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Abstract

Fault energies are exceptionally important, determining the activation of deformation

processes in metals. This is especially true in the case of two phase γ/γ′ superalloys.

However there is currently no model for how the fault energies in these alloys vary

with composition. This is a large issue due to the complex nature of superalloys, which

typically feature more than 10 alloying elements. The main aim of this thesis is to design

a model to predict fault energies for arbitrary alloying compositions of superalloys. This

would provide a tool for alloy designers, allowing the choice of alloy compositions to make

the alloys resist deformation, facilitating higher operational temperatures and efficiency.

In this research, first-principles calculations are undertaken using the projector aug-

mented wave basis set in conjunction with the generalised-gradient approximation, as

implemented in the Vienna ab initio simulation package. This allows the generation of

input parameters for axial interaction models. Calculations are made for a large number

of compounds and alloys to allow the assessment of how changing the alloy chemistry

impacts the intrinsic stacking fault and superlattice intrinsic stacking fault energy. Using

interpolation and fitting of these results it is possible to produce a model for arbitrary al-

loying compositions. Due to the high operational temperatures of superalloys the change

in these fault energies with temperature was calculated (as first-principles calculations

are traditionally only possible at 0K). This was done using the quasiharmonic Debye

model as implemented in the GIBBS package. The effects of temperature were found, in

general, to be significantly less than the effects of alloying, providing validation for the
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usage of first-principles calculations for high temperature alloys.
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Chapter 1

Introduction

Increasing the efficiency of jet engines and industrial gas turbines requires an increase

in the temperature difference in the following equation Ef = 1−Tc/Th, where Ef is effi-

ciency, Tc and Th are the temperatures of the air and the air/fuel mixture at combustion

respectively. The former is unable to be engineered, the latter is able, provided that the

turbine blades can sustain the high temperatures (≈1900K environment temperature

and ≈1350K metal operating temperature[1]) for long periods without succumbing to

oxidation, hot corrosion, low or high cycle fatigue or creep deformation. However in the

first stage of the turbine it is creep that is the primary concern. One of the ways with

which turbine blade alloys can be made more resilient to creep and hence be operable

at higher temperatures, resulting in more efficient engines and gas turbines is by planar

fault engineering. This means tweaking the alloy composition for the purpose of modi-

fying the energies of different types of planar faults in the 2 main phases of a superalloy

γ and γ′. In this research 2 fault types are investigated, the intrinsic stacking fault in
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the γ phase and the superlattice intrinsic stacking fault in the γ′ phase. The first way

in which planar fault engineering can be used to make alloys more resistant to creep,

is by enhancing the energy required (and hence the difficulty) for dislocations to shear

the γ′ precipitates, delaying a key part of the creep process. The second way is the

manipulation of fault energies in the γ phase to make dislocation motion more difficult

in the early stages of high temperature creep.

This project uses first-principles density functional theory (as implemented in the

Vienna ab initio simulation package) to determine free energies and relevant volumes

that can then be inserted into Axial Interaction Models to determine these fault energies

in an array of binary and pseudo-binary alloys and compounds, which have relevance to

superalloys (but do not constitute superalloys themselves). The reason for the usage of

density functional theory over experiments is that whilst experimental determinations

of fault energies are possible they typically are subject to a large array of difficulties and

inaccuracies. For example the intrinsic stacking fault energies in pure nickel determined

by experiment have a very large range of 79-450mJ/m2. A further reason in favour

of the usage of this technique is that it can model situations that cannot be created

experimentally such as compounds that are purely hypothetical but have relevance to a

certain alloy system. Also it is known for its high calibre of accuracy. The reasons behind

the usage of axial interaction models is that they require less computational expense

than the supercell approach as they do not require an explicit calculation of the planar

fault and operate on series approximation, produced from a series of different unfaulted

structures. Despite the lack of an explicit fault calculation, the axial interaction models
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were found to provide accurate planar fault energies in a large array of circumstances.

Also of importance is the fact that density functional theory calculations are only

able to be performed at 0K, due to the fact that the temperature the alloy operates at is

800-1000◦C (environment temperature 1200-1400◦C). It becomes necessary to validate

the results at operational temperatures. To do this the quasiharmonic Debye model (as

implemented in the GIBBS package) is employed in addition to the quasistatic approach

(the changes in lattice parameter are the only finite temperature effect to impact the

planar fault energy) which may initially appear to be crude but has produced accurate

results in a wide array of circumstances. Ultimately it is hoped that the fault energies

calculated in this thesis can inform the creation of superalloys which exhibit greater

creep resistance.
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Chapter 2

Theoretical Basis: Metallurgy of

Superalloys

2.1 Ni-Based Superalloys

2.1.1 Introduction and History

Ni-based Superalloys have been, since conception, tightly linked to the development of jet

engines for aircraft. Ni-based superalloys were first developed in 1929 independently by

the three researchers Pilling, Bedford and Merica[2]. At this time the main thesis between

researchers was that creating more robust ferritic steels was the way forward with regards

to turbine development[2]. The first superalloys were created when small additions of

Ti and Al were added to the “80/20” Ni-Cr alloy, resulting in vast improvements to the

alloy’s creep resistance[2, 3]. It was yet unknown to these researchers the cause for this

improvement, this discovery was made shortly after the outbreak of World War II in
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1940 by Bradley and Taylor[2, 4]. The cause was the introduction of a new phase, the γ′

phase, of composition Ni3Al, in the form of coherent precipitates (see figure 2.1) to the

γ Ni matrix[2, 5]. The γ and γ′ phases are both based off the Face Centred Cubic (FCC)

structure however in the case of γ′ the positions of the Ni and Al atoms are ordered,

while there is no such ordering between Ni and any present alloying elements in the γ

phase (see figure 2.2)[5].

Figure 2.1: A micrograph depicting the microstructure of a Ni-based superalloy (adapted
from [6]).
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Figure 2.2: Diagram depicting the structure and element distribution of the γ and γ′

phases, where black atoms are Ni atoms and white atoms are Al atoms (adapted from
[7]).

Ni-based superalloys have gained in complexity over the years with a plethora of

different alloying additions being added for various reasons[2]. Examples of additions

include Co to raise the γ′ solvus temperature[8, 9] and Cr for oxidation and corrosion

resistance[8, 10, 11]. Because of this superalloys stand today as some of the most complex

materials known to man[5]. Delicate control of these alloying elements has been required

however as for example an over-abundance of Nb, Ta and Ti (added mainly to produce

more γ′) can result in the formation of the deleterious η phase, a topologically close

packed (TCP) phase[5], which degrades the mechanical properties[2, 11, 12]. Ni-based

superalloy development is split into 6 generations; a summary of the broad advances is

as follows. The first generation of superalloys were relatively primitive and contained no

Rhenium[8, 13]. Rhenium is exceptionally important in superalloy metallurgy due to the

extreme increases in creep life that it offers; for example assuming operating conditions of

1173K and 400MPa creep life can be increased 10 fold by the addition of rhenium[5, 14].

Whilst this was originally thought to be due to the effects of rhenium clustering in
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the γ phase, later works proved that this was due to the significant hindrance of the

mass transport necessary for climb at the γ/γ′ interfaces[14–16]. Hence the inclusion

of rhenium in all later generations[13]. Generation 2 superalloys contain in the realm

of 3 weight percent rhenium, with 3rd generation alloys increasing increasing contents

to the excess of 5.5 weight percent, these alloys may also include hafnium (improves

castability and environmental resistance[17])[8, 13]. In fourth generation superalloys the

alloying addition ruthenium was introduced (in amounts of 3 weight percent in the case

of EPM 102[18]). Ruthenium was found to modify the partitioning behavior of a number

of refractory additions, causing them to partition more readily to the γ′ phase, allowing

for greater alloying content for the purpose of improving high temperature strength, as

well as improved microstructure stability and creep rupture life (with fourth generation

alloys having on average a 30K higher operational temperature capacity then third

generation alloys[18, 19]). Fifth generation superalloys further expanded the Ruthenium

content to between approximately 5-6 weight percent as this chiefly facilitates higher

rhenium additions (up to 6.9 weight percent)[13, 20, 21]. Fifth generation superalloys

are characterized by superior creep resistance to previous generations[19, 20] with the

alloy TMS-162 being the first alloy to exhibit a creep rupture life of 1000 hours at

conditions of 1373K and 137MPa[13, 20, 21].

These improvements of the fourth and fifth generations have not been without draw-

backs however as the increased presence of refractory elements degrades the resistance

to oxidation of the alloys relative to previous generations[19]. The creation of the sixth

generation alloy TMS-238 involved tuning the composition of TMS-196 (fifth generation)
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for example reducing Mo content to the end of improving oxidation[19]. This alloy was

found to have superior oxidation and corrosion properties to several alloys from previous

generations[19]. In addition it possesses great creep properties exhibiting a creep rupture

life of approaching 2000 h at 1373K and 137MPa[19].

The timeline of the development of the generations of superalloys is as follows. First

generation alloys were first created in the mid 70s[5]. Second generation superalloys were

then developed first appearing in the mid 80s[5]. Third generation alloys made their first

appearance the the mid 90s, with fourth generation alloys first being developed around

the year 2000[5]. The first appearance of fifth generation alloys in the literature was in

2004[20, 21]. Finally, to the authors knowledge the first sixth generation superalloy was

TMS-238 which was first developed in 2012[19].

Superalloys were assigned the prefix super due to several reasons including the fact

they have excellent creep resistance and oxidation resistance, fatigue resistance, ductility

and resistance to hot corrosion as well as impacts[11, 22, 23]. The main reason however

is due to a phenomenon called the yield stress anomaly (YSA hereafter) (see figure

2.3). The YSA is that for a set temperature range depending on the specific alloy in

question, the yield stress is in defiance of the usual expectation to decline with increasing

temperature (region I figure 2.3).
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Figure 2.3: A graph depicting the yield stress anomaly, in region I the anomalous increase
in yield stress occurs and in region II the yield stress anomaly is passed and the yield
stress declines (adapted from [24]).

The exact details behind the causes of this phenomenon will be detailed in section

2.2.3. The final item brought in at this stage will be the introduction to single-crystal

and polycrystalline alloys. The alloying additions added to both types of these alloys

are in general different, for example B is added to polycrystalline alloys for the purpose

of grain boundary strengthening, but this is a non factor in single-crystal alloys[25–27].

Single-crystal alloys for turbine blade applications were introduced in the 1980’s and are

known for superior properties in creep due to the fact that, in polycrystalline alloys,

failure occurs at grain boundaries due to the process of cavitation[5, 28].
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2.1.2 Applications of Ni-Based Superalloys

The main application of superalloys, as alluded to previously, is the use in jet engines

for aircraft[2]. Where superalloys are employed in a jet engine (Trent 800 specifically,

designed for use in the Boeing 777 series of planes, as of 2014 the second most purchased

commercial airliner[29], and engine seen as largely typical of the industry) can be seen

in Figure 2.4.

Figure 2.4: Diagram of a Trent 800 Engine with main components and the broad types
of alloys employed in said components (courtesy of Rolls-Royce).
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Figure 2.5: Diagram of a high-bypass turbofan engine demonstrating the air flow (taken
from [30]).

The basic operation of said engine is as follows, a large quantity of air (in the realm

of a tonne during takeoff[30]) is sucked in by the compressor fan, this air is utilized in

one of 2 ways[5, 30]. Either passing through the core of the engine or through a bypass

duct (see figure 2.5)[5, 30]. The relative quantities of air determine the bypass ratio 6.4:1

in the case of the Trent 800 meaning that ≈86% of the air passes through the bypass

duct, with the remaining ≈14% passing through the core of the engine[31].

The air which passes through the core is compressed to high pressure by multiple

compressors which compress the air to set pressures[5, 30]. This air is then mixed

together with fuel in the combustion chamber and ignited[5, 30]. The high temperature

gases expand in the combustion chamber and through a series of turbines operable,

similarly to the compressors at set pressures[5, 30]. The result is two-fold, gases leave

the right side of Figure 2.4 at significantly higher velocities to which they enter resulting
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in a large degree of thrust (approximately 25% of total engine thrust, and the spinning

turbines are connected to a series of shafts which facilitate the running of the compressor

fan in addition to the compressors[5, 30]. The bypassed air contributes around 75% of

the thrust due to a large quantity of air being accelerated to a modest velocity (only

slightly greater than the speed of the plane itself)[30].

Upon observation of figure 2.4 it can be seen that the Ni-based alloys are used

extensively in the turbines, high pressure compressors and combustion chamber (details

behind the selection of the other alloys as well as operation are detailed in [30] and [32]).

There is a major incentive to increase the temperatures which these alloys can sustain

for the purposes of driving efficiency and fuel economy by increasing the turbine entry

temperatures (TET’s hereafter) of these engines. Even small increases in the TET could

reap massive fuel savings in the grand scheme of things[3, 33].

It is a worthwhile aside at this point to mention that improvements to the compo-

sitions of Ni-based superalloys are not the only factor in improving operational tem-

peratures and service lives, one of the key innovations in superalloy turbine blades was

the introduction of cooling passages in the blades (see figure 2.6)[34–36]. A second

major innovation was the introduction of thermal barrier coatings in addition to bond

coats, these two innovations restrict the temperature the superalloy can reach during

operation[33, 34, 36].
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Figure 2.6: Schematic diagram of a superalloy turbine blade with cooling passages (taken
from [35]).

Superalloys are utilised in a somewhat similar vein in the fossil fuel industry, as tur-

bine blades in the gas turbines used to generate power[34]. Here similar concerns about

improving fuel economy by increasing the operational temperatures, the magnitude of

this concern is emphasised by the fact there are large efforts in Japan, Europe and the

USA to accomplish this[37]. This is with good reason as enhancing the TET by 30K

can lead to a 1 percent increase in efficiency and 15 million USD in savings over the

operational lifetime of the turbine[34, 38].
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2.2 Planar Faults

2.2.1 Introduction

Planar faults on the {111} planes in both the γ and γ′ phases are highly important

in Ni-based superalloys as they, and the interplay between the various energies, inform

significantly the metallurgy including heavy influence on the creep mechanism and prop-

erties (they are also very significant to the aforementioned yield stress anomaly). In both

phases (γ and γ′) there are multiple different types of planar faults that will be detailed

in this section.

2.2.2 Different Types of Planar Fault

γ phase

In the γ phase there exist 2 types of planar fault the first is the intrinsic stacking fault

(ISF hereafter) and the second is the extrinsic stacking fault (ESF hereafter). An ISF can

be created by either the removal of a plane or a shift of 1
6 < 211 > (for example taking

the stacking sequence from ABCABCABC to ABCA|CABC where | denotes the shift)

this makes the second A and C planes locally exhibit a HCP structure[5, 39, 40]. An ESF

can be created by the addition of a plane or 2 shifts of 1
6 < 211 > on neighboring planes

(for example making the stacking sequence ABCA|C|BCABC) and again the second A

and C exhibit a HCP structure[39]. Hence an ESF can be thought of as a combination of

2 ISFs. It is important to note that stacking faults do not break any bonds in the process

of formation[39]. The reason that these faults exist is due to free energy concerns. The
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energy of a dislocation is proportional |b̂|2 where b̂ is the Burgers vector, this means that

if a dislocation can dissociate whilst remaining stable it can increase slightly its total

dislocation length overall but decrease its total energy. The fact that stable stacking

faults exist on the {111} planes in FCC means that there is a preference relative to

other planes for glide to occur on these planes, contrast this with BCC (where no stable

stacking faults exist) where there is not a strong preference for glide on any single set of

planes[41]. In the majority of cases the energies of ISFs are between 10-200mJ/m2[41].

An ISF is created by the following reaction[41]

1

2
[110]→ 1

6
[211] + ISF +

1

6
[121] (2.1)

note that in {111} in FCC 1
2 < 110 > is a perfect dislocation (it can move without

creating a stacking fault).

γ′ phase

There are analagous stacking faults to the ISF and ESF in the γ′ phase, they are labelled

the Superlattice intrinsic stacking fault (SISF hereafter) and the superlattice extrinsic

stacking fault (SESF hereafter). A SISF can be formed by removing a {111} plane or by

shifting said plane by 1
3 < 211 >[5]. A SESF likewise is produced by 2 shifts of 1

3 < 211 >

on neighboring planes and hence can be created by the combination of 2 SISFs[34]. In

addition to these a complex stacking fault (CSF hereafter) can be produced by a shift

of 1
6 < 112 >. There is another type of stacking fault the complex extrinsic stacking
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fault (CESF hereafter) which is created when on a neighbouring plane to a SESF a CSF

is created[42]. The CESF has yet to be observed experimentally but is at this stage

theoretically predicted to be stable[42]. The final fault type introduced here is the anti-

phase boundary (APB hereafter) which can be produced by a shift of 1
2 < 110 >. APBs

can exist in many planes, all of which have different energies mainly due to the reasoning

present in the proceeding paragraph[5, 43].

An important concern which arises only when dealing with ordered substances is at

which level the creation of the fault changes the nearest neighbours and how this plays

into the energy[5, 44]. For example the CSF and APB{111} and APB{110} change

the first nearest neighbours creating forbidden Al-Al and Ni-Ni bonds whereas SISF,

SESF and APB{100} modify higher order nearest neighbours (second order in the case

of APB{100}[43] and beyond second order in the case of SISF[45, 46]). Note the stacking

sequences for all of the faults discussed in this section are depicted in figure 2.7.

2.2.3 Yield Stress Anomaly

It is time for elaboration on the YSA which was introduced in section 2.1.1. It is

important to first note that the shift required to create the APB is the same as that

caused by the perfect dislocation in the γ phase 1
2 < 110 > {111}. This dislocation in

the γ′ phase however is not a perfect dislocation; the reason for this is that whilst the

γ and γ′ phases share the same close packed planes {111}, in the case of the γ′ phase

the shortest lattice vectors are different, < 100 > instead of 1
2 < 11̄0 >. Additionally in

the case of the γ′ phase these vectors do not lie in the close packed planes. The result

16



Figure 2.7: The stacking sequences for each of the fault types discussed in section 2.2.2.
Figure 2.7a-2.7f are the ISF, ESF, SISF, SESF, APB and CSF respectively. Black atoms
are nickel atoms, white atoms are aluminium atoms, hence a white ring around a black
atom refers to an aluminium atom behind a nickel atom.
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of this is that in order for the 1
2 < 110 > {111} dislocations to gain entry into the γ′

precipitates they must travel in some form of paired configuration after the precipitate

has been sheared, an example of which depicted in figure 2.8[5].

Figure 2.8: Diagram of two-fold superdislocation dissociation; a mechanism for 1
2 <

110 > {111} dislocations to travel through the γ′ phase (adapted from [5]).

It is necessary to introduce two terms in the metallurgical nomenclature at this point,

whilst in the γ′ phase a 1
2 < 110 > {111} dislocation is referred to as a superpartial and

the combination of two of these is dubbed a superdislocation[5, 47]. Further energetic

stability can be gained by the dissociation of the superpartials in figure 2.8 each dissoci-

ating into two Shockely partials 1
6 < 211 > {111} resulting in the configuration displayed

in figure 2.9[48].

Figure 2.9: Diagram of four-fold superdislocation dissociation; a mechanism for 1
2 <

110 > {111} dislocations to travel through the γ′ phase (adapted from [5]).

Recall from the previous subsection that the APB{111} is much higher energy than

the APB{100}, the desire of any system is to minimise its free energy, hence the APB

transferring crystallographic by the process of cross-slip is beneficial to this end[5, 49]. It

is important to remember that the difference between the APB on these 2 planes is not

the only factor resulting in the promotion of cross-slip and that elastic anisotropy also

plays an equal role[5, 50]. In order for this cross-slip to occur however the recombina-
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tion of Shockely partials to form a superpartial is necessary beforehand and is achieved

through a thermally activated process called constriction[49]. Once this has happened

the superpartial cross-slips onto the {100} plane, when the entire length of the APB

is present on the {100} plane the superpartial is at liberty to reduce its energy by dis-

sociating into Shockely partials separated by a CSF on another {111} plane[34]. This

configuration is named a Kear-Wilsdorf lock and it severely hinders dislocation motion

in the γ′ phase (The process of production of this lock is displayed in figure 2.10)[34, 49].

Due to the thermal activation of constriction the higher the temperature the more locks

can be formed[43, 49]. However as implied by figure 2.3 this does not carry on forever,

the resistance to deformation the γ′ precipitates provide at temperatures above the peak

is undermined by the fact that unaccompanied 1
2 < 110 > {111} dislocations simply are

able to bypass the γ′ precipitates without much shearing, negating the majority of their

strengthening effect[3].

Figure 2.10: Diagram of the process governing the creation of a Kear-Wilsdorf lock
(taken from[34]).

Note that there exists a transition between these two deformation mechanisms, a

short temperature range where the deformation is caused by γ′ precipitate shearing by a
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1
3 < 112 > dislocation (note can be refereed to as a super-Shockely partial[25]) according

to the following reaction at the γ/γ′ interface[3, 51].

1

2
< 011 > +

1

2
< 101 >→ 1

3
< 112 > +SISF +

1

6
< 112 > (2.2)

where the Shockely partial is left at the γ/γ′ interface[3, 51, 52]. Alternatively SISFs

can be formed by the following dissociation mechanism at the γ/γ′ interface[53, 54].

1

2
< 101 >→ 1

3
< 211 > +SISF +

1

6
< 121 > (2.3)

2.2.4 Effects of Alloying Elements

This project focuses extensively on the effects of alloying additions in Ni-based superal-

loys and how they impact upon fault energies. It is necessary to also include a discussion

of the many changes alloying additions cause external to fault energy modification. Any

element added is certain to have other effects beyond its fault energy changes alone.

This subsection contains a list of alloying elements and their various advantages and

drawbacks in Ni-based superalloys (note this list makes no claim to be exhaustive due

to the complex nature of Ni-based superalloys).

Cu, Si, Mn and Sb segregate to grain boundaries resulting in inferior creep ductility and

hot malleability as grain boundaries are weakened (note Mn can counteract the negative

effects of S but compositions must be low as it degrades grain boundaries)[11]. Si has the

secondary effect of reducing hot ductility as inclusions become more commonplace[11].
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Sn can also result in degradation of creep ductility due to segregation[11], Sn is a double-

edged sword however as it can result in large increases in stress rupture life[11]. Nb,

W, Ta, Mo and Ti are effective at reducing misfit stresses, Cr, Co and Fe are still, but

somewhat less effective[5, 11, 23, 55](note however that Ti degrades oxidation resistance

and can lead to inter-granular corrosion, whilst increasing somewhat hot corrosion re-

sistance)(also note Re increases misfit[10, 11]). There exist multiple elements which are

added for the purpose of solid solution strengthening including Cr, Fe, Mo, Re (note has

strong influence on liquidus temperature[5]), Ta, W, Co (note mild) and Nb, where Nb

and Ta solidus and melting temperatures, and Co increases the γ′ solvus temperature,

W increases the solidus temperature as well[8, 10, 56]. Cr can however if present in ex-

cessive quantities (above 30%) result in the destabilisation of the γ and the promotion of

TCP phases[10, 11]. Si is known for promoting the nucleation of the β phase, whilst Al,

Mo and Ta discourage β formation, note Fe can also promote η formation (Ta can also

have the added benefit of reducing the likelihood of freckling during solidification[56]).

Cr, Co, Mo and W can reduce the rate at which the γ′ precipitates coarsen in

service[5, 11] Ta, Ti, Nb, Va and Mo are known for the stabilisation of MC (note C must

be present in quantities above around 0.2wt% for MC carbide to form[5]) type carbides

which can improve creep properties in polycrystalline alloys[11, 56](it is also of note that

Nb promotes the formation of γ′′ which can result in strengthening (note in nickel-iron

alloys this is used as the main strengthening phase), but can also promote the production

of the δ phase which degrades mechanical properties (Co may potentially offset this

however, Cr, Mo and W can also contribute to deleterious phase formation at high
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compositions)[5, 10, 23, 56]). B is known for strengthening grain boundaries by resulting

in the propensity for carbides in the cellular morphology being reduced in addition to

improving hot ductility and rupture life (if present in large quantities)[8, 11]. Mo and

W in high abundances result in the presence of M6C type carbides, which depending

on morphology can be beneficial or negative (note that high Si content causes these

carbides to preferentially form at grain boundaries)[11]. Cr is known for the formation

of the Cr2O3 compound (note that this can break down at very high temperatures) which

is known to defend against hot corrosion and oxidation (note Ce can also be added for

the purpose of improving oxidation resistance[8])[23]. Co is known for the improvement

of hot corrosion resistance due to modifications in diffusivity (Th and La are also added

for the purpose of hot corrosion resistance)[8, 11].

Al in addition to being critical for Ni3Al formation improves resistance to oxide

spalling and oxidation[11]. Si and Mn when present in small amounts can also improve

oxidation resistance, but Si can in some instances make oxide spalling easier[11]. Note

at this stage that if an element is insoluble in Ni then it will have embrittling effects

for example Bi, Th, TI[11]. P is infamous for causing cracking and is one of a group

called tramp elements which include Si, S, Pb, Bi, Te, Se and Ag all of which if present

cause degradation of mechanical properties[8, 11]. Zr can offset the harmful effects of S

by reducing the presence of M23C6 oxides, in addition to improving ductility and grain

boundary strength[10]. Mn also improves the stress rupture life by offsetting the effects

of S and Hf also offsets S in a similar vein and improves ductility and in a similar vein

improves ductility and strength[8, 11, 57]. Y has in some alloys been added for the
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purpose of improving the longevity of coatings[8]. Oxidation resistance can be improved

in some alloys by the addition of La[8]. There is another group of elements known as γ′

stabilisers which promote ordered phases.

2.3 High-Temperature Creep Mechanisms

As mentioned in section 2.1.1 creep properties are highly important to superalloys. One

reason emphasising their importance is the fact that the definition of failure for a su-

peralloy turbine blade is when it has extended slightly due to creep and no longer has

dimensions suitable to the task at hand[5]. As one may assume the creep properties and

mechanisms of single-crystal and polycrystalline alloys differ[5]. The details surrounding

this will be covered in the proceeding subsections.

2.3.1 Polycrystalline Alloys

Creep in polycrystalline alloys typically takes place in 3 phases in analogy to pure metals

(the primary, secondary and tertiary phases), consult figure 2.11[5, 58].
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Figure 2.11: The 3 phases of creep in a polycrystalline alloy, the red diamond represents
where the alloy fails (note diagram is simply illustrative and is not derived from real
data).

The reason for the existence of these 3 phases is as follows, the primary phase occurs

as the mechanisms for dislocation multiplication are more active then those of dislo-

cation annihilation resulting in an initial transient[5, 58]. In the secondary phase the

aforementioned mechanisms are equally prominent resulting in a straight line (note the

secondary phase can also be called steady state creep)[5, 58]. In the tertiary phase the

line on figure 2.11 rapidly increases as the alloy accelerates toward failure, this is due

to the activation of further mechanisms, most prominently grain boundary cavitation;

although crack formation (typically not very prominent in Ni-based superalloys) and

rafting and associated weaknesses could also be activated[5, 58].

The creep of these alloys is well described in the secondary phase by the equation of
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power law creep[5, 58, 59].

dε

dt
= A

(
γ

Gb̂

)3( σ

G

)n

e
−Q
TR (2.4)

Where ε is the creep strain, Q is the activation energy for creep (typically related strongly

to the energy of self diffusion), T is the temperature, R is the gas constant, σ is the

applied stress, G is the shear modulus, b̂ is the burgers vector, γ is the fault energy and

n is described as the stress exponent[5, 58]. A is represented as follows

A =
2KD0

3Mb̂5
(2.5)

where K is the kinetic constant, M is the dislocation multiplication constant and D0

is called the pre-exponential term[5, 58]. Returning to n, the value is typically between

4.5 and 5 but can be in some alloys around 3 (these are called class I alloys, the others

named class II)[5, 58]. Class I behaviour is typically motivated by a large difference in

the radii of solute and solvent[5, 60]. Class II alloys are known for creep being affected

significantly by the stacking fault energy and a significant degree of primary creep. Note

also that n typically increases with time[5, 60].

Creep resistance in polycrystalline alloys can be increased by alloying (consult section

2.2.4) increasing the size of the grains (fewer grain boundaries means less prominent

cavitation effects) and smaller but more numerous γ′ precipitates (due to the change

in deformation mechanism from shearing to Orawan looping which occurs above a γ

channel width of 0.5μm) and tertiary γ′ precipitates[58].
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2.3.2 Single-Crystal Alloys

In contrast to polycrystalline alloys, there are multiple regimes that can be observed

dependant on the applied stress and temperature[5, 61].
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Figure 2.12: Creep data for the CMSX-4 alloy a) showcases what happens under lower
operating temperatures and high stresses, b) shows what occurs under low stress and
higher temperature c) shows what occurs under very high temperatures and low stresses
(Whilst this data is specific to CMSX-4 note that similar curves have been observed in
other single-crystal alloys but specific temperatures and stresses transitioning between
them will be different)[5] (taken from [61]).
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In Figure 2.12b the system of tertiary creep is in effect, the curve on the left can

be modelled to a high accuracy as an exponential, note this disregards the incubation

period where the dislocations are first created[5, 62]. In the incubation period dislocation

multiplication is heavily favoured to occur in channels that are perpendicular to the

applied stress due to the effect of enhancement by the γ/γ′ misfit[5, 62]. In this system

1
2 < 110 > {111} dislocations are rarely observed to shear the γ′ precipitates, coarsening

of the γ′ precipitates is absent in this system. The leading sections of the extended

dislocations are found to be screw, but mixed character dislocations are found to be

deposited at γ/γ′ boundaries, also typically only a few slip systems are active[5, 34, 62].

In the latter stages of ternary creep shearing of the γ′ precipitates begins to occur.

At these heightened temperatures shearing will occur as detailed by figure 2.13 (The

transition between shearing mechanisms occurs near 1123K [34, 63]), by pairs of 1
2 <

011 > {111} superpartials separated by an APB[34, 63]. These shearing events occur as

the lattice misfit and applied misfit stresses rise high enough levels such that shearing

can occur[34, 63].

Figure 2.13: The high temperature (above 1123K) shearing mechanism in the latter
stages of tertiary creep in Ni-based superalloys (adapted from [63]).
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In figure 2.12a there appears a prominent initial transient known similarly in poly-

crystalline alloys as primary creep[5]. Primary creep is only activated when a certain

stress level is reached (in the case of CMSX-4 it is 500MPa[5]) the further above this

limit the greater amount of deformation will occur in primary creep[5, 61, 64]. In contrast

to the tertiary creep system significant anisotropy in the deformation occurs resulting

in stretching of the component in a specific axis[5]. Primary creep occurs due to the

< 112 > {111} slip system[5, 64, 65]. Unlike in tertiary creep this time γ′ precipitates

are sheared. The way the relevant dislocations in the < 112 > {111} slip system are

created is by the reaction in (2.3)[5, 64, 65]. The next reaction that occurs is between

the right hand side of (2.3) and two more 1
2 < 110 > {111} dislocations[5, 64],

1

3
< 112 > +SISF +

1

6
< 112 > +

1

2
< 011 > +

1

2
< 011 >→ 1

3
< 112 > +...

SESF +
1

6
< 112 > +APB +

1

6
< 112 > +SISF +

1

3
< 112 > (2.6)

The equations (2.3) and (2.6) are represented diagrammatically in figure 2.14[5, 64].
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Figure 2.14: Diagrams of the the shearing mechanism of primary creep a) represents
equation (2.3) and b) represents equation (2.6)(taken from [5]).

The formation in Figure 2.14(b) is free to move in a glissile fashion until it encoun-

ters an additional 1
2 < 110 > {111} dislocation at a γ/γ′ interface, this process is what

results in the transition between primary and secondary creep[5]. This transition typ-

ically also corresponds to the relevant channels depending on misfit becoming full of

dislocations[33] resulting in an equilibrium established with stable dislocation structures

in the γ channels. Secondary creep and the mechanisms behind how it operates have

scarcely been investigated[33]. It was the conclusion of Rae[33] that the core mechanisms

behind primary and secondary creep are the same. However now due to the stable dis-

location structures the rate determining process changes from dislocation propagation

(short as the distance dissociated a < 112 > can travel before encountering another dis-

location or a network thereof[33, 65] is of the order of precipitate size) to generation via

equations (2.3 and 2.6). Notice in general an alloy with high primary creep rate will have

high secondary creep rate[33]. Primary creep can be reduced by either narrowing the γ
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channels or reducing fault energies but too much of these effects can be detrimental[33].

