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Abstract

To meet the increasing computational requirements of the scientific community,
the use of parallel programming has become commonplace, and in recent years
distributed applications running on clusters of computers have become the norm.

Both parallel and distributed applications face the problem of predictive uncertainty
and variations in runtime. Modern scientific applications have varying I/O, cache,
and memory profiles that have significant and difficult to predict effects on their
runtimes. Data-dependent sensitivities such as the costs of denormal floating point
calculations introduce more variations in runtime, further hindering predictability.

Applications with unpredictable performance or which have highly variable run-
times can cause several problems. If the runtime of an application is unknown
or varies widely, workflow schedulers cannot efficiently allocate them to compute
nodes, leading to the under-utilisation of expensive resources. Similarly, a lack of
accurate knowledge of the performance of an application on new hardware can
lead to misguided procurement decisions. In heavily parallel applications, minor
variations in runtime on individual nodes can have disproportionate effects on the
overall application runtime. Even on a smaller scale, a lack of certainty about an
application’s runtime can preclude its use in real-time or time-critical applications
such as clinical diagnosis.

This thesis investigates two sources of data-dependent performance variability. The
first source is algorithmic and is seen in a state-of-the-art C++ biomedical imaging
application. It identifies the cause of the variability in the application and develops
a means of characterising the variability. This ‘probe task’ based model is adapted
for use with a workflow scheduler, and the scheduling improvements it brings are
examined.

The second source of variability is more subtle as it is micro-architectural in nature.
Depending on the input data, two runs of an application executing exactly the
same sequence of instructions and with exactly the same memory access patterns
can have large differences in runtime due to deficiencies in common hardware
implementations of denormal arithmetic1. An exception-based profiler is written
to detect occurrences of denormal arithmetic and it is shown how this is insufficient
to isolate the sources of denormal arithmetic in an application. A novel tool based
on the Valgrind binary instrumentation framework is developed which can trace the
origins of denormal values and the frequency of their occurrence in an application’s
data structures. This second tool is used to isolate and remove the cause of denormal
arithmetic both from a simple numerical code, and then from a face recognition
application.

1Denormal or subnormal numbers are described in Sec. 1.3 and Sec. 4.3
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CHAPTER 1
Introduction

From the invention of the first electronic computers to the sophisticated systems of
today, the increase in available processing power has been enormous. Cambridge
University’s EDSAC, a typical early computer, had approximately 500 words of
memory and could execute 600 instructions per second [CK92]. In 2009, an inex-
pensive laptop is likely to have more than a million times as much memory and
several million times as much processing power; and a high end cluster can provide
more than 10,000 times as much usable compute power again.

The availability of large amounts of inexpensive processing power has enabled the
mathematical and scientific communities to perform research that would other-
wise have been impossible. Despite this continual growth, the demand for more
processing power than is readily available has remained constant. von Hoerner’s
stellar dynamics simulations in 1960 modelled systems with about 16 particles; the
current equivalents are cosmological models with 109 particles [vH60, TCPP98].
Protein folding [Pan02], medical image processing and number theory [Wol96] are
examples of the many scientific domains that absorb as much CPU time and storage
as can be provided.

Until recently, Moore’s law1 has provided continual increases in inexpensive se-
quential compute performance, but there are warning signs that this exponential
growth is becoming difficult to sustain.

1.1 CPU performance prediction

For decades, single-threaded microprocessor performance has benefited from Moore’s
Law. Due to the relatively large transistor size, and limited die area on a silicon chip,
early microprocessor designs had very limited transistor budgets, and were forced
to have few registers, to omit any non-essential functionality, and to implement
critical components such as Arithmetic and Logic Units (ALUs) and control units
using as few transistors as possible. One way of doing this is to operate on the data
serially2 or a few bits at a time. The downside of this approach is that to perform a

1An empirical observation that the number of components that can be fitted on a given area of
silicon at a given price point seems to double approximately every 18 months

2i.e., one bit per clock cycle
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single operation, pieces of a word of data have to pass through the ALU in several
stages, increasing the number of clock cycles taken to perform the operation. As
the transistor budget increased, widening the data paths and expanding the ALU
was one obvious way to improve performance. When data paths become fully
parallel, further performance improvements were achieved by reducing the depth
of the logic trees required to implement operations such as add and multiply. This
was done at the cost of extra transistors using techniques such as carry look-ahead
blocks for adders and Wallace trees [Wal64] for multipliers.

As the transistor size decreased and transistor budget increased, performance
rapidly increased along with it. Some of these improvements included:

• Both the amount of time and the power needed to switch a transistor on and off

decreased, leading to an increased clock rate.

• ALUs became fully parallel, allowing additions, effective address calculations,
and program counter updates to be performed in one clock cycle.

• Hardware multipliers could be implemented, first in serial-parallel form, and
later fully parallel. This was accompanied by hardware dividers, although with
less parallelism. Early multipliers and dividers typically generated one or two
bits of output per clock cycle.

• When the transistor budget reached a certain threshold, floating point co-processors
became practical, and later benefited from increasingly parallel implementations.

• Eventually Floating Point Unit (FPU) co-processors were integrated on the same
chip as the CPU. This reduced the communications overhead between the CPU
and FPU, further improving performance.

Although these advancements dramatically improved CPU speed, the behaviour
of a CPU still remained relatively predictable and straightforward, and none of
these advances causes substantial difficulties for performance estimation techniques
based on simple instruction counting.

During the early to mid 1990s however, processor manufacturers started to include
features that yielded substantial performance improvements, but would prove
much more challenging to model. Techniques included:

• Functional units on CPUs started to become heavily pipelined. So, for example,
an integer divide might take 7 clock cycles to complete, each cycle completing
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Cycle 1 2 3 4 5 6 7 8
I1 : R10 = R1 ÷ R2 Fetch Exec Exec Exec Exec Store
I2 : R11 = R3 + R4 Fetch Exec Store
I3 : R5 = R10 × R11 Fetch Stall Stall Stall Exec Store

Fig. 1.1: Data hazard in a CPU with a 3 stage pipeline where divides have a 4
cycle latency. The third instruction cannot execute until after the two previous
instructions have stored their results.

one stage of a 7 stage pipeline. However, once the first stage had completed, it
became available for use by another instruction. One divide would take 7 clock
cycles to complete, but 100 independent divides one after the other would only
take 107 cycles to complete. Pipelining can be very effective, but fails to deliver
a performance benefit when subsequent instructions depend on the results of an
earlier instruction that is still going through a pipeline. When this happens the
pipeline ‘stalls’ — the CPU must wait for the first instruction to complete before
the second instruction can be issued. To model this, performance estimation
software has to know the depth of each of the pipelines in the CPU, and track the
dependencies between instructions. Fortunately this can be accurately modelled
solely by static analysis of the instruction stream itself. A simple example can be
seen in Fig. 1.1.

• Memory Management Units (MMUs) and memory caches began to be integrated
on chip, and moved from direct mapped to more efficient and complex set-
associative schemes reducing the need to access slow main memory. This had
the benefit of decreasing the average amount of time a CPU had to wait to
read/write memory, improving performance. However introducing extra layers
into the memory hierarchy meant that memory access times were no longer
constant. Two pieces of code with exactly the same mix of instructions could
run at dramatically different speeds depending on whether their memory access
patterns were cache-friendly or not. Unlike pipelining, cache behaviour is not
readily amenable to static code analysis, and this causes considerable problems
for performance estimation, although it is possible to apply heuristics to estimate
the effects of some common memory access patterns [Har99].

The design of MMUs introduces a different, although related problem. To min-
imise the cost of translating virtual addresses into physical addresses, all MMUs
have a small cache called a Translation Lookaside Buffer (TLB) that holds the
mappings for commonly used pages. If a program uses a page that is not in
the TLB, the MMU or OS are forced to fetch the mapping from main memory

3



at a considerable cost. If the program’s memory access patterns touches many
pages of memory, the TLB thrashing this causes can be a significant slowdown.
As with memory cache performance analysis, this cannot be analysed statically,
but similar heuristics can be applied; MMU pages in a TLB will have a similar
eviction policy to cache lines in a memory cache.

• To reduce the impact of the pipeline stalling problems mentioned above, CPUs
started to use more sophisticated control units to allow ‘Out-of-order Execution’.
Rather than issuing instructions strictly in order, the CPU queues up a number
of instructions for execution. When the operands for that instruction become
available and a functional unit is not busy, the instruction is issued for execution
on that unit. As instructions complete, their results are retired, or queued for
writing to the appropriate registers. Thus, a single instruction with a dependency
will no longer stall the pipelines of all the functional units until the dependency
is met. Instead the instruction itself will be delayed and other instructions are
free to be issued ahead of it as long as they don’t depend on any unavailable
results.

To make this more effective, Out-of-Order CPUs tend to have large numbers
of rename registers as well as multiple copies of functional units which are not
directly visible to the programmer. The net effect of Out-of-Order execution is to
allow a serial instruction stream with possible pipeline-stalling dependencies to
be translated into a parallel stream of instructions, one stream per functional unit.
When this works, a CPU can issue and retire several instructions per clock cycle,
although in practice significant amounts of parallelism are difficult to achieve.
Also, this makes life especially difficult for performance estimation software, as it
now has to deal with an instruction stream which may be translated into several
different instruction streams in a different order. Worse still, the streams can have
interdependencies, and the same piece of code in memory may be translated
into a differently ordered stream and issued to different units every time it is
encountered depending on the internal state of each of functional units in the
CPU. To determine the cost of an instruction, its overall context and the internal
state of the CPU are far more important than the actual instruction itself. A
simple example of register renaming can be seen in Fig. 1.2.

• A final set of techniques that modern CPUs use to try to alleviate pipeline stalls
and to keep functional units busy are those of speculative execution and branch pre-
diction. Since it is impossible to know ahead of time whether a conditional branch
will be taken or not, the most conservative technique is to stop issuing instruc-
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tions until a branch’s arguments are known, and to only continue after that. This
causes serious pipeline stalls however, and since branch instructions are common,
it causes a major performance penalty. To deal with this, Out-of-Order CPUs can
guess which direction a branch is going to proceed, speculatively execute beyond
the branch instruction, and store the results of speculative instructions to tempo-
rary registers. When the branch dependencies are finally resolved, if the guess
was incorrect, the unneeded computations are discarded. If the guess is correct
the results in the temporary registers are retired. If enough functional units and
rename registers are available, the CPU can speculatively execute both paths of a
branch, and discard the unnecessary one when the branch dependency becomes
available.

Of course, if the branch prediction is unsuccessful, it causes unnecessary in-
structions to be issued, but as long as it is correct some of the time, it is still a
performance benefit, as it allows some use to be made of otherwise idle execution
units.

To improve the impact of speculative execution, modern CPUs maintain large
tables of statistics describing which direction a particular branch instruction is
likely to go. As each branch is taken or not, the statistics are updated, and thus
the CPU builds up a model of the branch behaviour of the program. As with
Out-of-order Execution, the internal state of the CPU, or more specifically of the
branch prediction tables determines the cost of the instruction. Other than in
simple cases, the probability of following a branch is related to the input data,
and so, unlike Out-of-order techniques, the effectiveness of branch prediction is
dependent on the program data itself. This is something that it is impossible for
performance modelling software to analyse statically, and poses another problem
for performance prediction systems like PACE [NKP+00]. Other systems, such
as Prophesy and WARPP sidestep this problem by relying on coarser grained
benchmarks for the basic blocks in an application.

The above techniques have all been inspired by the continually increasing transistor
budget and a desire to extract as much parallelism as possible from a sequential
instruction stream, but they come at a cost. In particular, aggressive speculative
execution yields a linear increase in Instructions Per Clock (IPC) rates for an expo-
nential cost in transistors, design complexity, and power consumption.

Recent trends seem to indicate that processor design is starting to push up against
physical limits such the electrical properties of semiconductor materials, propaga-
tion delays, and particularly the ability to dissipate heat from CPU dies [AHKB00,
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Without register renaming.
Cycle 1 2 3 4 5 6 7 8 10 11 12 13 14
I1 : R1 = R10 ÷ R11 IF EX EX EX ST
I2 : MEM(1000) = R1 IF - - - EX ST
I3 : R1 = R12 ÷ R13 IF - - - - EX EX EX ST
I4 : MEM(1001) = R1 IF - - - - - - - EX ST

With register renaming.
Cycle 1 2 3 4 5 6 7 8 10 11 12 13 14
I1 : R1a = R10 ÷ R11 IF EX EX EX ST
I2 : MEM(1000) = R1a IF - - - EX ST
I3 : R1b = R12 ÷ R13 IF EX EX EX ST
I4 : MEM(1001) = R1b IF - - - EX ST

Fig. 1.2: Register renaming used to avoid anti-dependency of I3 on I1.

Bor03]. As a result of this, the industry has moved away from scaling clock speeds
and using aggressive speculative execution to speed up sequential codes. Instead
the emphasis is now on making more efficient use of the growing transistor budget
constrained by a fixed power budget by providing several less aggressive CPU
cores on the one die, each running independent instruction streams. Commercial
examples of this include Intel’s Core family of CPUs, IBM’s POWER series, and
Sun’s recent UltraSPARCs. The same trends are driving the performance of graph-
ics processing units capable of restricted forms of computation, and digital signal
processors. Graphics processing units can take advantage of a more constrained
computational model than general purpose CPUs and so have a much higher pro-
portion of their transistors allocated to FPUs instead of control logic. This makes
them significantly faster than general purpose CPUs for applications that fit their
computational restrictions.

In addition to this, another technique called Simultaneous Multithreading (SMT)
uses the same technology as speculative execution, but uses it to run as many inde-
pendent threads of execution as possible on idle or stalled functional units. Every
time a thread stalls because of an unmet dependency, another waiting thread is
‘swapped in’ to make use of an otherwise idle functional unit. This results in a
lower IPC rate for each individual thread, but the overall instruction throughput
is higher. The technique has the effect of masking memory latency to some degree
and can be particularly useful for codes with unavoidably long chains of unpre-
dictable branches or unfortunate memory access patterns, neither of which benefit
from speculative execution. Many commercial workloads, such as web servers or
database servers with large numbers of connections fall into this category.
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1.2 Context and Previous Research

The High Performance Systems Group at the University of Warwick have demon-
strated that performance prediction, i.e., the rapid estimation of the resource usage
of an application on a given computer, is essential for the efficient utilisation of
distributed systems. [JSK+06]

Under previous research, techniques and tools have been developed at Warwick
such as the Performance Analysis and Characterisation Environment (PACE) [NKP+00]
toolkit. PACE uses a combination of static code analysis, micro-benchmarking and
event simulation to rapidly provide runtime estimations of performance and for
both sequential and distributed applications [CKPN99], and has been used in ap-
plication steering and job scheduling systems [KPN98, SJC+03].

Another researcher, also at Warwick, developed a scheduler called TITAN [SJC+03]
which has shown that significant performance improvements can be achieved by
using performance models as part of performance-responsive middleware services
that address the implications of executing a particular workload on a given set of
resources.

Since PACE was developed, both scientific applications and the hardware that
they run on have increased in complexity. Binary compatibility means that old
applications will generally run on new hardware; but due to architectural changes,
code sequences which may have been optimal on an older processor might perform
poorly on a more recent one. Performance prediction becomes much more difficult
for the reasons mentioned above, and in these new environments, the speed at
which a fragment of code executes now depends largely on its context, i.e., the
state of the CPU and the mix of instructions and memory accesses used and not
the individual instructions. Context, in turn is determined by the flow of control
within an application, and for all but deliberately regular applications, the flow of
control depends on the input data.

The applications themselves have also increased in complexity. Numerical applica-
tions now routinely take advantage of high-level languages such as C++; software
engineering techniques such as object oriented programming and garbage collec-
tion; and more advanced numerical methods such as multigrids and adaptive mesh
refinement. All of these make it more difficult to build performance models for ap-
plications. They can obscure the lower-level logic and flow of control within a
program, as well as hiding aperiodic expenses associated with the maintenance of
data structures, such as tree rebalancing, sweeps of a garbage collector, the deferred
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allocation of copy-on-write objects as they are modified and more.

Concurrently with the work in this thesis, another PACE-like tool called WARPP
is under development by a different set of research students at Warwick. WARPP,
which discussed in more detail in Sec. 2.1.3 avoids some of the issues of application
complexity and code context by basing its CPU simulations on benchmarks of the
basic blocks of an application on the target hardware. Research is underway to
automate the instrumentation and benchmarking process as much as possible. By
their nature, these benchmarks only measure the average case and will not, for
example, capture variability due to unpredictable memory access patterns or other
data-dependent effects.

1.3 Thesis Contributions

These factors when taken together make it increasingly difficult to build perfor-
mance models based solely on static code analysis and benchmarks — whether
coarse or fine grained. This thesis explores this notion of data dependency. The
term data dependency has multiple meanings — from the dependencies between in
flight instructions in a CPU; to the abstract graph of computations that a compiler
manipulates; to the relationship between groups of communicating processes. The
meaning here is distinct from, but related to the first two: it refers to the notion that
when the information content of an application’s input data changes, the perfor-
mance of the application can change unexpectedly too. This can be simply because
the different data makes an algorithm perform more work, by iterating more, or by
using different code paths; or it can be because the different data triggers certain
hardware behaviours.

To do this, I examine two types of application. The first is a medical imaging
application with highly variable runtimes. These variations are caused by the
application’s algorithms themselves, in part because of their convergence criteria,
but also because of how the application samples its datasets. I build a performance
model for this heretofore unpredictable application based on the application’s input
data. This model requires some pre-execution CPU time for every task it models,
and I adapt TITAN to accommodate this and to use the sequence of increasingly
refined predictions it emits.

Later in this thesis I explore the performance variabilities introduced by some hard-
ware implementations of denormal arithmetic. Denormal arithmetic, or subnormal
arithmetic as it is termed in the 2008 version of the IEEE-754 standard, is the pro-
cessing of floating point numbers smaller than the smallest normal numbers, but still
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larger than zero. These numbers have a different representation to normal num-
bers, and require special handling by the floating point implementation. I describe
a simple means of detecting denormal arithmetic and show its limitations. Based
on this, I build a more sophisticated tool to track denormal data in an application
back to its origins. This origin tracking aids the developer in eliminating denor-
mal arithmetic in an application producing a faster, but more importantly, more
predictable application.

The primary contributions of this work are as follows:

• Developing a performance model for a state-of-the-art C++ medical imaging
application. Initial attempts to build a PACE-based performance model for this
application, nreg, failed for two reasons. Firstly, nreg makes pervasive use of
inheritance and C++ templates and needs compiler optimisations to run effi-
ciently, neither of which PACE could handle. Furthermore, the application itself
exhibits data-dependent runtime variability, i.e., two input datasets of exactly the
same size can easily have more than an order of magnitude difference in runtime.
PACE could only provide predictions for the average case, which are of little
use in this situation. I develop an alternate data-driven model which makes it
possible to estimate the runtime of nreg. This makes it possible to use nregin
scenarios where quality of service criteria are useful, such as in clinical diagnosis,
or to allow efficient task scheduling.

• Analysing how computationally intensive performance prediction processes
may be used as a part of a scheduler. As part of its scheduling algorithm, TITAN
makes the assumption that performance data for its applications are available
at negligible cost, and makes many queries to the prediction engine for every
iteration of its genetic algorithm. The performance model for nreg takes some
time to evaluate, and the more CPU resources given to the performance model,
the more accurate the prediction. These performance prediction ‘probe tasks’
need to be run on the same compute resources as the actual tasks, and thus need
to be scheduled along with them. I modify TITAN to do this, and analyse the
effects the asynchronous stream of continually improving predictions have on
scheduling quality, and how it may be used for ‘interactive scheduling’.

• Profiling application runtime variability caused by denormal arithmetic. Many
processors now implement fully IEEE-754 compliant denormal arithmetic in
hardware, but despite this, on some of these processors denormal arithmetic still
executes very slowly relative to normal arithmetic. This slowdown is present
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in recent Intel x86 processors. To measure the occurrence of denormal arith-
metic, I write and use a floating point exception based profiling tool called DIP.
I show why profiling is insufficient to identify the true sources of performance
degradation.

• Finding the origins of denormal arithmetic and removing it from an application
using a novel tool. The dynamic binary instrumentation framework Valgrind
[NS07b] is described, and using its facilities, I write DART, a denormal arithmetic
tracing tool. I implement three different methods for analysing the information
gathered by DART. I then use DIP and DART to examine the flow of denormal
data in the two numerical codes. The sources of the denormal data are found and
eliminated, producing more predictable applications as a result.

1.4 Thesis Overview

The thesis is divided into 7 chapters. The remaining chapters are organised in the
following fashion:

Chapter 2 Existing performance prediction techniques are reviewed, an existing
analytical performance model is examined, and the iterative heuristic sched-
uler TITAN is described.

Chapter 3 The medical imaging application nreg is analysed, and a novel data-
driven performance model is developed for it. The chapter describes how
a continually improving series of performance predictions over time can be
integrated into a workflow scheduler. It shows how this can provide per-
formance information to the user and using this as a part of an ‘interactive
scheduling’ process.

Chapter 4 The IEEE-754 Floating point arithmetic standard is described, with an
emphasis on the performance aspects of denormal arithmetic and common
hardware implementations. DIP, a profiling tool based on floating point
exceptions is written, and its limitations are examined.

Chapter 5 Dynamic binary instrumentation and taint analysis is introduced. The
idea of denormal tracking is developed by analogy with taint tracking. From
this, DART, a novel denormal arithmetic reporting and tracing tool is designed
and implemented.
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Chapter 6 DIP and DART are used to analyse the behaviour of two applications.
The sources of denormals are identified and removed from both applications,
thus removing a source of performance variability. Limitations of DART are
discussed.

Chapter 7 The final chapter summarises the problems presented in this thesis as
well as the work undertaken and the results achieved. Possibilities for future
opportunities in the area are outlined.
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CHAPTER 2
Performance prediction and its application

Performance prediction for high performance computing involves two separate
phases. The first gathers performance data for the compute resources in question,
and the second uses the data as part of a performance model.

Performance data is typically gathered using some sort of benchmarking or per-
formance measuring technique. Since hardware failures are common in systems
with large numbers of components, and failure is often preceded by performance
degradation, it is common to integrate this into a cluster monitoring system rather
than simply benchmarking the system once. On task completion, basic statistics
are often recorded too, such as the overall runtime, number of CPUs used, and the
working set of the tasks. The data gathered is then stored in some sort of repository
where it can be queried and analysed.

Performance modelling of the applications themselves is the second stage of predic-
tion. These models can be as simple as an averaging of the runtimes recorded by the
performance monitoring system, or may include complex analytical models such as
those to be described in Sec. 2.3. Irrespective of the complexity, these performance
models use the performance characteristics of the hardware as parameters, and so
cannot generate performance predictions in isolation.

A major use for these performance prediction models is in resource allocation
systems, such as job schedulers; in middleware for instantiating abstract workflows;
in parallel applications which try to balance their workload across multiple CPUs;
and in performance models used to guide hardware procurement by estimating
application scalability on hypothetical systems. Performance prediction can also
be useful when trying to determine why an application does not perform as well
as expected on a new system [PKP03].

In this chapter some existing performance modelling techniques and two systems
that gather and store performance data are examined. Details of an analytical
performance model by Mudalige et al. that uses this kind of data are given, and
finally a workflow scheduler by Spooner et al. which uses these performance
models is explored.
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2.1 Performance modelling tools

Depending on the problem domain, a whole spectrum of performance measure-
ment and modelling techniques can be used. These vary in sophistication: Simple
techniques use black box timings of a set of candidate workloads as the measure-
ment, and curve fitting as the model; more sophisticated approaches gather sets of
hardware microbenchmarks and feed them to application models of what compu-
tations are performed and how they are distributed across a cluster.

The more sophisticated models usually have the benefit of having more explana-
tory power, and providing more reliable predictions; however they are also more
difficult to create, rely on a deeper understanding of the hardware and software,
and may be slow to evaluate.

Another approach is to model software systems in a more abstract and mathematical
manner by treating them as a set of interacting components specified using a formal
language. When specified in this way, numerical and analytical tools can be used
to find solutions to the steady state performance of the system.

2.1.1 SimpleScalar

Due to the complexities of modern microprocessors mentioned in Sec. 1.1 there
are many challenges to predicting the performance of a piece of code on a given
processor. The most direct way to solve this problem is to exactly simulate each
component of the processor’s micro-architecture and to run the code directly on
the simulation—or feed an instruction trace into it—and observe the results of the
simulation. Tools such as SimpleScalar [BA97] do exactly this, and because of the
precision of their results they are mostly used during the design of microproces-
sors. Because of the fact that they have to fully model the behaviour of the cache
hierarchy, the functional units, the logic associated with Out-of-order Execution
and maintain profiling information for all of these, simulators of this sort run much
slower than native hardware. For example, the most detailed SimpleScalar 2.0 sim-
ulator running on a machine capable of more than 200 MIPS executes approximately
150,000 simulated instructions per second, a factor of more than 1,000 slowdown.
SimpleScalar 4 has a similar slowdown: a full simulation on a 1.6 GHz Pentium 4
system runs at 350,000 IPS.

Simulators are not very useful as a part of a resource allocation system because of
this slowdown — it would be simpler and much faster just to run the application
directly on the candidate processor. They can, however, be used to accurately
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benchmark application kernels on hypothetical systems, and these benchmarks can
be used together with other less detailed performance modelling tools.

Because of their accuracy, these tools can also be useful both for low-level tun-
ing of application kernels on a specific micro-architecture, and for designing new
processors that work better with common workloads. One instance of this is the
tool WATTCH [BTM00] built on top of SimpleScalar which predicts the power con-
sumption of a processor under particular workloads. It does this by modelling
the power draw of different primitive units within the processor (such as clocks,
busses, logic, and memory arrays) and describes each part of the processor (such
as TLBs or branch prediction units) in terms of these. When an instruction stream
runs on the processor, the approximate number of transistor switchings in each unit
is measured, and from this the overall power draw can be calculated.

2.1.2 PACE

PACE, the Performance Analysis and Characterisation Environment [NKP+00] was
developed by the High Performance Systems Group at the University of Warwick
in the late 1990s and early 2000s to predict the runtime and resource usage of
scientific applications using pre-execution modelling and analysis. PACE provides
rapid and accurate estimations for both sequential and distributed applications
[CKPN99], and has been used in application steering and job scheduling systems
[KPN98, SJC+03].

Rather than directly simulating the execution of a code-base as micro-architectural
simulators do, PACE uses a language called Characterisation Instrumentation for
Performance Prediction of Parallel Systems (CHIP3S) to build a static performance
model of an application program. This language provides constructs to describe
the flow control, overall instruction usage and communications patterns of an
application in a parameterised fashion. PACE includes facilities to benchmark
computation and network performance on a candidate hardware platform, and
allows the application models to be evaluated against these hardware models.

CHIP3S performance scripts, written using a C-like syntax, are compiled and linked
into an executable that can be run to provide performance analyses and predictive
traces of application execution. Since PACE performance models are compiled, and
since they calculate the runtimes of large blocks of code interleaved with compu-
tation instead of simulating individual instructions, they generate their predictions
extremely rapidly. Depending on the degree of detail of the model, predictions
typically take between 1 millisecond and 1 second to evaluate.
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PACE’s application models decompose into a set of subtasks, which in turn can
contain other subtasks. Each subtask in CHIP3S consists of a sequence of flow
control elements (bounded loops, and conditional statements) and each element
(or block) contains a number of primitive operations. These primitive operations
are characterised by a fixed delay and include such events as floating point mul-
tiplies, memory accesses and array indexing. Interprocess communications via
Message Passing Interface (MPI) are characterised using a network model based
on bandwidth and latency. The characterisation models the fact that small MPI
messages have different performance characteristics to large MPI messages in most
implementations.

The hardware models contain a list of costs (or characterisations) of each primitive
operation for a given hardware architecture, and the file format PACE uses for
hardware models is modular and extensible. Early PACE hardware models only
had characterisations for instruction sequences used in C programs. Over time,
various projects extended this to include characterisations for processor caches,
and the memory hierarchy [Har99]; inter-node communications via MPI, MI and
PVM; performance of SUIF primitives [WFW93]; and the cost of interpreting Java
bytecodes [Tur03].

The final component in a PACE application model is the parallel template. This pro-
vides a means of expressing the costs and constraints associated with subdividing
a task to run on multiple processors in a cluster. Applications within CHIP3S are
eventually decomposed to blocks of primitive compute operations interleaved with
communications. PACE’s parallel templates have a stepdeclaration which refers to
a block of computation within a subtask, and statements indicating communication
between two nodes.

The blocks from each of the subtasks are taken and compiled into a control flow
of blocks. When run, each of these subtasks and each synchronous block is eval-
uated according to the model scripts and a predictive trace is made of operation
usage. This is then translated into resource usage using the data from a hardware
model. When communications occur they introduce dependencies between CPUs,
and a simple discrete event simulation is used to order the communications and
computations on a time line.

When compared to direct simulation, PACE provides much less fined-grained de-
tail, but is capable of modelling massively larger applications. PACE is less accurate
at predicting the runtime of sequential blocks of code on modern processors than
simulation, due to the effects mentioned in Sec. 1.1, however PACE can model the
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costs of network communication well, and in practice these contribute to a large
portion of the runtime of typical parallel scientific applications.

A simple performance model is described in more detail in Appendix B.

2.1.3 WARPP

Although successful in modelling some classes of applications, PACE’s reliance on
models derived from the source code of the application rather than from the opti-
mised binaries produced by a compiler has become more and more of a problem.
As discussed previously, modern processors are extremely complex internally and
rely on sophisticated compiler techniques to schedule instructions, allocate regis-
ters, unroll loops etc. so that the best use is made of the processor’s functional units
and cache. PACE’s assumption that a C construct such as a single iteration of loop
or an array assignment can be characterised by a single timing is simply no longer
true.

To deal with this problem and others, a new performance modelling framework
called WARPP has been developed at Warwick [HMS+09] concurrently with the
research in this thesis, but by different researchers. At a high level it is similar to
PACE: parametric performance models for an application are written in a C-like
scripting language. When executed, the models generates a trace of computation
and communication events on all of the simulated CPUs which are fed into a
discrete event simulator. A hardware model for both the network and CPUs orders
assigns a timing to each event, and the simulator uses these timings to order the
communications and computations on a timeline.

The differences lie in the details:

• PACE’s CPU models are based on extremely fine grained microbenchmarks, but
they do not accurately capture the behaviour either of modern compilers or
modern CPUs. To avoid the problem of context mentioned in Chapter 1, WARPP
abandons fine grained microbenchmarks in favour of benchmarking each basic
block of the application via compile time instrumentation.

• Like PACE, WARPP includes a model for network communications and for mul-
tiple different protocols. Both PACE and WARPP’s models account for the fact
that small message communications are usually handled differently to large mes-
sages, and thus have different scalability properties. In PACE this is handled
by fitting two line segments and a crossover point to the scalability curve. In
WARPP it is handled by explicitly subdividing protocols into regions, treating
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small and large messages as different regions. WARPP’s method is more flexible,
allowing for multiple timings depending on the message size.

• WARPP allows a complex heterogenous network layout to be specified on a CPU
by CPU basis, for example extremely fast low latency IPC between CPUs on
multicore chips, slower communications between CPUs on SMP compute nodes,
and a system-wide interconnect between nodes. PACE simply assumes a flat,
homogenous network topology.

• WARPP allows multiple CPU types to be specified in a system, each with its own
set of benchmark measurements. PACE assumes a cluster of identical CPUs.

• WARPP allows disc I/O to be characterised, whereas PACE only models network
I/O and CPU.

• WARPP and PACE use a similar discrete event system to schedule network
events and thus calculate the delays associated with communications, however
WARPP’s implementation is much more efficient, and scales effectively to very
large numbers of CPUs. Initial attempts at a PACE performance model for
Sweep3D as described in [MVJ08] had unacceptable runtimes and impractical
memory usage for relatively small numbers of CPUs.

