothing there  

          

 

SENSED PRESENCE 

40.  I felt the presence of someone, even though I could not see 

them (e.g., behind me, or in another room)  

          

41. I have felt an unseen evil presence around me            

42. I have felt an unseen angelic presence around me            

43. I have felt the presence of a relative or friend who has passed 
away  
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Appendix M 
 

Pattern glare low frequency grating descriptive statistics for Chapters 2 and 3. 

 

Chapter 2 

 Non-PG PG 

 Sham Anodal Sham Anodal 

Mean 6.0 5.2 9.1 7.9 

SEM 1.3 1.0 1.3 1.1 

σ 6.6 5.1 8.9 7.3 

Range 39.0 30.0 39.0 30.0 

 

Supplementary Table 1 – Descriptive statistics for pattern glare intensity ratings for 

low frequency gratings, split by pattern glare group (non-PG = M-HΔ PG ratings ≤ 0, 

PG = M-HΔ PG ratings ≥ 1) and tDCS condition (sham, anodal). 

 

 

 

Chapter 3 

 Non-PG PG 

 Sham Anodal Cathodal Sham Anodal Cathodal 

Mean 8.3 9.8 9.3 7.2 9.6 9.7 

SEM 1.4 2.0 2.1 1.2 1.9 1.5 

σ 8.3 11.6 12.3 7.6 11.8 9.7 

Range 28.0 44.0 47.0 28.0 59.0 39.0 

 

Supplementary Table 2 – Descriptive statistics for pattern glare intensity ratings for 

low frequency gratings, split by pattern glare group (non-PG = M-HΔ PG ratings ≤ 0, 

PG = M-HΔ PG ratings ≥ 1) and tDCS condition (sham, anodal, cathodal).  
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Appendix N 
 

Sensory gating and CAPS / MUSEQ measures as investigated with exploratory 

analysis. Scatterplots did not indicate any relationships (Suppl. Figures 1-2). 

 

 

 

Suppl. Figure 1 – Scatterplot showing relationships between CAPS overall 

scores and S2/S1 ratios for the N1, P2_a, and P2_b components. Dotted lines = linear 

trend lines. 

 

 

-0.50

0.00

0.50

1.00

1.50

2.00

2.50

0 10 20 30 40 50 60

S2
/S

1
 r

at
io

CAPS overall mean score

N1

P2_a

P2_b

Linear (N1)

Linear (P2_a)

Linear (P2_b)



329 
 

 

Suppl. Figure 2 – Scatterplot showing relationships between MUSEQ overall 

scores and S2/S1 ratios for the N1, P2_a, and P2_b components. Dotted lines = linear 

trend lines. 
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Sensory gating and pattern glare M-HΔ scores as investigated with exploratory 

analysis. Scatterplot indicates no relationships (Suppl. Figure 3). 

 

 

 

Suppl. Figure 3 – Correlations between pattern glare M-HΔ scores and S2/S1 

ratios for the N1, P2_a, and P2_b components. Dotted lines = linear trend lines. All 

correlations were non-significant (p>0.05).  

 

 

 

 

 

 

 

-0.50

0.00

0.50

1.00

1.50

2.00

2.50

-80 -60 -40 -20 0 20 40 60

S2
/S

1
 r

at
io

Mean M-HΔ PG score

N1

P2_a

P2_b

Linear (N1)

Linear (P2_a)

Linear (P2_b)



331 
 

Appendix O 
Table of original empirical studies correlating EEG-based sensory gating with questionnaire measures. Studies with a healthy 

control (HC) group are bolded. 

Author/s & Year Patients/Healthy 

Controls (HCs) 

EEG measure/s Questionnaire measure/s Sample size/s 

Laurent et al., 1999 Patients (SZP) P2 latency PANSS 20 

Adler et al., 1990 Patients (SZP) P50 amplitude PANSS 20 

Brockhaus-Dumke et al., 2008 Patients (SZP) & HCs P50, N1 amplitudes PANSS ~100 

Boutros et al., 2009 Patients (SZP) & HCs P50, N1 amplitudes PANSS ~50 per group 

Thoma et al., 2017 Patients (SZP) P50, N1, P2 amplitudes PSYRATS 12 

Croft et al., 2001 HCs P50 amplitude Schizotypy (PSQ) 35 

Park et al., 2015 HCs P50 amplitude Schizotypy (O-LIFE) 48 

Smith et al., 2013 Patients (SZP) & HCs P50 amplitude PSYRATS 16 & 21 

Erwin et al., 1998 Patients (SZP) P50 amplitude SAPS/SANS 31 

Arnfred & Chen, 2004 Patients (SZP) & HCs P50 amplitude Revised Social Anhedonia Scale 12 & 14 

Ringel et al., 2004 Patients (SZP) & HCs P50 amplitude PANSS 34 & 12 

Yee et al., 1998 Patients (SZP) & HCs P50 amplitude BPRS (anxiety, depression, thought 

disturbance, etc) & SANS 

22 & 11 

Thoma et al., 2005 Patients (SZP) P50 amplitude SANS, PANSS, depression 20 

Keil et al., 2016 Patients (SZP) & HCs Oscillatory power & synchrony PANSS 22 per group 

   

 

 Overall mean = 28 

HCmean = 27 