There is also another regime represented in figure 2.12(c) called the rafting system;

which initiates by the formation of equilibrium dislocation networks (of mostly edge

character) at γ/γ′ interfaces and the rafting of γ′ precipitates (the combination of the

precipitates along a specific direction to form a layered morphology[5, 28, 66]. These

networks reduce the misfit stresses at the γ/γ′ interfaces[5, 66].

Figure 2.15: (a) A micrograph depicting a dislocation network at a γ/γ′ interface, (b)
a schematic diagram of said network (note the arrows in (a) and (b) correspond to the
same position) (taken from [5]).

These networks require the presence of 1
2 < 110 > {111} type dislocations on all of

the {111} planes, where a strong creep strengthening effect is observed when dislocation

spacing is small, due to the hindrance afforded by these networks of dislocation shearing

and the enhancement of rafting[5, 20, 67]. Once these networks are developed and the

misfit stresses relaxed; mass transfer of γ and γ′ forming elements into the relevant

channels (depending on applied stress direction and misfit[28]) can occur facilitating
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rafting, which then reduces the prevalence of 1
2 < 110 > {111} dislocations[5, 61]. The

development of fully-fledged rafts corresponds with the cessation of the initial transient

and the start of the flat region in figure 2.12(c)[5]. The rapid acceleration to failure

is caused in inconsistent time-frames even in the same alloys, as it is caused by either

cavitation in the interdendritic regions at porous areas formed during casting[5, 61], or

alternatively the pores can be produced by the formation of TCP phases[5, 61]. Hot

isostatic pressing on average delays the occurrence of this rapid increase[5].
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2.4 Other Metallurgical Features that Impact Mechanical Properties

2.4.1 Precipitate Morphology

Precipitate Morphology impacts largely the mechanical and creep properties[68]. Pre-

cipitates can exhibit many forms ranging from spherical all the way to solid state

dendrites[5, 69] (see figure 2.16).

Figure 2.16: A series of diagrams depicting the different morphologies that γ′ precipitates
can exhibit (adapted from ref.[69]).

Here the concept of the lattice misfit σmisfit enters the field of play. It can be

represented as follows

σmisfit = 2 ·
(
aγ′ − aγ
aγ′ + aγ

)
(2.7)

where aγ′ and aγ are the lattice parameters of their respective structures[5, 34, 68].

σmisfit can be either positive or negative but generally speaking for Ni-based superalloys

it is negative[34]. Due to how close the lattice parameters of the γ and γ′ interfaces are

misfit is small in these alloys[5]. This has multiple effects the first one is to promote low
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interfacial energy and hence coherency of the γ/γ′ interface[5]. Due to this coherency a

cube-cube orientation occurs between the matrix and the precipitates[5]. σmisfit can be

altered strongly by adding specific alloying elements (by extension altering morphology)

with significantly different atomic radii (note that aγ′ is less sensitive to this effect then

aγ)[5, 23]. Note that σmisfit varies with temperature due to the differential thermal

expansion of the two phases[23, 28]. The misfit chiefly informs the timing during ageing

of the first transition spherical to cuboidal, for low |σmisfit| alloys precipitates grow

larger before the transition than for high |σmisfit| alloys[5, 69]. The more ageing is done

to an alloy the further to the right of figure 2.16 the precipitates will progress[5, 69].

Other features of precipitate morphology include tertiary γ′ precipitates (less than

50nm in diameter[70]) which are known to result in strengthening in creep [58, 71]. The

formation of tertiary γ′ precipitates is dependant on the cooling rate with fast rates

suppressing their formation and slow rates resulting in formation near the end of the

cooling process[70].

Another metallurgical feature which was mentioned in previously was rafting (note

the direction of rafting depends on the misfit). The use of a rafted microstructure in

single-crystal superalloys was found to improve creep properties in some but not all

cases[28, 72, 73]. Note the extraordinary temperature dependence of rafting where an

increase of 50K can result in rafting of single-crystal Ni3Al accelerating by a factor of

5[74].
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2.5 Co and CoNi-Based Superalloys

It important for the reader to note that this section will only draw attention to parts

of the discussion where these types of alloys differ from those of the previous sections

of this chapter (Ni-based superalloys). It is important to note however; that there has

been much less experimentation in these two types of alloys, hence certain behaviours

and mechanisms are not known in as much depth if any.

2.5.1 Introduction and History

Co-based superalloys existed for many decades but traditionally relied on carbides for

strengthening meaning their usage was fraught with difficulty at high temperatures due

to a range of factors including propensity for fatigue cracking[75, 76]. Co-based alloys

have made a resurgence since 2006 when the ordered L12 phase Co3(WxAl1−x) was dis-

covered by Sato et.al[77] (Co-based superalloys will be used to refer from this point

forward as the γ′ strengthened type only with the carbide strengthened type playing no

further role in the discussion)[23]. This discovery was of great interest as Co-based alloys

have a higher melting temperature typically by 50-150K then their Ni-based counterparts

meaning the potential for higher TET’s[25, 34, 78]. It was discovered however that a new

issue arises; the solvus temperature is lower by 100-300K than the melting temperature

of most Ni-based superalloys (note that melting and γ′ solvus temperatures are close in

Ni-based alloys, hence the melting temperature can be thought of as the limiting temper-

ature); meaning that dissolution of the γ′ phase occurs significantly before melting, hence

the advantage of higher melting temperature is yet unexploited[25, 34, 63]. Note whether
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L12-Co3(WxAl1−x) is stable or metastable is heavily dependent on temperature, for ex-

ample it was found to be stable at 1173K and metastable at 1273K by Sato et.al[77].

DFT computer simulations have confirmed metastability at 0K[79], meaning that the

observed stability must be a result of finite temperature effects such as vibrational en-

tropy, thermal electronic excitations and configurational entropy[79, 80]. The topic of

stability of γ′ in Co-based alloys has been subject to much research interest[77, 79, 80].

Rhein produced a figure using first-principles simulation, of the stability energy vs com-

position at various temperatures (figure 2.17)[80]. Where the stability energy is defined

as the difference in gibbs free energy between the L12 structure and the three phase

mixture of; pure Co (HCP transforms to FCC above 723K), Co3W (D019) and CoAl

(B2)[80].

Figure 2.17: The stability energy of L12-Co3(WxAl1−x) vs composition x at a series of
temperatures (taken from [80]).

There has been a drive to, through alloying, increase the solvus temperature and γ′
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percentage in these alloys[25, 75]. Co-based alloys are showing promise as despite their

early stage of development (particularly compositional development) relative to Ni-based

superalloys they already have been shown to possess similar creep properties and have

the potential for higher fatigue resistance[25, 81].

During this time experimentation with CoNi-based superalloys (superalloys with

significant compositions of both Co and Ni) has also been taking place. The reasoning

for this is that Ni will lead to an increase in the magnitude of the γ′ phase field and that

some degree of substitution of Co for Ni in the γ′ phase should result in the increased

stability of γ′[82, 83]. It is not yet known whether alloys of these two types that are

vastly superior to traditional Ni-based superalloys will materialise[82]. However if only

similar properties end up being realised, significantly more flexibility will be afforded to

alloy designers[82].

2.5.2 High Temperature Creep Mechanisms

Titus et.al used experimental data to derive figure 2.18 which is a speculative diagram

as to how the energies of the SISF and APB vary as the Ni content is increased[34, 63].
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Figure 2.18: How the energies of the SISF and APB are projected to vary with Ni content
in superalloys (note this diagram is mostly based on the observations of shearing systems
in different alloys not direct measurement) (taken form [63]).

This diagram was produced by the observation of the following shearing mechanisms

in the 3 types of alloys at temperatures in excess of 1123K (see figures 2.13 and 2.19).

Figure 2.19: High temperature (excess of 1123K) predominant shearing mechanisms in
CoNi and Co-based superalloys. (adapted from [63]).

Note that fault energies are not the sole factor in the determination of which of

shearing mechanism will be prominent and that misfit and interdiffusion rates as well as
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other properties are likely to have some role[34, 81]. It initially seems paradoxical that

despite the significantly lower energy of the SISF relative to the APB that in Ni-based

alloys the shearing occurs by APB[34, 63]. The reasoning behind this is that despite the

lower SISF energy the arrangement of two superpartials and an APB is lower energy

then any SISF shearing configuration[34, 63].

In an experiment at 1123K Co-based alloys were found to spend most of their creep

life in the tertiary regime but exhibit a very small amount of primary creep, broadly

the same can be said for CoNi-based superalloys[34]. It is important to mention that

the shearing mechanisms are scarcely affected by the precipitate morphology, volume

fraction or size[34, 63].

Similarly to Ni-based superalloys the initial step in creep is the rapid filling of the γ

channels with dislocations [5, 34, 63]. In this phase some dislocations climb to become

edge character in addition to reducing their width[34]. After this phase shearing events

can now occur creating planar faults, as outlined above these faults are most likely SISFs,

but SESFs (can be formed by the interactions of two SISFs) and APBs (formed by a

superpartial shearing the γ′ precipitate) were also observed by Titus[34, 81]. These were

created by the shearing mechanism depicted on the left hand side of figure 2.19, however

this was much rarer[34, 81]. There exists a key difference in shearing characteristics to

Ni-based superalloys. Whereas faults are created on all {111} planes and generally are

restricted to one precipitate, in Co-Based superalloys faults are typically only found on

one or two of the {111} planes and pass through multiple precipitates[81].

In CoNi-based alloys bowing of the γ′ precipitates can occur by 1
2 < 101 > dislo-
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cations (note becomes more prevalent at temperatures significant enough to reduce the

γ′ volume fraction)[34]. APBs were observed transitioning between {111} and {100}

planes throughout the width of the APB, demonstrating cross-slip[34].

There is not, to the author knowledge a paper on Co and CoNi-based alloys which

is as comprehensive as [61] when it comes to assessing how these alloys will behave in a

vast array of temperature and stress conditions. Co and CoNi-based alloys are subject to

some degree of primary creep but this is typically small (>0.3% in the case of Co-based)

in which dislocation networks are established in the γ channels. Creep curves in these

alloys typically resemble the creep curves of the Ni-based superalloys in the tertiary

regime (see figure 2.20).

Figure 2.20: High temperature creep curves of Co (a) and CoNi-based alloys (b) insets
display first 200h of the creep tests, applied stresses are next to alloy names (note the
sign of misfit is negative in CoNi-E)(taken from [34]).

The creep rupture lives of many the Co and CoNi-based alloys are comparable to

the creep rupture lives of typical first generation Ni-based alloys, 6Ti and CoNi-E are

even comparable to 2nd generation alloys[34]. To this date there has been no major

investigations into polycrystaline Co and CoNi-based alloys that the author is aware of;
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there appears a preliminary investigation of the A9 alloy and shearing mechanisms in

[34] but no creep curves were produced.

2.5.3 Yield Stress Anomaly

Similarly to their Ni-based counterparts, Co and CoNi-based superalloys are subject to

yield stress anomaly as well[3, 25, 26]. In general, the two deformation mechanisms

separated by a transition period found in Ni-based alloys are found here[51](see section

2.2.3). The first big difference between the types of alloys is the general shape of the

curves (see figure 2.21)[3, 25].

Figure 2.21: The yield stress anomaly curves for a series of alloys MarM247 being an
Ni-based superalloy and Haynes188 being a conventional Co-based superalloy for com-
parison (taken from [25]).

In Ni-based superalloys the increase starts from much lower temperatures and over

a much larger range, whilst in Co and CoNi-based alloys the anomalous increase occurs
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over a much smaller temperature range and is preceded by a decline[3, 25]. The reasoning

behind this is the low CSF energy relative to Ni-based superalloys making constriction

harder, as it has to occur over a larger distance[25]. Notice how also the typical Ni-based

superalloy MarM247 exhibits higher strength then the Co and CoNi-based superalloys,

this is believed to only be an artefact of the infancy of these types of alloys resulting

in crude optimisation[25]. The reason for the rapidity of the decline in many alloys

is contributed to by the dissolution of γ′ at such high temperatures[25]. Note that

of all the alloys, Co-9Al-10W-2Ta actually exceed the strength of MarM247 at high

temperatures[3, 25, 52]. This was found by Suzuki in 2006 to be caused by the activation

of slip via the reaction of (2.3) at the interfaces; dislocations that shear the precipitates

above the peak temperature (as opposed to bypass) meaning that the strengthening

effect of the γ′ precipitates is better retained[3, 52, 84]. It is clear that more research

needs to be done in these alloys to understand what initiates this change.

2.5.4 Effects of Alloying Elements

Due to the infancy of Co and CoNi-based superalloys data is scant relative to their

Ni-based counterparts. Again these lists may not be exhaustive and be subject to the

weakness that some elements have unique effects active when only certain combinations

are present[85].
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Co-Based Alloys

The γ′ solvus temperature was found to increase with additions of Ta and Ti, whilst Cr

has the opposite effect[34, 75]. In addition to Cr, Si and Mo also cause a decrease in

the γ′ solvus temperature[75]. Thus far the most effective element to this end has been

Ir; also important is the possible formation of (Co,Ir)3(Al,W) which retains hardness at

high temperatures[75, 77]. Of key importance in both Co and CoNi-based superalloys is

having sufficient Al content, else deleterious phase Co3W-D019 will form[34]. Ta, Ti, Nb,

W and Hf and to a lesser extent V and Ni have been experimentally proven to stabilise

the γ′ phase, whilst Cr, Mn, and Fe destabilise it[25, 63, 75, 81, 86]. An important

feature of W is that large amounts result in a high density for the alloy[85]. Hf, Nb, and

especially Mo were found to be detrimental to oxidation resistance despite somewhat

enhancing the strength at room and elevated temperatures[87]. V had a strong negative

influence on the oxidation resistance due to poor adherence of the oxide scale[76]; a

benefit of V however is its low density which can be used to reduce alloy weight[88].

Cr and Si are found to enhance the oxidation resistance however, as they promote the

formation of the protective scales Cr2O3 and Al2O3 in the former case[86] and just Al2O3

in the latter case due to selective oxidation[89]. B also led to the enhancement of Al2O3

at high temperatures[86]. In addition B had the effect of increasing the ductility in

polycrystaline alloys by suppressing intergranular fractures[26]. The appearance of W

in γ is beneficial for the delaying of coarsening to the precipitates[82], the same can be

said here for CoNi-based superalloys.
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CoNi-Based Alloys

The increases in Ni content in these alloys was also found to increase the γ′ solvus

temperature[34, 83, 90]. Zr, B and C were found to be grain boundary strengtheners

in CoNi-based alloys[23, 91]. Cr retains its role of improving the oxidation resistance

despite destabilising the γ′ phase[34, 91], but there is an additional detail specific to

these alloys, that is they are more resistant to the said detrimental effects of Cr[82]. The

addition of Ni has the advantage of reducing the density of the alloy relative to purely

Co-Based superalloys[82]. Ti reprises its role in these alloys as a strong γ′ stabiliser[82].

In addition to Ti, Ta, Nb and W also retain their roles and γ′ stabilisers[82].
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Chapter 3

Theoretical Basis: Fault Energy Modelling

and Computational Techniques

3.1 Modelling Planar Faults

The 2 main ways to generate planar faults computationally are to use either the super-

cell approach or an AIM (Axial Interaction Model)[92]. If there is randomness in the

distribution of the various alloy components in the cell (for example in pure γ′ this is not

a concern, but in Ni3(AlxFe1−x) the Fe could substitute for any selection of Al atoms,

same applies if more elements are present on a sublattice) it is also necessary to account

for this in one of 4 ways[93, 94]. Either use a very large supercell, select a series of

arrangements which properties are then averaged (the Monte-Carlo Approach) or use an

SPCM or a Special Quasirandom Structure (SQS)[93]. SPCM and SQS operate on the

principle that certain selective arrangements of atoms on a cell simulate randomness[93].
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One of the main arguments in favour of either SQS or SPCM is that in order to reach

statistical significance in the other 2 approaches; even when simple alloys are analysed,

either a supercell of the size 103 atoms or 106 configurations (both highly impractical)

can be required; whilst a SQS and SPCM can have a much lower number of atoms and

yield highly accurate results[93].

As outlined in the previous paragraph, in order for full statistical rigour use of the

Monte-Carlo method would require very large computational expense; however in prac-

tical circumstances confidence in the result can be reasonably achieved with significantly

less calculations performed. For example Chandran[92] did such calculations for a series

of different atomic arrangements in Ni90Co10 and Ni50Co50 and found that if 4 calcula-

tions were included, the difference in ISF energy was expected to only be 20-30mJ/m2.

Even with this said AIM models with either SQS or SPCM would still have 4 times less

computational expense.

As for the supercell approach what degrees of freedom are allowed to relax in a

fault energy calculation varies between the literature and what the scenario is being

modelled. In [92] there were also supercell calculations conducted which utilised full

relaxation. However, when the same author modelled the APB in superalloys only

volume relaxation was allowed, as any departure from cubic symmetry was deemed to

be energetically unfavourable. Vamsi[95] conducted supercell calculations of the SISF

for Ni3AlxX1-x alloys in the γ′ phase and allowed atomic relaxation but not volume

relaxation (where volume was set to be consistent with the equilibrium lattice parameter

for the specific composition). Limmer[96] carried out supercell calculations for the effects
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of alloying on the ISF of iron, where relaxation was allowed in the direction normal to

the stacking fault plane. Shao[97] performed high throughput ISF calculations on a large

number of copper alloys. Shao concluded the most accurate results could be obtained

by allowing full structure relaxation with all atoms relaxed in three directions.

3.1.1 Supercell Approach

In this approach two supercells are created; one is simply of the relevant substance

(with randomness accounted for if necessary) in its unfaulted state. The next supercell

is identical except for the fact that it is now faulted; both are relaxed using ab initio

techniques[92, 98]. The energy of the fault γsupercell can then be computed using the

following equation[92].

γsupercell =
Efaulted − Eunfaulted

A · n (3.1)

where Efaulted and Eunfaulted are the energies of the faulted and unfaulted cells respec-

tively and A is the area of the planar fault[92]. Note there exists multiple factors that

can frustrate the use of the supercell approach: the first is the fact that the relaxation

of a faulted structure is a lot more computationally intensive as swift computation is de-

pendant on symmetry[99]. Also is the fact that in the scenario where the fault analysed

is not perfect, boundary conditions will be violated; hence it is necessary to use multiple

faults where their combined shift vectors add up to a perfect fault (n is the number of

faults in (3.1)) this induces a problem however as faults have strong influence outside of
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the planes they are present on this leads to larger supercells being necessary to reduce

significantly the interaction between faults[92, 100].

3.1.2 Axial Interaction Models (AIM)

AIM for γ Phase Calculations

AIM is a broad term for a potentially infinite group of techniques each one requiring

more configurations to be utilised, and taking into account further sets of neighbours.

The ones which are the most important are the ANNI (axial nearest neighbour ising) and

the ANNNI (Axial next nearest neighbour ising)[101]. The way these techniques operate

is to construct a number of supercells of the relevant compound (again with randomness

taken into account where relevant), but this time in different structures; the energy per

atom differentials can then be used to deduce the fault energy[39, 92, 94]. AIM models

were first applied to stacking faults by Denteneer in 1987[39, 92]. AIM models exploit

the fact that stacking faults are limiting structures of polytypes[39]. These models gain

the word Ising in their acronyms as they use the analogy as to whether a layer agrees

with the stacking sequence of the structure to that of Ising spin[39]. In these models if a

layer follows the stacking sequence of the structure it is assigned a spin value Si (where

i is the index of the layer) of 1 and if it violates it a Si value of -1 is assigned[39, 92, 94].

This allows the energy of the system to be defined as follows[39, 92, 101].

E = J0 − J1
∑
i

SiSi+1 − J2
∑
i

SiSi+2 − J3
∑
i

SiSi+3... (3.2)
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The J ′s are termed expansion coefficients and represent interaction energies between

different sets of neighbours (J1 is the interaction energy between the first set of nearest

neighbours, J2 the second nearest neighbours etc) J0 is the energy of the substance

when interactions between layers are completely disregarded[39, 94]. The energies of

substances with perfect stacking sequences can be expressed in terms of J ′s by utilizing

(3.2)[39, 92, 94].

EFCC = J0 −N(J1 + J2 + J3 + J4...) (3.3)

EHCP = J0 +N(J1 − J2 + J3 − J4...) (3.4)

EDHCP = J0 +N(J2 − J4...) (3.5)

where N is the number of planes. In addition to this, substances with stacking faults

can be accounted for such as an FCC structure with an ISF or ESF present[39, 94].

EFCC−ISF = J0 +

(
4−N

N

)
(J1 + J2 + J3 + J4...) (3.6)

EFCC−ESF = J0 +
4−N

N
J1 +

(
8−N

N

)
(J2 + J3 + J4...) (3.7)

Equation (3.1) can now be adapted to this model as follows[39, 94].

γAIM =
4(J1 + J2 + J3 + J4...)

A
(3.8)

This is where the distinction between the ANNI and ANNNI models first appears. The

ANNI model includes the expansion coefficients up to J1 and the ANNNI includes ex-
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pansion coefficients up to J4[101]. This allows (3.8) to be rewritten in the following 2

ways utilising (3.3-5)[94, 101, 102].

γISFANNI =
2(EHCP − EFCC)

A
(3.9)

γISFANNNI =
EHCP − 3EFCC + 2EDHCP

A
(3.10)

Note that magnitude of the expansion coefficients decline with their index as higher

indexed coefficients correspond to further away neighbours[39, 94]. This effect is even

more prominent in metals as interactions are very short range so in many cases simply

ANNI will produce accurate results[94, 103]. The crystal structures used in the ANNI

and ANNNI models in the γ are displayed in figure 3.1.

Figure 3.1: Diagram of the crystal structures used in the ANNI and ANNNI models in
the γ phase (adapted from [104]).

It is worthwhile to note that in the case of the ANNI model the ISF and ESF

are equivalent which is reasonable as energies between them typically differ by very

small amounts[94]. Due to the approximations made in the AIM models they do not
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replicate the supercell approach entirely[92, 102]. For instance they fail to take into

account changes to local magnetic order, atomic arrangement around the fault and

segregation of impurities[105–107]. Still they are known to produce in general very

similar results[92, 102].

AIM for γ′ Phase Calculations

Due to the similarities the FCC and L12, HCP and D019 and DHCP and D024, the latter

being of the same stacking sequences but possessing order; it is possible to adapt (3.9)

and (3.10) to the γ′ phase[101].

γSISFANNI =
8(ED019 − EL12)

V
2/3
L12 · √3

(3.11)

γSISFANNNI =
4(ED019 − 3EL12 + 2ED024)

V
2/3
L12 · √3

(3.12)

Where EL12, ED019 and ED024 are the energies per atom in the L12, D019 and D024

structures respectively and VL12 is the volume of 4 atoms in the L12 configuration,

making the denominator the area of 4 atoms on the L12-{111} plane[101]. The crystal

structures used in the ANNI and ANNNI models in the γ′ are displayed in figure 3.2.
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Figure 3.2: Diagram of the crystal structures used in the ANNI and ANNNI models in
the γ′ phase. White atoms represent the majority element and black atoms represent
the minority element (adapted from [104]).

3.1.3 Special Quasirandom Structures (SQS)

The main goal of the production of an SQS is to judiciously place atoms in a structure to

approximate the multisite correlation functions of a truly random structure[93, 94]. An

SQS is designed by breaking configurations of atoms (denoted by σ) down into a series

of figures (denoted by f) where the two items which constitute a figure are k values

(for example a pair of atoms would be assigned k = 2 and a triangular configuration

of atoms would be assigned k = 3) and m which is the distance between the atoms of

that figure[93, 94]. In the example of a binary alloy, in order to distinguish between

the two different atoms a spin value (denoted by S) is assigned to each atomic position

where S = 1 for A and S = −1 for B (note the similarity in convention to the AIM

models)[93, 94]. The product of these spin variables is then taken for each figure and

averaged over the whole of the lattice in question to arrive at the following equation

for the lattice averaged spin over all locations (denoted by l) (which also accounts for
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orientation) of symmetry-related figures of type f gives[93]

Πf (σ) =
1

NDf
ΣlΠf (σ, l) (3.13)

where Df is the amount of figures in a site, N is the total number of atoms and Πf (σ, l)

an alternate representation for the product of the spin variables[93, 94]. SQS’s are very

successful as proven by the calculations of Zunger with SQS’s with 8 or less atoms pro-

viding results of many properties which are highly accurate to fully random alloys[93].

SQSs do suffer from one main drawback and that is that such judicious placing of so-

lute atoms will result in correlations in the results being present which do not exist

in reality[93]. However these false correlations typically involve distant sets of neigh-

bours which have little impact on the results (this also applies to SPCM)[93]. SQS’s

have a long and successful history of use in a large array of applications (the original

paper the technique was proposed in [93] has over 1500 citations). Examples of this

research include calculations of lattice parameter and enthalpy of mixing (which corre-

spond well to experimental values) of a series of binary random solutions in the HCP

structure[108]. An analysis of equilibrium lattice parameters, formation enthalpies, bulk

and shear modulus of non-stoichiometric B2-NiAl with various constitutional point de-

fects (again agreeing with experiment)[109]. Calculation of alloy bowing coefficients for

a series of three mixed-cation and three mixed-anion chalcopyrite alloys[110]. With spe-

cific regard to fault energies in relevant compounds to superalloys, calculation of fault

energies in the γ′ phase of Co-based superalloys and how this varies with the addition of
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Ta[81, 94]. The APB energies were calculated using SQS for a series of L12Ni3(Al1−x,Xx)

alloys for the purpose of validation of the CALPHAD (CALculation of PHAse Diagrams)

method with agreement between the methods found in most cases but large discrepancies

in some[111].

3.1.4 SPCM

In this work the SPCM is used to simulate randomness. The main aim of the SPCM is to

selectively place atoms on a cell for the purpose of manipulation of the Warren-Cowley

short range order parameters (WC-SROP)[112–114]. The WC-SROP were originally

derived from a three dimensional Fourier analysis of the scattering of x-rays from a

sample[112, 115]. In a binary material the WC-SROP Γ are defined as follows[112–116].

Γ
(i)
AB = 1− P i

AB

mb
(3.14)

Γ
(i)
BA = 1− P i

BA

ma
(3.15)

Where A and B are two elements in the binary, i is an index representing the crys-

tallographic shells (the higher the number the further away the shell atom in question),

P i
AB is the probability of finding an atom of B in the ith shell around an A atom, P i

BA

is the probability of finding an atom of A in the ith shell around an B atom and mA

and mB are the concentration of one of the elements A and B respectively[112–116](note

that (3.14) and (3.15) are equivalent[116]). These parameters have the following char-

acteristics; a value of 0 for a completely random distribution[112, 116, 117] and have
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a maximum value (note is absolute) for perfect order[112, 113]. Hence minimization of

these parameters is the goal of the selective placement of atoms. SPCMs have been

used to analyse element resolved local-distortions and how they impact upon magnetism

and the relation to solid solution strengthening in the high entropy equi-atomic FCC

FeCoNiCrMn alloy[118]. It is to be noted that there is no literature to the author knowl-

edge that compares the results from SPCM and SQS however they are expected to yield

similar results due to their methodological similarities. The main difference between the

two methodologies is that SQS are more complicated and hence need in many cases to be

larger, but they also would be expected to yield slightly more accurate results, because

they include figures which have more than 2 atoms.

3.2 Basics of Density Functional Theory (DFT)

3.2.1 Quantum Many-Body Problem

The main theme running through DFT calculations in this research is the finding of the

ground state of a continuous solid substance (note this can also apply to molecules and

surfaces)[99, 119]. In order to find this ground state, N nuclei and ZN electrons, and

the Coulomb forces between them must be considered[99, 119, 120]. A major feature

of these particles is that they are small enough to be subject to significant quantum

mechanical effects. Hence it is necessary to introduce the Schrödinger equation[99, 119].

HΨ = λΨ (3.16)
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Where H is the Hamiltonian operator, Ψ and λ represent a series of eigenvectors and

eigenvalues respectively[99, 119]. The problem necessary to solve to find the ground

state is named the quantum many-body problem and is subject to the following H[119].

H = − h̄2

2

∑
i

∇2
R̂i

Mi
− h̄2

2

∑
i

∇2
r̂i

me
− 1

4πε0

∑
i,j

e2Zi

|R̂i − r̂j |
+ ...

1

8πε0

∑
i �=j

e2

|r̂i − r̂j | +
1

8πε0

∑
i �=j

e2ZiZj

|R̂i − R̂j |
(3.17)

Where the terms from left to right are kinetic energy of the nuclei, kinetic energy of

the electrons, Coulomb force between nuclei and electrons, electrons and electrons, and

finally between nuclei and other nuclei[119]. Where i and j are indexes to represent

the number of electrons and nuclei[119]. Mi and me represent the mass of nuclei and

electrons respectively, R̂ and r̂ are positions of electrons and nuclei respectively and Z

represents the charge of a nucleus[119]. There are certain select cases for which the

Schrödinger equation could be solved exactly however in any realistic system it will be

practically speaking impossible to solve exactly and hence it is necessary to introduce

approximations[99, 120].

3.2.2 The Born-Oppenheimer Approximation

The Born-Oppenheimer approximation is based off the following observation. Electrons

are ≈ 1800 times less massive than protons, hence in a case of equal momentum elec-

trons will move much faster and be significantly more responsive to changes in there

environment then nuclei[99, 120]. It can be thought of that each electron whilst in mo-
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tion “sees” the nuclei as stationary in a given short time frame[120]. Separation of the

behaviour of nuclei and electrons into separate mathematical problems means that H

can be reduced to the following[99, 119].

H = − h̄2

2

∑
i

∇2
r̂i

me
− 1

4πε0

∑
i,j

e2Zi

|R̂i − r̂j |
+

1

8πε0

∑
i �=j

e2

|r̂i − r̂j | + Vnuc (3.18)

Where as nuclei are modelled not to move the first term (kinetic energy of nuclei)

disappears and the last term (nuclei-nuclei Coulomb interaction) is reduced to a constant

Vnuc[119].

3.2.3 Key Concepts of Density Functional Theory

For the Hamiltonian in (3.18) Ψ is given as the electronic wave function and λ as the

ground state energy[99, 120]. The electronic wave function has 4ZN dimensions (N being

the number of atoms and the 4 originating from the fact that each electron exists in 3

dimensional space and has spin properties, note that time is not included as a dimension

as the ground state simply does not depend on it)[99]. This is where the major difficulty

with solving the Schrödinger equation is revealed, in realistic supercells there will be

for example 50 atoms, if they are nickel atoms there is 28 × 50 × 4 = 5600 dimensions

which need to be considered[99]. DFT enters at this juncture, using the electron density

n(r̂) as opposed to the wavefunction to solve this problem[99, 120]. n(r̂) is expressed as
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follows

n(r̂) = 2
∑
i

ψ∗
i (r)ψi(r) (3.19)

where ψi are single electron wavefunctions (these are derived by approximating Ψ as a

Hartree product Ψ =
∏Q

i=1 ψi where Q is the number of electrons) and the 2 is a feature

of the Pauli exclusion principle, and that is that an electron can occupy the same state

as another electron provided that it has opposite spin[99]. This is critical as the problem

can be reduced from one of thousands or in some cases tens of thousands of dimensions

down to one of just 3[99]. DFT stands on two main pillars the two Honenberg-Kohn

theorems and the Kohn-Sham equations[99, 119, 120].

Hohenberg-Kohn Theorems

The Hohenberg-Kohn theorems are expressed in words as follows.

1) The ground-state energy from the Schrödinger equation is a unique functional of

the electron density E[n(r̂)][99].

2) The electron density that minimizes the energy of the overall functional is the true

electron density corresponding to the full solution of the Schrödinger equation[99].

There is a second observation to be made which is pertinent to 1) which is that the

expectation values of all properties are determined uniquely by the ground state electron

density e.g. wavefunction[99, 119]. Another point of note is that value of energy from

E[n(r̂)] is only of physical relevance when evaluated at the ground state electron density
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at all other densities the value is meaningless[119]. It has now been determined that a

functional exists and can be used to calculate ground state properties in any system[99].

The problem that is now encountered is that only some terms of this functional are

known[99].

E[n(r̂)] can be expressed as follows

E[n(r̂)] = Eknown[n(r̂)] + Eunknown[n(r̂)] (3.20)

Eknown[n(r̂)] are all of the terms that are involved in the classical version of the problem

which can be expressed in terms of the single electron wavefunctions as follows.