Furthermore, experimental work has been done with WARPP to model performance
variability in the form of ‘system noise’, or random occurrences of low-level slow-
downs that frequently occur on cluster systems [HMS+09]. These can be caused
by interrupt handlers, by network contention, or by system daemons running in
the background that periodically wake up and perform a small amount of work.
Regardless of the cause, system noise can have an effect on application runtimes
hugely out of proportion with the individual slowdowns caused on each node
[PKP03]. Initial experiments that inject compute noise into a running model exhibit
similar slowdowns to those seen in a 960 CPU commodity cluster in production
use.

Additional WARPP work focuses on the automatic instrumentation of application
basic blocks and MPI communications [SHM+09], and the automatic generation of
parameterised performance models from the traces produced by the instrumenta-
tion [HSMJ09]. The trace analysis compares the traces produced by different CPUs
and when differences exist, these are used to specialise the call graph used in the
model for each MPI rank, and to later parameterise the model based on MPI rank.
Although the automatically produced models do not have the predictive accuracy
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of a hand-generated model, they are much faster to create, and can later be tuned
by hand for further accuracy.

2.1.4 Prophesy

The Prophesy system[TWL+01, TWS03] takes another high-level approach to mod-
elling applications. Similar to PACE, it does not simulate individual instructions,
but relies on higher-level abstractions. Instead of PACE’s modelling language, it
relies on the notion that many applications can be decomposed into a set of kernels
which consume most of the application’s runtime. If the performance character-
istics of these kernels can be captured, and the kernels’ interactions when run
together can be described, then it is possible to build up a performance model of
entire applications without needing to analyse individual instructions.

Prophesy provides three connected components.

The first component is PAIDE, the Prophesy Automatic Instrumentation and Data
Entry system.[WTS01] This is the ‘data gathering’ part of Prophesy. It automatically
instruments source code on one of several levels: on the level of entire functions,
entire loops, or even individual basic blocks. The instrumentation design min-
imises overhead, and critical kernels or optimisation sensitive sections code can
be instrumented less aggressively than the rest of the application. At runtime, the
timings gathered by the instrumentation are sent to another Prophesy component
along with a call graph of the application’s execution.

This information is placed into a performance database, the second component of
Prophesy. The database has a hierarchical structure reflecting that of the appli-
cation: an application is assumed to consist of a group of modules, each in turn
subdivided into functions composed of basic blocks. The performance informa-
tion about an individual execution of an application (and its sub-components), the
system it ran on, and the set of inputs used are stored in the database. Systems infor-
mation includes the processor architecture, memory subsystem, operating system
and network connections.

The final part of Prophesy is the modelling component. Here, individual kernels
are modelled, and then composed to model the entire application.

The most basic form of kernel modelling is curve fitting. The user selects the perfor-
mance data gathered for a subset of the execution of an application, along with a set
of parameters—typically input parameters and the system it ran on—and Prophesy
attempts to generate a performance model from the data points gathered using the
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method of least squares. Since this is a ‘black box’ approach, it is of limited utility: it
cannot predict how a kernel will run on different hardware configurations, because
it cannot know how a kernel depends on different performance characteristics of
the hardware (e.g., one function might be sensitive to memory bandwidth, another
to memory latency, and a third to the speed of floating point divides). Also, if the
kernel or application has many input parameters, a large number of data points
may be required to produce a model. However, in its favour, the technique is simple
and may be useful for examining the scalability of some applications.

The second form of modelling requires the developer to use performance measure-
ments along with manual analysis to create an equation describing the runtime of
an application kernel in terms of the input and the hardware system. This analysis
is difficult and time consuming, but need only be done once. For example, by
inspecting a function, the programmer might see that a function makes

√
n linear

sweeps over an array of size n2 and characterise the runtime in terms of memory
bandwidth and array size.

The most novel feature that Prophesy introduces is that of kernel coupling.[TWGS02]
This describes the effect that running one kernel will have on runtime of another
kernel that executes directly after the first. It is expressed as a ratio of the runtime of
kernels executed in isolation vs the kernels executed together, or if Pi is the runtime
of kernel running alone, and Pi j is the runtime of two kernels running consecutively,
Ci j, the coupling factor is

Ci j =
Pi j

Pi + P j

For example, kernels Ki and K j might use similar datasets, and because Ki has
‘warmed the caches’ for K j the runtime of Ki followed by K j might be less than the
sum of their runtimes in isolation, i.e., Ci j < 1. Conversely Ki and K j might compete
for resources and Ki might force data used by K j out of main memory, requiring K j

to page it back in when it runs. In this case Ci j > 1. These two scenarios are called
‘constructive coupling’, and ‘destructive coupling’.

Kernels often occur in chains and loops, and Prophesy can use the information
gathered for the coupling between individual pairs of kernels to predict the overall
performance of an application. It was found in [TWGS02] that predictors using
kernel coupling give much more accurate performance estimates than those based
simply on summing the runtimes of each kernel.

Furthermore, by analysing NASA’s parallel benchmarks[BHS+95] on different sys-
tems the Prophesy researchers found that the coupling factors for a given set of
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kernels often remain similar across different architectures. The structure of the
memory hierarchy affects coupling, but the raw CPU speed of a system does not.
This effect, called Isocoupling means that coupling values can be reused across sim-
ilar classes of machines.

2.1.5 PEPA

The PEPA workbench, designed in the 1990s by Hilston et al., uses a more abstract
performance modelling technique. PEPA is a process algebra with precise semantics
that describes the interactions between a set of processes as they perform various
actions and transform into other processes. It was inspired by earlier process
algebras such as Milner’s CCS [Mil80], and Hoare’s CSP [HH78] . All of these
algebras have in common the notion of a component with no internal state that can
be transformed into another component by an activity1. They all allow chains of
activities to be performed sequentially on a component; they all allow some sort of
choice for what a component turns into after an activity; and they all have some
way of expressing multiple components and how they interact. PEPA differs from
CCS and CSP in how it expresses parallelism, and in the fact that it includes timing
information: each activity has an action type and a rate, and when an activity occurs
it delays for an interval sampled from an exponential distribution.

The PEPA language is very parsimonious. It has only four combinators (or opera-
tors). These are

• Prefix. This is written as (α, r).P and represents a component that can have an
activity with the type α performed on it. When this occurs, it will delay for a
random time sampled from the negative exponential distribution with parameter
r and then becomes the component P.

Sequences of activities that occur one after the other can be linked together either
with explicitly named components, or by chaining activities together with the
prefix combinator. In the later case, implicit, unnamed components exist in the
model. For example, both the following models represent exactly the same model
of a batch server with three states: ‘idle‘, ‘processing‘ and ‘done‘ that occur strictly
one after the other. The first uses explicitly named components:

1Component and activity are PEPA’s terms. Other algebras tend to call them processes and actions,
however the term action has a special meaning in PEPA.
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Serveridle
def
= (submit, rr).Serverprocessing

Serverprocessing
def
= (process, rp).Serverdone

Serverdone
def
= (complete, ro).Serveridle

Whereas this uses implicit components for a terser definition:

Serveridle
def
= (submit, rs).(process, rp).(complete, rc).Serveridle

• Choice. The choice combinator, written as P + Q describes a component that can
accept more than one possible activity. Both are sampled using their respective
rates, and the component becomes the first one to complete. This can be looked on
as two activities competing for the same resource. The first to complete wins, and
the other is discarded. This can be used to model both components that change
their behaviour depending on external events, and components that change in
non-deterministic manner.

As an example, consider a simple porridge tasting model. In this Goldilocks will
periodically taste the porridge. If it is too hot, she blows on it to cool it for a
while; if it is too cold, she heats it on the stove. If it is just right, neither activity
will occur.

Note that the rate at which too hot and too cold activities occur is unspecified
for the Goldilockstaste component, because they depend on the temperature of the
porridge and not Goldilocks herself. In PEPA terminology, Goldilocks is passive
with respect to these two activities, i.e., PEPA requires some other component
to define a rate for these activities, and the use of the cooperation combinator to
allow these rates to be inferred for the complete system. Since there is no porridge
component, and the rates of too hot and too cold are unknown, the model below
is incomplete.

Goldilockstaste
def
= (too hot,>).Goldilockscool + (too cold,>).Goldilockswarm

Goldilockscool
def
= (cool, r).Goldilockstaste

Goldilockswarm
def
= (warm, r).Goldilockstaste

To see where non-deterministic choice can be used, consider an extended version
of the batch server that occasionally crashes and needs to be rebooted. The
Serverprocessing component has a choice between two activities with the same action
type, however PEPA distinguishes between all activities, no matter what their
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type. When executing the model directly, the rates for both possible activities
will be sampled, and occasionally (1 time in 100 in this case), the second activity
will complete first, putting the server into the rebooting state.

Serveridle
def
= (submit, rs).Serverprocessing

Serverprocessing
def
= (process, 99rp

100 ).Serverdone + (process, rp

100 ).Serverrebooting

Serverdone
def
= (complete, rc).Serveridle

Serverrebooting
def
= (reboot, rb).Serveridle

• Hiding. Written as P/L, hiding allows the activities that are internal to a compo-
nent to be hidden from view by other components. The activities occur as normal,
but to other components, they appear to have an action type of τ, and cannot
occur in the cooperation set of the cooperation combinator which is described
shortly.

Looking at the batch server model above, it could be argued that whether the
server crashes or not is irrelevant to other components — they should just see the
rate at which jobs complete and should not depend on implementation details
of how the server transitions through internal states. To allow other components
to interact with the server only by submitting jobs and receiving the results, a
server where processing is hidden is defined using

Server
def
= Serveridle/{process, reboot}

• Cooperation. PEPA’s sole concurrency mechanism is the cooperation combina-
tor written as P BC

L
Q. It defines two separate components P and Q running in

parallel and that synchronise (or cooperate) on the list of action types in L. When
cooperating, the overall (or apparent) rate of any shared activities is defined as
the rate of the slowest component. The intuitive explanation here is that in a co-
operative activity, whichever process is slowest becomes the bottleneck for that
activity, such as a producer and consumer scenario, or in an assembly line.

If L = ∅ the components do not synchronise at all, and run completely indepen-
dently of each other. For convenience, this P BC

∅
Q is written as P ‖ Q, and multiple

instances of the same component can be written as P[n] instead of P ‖ ... ‖ P.

As an example, a job can be defined as

Job
def
= (submit,>).(complete,>).Stop

23



Note that, as in the Goldilocks example, the rates of the submit and complete
activities are undefined, making Job passive with respect to these activities. This
is because the rate at which the job runs depends on the server’s resources, not
the job itself.2 If L = {submit, complete}, then a single job submitted to a server can
be represented using

Job BC
L

Serveridle

Here, the rates for submit and complete are defined in one of the components, so
the overall rate will be min(>, rs) = rs and min(>, rc) = rc respectively.

Similarly, n independent jobs submitted to a pool of m independent servers can
be described by

Job[n] BC
L

Serveridle[m]

Or, a heterogeneous set of machines and different types of jobs, with appropriately
defined components, could be expressed as

(BLAST[n1] ‖ CHARMM[n2] ‖ AMBER[n3]) BC
L

(Opteronidle[m1] ‖ Itaniumidle[m2])

PEPA models, once built, can be analysed using multiple techniques. Since PEPA is a
process algebra and has a formally defined semantics, PEPA models can be checked
by machine for various logical properties, such as whether a model is incomplete,
or free from deadlock. Two models can also be compared for equivalence using
bisimulation.

PEPA models with few states can be transformed into a Continuous Time Markov
Chain (CTMC). Using the CTMC, PEPA models can be analysed for steady-state
or equilibrium behaviour, and by solving the CTMC, transient analysis can be
performed to observe the evolution of the system over time. However, for anything
other than small models, generating the CTMC is slow and solving it even slower
due to the ‘state space explosion’ caused by having to generate, and then solve a
system of linear equations involving every component in every possible state.

Fortunately, it is possible to translate PEPA models directly into a compact system
of Ordinary Differential Equations (ODEs) with a size proportional to the number
of distinct component types in the model. These ODEs can be solved efficiently
using standard numerical techniques, allowing the evolution of the system over
time to be examined.

2A more sophisticated model might contain a heterogeneous set of jobs each requiring different
types of activity to occur in differing proportions, each activity having different rates defined on the
server. This could model different resources such as network bandwidth, disk I/O, CPU etc.
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As can be seen from this description, PEPA is far more abstract than either PACE
or Prophesy. None of the language features are tailored to the peculiarities of
processors and code execution, and it can be used to model things as diverse
as software systems [GHLR04], biochemical pathways [CGH04] and peer to peer
networking [Dug06].

However, this does not preclude the use of PEPA as a performance prediction tool
for grid applications. In particular, if an application is written using algorithmic
skeletons, and is structured using the Pipeline and Deal skeletons, it is possible to
automatically translate this structure into a PEPA performance model [BCGH05].
This model can then be used along with performance data for a cluster of machines
to find an optimal mapping of tasks to compute resources.

2.2 Performance monitoring tools

A typical computational grid may be composed of many compute nodes, each
with a continually varying workload and availability. At any time, nodes can fail
and will need to be replaced by new nodes, potentially with different capabilities.
The amount of traffic flowing across the network infrastructure connecting these
nodes will also vary over time due to network outages, changes in topology, and
the communications patterns of the workloads themselves. This suggests that for
scheduling and fault analysis purposes benchmarking a system once is insufficient.
It is important to have a continuous performance monitoring facility as part of the
infrastructure of a grid system. This performance monitoring consists of periodi-
cally executed probes which usually include measurements of the bandwidth and
latency of MPI communications between various nodes, the I/O speed for local
discs, and benchmarks of CPU and memory speed.

This continually changing performance can also be used as parameters to appli-
cation performance models and scheduling systems: a workflow scheduler might
decide not to run a particular parallel task on a node that has recently slowed down,
as the application is known to perform poorly on heterogenous nodes, or the risk
that the node will fail is higher.

One instance of a well known and frequently used end-to-end network benchmark-
ing tool is NetPerf[Jon09]. For the reasons mentioned in the previous paragraphs, a
benchmarking tool on its own is insufficient for grid or cluster management. Many
grid and cluster monitoring tools exist to aggregate performance information and
to facilitate the monitoring of cluster resources. These include popular tools such
as Ganglia[Gan], Nagios[Nag], the Network Weather System and the Globus Moni-
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toring and Discovery Service. We will examine these last two tools in the following
sections:

2.2.1 Network Weather System

Network Weather System (NWS) is a distributed system for gathering performance
data for large sets of computing resources and providing short-term forecasts based
on the statistical analysis of the data gathered [WSH99].

It consists of four core components: a Name Server that acts as a directory which
maps resource names to IP addresses; a set of Persistent State Servers that act as a
long term data store for the performance data gathered; a set of Sensors that probe
for performance data from particular resources and store them on the Persistent
State servers; and a Forecaster component that uses a mix of statistical techniques to
estimate the performance of a resource in the near future.

The Sensors gather two types of performance data. The first relates to compute
resources: the Sensor combines the information available from UNIX’s vmstat and
uptime along with a periodic CPU-intensive probe program to calculate how much
CPU is available on a node. To minimise the intrusiveness of this probe, NWS
reduces the frequency of the probes when recent availability measurements are
approximately static, and increases them as availability changes.

The second set of sensor data is measurement of the end-to-end network per-
formance between pairs of compute nodes using two active probes: one which
measures the round-trip time of a small TCP message, and the other using a large
message. From this, the bandwidth and latency of a link, along with the time to
open a TCP socket can be inferred.

Since there are O(N2) pairs of connections between N nodes, it would be prohibitive
to directly measure the performance characteristics of all possible connections. Even
if the number of measurements were limited somehow, with increasing numbers of
nodes, the odds of multiple probes occurring simultaneously (and thus distorting
the measurements) increases quadratically with the node count. To avoid this,
the sensors arrange themselves into a distributed hierarchical system where each
sensor belongs to a set of cliques [WSH99]. At the ‘bottom’ level, each sensor in a
clique measures the inter-node performance with every other sensor in the clique.
A token passing system makes sure only one sensor in the clique measures at once.

The cliques are arranged in such a way that one sensor in the ‘bottom’ level is
chosen as representative of that clique, and belongs to a ‘higher level’ clique too.
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Each of these representative sensors measure inter-node performance with each
other in turn, and this continues up the hierarchy until the root clique.

The Forecaster component uses the time-stamped data from the Persistent State
servers to generate forecasts of the performance data on demand. These are com-
puted using a set of forecasting models to predict the recent and current measure-
ments based on historical data and comparing them with the actual measurements
(a technique dubbed postcasting). The model with smallest mean squared error
is chosen as the best available, and is chosen to predict future performance data
[Wol03].

Since the network and compute availability are continually changing, the perfor-
mance data produced may be a non-stationary series, and limiting the amount of
history available to a model may improve the accuracy of the resource predictions.
NWS uses models with varying window sizes as part of the resource prediction
process, and again uses the model with the smallest mean squared error.

Note that the predictions produced by NWS differ from those of an application
model in that they are predictions of future availability of compute and network
resources, rather than the resource consumption characteristics of applications. Both
pieces of information are required: an application model cannot produce accurate
estimates of an application’s runtime if it does not know the resources available for
that application to use.

2.2.2 MDS

The Monitoring and Discovery Service (MDS) is a built-in component of Globus that
provides a scalable resource information system for grid services. It has evolved
along with Globus through four major versions, and is designed to address the
needs of grid computing infrastructure including tools such as resource brokers,
meta-schedulers, and fault detection systems. These needs fall into the two cate-
gories of monitoring and discovery.

The requirements for MDS, or the Metacomputing Directory Service as it was orig-
inally called, were set out in [FFK+97], along with an initial early implementation
that ran on Globus 1.1.2 and earlier. The paper examined a number of distributed
directory systems, such as DNS and X.500 and showed how these were not suitable
for grid computing. It determined that an MDS must have high performance and
scalability; must have a uniform API and extensible data model; must deal with
continually updating data; must be decentralised to allow for multiple information
sources and no single points of failure; and must support secure access.
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Fig. 2.1: NWS clique hierarchy

A data model and naming system based on that of the Lightweight Directory Access
Protocol (LDAP) was chosen by the Globus Alliance for MDS version 1. The data
model consists of set of elements, each of which has a type called an object class
which is defined in a class hierarchy. The object class defines a set of mandatory
and optional attributes for each element and what kinds of values each attribute
may contain. In the case of MDS, each element represents a grid resource, such as a
compute node, or some network infrastructure. An example can be seen in Fig. 2.2.

The naming system is also based on LDAP. Each element has a unique identifier
called a Distinguished Name (DN) which can be thought of as similar to the absolute
path to a file. Entries are organised in a Directory Information Tree (DIT) where each
entry is a child to some other entry, and each component in a DN ‘path’ represents
a single specific DIT entry. Fig. 2.3 shows an example distinguished name.

The MDS could be queried and updated using LDAP-style queries. For example, the
query (&(objectClass=GlobusHost)(o=University of Warwick)(c=UK)(totalMemory>256000000))would
find all compute nodes at Warwick with more than 256MB of memory.

The first implementation of MDS consisted of a centralised LDAP server for each
organisation. A utility called globus-gram-reporter played a role similar to that
of Sensors in NWS and periodically pushed resource information updates to the
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GlobusHost OBJECT CLASS

SUBCLASS OF GlobusResource

MUST CONTAIN {

hostName :: cis,

CPU :: cis,

OS :: cis,

}

MAY CONTAIN {

totalMemory :: cis,

totalSwap :: cis,

dataCache :: cis,

instructionCache :: cis

}

Fig. 2.2: LDAP object class

<

hn = groupthink.dcs.warwick.ac.uk

ou = HPSG,

o = Department of Computer Science,

o = University of Warwick,

c = UK

>

Fig. 2.3: LDAP distinguished name

server, and clients queried the server via the standard LDAP mechanisms. This
system could not scale and any failure of the server led to a complete loss of
information services.

MDS v.2 expanded on version 1 by defining two classes of agent in MDS, the
Grid Resource Information Service (GRIS) and the Grid Index Information Service
(GIIS). The GRISes are a more sophisticated version of the server in MDS version 1.
GRISes use a set of Information Providers agents to collect data. This can be static
information, periodically updated information, or information that is generated on
demand by queries. GRISes are queried using the Grid Information Protocol (GRIP).

To reduce the load on a GRIS, an organisation may have multiple GIISes. These
serve the role of both caches and aggregators of the information contained in a GRIS,
but originate no information of their own. To connect a GRIS to a GIIS, the GRIS
notifies the GIIS of what resource information it serves using the Grid Registration
Protocol (GRRP).

Inspired by registration in NWS, GRRP is a ‘soft-state’ protocol, meaning that the
GRIS must re-register with the GIIS on a regular basis: if it does not, the GIIS
assumes the GRIS has failed or no longer exists and can remove cached information
belonging it. Like GRISes, GIISes can be queried for resource information using
GRIP, and if a GIIS lacks the information required, it may pass the query on to the
original GRIS. GIISes can in turn register some or all of its resources with one or
more other GIISes, and this can be used for load balancing or redundancy.

In a reversal of roles, GRRP can be used in the opposite direction too. A GIIS may
use GRRP to invite a GRIS to join a ‘virtual organisation’, where a set of agents
from many organisations can access a view, i.e., a subset of resources from many
GRIS/GIISes. To enforce the restrictions on the view, GRIP can require encryption
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and authentication of the connection using GSI.

Globus Toolkit 3 and 4 represented a major change in the protocols and implemen-
tations underlying all of Globus. Prior to version 3, the Globus Toolkit consisted
of a collection of disparate programs and libraries that communicated using a
number of ad hoc protocols. Globus Toolkit 3 replaced this with a set of web ser-
vices running in a Java container that communicate using Simple Object Access
Protocol (SOAP). Plain web services are missing important functionality required
by grid service applications, such as the ability for each service to hold stateful
data. To overcome this, Globus defined a set of standardised extensions that all
grid services may use. The extended model is known as the Open Grid Services
Infrastructure (OGSI) [TCF+03]. In OGSI every service running in the container has
its own set of serviceData elements describing its internal state in XML and these
can either be queried directly via SOAP messages, or remote agents can subscribe
to receive periodic notification events from the container. Thus the push and pull
information services of a GRIS are built directly into the Globus container in Globus
Toolkit 3.

To complete the mapping of MDS GRIS functionality to grid services, Globus Toolkit
3 has a Provider mechanism that allows external scripts to become serviceData
providers. This is similar to the Information Providers functionality in MDS v.2.
Globus Toolkit 3’s version of Grid Resource Allocation Manager (GRAM) uses this
Provider mechanism to provide information about cluster hosts represented using
the GLUE XML schema. Using OGSI’s queryByXPath, the example MDS v.2 query
above might become /Cluster[@Name="warwick.ac.uk"]/SubCluster/Host[MainMemory/@RAMAvailable>256].

To provide the equivalent of a GIIS, Globus Toolkit 3 relies on an OGSI feature
called a ‘service group’. This allows a single grid service to represent and provide
information for a group of other services. Globus Toolkit 3 ships with a service
called the Index Service which uses service groups to provide the aggregation and
caching functionality of MDS v.2.

After Globus Toolkit 3 was released, the web services community defined a collec-
tion of web services specifications collectively known as WS-Resource Framework
(WSRF). These address similar concerns to those of OGSI, but with different ter-
minology and as a modular set of Web Services specifications. For example, the
WS-ResourceProperties [WS-03] specification contains the statefulness extensions
of OGSI, WS-Notification [WS-04a] specifies push-based remote notification, WS-
ServiceGroup [WS-04b] defines service groups extensions.

Globus Toolkit 4 is a refactoring of Globus Toolkit 3 to use WSRF [CFF+04]. Since
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WSRF and OGSI are architecturally similar, the basic resource information and
indexing services in MDS v.4 are essentially the same as MDS v.3.

MDS v.4 introduces one major new feature over MDS v.3, namely the Trigger service.
This allows aggregators using the Index service to monitor incoming service data,
and if a piece of data matches a rule, then an external script is executed. This could
be used, for instance, to email a sysadmin if a host fails; or to reconfigure systems
in response to varying load.

2.3 An analytical performance model of Sweep3D

The US Department of Energy benchmark Sweep3D and the analytical model built
for it by Mudalige et al. serves as an example of the benefits of and difficulties in
construction an analytical performance model. [MVJ08]

Sweep3D is a discrete ordinates neutron transport code designed to be represen-
tative of the majority of the application workload at sites such as the Los Alamos
National Laboratory. In common with a number of other codes, it uses a parallel
execution strategy based on a parallel wavefront decomposition. A typical run of
Sweep3D will use a grid of between roughly 503 cells and 2503 cells.

y
z

x
(a) 3D wavefront

1,m n,m

1,1 n,1

sweep 1 (top)
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sweep 6 (bottom)
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(b) Sweep3D’s 8 sweeps

Fig. 2.4: Sweep3D wavefront behaviour

This wavefront method is based on the hyperplanes technique developed by Lam-
port. [Lam74] Sweep3D operates on an array of data of size Nx×Ny×Nz and the data
is split between processors by assigning the processors to a 2-D grid of size n × m
and allocating a vertical ‘stack’ of cells of size Nx/n ×Ny/m ×Nz to each processor.
The algorithm operates by beginning computation at one corner of the data and
sweeping through the array until it reaches the diagonally opposite corner. This is
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implemented by processor (n,m) taking its topmost Nx ×Ny × 1 tile and performing
calculations on this block of data. When the results are ready, it passes the southern
and eastern boundary cells of the updated block to the processors to the south and
east of it, that is to say processors (n − 1,m) and (n,m − 1). Then processor (n,m)
continues and performs calculations on the second tile in the vertical stack while its
neighbours calculate the topmost tile of their stack of cells. When processor (n,m)
completes Nz steps, it has finished its processing and another m + n − 1 steps must
pass before processor (1,1) completes its final tile.

This leads to a pipelined effect illustrated in Fig. 2.4(a) where a diagonal wavefront
of computation passes through the 2-D grid of processors. A processor cannot begin
computation until the wavefront reaches it—the so called ‘pipeline fill’ delay—and
the ‘width’ of the wavefront is the same as Nz, the height of the stack of tiles.

In a single iteration of Sweep3D, 8 sweeps occur, one for each corner of the 3-D
data set. The order of these sweeps is shown in Fig. 2.4(b). The particular choice
of sweep ordering has consequences for the pipelining behaviour. For example,
immediately after processor (n,m) has completed sweep 1, it can immediately start
sweep 2 because it already has all the data it needs. The wavefront for sweep 2
propagates across the 2-D grid of processors in exactly the same order as sweep 1,
except the processors perform computations on their stack of tiles from bottom to
top, rather than top to bottom.

However, for sweep 3 to begin, processor (n,1) must first finish processing sweep 2,
introducing a delay of m iterations for the pipeline fill between these two sweeps.
Similar delays occur between sweeps 4 and 5, and between 6 and 7, and finally for
sweep 8 to complete.

Other codes such as LU matrix decomposition and the Atomic Weapons Estab-
lishment’s Chimaera use the wavefront algorithm, but have different numbers of
sweeps (2 in the case of LU), or order the sweeps differently (as in Chimaera).

As with most analytical models, the Sweep3D model in [MVJ08] has separate parts
for the computation and communications. In Sweep3D, the pattern of computation
is relatively simple: a processor simply performs a fixed set of calculations on a
2-D tile from the 3-D array after receiving boundary data from its northern and
western neighbours. The runtime for this set of calculations is simply measured
by benchmarking it for a representative tile size on the target hardware yielding a
model parameter called Wg which is the average time to compute one cell. This
benchmarking only needs to be performed on a single processor, as it only affected
by CPU speed and the memory subsystem. Other applications such as LU per-
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form some per-tile calculations before receiving data from its neighbours. This is
measured in the same way and yields the parameter Wg,pre.

The other component of the model accounts for the delays due to communications.
To allow this to be done, two problems need to be solved: the performance of the
network on the target hardware needs to be modelled, and, independently, the
communications patterns of the application need to be characterised.

The network and communications model is based on the LogGP methodology. This
characterises communications with the following five terms:

L is the maximum latency which can be expected for an individual message.

o is the communications overhead, i.e., the amount of CPU time taken to process a
message.

g is the gap between consecutive messages, which is a function of bandwidth and
how messages are buffered.

G is the gap per byte for large messages, which is the inverse of bandwidth.

P is the number of processors.

The LogGP model ignores the effects of contention — the slowdown that occurs
when multiple processors try to use the same links at once. This is not a significant
problem for the Sweep3D model, as by its nature Sweep3D processors only ever
communicate with their neighbours, there are no overlapping communications that
use the same links, and the 2-D grid of the decomposition maps directly onto the
3-D links of the hardware under consideration.

The network model is for that of MPI on a Cray XT4, which provides a 3-D torus
interconnect between processing elements, where each processing element is a dual
core Opteron. MPI running on the interconnect uses a direct send protocol for small
messages (up to 1 kB) and an acknowledgement based protocol for large messages
(> 1 kB). MPI communication between processors on the same chip use memcpy

between memory buffers for messages up to 1 kB and DMA for larger messages.
The DMA takes longer to set up, but is much more efficient per-byte. For the Cray,
g is found to be zero due to the hardware design, and measurements are made of
L, o, and G for all four of the large message, small message, off-chip and on-chip
permutations. These are combined into a communications model with a number
of equations, two of which are
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Total Comm≤1 kB off chip = o + Message size × G + L + o

Send>1 kB on chip = o = ocopy + oDMA

The communications model uses the network model just described as well as a
number of model parameters. Two of them, Wg and Wg,pre have already been
mentioned. Another, nsweeps specifies the number of sweeps in an iteration. Two
more, nfull and ndiag capture the effect of some sweeps needing to wait for the full
previous sweep needing to complete, or part of the previous sweep to complete
before they begin.

The initial model derived assumes only 1 processor per compute node, thus neglect-
ing the effects of on-chip communications and contention for the network interface.
It consists of a set of recurrence relations for the start time for a sweep on a given
node. Some of the equations are:

W = Wg ×Htile ×Nx/n ×Ny/m

StartP1,1 = Wpre

StartPi, j = max(StartPi−1, j + Wi−1, j + Total commE + ReceiveN,

StartPi, j−1 + Wi, j−1 + SendE + Total CommS)

Tdiagfill = StartP1,m

Tfullfill = StartPn,m

Tstack = (ReceiveW + ReceiveN + W + SendE + Send + Wpre)Nz/Htile −Wpre

Time per iteration = ndiagTdiagfill + nfullTfullfill + nsweepsTstack + Tnonwavefront

The equations are quick to solve by computer for any practical n×m grid size, and
have a number of easily changed parameters. The models have been tested against
a number of real world scenarios, and have a high degree of accuracy with a 10%
error even on a system unfavourable to the model. More importantly, the equations
can be intuitively understood and can be modified to examine what the behaviour
of Sweep3D and other wavefront codes would be with various platform changes or
with modifications to the software design and configuration. One change examined
later in [MVJ08] shows how by changing the expression for StartPi, j a simplification
in the initial model can be resolved and a model for systems (such as the Cray XT4)
with 2 processor cores per network interface can be derived. Other experiments
investigate Sweep3D’s scalability as the processor count increases, and the effect of
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application parameters such as Htile on performance.

A later work investigates the effects that a mixed OpenMP/MPI implementation
would have on Sweep3D, as well as the potential for speedup by running different
sweeps on different CPUs in parallel on chip multiprocessor systems. The model
allows various changes to be speculated upon and tested for their potential benefits
without requiring a lengthy and error prone rewrite of the code itself. [MHSJ09]

As can be seen in the above, an accurate analytical performance model allows many
speculative scenarios to be investigated. However building the model requires a
deep understanding of the application’s behaviour, which becomes increasingly
difficult as applications grow in size and complexity. For Sweep3D, model creation
has been in part possible because it has a deliberately uniform structure, and sets
out to avoid performance reducing effects such as network contention which also
happen to be difficult to model.