Eknown[ψi] =
h2

me

∑
i

∫
ψ∗
i∇2ψid

3r +

∫
Vout(r̂)n(r̂)d

3r + ...

e2

me

∫ ∫
n(r̂)n(r̂′)
|r̂ − r̂′| d3rd3r′ + Vnuc (3.21)

Where the terms from left to right are electron kinetic energy, Coulomb interaction

between electrons and nuclei, Coulomb interaction between electrons, and Coulomb in-

teraction between nuclei (note that Vout(r̂) is the potential that the electrons exist in

due to the nuclei, a consequence of the Born-Oppenheimer approximation)[99, 119].

Eunknown[n(r̂)] contains the quantum mechanical effects of exchange and correlation

(Eunknown[n(r̂)] will be referred to as the exchange-correlation functional from now on

EXC [n(r̂)])[99]. Exchange is caused by a repulsion of electrons of the same spin-state.

Taking account of exchange is necessary as if two electrons have their positions switched
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the wavefunction should change sign. Correlation exists as the motion of electrons is

influenced by those of the same spin state. We will return to EXC [n(r̂)] at a later point

just assume for now that his term can be reasonably approximated.

Kohn-Sham Equations

The Hohenberg-Kohn theorems were a significant discovery but it was not until the

derivation of the Kohn-Sham equations in 1965 that DFT was able to be used in a prac-

tical manner[99, 119, 120]. This is because solving equation (3.20) would be seldom less

complicated then solving the Schrödinger equation with the Hamiltonian in (3.18)[99].

The Kohn-Sham equations are a series of equations that only depend on ψi[99, 120].

Consider first three functionals, one which is perfect Gperf [n(r̂)] one which neglects cor-

relation Gno−c[n(r̂)] and one which neglects both exchange and correlation Gno−xc[n(r̂)]

(note these functionals neglect the effects of Vout(r̂) on the electrons, hence are denoted

by a G not an E)[119]. As a consequence of the Hohenberg-Kohn theorems, each one

of these 3 functionals can be broken down into two parts, one concerning kinetic energy

and the other concerning potential energy (note that for ease of reading the [n(r̂)] that

suffixes the terms on the right hand side of equations (3.22-30) have been removed)[119].

Gperf [n(r̂)] = T + V (3.22)

Gno−c[n(r̂)] = T0 + V (3.23)

Gno−cx[n(r̂)] = T0 + VH (3.24)
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where T is the kinetic energy of the electrons, T0 is the kinetic energy of a non-interacting

electron gas, V is the exact potential energy (caused by interactions of electrons) and

VH is the Hartree potential given by[99, 119],

VH = e2
∫

n(r̂)′

|r̂ − r̂′|d
3r′ (3.25)

(3.22)-(3.23) gives the following

T − T0 = EC (3.26)

where EC is the potential energy contribution from correlation and (3.23)-(3.24) gives

V − VH = EX (3.27)

where EX is the potential energy contribution from exchange. Now G[n(r̂)] (defined as

E[n(r̂)] with out the contribution from Vout(r̂)) can now be written as follows[119].

G[n(r̂)] = T + V + (T0 − T0) = T0 + V + (T − T0) (3.28)

substituting (3.26) into (3.28) and adding (VH − VH),

G[n(r̂)] = T0 + V + EC + (VH − VH) = T0 + VH + EC + V − VH (3.29)

61



substituting (3.27) into (3.29) and combing exchange and correlation into one term

EC + EX = EXC

G[n(r̂)] = T0 + VH + EXC (3.30)

Note that E[n(r̂)] can be expressed

E[n(r̂)] = G[n(r̂)] +

∫
Vout(r̂)n(r̂)d

3r + Vnuc (3.31)

This allows the construction of a new Hamiltonian HKS [119].

HKS = T0 + VH + EXC + Vout = − h̄2

2me
∇2

i + ...

e2

4πε0

∫
n(r̂)′

|r̂ − r̂′|d
3r′ +

δEXC [n(r̂)]

δn(r̂)
+ Vout (3.32)

where the third term is defined as the functional derivative[99, 119]. This new Hamilto-

nian can be used in the following set of equations[99, 119, 120].

HKSψi = λiψi (3.33)

Each equation depends on only single electron and on 3 dimensions (note λi in this

context corresponds to the energy of the orbital i)[99, 119]. It is important to note that

the use of the Hartree potential computes the Coulomb interaction between the electron

which is the subject of the current (3.33) and the total electron density of which it is a
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part of[99]. Hence it includes a self-interaction which does not exist in reality[99]. EXC

is not known exactly, but it can be expressed in many useful ways, according to a series

of different approximations: for example as depending on only the density locally at each

point (the local density approximation) or as on depending on the local density and the

gradient of said density (the generalised -gradient approximation), as will be covered in

later sections of this chapter[99, 119, 120].

3.2.4 Iterative Solving

Iterative solving of the equations laid out in (3.33) is necessary as VH is dependent on

n(r̂), but in order to deduce n(r̂) it is necessary to know ψi, but ψi can only be known

by finding the solutions to (3.33)[99, 119, 120]. The procedure for solving the problem

iteratively can be carried out as follows[99].

1. Propose a reasonable guess to the electron density n0(r̂) (note the index corre-

sponds to the iteration number)

2. Insert n0(r̂) into VH

3. Use the VH in (3.33) to solve and deduce ψi

4. Use the values of ψi to calculate the n1(r̂) using (3.19)

5. Compare n1(r̂) with n0(r̂) and assess how close the values are, if they agree within

a certain defined limit the calculation is concluded at that point

If this is not the case then an updating procedure is undertaken on the n0(r̂) and the

process is restarted again from step 2 until it is the case[99]. The above statements are
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true in a static calculation (where the aim of the calculation is to determine the ground

state electron density and the corresponding energy, for a given set of atomic positions)

in a calculation involving relaxation a further 2 steps need to be added.

6. If the condition of step 5 is met move the atoms to updated positions (the new

positions determined by an algorithm designed to minimize the free energy) and

restart from 1

7. When the condition of step 5 is met again compare the ground state energies of

the two sets of atomic positions, if they are within a certain limit from each other

the calculation is said to be converged, if not then a new set of positions must be

selected

Specifics regarding the algorithms used to select n0(r̂) as well as converge the atomic

positions and electron density will be covered in later sections of this chapter.

3.3 K-points

3.3.1 Introduction

In order to perform calculations of the ground state electron density, integration of very

complex mathematical functions must be performed[99, 121]. With the state of compu-

tational technology it is not yet possible to evaluate such integrals in their entirety[99].

This is cause for the existence of the k-point, the necessary mathematical operations are

undertaken at a series of discrete points and each point is assigned a relevant weighting

to form a numerical approximation of the true result[99, 122, 123]. Where results with
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superior convergence will be attained with higher numbers of k-points, however such

calculations will be more computationally intensive[99, 124]. To compute such integra-

tions it is significantly easier to utilise reciprocal space (k-space hereafter)[99]. K-space

similarly has 3 unit vectors that can be defined from the unit vectors in real space see

(3.34-36)[99, 125].

b̂1 = 2π
â2 × â3

â1 · (â2 × â3)
(3.34)

b̂2 = 2π
â3 × â1

â2 · (â3 × â1)
(3.35)

b̂3 = 2π
â1 × â2

â3 · (â1 × â2)
(3.36)

Where â1, â2 and â3 are the real space vectors and b̂1, b̂2 and b̂3 are the corresponding

reciprocal lattice vectors. This naturally leads to the observation that the larger a unit

vector is in real space the shorter its equivalent will be in k-space and vice-versa as is

determined by the inverse relationship between the two[99]. It is important to note that

the reciprocal lattice will always exist in the same crystal system as the real lattice but

does not necessarily have to have the same Bravais structure, for example the reciprocal

lattice of a BCC real lattice is FCC (the reverse also applies)[99, 125].

In real space there is the concept of the primitive cell (the cell containing the least

amount of atoms yet from which all information about a periodic material can be deter-

mined) there exists an equivalent concept in k-space which is called the Brillouin zone

(BZ hereafter)[99, 125]. The volume relationship between the primitive cell and the BZ

65



is given as follows[99].

VBZ =
(2π)3

VPC
(3.37)

There is one key difference in the definition of the BZ and the direct (real space) lattice,

it is that lattice points are defined as being in the centre of the cell as opposed to at

the corners of the cell[125]. This has the consequence that points at a wavevector k̂ and

−k̂ are equivalent[125]. In a lot of cases there will exist a large degree of symmetry in

the BZ, this can be exploited to form what is called an irreducible Brillouin zone (IBZ

hereafter)[99]. The IBZ satisfies the condition that by reflecting or copying the IBZ it

can be used to flawlessly produce the full BZ[99]. This can be used to good effect to

reduce the amount of k-points that are necessary to actually perform the calculation[99].

Note the following, convergence is chiefly dictated by the number of k-points in the BZ,

whereas computational time varies strongly with the number of k-points in the IBZ[99].

For many of the factors used in a first-principles calculation including the total

energy[126], numbers of electrons in bands[126], electronic charge density[127] and bulk

properties[127] usage of integration in the reciprocal space is incredibly important or

possibly even totally necessary, rendering reciprocal space superior to assess these quan-

tities. Real space however also has advantages such as that geometry is better assessed

in it. K-points in first-principles are selected according to one of many algorithms the

most common and widely used is the Monkhorst-Pack scheme which is used for the re-

search in this thesis[121, 122], but the main alternative is the Chadi-Cohen scheme[123].
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These Monkhorst-Pack scheme as well as older techniques for historical context will be

discussed in the following subsections.

3.3.2 Historical Context

Whilst in fact an estimate of the aforementioned complex integrals could be built up by

randomly selecting any points within the BZ this would be less practical computationally

and yield inferior results. There exists in the BZ points of high symmetry known as the

Γ, X and L points respectively[128]. The Γ point is defined as the point in k-space where

k̂ = 0[99]. However it was discovered by Baldereschi[128] that averaging over these

points alone was inadequate and that substantially more points are needed to be used

to attain accurate values of the average electron energy in the valence free bands[128].

Baldereschi proposed the derivation of the mean-value point(k̂∗)[128]. With the goal of

choosing a point such that the average over the BZ is approximately equal to the value

at that point[128]. A typical complex integral over the BZ that needs evaluation is of

the form[99, 122, 128].

I =

∫
BZ

f(k̂)d3k (3.38)

where f is a periodic function of k̂, where f can be selected such that its integration

will result in the calculation of a property[128]. This integral can be expressed in the
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following way[128].

I =
(2π)3

VPC
f̄ (3.39)

Where f̄ is the average value of the function f(k̂). By utilising the fact that f(k̂)

can be expressed as a completely irreducible representation of a crystal point group and

exploiting the periodicity and symmetry the following expression can be formed[123, 128].

f(k̂) =
∞∑

m=0

amAm(k̂) (3.40)

where

Am(k̂) =
∑

|R̂|=Cm

eik̂·R̂ m = 0, 1, ... (3.41)

where the R̂’s are a series of equivalent lattice vectors, where the set of vectors cor-

responding to a value of Cm is classified as a star[122, 123, 128]. A star is a set of

k-points that can all be transformed into a single point by the employment of space

group operations[121, 122]. The Am(k̂) are constructed to obey the following conditions

VPC

(2π)3

∫
BZ

Am(k̂)d
3k = 0 m = 0, 1, ... (3.42)

VPC

(2π)3

∫
BZ

Am(k̂)An(k̂)d
3k = Nnδmn (3.43)

Am(k̂ + K̂) = Am(k̂) (3.44)

Am(T k̂) = Am(k̂) (3.45)
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Am(k̂)An(k̂) =
∑
j

aj(m,n)Aj(k̂) (3.46)

Where Nn is the number of lattice vectors in the shell n, T is any lattice point group

operation, K̂ is any reciprocal lattice vector and aj(m,n)’s are integers determined

by the choice of m and n[123]. If we initially ignore all of the terms except for the one

corresponding tom = 0 then the following equation can be constructed from (3.39),(3.40)

and (3.41)

I =
(2π)3

VPC
a0, (3.47)

as A0(k̂) = 1[123, 128]. This choice is somewhat justified as in fact the other terms

contribution to f(k̂) are significantly smaller and decline further with increasing m[123,

128]. The purpose of the k̂∗ is to make judicious selection to satisfy the condition,

Am(k̂
∗) = 0 (3.48)

for as high an order as possible (note in reality only orders of up to 3 can be made to

fit this condition)[123, 128]. This technique had some degree of success as it was able to

produce similar results to the Kleinmann-Phillips technique which used upwards of 500

k-points[128]. It is only possible to satisfy (3.48) to higher orders if multiple points are

introduced[99, 123]. The order to which (3.48) can be satisfied increases as the number

of k-points does[123].
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3.3.3 Monkhorst-Pack Scheme

The Monkhorst-Pack scheme was first proposed in 1976, 3 years after the Chadi-Cohen

scheme†. It has been shown to produce identical sets of special k-points to the Chadi-

Cohen scheme. The Monkhorst-Pack scheme starts with the definition of a series of

integers.

ux =
(2r − q − 1)

2q
r = 1, 2, ..., q (3.49)

Where q spans the number of selected k-points in the set. The implication of this set of

numbers is that the series of ux’s along with equivalent uy’s and uz’s defines the set of

k-points.

K̂xyz = uxb̂1 + uy b̂2 + uz b̂3 (3.50)

Where said series of k-points span the BZ in addition to being equally spaced across it.

The quantity Bm(k̂) is then defined.

Bm(k̂) = N
− 1

2
m Am(k̂) (3.51)

Where Nm is the number of members of the star corresponding to the value of m. Note

that Bm(k̂) retains the same lattice point group symmetry properties as Am(k̂)[123].

†Other than if explicitly stated the source for the information in this subsection can be assumed to
from reference[122].
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Now the following quantities Smn(q) and W ab
j (q) can defined.

Smn(q) =
1

q3

q∑
x,y,z=1

B∗
m(k̂xyz)Bn(k̂xyz) (3.52)

W ab
j (q) =

1

q

q∑
x=1

e
iπ
q
(2r−q−1)(Rb

j−Ra
j ) (3.53)

Substituting Bm(k̂) into (3.52) allows for Sm,n(q) to be expressed as follows.

Smn(q) = (NmNn)
− 1

2

Nm∑
a=1

Nn∑
b=1

3∏
j=1

W ab
j (q) (3.54)

Where a and b are members of stars N and M respectively. The quantity W ab
j (q) is

subject to the following conditions: It will equal 1 if |Rb
j − Ra

j | is equal to an even

number multiplied by q, it will equal (−1)(q+1) if |Rb
j − Ra

j | is equal to an odd number

multiplied by q, otherwise it will equal 0. A further set of conditions can now be imposed.

|Ra
j |<

q

2
j = 1, 2, 3 (3.55)

|Rb
j |<

q

2
j = 1, 2, 3 (3.56)

Now the following deduction can be made.

W ab
j (q) = δ(Ra

j , R
b
j) (3.57)
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Substituting (3.57) into (3.54) yields the following.

Smn(q) = δmn (3.58)

The main consequence of this is that when the conditions laid out in (3.55) and (3.56) are

adhered to, this corresponds to a function of Bm(k̂) that is orthonormal on the k-points

of the set K̂xyz. Significant simplification can be made by utilising the IBZ.

Smn(q) =
1

q3

P (q)∑
j=1

ωjBm(k̂j)Bn(k̂j) (3.59)

Where P (q) is the number of k-points present in the IBZ and ωj is the weighting factor

given by (3.60).

ωj =
vj
qj

(3.60)

Where vj is the order of the entire point group and qj is the order of the group of the

wavevector at k̂j .

3.3.4 Errors

It is important to again stress that the aforementioned methodologies present only ap-

proximations to integral (3.38)†. Following in this subsection is a calculation of the errors

involved in employing the Monkhorst-Pack scheme. By exploiting the orthogonality of

†Other than if explicitly stated the source for the information in this subsection can be assumed to
from reference[122].
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the BZ, fm can be expressed as follows.

fm =
VPC

(2π)3

∫
BZ

B∗
m(k̂)f(k̂)d

3k (3.61)

By summing over a set of k-points it is possible to produce the following approxima-

tion f̃m of fm.

f̃m =
1

q3

P (q)∑
j=1

ωjf(k̂j)Bm(k̂j) (3.62)

Note in the above equation that a term is included in this sum only if it obeys the

conditions of (3.55) and (3.56). Hence a function which is totally symmetric and periodic

in k-space can be expressed exactly (3.63) and approximately (3.64).

f(k̂) =
∞∑

m=1

fmBm(k̂) (3.63)

f̃(k̂) =
∞∑

m=1

f̃mBm(k̂) (3.64)

Note that (3.63) is the same function as in (3.40) just expressed differently for conve-

nience. Now the error in the approximation εBZ can be represented by

εBZ =

∫
BZ
[f(k̂)− f̃(k̂)] =

∑
m>1

fmN
1
2
mSm1(q) (3.65)

73



where Sm1(q) is equal to

Sm1(q) = (−1)(q+1)(R1+R2+R3)/q (3.66)

in the condition where R3−R1 are multiples of q and 0 in all other conditions. The errors

depend very sensitively on the form of the function f(k̂). Chadi and Cohen theorised

that there is an inverse relationship between εBZ and C−3
m however this was based on the

analysis of a Taylor expansion of a smoothly varying function. This analysis downplays

the major impact of the boundary of the BZ on the error.

In practice the quality of the mesh and hence numerical accuracy of the results, is

assessed by using a convergence test. This is where a result or sample of results is run

multiple times with a series of meshes with increasing k-points. Typically, there is an

initial transient where the difference between the result with the highest k-points and

those near the lower end of the spectrum being large. As the number of k-points is

increased the difference between the results becomes smaller and levels off. This plateau

is where the results can be said to be converged and from where the final number of

k-points in the mesh should be chosen from. More information about this subject is

detailed in section 5.1.2.

3.4 Partial Occupancies

In the case of metals a problem arises when evaluating integrals of the form (3.38) as the

functions evaluated f(k̂)s are not continuous[99]. This leads to a unique characteristic
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of the BZ where there are areas where electrons exist and areas where they don’t[99] due

to the partial filling of energy bands[124]. Separating these regions is a surface which is

called the Fermi surface (FS hereafter)[99]. This fact makes evaluations of such integrals

computationally more complex as exceptionally high numbers of k-points must be used to

obtain good convergence[99, 124]. However there are techniques which can be employed

to overcome this to a large degree. The two main types of technique are smearing

methods and tetrahedron methods[99]. Smearing methods work in the following way,

when a discontinuous function is encountered a smearing function is employed to smooth

out the discontinuity[99].

UFD−smear

(
ε− EF

W

)
=

[
e

ε−EF
W + 1

]−1

(3.67)

where EF is the Fermi energy, ε represents energy and W is the characteristic broaden-

ing which reproduces the actual function perfectly when W = 0 and moves away from

the step function as W increases (note this is called the Fermi-Dirac function)[99, 129].

The smearing method employed for calculations with relaxations in this research is how-

ever the superior Methfessel-Paxton smearing technique [99, 124]. Tetrahedron methods

work by constructing a series of tetrahedra in k-space between the k-points and an ap-

proximation of the function can be constructed using interpolation[99, 121]. Various

interpolation methods can be used including the simplest linear interpolation[99, 121].

The interpolation method used for static calculations in this thesis is the one derived by

Blöchl which uses adjusted weights to reduce the errors[121]. Higher order interpolation
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schemes such as that of MacDonald also can be used but these are subject to increased

difficulties because of band crossings[121].

3.4.1 Methfessel-Paxton Technique

For a discontinuous function (3.38) can be rewritten as follows†

I =

∫
BZ

S(E(k̂)− EF )f(k̂)d
3k (3.68)

Where E(k̂) is an energy band, EF is the Fermi energy and S(E(k̂) − EF ) is a step

function. The following quantity F (ε) can now be defined.

F (ε) =

∫
BZ

f(k̂)δ(ε− E(k̂))d3k (3.69)

This allows (3.68) to be rewritten as

I =

∫ ∞

−∞
S(ε− EF )F (ε)dε (3.70)

Note that by replacing the step function S(E(k̂) − EF ) by UFD−smear that the type of

smearing described in section 3.4 is reproduced. Use of this type of smearing however

induces a systematic error as the charge below Ef is calculated as

∫
g(ε)S0(ε− EF )dε. (3.71)

†Other than if explicitly stated the source for the information in this subsection can be assumed to
from reference[124].
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Where g(ε) is the density of states, note this does not apply in the select case where

F (ε) is constant near EF . SN describes a series of successive approximations to the

step function where N is a positive integer or 0. A dimensionless energy variable is

now defined x = (ε−EF )/W for convenience. Where W is defined as the characteristic

broadening. The error in the following case is zero: where F (ε) is a polynomial of the

order of SN within the region of W . This allows the delta function to be expressed as

the following sum.

δ(x) =
∞∑
n=0

AnH2n(x)e
−x2

(3.72)

Where H2n is a Hermite polynomial of the physicists definition of order 2n

H2n = (−1)2nex2 d2n

dx2n
e−x2

(3.73)

and An are a series of coefficients defined as follows.

An =
H2n(0)

(2n)! 4n
√
π
=

(−1)n
n! 4n

√
π

(3.74)

The orthogonality of the Hermite polynomials can now be exploited.

∫ ∞

−∞
Hn(x)Hm(x)e

−x2
dx = n! 2n

√
πδnm (3.75)
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A sum DN (x) can now be defined as follows.

DN (x) =
N∑

n=0

AnH2n(x)e
−x2

(3.76)

Note that this will form an approximation to the delta function, the consequence of this

is as follows when P (x) is a polynomial of degree less than 2N + 2.

∫ ∞

−∞
DN (x)P (x)dx =

∫ ∞

−∞
δ(x)P (x)dx = P (0) (3.77)

Now DN is integrated with respect to arbitrary variable t to form an equation for

SN (x).

SN (x) = 1−
∫ x

−∞
DN (t)dt (3.78)

The following equations can now be utilised.

(
d

dx

)
H2n(x)e

−x2
= −H2n+1(x)e

−x2
(3.79)

erf(x) =
2√
π

∫ x

0
e−t2dt (3.80)

To produce the following result.

SN (x) = S0 +
N∑

n=1

ANH2n−1(x) (3.81)
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where

S0 =
1

2
(1− erf(x)) (3.82)

A very important point to note is that (3.82) corresponds to the Fermi-Dirac smearing

detailed previously. The use of higher terms as outlined in (3.81) removes the error which

was previously induced by calculating the charge below EF utilising (3.82). Finally the

integral (3.68) for order N over a series of k-points can be written as

I =
∑
i

ωif(k̂)SN (xi) (3.83)

where i is a series of integers each one corresponding to a k-point and

xi =
E(k̂i − EF )

W
(3.84)

There are two factors which require further evaluation W and N where better conver-

gence is obtained as W is reduced and N is increased. In order to have high N however

it demands that there is a fine k-point mesh. There is a lot of nuance in selecting these

factors (including the shape of the energy bands) which is beyond the scope of this thesis

but is detailed in [124]. This technique is clearly superior to Fermi-Dirac smearing and

in the case of transition metals is about as effective as the linear tetrahedron method.
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3.4.2 Blöchl Interpolation

There are two main issues concerning the linear tetrahedron method the first is called

the mis-weighting problem of k-points and the second is the errors†. The main error is

the linear tetrahedron method arises from the fact that if the curvature of the function is

negative then the interpolation will result in an overestimation and vice-versa. An error

is also contributed by the fact that the integration now being evaluated is different from

the integration concerning the actual Fermi surface. The former error converges with

respect to Z2 and the latter error, is less significant converging with respect to Z4, where

Z is the spacing between the k-points. This error is not an issue in semi-conductors

and insulators as a slight overestimation in one sector of the BZ will correspond to

an equal underestimation in another of the tetrahedra and vice-versa. But in metals

partially filled bands mean this does not apply. This method was found to be orders of

magnitude more computationally efficient, for total energy calculations in metals then

the standard linear tetrahedron method. Blöchl interpolation employs a formula to

significantly reduce this error by modifying the weights in each of the tetrahedra. The

corrections dωi are calculated respectively as

dωi =
∑
T

1

40
DT (Ef )

4∑
j=1

εj − εi (3.85)

where DT (εf ) is the contribution of one of the tetrahedra to the density of states at

the Fermi level, where the T ’s are indexes corresponding to each of the tetrahedra, ε1

†Other than if explicitly stated the source for the information in this subsection can be assumed to
from reference[121].
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through ε4 are the one particle energies at the 4 corners of the tetrahedron. The i’s and

j’s are indexes corresponding to the four corners of a tetrahedron.

3.5 The Exchange-Correlation Functional

3.5.1 Introduction

As mentioned in section 3.2.3 the exact form of the exchange-correlation functional (XC

hereafter) is unknown, hence it is necessary to use an approximate form. There exists a

series of approximate forms each of which employ more physical information. A common

way of visualising this is to use the analogy of Jacob’s ladder as described in the biblical

verse Genesis 28[99, 130]. In this analogy heaven is represented by a hypothetical perfect

functional which employs zero approximations and the base of the ladder is represented

by the simplest functional the local density approximation (LDA hereafter)[99, 130]. It

is important to note that advancing to a higher rung on the ladder does not necessarily

mean the results will better approximate physical reality, especially in the case where

the functional on the higher rung is empirical and being applied to a scenario outside of

where it was derived[99, 131].

3.5.2 Local Density Approximation

The LDA (note there are two versions spin averaged and spin-polarised (referred to as the

LSD (local spin density)), this variant is evaluated in this subsection) is the simplest XC,

it exploits the fact that the only scenario in which the Honenberg-Kohn theorems can
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be solved exactly is that of a uniform electron gas[99]. The exchange-correlation energy

is calculated for many densities using monte-carlo calculations, these values are fitted

for the use of LDA[99, 130]. In the LDA the exchange-correlation energy is expressed as

follows[132].

EXC [n↑, n↓] =
∫

d3rεunif.XC (n↑, n↓)n (3.86)

Where εunif.XC is the exchange-correlation energy for a uniform electron gas of the same

electron density n as the electron density at that point, n↑ and n↓ are the densities of

spin up and spin down electrons respectively where n is [132]

n = n↑ + n↓ (3.87)

It is very important to note the existence of the uniform density limit of the Kohn-Sham

functional and that it is in the scenario of a constant n that the exchange-correlation

energy is equal to that of a uniform electron gas[99]. In a real substance however this

will never be exactly the case, but in materials where the n is slowly varying the LDA

induces very small errors[99, 132].
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3.5.3 Generalised-Gradient Approximation

The next rung on the ladder above the LDA is the generalised-gradient approximation

(GGA hereafter) which can be represented by the following equation[132].

EXC [n↑, n↓] =
∫

d3rf(n↑, n↓,∇n↑,∇n↓) (3.88)

Whilst in theory there are many different schemes which can be used in the LDA

they are all essentially the same, as whilst the formalisms may fit the values of εunif.XC dif-

ferently all will do so accurately; hence they can be considered essentially equivalent[99].

This is not true of the GGA as ∇n↑ and ∇n↓ can be implemented into the function

f(n↑, n↓,∇n↑,∇n↓) in a large number of ways leading to distinct GGA formalisms[99,

132]. For solid continuous substances the two most popular formalisms are the Perdew-

Wang (PW-91 hereafter) formalism first proposed in 1991 and the Perdew-Berke-Ezerhof

formalism (PBE hereafter) proposed 5 years later[99, 132, 133].

The formalism used for the research in this thesis is the PBE. The reasoning for this

is that this research demands the higher accuracy and ability to function in scenarios of

more rapidly varying n of utilising a GGA formalism over the LDA[99, 130, 132]; also

PBE offers a large number of benefits over the PW-91[132]. Benefits include correct

behaviour under uniform scaling in addition to a smoother potential, by only making

very small sacrifices such as the correct behaviour under very specific limits[132].

It is necessary at this juncture to introduce the concept of the exchange-correlation

hole; which arises due to the fact that in the quantum mechanical description of electrons
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versus the solely classical description, the electrons are subject to the Pauli exclusion

principle in addition to a non-classical Coulomb repulsion. This results in each electron

generating a “hole” of density around itself[132, 133]. The PW-91 was generated by

taking the second order density-gradient from this hole in a system of slowly varying

electron density and removing spurious long range parts to satisfy various sum rules on

the exact hole[132, 133]. This function is then fitted to satisfy as many other conditions

as possible[132, 133]. This approach was successful but also has many flaws such as

the over-parametrisation of f(n↑, n↓,∇n↑,∇n↓), also said parameters do not flawlessly

connect generating fluctuations in the functions[132]. It is to be noted that several

properties of the hole are reproduced exactly in both PW-91 and PBE[99].

The PBE functional was generated in order to streamline the derivation and reduce

the number of conditions to be followed to only those that will significantly impact the

energy. First it is necessary to split EXC into its two components†[132].

EXC = EX + EC (3.89)

where EX and EC are the contributions from exchange and correlation respectively.

EC [n↑, n↓] =
∫

d3rn[εunif.C (rs, ζ) +H(rs, ζ, t)] (3.90)

Where H(rs, ζ, t) is called the gradient contribution, ζ =
(n↑−n↓)

n is the relative spin-

†Other than if explicitly stated for the remainder of this subsection the source for the information in
this subsection can be assumed to from reference[132].
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polarisation, rs is the local Seitz radius, ks is the Thomas-Fermi screening wave number,

and t = |∇n|
2φ(ζ)ksn

is a dimensionless form of the density gradient where

φ(ζ) =
[(1 + ζ)

2
3 + (1− ζ)

2
3 ]

2
(3.91)

Evaluating H in the following 2 limits and a condition i) t → 0 where H → φ3t2e4meβ
h̄2

(note β is a constant) ii) t → ∞ where H → −εunif.c causing the effects of correlation

to disappear iii) If EC [n↑, n↓] is assumed to scale linearly as density is increased all the

way up to high density, (3.90) must scale to a constant and H → φ3e4meγ ln(t2)

h̄2 where

γ = 1−ln(2)
π2 .

This allows H(rs, ζ, t) to be expressed as follows.

H(rs, ζ, t) =
e4me

h̄2
γφ3 ln 1 +

β

γ
t2[

1 +At2

1 +At2 +A2t4
] (3.92)

where

A =
β

γ

[
exp

−εunif.C h̄2

γφ3e4me
− 1

]−1

(3.93)

EX can now be expressed as follows,

EX =

∫
d3rεunif.X (n)FX(s)n (3.94)
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where

εunif.X =
3e2kF
4π

(3.95)

where kF = 31/2π1/3

41/3rs
. Subjecting EX the the following 4 conditions i) in order to recover

the correct behaviour in a uniform electron gas FX(0) = 1 ii) it must obey the spin

scaling relationship iii) As S → 0 FX(s) → 1 + βπ2

3 s2 iv) the Lieb-Oxford bound must

be satisfied.

EX [n↑, n↓] ≥ EXC [n↑, n↓] ≥ −CLOe
2
∫

d3rn4/3 (3.96)

The Lieb-Oxford bound concerns the repulsive Coulomb energy and the difference be-

tween it and the derivation assuming particle independence (no exchange and correla-

tion), the right hand term is the lower bound for this difference[134, 135]. The constant

CLO is set at 1.679 in this case, this value is to 2 decimal places the same as pro-

posed by Lieb[135] 1.68 (later improved to 1.6358 in by [136]) this value means the

above equation will hold regardless of the number of electrons (note that further op-

timization can be achieved by specifying the number of electrons or applying the low

density limit) whilst being tightly implemented (note lower value of CLO results in tighter

implementation)[135, 137]. FX(S) can be constructed to obey these conditions.

FX(S) = 1 + κ− κ

1 + s2μ/κ
(3.97)
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where κ = 0.804; finally this allows EXC [n↑, n↓] to be expressed as follows

EXC [n↑, n↓] =
∫

d3rnεunif.X (n)FXC(rs, ζ, s). (3.98)

Where FXC(rs, ζ, s) is the enhancement factor, where the LDA is recovered when s = 0.

It is also important to note that of the two effects, exchange and correlation; in most

practical circumstances exchange is dominant and that correlation only begins to have

an equal or greater effect than exchange at very low densities.