2.4 Scheduling as an application

For grid applications to execute efficiently they rely on middleware services to
manage resources and allocate them to tasks among variable and unpredictable
application workloads. Many tools exist to model application performance based
on performance data and other tools gather and store performance data. Used
together, these tools can be part of a scheduling system that attempts to allocate
applications to resources subject to various constraints as efficiently as possible.

Previous performance work at Warwick has focused on performance prediction
with the PACE framework described in Sec. 2.1.2 and Appendix B and an adapt-
able scheduling system called TITAN [SJC+03]. The PACE tools assist the user
in generating analytical performance models, and the evaluation of these models
allows the performance and scalability of parallel applications to be estimated on
different architectures. A recent example of this can be found in [MJSN06].

TITAN is a multi-cluster scheduling system that uses a rapid genetic algorithm and
application performance models to create schedules in real-time. [SJC+03] In order
to scale well, a complete TITAN system may consist of a number of distribution
brokers in a loosely hierarchical structure which pass tasks between each other and
determine whether any workload manager within the hierarchy has the available
resources and meets any Quality of Service (QoS) criteria. The individual workload
managers are responsible for a local pool of resources and interact with local batch
schedulers for job submission and monitoring services. The workload managers
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also query local performance prediction engines such as PACE for performance
data. This section will ignore most of these components and focus on the workflow
manager itself.

In contrast to planning-based scheduling systems such as OpenCCS[Ope] which
plan the start times for each task, and produces a complete schedule for the future,
TITAN’s workflow manager uses a queuing system, and simply tries to use available
resources as efficiently as possible. The workflow manager uses a genetic algorithm
to explore the task mappings required to minimise the overall runtime of all tasks,
resource idle time, and average delay of a schedule. The genetic algorithm achieves
this by continually generating scheduling solution sets, and replacing the current
best schedule as it discovers improved schedules.

The scheduling problem is one where a set of tasks T = {T1,T2, . . . ,Tn} is mapped
onto a set of hosts H = {H1,H2, . . . ,Hm}. The tasks are considered to be independent
of each other and are submitted to run in some order ` ∈ P(T) where P(T) is the
set of all possible permutations of T. For each task ` j within this ordering, there
is a mapping of that task onto one or more hosts β j, where β j ⊆ H and β j , ∅.
A schedule consists of a 2-D matrix where the rows are the available hosts, and
the columns the ordered tasks. Sk as defined below is the kth schedule in a set of
schedules S = S1, . . . ,Sp manipulated by the genetic algorithm. The columns of the
matrix are simply another way of representing β j as a bitmap where an element in
the column is 1 if the task is allocated to a particular host, and 0 if it isn’t.

Mi, j =

 1, if Hi ∈ β j

0, if Hi < β j

Sk =



`1 `2 . . . `n

H0 M0,0 M0,1 . . . M0,n

H1 M1,0 M1,1 . . . M1,n
...

...
...

...
...

Hm Mm,0 Mm,1 . . . Mm,n

One of the unintuitive aspects of this definition of a schedule is that it makes no
reference to time. Also it appears at first glance to be impossible to specify two
or more tasks to run concurrently on different hosts. However this appearance is
misleading. The reason for this is that the schedule isn’t a schedule in the sense of
being a timetable, rather it simply defines the order in which tasks are submitted
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to a batch queue, and a host mapping for each task. If, for example, if a schedule
has two tasks, T1 and T2, and `1 and `2 specify a non-overlapping set of hosts,
then when T1 and T2 are submitted to an empty batch queue, they will both start
executing concurrently. If `1 and `2 do share a subset of hosts, then T2 will not start
executing until T1 completes and frees up the hosts they have in common.

This representation has a major benefit in the context of a genetic algorithm. When
the genetic algorithm randomly permutes or changes the schedule, it is impossible
for it to invalidate the schedule by producing overlapping host requirements: tasks
are simply submitted to run on a specific set of hosts, and they begin to execute as
soon as they are able.

Some means of knowing how long a task will take to complete, and how well it
scales to different numbers of hosts is needed to convert the schedule to one where
time is involved. This is provided by the performance prediction engine, which
provides runtimes for every query pext(` j, β j) where ` j is a task and β j the host
allocation.

The end time for a task is te j, and the start time ts j. tr ji is the earliest release time
possible for task ` j on an individual host Hi independent of all the other hosts.
These are defined as

te j = ts j + pext(` j, β j)

ts j = max
i st. Hi∈β j

tr ji

tr ji can can be defined as a recurrence relation on the release time for all the earlier
tasks `1 . . . ` j−1 running on the same host. The release time for `1 by definition is
the current time t. The maximum in the definition of ts j occurs because the job can
only be released when all the hosts for the task become available, and this occurs
at the latest release time for an individual host.

The genetic algorithm operates in an iterative fashion by measuring candidate
schedules using fitness functions. The best schedule becomes the one used by
the scheduler, and the poorest schedules are removed and replaced by new ones
created by crossover and mutation. Crossover takes a random pair of schedules
and mixes them together producing a new schedule, whereas mutation produces a
new schedule by randomising the contents of an existing schedule.

Crossover of task orders takes task orders `A and `B from two random schedules
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Fig. 2.5: Run-time schedule of three example workflows

and splices them together at some random point i so that `′1 . . . `
′

i are from `A and
`′i+1 . . . `

′
n from `B. This can produce invalid task orders with duplicated tasks (which

is not permitted for a permutation of T), and this can be resolved by repeatedly
replacing the first occurrence of each duplicated task by the original task from `A

until no duplications remain. Mutation of a task order simply swaps random tasks
within `, which is always guaranteed to produce a valid task order.

Crossover of hostmaps βA and βB performs a similar splice operation to crossover
of task orders. Mutation of a hostmap simply flips random bits within a hostmap β.
After crossover and mutation, hostmaps are then checked for ‘topology’ constraints
such as a task being allocated to no hosts, or a task running on a subset of hosts that
is not permitted for some reason.

The fitness functions include minimising the makespan, minimising idle time, and
minimising the over deadline time of any te j.

Because it is based on a continually iterating genetic algorithm, TITAN’s workflow
manager copes well with change. Due to the schedule representation, addition or
removal of tasks does not invalidate a schedule, and the genetic algorithm quickly
adapts the schedule to remove any idle gaps that emerge in such an event. Similarly,
the genetic algorithm can adapt to imprecise performance estimations, such as if a
task completes earlier or later than expected, or if, for some reason the performance
estimate changes.

By the same token, a schedule can adapt to news from a performance monitoring
tool that hosts have been added or removed from a cluster. Added hosts simply
appear as a new empty host in each of the schedules Sk. Failed hosts are likewise
removed from the schedule, and each β j has the failed hosts removed from their
hostmaps. Any tasks running on the hosts while they failed are simply resubmitted
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for scheduling.

Subsequent work on TITAN added the ability to schedule workflows by allowing
dependencies to be considered across a process flow. [SCJ+04] This can be accom-
modated by adding an extra restriction to ts j that it cannot start before any of the
tasks it depends on complete.

Scheduling entire workflows differs from scheduling individual tasks in that the
tasks within a workflow will usually have dependencies that introduce a certain
amount of serialisation between tasks in the workflow. When multiple workflows
occur in a schedule, and their descriptions request the scheduler to allocate as many
CPUs as possible to each task, this can lead to large amounts of idle time in the
schedule. A scheduler that is aware of the scalability properties of an application
has substantial opportunities to optimise these kinds of inefficient schedules.

Fig. 2.5(a) and Fig. 2.5(b) show a simple example of how the scheduler can optimise
a schedule by allocating individual subtasks to fewer or more CPUs as appropriate,
and by interleaving the subtasks from different workflows. Furthermore, interleav-
ing tasks is an optimisation that mutating a task order is likely to find. Fig. 2.5(a)
shows the time composition of three workflows as submitted to the system prior
to scheduling. Fig. 2.5(b) shows the same three workflows after scheduling by the
resource management system. It can be seen that the makespan of all the tasks has
been reduced and the utilisation of resources has increased significantly, i.e., the
idle white-space in the schedule diagram is reduced.

2.5 Summary

In this chapter a number of performance monitoring tools which gather perfor-
mance data on the hardware resources in a system, and performance modelling
tools which aid in modelling software performance on this hardware have been
examined. Both these sets of tools are used in concert by schedulers such as TITAN
to attempt to find the most efficient mapping of software tasks to the available
resources.

To allow performance models of software to be built many assumptions are made.
On the micro-architectural level, PACE makes assumptions that are thwarted by
branch prediction, caches, and optimising compilers amongst other factors. Sys-
tems such as WARPP and Prophesy avoid this by benchmarking basic blocks.
However on a higher level all these systems assume that it is enough to model the
average runtime of an application, ignoring the effect of input data on the applica-
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tion. WARPP makes some allowance for certain kinds of variability by modelling
the slowdowns introduced by random system noise, but again does not model
data-dependency.

Even though none of the systems attempt to model the performance variations
introduced by changing an application’s input data, it can cause major changes in
runtime. One obvious source of this variation is due to changes in the amount of
work an application does — it might require more iterations to reach convergence, or
it might operate differently on different input data. A less obvious source are micro-
architectural variations: an application might execute the same code sequences, but
trigger a slow case in the hardware implementation of some operation.

In the following chapters both of these sources of data-dependent runtime variabil-
ity will be examined. I find a data-dependent algorithmic slowdown in a medical
imaging application, nreg, and micro-architectural slowdowns caused by denor-
mal arithmetic in other applications. I will show how these effects can be detected
and either modelled or removed.

40



CHAPTER 3
Performance modelling and scheduling of a data-dependent
code

This chapter presents a parallel implementation, a predictive performance model,
and an efficient scheduler for a biomedical imaging application in the UK e-
Science IXI (Information eXtraction from Images) project [HHL+03]. The IXI project
[HHL+03] demonstrates how grid-computing technologies can be used to enable
large scale image processing and medical image analysis. Connectors in IXI’s work-
flow manager can submit jobs to dedicated clusters, Condor-managed workstations,
or to the National Grid Service.

The application considered isnreg, a 3D non-rigid registration tool. This application
exhibits highly variable runtimes depending on the specific input data provided.
Since the runtime can vary by a factor of 50, without a performance model it
was challenging to apply meaningful quality of service criteria to workflows that
use this code. The model developed here is used in the context of an interactive
scheduling system which provides rapid feedback to users, allowing them to tailor
their workloads to available resources, or to allocate extra resources to scheduled
workloads.

Sec. 2.1.2 described a performance prediction toolkit, PACE, and discussed how it
models application performance. The nreg codebase has several properties that
makes it unsuitable to model with PACE. As a modern C++ application, nreg
makes heavy use of inheritance and templates. This alone presents difficulties as
PACE’s capp cannot parse C++ source code. Furthermore, because of the C++

features used, nreg relies heavily on aggressive compiler optimisations to achieve
acceptable performance. Since PACE works at the level of source code, it cannot
model the performance improvements that result from template specialisation,
inlining, dead code elimination and the like.

WARPP discussed in Sec. 2.1.3 could be used sidestep some these issues by instru-
menting the important methods in the application. However this would need to
be done manually and with some care, as some of the inlined image processing
methods are called a huge number of times during a typical execution, and instru-
mentation in the wrong place could remove some of the compiler optimisations
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thus distorting the benchmarks. Furthermore, the flow control of the application is
made less obvious by the use of inheritance and template specialisation.

Most importantly, quite apart from language-level details, the algorithm used by
nreg is sensitive to the information content of the input data, and exhibits highly
variable and data-dependent runtimes as a result. Neither PACE nor WARPP are
capable of modelling this effect.

nreg’s algorithms are discussed, and I produce a parallelisation strategy that scales
reasonably up to about 16 nodes. I analyse the cost of each part of nreg and identify
the sources of variability. Although tools like PACE and WARPP cannot be used to
characterise this variability, I produce a pre-execution performance model for nreg.

This model is not analytical, and takes a substantial amount of time to execute. It
also can be tuned to trade predictive accuracy for execution speed and can emit a
sequence of increasingly accurate predictions over time, a feature called incremental
prediction. I adapt TITAN to work with performance models of this kind.

This performance model along with a feature of TITAN’s called speculative schedul-
ing can be used either to directly schedule tasks for execution, or to evaluate the
implications of adding extra tasks to an existing workflow.

Speculative scheduling allows the end user to dynamically construct workflows and
uses the scheduling and prediction systems to provide estimates on how long the
workflow would take to complete if it were scheduled to run along with the sched-
uler’s current mix of tasks. The user can then examine this schedule and decide
whether it meets their requirements. If it does not, they can edit the workflow as
they see fit, either in the hope of doing extra useful work, or of getting usable results
back more quickly. As the workflow changes, the predicted schedule updates with
it and this closing the loop between the user, application and scheduler allows the
both the user and scheduler to provide valuable feedback to each other that would
not otherwise be available.

3.1 nreg Image Registration

nreg is a medical imaging tool [RSH+99] used to perform non-rigid registration on
pairs of 3D MRI scans. Registration is the process of aligning two images so that
the corresponding features in both are in the same location. It is used in medical
imaging because pairs of images are often compared or displayed together using
image processing techniques, and these produce meaningless results if the images
aren’t aligned properly. An example of two such images is Fig. 3.1 from a set of
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(a) (b)

Fig. 3.1: Slices from brain scans in need of registration

brain scans made using different MRI imaging techniques. nreg differs from other
registration algorithms in that it uses a mesh of B-splines to capture both local
deformation and global motion between the two images and its similarity measure
is based on normalised mutual information which allows it to align images from
different MRI modalities such as CT, MR and PET. It has been shown to be highly
effective at compensating for misregistration in breast MR images and for isolating
tumour growth for visualisation purposes.

The use of B-splines has desirable numerical attributes, including smoothness, con-
tinuity, and the property that moving a control point only affects the transformation
in the local neighbourhood of the control point, making it computationally tractable
to use large numbers of points. An example of a 2-D version of the transformation
can be seen in Fig. 3.2.

3.2 The nreg algorithm

The core of the algorithm is an optimiser based on gradient descent for a system
with about 1,000 degrees of freedom (three for each control point). The algo-
rithm fits a uniform mesh of control points over the 3D image. A function called
EvaluateDerivative takes one of the x, y and z axes of a control point and exper-
imentally moves it by a given step-size, and measures the effect of this individual
motion on the transformation using a similarity function. The effect is measured
with both positive and negative movements, and the difference between them is a
discrete approximation of the partial derivative for this degree of freedom. A func-
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(a) Source image, Times ‘B’ (b) Transformed image, Helvetica ‘B’

Fig. 3.2: Transformation of 2-D image by nreg

tion named EvaluateGradient calls EvaluateDerivative for each control point
and axis using a specific step size, and stores the results in a gradient vector. The
magnitude of this vector is calculated, and the vector itself normalised.

Another routine, the gradient descent optimiser, calls EvaluateGradient with a
given step size. If the magnitude of the gradient is sufficiently large, the optimiser
assumes it can improve the similarity of the two images by moving along this
gradient. It repeatedly does this and uses Evaluate to measure the similarity of
the newly transformed image each time, until the improvement in similarity drops
below a threshold.

This gradient descent optimisation process loops, causing a new gradient to be
found and followed each time until a maximum iteration count is reached, or the
similarity improvement is sufficiently small. The gradient descent loop is then
repeated for a fixed number of steps, halving the motion step size each time, and
this completes the registration process.

To account for global motion as well as local deformations, this entire registration
process is first performed on a coarse mesh with a low resolution image, and then
refining the mesh and increasing the image resolution. These different resolutions
are called levels in the application. After each registration, the image resolution
is doubled in each axis, and the number of points in the mesh is doubled in each
dimension using a B-spline subdivision algorithm to generate the new points.

The similarity measure consists of two components: the first imposes some penalties
on the transformations to make sure they are well formed. For example, one penalty
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encourages smoother transformations by calculating a 3D analogue of an equation
that describes the bending energy of a thin sheet. Transformations that require more
bending energy (and so have more local irregularities) are penalised. Calculating
this penalty involves a small fixed number of floating point calculations for each
control point and its immediate neighbours.

The second part of the measure quantifies the similarity between two images using
the normalised mutual information of the two images. It is implemented as a 2D
histogram. When a new transform is generated, the grey values of corresponding
pixels in the source and transformed target images are read and the count for that
pair of values is incremented in the histogram. When divided by the total number
of samples in the histogram, each entry in the histogram gives the probability of
a particular pair of values occurring in the source and transformed target images.
When a control point is moved, the old sample values are removed from the his-
togram, and new values added. By summing over all the samples in the histogram,
the conditional entropy, joint entropy, and thus the normalised mutual information
I(X; Y) are calculated as follows:

H(Y|X) = −
∑
x∈X

∑
y∈Y

p(x, y) log
∑
y∈Y

p(x, y)

 (3.1)

H(X|Y) = −
∑
y∈Y

∑
x∈X

p(x, y) log
∑
x∈X

p(x, y)

 (3.2)

H(X,Y) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y) (3.3)

I(X; Y) =
H(Y|X) + H(X|Y)

H(X,Y)
(3.4)

3.3 nreg’s computational costs

The runtime of nreg is limited by the speed of the CPU and main memory. Upon
initialisation nreg reads two image files into main memory and constructs the set
of subsampled images that are used later in the registration process. For images
that take a long time to register this setup phase takes a negligible proportion of
the total runtime. Other than these reads and the output of the final transformation
parameters no disk I/O occurs.

Several factors account for the bulk of the runtime of nreg:
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1. As the number of voxels in the image increases, the runtime increases also. Cal-
culating the image similarity, which is done 6 times for the B-spline patches
around each control point in EvaluateDerivative, and once for the image over-
all using Evaluate in the gradient descent, involves transforming the image and
updating the histograms, which has a per voxel cost.

2. As the number of control points increases, the number of voxels moved by a
control point decreases in proportion to the number of control points, so the
amount of work to transform each voxel stays approximately constant.

3. As the number of control points increases, the overall proportion of the run-
time spent calculating the normalised mutual information increases. The 2D
histogram has a fixed size, and the cost of calculating the NMI is independent
of the number of samples added to it — calculating the NMI for a newly ini-
tialised histogram takes exactly the same time as one with samples from all the
voxels from both images. Since a temporary histogram is created and its NMI is
calculated 6 times per control point in EvaluateGradient, this cost increases in
proportion to the number of control points.

4. All else being equal, the runtime is proportional to the number of times the gra-
dient descent optimisation is called. However this must be measured carefully:
the algorithm performs registrations at different image and mesh resolutions,
and an iteration using a finer mesh and resolution takes longer than one using a
coarser mesh and lower resolution.

5. For each call of EvaluateDerivative, there is a highly variable cost associated
with gathering the sample data, i.e., interpolating and transforming local patches
of the target image. This occurs because patch sampling loops over every voxel
in the bounding box of the patches moved by a given control point. When
a patch is not approximately cuboid in shape or is not aligned with the x, y
and z axes, this leads many more voxels in the bounding box than those that
properly belong to the patch. As a result the bounding boxes for different patches
overlap, sometimes substantially, leading to the same voxels being read several
times during an iteration of EvaluateGradient.

The first two factors are predictable and can be reduced to simple analytical expres-
sions.

Factor 3 exhibits some variance depending on the input images, but it is several
times less than the large differences in runtime in Table 3.1.
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Target Source Iterations Runtime Samples
b7 s2 b7 s2 5/5/5 3,863 s 4.7 × 109

b7 s2 b7 s1 19/13/21 14,210 s 18.9 × 109

b9 s2 b9 s1 26/29/31 26,940 s 30.9 × 109

b9 s4 e2 b9 s3 e2 49/45/47 4,284 s 3.9 × 109

b9 s3 e2 b8 s3 e2 47/38/35 3,515 s 4.1 × 109

Table 3.1: EvaluateGradient iterations

Intuitively, factor 4 seems very difficult to predict, as it is related to the overall
difficulty in matching the two images. However, as can be seen in Table 3.1,
although it has a strong correlation to the runtime, variation in the number of
iterations can often be masked by other effects, and the bulk of the variation comes
from factor 5.

Table 3.2 was generated by running a number of sample registrations under the
profiling simulator Callgrind [JWT04]. Callgrind is a tool in the Valgrind binary
instrumentation framework which is used again in Sec. 5. Callgrind uses Valgrind’s
x86 CPU emulation to execute user processes, and each memory access is instru-
mented and fed into a model of the level 1 and level 2 CPU caches. Callgrind
uses this model to estimate the per-function cost of running a code on a particular
memory hierarchy. The table shows that while the cost of calculating the statistics
is quite stable, the cost of calculating the transformed voxel values resulting from
moving a control point is highly variable: in some images it dominates the run-
time, for other images it is a much smaller factor. The table shows only average
costs across the entire execution of the program, but when parallelising nreg it was
found that the cost of EvaluateDerivative varies widely from one control point to
another.

3.4 Parallelising nreg

Since the runtime of nreg can be extensive (tens of hours), it may be desirable to
have a parallel version of nreg. Despite the inefficiencies introduced by parallelisa-
tion overheads such as duplicated computations, or delays waiting on inter-node
communications, a parallel implementation can improve turnaround and resource
utilisation in cases where a user has many free machines and wishes to run small
registration workflows. Depending on the requirements of a workflow, a mix of
sequential and parallel tasks may provide the best overall use of the system. For
example, when a workflow consists of a group of registration tasks, each could be al-
located CPUs in proportion to their expected runtime to balance the workload more
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evenly and to avoid scenarios where one slow process delays the overall makespan
unnecessarily. Similarly, a high priority individual task could be allocated a number
of CPUs to ensure it meets a deadline.

The processing performed by nreg as described in the previous section is almost
entirely CPU and memory bound, and this lack of I/O removes one potential barrier
to a scalable parallelisation. On the other hand, the internal workings of nreg’s al-
gorithm appear less amenable to parallelisation: they involve an unknown number
of iterations of mesh transformation, each depending on the last. Furthermore this
occurs at several different step-sizes and resolutions.

However, the amount of work done inside each iteration is substantial. It involves
the experimental movement of thousands of control points and, as observed before,
the use of B-splines means that the movement of control points only affects voxels
in the vicinity of those control points. The effect of each of these movements can be
calculated independently and thus in parallel. The simplest parallel decomposition
would involve dividing the work into N equal pieces and handing one to each
CPU. This decomposition is simple and needs no communications to arrange,
but is inefficient on heterogeneous systems or systems with varying load: the
slowest CPU limits the overall runtime. This analysis also shows that the variable
cost of gathering the image statistics means different amounts of work occur per
candidate move, making it impossible to statically divide up the workload into
equal chunks. This leads to a first parallelisation technique: a simple master/slave
decomposition of the workload. Approximately 95% of the application’s runtime
is spent in a very small part of the code — EvaluateDerivative called repeatedly
from EvaluateGradient. The remainder of the code runs identically and in lockstep
on each CPU. When the partial derivative loop is reached in EvaluateGradient,
one CPU (the master), instructs each of the slave CPUs to perform a small batch of
EvaluateDerivative calls independently. When this work completes, the results
are passed back to the master and more work is received. When all the partial
derivatives for an iteration have been completed, the master distributes all the
results to all the CPUs. This involves a broadcast of the gradient vector, a small
data structure. Then every CPU returns to ‘lockstep mode’, executing the same
code as every other until they enter the next iteration.

The code changes needed to implement this were small and non-invasive: about
200 lines of new code were introduced. Table 3.3 shows the runtime of the sequen-
tial code on a single CPU along with the speedup of two different parallelisation
strategies relative to the sequential code timed using the same datasets. The test
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Target Source Sampling NMI eval/reset
b7 s2 b7 s2 721 kc/iter 244 kc/iter
b7 s2 b7 s1 816 kc/iter 254 kc/iter
b9 s2 b9 s1 945 kc/iter 282 kc/iter
b9 s4 e2 b9 s3 e2 99 kc/iter 246 kc/iter
b9 s3 e2 b8 s3 e2 93 kc/iter 286 kc/iter

Table 3.2: EvaluateDerivative costs

CPUs Runtime Speedup 1 Speedup 2
1 58,320 s 1.00× 1.00×
2 31,895 s 1.80× 1.9×
4 19,340 s 3.09× 3.7×
8 14,045 s 4.64× 6.2×

16 9,625 s 6.06× 10.8×
24 — — 13.9×

Table 3.3: Parallel speedup of nreg vs sequential code

environment was a cluster of 16 dual core Opteron 246 running 64 bit SUSE Linux
Enterprise Server 9 with version 2.6.5 of the kernel, and connected using a giga-
bit ethernet switch. The first parallelisation strategy simply uses the master/slave
division of EvaluateDerivative described above. As can be seen from the first
speedup column in the table, it is fairly effective for such a simple parallelisation. It
scales adequately on smaller experimental clusters, but the scaling is insufficient for
a larger production system, especially for a code that is in principle quite amenable
to parallelisation.

To improve the speedup further, some of the remaining sequential code is paral-
lelised. The Evaluate steps in the gradient descent optimisations calculates all the
voxels in the transformed image, and measures the similarity with the source. The
voxel calculation can be divided up into stripes which are executed in parallel on
all the CPUs, and the results returned to the master CPU and broadcast back to all
the slaves. After the broadcast, all CPUs can continue in lockstep to calculate the
similarity. Unlike the earlier parallelisation, this is relatively bandwidth intensive
and will perform poorly with a slow interconnect, but it can provide some extra
scalability on larger systems.

3.5 Predictive model

The IXI-based workflows that TITAN supports include nreg and two other codes
— BET [Smi02] and FAST [ZBS01]. They pre-process input images for use with
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Fig. 3.3: Runtime variation for different images

nreg and perform a fixed amount of per-voxel work that is directly related to the
input parameters and size of the input image. Both codes can be analysed statically
and analytical expressions for each are readily formed. Performance tests reveal
that these models yield a high level of predictive accuracy, with the relative error
of predicted vs. measured execution time typically less than 10%.

The nreg model is less straight-forward. Observation shows that the program
exhibits highly unpredictable execution times. This variation is caused partly by
the variation in the number of mesh fitting iterations that occur and partly because
of the variable amount of work required to calculate the improvement generated by
moving each point. In some execution scenarios, there are many rapidly executing
iterations of EvaluateGradient. In other scenarios, the routine is called far less
frequently, but the runtime is also much higher due to the large number of samples
made. From source code inspection, study of the internal data structures and
analysis of profiling traces, it is apparent that the execution time of nreg correlates
most strongly with the choice of ‘target’ image. This is the second of the two input
images and is the image that the first image (the source) is registered against. The
sensitivity to the target image is dramatic and can affect the overall execution time
by a factor of 50×.

Fig. 3.3 illustrates the variability in the overall runtime and Table 3.1 shows the
number of iterations that occurs at each level for different images and how it may
affect runtime. The difficulty in predicting the execution time for nreg reduces to
estimating how many iterations will occur and their overall costs.
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3.5.1 Pre-model work parameter

Despite the variations in runtime, patterns occur in the execution behaviour of nreg.
Four bands of runtimes can be observed, and these are characterised by the iteration
count at each resolution level and the number of image samples taken per iteration.
The steps between these bands are significant — an average ‘fast’ band will run for
2,500s on a 2.8 GHz P4 computer, while an average ‘slow’ band will run for 18,000s
on the same machine. Since TITAN works by continually refining its schedules to
adapt to new information and any changes in the workflow, it is able to compensate
when tasks complete earlier than expected or over-run (see below). Because of this
TITAN benefits from even coarse grained predictions, and identifying which band
a particular image pair belongs to will improve TITAN’s schedules.

One approach to estimating the runtime is to pre-process the destination image
to distinguish whether it is likely to cause more (or less) work than other images.
Earlier work on PACE addressed a related problem where a data-dependent ap-
plication, a lossless video compressor, performed an inexpensive initial scan over
the data to identify potential features that would affect the runtime [TLHKN02].
The result of this analysis yields a model parameter that can be used by PACE’s
evaluation engine. Unfortunately, while some statistics such as intensity variations
or various information theoretic properties can be found in the MRI scans, these do
not directly reveal the effect the image has on the gradient descent solver.

Inspection of the code shows that while data sensitivity is significant, the program’s
runtime is also related to the size of the input images and the number of control
points used. If the images are of a lower resolution, all else being equal, there
is less work to do. This feature can be exploited by using nreg itself to generate
the pre-model parameter. Running the program with a significantly subsampled
version of the images, it is possible to obtain an indicator of execution time and
determine which band the image will fit into.

As seen in Fig. 3.4, even when two pairs of images have the same global features
(by virtue of one pair being subsampled copies of the other), the runtime does not
simply scale linearly with the image size. There is a loose correlation, but it is
insufficient to make adequate performance predictions. The runtime scaling factor
depends partly on which ‘band’ the target images fall into.

The bounds of this problem are the best and worst case runtimes for both the actual
and subsampled images. The lowest runtime is for a ‘self-registration,’ that is a
registration of an image with itself. This causes one call of EvaluateGradient for
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Fig. 3.4: Runtime scaling with subsampled images

every step size, and every image level. Each EvaluateGradient will show perfect
similarity with no transformation, and any attempt at moving a control point will
at best, preserve the similarity, but more likely reduce the similarity. Since the
magnitude of the gradient vector is zero, the optimiser will attempt no movements
of the control points, and the registration will immediately move on to the next
step size. Thus self registration causes the least amount work for a registration in a
particular band.

The self registration cases can be seen as the lowest points in Fig. 3.3. As can be
seen, even for self-registration, there is a substantial difference in runtime between
the ‘fast’ band of target images, and the ‘slow’ band of target images.

The worst possible case, for a given band, is an image where for all image levels,
and for all step sizes, the optimiser is run for the maximum allowed number of
iterations. This would require a very ‘jagged’ gradient descent path, and serves as
a strict upper bound and is not a case that is likely to occur.

In practice, for a large cohort of scans a combination of brain images that produced
the greatest runtime was empirically found. Registering these two images combines
a relatively high iteration count with many samples per iteration.

Using these upper and lower bounds on the execution time it is possible, by sub-
sampling an image, to hugely shorten the runtime but still keep the salient features
of the image. When compared with the subsampled worst case registration and
subsampled self-registration it is straightforward to identify a candidate workload
parameter. Fig. 3.5 shows the effectiveness of this performance prediction tech-
nique.
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Fig. 3.6 shows that although the worst case predictive error is quite large (on the
order of ±80%), the average error is under 20%. Even in the worst case, an 80%
error is substantially smaller than the factor of 50× uncertainty in runtime when no
performance prediction is available.

With this technique predictions of the overall runtime can be made at the cost of
performing one self-registration using a subsampled version of the target registered
against itself and one registration with subsampled versions of the source and target
images. These two subsampled registrations are called ‘probe tasks.’ It has been
found that subsampling in each axis by a factor of 4 provides good results, although
it may be possible to subsample further without sacrificing accuracy. Furthermore,
it is a simple matter to cache the results of each of these probe tasks. One typical
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use case for nreg is to register several images against the one reference image and,
in this case, the reference self-registration only needs to be predicted once.

3.6 IXI workflows

IXI workflows are composed of standalone applications which can be joined to form
an image processing pipeline [RBH+04]. The initial tasks in a typical workflow focus
on image extraction. After this an image is then segmented to obtain an area of
interest, which is used as input to a series of rigid registrations. These registrations
scale, rotate and translate the images so that they are correctly aligned with each
other. The output from this process is a set of transformations, which could then be
passed to a more advanced registration algorithm, such as that provided by nreg

or used directly.
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Fig. 3.7: Operation of the performance-aware resource management system

Managing how these workflows are scheduled in the context of a time critical,
on-demand environment, such as in clinical diagnosis, is essential. In addition to
minimising runtime, physicians need to know when results will be available. When
provided with an estimated completion time, it may also be desirable to modify or
remove subtasks in a workflow to reduce runtimes.

3.7 Incremental prediction

To date, TITAN, described in Sec. 2.4 has relied on analytical performance mod-
els. Two of the assumptions made by TITAN are that the analytical models are
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inexpensive to execute (running in under a second), and can be evaluated on de-
mand directly on the same machine that hosts TITAN itself without causing any
substantial slowdown.

As described earlier, the probe tasks must be run on a machine with the same
hardware configuration as the target machines for the full sized jobs to obtain
meaningful results, require the same input data as the full sized jobs, and take a
significant amount of time to execute.

In practice, a subsampling factor of 4× in each dimension, yielding images with
1
64 of the voxels and a runtime between 1

20 and 1
64 of the original gives reasonable

estimates. Even though this gives a runtime for the probe tasks measured in minutes
instead of hours, this is still much slower than the performance estimates provided
by the analytical models, and is large enough that the probe tasks require scheduling
in their own right. To accommodate this, when an nreg task is submitted to TITAN
it adds a pair of probe tasks to the schedule and makes the nreg task depend on
the probe tasks’ completion. These probe tasks are scheduled and executed on the
cluster hardware just as ordinary tasks are.

To schedule both the probe and real nreg tasks, TITAN requires some estimate
of their runtime, but until the probe tasks complete, no estimate is available. To
resolve this bootstrapping problem, as an initial estimate each probe and nreg task
is given a runtime which is the average of all the probe or nreg tasks that have run
so far.

When the probe tasks execute and complete, they report their performance esti-
mates to TITAN. TITAN caches these results and updates the runtime estimates for
the real nreg tasks. It would appear that the new runtime estimates will either lead
to new gaps appearing in the schedule (where the initial estimate was longer than
the updated estimate), or overlaps in the schedule (where the initial estimate was
shorter than the estimate). However due to the representation of schedules within
TITAN as discussed in Sec. 2.4 these gaps and overlaps do not occur – each task
simply consumes more or less time and subsequent tasks requiring the same nodes
begin earlier or later than before. This motion may introduce other gaps elsewhere
in the schedule that the ordinary operation of the scheduler will attempt to remove.

So that an initial performance estimate is produced quickly, the probe tasks can be
modified to perform a number of registrations at varying levels of subsampling,
such as 6×, 5× and 4× in each axis. As each registration completes, it reports its
results to TITAN, which can then immediately make use of the less accurate, but
more timely information to begin packing a more realistic schedule.
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Fig. 3.8: Workflow builder with performance model evaluation

3.8 User interaction

To allow the user to have a degree of interaction with the scheduler, an improved
front-end has been written that allows workflows to be constructed, submitted for
execution, and monitored. This front-end resembles many other DAG construction
editors, but with the difference that the components in the front-end represent
the performance models and not the applications themselves. As a result of this,
the user can interactively determine the resource requirements of the workflow
and verify that it can be run within the desired timeframe. In practice, instead
of requiring ‘yet another workflow editor’, it is more likely that the services that
TITAN exposes would be connected to the end user’s preferred DAG tool such as
the IXI Workbench [RBH+04].

When a workflow is constructed, performance model probe tasks for each task
are scheduled to be evaluated as quickly as possible on a machine with the same
hardware configuration as the target compute nodes. This can be done either by
reserving a node on the cluster specifically for probe tasks, or by giving the probe
tasks a higher priority. As before, when the probe tasks complete they report their
results to TITAN which then caches them. This provides rapid feedback to the user
of how long each task will take to run in isolation, and can be used as the basis for
setting realistic QoS targets. This information is particularly useful for applications
such as nreg with highly variable runtimes. The user can build up the workflow
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incrementally, and each component will provide an indication of the CPU time
required and the scalability of the component.

3.9 Speculative scheduling

When scheduling workflows, particularly ones with a number of internal depen-
dencies, TITAN can often fill the idle time introduced by dependencies in one
workflow using tasks from another workflow. This interleaving of the tasks from
different workflows allows for more scheduling opportunities, and thus more effi-
cient schedules. The interleaving could be regarded as similar to SMT in some CPU
cores, and leads to similar throughput improvements.

A consequence of this is that if a workflow tool tries to calculate how much a new
workflow will increase the makespan of the entire schedule simply by considering
the runtimes of the workflow’s tasks in isolation, it will likely overestimate. In the
most extreme case, a new workflow might simply ‘fill in the gaps’ in an existing
schedule leading to no increase in the overall makespan.

Since how to allocate compute nodes to a specific task is best decided by examining
both the workflow and other workflows in the schedule, predictions from the
performance models need to be evaluated in the context of a complete schedule.

To accommodate this, after assembly a workflow can be flagged as a speculative
workflow and then submitted to the scheduler. Speculative tasks are scheduled
like other tasks, but have the lowest possible priority and are marked as tasks that
should never be executed. To prevent speculative tasks from blocking the execution
of any other tasks, non-speculative tasks will automatically ‘jump over’ speculative
tasks if they reach the front of the queue for any compute node.

By speculatively submitting a workflow, the scheduler is able to take advantage of its
schedule packing algorithms to produce candidate schedules that optimise for all
the workflows in the system, not just the speculative ones. The schedules returned
by the scheduler give a more realistic runtime prediction for the entire speculative
workflow because they includes the effects of mixing the tasks of workflow with
those of the rest of the workload.

With speculative execution, it is likely that users will add and then remove reg-
istrations from their speculative schedules many times. This will have the effect
of submitting many probe tasks for execution. Each of these that completes will
increase the hit-rate of the performance estimate cache.

The use of speculative scheduling and the interactive workflow monitor together
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Fig. 3.9: Workflow scheduling a mix of speculative and real tasks

allows the user to experiment with different workflows and to view preliminary
estimates on how long the workflows will take to execute. This feedback allows
users to examine a proposed schedule and decide if it meets their requirements,
and to modify the workflow, for example to do extra work or obtain usable results
more quickly, if it does not. For applications such as nreg whose execution time can
vary greatly for different input data, the ability to understand the implications of
executing tasks in a given configuration before executing a workflow can provide
significant benefits.

3.10 Case study

A typical IXI workflow is a three stage process that constructs a brain atlas from
a number of registered brain scans. The input to this workflow is a set of brain
images obtained from MRI scans. The first stage of the workflow extracts a usable
brain image from raw scan data using BET [Smi02], a brain image extraction tool.
The second stage of the workflow registers the output brain images from two BET
tasks using nreg. The final stage of the workflow combines all the registered brain
images produced by the nreg tasks to create a brain atlas.

Both the BET and ATLAS tasks have negligible runtimes. Typically they take tens
of seconds to run, whereas nreg runtimes range from hours to tens of hours. The
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main effect they have on a workflow is to act as serialisation points — an ATLAS
task cannot run until all the nreg tasks it depends on have completed.

Two experiments are run. The first demonstrates that a scheduler using the per-
formance information from the nreg probe tasks generates more efficiently packed
schedules increasing the overall CPU utilisation and decreasing the makespan. This
is true for light, medium and heavy workflows.

In the first experiment, the workloads consist of brain atlas workflows involving
a number of brain registration tasks. Representative input brain scan images of
varying sizes were selected from IXI’s database of sample brain scans. A light
workload has 16 registration tasks, a medium workload 32 tasks, and a heavy
workload 64 tasks. For each size of workload, five different random candidate
workloads are generated, each workload scheduled in different ways, and the
resulting schedule is measured.

The three scheduling techniques are:

1. The tasks use the sequential version of nreg scheduled in a First-In First-Out
(FIFO) manner, where the first task submitted ran on the first available host.

2. The tasks use the parallel version of nreg and all tasks run on all CPUs.

3. TITAN schedules the tasks. The nreg performance model is evaluated for each
task with TITAN matching tasks to suitable resources and scaling the tasks as
appropriate to minimise the makespan.

Rather than submitting the nreg tasks directly for execution, the scheduler is al-
lowed to ‘pack’ the schedule for a large number of iterations, and then the overall
makespan and idle time of the final schedule is calculated using a table of mea-
surements of the runtime of different nreg registrations gathered on real hardware.
These runtime measurements are used in the second experiment to measure the
behaviour of TITAN with a perfect performance model.

The results for the first experiment in Table 3.4 show the average effect of using
TITAN and the performance model for five different workloads. More detailed
figures are available in Table G.1. With a light workload TITAN gives a 22%
reduction in makespan over the other scheduling techniques. With medium and
large workloads the resource management system gives a 24% improvement in
makespan. The tests assume that the probe tasks for the performance models were
executed and cached at workflow construction time and do not contribute any
overhead by requiring compute resources of their own in the schedule. The effect
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Experiment Makespan Idle time
light workload

sequential, FIFO scheduling 51,413 s 58.2%
parallel, FIFO scheduling 37,068 s 0.0%
TITAN scheduling 28,880 s 7.3%

medium workload
sequential, FIFO scheduling 86,692 s 50.5%
parallel, FIFO scheduling 74,100 s 0.0%
TITAN scheduling 56,464 s 7.2%

heavy workload
sequential, FIFO scheduling 159,730 s 45.1%
parallel, FIFO scheduling 151,558 s 0.0%
TITAN scheduling 115,847 s 8.8%

Table 3.4: Comparing scheduling techniques with varying workloads

of probe tasks on a schedule is measured in the next experiment, but for now it
is evident that even requiring a 4× subsampled probe task for each nreg task and
assuming no caching of probe task results, the additional runtime overhead will be
somewhere between 1.5% and 5%, which is less than the makespan improvement
achieved.

The idle time is lowest, and thus the resource utilisation is highest when each
of the nreg tasks are ‘greedily’ allowed to run in parallel on all nodes. However,
because of the sub-linear scaling of nreg this is a very inefficient scheduling strategy.
From the idle times in each of the schedules it is seen that both the makespan and
percentage of unused CPU are significantly lower when managed by TITAN. If the
total number of CPU seconds used is calculated, the TITAN-managed schedules
are shown use more CPU time than that of a FIFO schedule consisting of just single
CPU nreg tasks. The greater CPU load comes from nreg’s sub-linear scaling and the
fact that TITAN decided to run some of the tasks on more than one CPU. However
this tradeoff is worthwhile, as it led to a more efficiently packed schedule and thus
reduced the makespan when compared to the most CPU efficient schedule.

The second experiment examines the costs and tradeoffs of running the probe
tasks themselves. Several random mixes of tasks are submitted to TITAN, and
the scheduler is configured so that time appears to pass 200× faster than real
time. TITAN submits tasks at the front of the schedule to a simulated batch queue
where they appear to execute, also at 200× real time. The simulated queue uses
the measurements of the runtimes of the nreg tasks gathered on real hardware
mentioned in the previous experiment. The scheduler submits tasks for execution
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FIFO Fast Medium Slow Perfect
40 tasks
Makespan 65,827 s 43,680 s 43,813 s 43,680 s 39,986 s
Idle time 60.0% 16.8%
80 tasks
Makespan 109,283 s 94,453 s 95,173 s 93,319 s 81,787 s
Idle time 51.0% 19.0%
160 tasks
Makespan 184,204 s 208,853 s 212,480 s 208,080 s 177,196 s
Idle time 42.1% 23.1%

Table 3.5: The effect of probe task speed on makespan

as simulated nodes become available, repeatedly optimises the schedule, and the
simulated queue notifies TITAN when the simulated tasks complete. The duration
of the experiment is measured from the time when the first task is submitted to
when the final task completes. This, multiplied by the scaling factor of 200, yields
a makespan.

This simulation is more demanding on the scheduler than using a real batch queue,
as the genetic algorithm runs for fewer iterations to find a good schedule before a
task executes, and has less time to adapt when the schedule changes due to a task
taking more or less time to execute than predicted.

The workloads consist of a random mix of nreg registrations, with 40, 80 and 160
registrations. On average 20% of the tasks submitted depend on other tasks in the
workflow, thus introducing additional constraints to the scheduler. The simulated
batch queue has 16 processors, and uses the same runtime timings as used in the
first experiment.

Three types of tests are run: firstly with no performance predictions available
and FIFO scheduling (the FIFO column); secondly with ‘perfect’ performance pre-
dictions available and zero cost for the predictions (using the timings gathered
previously); and thirdly with three different classes of probe tasks — fast, medium
and slow. The fast probe tasks subsample the input images 5×, and have the fastest
runtime. The medium probe tasks subsample by 4×, and the slow probe tasks
subsample by 3×.

The FIFO case is similar to the current execution strategy employed by the IXI
demonstrator — it has no knowledge of the task runtime or scalability. The perfect
case shows how the scheduler would behave if perfect (and instant) runtime pre-
dictions were available. The effectiveness of the fast, medium and slow cases are
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compared with these two extremes.

From Table 3.5 it is evident that for the small and medium workloads, the effective-
ness of the probe task scheduling falls between the FIFO and perfect scheduling.
The runtime estimate provided by the probe tasks allows the scheduler to more
accurately anticipate idle time in the schedule and to reorder tasks, or run them
on different numbers of CPUs to avoid unused resources. This can be seen in the
decreased makespan of the fast, medium, and slow schedules. The medium probe
tasks are of less benefit to the overall makespan than either the slow or fast probe
tasks. This unexpected result shows how there is a tradeoff between the overhead of
performing the probes themselves and the benefits they bring. The predictions from
the medium probes are insufficiently more accurate to justify their extra overhead.

Also in this experiment, it can be seen that the medium workload benefits less from
the genetic algorithm than the small workload, and the heavy workload benefits
least, and with the three probe-based predictions is in fact slower than the FIFO case.
This is an artefact of how the experiments were performed. The 200× scaling of
time for the probe-based simulations meant that the genetic algorithm had far fewer
iterations to react to changes in schedule. Since larger schedules are proportionately
slower to pack than small schedules, and with probe-based predictions, the genetic
algorithm has to schedule the probe tasks as well as the real tasks, what is seen here
is the effect of the genetic algorithm being overloaded rather than a failure of the
predictive model. More detailed figures can be found in Table G.2.

3.11 Summary

This chapter examined the medical imaging application nreg and determined that
the factor of 50× runtime variability it exhibits is for the most part algorithmic
in origin. nreg’s performance variability stems from how many times the gra-
dient descent optimiser runs, and how many samples are made in each call to
EvaluateDerivative. In other words, depending on the input data, the algorithm
decides to do more or less work. Although difficult to capture directly in an an-
alytical performance model, I show how running ‘probe tasks’ based on highly
subsampled input images provides information that can be used to classify and
predict the runtime of the full sized application. The average error rate is under
20%, and even the least accurate estimations are on the order of ±80%.

A parallel version of nreg which scales reasonably up to 16 CPUs was developed
with identical performance characteristics to the sequential version. Interactive
scheduling and speculative scheduling were introduced, and experiments run to show
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how TITAN can use the performance characterisation to schedule parallel nreg
more efficiently than a FIFO scheduler despite the overheads of the probe tasks.

The existence of both the parallel implementation and the predictive model remove
one obstacle preventing a tool like nreg being used where quality of service criteria
need to be applied. Once such environment is that of clinical diagnosis, where
the ability to process data within a strict deadline is critical. The nreg performance
model allows the runtime of an nreg registration to be estimated, and this estimated
runtime can be used to allocate as many CPUs as necessary for parallel nreg to
complete within a specified deadline.
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CHAPTER 4
Floating point and denormal handling

This chapter examines an issue that can cause performance variability even for
applications with no ‘algorithmic’ variability: that is to say, applications which
perform a fixed amount of work in a fixed order on some or all of their input
data. These applications would appear at first sight to be perfect candidates for
a simple performance model: 1) perform a few simple benchmarks on the target
machine; 2) find an equation to determine how the runtime varies with different
input arguments and input data sizes; 3) determine the upper bounds for the
application’s working set to fit in cache and main memory, and how the performance
changes when it exceeds these and the model is completed.

However if the application uses floating point instructions, operations involving
denormal floating point values can be a source of substantial data-dependent slow-
downs, even on systems which handle the operations entirely in hardware. On
the Pentium 4 for example, the use of denormal arguments makes floating point
loads and stores approximately 70× slower than they would otherwise be. This
slowdown can cause problems in codes based on numerical stencils, amongst oth-
ers, as it frequently manifests as small localised regions of denormals that move
throughout the code’s data sets. These localised slowdowns can be problematic in
applications that presume a workload can be partitioned evenly by giving 1/N of
the data to each CPU. The effect is amplified when parallel applications use barrier
operations after each iteration, as every CPU will be forced to wait for the slowest
one.

Denormal value arithmetic can be disabled by switching on ‘flush-to-zero’ mode,
however this is undesirable as it leads to a silent loss of precision, and in certain
scenarios, various mathematical properties that compilers rely on no longer hold.
What is desirable is to find a way to remove the unneeded denormal values from
an application without disabling denormal arithmetic for those rare cases where it
is really required.

In this chapter, some details of how IEEE-754 floating point arithmetic is imple-
mented are discussed, and the trapping mode that it mandates is used to imple-
ment a small denormal arithmetic profiler for Linux on Intel x86 processors. This
profiler can be used to detect the occurrence of denormal instruction arguments
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in an application, but has significant limitations. These limitations are discussed
and lead to the implementation of a more sophisticated tool in the next chapters to
isolate and remove the sources of denormal values.

4.1 Fixed point arithmetic

Scientific applications often need to perform calculations involving extremely large
or extremely small numbers, and frequently both at the same time. The standard
integer arithmetic found in all microprocessors cannot represent fractional values at
all so one workaround, used in cases where floating point hardware is not available,
is to scale all values by a fixed amount, and perform integer calculations using these
scaled values.

A representation that is sometimes used in graphics and sound processing is to
treat a 32 bit integer as having a 16 bit integral component, and a 16 bit fractional
component. This can be thought of as moving the ‘binary point’ 16 places to the left.
The input data is converted into this form, intermediate calculations are performed
using fixed point arithmetic to avoid accumulated rounding errors, and the final
results are converted back to 16-bit integers.

Every number that enters the system must be multiplied by 216, i.e., 65536. Addi-
tions and subtractions of scaled numbers occur as normally, as there is no change
in scale; however multiplications and divisions need to be carried out to a higher
precision, and re-scaled to compensate for the doubling or cancellation of scaling
that occurs. Square roots, logarithms and trigonometric functions also need to be
treated with care.

The steps required for each operation can be derived using basic algebra. Taking
the real numbers a, b, and c, and using a scaling factor of s (s = 216 for a 16.16 fixed
point format), then the fixed point representations are ‖s.a‖, ‖s.b‖ and ‖s.c‖, where
‖x‖ is x rounded to the nearest integer. We wish to determine ‖s.a‖ in terms of ‖s.b‖
and ‖s.c‖When discussing precision, for simplicity’s sake a fixed point format with
16 signed integer bits and 16 fractional bits is assumed.

For addition and subtraction, if a = b ± c, then

‖s.a‖ = ‖s.(b ± c)‖

= ‖s.b ± s.c‖

= ‖s.b‖ ± ‖s.c‖
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Since no further scaling is used for these operations, 32-bit precision is sufficient,
and overflow occurs exactly as with the integers.

For multiplication, if a = b × c, then

‖s.a‖ = ‖s.(b × c)‖

=

∥∥∥∥∥s.b × s.c
s

∥∥∥∥∥
=

∥∥∥∥∥‖s.b × s.c‖
s

∥∥∥∥∥
=

∥∥∥∥∥‖s.b‖ × ‖s.c‖s

∥∥∥∥∥
Since the result is produced by scaling down an intermediate value, the intermediate
‖s.b‖ × ‖s.c‖ calculation needs to be carried out to 48-bit precision if the result is to
have 32 significant bits. In practice, multiplying two 32 bit values to yield a 64 bit
result is commonly implemented in CPU hardware or has hardware assistance.

For division, if a = b ÷ c, then

‖s.a‖ =

∥∥∥∥∥s.
b
c

∥∥∥∥∥
=

∥∥∥∥∥s.s.b
s.c

∥∥∥∥∥
=

s. ‖s.b‖
‖s.c‖

However, due to the fact that integer arithmetic is used, it is important that the
operations are performed in the correct order — so that precision not be lost, the
multiplication in the numerator must be done before the division. This leads to a
48-bit numerator and a 32 bit divisor.

For square roots, if a =
√

b, then

s.a = s.
√

b

=
√

s.s.b

=
√

s. ‖s.b‖

As with division, this involves an intermediate 48-bit value that is required so that
precision is not lost during the integer square root operation.

However, apart from being unwieldy and error prone, fixed point arithmetic has
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a major problem that precludes it from use in many applications, namely that the
range of the numbers is too small. For example, in a 32-bit fixed point system, no
matter what the scaling factor is, the difference between the biggest and smallest
numbers is a factor of approximately 2 billion, or just over 109. Using 64-bit values
only doubles this to just under 1019. This might seem adequate for most problems,
but it is not. For example, a simple mechanics problem might involve calculating
the cumulative effect that a 10 micronewton ion thruster will have on the trajectory
a 1000 kg spacecraft. The thruster acceleration is 10−5 N

103 kg = 10−8 ms−2. If the ship
is moving at 104 ms−1, the velocity is 1012

× the acceleration, requiring 12 decimal
places to represent both in a calculation such as v = u + at. For the final velocity to
be accurate to 6 decimal places requires the use of 18 of the almost 19 decimal places
leaving very little for rounding errors introduced by the intermediate calculations.

4.2 Floating point arithmetic

4.2.1 Scientific notation

The solution to this problem is to adopt a scheme that distinguishes between the
scale of the number and precision in the significant digits. In the ion thruster
example, the velocity of the ship is 1012 larger in magnitude than the acceleration
of the thrusters, but that does not mean that the velocity of the ship is known to
18 decimal places compared to the 6 of the thrust. Scientific notation makes this
distinction by splitting numbers into two components, the mantissa m, and the
exponent e. By convention, the mantissa is a fractional number with one digit
before the decimal point, and a limited number of digits after the decimal point.
The mantissa is in normal form, that is to say, it has a non-zero digit before the
decimal point, i.e., 1.0 ≤ m < 10.01. The exponent is an integer, and any number
can be represented as n = ±m × 10e. The precision is controlled by limiting the
number of digits in the mantissa, and the range can be very large due to the fact
that e controls the range on an exponential scale. The thruster calculation can use 6
digits in the mantissa and a 2 digit exponent instead of the 18 or more required for
a fixed point scheme.

Scientific notation can be generalised to any base, by expressing numbers as n =

m × be where 1.0 ≤ m < b. For floating point arithmetic on digital computers, it is
convenient to use a power of 2 as the base, and 2, 8 and 16 have been chosen by
popular implementations in the past.

1Scientific notation also allows the exceptional case where m = 0.0 exactly
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Fig. 4.1 shows an extremely compact 5-bit floating point format. It can represent
a larger range of numbers than the 0–31 of an unsigned integer, but the absolute
precision of the format varies over the range of possible values. The details for this
format can be found in Appendix A
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Unsigned 5-bit minifloat: 3 exponent, 2 mantissa bits

Fig. 4.1: A 5 bit ‘minifloat’ format

4.2.2 Floating point calculations

Calculation with floating point arithmetic is more complex than fixed point arith-
metic. To perform addition and subtraction on two numbers the following steps
must be taken:

• The values must be ‘unpacked’ by unbiasing the exponents, and inserting the
implied leading 1s into the exponents. During unpacking, a check must be made
whether either value is exactly zero, in which case no leading 1 is inserted.

• The number with the smaller exponent must be denormalised by ‘shifting it right’
so that the two numbers are aligned, i.e., have the same exponent. For rounding
to occur correctly, this requires two more digits of precision than the mantissa
usually stores.

• It must be determined whether a ‘true addition’ or ‘true subtraction’ is to be
performed by comparing the two sign bits requested operation. For example
(+a) + (−b) is in fact a true subtraction, and (−a) + (−b) is a true addition.

• The two mantissas are now added or subtracted as if they are integers, and the
resulting sign bit updated to match the calculation. If the two exponents were
the same, the result mantissa will overflow and must be shifted one digit to the
right, increasing the exponent by 1.
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• If the result is exactly zero, this can be returned, otherwise the result must be
normalised by shifting the mantissa as appropriate and updating the exponent.
This may lead to an exponent that is too large or small for the floating point
format. These cases (leading to ±∞ or a zero value with the underflow status set)
as well as the denormal cases must be handled here.

Multiplication and division are similar:

• The numbers must be unpacked as in the addition/subtraction case.

• The exponents are added, or subtracted depending on whether multiplication or
division is performed.

• For division, the divisor must be at least as large as the dividend, otherwise
the resulting mantissa will overflow. This can be arranged by ensuring both
values are properly normalised and the exponents updated appropriately. The
mantissas are multiplied or divided as if they are fixed point numbers, producing
a result with double the precision of the source mantissas.

• The result sign bit can be calculated by examining the source signs. If they
differ the result is negative, otherwise it is positive. If the result is exactly zero,
this can be returned, otherwise the resulting mantissa is normalised, updating
the exponent. As with addition and subtraction, the exponent may not fit the
floating point format. These cases, as well as the denormal cases and divide by
zero case must be handled here.

This extra complexity has a significant cost both in terms of transistors and speed
for hardware implementations.

4.3 IEEE-754

There have been numerous different computer floating point arithmetic implemen-
tations each with differing formats, precision guarantees, rounding modes, han-
dling of signedness or signalling of exceptional situations. For example, base-16
implementations can lose up to 3 units of the least place (ulps) in basic arithmetic
calculations; some implementations distinguish between +0.0 and -0.0, and some do
not; and some use guard bits to preserve extra precision during calculations. Due to
the difficulties of writing numerical algorithms that worked within the limitations
of all these implementations, one particular scheme, IEEE-754, was standardised
in 1985, and revised in 2008 and all current implementations support it. IEEE-754
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implementations are required to provide at least two floating point formats: the
32-bit single precision, and the 64-bit double precision. Numbers are stored as
base-2 floating point numbers with a biased unsigned exponent, and normalised
mantissa.

02231

Si
gn Exponent Mantissa

05263

Si
gn Exponent Mantissa

Fig. 4.2: IEEE-754 float and double formats

In both formats, the floating point number is divided into 3 fields as shown in
Fig. 4.2. These fields are interpreted as follows:

• The sign bit s, which specifies whether the number is positive or negative: 1
indicates a negative number, and 0 a positive number.

• The mantissa m, which is 23 bits in single precision and 52 bits in double precision.
When normalised numbers are used, the mantissa is 1.000 ≤ m < 2 and therefore
the most significant digit must be 1. Since the most significant digit is always 1,
only the fractional part of the mantissa needs to be stored in the floating point
representation. This 1 is referred to as the hidden bit, and gives the mantissa one
more effective bit of precision leading to 24 bits in single precision and 53 bits in
double precision.

• The exponent e, which is 8 bits in single precision and 11 bits in double precision.
It is stored as a biased unsigned integer. A biased or excess-n integer is stored
as if it is n greater than its real value. In single precision the range of the
exponent is −127 ≤ e ≤ 128 and the bias is 127. In double precision the range is
−1023 ≤ e ≤ 1024 and the bias is 1023. In IEEE-754, the largest possible exponent
and the smallest possible exponent are reserved for special purposes as discussed
below.

Floating point numbers with the exponent is set to its maximum value represent
two classes of exceptional numbers. The first class is the two infinities, +∞ and
−∞. These occur when the result of a calculation is too great to be represented by
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Exponent value Mantissa Interpretation Value
-127 Zero ±0 −1s

× 0.0
-127 Non-zero Denormal numbers −1s

× 0.m × 2−126

-126 – +127 Any value Normal numbers −1s
× 1.m × 2e

+128 Zero ±∞ −1s
×∞

+128 Non-zero Not a number values NaN

Table 4.1: Single-precision storage in IEEE-754

a normal number, e.g., 2127 + 2127, or −10 × 2127 for floats. The second class is NaN
— Not a Number — used to indicate the result of calculations with no meaning, or
operations with invalid values, e.g., division by zero, the log of a negative number,
or sin−1(x) where x < [−1, 1]. There are in fact two classes of NaNs, quiet NaNs and
signalling NaNs. The distinction between them is not important here.

Because of the hidden bit described above, it is impossible to represent 0.0 as a
normal number, since a hidden 1 bit is implied in the mantissa. To handle this, there
is a special class of numbers in IEEE-754 called denormal numbers2 which represent
a set of positive and negative numbers smaller than any normal number, but with
less precision than the normal numbers. In single precision, when the exponent is set
to -127, the exponent is treated as if it is -126, the mantissa is treated as if the ‘hidden’
most significant digit is 0, and the 23 bits from the mantissa field are used directly
as the fractional part of the mantissa. If the 23 bits are all zeros, then the number
represented is exactly zero, since n = −1s

× 0.000000000000000000000002 × 2−126 =

0.0. Although this representation of zero has the same form as a denormal number,
it behaves like a normal number in all implementations, and is not usually regarded
as denormal.

If the 23 bits are non-zero, then the number will be less than the smallest nor-
mal number. For example if m = 000000001000000000000002 then n = −1s

×

0.000000001000000000000002 × 2−126 = 2−135.

4.3.1 Gradual underflow

This is useful for two reasons. Firstly, it allows for gradual underflow. Consider a
32-bit floating point representation of π repeatedly divided by two.

In the first case, all 24 significant figures are preserved until the final divide by two,
where suddenly the number is truncated and all 24 bits are lost.

In the second case, π/2127 is accurate to 24 figures, π/2128 to 23 figures, π/2129 to 22

2Current versions of IEEE-754 use the term subnormal numbers, but Intel still refer to them as
denormal numbers.
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π ≈ 1.100100100001111110110102 × 21

. . .
π/2100

≈ 1.100100100001111110110102 × 2−99

. . .
π/2126

≈ 1.100100100001111110110102 × 2−125

π/2127
≈ 1.100100100001111110110102 × 2−126

π/2128
≈ 0.000000000000000000000002

Table 4.2: Flush to zero behaviour

π/2100
≈ 1.100100100001111110110102 × 2−99

. . .
π/2126

≈ 1.100100100001111110110102 × 2−125

π/2127
≈ 1.100100100001111110110102 × 2−126

π/2128
≈ 0.110010010000111111011012 × 2−126

π/2129
≈ 0.011001001000011111101102 × 2−126

π/2130
≈ 0.001100100100001111110112 × 2−126

. . .
π/2140

≈ 0.000000000000110010010002 × 2−126

. . .
π/2150

≈ 0.000000000000000000000012 × 2−126

π/2151
≈ 0.000000000000000000000002 × 2−126

Table 4.3: Gradual underflow with denormals

figures, and so on. This gradual loss of precision lets some numerical algorithms fail
more gracefully, and also increases the effective range of the floating point format.

4.3.2 Mathematical properties

Denormal arithmetic is important for a second reason as well, namely that without
it, certain mathematical equivalences that apply to the reals do not hold true for
floating point numbers.

One such property is when a, b ∈ R, a − b = 0 ⇔ a = b. However, in floating point
arithmetic using flush to zero, if a and b are very small numbers, and the difference
between them is less than the smallest normal number, then a , b, but a − b ≈ 0
because of the flush to zero behaviour.

As an example, in single precision, if a = 1.12 × 2−126 and b = 1.02 × 2−126, then
a − b = 0.1 × 2−126. There is no normal number representation for this, so the result
is rounded to zero. This rounding means that apparently safe calculations such as
the following can lead to unexpected divide by zeros.

In contrast, it can be seen that if two small normal numbers differ, then the smallest
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if (t1 != t2) {

v = d / (t2 - t1);

}

Table 4.4: Divide by zero without denormals

possible difference between them must be in the unit of the least place (ulp) of
their mantissa, i.e., the 23rd fractional digit in single precision. Because of how they
are defined, a denormal number can exactly represent this difference as a non-zero
number: it is the smallest denormal). Any other pair of small normal numbers that
differ will differ by a larger amount, which will either be another larger denormal,
or sufficiently large to be a normal number.