3.6 Iterative Algorithms

It was mentioned previously that the quantum many-body problem is in all practical

cases solved iteratively not analytically. In order to do this with any computational effi-

ciency, algorithms must be employed. In order to perform a static calculation only one

algorithm is needed; one to find for a set of atomic positions, electron density and more

importantly its corresponding free energy. However in calculations involving relaxation

of atomic positions, after each determination of the free energy the atomic positions

must be adjusted and the free energy determined again until satisfactory convergence is

achieved. The algorithm used for atomic position relaxation is the conjugate-gradient

algorithm (an alternative the quasi-Newton algorithm also exists, consult [99] for fur-

ther details). There are two separate schemes used for determination of free energy

the residual minimisation method-direct inversion in the iterative subspace (RMM-DIIS

hereafter) scheme and the blocked davidson Scheme (BD hereafter).
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3.6.1 Atomic Positions

Conjugate-Gradient Scheme

The conjugate-gradient scheme can be expressed in words in the following way. Initially

relaxation of the ions is performed along the direction of the steepest descent which is the

direction of the calculated forces and the stress tensor[129]. Following this the energy

is recalculated at a position along the direction of steepest descent, this is called the

trial step[129]. Utilising the following pieces of information the change of total energy

and change in forces a minimum energy along this direction can be approximated by

selecting a form of the curve (either quadratic or cubic)[129]. From here a corrector

step is then carried out, this is then checked by re-evaluating the energy and forces and

assessing whether there are significant force components parallel to the previous search

direction, if so more corrector steps are carried out until this is no longer the case[129].

In order to express the conjugate-gradient method mathematically it is necessary to

first define a set of linear algebraic equations[138].

a00x0 + a01x1 + a02x2 + ...+ a0,N−1xN−1 = b0 (3.99)

a10x0 + a11x1 + a12x2 + ...+ a1,N−1xN−1 = b1 (3.100)

.............................................................................

aM−1,0x0 + aM−1,1x1 + aM−1,2x2 + ...+ aM−1,N−1xN−1 = bM−1 (3.101)
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This series of equations can be expressed in matrix form as follows[138].

A · x = b (3.102)

Considering for an N-dimensional point P that can be defined as the origin of the co-

ordinate system with coordinates x any function can be approximated using a Taylor

series[138].

f(x) ≈ c− b · x+ 1

2
x ·A · x (3.103)

where c = f(P ). Now defining an arbitrary starting vector ĝ0 and defining ĥ0 = ĝ0, two

series of vectors can now be defined to satisfy the conjugacy and orthogonality conditions

ĝi+1 = ĝi − λiA · ĥi (3.104)

ĥi+1 = ĝi+1 −Υiĥi (3.105)

where i is a positive integer or zero[138]: λi and Υi are defined as follows.

λi =
ĝi · ĥi

ĥi ·A · ĥi
(3.106)

Υi =
ĝi+1 · ĝi+1

ĝi · ĝi (3.107)

It initially appears that the matrix A is a key piece of information in order to produce

the necessary conjugate directions ĥi, however this is not true as said directions can be
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deduced without any knowledge of A by the following reasoning[138]. Providing we have

the derivative of c at an arbitrary point i the following is true ĝi = −∇f(Pi) assuming

f is of the correct form (3.103)[138]. Moving in a direction hi to the local minimum

of f at a point defined as Pi+1 and setting ĝi+1 = −∇f(Pi+1) reproduces the correct

vector from (3.104)[138]. One important nuance with regard to the conjugate-gradient

method is the fact that there is only a limited amount of conjugate directions that can

be calculated[99, 138]. When said calculation reaches m ≤ N steps there are no new

conjugate directions to the vectors that already exist, because in an N-dimensional space

we can only make a vector orthogonal to at most N-1 other vectors, hence the process

will have to be restarted beyond this point[99, 138].

3.6.2 Electron Density

RMM-DIIS and BD have a significant amount in common but iterate slightly differently†.

They are both techniques employed to approximate the relevant solutions to the general

hermitian eigenproblem.

H |a〉 = λS |a〉 (3.108)

Where H is the Hermitian matrix, S is the overlap matrix, λ and |a〉 are an eigenvalue

and eigenvector respectively. The need for iterative problem solving in electron density

stems from the fact that in order to diagonalise H would require the computer to have

†Other than if explicitly stated the source for the information in this subsection can be assumed to
from reference[139].
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full random access to all matrix elements, and the computational effort necessary scales

as N3 (where iterative techniques scale as N2) where N is the number of rows and

columns. One such technique for full matrix diagonalisation is the Choleski-Householder

technique.

In general only a small number of eigenvectors n, are necessary to calculate to deter-

mine ground state properties. All iterative techniques all utilize 3 sets of N dimensional

vectors i) the basis set |θi〉 where i = 1, ..., N ii) the expansion set |bj〉 where j = 1, ..., Nb

and iii) the complete set |xi〉 where j = 1, ..., N . The basis set is a group of vectors used

in the computation if the eigenstates, the expansion set is a set of vectors which exist

inside a small section of the Hilbert space where all important eigenstates can be re-

produced from: and the complete set, where any vector can be reproduced in terms of

this set, and the full Hilbert space is spanned. Each iterative technique is noted for the

different choice of complete and expansion sets.

The general outline of an iterative calculation is as follows a small section of the

Hermitian matrix H0 of size N0 ×N0 which defines the zero order problem is selected.

This matrix is then fully diagonalised (for example by using the Choleski-Householder

technique). This provides a good starting point for later iterations. How iteration is

done beyond this is to utilise a Newton-Nesbet step resulting in a residual vector |δA〉.

|δA〉 = −
∑
i

′ 〈xi|R〉 |xi〉
〈xi|H − EapS |xi〉 (3.109)
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where R is used to measure to what extent the approximate vector |Aap〉 is incorrect

R =

( 〈R|R〉
〈Aap|S|Aap〉

)1/2

(3.110)

Note the ′ in (3.109) is used to denote the a cut-off δ which is typically 10ryd but results

are scarcely sensitive of it. |δA〉 can now be added to the approximate eigenvector

in question such that it more accurately reflects the true eigenvector. Note that this

analysis requires use of the diagonal approximation which cancels a significant amount

of terms. The two techniques in question are both basis expansion techniques, meaning

that speed of convergence is improved, as after each iteration new vectors are added to

the expansion set each iteration. Where the techniques differ is in there implementation

of |xi〉 and the way in which vectors are added to the expansion set.

Blocked Davidson

BD is an enhanced version of the Davidson algorithm with the main improvement being

that many eigenvectors are derived at once. The BD utilises |ei〉 to represent |xi〉, where

|ei〉 is a row of vectors all zero except for the ith position which contains a 1. The |bj〉

is defined in BD as follows. In each iteration the following vectors are added to |bj〉

[
|δAk〉 −

N0+k−1∑
j=1

〈bj |δAk|bj〉
]
k=1,...,m

(3.111)

where m new vectors are added each iteration where the k’s represent eigenvectors of

N0 ×N0. The addition of these vectors allows convergence to be hastened significantly.
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RMM-DIIS

The RMM-DIIS algorithm represents |xi〉 as follows.

|xi〉 = [|a0j 〉 , j = 1, ..., N0] + [|ej〉 j = N0 + 1, ..., N ], (3.112)

Where p is the iteration number and |a0j 〉 is the set of eigenvectors derived from di-

agonalisation of H0. The rationale behind this is that the aforementioned diagonal

approximation, ceases to be an approximation if |xi〉 contains the exact eigenvectors of

H0. Noting the above it is possible to improve the selection of the complete set |ej〉 by

i) augmenting |a0j 〉 with zeros to ensure that there are N dimensions and ii) adding unit

vectors to make sure there are N vectors. Post to each iteration the following vector

|Ap
j 〉 are added to |bj〉. This is important as it means that information from the entire

iteration history is stored and utilised in |bj〉. The RMM-DIIS technique performs a

step in each iteration where 2 new matrices of dimensions (p + 1) × (p + 1) (note very

small matrices) are defined and solved by Choleski-Householder. The addition of this

step significantly improves the speed of convergence.

3.7 Basis Sets

There is an added issue which arises when attempting to solve the Kohn-Sham single

electron wave functions ψi computationally, and that is that the Kohn-Sham orbitals

associated with them φm (wherem simply counts the number of orbitals) are in actuality

arbitrary continuous functions which cannot be expressed on a computer[99]. This is
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where basis sets become necessary. A basis set is a series of functions that when added

together form an approximation of the true Kohn-Sham orbitals[119, 120]. There are

in general 3 properties that are necessary for a useful basis set i) efficiency ii) no bias

iii) simplicity[119, 120]. Efficiency in this context means that only a limited number

of functions are needed to represent the φm[119, 120]. No bias means that there is

no mechanism within the functions to drive the φm to a preconceived result (such as

a basis set derived from a very specific problem)[119, 120]. Simplicity ensures that

implementation within various programs will not be excessively difficult[119, 120]. The

general form of expressing φm as a function of a basis set is as follows[119].

φm =
Q∑

q=1

cqmφq (3.113)

where cqm are constants, φq are the waves of the basis set and Q is the limit to which

the basis set is truncated (this could in principle be infinity corresponding to the exact

solutions of φm, but obviously this is not computationally possible)[119]. The proceeding

subsections will discuss the plane-wave, augmented plane-wave (APW hereafter) basis

sets, the successors of the latter the linear augmented plane-wave (LAPW hereafter)

and APW with local orbitals (APW+lo hereafter). Projector augmented wave (PAW

hereafter) is the basis set used in this research and will also be outlined. Of course these

are not the only possible basis sets that can be used in a DFT calculation, for example

there exists the local atomic orbital basis set. This basis set has a prominent track record

at modelling many situations including surfaces[140, 141] and molecules[142, 143] but
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not for its use in materials calculations, hence will not be covered in further detail here.

3.7.1 Plane-Wave Basis Set

The plane-wave basis set fits the requirements of simplicity and no bias[119, 120, 144]. It

is constructed by use of the Bloch theorem’s solution for the wavefunction of an electron

in a periodic potential[99, 119, 125].

Ψk̂(r̂) = uk̂(r̂)e
ik̂·r̂ (3.114)

where uk̂(r̂) is a function with the same periodicity as the lattice and k̂ corresponds to

any vector in reciprocal space[99, 120, 125]. Noting that any k̂ can be rewritten as

k̂ = ĝ + K̂ (3.115)

Where ĝ is a vector in the first-BZ and K̂ is a vector which moves between two reciprocal

lattice points[119, 120]. This means (3.114) can be rewritten[119].

Ψk̂(r̂) = uk̂(r̂)e
iK̂·r̂eiĝ·r̂ (3.116)

Note the second factor also has the periodicity of the lattice[119]. For convenience here

an alternate labelling scheme will be introduced, n (the band index) will depict the

number of the BZ [119]. It is noted that n and ĝ contain the same information as k̂[119].
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This allows the expression of the basis set as follows[99, 119, 120].

φn
ĝ =

∑
K̂

ei(K̂+ĝ)·r̂cn,ĝ
K̂

(3.117)

As alluded to in the previous section summing over all possible K̂ vectors would result

in an infinite basis set[99, 119]. It is noted that the free electron energy has the following

relationship with the magnitude of K̂[99, 119].

E =
h̄2K2

2me
(3.118)

Hence cut-off can be thought of in terms of energy(Ecut−off )[99, 119]. Employing a plane-

wave basis set has an issue, that in order to accurately account for the sharp gradient

change in the core region a very high number of plane-waves would be necessary (up to

K with a period of an order of magnitude smaller than the core region)[99, 119, 120].

This results in such a low efficiency, that calculations would be difficult or sometimes

impossible to be performed even on a supercomputer[99, 119]. It is noted however that

the core properties, due to shielding are seldom affected by the chemistry of the structure

in which the atom exists[119]. Hence it can be assumed that they behave the same as

in a free atom[99, 119, 120].

This enables the use of pseudopotentials where the potential in the core region is

replaced such as to result in a smooth wavefunction in the core region[99, 119, 120](it is

to be noted that it is impossible to assess the full wave function unlike linear methods

mentioned in proceeding subsections[144]). When a pseudopotential is constructed it is
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constructed as to obey the Pauli exclusion principle, meaning that the effective potential

the electrons are subject to can be quite small due to cancelling of the crystal potential

by the atomic functions[125]. The quality of pseudopotentials are determined by two

metrics i) transferability and ii) softness[119]. Transferability means the ability to employ

it in a series of different environments molecule, solid etc. whilst softness refers to how

many plane-waves are required to utilise it[119]. It is noted that this technique struggles

when dealing with certain transition metals and first row metals as pseudopotentials

must be hardened in these cases and lose transferability[144]. Vanderbilt introduced

what are known as ulutrasoft psedopotential which resolved many of these issues[144].

3.7.2 Augmented Plane-Wave (APW) Method

The APWmethod attempts to remedy the issue of low efficiency for plane-wave basis sets

in an alternate way other than by the addition of a pseudopotential[119, 120]. The way

it achieves this is by splitting each wave of the basis set into multiple parts[119, 120].

Inside an atomic core the wave is expressed as an atomic function and outside of an

atomic core it is expressed as a standard plane-wave[119, 120]. To distinguish between

these two regions a sphere is drawn around each atom and the inside is labelled the

muffin-tin region, outside the sphere is called the interstitial region[119, 120]. Hence a

generic APW can be defined as follows[119].

φĝ

K̂
(r̂, E) =

1

V 1/2
ei(ĝ+K̂)·r̂ if r̂ ε I (3.119)

φĝ

K̂
(r̂, E) =

∑
l,n,ĝ

A
α(ĝ+K̂)
l,n,ĝ uαl (r

′, E)Y l
n,ĝ(r̂

′) if r̂ ε Rα (3.120)
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Where V is the unit cell volume, I corresponds to the interstitial region, Rα is the radius

of the muffin-tin region, r̂′ = r̂ − r̂α is the position relative to the centre of a muffin-tin

region[119]. The index α corresponds to a free atom, and E corresponds to a specific

energy[119]. Y l
n,ĝ(r̂

′) are a selection of spherical harmonics and uαl (r
′, E) are radial solu-

tions to the Schrödinger equation at a series of fixed energies and orthogonalised to the

core states[119]. It is important that φĝ

K̂
(r̂, E) is continuous hence it must be made that

all across the surface of the muffin-tin region the two equations must be equal to each

other (note gradient can be different)[119, 120]. A
α(ĝ+K̂)
l,n,ĝ is constructed for this purpose,

however this condition cannot be adhered to exactly, as there are in theory an infinite

number of terms l = 0, ...,∞ and hence there needs to be a truncation[119]. l is typi-

cally truncated at RαKcut−off = lcut−off , exceeding this can however result in unstable

behaviour at the surface of the muffin-tin zone[119]. The APW method requires signifi-

cantly fewer waves than the standard plane-wave method[119]. However the calculation

overall is much slower, due to the fact that only one eigenvalue is determined at a time

(because E must be guessed as equal to the energy of an eigenstate) whereas in the plane-

wave method multiple eigenstates are determined in each diagonalisation[119, 120, 144].

The APW basis set alone is not used in practical calculations any more due to this;

either one of LAPW or APW+lo are used instead[119].

3.7.3 Augmented Plane-Wave with Local Orbitals (APW+lo) Method

The APW+lo removes the issue with the energy dependence of the basis set[119, 120].

The first step is to reproduce a series of APWs but this time E is set to a series of

98



fixed energies Eα
1,l[119, 120]. The next step is to introduce local orbitals φ

lm
α,lo which are

defined as follows[119].

φlm
α,lo(r̂) = 0 if r̂ ε I or r̂ ε Rα (3.121)

φlm
α,lo(r̂) = Aα,lo

l,n,ĝu
α
l (r

′, Eα
1,l) +Bα,lo

l,n,ĝu̇
α
l (r

′, Eα
1,l) if r̂ ε Fα (3.122)

Where Fα refers to the muffin-tin region of the atom which the lo corresponds[119].

The exact procedure for producing the coefficients Aα,lo
l,n,ĝ, and Bα,lo

l,n,ĝ will not be detailed

here but there exists a requirement that the lo is equal to zero at the surface of the

muffin-tin sphere[119, 120]. If this is adhered to the value at the surface of the muffin-

tin region for the lo and APW will be continuous but the values of their slopes will not

be[119]. An APW+lo calculation requires a basis set size of around that of a pure APW

calculation[119, 120]. But multiple eigenstates are recovered per diagonalisation so the

calculation will be significantly faster[119].

3.7.4 Linear Augmented Plane-Wave (LAPW) Method

LAPW uses an alternate technique to eliminate energy dependence of the basis set by

use of an additional quantity Bα,ĝ+K̂
l,n,g [119]. This is necessary due to the fact that a Taylor

series is used to expand uαl (r
′, E0) (where E0 is the original guess of the eigenstate) to

obtain values of uαl (r
′, ε) at energies close to it, however the exact quantity E0 − ε is

not exactly known[119]. The process can be much improved by defining, instead of one

E0 a series of them Eα
1,l at the centres of relevant bands[119]. This leads to the final
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expression of the LAPW[119].

φĝ

K̂
(r̂, E) =

1

V 1/2
ei(ĝ+K̂)·r̂ if r̂ ε I (3.123)

φĝ

K̂
(r̂, E) =

∑
l,n,ĝ

(
A

α(ĝ+K̂)
l,n,ĝ uαl (r

′, E) +B
α(ĝ+K̂)
l,n,ĝ u̇αl (r

′, E)
)
Y l
n,ĝ(r̂

′) if r̂ ε Rα (3.124)

LAPW has much higher efficiency than the plane-wave basis set but the calculation speed

is slowed down by additional steps in the calculation, hence the speed is comparable[119].

The LAPW method is known for its ability to perform calculations efficiently for tran-

sition metals, it is also known for high accuracy, however it struggles in cases of broad

valence bands[119, 120].

3.7.5 Linear Augmented Plane-Wave with local orbitals (LAPW+LO) Method

LAPW can also be aided by the use of local orbitals (LO) (note a different definition

from the local orbitals in APW+lo) which are designed to account accurately for semi-

core states[119, 120]. States which have some degree of influence outside the muffin-tin

region, but do not have a strong presence there (valence states), or are contained entirely

within the core (core states)[119, 120, 144]. It is for these states that local orbitals are

defined as follows[119].

φlm
α,LO(r̂) = 0 if r̂ ε I or r̂ ε Rα (3.125)

φlm
α,LO(r̂) =

(
Aα,LO

l,n,ĝ uαl (r
′, Eα

1,l) +Bα,LO
l,n,ĝ u̇αl (r

′, Eα
1,l) + ...
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Cα,LO
l,n,ĝ u̇αl (r

′, Eα
1,l)

)
Y l
n,ĝ(r̂

′) if r̂ ε Fα (3.126)

Again the specifics behind the 3 coefficients Aα,LO
l,n,ĝ ,B

α,LO
l,n,ĝ and Cα,LO

l,n,ĝ will not be detailed.

A local orbital only has a non-zero value in the muffin-tin region of the atom in which it

exists[119]. It is also important to note that there is no ĝ or K̂ in the LOs in other words

they have no relation to the interstitial region[119, 120]. Employing LOs only results in

an expansion of the basis set size by a few LAPWs but is in general worth the small

addition in computational time for the increased accuracy that LOs provide[119, 120].

3.7.6 Projector Augmented Wave (PAW) method

The purpose of the PAW method was to form a hybrid of the LAPW and plane-wave

with pseudopotential approaches†. The PAW basis set is recognised for its high efficiency

and is unbiased[119, 144]. The first step in the generation of the PAW basis set is to

take the states which are orthogonal to core states which exist in a Hilbert space and

transform these states into a pseudo-Hilbert space (PS hereafter). The main point of this

is convenience allowing complex Kohn-Sham (KS hereafter) wavefunctions to be trans-

formed into computationally tractable PS wavefunctions. Utilizing these wavefunctions

expectation values of certain properties can be deduced (note ˜ is used to reference the

PS and wavefunctions thereof)

〈A〉 = 〈Ψ̃|Ã|Ψ̃〉 (3.127)

†Other than if explicitly stated the source for the information in this subsection can be assumed to
be from reference[144].

101



where Ψ is a KS wavefunction A is an operator which corresponds to a property, and

Ã = T †AT (3.128)

where T transforms PS waves into KS waves. By analogy to the muffin-tin regions of

APW type methods the PAWmethod used a similar concept called augmentation spheres

(ΩR) around each atom where the core region exists. In the PAW method outside of

said augmentation regions KS and PS wavefunctions must be equal. It is now possible

to express T as a sum of contributions from the augmentation regions of the atoms Tα.

T = 1 +
∑
α

Tα (3.129)

At this juncture a series of partial PS waves |φi〉 must be defined such that the series

of Tα can also be defined. A natural fit for these waves are the radial solutions to the

Schrödinger equation for an isolated atom (these waves can if necessary be orthogonalised

to the core states). A transformation between a PS and KS partial wave can now be

expressed within ΩR as follows (it should be noted that index i in this context represents

angular momentum quantum numbers, α and n an index to label partial waves which

are different but have the same α and angular momentum).

|φi〉 = (1 + Tα) |φ̃i〉 (3.130)
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Expressing |φ̃i〉 as a series of partial waves

|Ψ̃〉 =
∑
i

ci |φ̃i〉ΩR (3.131)

The following also holds true

T |Ψ̃〉 = |Ψ〉 =
∑
i

ci |φi〉 (3.132)

Note that the coefficients ci are the same in both (3.131) and (3.132). It is required that

T be a linear transformation, the deduction that can now be made is that the coefficients

ci must be linear functionals of the PS wavefunctions.

ci = 〈p̃i|Ψ̃〉 (3.133)

Where 〈p̃i| are classified as projector functions and that one exists for every single φ̃i.

Projector functions are radial functions times spherical harmonics which only exist in

the ΩR and exhibit the property that

δij = 〈p̃i|φ̃j〉 (3.134)
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The conclusion of the above mathematical analysis is an expression of the PAW basis

set.

|Ψ〉 = |Ψ̃〉+
∑
i

(|φi〉 − |φ̃i〉) 〈p̃i|Ψ̃〉 (3.135)

Similarly to the plane-wave and APW based methods truncation by the use of Ecut−off ,

in addition to this the truncation must maintain the one to one relationship between KS

and PS waves by truncating the two in the same way (this is called additive augmentation

which does not impact the completeness of the basis set). The errors introduced for

total energy via truncation are typically small due to the fact that the operator used

is quasilocal and that the one centre expansions for the KS and PS wavefunctions are

typically largest in opposite spacial regions (note that difference between KS and PS

waves decline at high energies due to the fact that electrons become less effected by the

potential at high energies).

The PAW method is known to be able to treat first row and transition elements

effectively as the LAPWmethod can. It is to be noted that the frozen core approximation

is employed in the PAW approach (negating the necessity of projector functions for the

core states) opting to use the core states from an isolated atom. Note however that in

this implementation some mixing of core states due to changing potential is allowed.

There is a plethora of ways to deduce the projector functions and KS and PS waves-

functions, but the way Blöchl calculates them is as follows. KS wavefunctions are calcu-

lated by first radially integrating the Schrödinger equation for the self consistent atomic
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potential at a set of energies ε1i the first of which is determined as the lowest bound va-

lence state. The rest of the energies are determined using scattering properties, with the

number of waves determined to be sufficient when scattering properties are adequately

determined (note that systems of generation are insensitive to chosen energies due to

whatever the choice a similar region of the Hilbert space will be spanned by the KS

waves).

The PS waves can be deduced by first defining PS potential corresponding to each

of the KS waves.

ωi(r) = ṽat(r) + cik(r) (3.136)

where k(r) is called the cut-off function which has coefficients selected to match as well

as possible the PS and KS waves outside of ΩR and ṽat is a self consistent atomic poten-

tial. The PS waves are then calculated as a solution to the non-relativistic Schrödinger

equation

(−1/2∇2 + ωi(r)− ε1i ) |φ̃i〉 = 0 (3.137)

The projector functions can be produced from the following equation.

|p̃i〉 = (−1/2∇2 + ṽat − ε1i ) |φ̃i〉 (3.138)

Where the condition of (3.134) is imposed iteratively on each wave. It is important to
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note that some of the modifications to these techniques facilitate the usage of a larger

augmentation region, the inclusion of unbound states and relaxation of the norm conser-

vation condition. Note extensions to this method exist such as a scheme where the partial

waves are used to adjust the potential and the relaxation of the frozen core approxima-

tion (the latter can be done by mixing the types of states and imposing orthogonality).
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Chapter 4

Theoretical Basis: High Temperature

Calculations

4.1 Introduction

The ab initio approach has many advantages such as high accuracy and the ability to

simulate and assess structures which are metastable or unstable and scenarios which

would be hard or impossible to replicate experimentally[99, 101]. A substantial issue

with ab initio calculations is that they are only operable at absolute zero[101]. This

problem is enhanced in importance for superalloys due to their employment at high

temperatures. In order to determine how thermal expansion impacts the planar fault

energies the quasiharmonic Debye model (QHDM hereafter) can be employed[101]. M.

S. Titus[34] outlined this in his doctoral thesis in 2015 mentioning there were no studies

into changes in fault energies at high temperatures and that such research was necessary.
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The first study of this in γ′ binary systems would later be conducted by Breidi, Allen

and Mottura in 2017[101] and was later expanded on[145, 146]. An explanation of the

QHDM as well as limitations and some details of more advanced techniques for the

purpose of comparison will be outlined in the following sections.

4.2 The Quasiharmonic Debye Model

The free energy of a system which is subject to a constant temperature T and a constant

hydrostatic pressure P can be expressed as a non-equilbrium Gibbs function G∗ (where

the asterisk denotes non-equilibrium)[147, 148].

G∗(x;P, T ) = E(x) + PV (x) +Avib(x;T ) (4.1)

Where V is the volume, x is the configuration vector; which is composed of all the

quantities needed to describe uniquely the crystal structure i.e. lattice parameters and

atomic positions, E is the cohesive energy (the energy of the atoms at 0K in the given

structure vs the energy with their components spaced infinitely far apart) and Avib

is the vibrational Helmholtz free energy (the additional energy induced through lattice

vibrations)[101, 147, 148]. As mentioned previously the goal of any system is to minimise

its free energy; hence reaching equilibrium, thus the structure which achieves this is

called the equilibrium state[147]. It is the goal of this section to derive the equation

of state (EOS hereafter) V = f(P, T ) of the system[4, 147]. It is to be noted that

in real substances there will be additional terms to (4.1) for the energy of defects and
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the electronic contribution to the energy but they are assumed in this approach to be

small[148, 149]. The quasiharmonic approximation is defined as follows; the harmonic

approximation assumes that the vibration of each atom is impacted only by neighbouring

atoms (effects of higher order neighbours being called anharmonic effects) meaning the

system behaves essentially as a series of harmonic oscillators[150, 151]. However the

harmonic approximation has no mechanism for vibrational frequencies ω to vary with V ;

hence fails to account for any form of thermal expansion, in addition to other unphysical

behaviours[147, 148]. To simply reintroduce anharmonicity the quasiharmonic approach

assumes harmonic behaviour even in non-equilibrium geometries[147, 148].

The third term in (4.1) can be partitioned into two terms by application of the

quasiharmonic approximation[147, 149].

Avib(x;T ) =

∫ ∞

0

[
h̄ · ω
2

+ kT · ln(1− e
−h̄·ω
kT )

]
g(x;ω)dω (4.2)

Where g is the vibrational (phonon) density of states[147, 149]. The first term in (4.2)

is called the zero point energy and it arises from quantum mechanical uncertainty in

the positions of atoms resulting in the presence of phonons even at 0K, the second term

arises from the production of phonons as temperature increases. g is a very complex

quantity that in order to deduce in full detail requires vast computational expense with

calculations in a whole host of supercell configurations[149]. g for any substance has

its own nuances and features due to its dependence on interatomic force constants (see

figure 4.1). In the Debye model g is deduced by accounting for only long wavelength
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modes, where all of the atoms can be seen to move in phase; resulting in the dispersion

relation[125, 150].

ω = vsk̂ (4.3)

where vs is the velocity of sound in the material. It is the combination of the aforemen-

tioned quasiharmonicity with this aspect of the Debye model which combine to form the

QHDM. This results in the following density of states in 3 dimensions[125, 150].

g(ω) =
3V ω2

2π2v3s
(4.4)

Note the multiplication by 3 is due to the fact that each mode can be seen to account for

one longitudinal and two transverse waves (assuming the same sound velocity for both

types)[125, 150].vs can be expressed as the average velocity of transverse and longitudinal

sound in an isotropic solid[152].

vs =

√
BsV

M
f(σ) (4.5)

Where Bs is the adiabatic bulk modulus, f(σ) is a function of Poisson ratio and M is

the molecular mass per formula unit[147, 152]. f(σ) will be defined later in this section,

the reader should assume for now that it is known.
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Figure 4.1: g vs ω, where the dotted line is the Debye approximation and the solid line
is g in Cu derived from neutron scattering data. Note the area under both curves is
identical and ωD is the Debye frequency. (taken from [125]).

It is now necessary to introduce the Debye frequency ωD, it exists primarily as a

limit to the following integral

∫ ωD

0
g(ω)dω = 3NA (4.6)

where NA is the number of atoms in the system, making 3NA the number of vibrational

modes in the system[125]. This defines ωD as the upper frequency limit where all of the

modes are active[125]. Now that ωD has been introduced substituting (4.4) into (4.6)

and integrating yields the following result

ωD = vs

(
6π2NA

V

) 1
3

(4.7)

hence ωD has now been deduced[125]. Equation (4.2) can further be simplified by intro-
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ducing the Debye temperature θD (the temperature which corresponds to ωD)[125, 150]

θD =
h̄ωD

k
(4.8)

in addition to the dimensionless variable x = h̄ω
kT

Avib(θD, T ) = nkBT

[
9θD
8T

+ 3kT ln(1− e
−θD
T )−D

(
θD
T

)]
. (4.9)

The Debye integral D( θDT ) is as follows

D

(
θD
T

)
= 3

(
T

θD

)3 ∫ θD
T

0

x3

ex − 1
dx (4.10)

θD can be computed as follows in the instance of an isotropic solid (note more ad-

vanced modelling would require calculation of average sound velocities of longitudinal

and transverse waves at each volume)[148].

θD =
h̄

kB
[6π2V

1
2n]

1
3 f(σ)

√
BS

M
(4.11)

Where n is the number of atoms per formula unit. BS can be simplified as the static

compressibility; due to the fact that it measures the compressibility for fixed quantum

state populations[147].

BS � BStatic(x) � V

(
d2E(V )

d2V

)
(4.12)
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This introduces an important approximation and that is that vibrational effects are

isotropic; meaning that changes over x are equivalent to changes over V (this correspon-

dence usually holds well under pressure conditions)[147]. f(σ) is given as follows, this

term accounting for the appearance of transverse waves[152].

f(σ) =

[
3

[(
2

3

1 + σ

1− 2σ

)3/2

+

(
1

3

1 + σ

1− σ

)3/2]−1]1/3
(4.13)

The selection of the value of σ is of some importance, either a specifically calculated or

experimental value can be used, but typically σ = 0.25 (the value of a Cauchy solid is

used)[148]. This allows G∗ to be expressed as follows

G∗(V ;P, T ) = E(V ) + PV +Avib(θ(V );T ) (4.14)

In this equation E depends on V directly whilst, θ does so indirectly by alterations in

vibrational frequencies[101]. The EOS is now able to be deduced simply by minimising

(4.14) under different pressure and temperature conditions[147].

(
δG∗(V ;P, T )

δV

)
P,T

= 0 (4.15)

Note there is a large array of thermodynamic quantities that can be deduced using this

model for example heat capacity and entropy[147, 148].
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4.3 More Advanced Models

One of the more advanced models is the Quasiharmonic approach (QHA), as the name

implies the Debye aspect is removed opting for the full g or a mesh of phonon frequen-

cies at each relevant volume. As mentioned previously the full g requires a large degree

of computational expense to calculate. The approximation of g however is not the key

driver of errors rather the treatment of quasiharmonicity is[148]. An improvement to the

QHDM is the Debye-Grünisen model which remedies errors in the treatment of quasi-

harmonicity as follows. The QHDM assumes that σ has no variation with volume (and

by extension temperature)[148]. In the Debye-Grünisen model θD varies as follows[148].

θD(V ) = θD(V0)
(BS/B0)

a

(V/V0)b
(4.16)

Where B0 is the static equilibrium bulk modulus and V0 is the static equilibrium vol-

ume, a and b are parameters selected from the approximation of the Grünisen ratio

JGR. Example values are a = −1/6 and b = 1/2 but there are other values present in

literature[148].