Another way of seeing this is that the small normals will have an exponent of 2−126

for floats, as do the denormals. When subtracting two normals, the two hidden 1
bits in the mantissa will cancel out, leaving a 0 as the most significant figure. The
fractional parts of the mantissa will have to differ for them to be non-equal, and this
fractional difference preceded by a 0 as the units digit is precisely the definition of
a denormal number as seen in Table 4.1.

For the same reason as for the divide by zero calculation above, without denormal
arithmetic, simple compiler optimisations such as transforming (a× b)− (a× c) into
a × (b − c) become unsafe. When b and c are very small, and close in value, then
some or all of the significant digits may be lost.

4.3.3 IEEE-754 implementations

The full IEEE-754 specification is relatively demanding to implement fully in hard-
ware, in part due to the requirement that calculations be performed as if exactly
accurate arithmetic were available and the results rounded appropriately. To pro-
vide as much accuracy as possible, this rounding requires 4 different rounding
modes, and the use of 3 extra rounding bits — a guard bit, a sticky bit, and a round-
ing bit. Along with this, an IEEE-754 implementation must deal with denormal
values and non-numerical values; and must have a mode where exceptions are sig-
nalled to an application immediately when the offending instruction executes. This
last requirement, called precise floating-point exceptions, is particularly difficult to
implement in a heavily pipelined or superscalar CPU, and in some cases, such as
on the DEC Alpha, the implementation requires the compiler to insert trap barrier
instructions between every floating point instruction.

Since a the complete IEEE-754 specification is complex to implement in hardware,
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some designs omit certain parts of the specification, and require software support
to complete the implementation. One example of this is the DEC Alpha mentioned
above which in its fast mode cannot handle any floating point values other than
normal ones. Underflow is flush-to-zero, and any denormal, infinite, or exceptional
values encountered immediately terminate the program.

For IEEE-754 behaviour, the Alpha compilers need to use floating point instruc-
tions which generate software traps, and also must interleave every floating point
instruction with trap barrier instructions so that software traps can identify the
instruction that caused the trap. The trap barrier instructions cause a significant
slowdown by themselves, but the trap-generating floating point instructions run
as quickly as the fast instructions, as long as non-normal operands are not encoun-
tered. When non-normal operands occur, a software handler is invoked, performs
the required calculation using a software implementation and inserts the required
value into the destination floating point register. The slowdown can be dramatic,
being anything from 8× and 75× depending on the Alpha implementation. The
cost of the penalty comes from the need to flush pipelines and discard any in-flight
instructions, save user-mode state, perform the calculations and return to the user’s
code.

Other implementations, such as many MIPS and SPARC implementations have an
intermediate strategy. They require no trap barrier instructions, and normal values
and infinities are handled correctly in hardware. When NaNs occur, they trigger
a software trap, incurring a slowdown of between 10× and 25×. Similarly, when
underflow occurs a trap is generated, and the denormal calculations are performed
in software. Again the slowdown is about 20×. Underflow can be handled either
in flush-to-zero mode, or using full denormal arithmetic.

Curiously, on some RISC implementations, such as the MIPS R4400 and PA-RISC,
the flush to zero mode is just as slow as gradual underflow, negating one of the
major reasons to use this mode on these implementations.

Examples of RISC implementations with full performance hardware implementa-
tions for all types of floating point calculations are the TI SuperSPARC up to 50
MHz, the MIPS R5000 up to 180 MHz, and the IBM’s PowerPC implementations
up to 533 MHz. Recent implementations of the PowerPC architecture, such as the
1.8 GHz G5, step back from this ideal a little to achieve greater overall performance.
They introduce two extra pipeline stages when non-normal arithmetic occurs. This
incurs a 20% slowdown for gradual underflow, flush to zero, and overflow to
infinity.
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All popular Intel 80x86 compatible chips have a full hardware IEEE-754 imple-
mentation. Normal arithmetic is full speed, and on most versions of the FPU
calculations that generate underflow have a slowdown of about 5× and those that
generate NaNs or Infinities have a slowdown of about 3×. However despite this,
the Pentium 4, various models of which have been popular in high performance
computing, has an unusually high overhead when floating point instructions with
denormal operands are encountered. The slowdown is about 70× even though the
situation is handled in hardware. This occurs because of Intel’s use of an 80-bit
‘extended double’ register file on the FPU. Loads and stores are converted to and
from this format, and when a load is denormal, or a store will become denormal, a
microcode assist routine internal to the FPU performs the conversion.

4.4 DIP: A denormal profiler for Linux x86

The Intel 80x86 implements all of the IEEE-754 floating point standard in hardware.
A part of this standard is a set of flags that cause a processor interrupt when one of
a number of exceptional conditions occurs. These interrupts allow software to halt
a running program when a problematic event occurs, perform some sort of fixup
or reporting in the interrupt handler, and resume program execution by restarting
the offending instruction.

Linux has operating system features which allow access to this functionality. I use
these to write a tool called DIP (Denormal Instruction Profiler) that allows a profile
to be generated of exactly where denormal arithmetic is used an application.

To do this, a knowledge of how floating point exception handling is implemented
on the 80x86 is needed, along with how Linux wraps this functionality and makes
it available to user programs.

4.4.1 Floating point exceptions on the 80x86

For the purposes of this thesis we shall only examine denormal arithmetic when
80x87 floating point instructions are used, rather than the newer SSE instructions
supported by the Intel Pentium and later. The SSE hardware supports denormal
arithmetic in a similar way to the x87 hardware, with similar performance penalties
and like the x87, there are masks to enable and disable exception reporting and
flush-to-zero behaviour. To simplify the presentation, we restrict our focus to the
x87 only.

When running 32-bit code and using 80x87 instructions, a group of bits called masks
in the FPU Control Word control floating point exceptions. These masks control
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one of six possible types of floating point exceptions, and two of the exceptions
signal denormal arithmetic.

The first type of exception is called a Numeric Underflow Exception. This occurs
when the FPU has performed a floating point calculation and is attempting to
normalise the result. Whether underflow is reported depends on whether the result
is tiny, i.e., the resulting exponent is too small to be represented in the floating point
format in normal form; and whether the result is inexact, i.e., if the result can be
represented without truncation in the floating point format. If the underflow mask
is set in the FPU Control Word, underflow is reported when the result is both
tiny and inexact. If the underflow mask is cleared, underflow is reported for tiny
results. This corresponds to the underflow signalling in the IEEE-754 specification,
and enabling the underflow mask allows software to determine when denormal
output is produced by a floating point instruction. When underflow is reported,
if the value’s destination was memory, the result is left on the floating point stack
and the exception handler must perform the necessary denormalising and write. If
the value was to be written to another floating point register, the value is scaled by
224576 before writing to the register, and the exception handler must deal with any
necessary re-scaling and denormalisation.

The second type of exception is called a Denormal Operand Exception. This occurs
when one or more of the operands to a floating point instruction is found to contain
denormal data and the denormal mask in the FPU Control Word is cleared. In
other words, clearing the denormal mask allows a program to be informed when
a floating point instruction receives denormal input. There is no corresponding
signalling mode in the IEEE-754 specification.

When either the underflow or denormal exceptions occur, the DE or UE flag is
set in the FPU status word, and the general purpose software exception handler
is triggered when the next FPU instruction is encountered. The handler can read
the status word, perform any appropriate actions, and on completion, performs an
IRET instruction to resume program execution from where it left off.

However, there is one crucial difference between the denormal or underflow excep-
tions that complicates profiling for the denormal case. A underflow exception is a
post-operation exception, i.e., it occurs after the instruction has finished calculating
and has stored some intermediate result3 in the destination. In fact, due to how the
original 8087 co-processor communicated with the 8086, it actually occurs at the
beginning of the next floating point instruction. So when the IRET instruction exe-

3The software exception handler is free to modify this result.
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cutes in the exception handler, the program resumes execution of the next floating
point instruction after the instruction that caused the exception4. As a consequence,
it is impossible to use this exception to ‘fix up’ the denormal output of an operation,
but this is of no concern to a profiler which should not modify the behaviour of the
program being profiled.

In contrast, denormal exceptions, are pre-operation exceptions. They occur when the
instruction is fetching its operands, and before any calculation has been performed.

for (i=1; i<N-1; i++) {

for (j=1; j<N-1; j++) {

cur[i*N + j] = 0.25 * (

prev[(i-1)*N + j ] +

prev[(i+1)*N + j ] +

prev[ i *N + j-1] +

prev[ i *N + j+1]);

}

}

Fig. 4.3: jacobi inner loop

0x08048730: flds (%edi)

0x08048732: add $0x1,%eax

0x08048735: add $0x4,%edi

0x08048738: fadds (%esi)

0x0804873a: add $0x4,%esi

0x0804873d: fadds (%ebx)

0x0804873f: add $0x4,%ebx

0x08048742: fadds (%ecx)

0x08048744: add $0x4,%ecx

0x08048747: fmuls 0x080488e0

0x0804874d: fstps (%edx)

0x0804874f: add $0x4,%edx

0x08048752: cmp $0x1ff,%eax

0x08048757: jne 0x08048730

Fig. 4.4: Compiled code

To illustrate when floating point exception handling and the distinction between pre-
and post-operation exceptions, we shall use the inner loop of the jacobi application
from Sec. 6.1.1. The inner loop, and the machine code instructions it compiles to
are shown in Fig. 4.3 and Fig. 4.4.

We shall assume that the 32-bit value read from memory by the third fadds in-
struction at 0x08048742 is a denormal value, and that the 32-bit value written by
the fstps at 0x0804874d is also denormal. This leads to the following sequence of
events:

The first 7 instructions execute normally:

0x08048730: flds (%edi)

0x08048732: add $0x1,%eax

0x08048735: add $0x4,%edi

0x08048738: fadds (%esi)

0x0804873a: add $0x4,%esi

0x0804873d: fadds (%ebx)

0x0804873f: add $0x4,%ebx

4This may be many instructions after the instruction that caused the exception if there are integer
instructions between the two floating point instructions.
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The 8th instruction begins:

0x08048742: fadds (%ecx)

The FPU loads the 32-bit value from memory, decodes it, sees it is a denormal, and sets
the FPU’s DE (Denormal Operand Exception) flag. It then abandons the instruction by
performing no operation and leaving the instruction pointer unmodified.

The CPU begins execution of the next instruction. Since the instruction pointer hasn’t
been changed, this is still the instruction at 0x08048742. Before starting the instruction,
the FPU sees the DE flag is set and triggers a Floating Point Exception.

The FPE handler runs, and on completion, the CPU returns to the instruction at 0x08048742
and executes it.

The 9th and 10th instructions execute normally, and produce a denormal on the stack:

0x08048744: add $0x4,%ecx

0x08048747: fmuls 0x080488e0

The 11th instruction begins:

0x0804874d: fstps (%edx)

To perform the store, the FPU converts the 80-bit float to a 32-bit float, and produces a
denormal value. It performs the store to memory and then sets the FPU’s UE (Underflow
Exception) flag and increments the instruction pointer.

The CPU continues normally until the next floating point instruction is encountered:

0x0804874f: add $0x4,%edx

0x08048752: cmp $0x1ff,%eax

0x08048757: jne 0x08048730

At the next iteration of the loop (4 instructions after the store), a floating point load occurs:

0x08048730: flds (%edi)

At the beginning of the instruction, the FPU sees the UE flag set (from the previous store),
and before starting the instruction, triggers a Floating Point Exception. The FPE handler
runs, and on completion, the CPU returns to the instruction at 0x08048730.
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4.4.2 Using exception handlers

Because of the fact that denormal exceptions are pre-operation exceptions, a floating
point exception handler must be careful to remove the conditions that caused
the denormal exception in the first place. Because of the pre-operation nature of
the exception, when the IRET instruction returns from the exception handler the
program restarts the offending instruction. If the instruction’s operands are still
denormal, and the denormal mask is still cleared, another denormal exception will
immediately be triggered for exactly the same instruction, leading to an infinite
loop.

However, it is not sufficient for the exception handler to simply set the denormal
mask flag to resolve this infinite loop. If the exception handler does this, when
the offending instruction is restarted it will not trigger a denormal exception, and
will execute completely, which is as desired. However, now denormal trapping is
disabled for the rest of the program, and the exception handler has been called for
just one instruction.

At first sight, it would appear that the only workaround for this scenario would
be either to implement a software FPU interpreter in the exception handler that
simulates the behaviour of the offending instruction, sets the return address to the
next instruction, and then returns to normal program execution; or to somehow
rescale the instruction operands before resuming execution so that they are all
normal, but still produce the same results. Both of these schemes are complex, slow
and error prone.

Fortunately, the 80x86 has a feature that can be used to avoid this. The 80x86 has
a register called EFLAGS which, among other things, holds a number of ‘system
flags’ that control program execution. One of these flags is called the trap flag, and
setting it enables a single-step mode that is usually used for debugging purposes.
In single-step mode, the CPU generates a debug exception after every instruction
completes execution. This is perfect for a profiler’s needs. Denormal profiling can
be enabled as follows:

• At the beginning of program execution set up an exception handler for denormal
and debug exceptions and clear the denormal mask and the trap flag.

• When a denormal operand is encountered, the denormal exception handler will
be entered. This logs the event, sets the denormal mask, sets the trap flag, and
returns to the program.
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• The offending instruction is restarted and runs to completion because denormal
is set. When the instruction finishes, the debug exception handler is entered.
This handler clears the denormal mask again, clears the trap flag, and returns to
the program to start the instruction directly after the offending instruction.

• Now the denormal mask is clear, so when the next denormal operand occurs, the
denormal exception handler will be entered again.

This use of two different trapping facilities means two exceptions are required to
detect denormal inputs instead of the one required by denormal outputs.

4.4.3 Exception handling in Linux

DIP will need to be notified whenever floating point and debug exceptions occur.
However, for security and stability reasons, modern operating systems cannot allow
ordinary user processes to install their own exception handlers directly. On the x86,
the set of defined interrupt and exception handlers is stored in an area of memory
called the Interrupt Descriptor Table (IDT). Each entry in the IDT is called an
Interrupt Gate, and holds the address of the handler along with flags defining what
processor mode the CPU should enter before running the handler.

If ordinary user code was allowed to write directly to the IDT, it could, for example,
install an invalid opcode exception handler that switches the CPU to supervisor
mode, examines the kernel’s process descriptor table, and changes the user ID of
the current process to 0, the root user. Once the handler is installed, user code could
then attempt to execute an illegal instruction, thus triggering the exception handler
and gaining root access and full control over the entire machine.

Another reason for disallowing direct access to the IDT is that the correct functioning
of the OS requires the kernel to have complete control over the IDT entries associated
with device I/O interrupts, timer interrupts, and page fault handling.

Instead of allowing direct IDT access, the Linux kernel writes its own Interrupt
Gates into the IDT at startup, pointing at a group of general-purpose kernel excep-
tion handlers. A user program can register a user function called a signal handler
to be called using the UNIX signals API. Some of these signals—such as the process
control signals SIGHUP, SIGINT, and SIGKILL—correspond to abstractions pro-
vided by UNIX itself, but others—such as SIGILL and SIGFPE—map to processor
exceptions. When a processor exception occurs, the kernel gathers information
about the state of the processor at that point in time, populates a ucontext (user
context) data structure with this state, switches back to user mode and calls the
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registered signal handler.

Once invoked, the signal handler may inspect the ucontext, which stores the values
of all the CPU and FPU registers including the instruction pointer and may modify
some of them before returning. When the signal handler returns, control returns to
the kernel, which updates the processor state using the contents of ucontext, and
finally exits from the kernel exception handler returning to user mode.

This process is illustrated in Fig. 4.5.

The requirements of DIP can be implemented on Linux on 32-bit x86 as follows:

• On x86, the instructions to read and write the FPU Control Word are unprivileged,
so the appropriate FPU exception masks can be cleared directly from user code.

• Under Linux, the x86 general purpose floating point exception handler maps
to the SIGFPE signal, and the debug single-step exception handler maps to the
SIGTRAP signal.

• Since copies of the FPU Control Word and the EFLAGS register are stored in
ucontext, and the kernel updates these registers after the signal handler returns,
it is possible to set the denormal mask and enable single-step mode in the SIGFPE
handler. Similarly it is possible to clear the denormal mask and disable single-step
mode in the SIGTRAP handler.

4.4.4 Library interposition to profile binaries

Using the APIs above, DIP can now be implemented as a shared library. The
profiler is notified when a denormal operand exception occurs and can perform any
necessary logging subject to the limitations on the use of system calls within signal
handlers. DIP can be used with any program by linking the program against it, and
calling its initialisation function somewhere near the entry point to the program.
Other than the slowdown caused by the invocation of the signal handlers, there
should be no changes in behaviour visible to the program itself. Indeed, this is one
of the benefits of the profiler: if there are no denormal exceptions in the profiled
program, it will run at full speed.

However, sometimes it is undesirable or impossible to recompile and relink a
program. This can occur if the program is supplied only as a binary, or if the
toolchain and development libraries necessary to build the program are unavailable
or difficult to install. A feature available in a number of mainstream UNIXes
including Linux, the BSDs and Solaris called library interposition can be exploited

82



Kernel

Install kernel IDT

Update task struct

Build ucontext

Insert sigreturn()

Read ucontext. Update CPU registers

K/U boundary User

Register signal handler

FP Exception

Run handler, update ucontext

sigaction()

Interrupt

Call IDT

Return to user handler

sigreturn()

Return to user

Fig. 4.5: Linux FPE handling
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Iteration Denormals
1 13969
2 30043
3 23805
4 15608
5 0
... 0

Table 4.5: Denormals at cfd-sor startup

to make DIP more convenient to use under these circumstance. This feature takes
advantage of the fact that on program startup, the dynamic linker checks if the
environment variable LD PRELOAD is set, and if it is, reads a list of dynamic libraries
to load into the process before loading the libraries specified in the executable file
itself.

Library interposition is sometimes used to wrap library functions (such as malloc,
open or gettimeofday) by providing a small wrapper function that performs what-
ever replacement activity the preloaded library requires, and then, optionally,
passes control to the real function provided by the expected library (such as libc).
The wrapper can perform logging, argument validation, or may modify either the
arguments or return value of the real function.

DIP does not need this function wrapping capability, but the compiler can be
instructed to mark a function in a shared library with the constructor attribute.
When a function in a library is marked as a constructor, the function is called at
library load time and before a program that depends on that library starts running.
Using the constructor attribute in combination with LD PRELOAD, DIP can initialise
itself, install the appropriate signal handlers and clear the needed FPU exception
masks before the target program enters main(). A simplified version of DIP showing
how the main mechanisms are implemented on Linux can be seen in Appendix C.

4.4.5 Example of DIP in use

Fig. 4.6: Kármán vortex sheet in cfd-sor

A small application known to generate denormal values at startup can be used
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to show the behaviour of DIP. The application is a simple 2D computational fluid
dynamics code which operates on a regular grid with obstacle cells and a number
of different boundary conditions. It generates a tentative velocity term for each
cell based on assuming a uniform pressure across the grid; calculates the pressure
value for each cell by solving the Poisson equation using red/black successive over-
relaxation; and finally updates the velocity based on the new pressure values.

The algorithm is simplistic and inefficient, but is useful for pedagogic purposes.
During testing it emerged that the first few iterations ran more slowly than expected,
and later iterations ran faster. By running it under a version of DIP modified to
emit denormal counts and denormal instruction profiles, it was found that the first
four iterations of the program produced denormal values.

Table 4.5 shows that over the first four iterations, some denormal values are gener-
ated, then they build up to a peak, and finally die away. This information can be
used to determine if any of the application’s slowdown is caused by large numbers
of denormal values.

Table 4.6 is generated by instructing DIP to record the addresses of the instructions
that cause the exceptions. This shows the instructions that cause the exceptions.
They all appear in the compute tentative velocity and poisson functions, and
are all load, multiply, add and subtract instructions. However, DIP provides no
information beyond that, for example where the values came from or where they
will be stored.

This leads to a discussion of the limitations of DIP and other profiling tools based
on floating point exceptions.

4.4.6 Limitations of DIP and exception-based profilers

DIP as described above is useful for identifying the exact instructions in a program
where a denormal value is generated or used, but has a number of important
limitations:

• DIP depends on the target application not setting the FPU exception masks. If
the target code modifies the FPU Control Word, the profiler stops working. This
occurs, for instance, with Sun’s Java Virtual Machine on Linux, preventing this
tool from profiling Java code.

• As it stands, DIP can only identify the instruction that triggered the exception,
it does not report the value in question. This value is available to the exception
handler, and with some extra coding could be reported if necessary.
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Address Denormals Instruction
compute tentative velocity
804a02c 457 fadds -0x78(%ebp)
804a055 429 flds -0x14(%ebp)
804a092 429 flds -0x14(%ebp)
804a1cc 498 fadds -0x78(%ebp)
804a1f8 426 flds -0x14(%ebp)
804a22f 179 flds -0x14(%ebp)
poisson
804a7f7 7473 flds (%eax)
804a80e 7473 flds (%eax,%ecx,1)
804a825 7462 flds (%eax,%ecx,1)
804a838 6974 flds 0x8(%ebx,%eax,1)
804a851 7473 fmuls -0x1c(%ebp)
804a86b 6971 fmuls (%ebx,%edx,1)
804a886 200 fsubs (%eax,%ecx,1)
804a951 7473 flds (%eax,%edx,4)
804a958 7473 flds (%esi,%edx,4)
804a976 7462 flds (%eax,%ecx,1)
804a989 6974 flds (%esi,%ecx,4)
804a9b0 6971 fsubs (%esi,%edx,4)
804a9ca 200 fsubs (%eax,%edx,1)

Table 4.6: Denormal instruction profile in cfd-sor

• DIP does not report the source address of denormal arguments, or the destination
address of underflowing writes. If the operand is on the x87 stack, or is an
immediate address, this location can be read directly from the instruction itself.
However, usually an address is specified using one of Intel’s indirect addressing
modes. For array accesses, addresses are typically specified using operands of
the form base register + (index register × scale). To perform the necessary effective
address calculation, DIP would need to parse enough of Intel’s opcode layout to
identify all the floating point instructions, how many operands they take, and
needs to decode the addressing bytes of the arguments to the instruction. This
information can then be used along with the saved copy of the CPU registers in
the signal handler to calculate the required effective address.

• However, this leads to another limitation: DIP as it stands cannot perform any
data-flow analysis. Frequently the sources or destination of an instruction will
either be temporary values on the FPU’s internal stack, or a function’s argu-
ments/temporary working space on the program’s call stack. These temporary
values are of no direct use to the programmer, as they either reflect the details
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of the compiler code generation or lower level details of the application’s im-
plementation rather than the higher level semantics of the programmer’s code.
For example, knowing that all the instructions with denormal arguments are in a
small helper function is of little use if that function is called from dozens of places
throughout the application. The programmer is interested in how the code takes
values in the application’s data structures and generates or propagates excep-
tional values from them. To do this, a tool needs to be able to track some the
instructions between the denormal exceptions as well as the ones that cause the
denormal exceptions.

• Furthermore, from a performance variability perspective, the programmer is
interested in how the denormal values and arithmetic are distributed throughout
the application’s data sets. If the denormals are distributed completely uniformly,
then there will be a slowdown, but no performance variability and denormal
arithmetic becomes less of a concern.

• Finally, due to the design of the x86 instruction set, it is quicker to copy float-
ing point values from one location to another using a single integer instruction
instead of a floating point load/store pair. This occurs when copying data into
temporary variables, or during function calls. Similarly, assignments are often
performed using integer mov instructions, and arguments are generally passed to
functions using the integer pushl instruction. Some instances of this integer opti-
misation can be seen in Appendix D. Because these are integer instructions, they
will not generate floating point exceptions under any situation, and thus com-
pletely bypass DIP or any other exception-based profiler. This adds an additional
complication to data-flow analysis.

4.5 Summary

This chapter has examined why floating point arithmetic is necessary for many
applications, the complexities of implementing it, and why a hardware implemen-
tation is desirable. It discussed salient details of the IEEE-754 standard, and showed
some of the implementation choices made in some popular CPUs.

The exception handing models of the Intel x86 CPUs and how they map to the
signal handling API in Linux are described. This API is used to write DIP, a simple
floating point exception based denormal profiling library, which is then used to
profile a small application. The profiler allows a profile to be generated which
lists each of the floating point instructions that read denormal values from memory
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and how often they occur. Apart from when denormal exceptions occur, the rest
of the application runs at full speed. This information allows the programmer to
determine whether or not any of the performance variability in an application is
due to denormal arithmetic.

Finally the limitations of this profiler are described. These limitations stem from
the fact that profiles of individual instructions aren’t very useful without further
context — it is desirable to see how the values are distributed throughout the data
sets and where they came from and where they go to, and this context cannot be
provided by the exception causing instructions alone. Some of these profiler issues
could be resolved by a more complex implementation, but others are unavoidable
given the x86 instruction set.

The next chapter introduces a dynamic binary instrumentation tool called Valgrind,
and shows how it and a variation of taint analysis can be used to implement a
denormal tracer that overcomes the of limitations exception-based profilers.
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CHAPTER 5
Implementing a denormal tracing tool using Valgrind

The previous chapter described how denormal arithmetic can be the source of data-
dependent slowdowns even in otherwise regular and predictable applications. In
it, I wrote a profiling tool for Linux x86 to identify which floating point instructions
read denormal values from memory as arguments. Although this tool can be
useful to determine whether significant numbers of denormal operations occur, it
is of limited use when trying to isolate the original causes of denormal arithmetic
in an application. In order to find the origins of denormal data, a tool would need
to perform data-flow analysis, and to do this, it would need to watch the behaviour
of more than just the instructions that cause denormal exceptions.

No simple exception-based tool can provide the primitives needed for this, and so a
more powerful set of tools must be employed — those that allow arbitrary sequences
of instructions to be monitored and allow values to be tagged and traced throughout
a program. This process bears some similarities to an area in software security called
taint analysis, and the monitoring of running programs is called dynamic binary
instrumentation. A number of tools exist to facilitate dynamic instrumentation,
such as DynamoRIO[BGA03], Pin[LCM+05], and Valgrind[NS07b].

Both DynamoRIO and Pin work by preserving the existing instruction stream of
a program where possible, and by explicitly adding instrumentation instructions
or calls to analysis routines at particular points in the program. This approach is
suitable for implementing profiling tools that need to interrupt or monitor program
behaviour at specific, well defined points during a program’s execution, but is less
useful when all or most of a program’s instructions need to be monitored. It will
be shown later in the chapter that monitoring most of a program’s instructions is
required for denormal tracing.

Valgrind, by contrast, operates by decompiling an entire program binary into an
intermediate representation, adding instrumentation code, and finally optimising
and recompiling the result back into blocks of machine code. It also supports a
scheme called ‘shadow memory’, and makes a clear distinction between memory
used by the instrumentation for workspace or metadata and that used by the
program under analysis. Both of these attributes significantly facilitate the tracking
process, making Valgrind a more suitable tool for denormal tracing.
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mov 0x8(ebp), edi

-- IMark --
t10 = GET(EBP)
t9  = Add32(t10,8)
t11 = LDle(t9)
PUT(EDI) = t11

-- IMark --
t10 = GET(EBP)
t64 = GET(s_EBP)
t9  = Add32(t10,8)
t11 = LDle(t9)
t65 = help_load(t9)
PUT(EDI) = t11
PUT(s_EDI) = t65

...
b801000000 
2b45ac
89442404
8b5508
8b4204
890424
...

machine code Intermediate code Instrumentation machine code

Fig. 5.1: Valgrind instrumentation process

This chapter describes both Valgrind and taint analysis, and examines how Valgrind
has previously been used to implement a taint analysis system called TaintCheck. It
shows how denormal tracing is a more open-ended problem than taint analysis, but
by applying suitable constraints it is possible to design a denormal tracer which I
implement using Valgrind. This tracer will help identify where the denormals in an
application come from, and this can be used to isolate and remove the unnecessary
denormals thus producing an application with less data-dependent performance
variability.

5.1 Introduction to Valgrind

Valgrind is an open source binary profiling framework written to aid the construc-
tion of dynamic analysis tools. It functions by taking an executable1, and on a
JIT basis converting basic blocks of code in the executable into an Intermediate
Representation (IR) on demand, inserting instrumentation instructions into the IR,
optimising and compiling the IR into native machine code, and finally saving the
resulting code in a cache from where it can then be executed.

The intermediate representation consists of a sequence of µOps somewhat reminis-
cent of a cross between a RISC instruction set and the graph structures produced
by the intermediate stages of a compiler. In Valgrind’s IR, access to memory is
performed using explicit Load expressions and Store statements. Extending this,
Valgrind maintains what it calls the ‘guest state’ which is essentially the register
file of the guest CPU. Guest registers are read from and written to using explicit
Get expressions and Put statements. To store values and the results of operations,

1The target executable is called the guest program in Valgrind terminology.
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Valgrind’s IR provides an effectively unlimited supply of temporaries which can
have expressions assigned to them only once, but can be read from many times.
The IR provides a variety of side-effect free operations which can be used to build
up expression trees. These expressions can then be used as the arguments to state-
ments. The IR also provides facilities to perform conditional jumps from one basic
block to another, to perform system calls, and to ‘call out’ to tool functions in the
host for cases where it would be difficult to implement functionality in the IR itself.

Once Valgrind has translated a basic block into IR, it transforms it so that expressions
and statements only take temporaries as arguments, and the results of expressions
are immediately assigned to new temporaries. This has the effect of ‘flattening’ any
expression tree, and simplifies matters for the instrumentation code. The instru-
mentation code is given the IR for a basic block, and may transform it, usually by
adding extra instrumentation expressions or statements necessary to its monitoring
role.

After instrumentation, the IR is optimised, removing any redundant or dead expres-
sions, and compiled back into host machine code which is stored in a basic block
cache. Valgrind has an execution engine which produces compiled basic blocks
as needed, and executes them from the cache. When a block finishes running, it
returns to the execution engine which selects the next block to be run, compiles it if
necessary and then runs it.

Because of how the IR is constructed and modified, Valgrind controls the appar-
ent execution of every guest instruction, and from the point of view of the guest
program it appears that it is running directly on the host hardware. As is to be
expected, the instrumented code runs slower than the original program, but unlike
traditional instrumentation, the effects of this slowdown can be hidden from both
the instrumentation tool and the guest program.

Consider, for example, gprof, the UNIX call graph execution profiler [GKM82].
It works by adding a call to a monitoring routine to the entry and exit points of
each function in a program at compile time. When the program runs, and the
monitoring routine is called, it records the run time of each function, along with
where it was called from, and the number of times it has been called. One of
the problems with this approach is that it adds a variable amount of overhead to
the execution time of the program: when compared to the uninstrumented code,
programs with many calls to small functions will be penalised more than programs
with fewer calls to larger functions. Furthermore, the memory accesses caused by
the instrumentation updating its internal data structures may, in some cases, distort
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the cache utilisation patterns of some programs. All this occurs because there is no
clear way to distinguish instructions in the instruction stream that are part of the
instrumentation tool from those that are a part of the guest program.

Valgrind tools can avoid this problem entirely. A simple gprof-like tool could be
written as follows:

• The tool maintains its own data structures, which includes a list of all the functions
in the guest program, and the statistics associated with them. The tool also
maintains a pointer to the currently executing function.

• When the IR is generated, the instrumentation tool can add IR code after every
guest instruction to increase the current function’s instruction count by one.

• When the IR is generated, if the tool detects a function entry or exit point in the
guest code block, it adds an IR instruction that calls an external instrumentation
routine to change the current function pointer.