JGR = a− b
d ln(BS)

d ln(V )
(4.17)

At this point it is important to introduce the concept of optical and acoustical modes.

Optical modes occur in the scenario when there are two or more atoms per primitive

basis, figure 4.2 is a diagram depicting a transverse optical and transverse acoustical
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mode (branch)[150].

Figure 4.2: Diagram depicting a transverse optical and transverse acoustical mode (taken
from [150]).

This results in the dispersion curves displayed in figure 4.3. Note that unlike (4.3),

high wavelength modes are included resulting in the curves levelling off. This is due

to the wavelength becoming comparable to the iteratomic distances causing atoms to

scatter the wave reducing velocity, and at the edge of the BZ (k̂max±π/r where r is the

distance between identical planes) result in the formation of a standing wave) see figure

4.3[125, 150].
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Figure 4.3: Dispersion curve in Germanium (two atoms per primitive basis) at 80K (T
represents transverse, L represents longitudinal, O represents optical and A represents
acoustical) (taken from [150]).

In the Debye model optical modes are modelled as acoustical, this approximation

breaks down in certain scenarios such as closely packed materials[148]. In the Debye-

Einstein model the approximation for g takes into account both optical and acoustical

branches, by using single frequencies for the optical branches and renormalising the

Debye temperature to the acoustic branches[148].

g =
9nω2

ω3
DE

if ω < ωDE (4.18)

g =
3n−3∑
j=1

δ(ω − ωj) if ω ≥ ωDE (4.19)

Where n is the number of atoms per primitive basis (3n− 3 corresponding to the num-

ber of optical modes per primitive basis) and ωDE corresponds to the Debye-Einstein
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frequency which is related to ωD as follows.

θDE =
θD
n1/3

(4.20)

The order of increasing complexity (and accuracy) of the models is as follows: QHDM,

Debye-Grünisen, Debye-Einstein and finally the QHA[148].
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Chapter 5

Methodology

5.1 First-Principles Calculations

As alluded to in chapter 3 there are a large degree of facets that go in to the process of

producing accurate first-principles calculations. These include the selection of various

algorithms and convergence testing. These factors are to be explained in the proceeding

subsections. The software used for all first-principles calculations in this research is

the Vienna ab initio simulation package (VASP hereafter). This package is used to

determine the energies and volumes in the equations (3.9-12). A point of note is that

in this research whenever a calculation is conducted involving either the D019, D024 or

HCP phases the c/a ratio is assumed to not deviate from its ideal value ensuring that

the relevent dimensions in these structures correspond respectively to the L12 and FCC

lattices[101, 145, 146]. The physical reasoning behind this assumption is that the phase

change which occurs locally after the generation of either a ISF (local change to HCP)
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or SISF (local change to D019[81]) does not exist in isolation and would be constrained

in this way, to the geometry of the underlying FCC or L12 lattice. It is possible that at

higher compositions this assumption may break down somewhat. However, instituting

ways around the use of this assumption to give way to a more advanced model would be

fraught with difficulty. As in the VASP program there is no way to relax a cell specifically

in one direction hence a large number of calculations for different c/a ratios at constant

volume would have to be undertaken (computationally intensive). Or alternatively a

single estimate proposed based off of the atomic radii could be used, which is potentially

unreliable due to magnetic effects.

5.1.1 Starting Estimates

VASP calculations require initial estimates of both the structure, volume and atomic

positions of the element, compound or alloy on which the calculation is to be performed.

In these calculations the structure is obviously already defined, the atomic positions are

always assumed to be undistorted, and the volume was either calculated by using the

relative atomic radii of the various elements in a results set, or a single reasonably sized

estimate selected for every calculation in each results set. Which of these competing

methodologies was employed seemed to have no detectable effect on the end result in

the vast majority of cases.

119



5.1.2 Convergence Testing

In order to ensure that the use of a certain k-point density (kden) (The factor in VASP

which after selection determines the number of k-points in the BZ) and Ecut−off is

resulting in accurate converged results, a convergence test is necessary. This is a process

by which a calculation of the fault energy is repeated at a series of Ecut−off s whilst

keeping kden constant and vice-versa for a small sample of the dataset. The final fault

energies are in both cases compared with the value from the most accurate calculation

of that set. The behaviour of the curves are as follows; a period of large deviations for

the more inaccurate calculations followed by a flat section. The significance of this flat

section is that it is where the results can be said to be properly converged, and the final

values of kden and Ecut−off for the whole of the data set should be taken. There is no

rigid accepted standard in the literature for how little difference is acceptable. However

it seems logical to keep the difference to no greater than a few mJ/m2. An example

convergence test graph can be seen in figure 5.1.

The relationship between kden and the number of k-points is defined according to

equations (5.1-3).

N1 = max(1, kden · |b̂1|+0.5) (5.1)

N2 = max(1, kden · |b̂2|+0.5) (5.2)

N3 = max(1, kden · |b̂3|+0.5) (5.3)

where N1, N2 and N3 are the numbers of subdivisions along each reciprocal lattice vector
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and |b̂1| |b̂2| and |b̂3| are the norms of the reciprocal lattice vectors. Note the units of

kden are Angstroms.
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Figure 5.1: Convergence testing for both kden and energy cut-off for 2 of the binary
compounds. In this case kden=60 corresponds to 4096 k-points for Ni3Au and 4913
k-points for Ni3Ti. The number of irreducible k-points in both cases is 165.

5.1.3 Algorithm Selection

Energy Minimisation:Electronic

Both of the algorithms the RMM-DIIS algorithm and the blocked Davidson algorithm

are employed in different capacities based on the nuance of the situation. It is noted in

the VASP manual that if convergence is attained the values should be identical between
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algorithms but the RMM-DIIS algorithm is more likely to fail to find convergence[129].

However the RMM-DIIS algorithm does exhibit faster performance[129] providing in-

creased utility especially where large supercells are concerned.

Energy Minimisation:Atomic Positions

The algorithm used in all calculations for the atomic positions is the conjugate-gradient

scheme (section 3.6.1). The quasi-Newton algorithm is highly efficient and converges

rapidly but has one significant drawback, the starting point of the calculation has to be

very close to the minima in question, otherwise it will fail to find convergence[129]. The

conjugate-gradient algorithm is not bound by this constraint and this is what makes it

the superior method for high throughput calculations, as it will require less microman-

agement and alleviate the need for high quality starting estimates for large datasets[129].

Another issue with these calculations is that it is possible to find local minima instead

of the desired global minima[129]. The technique for ensuring that the global minimum

is found to a high degree of confidence would be to run the calculations at a large

number of starting positions. However, for the research of this thesis which is very high

throughput this is unachievable due to computational expense.

5.1.4 SQS vs SPCM

Whilst both of these techniques are perfectly viable for the calculations conducted in

this research, the SPCM technique is selected. The reasoning behind this is that the

key difference between the two techniques is that SQS takes into account figures which
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include more than 2 atoms whilst SPCM only takes into account figures with 2 atoms.

This means that SQS’s are more complex and hence will require larger cells and hence

more computational expense, but also it will mean slightly more accuracy. As in this

project a large amount of calculations are conducted SPCMs were used for all calculations

that required random substitution to be a factor.

5.1.5 K-point Generation

K-points were in all calculations generated in accordance with the Monkhorst-Pack

scheme[122], the reasoning behind this is not particularly profound, other than it is

the standard scheme for first-principles calculations with a proven track record.

5.1.6 Partial Occupancies

The technique for determining partial occupancies was varied depending on the calcu-

lation. In static calculations the optimum technique is to use the Blöchl interpolation,

whereas in the case of a calculation with relaxation of volume or atomic positions the

Methfessel-Paxton technique is the most accurate. The technique for obtaining the most

accurate energy value for a calculation with relaxation in it however is as follows. Relax

using the Methfessel-Paxton technique, then afterwards run a continuation job which is

static using the Blöchl interpolation, this was done where possible[129].
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5.1.7 Relaxation Scheme

There are 2 main schemes for performing relaxation of energy, the 3DOF (3 Degrees of

Freedom) scheme and the volume-atomic positions-volume scheme. As the name implies

the 3DOF scheme involves relaxation which occurs during one calculation and it allows

relaxation of volume, atomic positions and cell shape[129]. The volume-atomic positions-

volume scheme is more computationally intensive due to having 3 steps. In step 1 just

the volume is allowed to relax, in the second step the atomic positions are able to relax at

the volume determined by step 1 and finally in step 3 the volume is again relaxed starting

from the volume and atomic positions determined in step 2[145]. However, it has a key

protection against the cell changing shape and possibly relaxing to a different structure

which would invalidate the calculations being conducted[145, 146]. In this research the

volume-atomic positions-volume relaxation scheme is employed in all calculations for the

purpose of ensuring correct convergence at the expense of speed[145, 146].

5.1.8 Basis Set Selection

The basis set used was in all calculations the PAW basis set. As mentioned previously this

basis set is non-biased and efficient[119, 144]. In addition this basis set has been found

to give equivalent cohesive energy results to the LAPW and pseudopotential methods

in various crystals[153]. The PAW basis set has the advantages that it grants access to

the full wave function and is able to perform well for the transition metal elements[144].

Typical errors involved in the usage of the PAW method are errors in bond length of

1-2% and errors in E of a few 10ths of an electron volt[154]. This technique was found
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to have similar efficiency to the pseudopotential approach[154]. The PAW method has

been shown to have superior convergence properties to the Vanderbilt USPPs with plane-

wave basis set, as the basis set can be smaller and yet yield superior convergence (note

PAW convergence properties are similar to LAPW)[144]. One of the reasons for this is

that it uses radial grids for the one centre expansions vs plane-waves of the Vanderbilt

USPPs[144]. Also the PAW basis set has increased flexibility relative to the LAPW basis

set allowing more adjustment to potentials[144].

5.1.9 Semi-Core States

For a selection of the available elements (X=(Ti, Zr)sv potentials, (Ag, Cu, Ni, Os,

Pd, Pt, Re, Rh, Ta, W)pv potentials, (Co, Cr, Fe, Hf, Mn, Mo, Nb, Ru, Tc, V) both)

within the PAW basis set it was possible to introduce semi-core states (where pv and

sv potentials treat the p and s semi-core states as valence states respectively)[129]. As

expected this will increase the accuracy but require increased computational expense.

These were employed where reasonably possible.

5.1.10 Exchange-Correlation Function Selection

In all calculations the exchange correlation function used was the GGA-PBE. A large

amount of the reasoning for this selection is explained in section 3.5. Whilst more

advanced functionals are implemented in VASP[129], their reliability in the literature

for fault energy calculations in an array of circumstances has yet to be substantiated in

the same way as GGA functionals (for example many of the first-principles literature
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values given in this and the proceeding chapters employ the GGA).

5.2 High Temperature Calculations

For a lot of the high temperature calculations conducted in this study the GIBBS pack-

age was used[147]. The GIBBS package uses the quasiharmonic Debye model[147], as

established previously the QHDM operates on a series of assumptions such as that the

system behaves as a series of harmonic oscillators, that harmonic behaviour is assumed

even at non-equilibrium geometries and only long wavelength modes are in existence

(see section 4.2). The steps of determining stacking fault energies and volumes at high

temperatures are as follows.

1. Standard relaxation (of FCC/L12) at 0K using VASP

2. VASP calculations at expanded and contracted volumes from the equilibrium vol-

ume determined in step 1) to produce an energy vs volume curve (note it is very

important that this curve is smooth otherwise it risks rejection by the GIBBS

package)

3. Inputting the points of the curve into the GIBBS package. The GIBBS package

takes in the points of this curve and fits it to an analytical function. The energy

vs volume curve will typically be of a parabolic shape. However fitting to a simple

polynomial has the issue that there are large errors especially at large volumes. In

order to reduce these errors a reduced unit of length R = ( VVr
)
1
3 is defined, where

Vr is the volume where the energy is minimised. However this change in isola-
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tion only partially alleviates the issues with polynomial fitting, the derivatives still

remaining highly dependent on the endpoints of the dataset and the polynomial

order. The full fitting procedure involves fitting a large number of polynomials

with different orders to eliminate the influence of the end points of the data. Each

one of these polynomials is assigned a weighting dependent on the order. This

procedure preserves the simplicity of polynomial fitting, whist ensuring numerical

stability. After this fit has taken place in the GIBBS program and E(R) is in an

analytical form, θD(R) can be deduced by an analytical derivation of said polyno-

mial. As θD(R) is known the (A
∗(R;T ), R) data can easily be obtained. All of the

components are now in place to produce a polynomial of the non-equilibrium Gibbs

function G∗(R; p, T ). Equation (4.12) can now be solved by utilising bisection and

the Newton-Raphson method. After the equilibrium state at a certain pressure

and temperature has been determined, the vibrational internal energy (Uvib)(5.4),

the heat capacity (Cv)(5.5), Avib and the Helmholtz’s entropy (Svib)(5.6) can be

calculated.

4. VASP calculations at the same volumes per atom corresponding to the elevated

temperatures of FCC/L12 given by the GIBBS package in the HCP/D019 (also

DHCP/D024 if the ANNNI model is used)

5. Computation of the fault energies at all of the elevated temperatures used by

employing equations (3.9-12)-(5.7)
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Uvib = nkT

[
9θ

8T
+ 3D

(
θD
T

)]
(5.4)

Cv = 3nk

[
4D

(
θD
T

)
− 3θ/T

eθ/T − 1

]
(5.5)

Svib = nk

[
4D

(
θD
T

)
− 3ln(1− e−θ/T )

]
(5.6)

EL12 = G∗(V, P ;T )− Uvib + (TSvib) (5.7)

What is described above is a quasistatic approach which is where the volume expansion

is the only effect of temperature which is accounted for[145, 146]. This may at first

glance appear to be crude but it has been validated by multiple experiments[155–157].

The evidences in favor of the approach of particular importance to this study are firstly

the accurate calculation of Ni3Al elastic constants[158, 159]. A theoretical investigation

concerning the change of the elastic constants of Ta with temperature where the largest

factor in the changes was found to be thermal expansion with other effects, such as

phonon excitation and electronic excitation being of relatively minor impact at constant

volume[158]. Validation of this approach has also been successfully carried out in the fol-

lowing cases for the SISF energies of systems which exhibit complex magnetic behaviors;

pure compounds[101], unaries[160] and alloys[161].

There are two variants of such calculations IR (internal relaxation) and IS (internally

static). Variant IS calculations rely on the assumption that in the case of FCC/L12 the

ground state atomic positions at equilibrium are the same as the atomic positions at

expanded and contracted volumes. Also in the case of HCP/D019 there is no relaxation

of the default atomic positions. IR calculations do not rely on these assumptions as

atomic positions are relaxed across the board. It is noted that the GIBBS package
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requires the entry of the Poisson ratio[147]. There exists no apparent clear answer as

to what this should be, due the the heavy elastic anisotropy of nickel and derived alloys

and compounds[162–164]. GIBBS only allows the input of one value so this particular

nuance cannot be accounted for[147]. The value chosen was 0.40 (this is for both data

sets in chapters 7 and 8) as this is in the range of the experimentally determined values

for the [100] family of directions (v100 hereafter) (Note v100 was found to be between

0.37-0.41 for a host of L12 compounds at room temperature[163]).

The [001] direction is highly significant as it is noted by Matan et.al to be the

predominant crystal growth direction in single-crystal superalloys[64]. Crystals oriented

in this direction were found to exhibit many superior properties to those which do not

exhibit alignment along the [001] direction[64]. In addition this is the most common

crystal orientation used for single-crystal components[165]. In terms of the primary

creep regime of Mar-M247 single-crystals aligned at or near the [001] direction at the

conditions 1047±2K and 724MPa, they were found to have long stress rupture lives but

were outclassed by crystals oriented near [1̄11][165]. Note that crystals oriented near

the [001] direction, had superior stress rupture lives when oriented near the [001]-[011]

boundary rather than when near the [001]-[1̄11] boundary[165]. In creep of Mar-M200 at

1130K and 410Mpa (it is noted that with these conditions the behavior corresponds most

closely to the tertiary creep regime, however precipitate shearing occurs instantaneously

upon loading) the best creep behavior was found to be from perfect alignment in the

[001] direction or along the [001]-[11̄1] boundary[166]. The v100 value is also in the middle

of the range of values for different directions making it more general. A single value for
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Table 5.1: Table of Poisson ratio from simulation and experimen-
tal data for γ′-Ni3Al

Direction Value Details

100 0.391[162] Coaxial model, single-crystal

100 0.433[164] FLMTO theoretical equilibrium volumes

100 0.41257[170] PWPP-GGA-PW91

100 0.3443[169] Rod resonance Technique, single-crystal 283 K

100 0.39784[171]1 Ultrasonic Measurements Single-Crystal

100 0.4000[172] Pulse superposition pulse/pulse-echo overlap

110 0.32520[170] PWPP-GGA-PW91

110 0.2830[169] Rod resonance Technique, single-crystal 283 K

110 0.3295[172] Pulse superposition pulse/pulse-echo overlap

111 0.49578[170] PWPP-GGA-PW91

111 0.3532[169] Rod resonance Technique, single-crystal 283 K

111 0.4635[172] Pulse superposition pulse/pulse-echo overlap

1 Was calculated by averaging 4 values at 273 K and 296.5 K calculated from
the adiabatic and isothermal elastic constants.

all alloys appears justified as v100 was found not to differ significantly with addition of

several alloying elements[167, 168]. Also temperature was found to not change the ratio

substantively either[162, 169].

5.3 Validation

5.3.1 Pure FCC Metals

Before this methodology can be confidently employed, validation against existing mod-

els and experimental results is necessary. The simplest system to analyse within this

methodology is a pure metal, in order for validation the metal must in actuality be stable

(or metastable) in the FCC structure and have experimental results for lattice parameter
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and ISF energy. Table 5.2 is a table of lattice parameter results for pure metals extracted

from the set of results later detailed in chapter 6. There exists in many of the results

a subtle increase in the lattice parameter as the supercell size is increased. Four of the

elements however are in contravention of this and decline with an increase in supercell

size. It is to be noted that the results taken in table 5.2 are not completely systematic

and use slightly different VASP input settings (see table 5.4) and that these differences

can also possibly be attributed to these changes. The most important variable to change

is kden which is smaller in the 128 supercell calculations.

It is important at this juncture to re-establish what an ISF actually is, a change in

the stacking sequence locally to a HCP structure for 2 planes. Hence when an element

exhibits a negative ISF energy it is implied that said element is more stable in the HCP

structure as opposed to the FCC structure. There are two elements from the sample

that exhibit a negative ISF energy, Co and Fe. The most stable stacking sequences at

room temperature for Co and Fe are HCP and BCC respectively (whilst for all other

elements detailed in table 5.3 it is FCC). This is congruent with Co having an energetic

preference for the HCP stacking sequence and Fe having a stronger energetic preference

for the HCP stacking sequence as opposed to the FCC stacking sequence. The latter

point was proven by conducting an additional calculation of Fe in the BCC structure

where the free energy per atom in said structure was the lowest followed by the HCP,

and FCC structures respectively.

There is one key nuance which needs to be introduced when the results of this thesis

are compared to experimental results of the lattice parameter for this and all datasets
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that are documented in subsequent chapters. It is that most experimental results are

taken at room temperature whilst first-principles results are calculated at 0K. Using

the GGA expands and softens bonds relative to the LDA, it is for this reason that it

simulates the room temperature experimental values well. This is a benefit of using the

GGA but it is important to note that it is fortuitous.

5.3.2 Differing VASP Settings

The set of results SISF energy at 0K of the γ′ binary systems was repeated using a

large number of different settings for the purpose of assessing the reliability of the VASP

program. Figures 5.2 and 5.3 are diagrams depicting the difference between the set

deemed most reliable (see section 7.5) and the other settings.

132



T
ab
le
5.
2
:
L
a
tt
ic
e
p
a
ra
m
et
er
d
a
ta
fo
r
p
u
re
el
em

en
ts
in
th
e
F
C
C
cr
y
st
a
l
st
ru
ct
u
re
a
t
a
se
ri
es
of
d
iff
er
en
t
su
p
er
ce
ll
si
ze
s,
a
s
a

co
m
p
a
ri
so
n
to
li
te
ra
tu
re
(a
ll
va
lu
es
a
re
in
Å
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Al Ti V CrMnFeCo Ni CuZn Zr NbMoTc RuRhPdAgCd Hf Ta W ReOs Ir Pt AuHg
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Ni3X 38 60 ANNNI PV

Figure 5.2: Graph demonstrating the differences in the SISF energy in the Ni3X binary
systems generated by a range of different settings in VASP in the spin-polarised imple-
mentation. The legend of this graph can be explained as follows: the first numerical
value refers to the electronic minimisation algorithm (38 means blocked Davidson and
48 means RMM-DIIS), the second numeric value refers to kden and ANNNI refers to
the axial next nearest neighbour ising model. SV and PV refer to which types of semi-
core states were treated as valence states, no semi-core of course meaning no semi-core
states treated as valence states (if semi-core states are not mentioned semi-core states
are utilised as valence states as follows pv for Mo Tc Rh Ta W and Os, sv for Nb).
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Al Ti V CrMnFeCo Ni CuZn Zr NbMoTc RuRhPdAgCd Hf Ta W ReOs Ir Pt AuHg
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Figure 5.3: Graph demonstrating the differences in the SISF energy in the Co3X binary
systems generated by a range of different settings in VASP in the spin-polarised imple-
mentation. The legend of this graph can be explained as follows: the first numerical
value refers to the electronic minimisation algorithm (38 means blocked Davidson and
48 means RMM-DIIS), the second numeric value refers to kden and ANNNI refers to
the axial next nearest neighbour ising model. SV and PV refer to which types of semi-
core states were treated as valence states, no semi-core of course meaning no semi-core
states treated as valence states (if semi-core states are not mentioned semi-core states
are utilised as valence states as follows pv for Mo Tc Rh Ta W and Os, sv for Nb).

For the most part the results between all of the settings show clear agreement in

both of the sets of compounds, however there is a set of cases where the difference is

very large. Most cases where the fault energy is significantly different involve the change

in the approach to the use of semi-core states (especially in the case of PV). It is also
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noted that the element Cr has a very strong sensitivity to the used setting with most of

the points experiencing large deviations. This data reveals that where for fault energy

calculations undertaken in the future, caution should be used as results could differ by

a large margin. It is also a point of note that it is important to ensure consistent VASP

settings between the crystal structures used in fault energy calculations. This is because

each k-point density, energy cut-off, exchange-correlation functional etc is subject to

certain systematic errors. Due to the fact that it is not the raw energies that are

important to fault energy calculations, rather the differences between said raw energies,

it is imperative to keep these systematic errors as consistent between the calculated

structures as possible. This is because cancellation of systematic errors is necessary to

ensure the highest accuracy in the calculations. The effects of changing the settings for

each of the structures in the calculations were not quantified for the data of this thesis.

In addition to the factors outlined in figures 5.2 and 5.3 there is strong sensitivity

in some cases to the initialisation of the spin degrees of freedom. A small trial was

conducted involving 3 compounds and 3 other starting conditions nonmagnetic, antifer-

romagnetic and nested magnetism (where all first sublattice atoms are up and all second

sublattice atoms are down). The 3 compounds Ni3Fe, Ni3Cd and Ni3Wwere investigated

in the trail. These magnetisation conditions prevented the Fe atom from developing a

strong magnetic moment which had drastic effects on the SISF energy on the order of 103

mJ/m2. In all scenarios for Ni3Cd the fault energy remained approximately the same

despite magnetism varying somewhat. For Ni3W in the nested and antiferromagnetic

scenarios the SISF and the magnetism did not vary significantly, but for the nonmag-
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netic condition all of the phases were prevented from developing magnetism and resulted

in a change to the SISF of the order of 50mJ/m2. This emphasises the importance of

the initialisation of the spin degrees of freedom. In all of the calculations of this thesis

the initial estimate is always that of ferromagnetism. This approach is justified by the

favourable comparison to other computational and experimental work. For example the

experimental value for the magnetic moment Fe is 2.97±0.15 μB and another computa-

tional value is 2.94 μB and the value for our ferromagnetic result of this thesis is 2.900

μB, in all of the other conditions the value was 0.007 μB.

5.3.3 Differing GIBBS Settings

For the following sample of elements in the dataset presented in section 7.6 Fe, Au,

Ru and Cu (note for Co3Cu in the case of spin-polarised results 0.45 and 0.5 had to

be excluded due to rejection by GIBBS) calculations were undertaken for a series of

different Poisson ratios 0.1, 0.2, 0.3, 0.35, 0.4, 0.45 and 0.5 to investigate further the

validity of using one single Poisson ratio in all cases. The induced alteration to the fault

energy change across the temperature range is minimal, frequently less than 1mJ/m2

with the highest being ≈ 9.2mJ/m2. This investigation concludes that scarcely is the

set Poisson ratio significant to the calculated fault energy.

This still does present somewhat of a missed opportunity as the Poisson ratio could

have been directly calculated by the author. This was later done using the internal

algorithm in VASP which operates by carrying out 6 distortions of the lattice and uses

the stress-strain relationship to calculate the elastic constants from which the Poisson
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ratio can then be derived [129, 191]. The results are as follows 0.387, 0.362 and 0.428 for

the 100, 110 and 111 directions respectively which is in line with the data as presented

from other literature in table 5.1. However, as stated in the previous paragraph this

missed opportunity is of very little consequence.

5.4 Results Sets

In this section is a group of tables detailing the selections used for the aforementioned

categories in the proceeding results chapters. I will reiterate here that in all calculations

the Monkhorst-Pack scheme, PAW basis set, volume-atomic positions-volume relaxation

scheme, conjugate-gradient scheme, ferromagnetic initial starting estimate (where spin-

polarised) and GGA-PBE were employed. Tables only state factors which differ. The

limits for the iterative solving for both types of iteration (electronic and atomic positions)

are also listed.

5.4.1 Formation Enthalpy Calculation

The formation enthalpies for binary systems/compounds were calculated using the fol-

lowing equation

ΔHstrut = Estrut − xEA
nat − (1− x)EB

nat (5.8)

where A and B are the two elements of the binary, x is the atomic fraction of the element

A, Estrut is the energy per atom of the structure also EA
nat and EB

nat are the energies per
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lö
c
h
l
in
te

rp
o
la
ti
o
n

fu
ll

sc
h
e
m

e
fu

ll
sc

h
e
m

e
fu

ll
sc

h
e
m

e
B
lö
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atom of A and B respectively in their most stable stacking sequences. In pseudo-binary

systems the formation enthalpy is calculated as follows.

ΔHstrut = Estrut − aEA
nat − bEB

nat − cEC
nat (5.9)

Where C is the third element and EC
nat is the energy of C in it most stable structure. a,

b and c are the atomic fractions of the 3 elements.

5.4.2 Solid Solubility

Solid solubility of certain alloy systems were calculated as a part of this research. Where

calculations were performed they were done using the Thermo-Calc software. The

database used was the TCNi8 database version 8.1 This database is purpose built for

superalloys and is based on a critical evaluation of binary, ternary and in some cases

higher order systems. Thermo-Calc employs the CALPHAD (CALculation of PHAse

Diagrams or alternatively computer coupling of phase diagrams and thermochemistry)

methodology[192]. The CALPHAD methodology simulates multicomponent behaviour

in a system by modelling thermodynamic properties in each of the phases[193]. This

modelling of the Gibbs energy is done by utilising both phase equilibrium and thermo-

dynamic data[194]. CALPHAD modelling operates on the premise that the properties

in each phase are homogeneous, hence molar quantities can be deduced by taking the

sum of each of the phases[194].
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5.5 Summary

In the thesis thus far a large amount of techniques and algorithms for different aspects

of a DFT calculation which utilises AIM models have been detailed and compared. In a

wider context the reasoning behind using these techniques will now be discussed. There

are two main competing techniques to the employed in this thesis, the first principles

supercell calculations and experimental measurements. The former is subject to the

following two constraints that make it inappropriate for the current study. One of these

is that in order to introduce a fault in the cell that is not a primitive lattice vector,

multiple faults are needed such that the sum of the shift vectors is a primitive lattice

vector (the shift vectors of ISF and SISF are not primitive lattice vectors), such faults

have to be sufficiently far apart in order to avoid significant interaction[92]. This creates

a key difficulty with supercell calculations. The other constraint is over computational

resources which will mean that the number of atoms needs to be kept within reason,

practically speaking these 2 concerns result in a thin elongated cell. In this cell it is

difficult to manipulate the composition at the fault plane as for in the example of the

APB calculations by Chandran[100] the fault plane consists of 9 atoms the minimum

composition available in this scenario is 11.1% (see figure 5.4).
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Figure 5.4: The supercells used in the research of Chandran[100]. On the left is the
unfaulted cell and on the right is the faulted cell with 2 anti-phase boundaries. The
large atoms are nickel and the small atoms are aluminium (taken from [100]).

This issue is exacerbated further once sublattices are considered and the minimum

composition which can be introduced the first sublattice in the fault plane is 33%. This

contributes to a secondary concern solute-solute interactions. In order to take into ac-

count solute-solute interactions in the first sublattice 66% of the composition of the

sublattice at the fault plane must be solute which is a very high number. Meaning that

the low sublattice composition calculations with solute-solute interaction, a very impor-

tant part of this study which facilitated the production of the model, are exceedingly

difficult using the supercell approach.

Experimental measurements of fault energies are typically taken by measuring the

separation distance of the two partial dislocations which bound the fault, as this has a

relationship of inverse proportionality to fault energy. Such measurements are difficult

to perform accurately[103] due to the errors brought in from the following 4 factors.

i) thin film issues, ii) the ratio of experimental error to the measured distance can
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be substantial[195], iii) uncertainty about how to apply the right corrections to the

measured distances[49], iv) difficulty in finding an isolated enough fault such that it is

in equilibrium and not impacted by other faults in the material. In addition to this

experiments would be exceptionally difficult to perform in such a high throughput study

of fault energies due to the factors outlined above and the expense of having to fabricate

the large number of alloys such research demands. This is why to the author knowledge,

there exists no high throughput data for the alloy systems studied in this research.

It is noted that the experimental results for stacking fault in pure Ni range from

79-450mJ/m2, however the most accurate experimental value the author is aware of is

reported as 120-130mJ/m2[183, 196, 197]. The reason for this result being determined as

the most reliable is as follows, many of the older results were conducted using unreliable

indirect methods, for example deriving the SFE from equations that describe creep or the

assessment of deformation texture as this is known to be related to SFE[183, 197]. The

value of 120-130mJ/m2 was determined using the more reliable method of employing

weak-beam electron microscopy to assess the separation of partial dislocations[183, 197].

There is a more reliable technique for assessing fault energies called high resolution

electron microscopy (HREM) however no result for the ISF energy of nickel exists using

this technique[197].
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Chapter 6

Results: γ Binary System (Ni1−xXx)

6.1 Introduction

In order to build up a full picture of how the various transition metal elements impact

superalloys it is necessary to first examine the γ phase. This analysis is required to

understand deformation behavior in superalloys, as deformation always commences in

the γ phase before the γ′ phase. Fault energies in the γ phase were found by a series of

authors to be informative of or significantly impact the following. Cross-slip occurs more

readily as the fault energy is increased due to the fact that partials are closer together in

high fault energy materials[197–200]. The normalized minimum grain size due to milling

was also found to increase with fault energy[201]. A decrease in the fault energy was

found to correspond with a reduction in the steady state creep rate[40, 202, 203]. The

higher the stacking fault the lesser the ability for recrystallization twins to form and

reduction of the solid solution strengthening and strain hardening coefficients[197, 200].
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It is also highly important to conduct an enthalpy analysis in both phases (both

sublattices investigated in the γ′ phase) to determine where the elements should segregate

to in the γ′ phase and assess relative stabilities of the studied systems. Fault energies in

FCC-Ni1−xXx phase have previously been investigated using first-principles calculations

that utilize alias shear (but never AIM models as far as the author is aware)[40], a follow

up study employing this data as well data from CALPHAD was used to assess synergistic

effects by studying FCC-Ni1−x−yXxYy which were found to be very small[196].

6.2 Lattice Parameters

The way that lattice parameters vary with composition and alloying element was as-

sessed, figure 6.1 is a diagram of how for all of the studied compositions the lattice

parameter varies with d-band filling. Note the in this figure the following colour scheme

is first defined, black for the 3d series, green for the 4d series and red for the 5d series,

this is the standard colour scheme for this thesis throughout all of the remaining chap-

ters. As can be seen from this diagram there exists a parabolic relationship of lattice

parameter with d-band filling. Note the similarity between the values of the two curves

for the 4d and 5d elements and that the minima of the curves lies in the centre of the

series where the cohesive energy for half the d-band elements is the highest[101, 204].

Another observation is that as the composition is increased the parabolas get steeper

due to the increased influence of the alloying addition. Another key factor is that in the

case of alloys containing the 3d elements near the centre of the transition metal series,

notably Mn and Fe, the lattice parameters are larger then what would be expected purely
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from the parabolic relationship. The cause for this is established later in this chapter

by an analysis of magnetic moments. Note that with regard to pure elements x=1, Mn

and Fe now agree with the parabolic relationship whereas Zn significantly lower then the

parabolic expectation. This too was investigated in the analysis of magnetic moments.
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Figure 6.1: Lattice parameter vs d-band filling for Ni-X-FCC Binary systems in the
spin-polarised implementation. Blue dots represent Ni1−xAlx. Blue lines represent the
lattice parameter of pure nickel.

Figure 6.2 is the same data however displayed as a dependence of composition. As

can be seen the lattice parameter increases (in either a linear or curved fashion) in all

cases as the alloying element is added except in the cases of X=Co where no appreciable

change is observed, X=Cr where a slight decrease occurs followed by the typical increase,
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finally X=Fe and X=Mn where a strong decline is observed after x=0.75. The reason

that increases are observed in the overwhelming majority of cases can be understood

simply by the employment of the atomic size argument. Nickel is a small atom relative

to the majority of the transition metal elements. Hence alloying with larger atoms will

result in an increase in the lattice parameter relative to pure nickel. This also explains

why alloying with Co scarcely changes the lattice parameter due to the very similar

atomic radii of these two elements. This data is compared with Vegard’s law (coefficients

taken from [205]) which is derived from experimental data in general showing very good

agreement at low x but diverging at higher compositions especially in the cases of V, Fe,

Tc, Rh, Ag, Os, Ir, Pt. This is unsurprising as the data used to derive Vegard’s law was

for dilute alloying compositions[205]. This is important as at these dilute compositions

interactions between the solute and nickel are very important at informing the lattice

parameter however, these cease to be as important at high compositions hence the

disagreement.

The data was also compared with other simulation and experimental data although

unfortunately such data is scarce. There only exists experimental data across a large

range of compositions for 6 X elements Cr, Fe, Co, Cu and Pt. Strong agreement is found

with this data for X = Ti, Fe, Co, Cu. In the case of X=Pt our results are significantly

higher then the available experiment and simulation data. In the case of X = Cr our

results are acutely lower then the literature data. In the research of Gan[206] there are

a series of single data points using XRD for an array of alloys, our data agrees strongly

with these points.
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Another facet to be investigated is the solid solubility of the transition metal ele-

ments in nickel, which was evaluated at 2 temperatures, room temperature and a typical

superalloy operational temperature 1173K. The solid solubility is important as it serves

as a maximum of each alloying element that can be placed into the γ phase and hence

the maximum that the lattice parameter and ISF energy can be changed. Alloys which

exist above the solid solubility limit cannot physically exist in reality but still are impor-

tant for the to research from a theoretical perspective as the topic of can fault energies

be extrapolated back from higher compositions (as they can be computed with smaller

supercells and hence at lower computational expense) to lower compositions is a very

important topic of discussion in this thesis.
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Figure 6.2: The variation of equilibrium lattice parameter as a function of atomic frac-
tion of the soulte element x. The available experimental and simulation data is also
shown. The turquoise lines denote the equilibrium lattice parameters calculated using
Vegard’s law. Orange and blue lines represent solid solubility at 900◦C and 20◦C re-
spectively determined via Thermocalc. Dashed orange and blue lines represent the same
except determined using phase diagrams from one of the following sources[207, 208] or
by the use of the FactSage or MTDATA (note no data was no available data for Cu,
Rh, Cd, Os, Ir at room temperature; Tc and Hg at both temperatures). The lines be-
tween points exist simply for visual purposes. Citations: Ti1[209], Cr1[210], Cr2[211],
Fe1[212] (points from 0-0.5 determined via fitting point at 0.75 determined via interpo-
lation), Fe2[176], Co1[213], Co2[214], Co3[215], Cu1[180], Cu2[216], Mo1[206],Ru1[206],
Rh1[206], Pd1[206], W1[206], Re1[206], Ir1[206], Pt1[217], Pt2[218], Pt3[206].

6.3 Magnetic Moments

The data for the magnetic moments of all of the alloys is displayed as a dependence

with composition in figure 6.3. The first observation to be made is that appreciable

magnetism is found for almost all of the X elements. The magnetic moments are in
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general a lot more pronounced at lower composition. The reason for the declines of the

lattice parameters in the systems featuring Mn and Fe can be explained as a magnetic

phenomenon as magnetism is significantly reduced in the case of Fe and borderline no

existent in the case of Mn. The sudden increase of the lattice parameter of the alloy

system with X=Zn can also be explained by magnetism as there is a sudden increase

at x=1 in the magnetic moment of the alloying element Zn. It appears also that it is

not only the similar atomic radii of Ni and Co that informs the scarce change in lattice

parameter as significant magnetism is observed in the NiCo alloy system. The same data

except expressed as a dependence with d-band filling is displayed in figures 6.4-10.
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Figure 6.4: The total magnetic moment per atom in addition to the average magnetic
moment per atom of the nickel and X atoms in the γ phase. Expressed as a dependence
with d-band filling for the composition x=0.0625. Blue lines represent zero magnetic
moment.
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Figure 6.5: The total magnetic moment per atom in addition to the average magnetic
moment per atom of the nickel and X atoms in the γ phase. Expressed as a dependence
with d-band filling for the composition x=0.1250. Blue lines represent zero magnetic
moment.
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Figure 6.6: The total magnetic moment per atom in addition to the average magnetic
moment per atom of the nickel and X atoms in the γ phase. Expressed as a dependence
with d-band filling for the composition x=0.1875. Blue lines represent zero magnetic
moment.
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Figure 6.7: The total magnetic moment per atom in addition to the average magnetic
moment per atom of the nickel and X atoms in the γ phase. Expressed as a dependence
with d-band filling for the composition x=0.25. Blue lines represent zero magnetic
moment.
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Figure 6.8: The total magnetic moment per atom in addition to the average magnetic
moment per atom of the nickel and X atoms in the γ phase. Expressed as a depen-
dence with d-band filling for the composition x=0.5. Blue lines represent zero magnetic
moment.

-0.5
0

0.5
1

1.5
2

2.5
3

M
ag

ne
tiz

at
io

n
 p

er
 a

to
m

 (
μ

Β
)

x=0.75

-0.5
0

0.5
1

1.5
2

2.5
3

N
i l

oc
al

 m
ag

ne
tic

   
  m

om
en

t (
μ

Β
)

Ti
Zr
Hf

V
Nb
Ta

Cr
Mo
W

Mn
Tc
Re

Fe
Ru
Os

Co
Rh
 Ir

Ni
Pd
Pt

Cu
Ag
Au

Zn
Cd
Hg

-0.5
0

0.5
1

1.5
2

2.5
3

X
 lo

ca
l m

ag
ne

tic
   

  m
om

en
t (

μ
Β
)

Figure 6.9: The total magnetic moment per atom in addition to the average magnetic
moment per atom of the nickel and X atoms in the γ phase. Expressed as a dependence
with d-band filling for the composition x=0.75. Blue lines represent zero magnetic
moment.
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Figure 6.10: The total magnetic moment per atom in addition to the average magnetic
moment per atom of the nickel and X atoms in the γ phase. Expressed as a dependence
with d-band filling for the composition x=1. Blue line represents zero magnetic moment.

6.4 Formation Enthalpies

The formation enthalpies of all of the studied alloys expressed as a function of compo-

sition is displayed in figure 6.11. As can be seen from this figure the majority of the

relationships exist as curves. Two of the alloying elements Co and Cu result in only

small changes to the formation enthalpy. It is noted that alloying with elements from

groups 4 and 5 results in significant decreases at lower compositions. The importance

of formation enthalpy is that should it be negative it indicates an alloy which is at the

very least metastable. Formation enthalpy alone cannot be used to determine if an alloy

is stable as without data on every other stacking sequence it is possible to know if FCC

is the lowest energy stable structure. A positive formation enthalpy guarantees that the

alloy is fundamentally unstable. One observation of importance is that there appears

to be no correspondence between negative formation enthalpy and solid solubility for

example for the studied elements of groups 4 and 5 large declines in formation enthaply

are observed with alloying, however these elements have very low solid solubility limits.

Another point of note is that the large decrease in the lattice parameter of the
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system containing Zn also corresponds with an incredibly large decrease in the formation

enthalpy. The result for the NiZn system at x=1 is anomalously lower than all of the

other results. The reason for this can be attributed to the individual nuances of the

calculation of Zn in its most stable structure, that being HCP. The result in question

was found to be non-magnetic, whilst the result for FCC was found to be ferromagnetic

with a moment of 0.646 μB. When a result for the HCP structure was used which had

relaxed to a magnetic state with a magnetic moment of 0.635 μB, the formation enthalpy

was reduced in magnitude to a non-anomalous value of -2.244 kJ/mol.atom†. The same

data presented in figure 6.11 is presented as a dependence with d-band filling in figure

6.12.

†Note the parameters of the two calculations of Zn in the HCP structure would have had different
computational parameters contributing to their different magnetic convergence and the result in other
ways. Since Zn is known to be a diamagnetic material[219] (approximated better by no magnetism
then ferromagnetism) the nonmagnetic result was used for all other enthalpy calculations in this thesis
involving Zn.
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Figure 6.11: The formation enthalpy in the spin-polarised implementation in the γ
phase. Blue lines represent zero formation enthalpy. Note one point Ni0Zn1 is -417.026
kJ/mol.atom but is not displayed due to convenience with regard to the y-axis.
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Figure 6.12: The formation enthalpy in the spin-polarised implementation in the γ
phase. This time expressed as a dependence on d-band filling. Blue lines represent zero
formation enthalpy. Note one point Ni0Zn1 is -417.026 kJ/mol.atom but is not displayed
due to convenience with regard to the y-axis.

6.5 ISF Energies

Figure 6.13 displays how for each individual alloying element the ISF energy varies with

composition. One important point to note is that in many cases elements with the same

d-band filling have similar behaviour (this observation was also found to be true in the

case of the lattice parameters as well). There is unfortunately a large lack of literature

data to corroborate these results, but where experimental or simulation data exists it is
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compared with the results from this study. In the alloy Ni1-xFex good agreement is found

with the experimental results of Charnock[220] up to x=0.25 divergence however was

found a the higher compositions, nevertheless our results agree very strongly with the

simulation data point of Limmer[96]. For Ni1-xCox the results of the present study and

the experimental data of Beeston and Humble[92, 221, 222] observe a linear decline of

similar gradient, the values however are significantly different. Chowdury et.al[223] also

conducted simulation data for this alloy system, with which the results of the present

study disagree. Strong agreement is found between our results and the first-principles

simulations of Li et.al.[180] and Zhao et.al[224] for elements Cu and Mo respectively, both

of these researchers used the supercell approach. This is of importance as it provides

more evidence that the AIM models provide accurate approximations to the supercell

approach.

Previous research by Shang.et.al[40] used the alias shear technique to analyse the

ISF formation energy for a similar selection of alloying elements as those in this thesis.

Significant disagreement is found between these results and those of this thesis. For

example in the results of Shang et.al all solute elements were found to reduce the ISF

formation energy. This is potentially due to the fact that only 1 solute atom was included

(on the fault plane) in [40]. This means the key factor of solute-solute interaction was

not present in the calculations of Shang et.al[40].

Note that the ISF formation energy is a representation of how stable the compound

is in the FCC structure relative to the HCP structure, if the ISF formation energy of a

compound is negative it implies that the alloying element stabilizes the HCP structure
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relative to the FCC structure. In the case of a positive ISF energy the opposite is true

and it is the FCC structure which is stabilised by the alloying element.

An investigation was carried out as to whether the room temperature native stacking

sequence of the alloying element affects significantly the ISF energy. The room tempera-

ture native stacking sequence of all of the elements is depicted in figure 6.14. The reason

why this is of importance is that the creation of an ISF results in the creation of 2 planes

which exist in the HCP stacking sequence. Hence logically speaking an element which

exists in the HCP stacking sequence should reduce the ISF formation energy (hence

destabilising the FCC stacking sequence) more then an element which exists in the FCC

stacking sequence (with a BCC element somewhere in between). The averages of all of

the changes at the lowest studied composition (x=0.0625) are as follows, as expected

FCC elements cause the least average variation in the ISF formation energy of -1.18

mJ/m2, BCC elements cause the largest variation -26.62mJ/m2 with HCP elements in

between the two -17.11mJ/m2. The implication of this is that there appears to be some

impact of the native stacking sequence on the ISF energy but it is far from the most

prominent effect of alloying.
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Figure 6.13: The variation of ISF formation energy as a function of atomic fraction of the
solute element x in the spin-polarised implementation of the data for the γ phase. The
available experimental and simulation data is also shown. The lines between points exist
simply for visual purposes. Blue lines represent zero ISF energy. Citations: Fe1[220]
fitting, 0 value extrapolation, Fe2[96], Co1[92, 221, 222](note linear fit with extrapolation
above 0.68 and below 0.20), Co2[223], Cu1[180](linear fitting), Mo1[224].
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Figure 6.14: Native stacking sequences of the transition metal elements at room tempera-
ture. Note that Al is also FCC, Mn is a complex cubic structure and Hg is rhombohedral.
Data taken from [150].

Figure 6.15 demonstrates how the ISF energy varies with the d-band filling as the

composition is increased. Similar to the case of the lattice parameter the 4d and 5d

curves for the most part are similar in nature. One particular point of note is that at

low compositions all of the ISF energies are positive but as composition is increased

some of the ISF energies of the binary compounds become negative, destabilizing the

compound in the FCC configuration relative to the HCP structure. Also to be noted is

that the respective peaks and troughs of the curves in question become more extreme

as the composition is increased.
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Figure 6.15: The ISF formation energy in the spin-polarised implementation in the γ
phase, this time expressed as a function of d-band filling. Blue lines represent zero ISF
energy.

Figure 6.16 is a series of scatter plots of lattice parameter vs ISF energy at all of

the compositions. The justification for the plotting of said graphs is that the larger the

difference in lattice parameter from that of the host lattice, the greater the change of

said unalloyed host lattice during alloying, hence there is the potential for a correlation

between the two variables. As can be seen however, this potential correlation does not

manifest in reality, as there exists no significant correlation between the lattice parameter

and the ISF formation energy in these alloys.
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Figure 6.16: Scatter graphs at each composition for ISF energy vs lattice parameter
for the spin-polarised implementation of the data for the γ phase (note that no clear
correlation is observed at any composition).

6.6 High-Temperature Calculations

Data at higher temperature was taken by inserting experimentally determined volumes

of these alloys where data is found to exist into VASP and performing an ANNI model

calculation at said volumes. Figure 6.17 displays how for all of the experimental data how

lattice parameter and ISF (calculated) vary with temperature. As expected the lattice

parameter increases with temperature in a slightly curved fashion. Unfortunately such

data is relatively scarce and where it does exist the temperature range is only a few 100
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K in many cases. This is not ideal as it would be better to form an understanding of the

variation over large temperature ranges (idealistically from 0K to superalloy operational

temperature). However if changes are insignificant over small temperature ranges there

is some degree of extrapolation to larger temperature ranges that can be performed.

Also data on finite temperature effects in other chapters confirms small changes over

large temperature ranges.

The ISF energies in the cases of pure Ni, Ni-Al, Ni-Cr, Ni-Fe, Ni-Mo, Ni-Re display

a decrease across the temperature range (note for Ni-Fe at x=0.5, Ni-Cr at x=0.1250

and Ni-Al at x=0.1875 the decrease is not smooth). For the case of Ni-Co the ISF

formation energy behaves erratically showing no dominant increase or decrease. The

observation of mostly subtle declines in the ISF formation energy with temperature is

further corroborated by the work of Zhao[224, 225] who used first-principles and the

quasiharmonic approximation to determine the ISF formation energy in Ni0.95Mo0.05

which predicted a decline of ≈12.68mJ/m2 from 0 to 1400K. However when electronic

excitation was factored in the decline became more pronounced (≈32.78mJ/m2 over the

same temperature range). This result implies that other thermal effects then thermal

expansion do in some cases play a role but the data in this field is not adequate to

determine how significant that role is.

Another study by Zhao on Ni0.5Co0.5 used the AIMD1 model to determine that ISF

formation energy increases in a pronounced way in this alloy with temperature (≈30.41

mJ/m2 from 0 to 1000K)[226]. This increase is shown to steepen at higher temperature,

the same pattern may be present at the lower compositions analysed in this study, but

165



the temperatures analysed are not high enough to be certain of this. Shang employed the

quasistatic and supercell approaches to determine the ISF energy in the alloy Ni71Os1

(note that the solute atom is placed on the fault plane)[40]. A subtle decline with

temperature was observed from 112mJ/m2 at 0K to 97mJ/m2 at 1600K[40]. With

regard to the available experimental data Pettinari[227] used TEM and observed subtle

declines in two model alloys one containing Re and the other containing Ru. The extent

of the declines being 6mJ/m2 for the Ru containing alloy and 5mJ/m2 for the Re

containing alloy over a temperature range from room temperature to 1323K[227].

This investigation when viewed in the context of the high temperature investigations

in the other chapters of this thesis is rather limited. As was established earlier, the

GIBBS code can be used in conjunction with first principles calculations to determine

the dependence of fault energy with temperature. This is however more complicated

as a large number of data points (hence large computational expense) have to be taken

(both above and below the equilibrium volume) to form the initial free energy vs volume

curve (also this curve has to be smooth for use with the GIBBS code i.e. no magnetic

transitions that distort the shape of the parabola). Alternatively, first principles cal-

culations can be used to calculate the thermal expansion coefficient and how it varies

with temperature. This can be done by using the methodology outlined in Jin[228],

however this methodology appears equally subject to the fitting constraints previously

mentioned. As implied computational expense was the driver of this chapter featuring

a smaller scale investigation of high temperatures relative to the others.
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Figure 6.17: ISF energy and Lattice parameter vs temperature at volumes from the
literature for the spin-polarised implementation of the data for the γ phase. Sources for
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Chapter 7

Results: γ′ Binary Systems (Ni3X and

Co3X)

7.1 Introduction

First the simplest implementation of the γ′ phase was assessed, binary compounds where

the whole of the second sublattice is inhabited by a single element. It is to be noted

that only a handful of these compounds have been observed experimentally. This is

because as will be discussed later in this chapter most are fundamentally unstable or if

metastable many would require arcane heat treatment techniques to produce[101, 235].

As it stands Co3(X=Ti, Ta and V)(Ta and V metastable) and Ni3(X=Mn, Pt, Fe and Al)

have been experimentally observed†. Assessing compounds which can only theoretically

exist still does have its merits as many assessments about the behavior of the element at

†For the sources for each of these observations refer to the proceeding paragraphs
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lower compositions could possibly be made and extrapolations performed. For example

it stands to reason that if one binary compound Ni3X is less stable than Ni3Y then

Ni3(Al1−xXx)) should be less stable than Ni3(Al1−xYx)) or possibly statements about

more complex systems could be made, as is one of the main goals of this thesis.

Of the experimentally observed systems the following information exists in the lit-

erature. Firstly for Ni3Al this compound exists as a weak itinerant ferromagnet ex-

hibiting a Curie temperature of 41.5 K[236]. It retains its γ′ ordered nature until the

solidus temperature of 1660K[237]. Ni3Fe is subject to a second order ferromagnetic-to-

paramagnetic transition at its Curie temperature of 870K, It also loses the order at a

temperature of 780K becoming FCC[238]. Hence where Ni3Fe exists in the L12 phase it

is ferromagnetic. Ni3Pt exists as a ferromagnet below 373K[239] and has the equilibrium

phase of L12 until approximately 850K[239, 240].

Co3Ti is paramagnetic up until it is destabilized at ≈1400 K. Ni3Mn transitions

to L12 order at around 753K and becomes subject to ferromagnetic behavior at ≈700

K[241, 242]. Co3V was experimentally determined to exist in equilibrium in a narrow

temperature range in the L12 structure from 1283K (below which it is ordered hexag-

onal(hP24)) to 1308K (where it transforms to FCC)[243]. However this compound was

later found to be metastable existing when quenched from temperatures in the FCC

region in the phase diagram with the hP24 to FCC, the transformation occurring at ap-

proximately 1318K[243–246]. Co3Ta is also a metastable compound in the L12 structure,

which can be formed by aging various Co-Ta binary alloys with L12 forming from FCC

Co solid solution[244, 247]. This was found to transform to a four layered hexagonal
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structure with similar characteristics to MgCu2 upon further aging which is the equilib-

rium phase[247]. Note this is only true below 1273K above which only the equilibrium

phase is observed[247].

7.2 Lattice Parameters

Figure 7.1 displays the lattice parameters of all of the assessed binary compounds in

both the spin-polarised and non spin-polarised implementation†.
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Figure 7.1: Diagram displaying the lattice parameters of the γ′ binary compounds in
both the spin-polarised and non spin-polarised implementations. Note the blue dots
represent Ni3Al and Co3Al in their respective panels with the dots with the solid fill
representing spin-polarised data.

As can clearly be seen all of the non spin-polarised curves exhibit a general parabolic

shape as the d-band is filled with the minima occurring in the Fe/Ru/Os column. It is

†This data was published in ref [101], it is to be noted however that the data in this thesis will differ
acutely from exact values published due to the fact that the data in this chapter is updated.
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Table 7.1: Theoretical 0 K and experimental (at Room Temperature (RT)) lattice pa-
rameters of γ′ binary compounds (All values are in units of Angstrom Å).

compound
present calculation (0 K) other calculations (0 K)

experiments (RT)
SP NSP method value

Co3Ta 3.637 3.636 PAW-GGA-PW91 3.637[244] 3.647±0.004[247]

PAW-GGA 3.64[248] 3.65[248]

3.67[249]

Co3Ti 3.602 3.572 PAW-GGA-PW91 3.601[244] 3.612[250]

LMTO-ASA-LDA 3.58[251] 3.597[252]2

Co3V
1 3.506 3.506 PAW-GGA-PW91 3.514[244] -

LMTO-ASA-LSDA 3.54[253]

LMTO-ASA-LDA 3.51[254]

Ni3Fe 3.544 3.499 LMTO-ASA-LSDA 3.54[253] 3.545[255]

3.5550[256]

Ni3Mn 3.568 3.509 LMTO-ASA-LSDA 3.55[253] 3.59[257]

Ni3Pt 3.658 3.648 PP-PW-GGA-PBE 3.667[258] 3.646[259, 260]

Ni3Al 3.570 3.568 3.5635[261]

3.5718±0.00002[262]

1 Note is Metastable
2 Was found to vary very slightly with the sintering temperature

clear however that in the case of spin-polarisation the magnetic behavior causes signifi-

cant deviation from said parabola. The former effect is caused by the fact that cohesive

energies are maximum for half d-band filled elements. The magnetic disruption is espe-

cially true in the case of the 3d elements and the 4d and 5d elements in the Co-based

compounds. It is noted that very similar observations were made for the lattice param-

eters of the binary Ni-alloys presented in the previous chapter. This data was compared

with other experimental and simulation data (where compounds exist) demonstrating

for the most part very good agreement with said data (see table 7.1).
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7.3 Magnetic Moments

Figure 7.2 displays the magnetic moments of all of the investigated γ′ binary compounds.

It can be seen that the magnetic moment of the base element is suppressed by elements

with lesser d-band filling but is effected to a much lesser degree as the d-bands are

filled. Elements in the of the transition metal series (especially 3d elements) can develop

large magnetic moments of their own. With regard to total magnetization the Co3X

compounds exhibit a rapid increase in the middle of the range followed by a subtle lin-

ear decline. Ni3X compounds exhibit more of a parabolic shape across the range (with

Ni3Os providing a notable exception due to the much lower local magnetic moment of

Os). It is to be noted that the overwhelming majority of the featured elements are not

ferromagnetic in their pure forms. The only ones which exhibit ferromagnetism are Fe,

Ni and Co (Pd remains paramagnetic despite coming close to fulfilling the Stoner crite-

rion for ferromagnetism)[101, 263]. As can be seen from table 7.2 the results agree well

with other simulations and experiments. Except for the case of the Ni local magnetic

moment in the following compounds Ni3(Al, Pt and Mn) when comparing to experi-

ments. This disparity is caused by the tendency of the GGA algorithms to overestimate

the magnetism in certain compounds (note that the LDA is also subject to the same

effect)[264, 265].
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Figure 7.2: Magnetic moments of all of the studied γ′ binary compounds where blue lines
represent the magnetic moment of the pure FCC Co and Ni respectively and dashed black
lines represent 0 magnetic moment. Blue dots represent Ni3Al and Co3Al respectively.

7.4 Formation Enthalpies

The main purpose of the investigation of the formation enthalpies is to assess as with

other properties whether there is a dependence with d-band filling. As can be seen in

figure 7.3 there does exist such a dependence. Compounds to the left of the Cr/Mo/W

column exhibit negative formation enthalpies and can be classified as compound forming

(note this is true whether or not spin-polarisation is featured). As mentioned in the
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previous chapter, this is a different classification to stable, as the enthalpies of all other

random and ordered structures are not known (it would need to be lower than all of

these in order to be stable and appear on the equilibrium phase diagram). Speaking

generally compounds in and to the right of this column have positive formation enthalpies

and are unstable. Note the following exceptions to this statement Co3(Pt(SP), W(SP

and NSP)) and Ni3(Pt(SP and NSP), Zn(SP and NSP), Cr(SP), Mn(SP), Fe(SP)).

These results when spin-polarised align with the experimental appearance of compounds,

where Co3(X=Ti, Ta and V) and Ni3(X=Mn, Pt, Fe and Al) feature negative formation

enthalpies.

The results of Co-based compounds have ramifications for the quaternary system,

Co3(Al1/2−xW1/2−xX2x). As the 6 elements from the first two rows, with the exception

of V (which has a minor preference for the Co sublattice) were found by first-principles

calculations to have a preference for segregation to the W sublattice of the compound

Co3W[270]. This implies that fine tuning of their compositions can lead to increases in

the stability in the aforementioned quaternary system[101]. These enthalpy values also

correspond to the literature discussed in section 2.5.4 where these elements (with the

exception of Zr where no data exists) all are recorded as stabilizing the γ′ phase in the

Co-Al-W system[25, 63, 75, 81, 86].
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Figure 7.3: Formation enthalpies of investigated γ′ binary compounds, blue lines repre-
sent 0. Blue dots represent Ni3Al and Co3Al respectively, where the dots with the solid
fill represent the spin-polarised data.

7.5 SISF Energies

Figure 7.4 displays the SISF energies of all of the compounds in both the spin-polarised

and non spin-polarised implementations of both the ANNI and ANNNI models. As

can be seen from this figure for the overwhelming majority of elements the ANNI and

ANNNI models show good agreement bolstering the assertion that for metals interactions

are typically only short range in nature. In the non spin-polarised implementation for

both of the compound systems a curve resembling a cosine wave with an exaggerated

trough is exhibited (although this effect is more prounced in the Ni3X compounds).

Again similarly to the lattice parameters magnetism disrupts this curve having the most

profound effect on the 3d elements and 4d and 5d elements in Co-based compounds.
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Table 7.3: Formation enthalpies of investigated γ′ binary compounds as compared with
data from literature (all values are in kJ/mol.atom).

compound
present work (0 K) other calculations (0 K)

experiments
SP NSP method value

Co3Ta -21.717 -21.717 PAW-GGA -30.875[248] -

PAW-GGA-PBE -22[271]

PAW-GGA-PW91 -24.844[244]

Co3Ti -24.015 -22.371 PAW-GGA-PW91 -25.843[244] -26.18±1.5[272] (298K)

LMTO-ASA-LDA -26.5[251]

PAW-GGA-PBE -25[271]

Co3V -15.270 -15.272 PAW-GGA-PW91 -18.380[244] -

Ni3Fe -8.217 17.235 LAPW-GGA-PW91 -8.6[273] -

Ni3Mn -10.406 14.806 - - -7.93[274]1

Ni3Pt -7.475 -4.359 USPP-LDA -6.31[275] -

Ni3Al -42.139 -41.774 USPP-GGA -41.1[276](300 K) -47[277]

-37.6±4.2[278]

-38.2±5[279]

40.6±1[280]

1 The prepared alloy is non-stoichiometric: 76.2 at % Mn.
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Note the sign is even reversed in the following compounds, Co3(X = Mn, Fe(ANNI

Only), Co, Ni, Cu, Zr (ANNI only), Rh, Pd, Ir, Pt) Ni3(X = Cr, Mn, Rh, Ir (only

ANNNI)) this is very important as if magnetism were to be disregarded the phase the

element stabilizes would be different from the spin-polarised reality as is discussed in

the proceeding paragraph.

Note that the SISF energy is a representation of how stable the compound is in the

L12 structure relative to the D019 (ANNI model) and D024 (both D019 and D024 in

ANNNI model) structures, if the SISF energy of a compound is negative it implies that

the second sublattice element stabilizes the D019 and D024 structures relative to the L12

structure. It is now investigated whether the native room temperature stacking sequence

of the second sublattice element correlates with the SISF energy (see table 7.5). As can

be seen the most positive on average is the non spin-polarised Ni FCC compounds, this

makes sense as in this case Ni3X is a compound of 2 FCC metals. Magnetism in all cases

except for BCC second sublattice elements (Co ANNNI model excuded where a acute

stabilisation is observed) degrades the stability of L12 relative to the ordered hexagonal

structures. The most important demonstration of the power of magnetism is in Co FCC

as the value flips from slightly positive to strongly negative. All of the HCP values are

negative as would be logically expected however they are not the most negative values

which are the Ni BCC set. This would not be logically expected, proving that the effects

of native stacking sequence is present but does not exist as the be all and end all with

magnetism and d-band filling playing substantial roles.

Next it was tested as to whether there is any correlation between the lattice parameter
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and the SISF energy by the plotting scatter graphs (see figure 7.5). The rationale behind

the plotting of said graphs is that the bigger the difference in lattice parameter from

that of the Ni3Al or Co3Al host lattice, the greater the change in said host lattice, hence

there exists the potential of a correlation between the two variables. However, there is

no clear correlation shown in any of the data sets, meaning that lattice parameter has

very little impact on the SISF energy. It is to be noted that the quality of correlation

does not improve with the removal of spin-polarisation unlike with the native stacking

sequence analysis.
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Figure 7.4: SISF energies of all investigated γ′ binary compounds, blue lines represent
0, blue dots represent Co3Al and Ni3Al respectively, where the solid filled dot represents
ANNNI data.
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Table 7.5: Average SISF energy relative to the native
stacking sequence (note that Mn and Hg are not featured).

NSS SP?
Co SISF Ni SISF

ANNNI ANNI ANNNI ANNI

FCC
Yes -173.769 -181.718 56.280 55.758

No 13.039 23.859 91.239 92.146

BCC
Yes -90.041 -101.235 -455.836 -428.325

No -98.701 -96.074 -598.654 -582.850

HCP
Yes -185.177 -174.108 -200.766 -179.127

No -129.440 -131.601 -192.696 -167.889

Table 7.4: SISF energies of γ′ binary compounds as compared with literature data (All
values are in units of mJ/m2).

compound

present calculation (0 K) other calculations (0 K)

experimentsANNNI ANNI method value

SP NSP SP NSP

Co3Ti 140.515 205.898 195.651 196.047 TB-LMTO 175[281] -

PP-PAW 210[282] -

Ni3Fe 49.687 13.093 49.487 27.379 - - -

Ni3Mn 174.687 -196.131 176.679 -204.744 - - -

Ni3Pt 124.415 162.414 134.142 174.739 - - -

Ni3Al 120.065 120.247 60.527 52.846 TB-LMTO 147[281] 5-15[283](623 K)

FLAPW 40[284] 6±0.5[49](673 K)1

FP-LMTO 60[285]

Empirical Potential 11[286]

PP-PAW 43[282]

FP-LMTO 80[287]

PP-PAW 66.81[288]

1 The prepared alloy is non-stoichiometric: Ni0.78Al0.22
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Figure 7.5: Scatter graphs of lattice parameter vs SISF energy for the ANNI and ANNNI
datasets of both the spin and non spin-polarised implementations, as can clearly be seen
there is no significant correlation in any of the datasets.