The net result is that although many IR instructions or external instrumentation
calls may be executed for each instruction of guest code, and a good deal of house-
keeping will occur in the background, the tool will only count one instruction for
every instruction of guest code that would have been actually executed without
instrumentation. In other words, there is a clear separation between the instrumen-
tation code and the guest program itself, thus the instrumentation process can be
arbitrarily slow and expensive without affecting the statistics gathered.

5.2 Shadow Memory

As well as providing a framework for dynamic analysis tools, Valgrind has built-in
support for a powerful feature called Shadow Memory [NS07a]. Shadow Memory
is an instrumentation technique where every byte of memory and every byte of the
user-accessible CPU registers has a piece of metadata associated with it. This meta-
data is controlled solely by the instrumentation code, and allows it to monitor the
usage of memory and how the guest program reads, modifies and writes memory
while it executes.

Perhaps the most widely used Valgrind tool that uses Shadow Memory is Mem-
check. Memcheck associates 1 bit of addressability metadata with each byte of
memory, and 8 bits of validity metadata with each byte of memory and each byte
of the CPU registers.
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The addressability metadata determines whether that byte of memory may be read
or written by the guest program. On initialisation, all memory except for the stack,
heap and mapped data from the executable is marked as non-addressable, and
Memcheck updates the addressability bits by monitoring allocations and deallo-
cations by the OS and C runtime from functions such as mmap, malloc and free.
Attempts to access non-addressable bytes can be used to detect heap overflows,
‘use after free’ errors, and reads and writes to random memory addresses.

void f() {

char *p;

/* Allocate 100 bytes */

p = malloc(100);

/* Write to 101st byte */

p[100] = 42;

}

Fig. 5.2: Heap overflow

#include <stdio.h>

#include <string.h>

int main(int argc, char **argv) {

char *p, *s = "Hello world\n";

p = strdup(s); /* Copy string */

free(p); /* Deallocate it */

printf("%s", p); /* Use it */

}

Fig. 5.3: Use after free error

The validity metadata describes whether each bit in a byte of memory or CPU regis-
ter has been explicitly assigned a well-defined value. For example, if some memory
is allocated using malloc, the entire memory range will be marked as addressable
but invalid. Instructions that read from these addresses will copy the validity meta-
data along with the data, as will instructions that perform computations based on
invalid operands. Memcheck silently propagates invalid data as far as it can, and
signals an error when invalid data is used to calculate the destination of a jump, or
as arguments to a system call, or as the address for a memory load/store.

The code in Fig. 5.4 shows 8 invalid bits being copied into an integer; that integer
having various operations performed on it — some of which propagate invalidity,
some which remove it — the results being stored and then printed.

Note that the correct way to compute validity bits for arithmetic and logic instruc-
tions is far from obvious. The scheme used by Memcheck is an approximation that
avoids many false positives and is described by Seward and Nethercote in §2.5 and
§2.6 of [SN05].
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void f() {

char buf[4];

int a = 0, b, c, d, e, f;

/* Assign only 3 of the 4 bytes */

buf[0] = 0x11; buf[1] = 0x22; buf[2] = 0x33;

/* Copy uninitialised data */

memcpy(&b, buf, 4);

/* Operate with uninitialised data */

c = a * b;

/* Operations destroying uninitialised data */

d = b & 0x00ffffff; /* Clears top (invalid) byte */

e = b | 0xff000000; /* Sets top (invalid) byte */

f = b ˆ b; /* Always 0 */

printf("%x %d %d %d\n", c, d, e, f);

}

Fig. 5.4: Invalid data propagation

5.3 Taint analysis

With the rise of the World Wide Web, web sites that delivered dynamic content
via CGI scripts became common. Since these scripts were generally written by
relatively inexperienced programmers, the inputs to the scripts were often used
as arguments to potentially dangerous commands without first being sufficiently
validated or quoted.

One example of this is ‘SQL injection’[BK04, Mon07]. If the user provides the
username ’ OR ’X’=’X to the following script fragment, the query will return a list
of all the users, instead of just the one required:

$name = $query->param("username");

$db->execute("SELECT * FROM users WHERE name=’$name’;");

This works because the WHERE clause becomes WHERE NAME=’’ OR ’X’=’X’ which
is always true.

A similar problem called ‘shell injection’ occurs when scripts construct shell com-
mands from insufficiently validated input strings and then execute them.[HYH+04]

$file = $query->param(’file’);

system("/usr/bin/unzip -d /tmp $file");
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Here, if the user provides a filename such as foo.zip; rm -rf /, the string passed to
the shell becomes /usr/bin/unzip -d /tmp foo.zip; rm -rf /, which is two com-
mands — one to unzip a file, and the other to erase all files on the system.

Because of the prevalence of these kinds of programming errors, a taint mode was
introduced into the PERL scripting language to help detect these problems.

When PERL’s taint mode is enabled, the PERL interpreter automatically associates
a taint flag with every ‘scalar’2 value in a PERL script. Data internal to the script,
e.g., literals and values derived entirely within the script are marked as untainted.
However data that enters the script from external sources, such as environment
variables, command line arguments, and the results of some system calls are marked
as tainted. Operations on tainted data generate more tainted data; for example
concatenating a tainted and an untainted string generates a new tainted string.

Unlike MemCheck’s validity computations, PERL uses a pessimistic scheme to
calculate the taintedness of the results of operations on data. It simply asserts that
if any of the operands are tainted, then all the output is too. This may seem to
have the scope to generate false positives, but since there is only a one bit taint
flag per scalar, and the purpose of taint mode is to enforce string validation, it is a
reasonable approximation for this problem domain.

If tainted data is used with a function that performs a potentially dangerous action,
such as writing to a file, running an external program, or accessing a database, then
the PERL interpreter generates an error and halts the script.

In PERL, the taint flag is removed from input data by first validating the data using
a regular expression. The substrings returned from a regular expression match are
flagged as untainted, and these untainted values can then be used safely with the
actions mentioned above.

5.3.1 Taint analysis using Valgrind

By virtue of the fact that PERL is an interpreted language, and that all values in the
language are strongly typed and have a data structure internal to the interpreter
associated with them, it was relatively straightforward to add a taint mode to the
PERL runtime. To perform dynamic taint analysis on arbitrary binaries is much
more complex.

A 2005 paper by Newsome et al.[NS05] describes a Valgrind-based system called

2In PERL, scalars are the non-composite data values; that is to say individual strings, numbers, or
references.
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TaintCheck which provides tools to trace the propagation of user-generated data
through a program and to detect if it is eventually used in dangerous ways.

As with PERL’s taint mode, and Valgrind’s Memcheck, TaintCheck has three major
components.

• The first is called TaintSeed and marks data as tainted or trusted. Every byte
of memory and the CPU registers in TaintCheck is shadowed by a pointer to
a taint data structure. When a program receives data from a network socket,
TaintCheck’s default policy marks all the data received as tainted. The taint
structure associated with each byte records the parameters passed to the last
system call, the results from the call, and the user stack at the time of the system
call. This later allows the developer to determine the initial source of the data.

• TaintCheck’s second component is called TaintTracker and provides the taint
propagation of TaintCheck. The taint propagation policy is done on a per-byte
basis, and is similar to that of PERL’s — loads and stores directly copy the
taint information, and arithmetic and logic operations assume pessimistically
that if any of the source operands are tainted, then the result should be too.
TaintTracker includes a couple of special cases to handle some common x86
instruction patterns, such as XOR-ing a register with itself to zero a register
(and thus making its value untainted). When propagating taint information,
TaintTracker can either make the new value point at the same taint structure as
the tainted source value, or create a new taint structure which records the current
stack, and contains a pointer back to the earlier taint structure. This latter scheme
consumes much more memory, but provides an exact chain of all the operations
that propagated the tainted value from the point where it was initially injected
into the program to the current moment in time.

• The final component in TaintCheck is TaintAssert, which detects whether tainted
data is used dangerously. By default, TaintAssert defines as dangerous the use
of tainted data as a jump address, or as the format argument to a printf-style
function. These two scenarios cover a majority of internet-based security exploits.
When dangerous uses are detected, they can be logged, along with a chain of all
the taint structures for offline analysis.

As with PERL’s taint mode, TaintCheck focusses on detecting dangerous uses of
user data that can potentially be used as attack vectors by malware. Because of this,
the pessimistic propagation of taint information is appropriate and simplifies the
implementation substantially.
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5.3.2 Taint analysis and denormal tracing

TaintCheck tags user inputs as tainted, traces tainted data throughout the program,
and warns and logs dangerous uses of tainted data. At first glance, it would seem
that a taint tracing mechanism like this could be adapted for tracing denormal
arithmetic. Certainly an analogue of TaintTracker could be written that instruments
every floating point operation and if any operands or the output of an operation is
denormal, uses shadow memory to ‘tag’ the value with the appropriate metadata.
Any further uses of these tagged values could be examined to allow propagation
of denormal values through the code to be monitored.

However, in practice there are two substantial difficulties with implementing a
scheme like this. Firstly the differences in the ‘lifecycle’ of a denormal value com-
pared to a tainted value, and secondly how a TaintAssert analogue might be defined.

5.3.3 Denormal vs taintedness lifecycle

In TaintCheck, there is a clear point where tainted data enters a program, and taint-
edness is a well defined binary state: all the data read from a network socket is
defined as tainted, everything else is not. Furthermore, at least for the common
cases, since TaintCheck is using a ‘pessimistic’ approach, there is a reasonably nat-
ural definition of how taintedness should be propagated as the result of various
CPU instructions that copy or operate on data previously marked as tainted. Be-
cause of these definitions, although taintedness can be copied or propagated, it is
impossible for tainted data to be created de novo — taintedness always originates
from a memory buffer written to by the read and recv family of system calls. Sim-
ilarly, taintedness cannot be destroyed as such. Tainted values can be overwritten
thus removing the value along with the taint, but taintedness on its own cannot be
removed from a value.

The end point of the lifecycle of a tainted value is also well defined. Three possible
things can happen to a tainted value: after some number of harmless operations are
performed on it, it can be ignored for the rest of the program; or it can be overwritten
by another value, thus destroying it; or it can be used dangerously, thus triggering
TaintCheck to generate an error. In this third case, because the origin of all tainted
data is explicitly recorded, and because each operation on tainted data may also be
recorded, TaintCheck can build a complete history of everything that happened to
that value, from its injection into the program, to its final dangerous use.

In comparison, a denormal tracer can not rely on similar properties. Denormals
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may be injected into a program as user data, but it is equally possible for a sequence
of operations to create denormal values ‘mid program’ from what had been normal
data. One common way this can happen is by some iterative process causing input
values to converge on zero. Another is by a routine that uses the difference between
two almost identical data sets.

By the same token, it is possible for the denormalcy to be removed from a value
while preserving some of the information contained in it, either by adding random
normal noise to it, or by scaling it to a sufficiently large value. Denormals can
also be removed by flushing to zero, but this is the equivalent of overwriting the
denormal with ±0, thus destroying it.

These two facts combined mean that unlike for taintedness, short of recording a
trace of every operation in a program, there is no clear way to identify the history
of a given denormal once it is detected. Even if the original user data was denormal
— something of which there is no guarantee — the data may have become normal
at some point in the program, and then denormal again later on.

The problem of an incomplete history is compounded by the fact that because of the
design of the x86 instruction set, and because of Intel’s calling conventions, often an
optimising compiler will perform floating point copies, floating point assignments,
and manipulate the call stack on function entry/exit using integer instructions.3

These optimisations mean that the first operations on some user data might be
to copy them to the stack using integer instructions. Even if the floating point
value is itself denormal, it must be determined that the memory area in question is
definitely used for floating point values. If not, a tool will incorrectly flag integer
instructions writing small integer values to memory4 as denormal. Values in this
range commonly occur as flags and loop indices. This inability introduces further
gaps into the history of an eventually denormal value.

5.3.4 Reporting denormal events

For TaintCheck, not only is there a clear and unbroken lifecycle for tainted data,
there is also a small set of discrete operations that are regarded as dangerous and
when they occur an error can be reported.

From the performance point of view, the very fact that denormal arithmetic occurs
at all is a problem, so for a denormal tracer there is no clear distinction between the

3This issue was also a limitation with DIP in Sec. 4.4. Some of these kinds of optimisations can be
seen in Appendix D.

4All 32-bit integers less than 8,388,608 except 0 have the same binary representation as 32-bit
floating point denormals.
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operations that cause a denormal to be propagated and a dangerous operation that
should be reported.

Also, from a performance point of view, individual denormal operations are not
of much interest — what needs to be determined is the how many of them occur,
how are they distributed throughout the program’s data sets, and whether they
persist over time or not. A denormal tracer that simply records individual events
will generate a huge trace log that may not offer much insight into a program’s
behaviour. This implies that unlike for a taint analyser an important aspect of a
denormal tracer is how the raw trace data is reduced and reported.

5.4 DART: A denormal tracing tool for Linux

As can be seen from the above, a general purpose implementation of a denormal
tracer faces real difficulties. However, if some assumptions are made about how a
numerical code is likely to behave and the language used for implementation, it is
possible to avoid or resolve these issues.

Using these assumptions, I write a Valgrind-based tool called DART, the Denormal
Arithmetic Reporter and Tracer.

• The program is assumed to be written either in Fortran 95 or earlier, or C99 or ear-
lier. These are the two main systems languages used for numerical programming,
so this is not a major restriction.

• The program is assumed either to use fixed-sized data structures allocated at
compile time, or to use the standard memory allocation functions to allocate
variable-sized structures at runtime from the heap.

• The program is assumed to primarily manipulate data from these fixed or dy-
namic structures.

• The program is not assumed to be compiled with low levels of optimisation,
but the compiler must produce debugging information so the program’s data
structures can be identified. Specifically, DWARF3 annotations, described shortly,
are required. Debugging information is not needed for any dynamically linked
libraries.

By restricting the language to C or Fortran, and requiring the system memory
allocator, the debugging information and a knowledge of stack frame layouts can
be used to locate the major floating point data structures at runtime. Once this is
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determined, those memory locations can be marked and watched for loads, whether
performed by integer or floating point instructions.

When denormal values are loaded from these locations, the values are tagged with
their origin address, and traced as they propagate through the program. This solves
some of the origin identification problem mentioned in Sec. 5.3.3.

Since the program is assumed to manipulate primarily these marked data structures,
the lifecycle of most floating point values is going to start with a load from a marked
data structure, followed by a number of uninteresting ‘housekeeping’ operations.
Then it will be operated on by one or more floating point instructions, possibly
interleaved with more housekeeping instructions, and finally the value might be
written back to another marked data structure.

Since all denormal values are tagged as soon as they are loaded from marked
memory, they can be traced until they reach a floating point operation. Then the
values used with the floating point operation can be recorded, and the resulting
value traced until it is written back to one of the marked data structures. By
analysing the patterns of these load/floating point operation/store sequences, the
flow of denormals through the program can be traced, as well as what floating
point operations are responsible for the transformations of the program data.

5.5 Memory management

To implement the denormal tracing scheme outlined above, a detailed understand-
ing of how memory is divided up and used by Fortran and C programs under Linux
is needed. To simplify the discussion, and to avoid irrelevant complications in the
implementation, we assume the process is running on a default Linux 2.6.x kernel
on x86 running in 32-bit mode. This assumption is not one that fundamentally
restricts the design of the denormal tracer — with some expansions of the data
structures, it can be modified to deal with 64-bit addressing.

Under the 32-bit arrangement, each process has access to 4 GB of virtual address
space divided up into several areas.

• The very bottom of the memory map, specifically the addresses from 0x00000000
to 0x08047fff are unmapped by the kernel and no process can read or write to
these memory locations.

• 0x8048000 is the default load address of an executable. On process startup, vari-
ous sections of the ELF executable file are mapped into memory at this address.
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0xffffffff

0xc0000000

1 GB kernel mapped into every
process’s address space.

 Kernel

0xbfffffff

0xb8000000

128 MB block for call stack.
Allocated on demand.

↓

 Stack

0xb7ffffff

...

Shared libraries.
Mapped by ld.so.

 Libraries

...

...

Heap area for mmap and malloc

allocations. Typically 2.5+ GB

 Heap

...

0x08048000

Program text and data.

0x08047fff

0x00000000

Unmapped memory.
Used to catch null pointers.


Program

Fig. 5.5: Linux 2.6.x x86 memory map

These sections include .text — the program code itself; and the .rodata, .data
and .bss sections — blocks of read only data, preinitialised data, and unini-
tialised data used by the program. Fixed-sized compile-time allocated data is
stored in these sections. Collectively the .rodata, .data and .bss sections are
often called the data segment of the program.

• The top 1 GB of the memory map, 0xc0000000 to 0xffffffff, is where the kernel is
mapped into every process’s address space. This space is not accessible to user
programs, and is used by the kernel to minimise the overhead of user/kernel
context switches.

• Directly below the kernel, from 0xbfffffff down, is the user stack. This holds
all the stack frames, i.e., the local variables, function arguments, and return
addresses used by the program’s functions. It grows downwards in memory and
is allocated as required. It can have a maximum size of up to 128 MB.
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• Directly below the user stack, from 0xb7ffffff down, is where the dynamic linker
maps the shared libraries used by a process. These typically include parts of the
dynamic linker, libc and libm.

• Between the lowest area used by a shared library, and the end of the program text
is an area called the heap. This is completely unmapped at program startup, and
blocks of memory are allocated from this range, either directly using the mmap

system call, or indirectly by the libc memory allocator.

DART reads the DWARF3 debugging information compiled into the executable at
compile time. DWARF is a tree based debugging format that describes the compila-
tion units (i.e., source files) used to build an executable, and all the global variables
and subprograms (i.e., functions) in each compilation unit. Each subprogram in
turn describes of all its arguments and the variables local to the subroutine. DWARF
is complicated by the need to describe all the features and formats supported by
a large number of languages (such as enumerations, records, unions, COBOL’s
packed decimals, Ada’s ranges, and Fortran’s allocatable arrays.) An example of
some DWARF annotations can be seen in Sec. D.3. DART limits itself to the basic
features required by numerical codes written in C and Fortran, namely floating
point values, fixed sized arrays, pointers to arrays, and Fortran array descriptors.

The DWARF3 debugging information for each variable includes a sub-tree defining
the exact type of the variable (e.g., a read-only 1024-element array of unsigned bytes,
or a dynamically allocated 3D array of reals with unspecified bounds), as well as
its location (e.g., starting at memory location 0x8049160, or at offset -0x10c relative
to the function’s stack frame). DART needs to parse enough of the debugging
information to enumerate all the compile-time and run-time allocated floating point
arrays used by the entire program, their sizes and types, if available, and the entry
point of each subroutine with one of these arrays.

To understand how DART works, the two cases of compile-time allocation and
run-time allocation will be examined separately.

5.5.1 Compile-time allocation

Both C and Fortran support the use of either static or automatic fixed sized data
structures. A static variable is one which is allocated a fixed-size space at a fixed
location in the data segment in an executable’s memory map. Static variables may
be declared globally5, in which case they can be accessed from any point within a

5Global variables are called common variables in Fortran.
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program, or may have a local declaration, in which case they are only accessible
from within the enclosing subroutine or function. The distinction between local and
global variables, however, is only a lexical one which is enforced by the compiler.
Static local variables, just like global variables are stored in the data segment, and
values stored there are preserved for the entire lifetime of a program. From a
machine code point of view, static variables are read and written by hardcoding
their addresses into the instructions that access them.

From a DWARF perspective, a static variable is one whose location attribute has
a fixed address, that is to say the bytecode describing the location consists of the
DW OP addr opcode followed by the absolute address of the variable.

Automatic variables are ones which are assigned space when a subroutine or func-
tion is entered, and return the space when it is exited. This space is taken from
the function’s stack frame and is allocated for all a function’s variables at once by
decrementing the stack pointer at function entry, and increasing it again at function
exit. As such, an automatic variable has no fixed absolute address, however it
does have a fixed offset relative to the current stack frame. Automatic variables are
accessed from code by referring to a fixed offset from the frame pointer, and thus
depend on the value of the frame pointer when the function is entered.

In DWARF, the location of an automatic variable is defined relative to the stack
frame base, i.e., the bytecode of the location is the DW OP fbreg opcode followed
by an offset.

DART can automatically determine the base and size of a static data structure
based on the location, its data type, and the array bounds if it is an array. It can do
this before the guest program starts executing, and adds the memory range to an
internal watch list to monitor for reads and writes.

For automatic variables, DART can determine the entry point for the subroutine
it belongs to, and the offset and size of the variable relative to the stack. During
JIT compilation, DART instruments the entry point to the subroutine, and when
the subroutine executes, an instrumentation helper function is called that gets the
current stack pointer, calculates an absolute address for any automatic variables in
the subroutine, and dynamically adds the memory range to a watch list. When the
function exits6 DART removes the memory range from the watch list.

On most operating systems, the stack has a relatively limited size (by default on
Linux it can grow up to 8 MB). Because of this limit, using automatic variables for

6Determining function exit points in the general case is quite tricky, but for the codes considered
in this thesis, instrumenting the return instructions is sufficient.
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large data structures is regarded as a bad programming practice and is rarely done.
Given this, and since one of the assumptions made about the guest programs is that
they spend most of their time manipulating large and persistent data structures, it
may seem odd to pay any attention to automatic variables. The next section shows
why this is necessary.

5.5.2 Runtime allocation

float f_compile[1000];
f_compile[64] = 42.0;

float *f_dyn;
f_dyn = malloc(sizeof(float) * 1000;
f_dyn[64] = 42.0;
free(f_dyn);

Heap

Stack

Program data

Program code

0x8049000             f_compile } 4000 bytes

42.0... ...

8049000
+ 0 + 256 + 3996

f_compile

+64

Heap

Stack

Program data

Program code

0x8049000                 f_dyn } 4 bytes

12340000

malloced memory } 4000 bytes

f_dyn

42.0... ...

1234000
+ 0 + 256 + 3996

+64

malloced
block

8049000

Fig. 5.6: Dynamic and compile time allocation

Dynamically allocatable arrays have always been available in C, via array pointers
and the C memory allocator; and were added as a standardised feature to Fortran
90 via array descriptors and some extra keywords for the language. Arrays in C
are simpler, and so will be explained first.

A one dimensional array in C is nothing more than a specially typed variable that
points at the base address of the array. For statically allocated arrays, this storage
is allocated at compile time, as described above. For dynamically allocated arrays,
the programmer must use the malloc routine to allocate some storage, and then
assign the pointer malloc returns to the array pointer. The distinction between
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dynamically allocated and compile-time allocated memory is illustrated in Fig. 5.6.
The array pointer may be a global variable, or as is often the case, it may be an
automatic variable allocated on the stack. Once the array has been allocated, a
pointer to it is often passed as an argument to other functions which can then
operate on it. When the array is no longer required, space can be returned to the
system using free.

For multi-dimensional arrays, two approaches can be used. The one directly sup-
ported in the language is for an N-dimensional array to be a 1 dimensional array
of pointers to an N-1 dimensional arrays. This requires many pointers to be set up
at initialisation time, and means each array access involves N inherently sequential
pointer indirections, so the more common approach is to use an appropriately sized
1 dimensional array and have a small macro to calculate the offset into the 1-D array
based on the N array indices.

To monitor C array allocations, DART uses the debugging information to find a list
of variables that store global or local pointers7 to floats. DART immediately adds
the global variables to a ‘to be allocated’ watchlist. At function entry/exit points it
adds/removes the local variables to the ‘to be allocated’ watchlist as described in
Sec. 5.5.1. After malloc returns, the guest program will assign the pointer to the
memory allocated to one of these variables. When this assign occurs, DART will
detect the write to the array pointer, determine the size of the memory allocated,
and add the memory range to the watch list.

After the freeing allocated memory, C programs do not always update the cor-
responding pointers (by writing zero to them), so instead of watching for zero to
be written to an array pointer, DART instead intercepts the free routine. If it is
called with the address of one of the arrays on the watchlist, that memory range is
removed from the watchlist.

For Fortran, the situation is similar to that with C, except that, instead of having
array pointers, Fortran uses array descriptors. An array descriptor is a small opaque
data structure maintained by the Fortran runtime that contains a base pointer, the
data type of the array elements, the dimensionality of the array and the stride8 and
upper and lower bounds of each dimension. This extra data means that Fortran
code can pass an array as an argument to a subroutine without having to specify
its dimensionality or bounds as additional arguments. It also allows subsets of the

7That is to say static or automatic variables.
8The stride of an array is the number of memory locations between adjacent elements of a particular

dimension.
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array to be presented by creating a new descriptor with the same base pointer and
appropriately adjusted bounds and strides.

In Fortran, arrays are allocated and freed using the allocate and deallocate

keywords. Internally, these keywords call routines in the Fortran runtime library
that in turn call malloc to allocate enough memory, and assign the address returned
to the array descriptor’s base pointer. Similarly deallocate returns memory to the
system by calling free and marks the array as deallocated by writing zero to the
array’s base pointer.

This means that DART can handle Fortran dynamic array allocation almost identi-
cally to C, except that instead of watching an array pointer directly, it must find the
offset of the base pointer within the array descriptor, and watch that instead.

5.6 Metadata and tracing

Once the major data structures manipulated by the guest program are identified,
according to the earlier assumptions the sources and sinks that are the start and
endpoints of most of the chains of floating point calculations in the program are
then known. What remains is to find a way of ‘tagging’ these values as they flow
through the program.

For the purposes of simplifying DART’s implementation, it is assumed that only
32-bit floating point values are used in the codes examined. As with the assumption
of a 32-bit address space, this is not something fundamental to the design of the
denormal tracer — with additional implementation work, and some data structure
changes, the tracer could be adapted to deal with both 32-bit and 64-bit values, as
well as 64-bit addresses.

As will emerge in the next chapter, depending on the code in question, the as-
sumption of 32-bit values can lead to some rounding differences when comparing
simulated execution to direct execution, but it is possible work around this issue.

5.6.1 Tag storage

To perform the tagging, the 32-bit floats the program uses are assumed to be always
stored at addresses aligned to the nearest 4 bytes. This is an entirely reasonable
assumption, as unaligned loads and stores elicit a substantial performance penalty,
and all compilers and memory allocators will arrange data structures to avoid this
penalty unless explicitly instructed to do otherwise. As a consequence of this, the
bottom two bits of the address of a floating point value will always be zero, and
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there are 230 or approximately 1 billion distinct addresses where floats can be stored.

With this alignment assumption, all memory is divided into 4-byte words. Most of
the words will contain uninteresting values, but some will contain floating point
values to be traced by DART. To do this, Valgrind’s shadow memory is used to
associate a 4 bytes tag with every word of memory and with every integer and
floating point register.

... ...

5678

T=0 T=0 ... T=0

Primary map

Secondary map
(all uninteresting)

0

4

1233 1234

Address lookup 1234

0

1232

FFFC

T=FC3 ... T=1Secondary map
for 0x1234....

0

T=FC7

5678 FFFC

FFFF

...T=FBF

4

Fig. 5.7: Two level tag table

Because Valgrind tools share the same address space as the programs they are in-
strumenting, and because DART needs metadata for the entire address space, it
cannot store the tags directly in an array — that would require another 4 GB of
mostly wasted metadata storage. This, of course, is impossible — DART would
need the entire address space just to store metadata for the address space itself.
Instead, DART takes advantage of the fact that the address space is sparsely oc-
cupied, and that a lot of the space used will have predictable values. To do this,
the idea of a two level page table is borrowed from virtual memory implementa-
tions[Tan01]. Rather than treating the 30 significant bits of an address as an index
into a (huge) flat table, there are two levels of tables. The primary map is a 256 kB
table of 216 pointers to a set of secondary maps. These secondary maps are allocated
on demand and contain the tags for 214 32-bit words, or 64 kB worth of words. To
read the tag associated with a word, the top 16 bits of the word’s address act as an
index to the appropriate secondary map in the primary table, and the remaining
14 bits locate the specific tag in the secondary map. The savings come from using
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a special read-only secondary map with every metadata value set to ‘uninterest-
ing’ (interestingness will be defined shortly). When the primary map is initialised,
every element in it points to this special ‘all uninteresting’ secondary. This way,
an entire 4 GB of uninteresting address space can be covered with 320 kB of tables.
When a tag is written, if the primary map points at this special table, DART creates
a new copy of the all uninteresting secondary, updates the pointer in the primary
map to point to this new secondary, and writes the tag to the new secondary. This
two level arrangement is illustrated in Fig. 5.7.

5.6.2 Tag semantics

To trace floating point behaviour, three components are needed: Reads from the
memory ranges of major data structures must be detected and the values read from
these ranges tagged with the source address. Floating point calculations must be
recorded if they use one or more of these values, or values derived from these as
operands, or produce a denormal result. Finally, the floating point results need
to be identified and traced until they are written back to one of these major data
structure memory ranges.

To do this, a property called interestingness and its associated tag values are de-
fined. ‘Interestingness’ can be regarded somewhat like ‘taintedness’ in TaintCheck.
Marked memory ranges are those occupied by the major data structures identified in
Sec. 5.5.1 and Fig. 5.5.2. Values are interesting if they are in marked memory ranges,
or are copied from these ranges, or are the results of floating point calculations on
interesting values, or are the result of any floating point calculation if the result is
denormal. To meet these requirements, the tag word T is divided into three fields.
The top field is 30 bits in size, and it either stores the top 30 bits of an address, or
an identifier.

0131

Address/ID F I

Fig. 5.8: Tag word layout

The least significant bit of a tag is a flag called I, and it flags when the word is from
a marked memory range, or has a value copied from one of these ranges.

The second least significant bit is a flag called F. It flags whether the value is a new
value produced by a floating point operation with either interesting inputs or a
denormal output.
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This leaves three possible cases:

0131

0 0 0
}

Uninteresting

If I = 0 and F = 0 the word is uninteresting and not the result of a calculation, in
this case the other 30 bits are required to be zero also, and therefore T = 0 defines
the word as uninteresting and not to be traced. Requiring the top 30-bits to be zero
has two benefits — it simplifies the check for uninterestingness by removing the
need for a mask operation, and it allows for an optimisation of the two level tag
table scheme in Sec. 5.6.1. This optimisation is a simple form of garbage collection:
DART maintains a counter of how many new secondary maps have been allocated
since the last sweep, and after it grows beyond a threshold, it scans all the existing
secondary maps, and deallocates all secondary maps that contain nothing but T =

0 values (i.e., uninteresting tags) and replaces pointers to them in the primary map
to the special ‘all uninteresting’ secondary.

0131

0 0 1
}

Marked word

0131

Origin address 0 1
}

Interesting value

If I = 1 it is required that F = 0. I = 1 signifies the word is either copied from a
marked address, or it is at a marked address. If the latter is the case the top 30 bits
are set to zero, thus T = 1 identifies a word at a marked address, not just one copied
from a marked address. If a word is copied from a marked address, the I flag in the
new tag is set to 1, but the top 30 bits of the new tag is set to be the address copied
from. This allows a tag to record both the fact that the value is interesting, and its
source address.

0131

fval ID 1 0
}

Interesting new value

If F = 1 it is required that I = 0. F = 1 signifies an interesting new floating point
value. These come from denormal outputs to floating point operations (which are
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always interesting no matter how they are generated), or floating point operations
with one or more interesting floating point arguments, irrespective of whether the
arguments or result are normal or not. To trace floating point values, DART logs the
floating point calculation, its arguments, address and results, and assigns a unique
30-bit identifier to the value, called an fval. This identifier is stored in the top 30
bits of T.

5.6.3 Tag usage

From Sec. 5.1 we recall that the guest program machine code instructions are de-
coded into a simpler IR based on Loads and Stores from memory locations; Gets
and Puts from guest registers; assigns to an unlimited number of temporary values
that can be assigned to once but read from many times; and expressions composed
of operations on these temporaries.

5.6.3.1 Shadow temporaries

To complete DART, a policy is defined based on loads, stores and floating point
operations that propagates and updates tags, and show how that maps to Val-
grind’s µOps. Interesting values are actively propagated by adding relevant instru-
mentation statements, and anything that isn’t explicitly interesting is regarded as
uninteresting.

To do this, just as every memory location and every guest register has corresponding
tag in shadow memory, every temporary in the IR must also have a ‘shadow
temporary’ that holds the tag for that temporary. DART provides these shadow
temporaries by creating a table every time a basic block is instrumented. This
table holds a mapping between ‘real’ temporaries and shadow temporaries. The
table is sparse and the default value for each of the shadow temporaries is Tt = 0.
As DART instruments a basic block, it encounters statements that can propagate
interestingness (i.e., by loading a value from memory, or by performing a floating
point operation), and for each of these it creates a corresponding shadow temporary
and an instrumentation statement that calculates the correct shadow values to be
assigned to that shadow temporary.

5.6.3.2 Tag lifecycle

As described in Sec. 5.6.2, ‘interestingness’ is similar to ‘taintedness’ in TaintCheck.
To illustrate this, the full lifecycle of a value is described, and the propagation of
tags through each stage is explained.
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1. A lifecycle begins with a read of a value from memory. Therefore every load
instruction in the IR must be accompanied by a ‘call out’ to a helper function that
reads the tag for that address. The result of this ‘call out’ is assigned to a shadow
temporary in the IR. The load helper has the additional function of logging the
read if it is from a marked location (i.e., Tsrc = 1) and the value is denormal.
The logging reports the address of the read instruction, the value itself, and the
memory location it is read from. This allows DART to identify the source of
denormal values which are read directly from data instead of being computed
later.

2. This value may now be assigned to a guest register. In the IR this is done
using the Put and PutI statements with a temporary as an argument. This is
instrumented simply by inserting statements that write the associated shadow
temporary to the appropriate shadow guest register. No logging is needed for
this, as it is purely a ‘housekeeping exercise’ that copies a tag.

3. This value might then be read back from the register and written to memory, for
example to a variable on the stack. The register read phase is performed with
Get or GetI, and this is instrumented by adding a Get/GetI from the matching
shadow guest register and storing the result in a shadow temporary. Again, no
logging is required for this phase, as it simply copies a tag.

The write phase will be performed using the Store statement. All stores need
to be instrumented with a call out to a store helper function which has two
responsibilities. Firstly it needs to check the destination address in case the
guest code is writing to an array pointer or array descriptor as described in
Fig. 5.5.2 after allocating some memory. If this occurs, it needs to mark the
memory range (i.e., it needs to set Tr = 1 for every address r in that range.)

Secondly, the store helper needs to check if the guest is writing to a marked
memory range. It does this by reading the tag for the destination address. If
it is not a marked range, i.e., Tdst , 1, it will simply overwrite the tag at this
address with the tag of the value written. This has the effect of propagating the
interestingness (if there is any) to an unmarked memory location such as the
stack or a temporary variable. The Tdst = 1 case is discussed in a moment.

NB, it is entirely possible for a memory read and write to occur in the same
instruction without the value being stored in a guest register in the interim. An
instance of this is the instruction movl (%eax), (%ebx) which copies the value
at EAX to the location EBX. In this case the propagation will occur with the load
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and store as described in steps 2 and 3, except without the intervening Put and
Get.

4. At some point, one or more values will be operated on. If the operator is an
integer operator, i.e., one that performs integer arithmetic, logical operations,
shifts and the like, DART knows that the result cannot possibly be an interesting
value, as even if the input to the operator was an interesting float, the operation
itself will produce an integer as output, which by definition is not interesting.
This is because only in extremely unusual cases can integer operators perform
meaningful calculations on floating point values9. To ignore these operations,
DART simply adds no instrumentation for the operation in question, and does
not add a shadow temporary in to the sparse table. As a result, any when
trying to instrument any later statement in the basic block that uses a temporary
assigned to by an integer operation, a read from the shadow table will just get a
constant Tt = 0.

Floating point operators are instrumented with a ‘call out’ to one of two floating
point helper functions — one for unary operators and one for binary operators.
These are passed the tags for the operator arguments, as well as the result of the
operator. The helpers check if either of the arguments are interesting, or if the
result is denormal. If any of these conditions are the case, it will create a new
fval identifier for the result, and return that as the tag. It will also log the tags of
both the result and the arguments along with the address of the instruction and
the result calculated.

5. The resulting fval may be copied from and to registers, or from and to memory
in which cases the relevant parts of steps 2 and 3 will apply. The fval may also
be used as an argument to another floating point operation, in which case step
4 will be repeated. The log will show the fval as one of the arguments, and the
resulting tag will be another fval.

6. Finally, another store will occur, this time to a memory location in a marked mem-
ory range, i.e., a repeat of step 3, but with Tdst = 1. In this case interestingness—
i.e., the tag—should not be propagated any further, as a write to a marked
memory location is regarded as the end point of the lifecycle of a value. Further-
more, if the tag of the destination were overwritten, it would no longer be the
case that Tdst = 1, so it would no longer be a marked memory location.

9Integer operations such as logical OR with 0, multiply by 1 or add 0 completely preserve the
value, but these would be optimised away by a compiler, and a properly functioning compiler would
never use integer arithmetic on floating point values anyway.
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However DART does need to log the store so it can later retrieve the full history
of the value. There are four possible situations DART needs to be concerned
with, depending on whether the destination and the source value are normal
or not. A normal write on top of an existing normal value is uninteresting —
this is the usual state of affairs, and does not need to be reported. A denormal
write on top of either an existing normal or denormal is interesting, this has
the potential to propagate further denormals. Finally, a normal write on top
of an existing denormal is also of interest — this indicates a possible process
where denormals are destroyed. It also provides useful information for one of
the analyses performed later. In the three cases where DART reports the write it
logs the instruction that performs the store, the location the value is written to,
the value written, and its tag.

Appendix E has a detailed example of the IR and instrumentation for a short
sequence of instructions.

When executed under DART, the kernel of code in Fig. 6.5 will produce a sequence of
denormal loads, floating point operations and a store when it encounters denormal
input. A single iteration of this kernel will produce a trace log similar to Fig. 5.9.
This trace log can also be visualised as a graph of operations that culminates in a
store, as can be seen in Fig. 5.10. The trace log and graph do not have entries or
nodes for any of the integer instructions which update the array pointers. This is
because the integer instructions do not at any point manipulate interesting data.

0x08048730 LD: 0x042b0190 -> @0x042b0190

0x08048738 FP: @0x042b0190 + @0x042b1190 -> f1

0x0804873d FP: f1 + @0x042b098c -> f2

0x08048742 FP: f2 + @0x042b0994 -> f3

0x08048747 FP: f3 * uninteresting -> f4

0x0804874d ST: f4 -> 0x041b0980

Fig. 5.9: Trace log from an example jacobi kernel

One of the features of DART that this log does not illustrate is that only loads from
marked memory locations are logged. If values loaded from marked locations are
subsequently stored in other unmarked memory locations, and then loaded again
later, the second load is not logged, because the origin of the value can be traced
without recording intermediate stores. The tag says where the value originally
came from, and that is sufficient. Similarly, newly computed interesting values can
be stored to unmarked memory locations, and this is also ignored. Only the final
write to a marked location is logged. An example of this can be seen in the contrived
code fragment in Fig. 5.11. Fig. 5.12 shows only three of the instructions are logged:
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@042b0190

042b0190

042b0980

042b098c

042b0994

042b1190

f1

f2

f3

f4

@042b1190

@042b098c

@042b0994

x

+

+

+

uninteresting

Memory
locations

Interesting
values

Floating point
operations

Interesting
new values

...
080488e0

Fig. 5.10: Graph of operations from an example jacobi kernel

0x08048800: mov $0x20000000, %edi

0x08048807: mov 0x10000004, (%edi)

0x0804880e: mov (%edi), 0x4(%edi)

0x08048811: mov 0x4(%edi), 0x8(%edi)

0x08048814: flds 0x8(%edi)

0x08048817: fsqrt

0x08048819: fsts 0xc(%edi)

0x0804881c: mov 0xc(%edi), 0x10(%edi)

0x08048822: mov 0x10(%edi), 0x10000000

Fig. 5.11: Multi-copy code

the initial load, the floating point operation, and the store. The intermediate copies
are ignored. It is also interesting to note that the initial load, the final store, and the
intermediate copies are all performed by integer instructions. This is illustrated in
Fig. 5.13 where the missing nodes are shown with a dashed outline.

0x08048807 LD: 0x10000004 -> @0x10000004

0x08048717 FP: sqrt @0x10000004 -> f1

0x08048722 ST: f1 -> 0x10000000

Fig. 5.12: Trace log of multi-copy code

5.7 Summary

This chapter introduced the dynamic binary instrumentation framework Valgrind.
It examined taint analysis in languages such as PERL and discussed how other
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10000000

10000004

20000000

20000008

20000004

2000000C

20000010

20000014

√

@10000004

f1

@10000004

@10000004

f1

f1

Fig. 5.13: Graph of multi-copy code operations

tools use Valgrind’s shadow memory feature to perform taint analysis on arbitrary
binaries. I compared and contrasted taint tracing with denormal value tracing. By
constraining the problem domain, I specified a design for DART, a Valgrind-based
tool which traces the use of denormal values in binaries with sufficient debugging
information. This tracing is impossible for DIP or other exception-based profilers to
perform. I implemented DART and show how it operates on some small fragments
of code.

The next chapter shall show how the large amounts of tracing data produced by
DART can be summarised. Two detailed case studies are performed, one with a
simple C application, and another with a more complex Fortran benchmark.
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CHAPTER 6
Using the new profiling and tracing tools

This chapter describes two numerical codes, one written in C and the other in
Fortran 90, that suffer from excessive denormal arithmetic and shows what DIP, the
exception-based profiler from Sec. 4.4, and DART, the tracing tool from Sec. 5.4, can
tell about the program behaviour.

I show how the raw information logged by DART can be reduced and presented in
three different ways, each of which produces useful information..

Finally, I discuss the overheads and limitations of DART.

6.1 Programs

The first program, jacobi, is a small example written in C that solves the Laplace
equation in 2 dimensions using Jacobi iteration. The second program, 187.facerec,
is a more complex Fortran 90 code taken from the SPEC CPU2000 benchmarks.

jacobi is sufficiently simple to contain few surprises and can be used to verify that
all the parts of DART behave as they should. The same kernel has been used in other
publications [BA05] to illustrate how performance variability can be introduced by
denormal arithmetic.

187.facerec is a more substantial application based on computer vision research
done at Ruhr University Bochum in the mid 1990s [Lad93]. As part of SPEC
CPU2000 it represents a realistic numerical application, and its size, portability and
scalability make it convenient to analyse with DIP and DART.

6.1.1 jacobi

jacobi is a short program written in ANSI C that solves the Laplace equation in 2
dimensions using Jacobi iteration.

The Laplace equation
∂2ϕ

∂x2 +
∂2ϕ

∂y2 = 0

can be used to represent many physical phenomena. For example, when ϕ is the
temperature of a conductor, the solution to the Laplace equation gives the steady-
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state heat flow for the system; and when ϕ is electrical potential in a metal sheet,
the solution gives the steady-state voltage at every point in the sheet.

The Laplace equation can be solved numerically by splitting the plane into a grid
of discrete cells, ϕi, j, and defining an approximation of the first and second order
partial derivatives based on the differences between neighbouring cells.

Doing this produces the approximation

ϕ(n+1)
i, j =

1
4

(
ϕ(n)

i−1, j + ϕ(n)
i+1, j + ϕ(n)

i, j−1 + ϕ(n)
i, j+1

)
This equation is called the update equation, and the 4 cells on the right hand side of
the equation are called the stencil.

To produce a solution, the edge cells are held fixed, and an approximation gener-
ated by applying the update equation to each interior cell in the grid. A second
approximation is iteratively produced by applying the equation to every interior
cell in the first approximation, and this can be continued for sufficiently many
iterations to converge on the solution.

To implement this, two arrays of 32-bit floats, a and b, are allocated. a is initialised
with the desired initial and boundary conditions. Then N iterations of the update
equation are calculated. On even iterations a will hold the existing approximation
and b the new approximation, and on odd iterations the two arrays swap roles. For
each iteration the edge cells are copied directly from one array to the other, and the
interior cells updated using the update equation to calculate a new approximation
based on cell values from the old array.

Due to its simplicity, this algorithm is often used to illustrate parallelisation tech-
niques in high performance computing courses, however if the initial values are
chosen poorly the algorithm can generate large numbers of denormal values.

Consider, for example, the 1 dimensional Laplace equation, and the corresponding
update equation.

∂2ϕ

∂x2 = 0

ϕ(n+1)
i =

1
2

(
ϕ(n)

i−1 + ϕ(n)
i+1

)
Beginning with an initial approximation where every interior cell is 0, and the left
boundary is non-zero, the approximation om Fig. 6.1 evolves over a number of
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iterations:
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Fig. 6.1: Laplace steady state approximation after N iterations

As the iterations pass, the non-zero boundary value is ‘smeared’ out across the
interior cells. Because of the repeated averaging, the values decay exponentially
towards zero, and if there are enough cells in any direction denormal values will
occur in a large band of interior cells.

This can be avoided by initialising all the interior cells to a negligibly small normal
value such as 10−20, and DIP and DART should detect and highlight the cause of
this problem.

6.1.2 187.facerec

187.facerec is a simplified version of an image database search application applied
to a set of face images.

Image features, for this application, are calculated by the Gabor Wavelet Transform.
[Lad93] This takes an input image and performs a 2D FFT on it. Once in the
frequency domain, it takes a group of 40 kernels described below, and for each
of them multiplies every pixel in the image by the corresponding kernel value,
and applies an Inverse Fast Fourier Transform (iFFT) to the result. The set of 40
transformed values for each input pixel is called a ‘jet’ and each jet is stored as a
normalised absolute value. Finally, a graph is fitted on top of the image, optionally
transformed in some way, and ‘graph extraction’ is performed by reading the jets
at each graph node location into a features array.

The kernels are biologically motivated — they behave like an abstract version of the
simple cells in V1 in the visual cortex which detect localised frequency components
in an image. There are 5 ‘levels’ of kernels, each generated from the equation below
by varying k, with smaller ks leading to a more spread out waveform:

K(x, y) = e−σ
2(x2+y2)/2k2
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Each level of kernel is offset from the origin and rotated at 8 angles from −3π/8 to
+4π/8 producing a total of 40 different kernels which are used for the multiplication
in the transform above. The transform has the effect of picking out local sets of
frequencies at various points in the input image.

Fig. 6.2: 187.facerec local frequency measurements[PKvdM96]

At startup, 187.facerec reads a configuration file, and uses this to load a set of
256×256 pixel greyscale images of people’s faces. One of these serves as a ‘canonical’
image used to calibrate the system, a group of images called the ‘album gallery’
made up the database to be searched, and a final set called the ‘probe gallery’ are
the search query terms.

The canonical image is represented by applying the Gabor Wavelet Transform to it,
superimposing a graph (in this case a rectangular 2D grid of nodes) on top of the
transformed image, and then applying the graph extraction directly to this grid.

Each image in the album gallery also has the Gabor Wavelet Transform applied,
and the graph superimposed, but then a graph fitting stage, which consists of a
global move step takes place. The global move translates the entire graph in the X
and Y axes over the image and searches for the offset that maximises the similarity
between the canonical image and the album image. After this is found, the graph
extraction describe above is applied, and the graph parameters stored for later use.
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In the recognition phase, each image in the probe gallery is loaded, the Gabor
Wavelet Transform is applied to it, and the global move step from graph fitting
stage occurs. After this, the probe image is compared to every image in the album
in turn. For each album image, a local move step occurs. This works by randomly
visiting all the nodes in the probe graph in what is termed a sweep, and seeing if
moving that node a small distance in the X and Y axes will improve the similarity
between the probe and album images. If it does, the result is saved, and a hop is
said to have occurred. The sweeps repeat until no hops occur for an entire sweep.
For a given probe image, the album image with the highest similarity is chosen as
the match to the probe image.

As can be discovered fairly easily with DIP, many denormal calculations occur in
this application — primarily in the Gabor Wavelet Transform routine and to a lesser
degree in the iFFT. However, it is far from obvious why these denormal values are
occurring, and what can be done to avoid them.

6.2 Analysis

As described in Sec. 4.4, a profiling library such as DIP can use exception trapping
features of the 80x86 to log when denormal arguments use in floating point instruc-
tions. As noted in Sec. 4.4.6 a simple tool like this has a number of limitations,
however one of the limitations not mentioned is the huge slowdown inherent in
such an approach and the large volumes of trace log produced. A program that
runs for only a few seconds might execute on the order of 10 million denormal
operations, and produce a gigabyte of trace log. Clearly this is unwieldy and will
not scale well to programs with longer runtimes. Furthermore, the raw logs in
themselves give little little insight into the behaviour of the program.

To avoid having to process these volumes of logging information, some form of
data reduction must be applied to the logs, preferably as they are created. Three
kinds of reduction have been implemented for DIP and DART.

6.2.1 Instruction profiles

In the case of DIP, there are only two pieces of information in each logging item:
the time the event occurred and the address of the floating point instruction itself.

Unless the order in which operations occur is of interest, the timestamps and
the ordering it provides are unnecessary. This leaves a single piece of data: the
instruction address. A natural way to condense this data is simply to record the
number of times a particular instruction is logged. If there is no need for ‘phase
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analysis’ where the behaviour of a program is examined at different stages of its
execution, the total counts for each address can simply be reported after the program
completes. If phase analysis is required, the totals can be reported at specific times
during the program’s execution.

One data structure suitable for storing the address counts is a hash table. Given the
sparse distribution of the addresses involved, the two level tables from Sec. 5.6.1
could also be used.

To facilitate phase analysis, a means of telling DIP to dump the current totals could
be provided by getting it to install a signal handler for one of the user signal handlers
e.g., SIGUSR1 and getting either the program itself or an external program to send
a signal to the process.

Instruction profiling can just as easily be added to DART too. If the two level table
approach is used, instead of adding an extra word (or more) for each entry in the
second level maps, it would be better to use a separate set of tables. The reasoning
behind this is that the code and data occupy disjoint regions of memory, so larger
secondary entries would needlessly double (or more) the size of the secondary
maps used for the data areas only to store zeroes in the counts for those addresses.
Likewise, the code areas will never contain data, and memory will be wasted storing
always-uninteresting tags for those blocks of memory.

Rather than using the potentially brittle method of signal handling to request that
DART dump the current totals, use can be made of the Valgrind ‘client request’
functionality. This provides a set of macros that compile to an unusual sequence
of instructions in the guest program that perform no action. When the Valgrind
x86 parser detects these instruction sequences, it adds a host call out to the IR that
when executed calls the appropriate request handler in DART.

6.2.2 Array heatmaps

Examining instruction profiles can be helpful in some scenarios, but often they show
little about the patterns of data flow throughout a program, or the evolution of the
distribution of denormals in a data set over time. Sometimes this extra information
is necessary to gain insight into the overall behaviour of the program.

DART reports all the denormal loads and all the denormal stores to marked arrays.
The tag metadata can easily be extended with a pair of counters storing how often
denormals are read or written to each marked address, and corresponding code
added to the load and store helper routines to increment the counters every time a
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denormal load/store occurs. As occurred with the instruction count metadata, the
read/write counts only apply to specific areas of memory, so instead of bloating all
the tag tables with extra unused data, it is better to store the read/write counts in a
separate set of tables.

This is illustrated in Fig. 6.3. In it are three memory locations:

• 10000000 is a location in a marked data structure. Denormal values have been
read from it 100 times, and denormal values written to it 4 times. Its tag value is
thus T10000000 = 1, and the read/write count values are R10000000 = 100, W10000000 =

4.

• 20000000 is not in a marked structure, therefore denormal read/write counts are
not tracked for it. It currently stores a value copied from the marked memory
location 10000004. Its tag value is T20000000 = 10000005 (the I flag is set) and
R20000000 = 0, W20000000 = 0.

• 30000000 is neither a marked location, nor does it store an interesting value.
Therefore T30000000 = 0, R30000000 = 0, W30000000 = 0.

As with the ordinary tag tables, the read/write information is stored as a two level
table. 64 kB blocks whose read/write counts are all zero will share one immutable
all-zeros secondary table, minimising the overhead of storing the extra information.

Thanks to the DWARF debugging information and knowledge of the runtime al-
location methods, the name, location, dimensionality and bounds of the marked
arrays are all known. This information can be used to identify specific memory
ranges, and periodically create a ‘heat map’ of the denormal reads and writes to a
particular array. These heat maps can be saved as images (perhaps coding reads
as red and writes as blue) and later viewed as animations or subjected to further
analysis. The animations can reveal a lot about the behaviour of an algorithm,
particularly if related patterns of denormal accesses occur in different arrays.

A less detailed, but more quantitative approach can be taken simply by summing
all the read and write counts for each array, and reporting the totals for each array
at regular intervals. These totals can be interpreted in a number of ways.

• If an array has only a few denormal writes, but many denormal reads, it is likely
to be a source of denormals in a program — the writes were the denormals created
at initialisation time, and the reads are the repeated accesses since then.
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Fig. 6.3: Distinct tables for tag and read/write counts

• If the denormal read and write counts are similar, then either the denormals
are propagated within the array, or the array is a data structure used to store
intermediate calculations.

• If the denormal read counts are low, but the write counts are high, the array is a
denormal sink. Either the values in this array are frequently overwritten without
use, or some code is filtering the denormals from the array after they are first
written.

6.2.3 Array origin maps

Generating read/write heatmaps for the marked arrays in a program can reveal a
lot about its behaviour, but sometimes the programmer would like to ask ‘where
did these values originally come from?’

As described in Sec. 5.4 and detailed afterwards, DART uses the simplifying as-
sumption that most of the computation in the guest programs will be on values in
the marked data structures of the program. Thus guest values have a short lifecy-
cle which starts at a read from a marked array, followed eventually by a chain of
one or more floating point operations which generate temporary fval results, and
finally a write to a marked memory location. In some sense, a group of related
read/calculate/write events all with the same source and destination arrays will
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define a small phase of a program’s execution. For example, array initialisation,
element by element operations on an array, FFTs, convolutions, and stencil kernels
all fit this pattern. If, for a given phase, the source of the denormals in the destina-
tion array can be determined, then by backward chaining, the source of denormals
can be tracked across multiple phases.

As with the heatmap generation, the origin metadata is stored in a new set of two
level tables in DART that hold a fixed number of origin counters for each word in
memory. These tables will only be updated when a value is written to a marked
memory location. For this to be practical, there must be a small number of marked
origin arrays, perhaps on the order of 10 or so, each identified by a small integer,
making it feasible to add this many counters worth of overhead to every marked
location.

When a store to a marked location occurs, DART will have to effectively ‘trace
backwards’ through the tree of operations that occurred to create that value. In
the case of fvals, DART finds the source arguments to the floating point operation
that created the fval, and recursively finds the sources to those in turn until it ends
up with a list of uninteresting tags or source addresses. The uninteresting tags
are discarded, as are the source addresses if the values read were not denormal.
Finally, for each remaining source address, the array it belongs to is found by
bounds checking. Then the corresponding origin array counter in the destination
metadata is incremented.

Once this metadata is available, DART can periodically produce heatmaps for a
specific array, except instead of the heatmaps showing denormal reads and writes,
they show writes to array a that derive their values from denormal reads from array
b.

6.2.4 Optimising origin tracking

If origin tracking is performed naı̈vely as described, DART will need to store the
entire trace of interesting loads, floating point operations and stores, and search
backwards through them to find the sources. This is both extremely slow and
consumes huge amounts of memory. Instead, the algorithm can be optimised as
follows:

• The tag metadata tables are augmented with a 1 bit denormal flag for every word
of memory, increasing the secondary map size from 64 kB to 66 kB. This flag is
set to 1 whenever a word is loaded from a marked memory location and the
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word’s value is denormal.This word is necessary because when backtracking is
performed, DART needs to know whether the word was denormal when it was
first read — the memory location may later have been overwritten with a normal
value.

The machinery that propagates the tag will need to be updated to handle two
pieces of metadata instead of just one. Fortunately, there are two shadow guest
state structures available in Valgrind, and Valgrind provides as many extra tem-
poraries as are needed.

• When a floating point operation occurs, it takes one or two arguments and
produces an fval. If the fval is denormal, its tag denormal flag is set to 1. A
two level table is created called fval info which is indexed by fval IDs. Entries in
fval info store the tag for the two arguments which were used to create the fval,
the fval denormal flag, and optionally the address of the instruction that did so.
If there is only one argument, the second argument is set to a special empty tag
value.1 This table is used to trace recursively from the root fval through the tree
of fvals and operations that created it, until ultimately memory load leaf nodes
for marked or uninteresting memory are reached.

• When a store to a marked location occurs, the origins tree can be build using the
same algorithm as described above. The source arguments to an fval are found
by retrieving the arguments from the fval info table, applying this recursively
until a list of addresses remains. These addresses are mapped to the arrays they
occur in, and for each of these, the appropriate origin counter in the destination
metadata is incremented.

Optionally, when creating this list all stores of not denormal values can be ignored,
or even all intermediate fvals that are not denormal, however it may be useful
to see all the sources that could potentially have ended up generating denormal
results if some intermediate calculation had not normalised the value.

A simple mathematical expression (a × b + c)/d might produce the tags in Fig. 6.4
and the corresponding fval info in Table 6.1.

6.2.5 Garbage collecting fvals

This optimisation functions well, but since large numbers of temporary fvals are
created, a scheme is needed to clear and remove fvals from fval info once they are

1This is defined to be T=ffffffff, as no valid tag can have both I and F set at the same time.
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Fig. 6.4: Tags for a simple expression

fval Instruction address Argument 1 Argument 2
f1 0x08048556 From 0x042b0190 From 0x042b0194
f2 0x0804855a f1 From 0x042b0198
f3 0x0804855e f2 From 0x042b019c

Table 6.1: fval info table for a simple expression

stored to memory and no longer used. To do this, the following properties of fvals
are observed:

1. fvals are similar to IR temporaries in that unless they are explicitly stored some-
where, they will cease to exist once DART leaves a basic block. Also like tempo-
raries, fvals can be written into either registers (in the guest state), or memory
locations.

2. An fval can potentially be used for a store to a marked memory location if there
is a copy of it anywhere in memory or in the register file. Information about it
must be kept ‘alive’ as long as any copies of it exist, since if a store does occur,
DART will need to discover which arguments it was derived from as a part of
the recursive backtracking.

3. An fval may have no copies of it either in the register file or in memory, but
DART may still need to keep a copy of the fval if a second fval derived from this
fval is still alive. This occurs when an fval is used as one of the arguments to a
floating point operation.

127



These constraints can be met by adding a reference count field to each fval info
entry. If the reference count is non-zero, the fval is ‘alive’. It is incremented
for every reference to it that exists, and decremented when those references are
removed, and once it is decremented to zero the fval is ‘dead’ and the entry in
fval info can be wiped. An entry is wiped by setting the reference count and flags
to zero, and the argument fields to the empty value.

To honour property 2, every time the fval is written to unmarked memory or
registers (i.e., a copy is made of it and its tag), the reference count is incremented.
Each time the fval is overwritten by something else (i.e., a copy is destroyed), the
reference count is decremented.

To honour property 3, every time an fval is created (as the result of a floating
point operation), if either of the arguments is an fval, their reference counts are
incremented — the fval must keep its ‘parents’ alive for as long as the fval itself
lives. If an fval’s reference count is decremented to zero, it is first wiped and then
the reference counts of its parents are decremented also — after wiping an fval
‘lets go of’ any references to its parents. This decrementing may in turn reduce the
parents’ reference counts to zero in which case they too must wipe themselves and
decrement the reference counts of their parents, and so on recursively.

Once this reference counting scheme is in place, DART can periodically compact
the fval info structure by scanning the entire fval info table and deallocating the
secondary maps that contain nothing but wiped entries in the same way as described
in Sec. 5.6.2.

This description might suggest that there is race condition at the point where a new
fval is created. When an fval is created, its reference count is zero (but one or both of
its arguments are non empty). Since there is an interval between the fval’s creation
and the point where its reference count is incremented from zero when it is used as
an argument to create another fval or stored to memory/a register, it would appear
a compaction at this point would remove the value. However, the compaction is
not where the garbage collection is really performed. The garbage collection occurs
when the value is wiped. The compaction merely reduces the redundant storage
by removing unneeded all-empty secondary maps. Since a newly created fval will
have at least one non-empty field, the secondary containing it will not be removed.

This does bring up the possibility of an fval being created but never stored or used
to create another fval. Such an fval would never be removed since there would
be no references to it, and nothing to decrement its reference count. In practice
though, Valgrind’s IR generator will not produce these µOp sequences, and even if
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it or DART’s instrumentation did, they would be optimised out by an IR dead code
elimination pass before the basic blocks are compiled.

6.3 Experiments

To evaluate the effectiveness of DIP, DART, and data reduction, each of the data
reduction methods is applied to both jacobi and 187.facerec.

All the tests are run on a Linux machine with a 2.0 GHz Core Duo T2500 CPU and
2 GB of 667 MHz DDR2 SDRAM.

A standard install of the Debian testing distribution ‘squeeze’ from July 2009 is
used. The kernel version is 2.6.26-2-686, and gfortran-4.3.3-10 and gcc-4.3.3-10 are
used as the compilers. The version of Valgrind used for DART is r10229 from the
SVN repository. This was the most current development version at the beginning
of June 2009 and is between the stable releases 3.4.1 and 3.5.0.

Both jacobi and 187.facerec are compiled with DWARF debugging information
enabled. 187.facerec is compiled at optimisation level -O1 to make the profiling
information clearer, and jacobi is compiled at optimisation level -O3.

The precise setup of the experiments are not strictly important, the relevant details
are that a 32-bit version of Linux for the x86 is used running on an Intel-based
CPU2 and the compiler generates x87 floating point instructions and DWARF3
debugging information. The application performance is independent of whether
the OS is running directly on the hardware or in a virtual machine, as apart from
when DIP is used, no floating-point exceptions are triggered by the experiments
that might require intervention by the VM hypervisor.

6.4 Profiling and tracing jacobi

jacobi is run with a 512 × 512 grid of cells for 768 iterations. The edge cells are
initialised to 1.0 and the interior cells to 0.0.

6.4.1 Using DIP

The program takes approximately 5.52 seconds to run without any profiling. With
DIP described in Sec. 4.4 and the logs redirected to /dev/null to remove the overhead
of writes to disc, the runtime increases to 152.3 seconds, a slowdown of 27.6×. Some
of this overhead is in the string formatting and log printing. Replacing the logging
with the basic instruction profiling from Sec. 6.2.1 reduces the runtime to 109.3

2We see in Appendix H that AMD CPUs have different performance characteristics.
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0x08048730: flds (%edi)

0x08048732: add $0x1,%eax

0x08048735: add $0x4,%edi

0x08048738: fadds (%esi)

0x0804873a: add $0x4,%esi

0x0804873d: fadds (%ebx)

0x0804873f: add $0x4,%ebx

0x08048742: fadds (%ecx)

0x08048744: add $0x4,%ecx

0x08048747: fmuls 0x080488e0

0x0804874d: fstps (%edx)

0x0804874f: add $0x4,%edx

0x08048752: cmp $0x1ff,%eax

0x08048757: jne 0x08048730

Fig. 6.5: jacobi kernel instructions

seconds, a slowdown of 19.8×.

If jacobi is configured to initialise the interior cells to a normal nonzero value (e.g.,
0.1), this avoids the unnecessary denormal arithmetic, resulting in an executable
that runs almost twice as fast (2.81 seconds) when the profiling is disabled. With
profiling enabled the runtime increases by a tiny fixed amount (0.03 seconds) due
to the time taken to load the profiling library. Since DIP only incurs an overhead
when a floating point exception occurs, and there are no exceptions in this modified
run, there is no other slowdown.