7.6 High-Temperature Calculations

The calculations conducted using the GIBBS code in conjunction with first-principles

for both the Co3X and Ni3X systems for a sample of the transition metals are displayed

in figures 7.6 and 7.7 respectively.
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Figure 7.6: The relationship between SISF energy and temperature for a sample of the
Co3X compounds in the spin-polarised and non spin-polarised implementations of the
ANNI and ANNNI models. Finite temperature results conducted using first-principles
in conjunction with the quasiharmonic Debye model and the quasistatic approach.
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Figure 7.7: The relationship between SISF energy and temperature for a sample of the
Ni3X compounds in the spin-polarised and non spin-polarised implementations of the
ANNI and ANNNI models. Finite temperature results conducted using first-principles
in conjunction with the quasiharmonic Debye model and the quasistatic approach.

As can be seen in the majority of cases regardless of the approximation a smooth

quasilinear change is observed as temperature is increased. The seemingly anomalous

point for the ANNNI SP data set in the Co3V compound at 1400K is caused by strong

magnetism being present at the volume associated with 1400K. In some cases this change

manifests itself as a decline and in others as an increase. In order to determine whether

the sign of the SISF energy determines whether the change manifests as an increase

or decrease the change was plotted vs the SISF formation energy at 0K. This data is

plotted for the Co3X compounds in figures 7.8 and 7.9 and for the Ni3X compounds in

figures 7.10 and 7.11 (note the change over 0-1400K is computed as the value at 1400K
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minus the value at 0K and not the other way around).
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Figure 7.8: The change in SISF energy with temperature vs the 0K SISF energy for
the spin-polarised implementation of the ANNI and ANNNI models for the Co3X com-
pounds. Finite temperature results conducted using first-principles in conjunction with
the quasiharmonic Debye model and the quasistatic approach.
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Figure 7.9: The change in SISF energy with temperature vs the 0K SISF energy for
the non spin-polarised implementation of the ANNI and ANNNI models for the Co3X
compounds. Finite temperature results conducted using first-principles in conjunction
with the quasiharmonic Debye model and the quasistatic approach.
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Figure 7.10: The change in SISF energy with temperature vs the 0K SISF energy
for the spin-polarised implementation of the ANNI and ANNNI models for the Ni3X
compounds. Finite temperature results conducted using first-principles in conjunction
with the quasiharmonic Debye model and the quasistatic approach.
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Figure 7.11: The change in SISF energy with temperature vs the 0K SISF energy for
the non spin-polarised implementation of the ANNI and ANNNI models for the Ni3X
compounds. Finite temperature results conducted using first-principles in conjunction
with the quasiharmonic Debye model and the quasistatic approach.

Two pieces of key information can be ascertained from these graphs, there does in

a large part appear to be a dependence on the sign of the SISF energy with the sign

of the change with temperature. Negative SISF Energy compounds experience on the

whole positive decays meaning they become closer to zero (and hence appear in the

top left quadrant of their respective graphs). Likewise positive SISF energy compounds

experience negative changes again causing the SISF to become closer to zero (hence

appearing in the bottom right quadrant of their respective graphs). The role of the

inclusion of magnetism is now investigated by counting the numbers of elements that
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defy this trend in each of the SP and NSP datasets. In both the Co3X and Ni3X

compounds there are more elements (although note the difference is only 1 on the case

of the Co3X compounds and by a SISF energy less then 1mJ/m2) in defiance of the

trend for the SP dataset then for the respective NSP dataset proving that at least in

some capacity magnetism has the ability to disrupt this trend. It is also important to

note that the raw numbers of elements that are in defiance of this trend is higher for

the case of the Co-based compounds then for the Ni-based compounds. Finally for the

elements that do follow the trend there appears to be a correlation (which is stronger

in the case of the Ni3X compounds) implying that the larger the absolute value of the

SISF energy the larger the extent of the decay towards zero.
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Chapter 8

Results: γ′ Pseudo-binary Systems

((Ni1−xXx)3Al and Ni3(Al1−xXx))

8.1 Introduction

Pseudo-binary systems in this research were analysed using two approaches, the first

being a high throughput approach in which the full set of transition metals were analysed

using smaller supercells and coarser compositions x=0, 0.25, 0.5, 0.75 and 1 (32-atom

supercells for first sublattice 64-atom supercells for second sublattice). The second was

where a selection of systems which have direct verification in the literature to exist

were analysed using larger supercells and finer compositions which are within the solid

solubility. These two sets of results were later compared to see whether interpolation

between the two results x=0 and x=0.25 in the coarser set of data agreed with the data

at finer compositions.
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The data for the finer compositions was not conducted for all of the transition metal

elements in both sublattices due to the computational expense. Rather it was only

conducted where said elements had either a basis in literature, be that experimental[55,

289, 290] or simulation[291–293] to segregate to a certain sublattice or partition evenly

between the two. Of the elements which have evidence to support them most of the

elements were found to segregate to the second sublattice of γ′ Ti, V, Zr, Nb, Mo, Hf,

Ta and W, where the only ones to segregate to the first sublattice are Co, Cu, Pd and Pt,

where Cr, Mn and Fe were found in [55] to distribute evenly between the two sublattices.

Some of the elements Mn, Fe, Co, Cu, Ag and Au were found to experience different site

preferences based on the composition of the γ′ phase[292]. Hence the results presented

in this thesis do not provide an exact understanding of site preference, rather a working

approximation.

8.2 Lattice Parameters

8.2.1 First Sublattice

Coarse Compositions

The lattice parameter vs composition for the high throughput set of data was displayed

in figure 8.1. As the composition is increased there is in general a linear or slightly

curved increase in the lattice parameter in both SP and NSP sets of data. It is to be

noted that magnetism in this set of data seems to only have a significant effect in the

case of a few elements Mn, Fe and Co. In the case of the following elements Ti, V,
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Cr, Fe, Zr, Nb, Mo, Tc, Ru, Hf, Ta, W and Re there exists a large disagreement with

Vegard’s law, the only elements which agree well with the law being Rh, Pd, Os, Ir, Pt

and Co. The reason for this disagreement could be due to the nuance in how unlike

in the γ binary systems reviewed in chapter 6 where agreement is much better, there

exist 2 distinct sublattices in γ′. All of the elements where data exists, which were

experimentally observed to segregate to mainly the Ni sublattice offer good agreement,

wheras all of the elements found to segregate to the Al sublattice were found to result in

poor agreement with Vegard’s law as would be expected. The elements which were found

to partition evenly have large disagreement with Vegard’s law also (note Mn agrees at

the end points but has significant disagreement in the middle of the composition range).

Again the same logic as detailed in section 6.2 of chapter 6 applies to comparisons where

high compositions are concerned in this chapter. Vegard’s law is derived from data at

dilute compositions where interactions between nickel and the solute are very important

in informing the lattice parameter unlike at high compositions.

One point of note is that for alloying elements V, Cr and Fe declines are predicted

by Vegard’s law in the lattice parameter with increased alloying composition whereas

the simulations of this research increases are found. This can potentially be attrubuted

to the strong magnetic nature of these 3 alloying elements. Both the 4d and 5d elements

behave similarly to eachother as demostrated in the final row of graphs of figure 8.1.

192



3.5
3.6
3.7
3.8
3.9

4
4.1
4.2
4.3
4.4
4.5
4.6

La
tti

ce
 P

ar
am

et
er

 (
Å

)
Ti V Cr Mn Fe Co Ni Cu Zn

Zr Nb Mo Tc Ru Rh Pd Ag Cd

Hf Ta W Re Os Ir Pt Au

Hg

NSP

3.5
3.6
3.7
3.8
3.9

4
4.1
4.2
4.3
4.4
4.5
4.6

3.5
3.6
3.7
3.8
3.9

4
4.1
4.2
4.3
4.4
4.5
4.6

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 1

4 5 6 7 8 9 10 11

12
0 0.2 0.4 0.6 0.8 1

Atomic fraction of Sublattice (xsub)
3.5
3.6
3.7
3.8
3.9

4
4.1
4.2
4.3
4.4
4.5
4.6

Figure 8.1: Equilibrium lattice parameters in both spin-polarised and non spin-polarised
implementations for the coarse compositional data in the first sublattice of the γ′ phase.
Standard colour scheme in use for spin-polarised lattice parameter of each system.
Turquoise lines correspond to Vegard’s law.

Figure 8.2 contains the same data but expressed as a relationship with d-band filling.

As can be seen there is a broad parabolic shape in all of the curves caused by the strong

binding energies associated with half d-band filled elements. Noted is the disruption to

the parabolic behavior that is caused by magnetism in the compounds near the centre

of the 3d series. Another observation is that as x is increased the parabolas become

steeper due the the increased influence of the alloying elements which are mostly larger

in atomic size then nickel.
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Figure 8.2: Equilibrium lattice parameters in both spin-polarised and non spin-polarised
implementations for the coarse computational data in the first sublattice of the γ′ phase.
This time expressed as expressed as a dependence on d-band filling. Blue dots represent
where Al is used as an alloying element.

Fine Compositions

Figure 8.3 is data compared with experimental results for the 4 elements found to seg-

regate to the first sublattice of the γ′ phase.
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Figure 8.3: The lattice parameter data for the fine compositions of the elements found
to segregate to the first sublattice of the γ′ phase in the spin-polarised implementa-
tion. Comparison is also made with the experimental observations of Mishima[55] and
Savin[294]. The blue lines represent the lattice parameter of Ni3Al.

As can be seen in all cases except for X=Co where the lattice parameter remains ap-

proximately the same, a linear increase in lattice parameter with composition is observed.

The results in this research display very strong agreement with the experimental results

in the literature. Unfortunately however such data is scarce with only Mishima[55]

featuring results at multiple compositions hence displaying the dependence on lattice

parameter with composition. The dependence of d-band filling is assessed at the lowest

calculated composition as can be seen in figure 8.4. As can be seen the observations of
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the previous subsection concerning the data for coarse compositions are corroborated.
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Figure 8.4: Equilibrium lattice parameters for all of the transition metals added to the
first sublattice of γ′(whether they segregate to it or not) at the bulk composition of
0.0234375 atomic fraction (0.017578125 atomic fraction of sublattice xsub) in the spin-
polarised implementation. The blue line represents the lattice parameter of Ni3Al.

8.2.2 Second Sublattice

Coarse Compositions

The data for all transition metals substituting to the second sublattice is displayed in

figure 8.5. As expected all of the elements that substitute to the first sublattice disagree

with Vegard’s law and all of the elements which naturally substitute to the second

sublattice with the exceptions of (Ti, Mo and Hf) agree well as would be expected.

Also again all of the elements which partition evenly were found to disagree. 4d and 5d

elements were found to offer similar behaviour as can be seen from the bottom row of

figure 8.5 and the changes in lattice parameter with composition are linear or slightly

curved. The relationship between lattice parameter and d-band filling is expressed in

figure 8.6. A parabolic relationship is observed with d-band filling with the minimums

196



lying in the centre of the transition metal series caused by the high binding energies of

these elements. Elements near the centre of the 3d series experience magnetic disruption

to the typical parabolic shape when spin-polarisation is factored in due to the complex

magnetic nature of these elements.
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Figure 8.5: Equilibrium lattice parameters in both spin-polarised and non spin-polarised
implementations for the coarse compositional data in the second sublattice of the γ′

phase. Standard colour scheme in use for total spin-polarised lattice parameter of each
system. Turquoise lines correspond to Vegard’s law.

197



3.5

3.6

3.7

3.8
La

tti
ce

 P
ar

am
et

er
 (

Å
)

3d SP
4d SP
5d SP
3d NSP
4d NSP
5d NSP

3.5

3.6

3.7

3.8

La
tti

ce
 P

ar
am

et
er

 (
Å

)

Ti
Zr
Hf

 V
Nb
Ta

Cr
Mo
W

Mn
Tc
Re

Fe
Ru
Os

Co
Rh
 Ir

Ni
Pd
Pt

Cu
Ag
Au

Zn
Cd
Hg

3.5

3.6

3.7

3.8

Ti
Zr
Hf

 V
Nb
Ta

Cr
Mo
W

Mn
Tc
Re

Fe
Ru
Os

Co
Rh
 Ir

Ni
Pd
Pt

Cu
Ag
Au

Zn
Cd
Hg

3.5

3.6

3.7

3.8

0.25xsub (0.0625x)

0.5xsub (0.1250x)

0.75xsub (0.1875x)

1xsub (0.25x)

Figure 8.6: Equilibrium lattice parameters in both spin-polarised and non spin-polarised
approximations for the coarse compositional data in the second sublattice of the γ′ phase
for the spin-polarised implementation. This time expressed as expressed as a dependence
on d-band filling.

Fine Compositions

The data and its comparison to experimental data is presented in figure 8.7. Like

for the first sublattice only Mishima[55] has results for multiple compositions of each

alloy for the purpose of assessing the dependence of lattice parameter on composition.

Agreement with experimental data is good with the largest disagreement being 0.36%

for where X=Ti at the composition xsub ≈ 0.48. V is the only alloying element found

to decrease the lattice parameter, this is attributed to the complex magnetic nature of

this element. The dependence on d-band filling is assessed in figure 8.8 for the lowest
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calculated composition. Where the observations made about d-band filling for the coarse

set of data hold true for this dataset. Comparing figures 8.4 and 8.8 reveals that on

average when substitution for nickel is made the lattice parameter is much higher. This

is attributed to atomic size effects as nickel has a smaller atomic radius then majority

of the transition metals and on the contrary aluminum has a larger atomic radius then

the majority of transition metals.
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Figure 8.7: The lattice parameter data for the fine compositions of the elements found to
segregate to the second sublattice of the γ′ phase for the spin-polarised implementation.
Comparison is also made with the experimental observations of Mishima[55], Savin[294],
Morinaga[295] and Mohan[296]. The blue lines represent the lattice parameter of Ni3Al.
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Figure 8.8: Equilibrium lattice parameters for all of the transition metals added to the
second sublattice of γ′(whether they segregate to it or not) at the bulk composition
of 0.0234375 atomic fraction (0.005859375 atomic fraction of sublattice xsub) for the
spin-polarised implementation. The blue line represents the lattice parameter of Ni3Al.

8.2.3 Both Sublattices

Fine Compositions

The dependence of the lattice parameter on composition for the elements found to parti-

tion evenly between the two sublattices is displayed in figure 8.9. As can be seen strong

agreement is found between the results of this thesis and the available experimental data.
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Figure 8.9: The lattice parameter data for the fine compositions of the elements found to
partiotion to both sublattices of the γ′ phase equally for the spin-polarised implementa-
tion. Comparison is also made with the experimental observations of Mishima[55]. The
blue lines represent the lattice parameter of Ni3Al.

There exists an additional nuance with regard to the alloying element Fe which was

found to significantly change its site preference based on the composition of the γ′ phase,

hence calculations in all 3 scenarios; segregation to the first sublattice, segregation to the

second sublattice, and partitioning evenly between the two were conducted (see figure

8.10).
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Figure 8.10: The lattice parameter data for the equilibrium lattice parameter of iron
modelled as segregating to the first and second sublattices as well as partitioning be-
tween the two sublattices of the γ′ phase equally for the spin-polarised implementation.
Comparison is also made with the experimental observations of Mishima[55]. Blue line
represnts the lattice parameter of Ni3Al.

As can be seen from the graph the experimental data predicts very little change with

increasing composition. Segregation to the first sublattice results in a slight increase

whereas partitioning to the second sublattice results in a slight decrease with a much

larger decrease predicted for the even distribution between both sublattices. Whilst even

distribution between both sublattices renders results that have the largest disagreement

with the available experimental data, this was in the end chosen to extend to the results

for the SISF. This is as this type of splitting is the only type of with experimental data

concerning the lattice parameter[55] to the authors knowledge.
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8.3 Magnetic Moments

8.3.1 First Sublattice

Coarse Compositions

The analysis for the magnetic moments of the individual species as well as the average

magnetic moment per atom are displayed in figure 8.11.
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Figure 8.11: The total magnetic moment per atom in addition to the average magnetic
moment per atom of the nickel, aluminium and X atoms of the coarse compositional
data for the first sublattice of the γ′ phase. Standard colour scheme in use for total
magnetic moment of each system.

One clear conclusion from this data is that overall magnetism is weak in these alloys.

with only a few alloys where x= Mn, Fe, Co, Pd, Cr and Pt exhibiting any significant

magnetism. It is noted that aluminium does not gain significant magnetism in any
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of the circumstances and frequently develops small magnetic moments in the opposite

orientation to that of the Ni and X magnetic moments.

An interesting nuance concerning the cases where x= Mn, Fe and Co is that the

average magnetic moment of X peaks at x=0.25 and decays beyond (most notably where

X=Mn the decay is only slight in the cases of the other 2 alloying elements) however

due to the increasing amount of the element the total magnetisation increases with x. In

the case of X=Pd and X=Pt the solute element does not exhibit significant magnetism

however nickel does. It appears significant to this observation that Pd and Pt are both

in the same group as nickel. In the case of X=Cr, chromium develops a significant

magnetic moment at x=0.25 but no significant magnetic moment beyond.

The same data except expressed as a function of d-band filling is expressed in figures

8.12-15.
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Figure 8.12: The total magnetic moment per atom in addition to the average magnetic
moment per atom of the nickel, aluminium and X atoms of the coarse compositional
data for the first sublattice of the γ′ phase. Expressed as a dependence with d-band
filling for the composition 0.25xsub. Blue lines represent zero magnetic moment.
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Figure 8.13: The total magnetic moment per atom in addition to the average magnetic
moment per atom of the nickel, aluminium and X atoms of the coarse compositional
data for the first sublattice of the γ′ phase. Expressed as a dependence with d-band
filling for the composition 0.5xsub. Blue lines represent zero magnetic moment.
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Figure 8.14: The total magnetic moment per atom in addition to the average magnetic
moment per atom of the nickel, aluminium and X atoms of the coarse compositional
data for the first sublattice of the γ′ phase. Expressed as a dependence with d-band
filling for the composition 0.75xsub. Blue lines represent zero magnetic moment.
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Figure 8.15: The total magnetic moment per atom in addition to the average magnetic
moment per atom of the nickel, aluminium and X atoms of the coarse compositional
data for the first sublattice of the γ′ phase. Expressed as a dependence with d-band
filling for the composition 1xsub. Blue lines represent zero magnetic moment.

8.3.2 Second Sublattice

Coarse Compositions

The data for all of the calculated alloy systems is presented in figure 8.16.
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Figure 8.16: The total magnetic moment per atom in addition to the average magnetic
moment per atom of the nickel, aluminium and X atoms of the coarse compositional
data for the second sublattice of the γ′ phase. Standard colour scheme in use for total
magnetic moment of each system.

It is noted that magnetism is far more significant in the second sublattice as opposed

to the first with a lot more alloys displaying significant magnetism. These alloys are

typically concentrated toward the centre of the transition metal series with groups 7, 8

and 9 displaying the most magnetism. Again Al exhibits no significant magnetism in

any alloy and frequently develops small magnetic moments in the opposite direction to

Ni and X. Ni is found to develop magnetism of higher moments in many cases then that

of the first sublattice alloys. One key difference between the datasets of the first and

second sublattices is that in the case of X=Cr significant magnetism is observed across

the whole of the compositional range. Another notable difference is that despite the
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enhanced magnetism in the 4d and 5d series there appear no disruption the the lattice

parameters unlike in the 3d series as can be seen in figure 8.6. This data is also presented

as a dependence with d-band filling in figures 8.17-8.20.
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Figure 8.17: The total magnetic moment per atom in addition to the average magnetic
moment per atom of the nickel, aluminium and X atoms of the coarse compositional
data for the second sublattice of the γ′ phase. Expressed as a dependence with d-band
filling for the composition 0.25xsub. Blue lines represent zero magnetic moment.
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Figure 8.18: The total magnetic moment per atom in addition to the average magnetic
moment per atom of the nickel, aluminium and X atoms of the coarse compositional
data for the second sublattice of the γ′ phase. Expressed as a dependence with d-band
filling for the composition 0.5xsub. Blue lines represent zero magnetic moment.
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Figure 8.19: The total magnetic moment per atom in addition to the average magnetic
moment per atom of the nickel, aluminium and X atoms of the coarse compositional
data for the second sublattice of the γ′ phase. Expressed as a dependence with d-band
filling for the composition 0.75xsub. Blue lines represent zero magnetic moment.
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Figure 8.20: The total magnetic moment per atom in addition to the average magnetic
moment per atom of the nickel and X atoms of the coarse compositional data for the
second sublattice of the γ′ phase. Expressed as a dependence with d-band filling for the
composition 1xsub. Blue lines represent zero magnetic moment.

8.4 Formation Enthalpies

8.4.1 First Sublattice

Coarse Compositions

The formation enthalpies are displayed in figure 8.21. In general the formation energy

increases in a linear or slightly curved fashion as the composition is increased (the ex-

ceptions being compounds involving Rh, Pd, Pt). It is to be noted in the cases of Mn,

Fe and Co magnetism has a significant stabilizing effect on the pseudo-binary alloys. An

important observation comes from that it is very rare for the formation enthalpies to ever

exceed 0 kJ/mol.atom hence completely destabilizing the pseudo-binary alloy. Another

key observation is that replacing Ni with an element from the same period (Pd and Pt)
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results in a significant reduction on the formation enthalpy providing some degree of

validation as to why these elements segregate to the Ni sublattice. The largest increases

occur close to the centre of the transition metal series with the majority (6 out of 8 the

remainder being Zn and Cd from the group 12) of elements that cross the 0 line being

from groups 7, 8 and 9 of the periodic table.
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Figure 8.21: The formation enthalpy in both the spin-polarised and non spin-polarised
implementation of the coarse compositional data for the first sublattice of the γ′ phase.
Standard colour scheme in use for the spin-polarised formation enthalpy of each system.
Blue lines represent zero formation enthalpy.

Figure 8.22 is the same data except displayed as a dependence with d-band filling,

there does not appear to be a large number of profound statements that can be made

based on this other than that groups 6, 7, 8 11 and 12 are generally high and periods

4, 5, 9 and 10 are generally low. Another observation is that similarly to the lattice
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parameter the range of the formation enthalpies increases with composition.
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Figure 8.22: The formation enthalpy in both the spin-polarised and non spin-polarised
implementation of the coarse compositional data for the first sublattice of the γ′ phase.
This time expressed as a dependence with d-band filling. Blue lines represent zero
formation enthalpy.

8.4.2 Second Sublattice

Coarse Compositions

Many of the observations remain similar between the two data sets. For the elements

in the centre of the 3d series magnetism provides significant stabilisation of the alloy,

but has very small impact elsewhere. Again the relationship of formation enthalpy with

composition is linear or slightly curved in all cases. In this data set however crossing the

zero line is a lot more common with 15 elements crossing as opposed to 8 in the dataset
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for the first sublattice.
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Figure 8.23: The formation enthalpy in both the spin-polarised and non spin-polarised
implementation, of the coarse compositional data for the second sublattice of the γ′

phase. Standard colour scheme in use for the spin-polarised formation enthalpy of each
system. Blue lines represent zero formation enthalpy.

The same data expressed as a dependence on d-band filling is expressed in figure 8.24

and like in the first sublattice data from groups 6, 7, 8, 11 and 12 are generally high and

4, 5, 9 and 10 are generally low, meaning the pattern remains similar. Also the range of

the formation enthalpies increases with composition.
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Figure 8.24: The formation enthalpy in both the spin-polarised and non spin-polarised
implementation of the coarse compositional data for the second sublattice of the γ′

phase. This time expressed as a dependence on d-band filling. Blue lines represent zero
formation enthalpy.

The observations from both the datasets for the first and second sublattice reveal

that formation enthaplies are overall ”well behaved” in that they do not fluctuate wildly

with composition, this validates the observations of chapter 7 where it was assumed that

if an element strongly stabilises γ′ at 100% composition of the sublattice it will stabilise

it at significantly smaller compositions. For the γ phase however this is not true as

the relationship of formation enthalpy with composition is heavily curved and changes

gradient sign in a large amout of cases. Unfortunately data for finer compositions in

Co-based alloys for the Co3(Al1−2xW1−2xXx) alloy system were not able to be taken
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as a part of this research (due to the exceptionally large computational expense), for

the purpose of explicitly verifying the claims made in chapter 7 about which elements

stabilise the γ’ phase in Co-based alloys.

8.5 SISF Energies

8.5.1 First Sublattice

Coarse Compositions

The SISF energies of the various alloys are displayed in figure 8.25. four sets of data are

represented in this figure as can be seen, there is a significant difference the internally

static and internally relaxed data. The internally static calculations yield significantly

higher SISF energies then the internally relaxed calculations, this reveals that the as-

sumption that the default atomic positions in the D019 supercell sufficiently approximate

those of the relaxed calculations is largely false. Hence attempting to reduce the com-

putational expense of such DFT calculations through such means is inappropriate and

compromises accuracy significantly. Further discussion of this dataset will concern only

the data with internal relaxation as this data is the most accurate, and most relevent to

comparisons between other simulation data and experiments. It can be seen that except

for the following elements Ti, Mn, Fe, Cd and Hf magnetism has no significant impact

on the SISF formation energy. Similarly to the lattice parameters of the alloys for this

dataset the 4d and 5d series are found to behave very similarly. The same data except

expressed as a dependence with d-band filling is displayed in figure 8.26.
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Figure 8.25: The SISF formation energy in both the spin-polarised and non spin-
polarised implementation of the coarse compositional data for the first sublattice of the
γ′ phase. Standard colour scheme in use for the spin-polarised internal relaxation data
of each system. Included also is the IS and IR implementation for the D019 sublattice.
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Figure 8.26: The SISF formation energy in both the spin-polarised and non spin-
polarised implementation of the coarse compositional data for the first sublattice of
the γ′ phase, this time expressed as a function of d-band filling. In this graph only the
IR data is featured. Blue lines represent a SISF formation energy of 0mJ/m2.

It is important to also investigate if there exists a dependence on SISF energy with

lattice parameter, for this purpose a scatter graph of the spin-polarised data is plotted in

figure 8.27. The rationale behind the plotting of the graphs is as follows, it is predicted

that there will be a correlation between the change in lattice parameter from that of

the host lattice and the scale of changes in said host lattice, hence the potential for

a correlation between lattice parameter and SISF energy. As can be seen from this

graph there is no correlation between the two variables and the data becomes closer

to a random spread the greater the composition. Also the same graph was plotted
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for the non spin-polarised data in figure 8.28 and again no significant correlation is

observed (note in the SP and NSP IS datasets there appears a weak correlation at

lower compositions). Another important assessment to make is as to whether the room

temperature native stacking sequence of the solute impacts the SISF energy. The change

in SISF energy from adding in xsub=0.25 of the solute elements of the FCC, HCP and

BCC stacking sequences is as follows -14.927(-8.979 NSP), -83.491(-70.982 NSP) and

-106.022(-103.505 NSP) respectively. The observations from the SP data and NSP are

mostly as expected with the averages for BCC and HCP being strongly negative (though

HCP would be expected to be the most negative) this suggests that the native room

temperature stacking sequence of the solute has some degree of impact on the SISF

energy but is far from being the most significant factor in the discussion.
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Figure 8.27: Scatter graphs of the SISF formation energy vs the lattice parameter for
both the IR and IS implementations of the spin-polarised coarse compositional data in
the first sublattice of the γ′ phase.
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Figure 8.28: Scatter graphs of the SISF formation energy vs the lattice parameter for
both the IR and IS implementations of the non spin-polarised coarse compositional data
in the first sublattice of the γ′ phase.

Fine Compositions

The data for the SISF energies for the fine compositions are expressed in figure 8.29.
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Figure 8.29: The SISF energy data for the fine compositions of the elements found to
partition to the first sublattice of the γ′ phase for the spin-polarised implementation.
The blue lines represent the SISF formation energy of Ni3Al. Turquoise lines represent
fits to the IR data.

Again the same observation regarding the magnitudes of the results from the two

datasets (relaxed and static) made for the coarse compositions set holds true here also.

Fits are also made to the set of data which features relaxation for the atomic positions

in the D019 phase.
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8.5.2 Second Sublattice

Coarse Compositions

The data for all of the systems in the second sublattice is displayed in figure 8.30.

-800

-600

-400

-200

0

200

400

S
IS

F
 E

ne
rg

y 
(m

J/
m

2 )

SP Internal Relaxation
SP Interanlly Static

N-SP Interanal Relaxation
N-SP Internally Static

-800

-600

-400

-200

0

200

400

-800

-600

-400

-200

0

200

400

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 10 0.2 0.4 0.6 0.8 1

                                         Atomic Fraction of Sublattice (xsub)                         

-800

-600

-400

-200

0

200

400

Ti

Zr

Hf

4

V Cr Mn Fe Co Ni Cu Zn

Nb Mo Tc Ru Rh Pd Ag Cd

Ta W Re Os Ir Pt Au Hg

5 6 7 8 9 10 11 12

Figure 8.30: The SISF formation energy in both the spin-polarised and non spin-
polarised implementation of the coarse compositional data for the second sublattice
of the γ′ phase. Standard colour scheme in use for the spin-polarised internal relax-
ation data of each system. Included also is the IS and IR implementations for the D019
sublattice.

Again the IR data set is significantly lower in a large number of cases then the IS data

set meaning that the previous observations made about these data sets in the preceding

sections remain relevant for this data set. It is important to observe however that the

difference between the IR and IS datasets is not nearly as large in this sublattice relative

to the first sublattice. This is simply due to the observation that the larger the increase

222



in lattice parameter from the base alloy (Ni3Al-γ
′) the more significant the role of atomic

relaxations. As in this case we are substituting on a minority sublattice hence the scope

for the change in lattice parameter is reduced. Again the 4d and 5d series elements

produce alloys which behave in a similar manner. The same data except expressed as a

function of d-band filling is represented in figure 8.31.
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Figure 8.31: The SISF formation energy in both the spin-polarised and non spin-
polarised implementation of the coarse compositional data for the second sublattice
of the γ′ phase, this time expressed as a function of d-band filling. In this graph only
the IR data is featured. Blue lines represent a SISF formation energy of 0mJ/m2.

In this data inclusion of spin-polarisation produces large changes in the fault energies

for x=Cr, Mn, Fe and Co, this corresponds to the large magnetic moments documented in

section 8.3.2. Again a check was made to see if there is significant correlation between the
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SISF energy and the lattice parameter by the plotting of scatter graphs. The reasoning

behind the plotting of said graphs, was that the bigger the lattice parameter the greater

the change of the host lattice, hence there exists the potential of a correlation between

the two variables of lattice parameter and SISF energy. As can be seen from figures 8.32

and 8.33 there exists no significant correlation between these two factors. This data also

progresses more to a random spread the greater the composition of the alloying element.
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Figure 8.32: Scatter graphs of the SISF formation energy vs the lattice parameter for
both the IR and IS implementations of the spin-polarised coarse compositional data in
the second sublattice of the γ′ phase. Compositions are given in the from of xsub, x given
in brackets.
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Figure 8.33: Scatter graphs of the SISF formation energy vs the lattice parameter for
both the IR and IS implementations of the non spin-polarised coarse compositional data
in the second sublattice of the γ′ phase. Compositions are given in the from of xsub, x
given in brackets.

It was also important to test the dependence of the native room temperature stacking

sequence on the SISF energy, the average change in the SISF energy from introducing

FCC, BCC and HCP elements at xsub=0.25 is -4.383(6.455 NSP), 56.508(51.879 NSP)

and 10.198(9.760 NSP) respectively. In the case of the spin-polarised data the normal

expectation is not met with FCC elements having on average a decrease whilst BCC

elements result in a large increse in the SISF energy, with the HCP elements in between.

In the case of non spin-polarised data all on average result in increases however again the

natural expectation is not met. This provides evidence that in the case of this system
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the native room temperature stacking sequence of the alloying element has little impact

relative to the other factors.

Fine Compositions

The data for the full set of elements for the fine compositions is presented in figure 8.34.
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Figure 8.34: The SISF energy data for the fine compositions of the elements found to
partition to the second sublattice of the γ′ phase for the spin-polarised implementation.
The blue lines represent the SISF formation energy of Ni3Al. Turquoise lines represent
fits to the IR data. Comparison to the the simulation data of Vamsi[95] and where
results are calculated by plugging experimental data of Mishima[55] into simulation are
also made.

Again the same observations previously made about the difference between the IR
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and IS results applies for this data set also. Unfortunately the same with the fine

compositions first sublattice data there is no direct experimental evidence to compare

with for the property of the SISF energy. The data of Vamsi[95] empolyed the supercell

approach, and also ensured that the composition in the bulk and fault region were

identical. In the case of both X = Ti and Ta the composition dependence trend is

consistent with the results of Vamsi[95]. This observation validates the assertion that

the AIM models form an suitable approximation to the supercell approach. For X=Ti

experimental values of the lattice parameter were used to calculate the SISF energy using

first-principles (in the same vein to the data in chapter 6), these results unsurprisingly

agree largely with the dependence of the calculations purely from first-principles.

8.5.3 Both Sublattices

Fine Compositions

The SISF energy data for the elements modelled as partitioning evenly between the two

sublattices are displayed in figure 8.35.
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Figure 8.35: The SISF energy data for the fine compositions of the elements found to
partition to the second sublattice of the γ′ phase for the spin-polarised implementation.
The blue lines represent the SISF formation energy of Ni3Al. Turquoise lines represent
fits to the IR data.

As can be seen form the data for where Cr and Fe are used as alloying additions the

relationship is strongly curved whereas in the case of Mn it is a lot straighter. In the

case of Cr the decline takes the SISF energy almost back to what it was at x=0. Iron is
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significant as it produces the largest increase of any of the elements investigated for the

fine compositional systems. This means that it has the largest scope for the frustration

of shearing in the primary creep regime for single-crystal alloys[145]. Another point of

note is that the two datasets IR and IS generate very similar results in this instance.

8.6 High-Temperature Calculations

8.6.1 First Sublattice

Fine Compositions

The dependence of the SISF formation energy on temperature for the 4 calculated alloys

is displayed in figures 8.36-39. Unfortunately such data is limited to these 4 alloys and

there exists no data for dilute compositions within the second sublattice. This is due to

the large computational expense of such calculations (especially in the second sublattice

where supercells for dilute compositions are even larger), however for the calculations in

this subsection there is a large array of different approximations presented. Assessing

first the results for the fixed atomic positions. In all cases irrespective of whether the

calculations are spin-polarised or not a decline with temperature was observed between

0-1400K(0-700K in the case of the spin-polarised result for 0.06173 xsub). Note this

decline can be incredibly subtle for example where X=Co at xsub=0.12346 the decline

is only 6.194mJ/m2 over a temperature range of 1400K. However in the cases of X=

Pd or Pt the declines can be more substantial especially as the composition is increased

for example in the case of where X=Pt the decline reaches 70.587mJ/m2 over 1400
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K at xsub = 0.24690. While this decline and the others in the alloy systems X=Pt

and Pd are large it is important to remember that they are not large enough to make

the SISF energies negative or even close to zero. These large declines may initially

seem discouraging for the prospect of calculations of fault energies by first-principles

techniques as it appears that the 0K SISF energies do not successfully approximate the

SISF energies at operational temperatures.

However in the case of the results with the atomic positions of the D019 phase relaxed

these large declines cease to exist (for example the decline in the case of X=Pt at

xsub=0.24690 is 20.662mJ/m2 in this dataset). Another point of note was partially

established previously in this chapter but can now be further elaborated on. That is

the observation that the energies in general are significantly reduced when local atomic

relaxations are factored in. However a nuance not previously established is that the

relative increase in the lattice parameter plays heavily into the scale of this decline with

temperature. Such that the larger the expansion of the lattice parameter relative to

unalloyed γ′ the more significant the role of local atomic relaxations becomes. Hence the

large declines when Pt and Pd are used as alloying additions relative to when relative to

Co and Cu are utilised. This again emphasised the importance of ensuring good practice

by relaxing the atomic positions in the D019 phase. These results are very encouraging

to the prospect of using first-principles calculations which are traditionally active at 0K

to determine the SISF energies of high temperature superalloys due to the fact that the

0K SISF energy accurately approximates the operational temperature SISF energy. For

example the average decline (which includes both SP and NSP data) is 9.272mJ/m2.
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Another relevant nuance to the situation is that magnetism seems to make the scale

of the decay slightly smaller in all of the cases where data is available for the IR data.

Preliminary evidence also suggests that the higher the composition of the solute the

greater the deviation between the 0K SISF energy and the experimental reality. This can

be seen in figure 8.34(a) where as the Ti composition is increased so does the difference

between the first-principles results and results which use the experimental values of

lattice parameter as an input. The difference a the maximum studied composition

xsub=0.5 is approximately 30mJ/m2 whereas at lower compositions for example the

difference is very minimal.
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Figure 8.36: The relationship between the SISF energy and the temperature for both
the IR (a) and IS (b) data in the spin-polarised and non spin-polarised implementations
for where Co is used as an alloying element in the first sublattice of γ′ for fine compo-
sitions. Stars represent spin-polarised data. Finite temperature results conducted using
first-principles in conjunction with the quasiharmonic Debye model and the quasistatic
approach.
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Figure 8.37: The relationship between the SISF energy and the temperature for both
the IR (a) and IS (b) data in the spin-polarised and non spin-polarised implementations
for where Cu is used as an alloying element in the first sublattice of γ′ for fine compo-
sitions. Stars represent spin-polarised data. Finite temperature results conducted using
first-principles in conjunction with the quasiharmonic Debye model and the quasistatic
approach.
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Figure 8.38: The relationship between the SISF energy and the temperature for both
the IR (a) and IS (b) data in the spin-polarised and non spin-polarised implementations
for where Pd is used as an alloying element in the first sublattice of γ′ for fine compo-
sitions. Stars represent spin-polarised data. Finite temperature results conducted using
first-principles in conjunction with the quasiharmonic Debye model and the quasistatic
approach.
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Figure 8.39: The relationship between the SISF energy and the temperature for both
the IR (a) and IS (b) data in the non spin-polarised implementations for where Pt
is used as an alloying element in the first sublattice of γ′ for fine compositions. Stars
represent spin-polarised data. Finite temperature results conducted using first-principles
in conjunction with the quasiharmonic Debye model and the quasistatic approach.

233



Chapter 9

Discussion

9.1 Proposed Relationships for ISF and SISF formation energies, For-

mation Enthalpy and Misfit

Thus the main goal of this thesis can now be realised, the proposition of a predictive

model for ISF and SISF energies, formation enthalpy, misfit and lattice parameter for

proposed arbitrary alloy compositions. The first phase of this model is the use of the

formation enthalpies to determine where in the alloy an element would be expected to

segregate.

9.1.1 Formation Enthalpies and Segregation

A model of where the alloying elements in the γ′ phase would be expected to segregate

can be produced by analysing formation enthaplies at the lowest analysed composition

for all alloy systems (atomic fraction of sublattice is xsub=0.25). Linear interpolation
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is performed between xsub=0 and xsub=0.25 and this is used to determine how much a

change of xsub will change the formation enthalpy of L12-Ni3Al. This change is the V

factor which are given for each alloy in table 9.1. Using these V factors the formation

enthalpy of an arbitrary alloying composition can be approximated using the following

equations.

Hγ = 0 +
∑
i

xiVi (9.1)

Hγ′ = −42.13855 +
∑
i

xsubiVi (9.2)

where xi and xsubi are the atomic fraction of solute element i in the γ phase and the

atomic fraction of i in the relevant sublattice in the γ′ phase respectively. 0 and -42.13855

are the formation enthalpy of γ-Ni and L12-Ni3Al respectively. This model in terms of

where elements in the γ′ will segregate agrees well with experimental observations layed

out in chapter 8. The only instance where this model disagrees is where X= Mo. Also

note that this model cannot take into account the elements which partition equally

between the two sublattices and implies that those that do would in fact segregate to

the Ni sublattice.
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Table 9.1: Model parameters (V) for the formation enthalpy in addition to the
expected segregation. The expected segregation is derived by assessing which
one of the 1st sub. factor and 2nd sub. factor is lowest. A value of 1 means
the 1st sub. factor is lower hence the element would be expected to segregate to
the first sublattice. A value of 2 means the 2nd sub. factor is lower hence the
element would be expected to segregate to the second sublattice.

Element 1st sub. factor 2nd sub. factor Expected Segregation γ phase factor

Al -7.542 0.000 1 -148.680

Ti 14.474 -5.900 2 -133.530

V 43.300 11.855 2 -66.277

Cr 66.525 37.560 1 17.696

Mn 33.650 32.484 1 -27.502

Fe 28.782 35.070 1 -28.062

Co 26.775 45.172 1 -2.331

Ni 0.000 45.892 1 0.000

Cu 13.038 48.769 1 11.358

Zn 17.136 31.084 1 -45.269

Zr 37.462 0.441 2 -90.213

Nb 60.001 6.025 2 -44.976

Mo 76.736 27.245 1 -7.328

Tc 59.170 41.230 1 26.971

Ru 48.464 50.759 1 41.981

Rh -0.980 44.794 1 13.779

Pd -10.187 48.120 1 17.338

Ag 64.218 71.546 1 94.837

Cd 87.327 57.651 1 64.160

Hf 12.620 -8.987 2 -124.773

Ta 58.191 -0.598 2 -94.104

W 90.621 22.486 2 -15.362

Re 74.699 36.693 2 11.258

Os 66.420 51.008 2 41.387

Ir 8.698 43.810 1 5.718

Pt -33.166 37.232 1 -19.645

Au 24.297 57.071 1 50.773
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9.1.2 Unconstrained Lattice Misfit

The lattice parameters of both of the phases γ′ and γ of an arbitrary alloy can be

expressed using the following equations

aγ′ = 3.5682 +
∑
i

xsubiYi (9.3)

aγ = 3.5209 +
∑
i

xiYi (9.4)

where 3.5682 and 3.5209 are the lattice parameters of unalloyed γ′ and γ respectively, Y

factors are found in table 9.2. The Y factors are derived for the γ′ phase by taking the

lowest studied composition in each scenario (xsub=0.25) and linearly interpolating back

to xsub=0 to get the gradient of a line between the two points. In the case of the γ phase

the factors are the gradients of linear fits from between the points x=0 and x=0.25. This

allows one who has the composition of each phase and where the elements segregate to,

to compute the unconstrained lattice misfit by equation (9.5).

σmisfit = 2 ·
(
aγ′ − aγ
aγ′ + aγ

)
(9.5)

For five sample alloys with experimental composition measurements in each phase CMSX-

10[297] (in the instance of dendrite region standard heat treatment), Waspaloy[298] (pri-

mary γ′ detector 2), Inconel-939[299] (average atom probe data in the as heat treated

material) (note very small amount of carbon and boron unaccounted for in the model),

N18[300] (secondary γ′) and René88 DT[301] (secondary γ′) the lattice parameters of
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both phases and misfit was calculated. In addition, the model of this thesis was com-

pared to Vegard’s law. The lattice parameters in the case of CMSX-10 are 3.592 Å (3.596

Å Vegard’s law) for the γ′ phase and 3.588 Å (3.554 Å Vegard’s law) for the γ phase.

For the alloy Waspaloy the lattice parameters are 3.603 Å (3.585 Å Vegard’s law) and

3.573 Å (3.589 Å Vegard’s law) for the γ′ and γ phases respectively. For Inconel-939 the

lattice parameter is 3.652 Å (3.611 Å Vegard’s law) for the γ′ phase and 3.558 Å (3.573 Å

Vegard’s law) for the γ phase. For N18 the lattice parameter is 3.760 Å (3.597 Å Vegard’s

law) for the γ′ phase and 3.567 Å (3.598 Å Vegard’s law) for the γ phase. Finally for

René88 DT the lattice parameter is 3.740 Å (3.624 Å Vegard’s law) for the γ′ phase and

3.618 Å (3.642 Å Vegard’s law) for the γ phase.

This results in the following misfits for CMSX-10 0.00129% (0.0119% Vegard’s law),

Waspaloy 0.00832% (-0.00117% Vegard’s law), Inconel-939 0.0263% (0.0105% Vegard’s

law), N18 0.0526% (-0.000506% Vegard’s law) and finally René88 DT 0.0332% (-0.00491%

Vegard’s law). The model of this thesis always produces a positive misfit whilst using

Vegard’s law results in a negative misfit in 3 out of the 5 alloys. Experimental results

for the misfit for each of the alloys are as follows, -0.11% for CMSX-10[20], 0.209%

for Waspaloy[302] (average of many results), 0.04% for Inconel-939[303], -0.00298% for

N18[300] and 0.000752% for René88 DT[301]. For the experimetal results the order from

highest to lowest is Waspaloy, Inconel-939, René88 DT, N18 and CMSX-10. Unfortu-

nately for the available sample of alloys both of the models fail to produce anything

close to this order, meaning that neither model seems to reproduce experimental data

qualitatively or quantitatively. One important nuance to note that in actuality misfit
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is dependent on a large array of factors, for example in another experimental condition

the lattice misfit of Inconel-939 is -0.58% making it the lowest by far[303].

Finally it is necessary to ensure that extrapolation using the coarse compositional

values accurately approximates the fine compositional values. Both sets are displayed

for both the first and second sublattice in figure 9.1 and figure 9.2. As can be seen from

these graphs there is negligible difference between the two datasets.
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Figure 9.1: Comparison between the lattice parameters of the coarse and fine composi-
tional data for the first sublattice of the γ′ phase in the spin-polarised implementation.
Standard colour scheme in use for the fine compositional data. Maroon lines in use for
the course compostional data.
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Figure 9.2: Comparison between the lattice parameters of the coarse and fine composi-
tional data for the second sublattice of the γ′ phase in the spin-polarised implementation.
Standard colour scheme in use for the fine compositional data. Maroon lines in use for
the course compostional data.

9.1.3 Fault Formation Energies

The SISF and ISF formation energies in the γ′ and γ phases respectively can be expressed

using the following equations.

γSISF = 59.4758 +
∑
i

xsubiZi (9.6)
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Table 9.2: Model parameters for the lattice parameter (Y), note that for Vegard’s
law x as opposed to xsub is used.

Element 1st sub. factor 2nd sub. factor γ phase factor Vegard γ′ Vegard γ

Al 0.352 0.000 0.260 - -

Ti 0.512 0.036 0.475 0.252 0.422

V 0.272 -0.031 0.185 -0.059 0.163

Cr 0.154 -0.048 0.057 -0.001 0.109

Mn 0.233 -0.014 0.158 0.086 0.292

Fe 0.089 -0.028 0.104 -0.002 0.125

Co 0.005 -0.045 0.004 0.000 0.018

Ni 0.000 -0.048 0.000 0.000 -0.001

Cu 0.084 -0.021 0.095 - 0.080

Zn 0.253 0.014 0.243 - -

Zr 1.035 0.196 1.161 0.707 0.965

Nb 0.718 0.103 0.745 0.440 0.666

Mo 0.520 0.062 0.474 0.188 0.449

Tc 0.390 0.039 0.370 0.156 0.423

Ru 0.317 0.037 0.342 0.129 0.333

Rh 0.308 0.048 0.408 0.303 0.400

Pd 0.388 0.079 0.518 0.453 0.470

Ag 0.553 0.139 0.716 - 0.540

Cd 0.752 0.176 0.910 - -

Hf 1.007 0.162 1.034 0.778 1.033

Ta 0.720 0.097 0.711 0.512 0.732

W 0.548 0.062 0.508 0.255 0.510

Re 0.427 0.041 0.418 0.265 0.486

Os 0.358 0.040 0.372 0.350 0.602

Ir 0.358 0.049 0.436 0.434 0.470

Pt 0.418 0.090 0.563 0.522 0.536

Au 0.598 0.151 0.776 - 0.601

Hg 0.840 0.216 1.044 - -
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γISF = 138.4905 +
∑
i

xiZi (9.7)

Where Zi is the relevant factor for element i taken from table 9.3. 59.4758 and 138.4905

are the SISF energy of unalloyed γ′ and ISF energy of unalloyed γ respectively. The Z

factors are determined by linear interpolation between the values of fault energy between

xsub=0 and xsub=0.25 in the case of γ
′ and the gradient of a linear fit between x=0 and

x=0.25 in the case of γ. These fits are not all good quality, however, even the ones which

are not, serve as a first degree approximation of the behaviour of the alloying element.

With regard to the quality of the fitting, R2 values were generally closer to 1 (note one

is the value for an ideal fit) for the 3d series then the 4d and 5d series. Also the values

get smaller the further away from the 3 centre periods 7, 8 and 9 (note this analysis does

not include the R2 values of the alloys containing Ta and Pd due to their significantly

worse fitting then the other alloys).

For the same sample of alloys analysed in section 9.1.2. The results for the fault

energies are as follows. For CMSX-10 the SISF is calculated as 114.108mJ/m2 and

the ISF as -5.505mJ/m2. For Waspaloy the SISF energy and ISF energy are 81.374

mJ/m2 and -47.693mJ/m2 respectively. For Inconel-939 the SISF energy is 247.335

mJ/m2 and the ISF energy is -121.106mJ/m2. For the alloy N18 the SISF and ISF

energies are 153.229mJ/m2 and -119.723mJ/m2 respectively. Finally for René88 DT

the SISF energy is 225.937mJ/m2 and the ISF energy is -77.292mJ/m2. Inconel-939

has the highest SISF energy which is derived due to the large amount of titanium in the

γ′ phase of the alloy.

242



Unfortunately since there is a small amount of experimental data for fault energies

there is limited means to assess the veracity of this model. However this model should

serve adequately as a first degree approximation of the (S)ISF energies of multicompo-

nent alloy systems. For the SISF energy in the γ′ phase to the author knowledge there

exists no experimental data. With regard to the ISF energy in the γ phase, for the alloy

MC2, Benyoucef[304] determined the ISF energy using TEM to be ≈31mJ/m2. The

calculated value in the model of this thesis is -63.120mJ/m2. For the two model alloys

analysed by Pettinari[227] using TEM, the Re containing alloy was observed to have

an ISF energy of 32±3mJ/m2 (-38.296±3mJ/m2 in our model) and the Ru containing

alloy was found to have a ISF energy of 31±3mJ/m2 (-31.416±3mJ/m2 in our model).

Cui[305] did an analysis of a series of multicomponent alloys using TEM reveling that

ISF energy declines with increases in cobalt composition, decaying from 40.1±1.2mJ/m2

at 4.40 atomic percent to 24.9±0.5mJ/m2 at 20.3 atomic percent.

There is a consistent theme between the available experimental data for real superal-

loys and that is that all of the results are significantly reduced from the value of pure Ni

but non have crossed over to become negative. This strongly contrasts with the results

of our model in which all of the values are negative. This could be for many potential

reasons, one is that there is a number of phenomena which the model cannot account

for, including clustering and segregation which may become significant at higher alloying

compositions. Also it may be possible that real alloy systems have mechanisms which are

able to partially self-correct beyond a certain limit, setting a de facto limit for how much

the ISF energy can be reduced. It is clear that the model of the thesis does not yield
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quantitatively correct results. Assessing whether the results are qualitatively correct is

also difficult, due to the small amount of experimental data and the close proximity of

said data. For the ISF there does exist a model produced based on the work of Shang[40],

this model results in far less accurate quantitative results, for example the alloy MC2 is

predicted to have an ISF energy of -549.27mJ/m2. This model is designed for only use

in dilute alloys (alloying fraction less then 0.1), however the same concerns surrounding

qualitative assessment apply. This model can be accessed at the following web address:

http://www.phases.psu.edu/Tools/VBSFEscripts/VBSFE.html.

One facet that is important to assess is whether extrapolating for the coarse compo-

sitions accurately approximates the nuances found in the data for the fine compositions.

To determine this data from both of the datasets is plotted on a single graph for the

first and second sublattices respectively in figures 9.3 and 9.4.
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Figure 9.3: Comparison between the SISF formation energies of the coarse and fine
compositional data for the first sublattice of the γ′ phase in the spin-polarised imple-
mentation. Black lines in the legend should be taken as representing the standard colour
scheme. Note that this data was adjusted such that both data sets have the exact same
starting point.
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As can be seen from these two figures agreement is relatively good when it comes

to the overall shape of the dependence of SISF energy on composition, however some

of the values especially in the case of X=W and Mo have large deviations. This model

can still serve as a reasonably good approximation to the SISF energy changes with the

addition of these alloying elements. However it is possible to propose as second and

more accurate version of the model which employs the fitting equations from the figures

8.29 and 8.34. Under this version of the model the SISF energies are 154.508, 135.562,

212.166, 181.133 and 276.452mJ/m2 for CMSX-10, Waspaloy, Inconel-939, N18 and
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René88 DT respectively. The differences in the SISF energies are caused chiefly by the

following factors. The effects of W and Ta are much greater in the more advanced model

for the case of CMSX-10 resulting in a higher SISF Energy. In the case of Waspaloy, the

effect of Mo is significantly different, positive instead of negative in the more advanced

model, due to the differing segregation of this element in the two models. If in the

simpler model Mo is assumed to segregate to the second sublattice the SISF energy

becomes 111.024mJ/m2, making the results of the two models a lot closer. In the

case of Inconel-939 the difference in SISF energy is chiefly caused by the difference in

the behaviour of Ti. It is important to realise that for both the models this result

is extrapolated, but the influence of Ti in the simpler interpretation of the model is

calculated as much greater for high compositions. For the case of N18 the difference in

the behaviour of Mo accounts mostly for the difference between the two models, where

changing the segregation makes the result for the more primitive model 172.422mJ/m2.

Finally for the alloy René88 DT there is significant differences in the behaviour for

Mo (opposite effect in the more primitive model due to different partitioning) and Nb

(smaller effect in the more primitive model).

A linear model is assumed in this research, one of the reasons for this was that it is

the simplest model to implement as it only requires 2 points to interpolate between them.

One of the issues with more advanced models (this also extends to the more advanced

model of SISF energy in this thesis) is that there can be problems with overfitting,

additionally there are issues regarding physical justification for such curves be they

quadratics or exponentials etc. Use of the linear relationship is in line with the goals
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of this thesis, which is to provide a model to serve as a first-degree approximation.

The development of more advanced models would require all of the elements in the

first and second sublattices of the γ′ phase to have a large number of calculations at

computationally intensive low compositions carried out, the resources of which were not

available for this project.

A quantitative test of the data was performed for the fault energies. It was commonly

observed in all of the results chapters that the 4d and 5d alloying elements behave

similarly. It was tested if for the sample of real alloys that they can be interchanged.

Hence 2 scenarios were analysed. In the first the Z factors for the 4d elements were

swapped with those of the 5d elements of the same group. In the second scenario the

factors of the 5d elements were swapped with those of the 4d elements of the same

group. Differences in the fault energies in both scenarios are typically low around or

significantly lower than 10mJ/m2 with the highest being just under 20mJ/m2 for the

SISF energy of the alloy René88 DT, which was caused by the swapping of W and

Mo. This small-scale investigation backs up the assertion that 4d and 5d elements are

somewhat interchangeable for the all-important real alloy compositions.

The models in this thesis are expected to be valid for the compositions between

x=0-0.25 for the γ phase and xsub=0-0.25 for the γ′ phase (note the more advanced

model which is based on the fine compositional data is expected to be valid for the range

which data was taken) and due to extrapolation may be highly unreliable at higher

compositions. This range was selected since it covers the solid solubility of most of

the elements and was convenient to implement as 8 (where the higher compositions are
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covered much thinner) and 5 points respectively is not enough for a good fit over the

whole range of x and xsub which is 0-1. The model can be trivially extended to a larger

range by simply interpolating between points at higher compositions for example 0.25

and 0.5.

In some cases there were values exceeding xsub=0.25, this is true in the γ′ phase

for Ti in the alloys Inconel-939 and N18 and for both Ti and W in the alloy René88

DT. Similarly, the value of x=0.25 is exceeded in the γ phase for the alloys Inconel-939,

N18, MC2 and the two model alloys analysed by Pettinari[227]. However, in all of the

cases apart from Inconel-939 the increases are very marginal (less than or just over 1

percent) and shall not be considered further. In excess of xsub=0.25 the new factors

become -0.219 for Ti and 0.119 for W in the second sublattice γ′ phase for the formation

enthalpy. The new factors for the SISF energy in excess of xsub=0.25 are 8.207 for Ti

and -31.731 for W in the second sublattice of the γ′ phase. Similarly the factors for

the lattice parameter become 0.001 for Ti and 0.003 for W. In the γ phase in excess of

x=0.25 the factors for the formation enthalpy, ISF energy and lattice parameter of Cr

are 0.337, -0.189 and -0.001 respectively.

These new factors make the values for the SISF energy of Inconel-939 and N18 and

René88 DT 270.171, 199.818 and 250.114 respectively. This makes the values for the

lattice parameter of γ′ for Inconel-939, N18 and René88 DT 3.652, 3.760 and 3.742

respectively. The lattice parameter of γ and ISF energy for Inconel-939 are 3.542 and

-85.052 respectively. Another point of note with regard to the ISF energy is that it

can be used to approximate both the extrinsic stacking fault energy γESF and the twin
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boundary energy γTB by the usage of the following relationship γISF ≈ γESF ≈ 2γTB,

this equation is justified by the usage of a bond counting procedure[92].

9.2 Temperature Effect

With regard to the temperature effect data of the ISF for the binary nickel FCC com-

pounds, the lack of data makes it difficult to draw any significant conclusions. But the

data that is there points to the conclusion that there would be small decays over the

temperature range from 0K to 1400K. The data presented in both chapters 7 and 8

validate the following observations. The larger the 0K SISF energy in general the larger

the scale of the change with temperature. The change in the SISF energy with tempera-

ture generally takes the SISF energy closer to 0mJ/m2. However the change is scarcely

significant enough to change the energy to the extent where it is close to zero, or further

yet result in change of the sign of the SISF energy. The latter is important as it would

change the phases which were stabilised by the alloying addition. Overall the effect of

alloying appears to be much greater the the effect of temperature for both of the fault

energy types investigated in this study.
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Table 9.3: Model parameters (Z) for the SISF and ISF
energies in the γ′ and γ phases respectively.

Element 1st sub. factor 2nd sub. factor γ phase factor

Al -769.997 0.000 -398.610

Ti -588.891 321.624 -422.370

V -496.502 294.923 -387.250

Cr -211.612 145.285 -529.620

Mn -199.719 238.471 -641.300

Fe -58.584 224.492 -262.200

Co -17.412 89.588 -326.850

Ni 0.000 96.826 0.000

Cu -62.369 12.459 -133.680

Zn -420.205 -6.703 -197.230

Zr -947.309 325.972 -1164.100

Nb -618.719 281.495 -246.480

Mo -542.795 141.030 -421.940

Tc -309.811 -139.027 -646.500

Ru -91.022 -103.765 -443.510

Rh -101.754 47.874 -248.220

Pd 126.962 74.182 16.180

Ag 22.280 -205.265 -100.590

Cd -438.398 -58.467 -134.370

Hf -12.264 333.378 -880.130

Ta -500.306 295.007 -176.770

W -540.097 199.993 -270.290

Re -398.716 -82.421 -575.130

Os -115.612 -272.277 -542.450

Ir -72.463 -112.895 -162.900

Pt 180.801 58.766 149.370

Au 198.884 -112.201 84.340

Hg -198.857 -91.413 -93.370
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Chapter 10

Conclusions

Many alloy systems as well as compounds which are relevent to development of superal-

loys have been analysed in this thesis. The main purpose being planar fault engineering,

in order to increase creep resistance, hence enabling increases in operational tempera-

tures and jet engine efficiency. The most significant conclusions from this work are as

follows

– Where finer compositions are considered, alloying in the γ phase in general de-

creases the ISF energy (and presumably the ESF and twin boundary energies as well)

whilst alloying in the γ′ phase increases the SISF energy.

–Despite the fact that many different alloy systems and compounds are analysed in

this research. With regard to the dependence of lattice parameter on the d-band filling,

the relationship always has the same general shape, a parabola with minima at the centre

of the transition metal series. The magnetism of the 3d elements near the centre of the

d-band disrupts the shape, increasing the lattice parameters where these elements are

252



concerned (note there is also significant magnetic disruption in the 4 and 5d series in

the Co3X compounds).

–The following elements Ti, Zr, Hf, Nb and Ta were confirmed to have the potential

to enhance the stability of Co3(Al1/2−xW1/2−xX2x) and hence increase the γ′ solute

temperature capacity as well as operational temperature of Co-based and CoNi-based

alloys.

–With regard to the temperature effect, in general the fault energy decays towards

0mJ/m2 irrespective of whether it is positive or negative and the scale of the decay is

informed by the magnitude of the 0K fault energy. Where larger decays are experienced

in alloys and compounds with fault energies which are larger in magnitude at 0K. Overall

the alloying composition appears to have a much more dramatic effect on the fault energy

than the temperature. This is encouraging for the prospect of using first-principles 0K

fault energies as a working approximation to operational temperature fault energies.

–With regard to how coarse highly stoichometric compositions through interpolation

simulate the fault energy results of finer compositions. The sign of the change in addition

to the general shape is always correct. However a large degree of nuance is lost and

accuracy changes depending on the composition. The dependence is approximated much

more accurately in some cases then others, for example much better approximations are

found for X=Ta and Hf as opposed to X=Mo and X=W. However the interpolations

serve in most cases as a suitable first approximation to the fault energy.

– A model is proposed for the ISF and SISF energies as well as the formation en-

thalpies and lattice parameters (hence misfit can be proposed) for multicomponent alloys
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unfortunately no experimental data exists for the purpose of validation for the SISF and

ISF. For the case of misfits both qualitative and quantitative disagreement is found for

the sample of alloys analysed with experimental data.

– The proposed model has the potential to be used in advanced physics based defor-

mation models of superalloys improving significantly scientific understanding of defor-

mation.
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Chapter 11

Future Work

It is clear that the research within this thesis presents a significant leap forward in human

understanding of ISF and SISF formation energies in nickel and to a certain extent cobalt

based alloys, which will hopefully pave the way for future alloy design innovation and

improved TETs. However due to the large amount of different fault types APB, CSF,

SISF and SESF there is still a lot of research to be conducted in this field. The author

of this thesis has identified that the most useful research to be conducted is as follows.

–A similar approach using first-principles calculations for the other fault types at

a large array of alloy chemistries. It is important to note that for faults which do not

modify the stacking sequence, the fault formation energy cannot be analysed by the use

of AIM models and the more intensive supercell approach is necessary.

–Tests at a series of alloy compositions using a set of more advanced models then

the QHDM for the temperature effect, to further validate this data.

–Validation of the data in this research (especially for the γ′ pseudo-binary systems)
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experimentally would be a good avenue to pursue, however due to the issues conerning

fault energy measurements direct validation could prove difficult. However modifications

in creep properties could be used as an indirect observation of fault energy changes.

– An extensive investigation in the same vein as ref[92] where the data from the

supercell and AIM models are compared. Also a deeper delve into the phenomenon

of where results between the two models differ by using even higher approximations of

AIM.

–An investigation of the γ′ phase in Co-Based alloys by the same technique for the

pseudo-ternary system Co3(Al1−2xW1−2xXx). This is for the purpose of improving the

understanding of Co-based and CoNi-based alloys.

– Extending the investigation in Ni-based systems to pseudo-ternary and beyond

(note that due to the large number of possible systems and larger supercells required,

in excess of 300 atoms) that all these systems could not be analysed. However data for

a few key systems could provide further analysis into whether synergistic effects play a

role in the modification of the fault energies.

11.1 Data Access Statement

There currently exist plans to make all of the calculations and scripts of this thesis

available for public consumption. For the time being for any queries regarding data

email the author at the address jdtallenresearch@gmail.com.
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[144] P. E. Blöchl. Projector augmented-wave method. Physical Review B, 50:17953–

17979, 1994. doi: 10.1103/PhysRevB.50.17953.

[145] A. Breidi, J. Allen, and A. Mottura. First-principles modeling of superlattice

intrinsic stacking fault energies in Ni3Al based alloys. Acta Materialia, 145:97 –

108, 2018. doi: https://doi.org/10.1016/j.actamat.2017.11.042.

[146] J. D. T. Allen, A. Mottura, and A. Breidi. First-Principles Modeling of the Tem-

perature Dependence for the Superlattice Intrinsic Stacking Fault Energies in L12

Ni75−xXxAl25. Metallurgical and Materials Transactions A, 49(9):4167–4172, 2018.

doi: 10.1007/s11661-018-4763-4.

[147] M. A. Blanco, E. Francisco, and V. Luaña. GIBBS: Isothermal-isobaric

thermodynamics of solids from energy curves using a quasi-harmonic De-

bye model. Computer Physics Communications, 158(1):57–72, 2004. doi:

10.1016/j.comphy.2003.12.001.
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