The computational core of jacobi is this single statement in a nested loop, where
cur and prev are arrays of 32-bit floats.

for (i=1; i<N-1; i++) {

for (j=1; j<N-1; j++) {

cur[i*N + j] = 0.25 * (

prev[(i-1)*N + j ] +

prev[(i+1)*N + j ] +

prev[ i *N + j-1] +

prev[ i *N + j+1]);

}

}

This compiles to the code in Fig. 6.5. There is a floating point load, 3 adds, a multiply
and a store.

DIP reports denormal reads for the following addresses:
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Address Count Instruction
0x08048730 1,075,922 flds prev[...]
0x08048738 1,075,922 fadds prev[...]
0x0804873d 1,075,922 fadds prev[...]
0x08048742 1,075,922 fadds prev[...]
Total 4,303,688

Table 6.2: Denormal exception profile for jacobi

As expected, there are an equal number of denormal argument traps for the load and
the 3 adds. Perhaps surprisingly though, the multiply and store cause no denormal
exceptions. The reason for this is straightforward but requires examination.

The flds generates a denormal exception because its argument—the 32-bit value
read from memory—is denormal. This value is written to the FPU register at the
top of the stack. On the x87, all FPU registers are 80 bit extended precision floats
with 15 bits of exponent and 64 bits of mantissa with an explicit leading 1. When
a value is loaded from memory, it is automatically converted to extended format,
and any arithmetic on it will also occur in extended format. Although it is possible
to put the FPU into modes where the mantissa is rounded to 53 or 24 bits after
each operation rather than the full 64 bits of the 80 bit format, the exponent is not
similarly reduced. Thus the exponent is always 15 bits — larger than the 11 bits of
double precision and the 8 bits of single precision.3. This means that the value on
the stack is now normal.

When the following fadds occur, they also generate denormal exceptions because
their 32 bit argument is denormal. However they too are converted to 80 bit
extended precision on reading, and the result of adding even the two smallest
single precision denormal numbers is well within the range of the 15 bit exponent,
and thus remains normal.

Similarly, for the fmuls, the memory-based argument—a constant 0.25—is normal
and will not generate a denormal exception, and the result of the multiply will
reduce the exponent by 2, keeping it well within the range of extended precision
normals.

Finally, the fstps instruction’s argument is the top register on the FPU stack. From
the above, this will definitely be an 80 bit normal, so will not generate a denormal
argument exception. The value written to memory will be converted from 80 bits

3The smallest possible single precision denormal is 2−23
× 2−126 = 2−149 which is hugely larger than

the smallest normal extended precision number (2−16382) due to its 15-bit exponent.
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to 32 bits, and this value may well be denormal, however this does not generate
a denormal exception, but rather an underflow exception, which DIP does not
monitor due to the extra complications it involves.

There are further consequences to the x87’s floating point rounding which will be
examined shortly.

6.4.2 Using DART

Tracing jacobi using 1.0 for edge cells and 0 for interior cells with DART takes 72.5
seconds to run. This is 13.1× slower than the jacobi running natively. Interestingly,
this is faster than the runtime under DIP, despite the significant overhead for every
instruction in the guest program. When there large numbers of denormal values,
the cost of trapping is higher than the cost of simulation.

However tracing jacobi using 1.0 for edge cells and 0.1 for interior cells under
DART takes 62.1 seconds to run. This is 21× slower than jacobi running natively,
showing that the fixed per-instruction overhead is approximately 20×.

6.4.3 Comparing results from DIP and DART

DART generates the following profile for jacobi:

Address Loads FP ops Stores Instruction
0x08048730 4,477,168 flds prev[...]
0x08048738 4,477,168 4,306,412 fadds prev[...]
0x0804873d 4,477,168 4,252,566 fadds prev[...]
0x08048742 4,477,168 4,216,460 fadds prev[...]
0x08048747 4,477,184 fmuls 0.25
0x0804874d 4,477,144 fstps cur[...]
Total 17,908,672 17,252,622 4,477,144

Table 6.3: DART denormal profile for jacobi

The table shows that DART reports a load for the flds instruction; a load and a
floating point operation for each fadds; only a floating point operation for the fmuls
(since the load is normal, and the second argument is from the stack); and stores for
the fstps instruction. Already this gives more information than provided by DIP.

When these results are compared to the results given by DIP, the overall pattern
is seen to be the same — an equal number of denormal loads for each of the flds

and fadds instructions. However, the total number of denormal loads reported
by DART is more than 4.1× that reported by DIP. To explain this the differences
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between Valgrind’s floating point implementation and that of the x87 need to be
examined.

As part of its guest state, Valgrind mimics the x87 floating point stack, which stores
80 bit values. However, in Valgrind, all floating point arithmetic on the stack
is ordinarily performed using 64 bit long floats and rounded to the nearest value.
When the values are stored to memory, these results are converted to the appropriate
format whether that be 32-bit, 64-bit or 80-bit floats, so that if the program examines
memory the results are in the correct format. Furthermore, to simplify DART, all
floats are assumed to be 32-bit floats, so all intermediate calculations are in fact
performed at 32-bit precision. Since the stencil has a chain of 3 fadds each of which
can lose half a unit of least precision, and the numbers involved at the edge of the
denormal ‘wavefront’ are tiny and decreasing in size, this repeated rounding leads
to the values in this area being smaller than if they had been calculated to a higher
intermediate precision.

This behaviour can be simulated directly on the x87 by compiling jacobi with the
-O0 compiler switch. This turns off all GCC’s compiler optimisations, and instead
of emitting arithmetic instructions that read one argument directly from memory
and the other from the stack, GCC emits separate load and arithmetic instructions,
presumably mirroring the compiler’s internal Register Transfer Language (RTL)
more closely.

Because of the separate instructions, the rounding that occurs between each opera-
tion is the same as with DART. If DIP is used on this unoptimised binary, exactly the
same number of denormal exceptions are reported as denormal loads with DART.

...

0x0804876f: flds (%eax)

...

0x08048783: flds (%eax)

0x08048785: faddp %st,%st(1)

...

0x0804879d: flds (%eax)

0x0804879f: faddp %st,%st(1)

...

0x080487b3: flds (%eax)

0x080487b5: faddp %st,%st(1)

0x080487b7: flds 0x8048950

0x080487bd: fmulp %st,%st(1)

0x080487bf: fstps (%edx)
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...

0x080487cc: jle 804874c

However, the precise number of denormals counted is less important than how
they’re distributed and how they are propagated. DART can provide both of these
details.

6.4.4 Denormal heatmaps

DART’s heatmap mode described in Sec. 6.2.2 can be used to come to an under-
standing of where the denormals are in jacobi’s data structures.

Firstly, the heatmap provides the with the unsurprising information that both de-
normal loads and stores are divided almost perfectly evenly between the two arrays
in the program, a and b. This is unsurprising as jacobi alternates between using
which array is the source and which is the destination for each iteration.

Array Loads Stores
a 8,914,864 2,228,716
b 8,993,808 2,248,468
Total 17,908,672 4,477,184

Table 6.4: Denormal loads/stores for jacobi arrays

Secondly, plotting the heatmap at different points in time, say after 100 and 200
iterations as in Fig. 6.6(a) and Fig. 6.6(b), gives the more interesting result that
the denormal writes occur as a wavefront spreading from the edges towards the
centre of the arrays. This wavefront moves inwards over time, and the number of
denormal reads and writes that occur towards the centre of the array are higher
than towards the edges.4

Closer inspection will show why this must be: towards the centre of the array,
the values of the cells are very close to zero, and the neighbouring cells are only
slightly higher, so the averaging process applied by the stencil is relatively slow at
increasing a cell’s value out of the denormal range. Nearer the edges, the relatively
large values of the edge cells have a more direct influence on a cell’s value, and its
value increases more quickly as a result. Eventually, if iterated for long enough,
every cell’s value increases above the denormal range, and after continued iteration
converges on the edge value.

4For printing purposes, these images have all been normalised to increase the contrast. In the
unaltered images, the heatmap at 100 iterations is much fainter than it appears here.
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(a) After 100 iterations; denormal writes to array a (b) After 200 iterations; denormal writes to array a

Fig. 6.6: Heatmap showing sweep of denormal averages produced by jacobi

Examining the heatmap closely, it can also be seen that the cells along the diagonals
seem to have lower denormal counts than their neighbours. This is because the
stencils of the corner cells covers two edge cells, not just the one of the rest of the
boundary cells, thus their values are higher and move out of the denormal range
earlier.

Origin tracking can also be applied to this code, however the results (Fig. 6.7(a)
and Fig. 6.7(b)) are not particularly interesting. Origin simply reveals that all the
denormals in array a come from calculations on values that originate from b, and
vice versa, something which was already known. An origin map of the denormal
values in a that derive from denormals in b will look very similar to the heatmaps
above. This is unsurprising, as the structure of the stencil already shows that a cell
derives its value from its neighbours, causing values to spread like a wavefront.
There are more denormals towards the centre of each array, because it takes the
longest for the wavefront to reach there, and the edge values influence on these
cells is very indirect.

In fact, in this case, what the origin map shows is a subset of what the heatmap
contained: The heatmap shows all denormal loads and stores, including the denor-
mal stores that come from averaging very small normal numbers with zeros. The
origin map only shows the denormal stores that came from averaging one or more
denormal loads.
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(a) After 100 iterations; map of denorms in a from b (b) After 200 iterations; map of denorms in a from b

Fig. 6.7: Map of number of denormals in jacobi array a derived from b

6.5 Profiling and tracing 187.facerec

187.facerec is compiled as described and run using the test dataset. This uses
an album and probe gallery each with two images. One of these image is the
canonical image. Run directly on the host hardware, the runtime of 187.facerec
is about 5.1 seconds. This is very short, and as the 187.facerec documentation
notes, the runtime of each stage increases either with the sum of the number of
images in the probe and album gallery, or the product of the number of images in
the two galleries. Two larger datasets are available if a longer runtime is needed,
but they are unnecessary for these tests — the denormal behaviour of the code can
be determined with the smallest dataset.

6.5.1 Using DIP

Run directly on the hardware, the runtime of 187.facerec is 5.1 seconds, and under
DIP, the runtime is approximately 18.1 seconds, a 3.5× slowdown.

DIP produces the profile in Table 6.5 for 187.facerec

On inspection the debugging information shows that the gaborRoutines.f90 instruc-
tions lie in the subroutine GaborTrafo which applies the Gabor Wavelet Transform
described in Sec. 6.1.2. This multiplies each pixel in an image by the correspond-
ing pixel in a scaled and translated kernel, and generates almost 53% of the total
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Address Source Count Percentage
0x0805154a gaborRoutines.f90:110 604,000 26.430%
0x08051542 gaborRoutines.f90:110 604,000 26.430%
0x0804a8aa cfftb.f90:291 131,016 5.733%
0x0804a87d cfftb.f90:287 130,505 5.711%
0x0804a8c7 cfftb.f90:293 111,952 4.899%
0x0804a89d cfftb.f90:289 111,953 4.899%
0x0804a895 cfftb.f90:289 93,624 4.097%
0x0804a8bc cfftb.f90:293 93,508 4.092%
0x0804a8d0 cfftb.f90:294 93,508 4.092%
0x0804a885 cfftb.f90:287 83,471 3.653%
0x0804a8af cfftb.f90:291 83,033 3.633%
0x0804a8f8 cfftb.f90:301 64,776 2.835%
0x0804a8ff cfftb.f90:302 64,776 2.835%
0xb7ee9660 libm expf() 15,100 0.661%
Total 2,285,250

Table 6.5: Denormal exception profile for 187.facerec

denormal exceptions.

The instructions in cfftb.f90 all lie in the PassB4 subroutine, which is the first stage
of the butterfly transform used by the 1D iFFT subroutine in cfftb.f90. In total,
this generates 46% of the denormal exceptions in the test program. The 1D iFFT
is only called from the FFT2DB subroutine in fft2d.f90 which performs a 2D iFFT.
FFT2DB, in turn is only called from two places — GaborTrafo, as part of the wavelet
transform; and from ReadImage to upsample the image. The image has a 2D FFT
performed on it, is padded with zeros in the frequency space, and then a 2D iFFT
to convert back to an upsampled image. Without further information, such as a
stack trace, it is difficult to say which of GaborTrafo or ReadImage is responsible
for most of the denormal FFT values.

Finally, the 32-bit ex function in the standard math library generates a very small
number of denormal exceptions (less than 1% of the total). This function is only
called from two places — once in the body of GaborTrafo, and in an inner loop of
the ComputeKernel routine which initialises the five levels of kernels described in
Sec. 6.1.2.

Based on the above, it is difficult to see any significant pattern to the flow of
denormals through the application. An examination of the 1D iFFT code shows that
PassB4 is the first of a sequence of butterfly passes, and that denormal exceptions
do not occur for any of the other passes. So it could be assumed that the inverse
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FFT destroys the denormal values passed to it.

6.5.2 Using DART

Running187.facerecunder DART takes about 185 seconds on the test dataset. This
is approximately 36.3× the runtime of the 187.facerec running normally. Running
187.facerec under the ‘none’ Valgrind tool, which performs all the translation and
compilation steps, but adds no instrumentation produces a runtime of 23.7 seconds
or 4.6× slower, leading to an overhead of 7.8× for the denormal tracing functionality.

Since DART can monitor all the denormal floating point operations, and loads and
stores from and to marked addresses, it generates a considerably more compre-
hensive profile than the one produced by DIP. A complete profile can be found in
Appendix F, and a summary of that profile is discussed here.

Address Source Loads FP ops Stores
PassB4 in the 1D inverse FFT
0x0804a64b-985 cfftb.f90:267-308 3,918,747 11,454,638 2,942,303
Array copy in FFT2DB
0x0805035e-77 fft2d.f90:172 976,444 0 976,444
Transpose in FFT2DB
0x080504f5-fb fft2d.f90:182 0 0 684,919
Fortran complex array transpose
0x040a48a0-b5 gfortran transpose c4 684,919 0 0
GaborTrafo
0x08051542-616 gaborRoutines.f90:110 604,000 2,401,884 976,444
libc’s memcpy
0x041c9b76 memcpy 604,000 0 0
CFFTB1 in the 1D inverse FFT
0x0804b32a-51 cfftb.f90:18-23 512,000 0 0
CFFTF in the 1D inverse FFT
0x0804dc3b-62 cfftf.f90:18-23 12,800 0 0
libm’s exponential function
0x0410c094 ieee 754 expf 0 15,100 0
exp(x) in ComputeKernel
0x080508c1 gaborRoutines.f90:199 0 0 15,100
Total 7,312,910 13,871,622 5,595,210

Table 6.6: DART denormal profile summary for 187.facerec

One of the first features evident in this profile is that like with jacobi, the overall
denormal read count reported by DART is higher than the denormal exception
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count produced by DIP. Unlike jacobi, this is not because of repeated 32-bit round-
ing, but because DART instruments all loads, not just floating point loads. Two
examples of this are the libc memcpy implementation, which uses only integer in-
structions to copy blocks of memory, and the Fortran runtime’s implementation of
array transposition, which also uses only integer operations. DIP cannot capture
either of these, but DART can since the operations are on marked arrays and it
watches all loads and stores from these arrays.

Another feature of this profile is that some of the load counts are balanced by
corresponding stores. For example, line 172 of fft2d.f90 consists of the array copy
statement FTemp = Freq. For some reason, instead of using the highly optimised
memcpy, gfortran has chosen to compile this as a tight loop that copies 4 bytes at a
time using integer instructions. Since the copy is from a marked array to another
marked array, DART counts all the loads and stores, and the profile shows that each
loaded value has no floating point operations performed on it and is immediately
stored to the destination array.

This balancing of loads and stores occurs more indirectly between line 182 of
fft2d.f90 and the Fortran runtime’s implementation of array transposition. The
Fortran runtime allocates a temporary array, transposes the source array into it us-
ing gfortran transpose c4 and then copies the temporary array to the destination
and frees the temporary array. DART has not marked the temporary array, and so
although it tracks the tags for these reads and writes, it does not report the writes to
the temporary, or the reads from it. However it does report transpose c4’s reads
from the source array, which is marked memory, and FFT2DB’s writes to the desti-
nation array, which is also marked. If nothing else, this highlights an inefficiency
in gfortran — the runtime can determine the source and destination arrays are the
same types and of the correct size, and a more efficient compiler would have code
to check for this case and would write directly to the destination array.

A similar balancing occurs between the denormal values produced by the floating
point operation in ieee 754 exp and the store in ComputeKernel.

However, the use of intrinsic functions which operate on entire arrays and pro-
duce temporary arrays are common in this code. This includes functions such as
TRANSPOSE and CSHIFT and expressions that extract slices from an array. If the
use of these functions is nested, as it is in GaborTrafo, copies from one temporary
to another will not be reported at all since neither the source nor destination are
marked, however as elsewhere the tags are tracked whether they are reported or
not.
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It should be noted that not all of these denormal loads and stores directly indicate
performance problems. For example, the integer loads and stores performed by
memcpy and gfortran transpose c4 run at full speed, since the loads and stores do
not interpret the values in any way. Valgrind’s IR assigns a type to each load and
store based on the instruction that uses it. DART could be extended to distinguish
between integer and floating point loads and stores of denormal data and to account
for them separately.

From this profile, similar conclusions can be drawn as from the profile generated
by DIP: most of the denormal arithmetic occurs in PassB4 in the 1D iFFT and
in the Gabor Wavelet Transform. DART’s profile shows this, although a much
higher proportion—almost 80%—of the denormal floating point operations occur
in PassB4. Inspecting the binary shows that many of these are not reported by
the exception based tool because they are stack-stack operations performed with
the 80-bit registers and the values are always normal in the 80-bit representation.
Confirming the earlier conclusion, this profile shows that PassB4 permutes and
operates on a large number of denormals, but since the later stages of the iFFT do
not, PassB4 must indirectly remove the denormals from the input data.

As with the DIP 187.facerec profile, it is difficult to see any other pattern to
the flow of denormals simply by instruction based profiles. The two other data
reduction methods will reveal this.

6.5.3 Denormal heatmaps

Using the DWARF3 debugging information compiled into the 187.facerec exe-
cutable, DART detects 20 variables that refer to arrays of floating point or complex
variables. All of these arrays are dynamically allocated, and some of the vari-
ables are pointers to existing arrays and not distinct arrays of their own right. For
example, an array pointer gaborimage is declared in both GenerateGraphs and
FaceRec itself, but is passed to GaborTrafo and allocated there. gaborimage holds
the wavelet transformed images which are later passed to other subroutines.

Using the heatmap technique from Sec. 6.2.2, DART can report the array sizes, when
they are allocated, and how many denormal reads and writes occur in each array.
Figures for these are presented in Table 6.7.

This table shows a number of arrays never store denormal values (the load and
store counts are both zero). These arrays can be ignored.

Of the denormal bearing arrays, ftemp and wsaverow in FFT2DB have the most
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Type Subroutine Name Dimensions Loads Stores
Stack pointer ReadImage cimage 256:256 0 0
Stack pointer ReadImage finput 256:256 0 0
Global allocatable ReadImage fimage 256:256 0 0
Stack pointer GenerateGraphs gaborimage 256:256:5:8 0 0
Global allocatable LocalMove jetsim 108 0 0
Global allocatable GaborTrafo cimage 256:256 0 0
Global pointer GaborTrafo ctemp 256:256 684,919 684,919
Global pointer GaborTrafo fcimage 256:256 0 0
Global allocatable GaborTrafo fctemp 256:256 976,444 976,444
Global pointer GaborTrafo kernel 256:256:5 1,208,000 15,100
Global allocatable FFT2DF stemp 256:256 0 0
Global allocatable FFT2DF wsavecol 1039 6,404 6
Global allocatable FFT2DF wsaverow 1039 6,404 6
Global allocatable FFT2DB ftemp 256:256 2,410,480 2,410,480
Global allocatable FFT2DB wsavecol 1039 256,004 6
Global allocatable FFT2DB wsaverow 1039 1,764,271 1,508,273
Stack pointer Facerec gaborimage 256:256:5:8 0 0
Stack pointer Facerec graphs 8:5:108 0 0
Stack pointer Facerec prototype 8:5:108:2 0 0
Stack allocatable Facerec probesim 2 0 0

Table 6.7: Denormal array accesses in 187.facerec

denormal values written to and read from them. Along with fctemp and ctemp in
GaborTrafo, they are written to almost as often as they are read from. This suggests
that although these arrays manipulate denormal data, they are not the sources of it.

Of the remaining arrays, kernel stands out. It has a small number of denormal
writes, but many times more reads. In fact there are exactly 80× as many reads as
writes, suggesting this may be a source of denormal values.

Plotting heatmaps for the writes to each of the five kernels, produces the images in
Fig. 6.8. In these images each of the kernels has a very distinct band of denormal
values. These kernels are initialised by the ComputeKernels subroutine, and it
can be seen from there that the array is initialised using values from a negative
exponential function. The occurrence of denormals is explained by the shape of the
negative exponential curve y = e−x — as x→∞, y→ 0, and since it is a continuous
function, it passes from e−0 = 1 through the range of denormal values while doing
so. This will be returned to later.

6.5.4 Heatmap interpretation

We now focus on the reads/writes to the fctemp, ftemp, and ctemp arrays. The
heatmaps in Fig. 6.9 show all the reads and writes to these arrays. As the figures
clearly illustrate, each of these arrays has many denormal accesses, and the patterns
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Fig. 6.8: Array elements with denormal values in the five 187.facerec kernels.

of denormals are translated and distorted copies of the denormals in the kernels.

The contents of fctemp are generated by taking an image transformed into the
frequency domain, and doing element by element multiplies with translated ver-
sions of the kernels. Small values multiplied by denormals also become denormals,
which explains why fctemp’s heatmaps look so similar to copies of the kernels.

For ordinary images, most of the energy, i.e., the highest values, are concentrated
in the low frequency components of the array at the bottom left. This can be seen
by the fainter rings towards the bottom of fctemp — more values are large enough
to be multiplied out of the denormal range by high-valued frequency components.

Once fctemp is calculated, a 2D iFFT is performed on it producing ctemp. The 2D
iFFT is implemented as a copy into ftemp (a temporary array in FFT2DB); then 1D
iFFTs on each row of ftemp; followed by a transpose into ctemp (the output array);
and finally another 1D iFFT on each row of the output array. The initial copy writes
from fctemp to ftemp explaining the similarity of the patterns in ftemp and fctemp.

The figures show that the horizontal bands in ftemp are strongest where the left-
most elements have had the strongest denormal contributions from the kernels.
An ordinary FFT transformed image will have most of its energy in the lower
frequencies. If the lower frequencies are denormal, as they are where the arcs in
ftemp meet the y axis, it is likely that the higher frequencies are smaller again,
and therefore denormal or zero. The 1D iFFT is implemented using the butterfly
computation which means that the lowest frequency element will, indirectly, be
added to all the other elements in a row. If these values are mostly zero or denormal,
they end up becoming or remaining denormal, producing the bands.

The bands are weakest towards the bottom of the image, this is because most of
the energy of the image is concentrated here. Adding denormals to a normal will
generally produce a normal — the only exceptions are when a narrow range of
oppositely signed tiny normals are added to a denormal.
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The contents of ctemp are produced by transposing ftemp, which will have the effect
of copying the denormal bands in ftemp, and then applying 1D iFFTs to the results,
which will produce normal values because the lowest frequency components are
normal, and summing normals and non-normals mostly produces normals. The
heatmap shows an approximately equal number of reads and writes — the writes
from the transpose, and the reads from the iFFTs.

(a) fctemp heatmap (b) ftemp heatmap (c) ctemp heatmap

Fig. 6.9: 187.facerec temporary array denormal heatmaps

If the heat maps are plotted at different phases during the execution of the program,
the pattern of denormal accesses caused by the wavelet transform and FFTs is
shown to be almost identical for each image. This makes sense, as this process
of preparing the image for the graph processing is fixed and deterministic — it is
performed exactly the same way for each image.

In contrast, the graph fitting process uses random search, and thus the access
patterns will vary from image to image. However the jets it uses have entirely
normal values, as can be seen in Table 6.7, so it does not contribute to the denormal
activity of the application.

6.5.5 Origin maps

Corroborating evidence for the statements above can be provided by examining
the origin maps produced by DART. A denormal value written to a marked array
is the result of a Directed Acyclic Graph (DAG) of calculations. The root of the
DAG is the value and the memory location it is written to; the interior nodes are the
floating point operations that produce a result; and the leaves of the DAG are the
uninteresting values or reads from marked sources. The graph is a DAG, not a tree
because any value in the graph may be the argument to one or more subsequent
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Destination Source Denormal Origins
fctemp kernel 477,207
wsaverow ftemp 5,349,536
ftemp wsaverow 5,393,897
ftemp fctemp 976,444
ctemp ftemp 684,919

Table 6.8: Denormal origins in 187.facerec

operations, e.g., c = a + b and d = c + a.

For each write to marked memory, the origin tracking finds all the leaves which are
reads from marked memory, and finds which source arrays these belong to. For
each of these, it then increments the appropriate origin-from-source-X counter at
the destination address. Note that it only tracks one ‘lifetime’ for each value. Recall
that in Sec. 5.6.3.2 the final step in does not overwrite the tag of a marked memory
location when it is written to, because to do so would mean the memory location is
no longer marked. So if there are three marked arrays A, B, and C, and values are
read from A and written to B, then read from B and written to C, then C’s values
will be regarded as originating from B, not A, as the tags will be followed as far as
a marked memory range, and no further.

6.5.6 Origin statistics

As with the heatmaps, DART can produce overall statistics for each pair of arrays, or
more detailed plots for specific pairs of arrays. The statistics are listed in Table 6.8.

This list is surprisingly short and appears to be missing some arrays such as
wsavecol in FFT2DB.

The first feature of note is that the counts in this table appear to be significantly
higher than the equivalent read and write counts in Table 6.7. The fact that the
origin graph is a DAG explains this apparent anomaly. A single read from a
marked location may be, and sometimes is, reachable by more than path through
the origin graph, and each of these paths is counted as a source. This is particularly
true of the butterfly transposes in the FFTs.

Next, the only marked source of denormals in ctemp is from ftemp. This is as
expected — the GaborTrafo subroutine gets FFT2DB to allocate ctemp and write
the result of an inverse 2D FFT on fctemp into it. FFT2DB allocates ftemp as a
temporary array and eventually transposes ftemp into ctemp.
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This also explains why one of the marked sources of denormals in ftemp is from
fctemp — the contents of fctemp are copied into ftemp at the start of FFT2DB.

The other, and more significant source of denormals in ftemp is wsaverow. This
array is the working space used by the inverse 1D FFT which is performed on every
row of ftemp. Intermediate values are stored alternately in the source row and the
working space at different phases of the execution of the 1D FFT. This also accounts
for the fact that ftemp is the source of all the marked denormals in wsaverow.

Finally, this leaves the fctemp array — as has already been determined, the only
marked source of denormals for fctemp is from the kernel.

For every destination array, an origin map may be plotted showing which array
elements with denormal values received values from a particular denormal source.

(a) fctemp← kernel (b) ctemp← ftemp (c) ftemp← fctemp (d) ftemp←wsaverow

Fig. 6.10: 187.facerec origin maps

It has already been noted from the statistics in Table 6.8 that fctemp gets all its
denormals from kernel, and ctemp gets all its denormals from ftemp. Because
of these single sources, it is unsurprising that the origin maps Fig. 6.10(a) and
Fig. 6.10(b) have similar structures to Fig. 6.9(a) and Fig. 6.9(c).

What is more interesting is to compare the heatmap for ftemp at Fig. 6.9(b) to the
two origin maps Fig. 6.10(c) and Fig. 6.10(d). The origins table already showed
ftemp receives denormal contributions from both fctemp and wsaverow, and this
is confirmed by the denormal heatmap for ftemp showing features from both of
the origin maps. The denormal arcs in the figures come from fctemp (and thus
indirectly from the kernel), and the horizontal lines come from wsaverec. That the
denormal bands come from the results of the iFFT provides further evidence for
the explanation in Sec. 6.5.4 for these bands.
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6.5.7 Missing arrays

One of the arrays that appears to be missing from this table is kernel itself. However
from the earlier profiling, the kernel’s denormal values are known not derived from
any marked source — they came from the working of libm’s expf function.

The other two arrays missing from the table are the wsavecol array in FFT2DB and
both wsaverow arrays. To understand 187.facerec’s use of these arrays requires
an examination the source code for the FFTs. Despite being declared as single
arrays of floats, all four working space arrays are in fact treated as composite data
structures. For an N element FFT, the workspace is a 4N + 15 element array. The
first 2N elements store temporary values for the FFT itself. This shows why the
ftemp and wsaverow have such high origin counts for each other — phases of the
FFT operate on one array and update the other, and the next phase swaps role of
source and destination. The next 2N elements are initialised by the CFFTI routine
and store multiplicative constants used by the FFTs. CFFTI also initialises the final
15 elements of the array, but despite the array as a whole being declared as floating
point, these final 15 are in fact small integer factors derived from the input size N.

A modern Fortran implementation would have used Fortran 90’s derived types5

to describe the layout of the workspace, but since the FFT routines in question are
from the fftpack libraries in the netlib repository, and were written in June 1979,
they can perhaps be forgiven this omission.

Since the compiler does not know this, the debugging information it produces does
not provide the internal structure of the workspaces, and DART treats the loads and
stores as floating point values. All 32-bit integers less than 8,388,608 (except 0) will
appear as denormal values and contribute to the denormal load and store count.
This appears as the 6 stores and 6,404 loads in FFT2DF’s workspace arrays, and the
6 stores and 256,004 loads for FFT2DB’s wsavecol array. FFT2DB’s wsavecol has
a much higher load count than the other two arrays because all these workspace
arrays are initialised once and used many times. The 4 loads and 6 writes come
from initialising the integer factors, and the remaining loads are reads from within
the FFTs themselves. The inverse FFTs are performed 40× as often as the FFTs,
leading to the elevated load counts. The FFT2DB wsaverow array will have the
same number of spurious denormal loads and stores, but these are masked by the
large number of genuine denormal loads and stores into the temporary working
space area of the array.

5Fortran derived types are similar to structs or records in other languages.
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Destination Source Denormal Origins
fctemp kernel 477,207
wsaverow (tmps) ftemp 5,349,536
ftemp wsaverow (tmps) 5,393,897
ftemp fctemp 976,444
ctemp ftemp 684,919

Table 6.9: Genuine denormal origins in 187.facerec

The above can be verified by instructing DART to disregard the debugging infor-
mation and to treat the workspace arrays as 3 separate arrays, and re-profiling the
application. This leads to Table 6.9 and Table 6.10 which can be compared to Ta-
ble 6.8 and Table 6.7. The (spurious) denormal reads all occur in the integer area of
each workspace and do not come from any marked source. FFT2DB’s wsaverow is
the one exception to this — it has many denormal loads and stores in its temporary
value area. Furthermore, the load and store counts are identical, suggesting it is
not a source of denormal data.

Subroutine Name Dimensions Loads Stores
GaborTrafo ctemp 256:256 684,919 684,919
GaborTrafo fctemp 256:256 976,444 976,444
GaborTrafo kernel 256:256:5 1,208,000 15,100
FFT2DF wsavecol (temporaries) 512 0 0
FFT2DF wsavecol (constants) 512 0 0
FFT2DF wsavecol (integers) 15 6,404 6
FFT2DF wsaverow (temporaries) 512 0 0
FFT2DF wsaverow (constants) 512 0 0
FFT2DF wsaverow (integers) 15 6,404 6
FFT2DB ftemp 256:256 2,410,480 2,410,480
FFT2DB wsavecol (temporaries) 512 0 0
FFT2DB wsavecol (constants) 512 0 0
FFT2DB wsavecol (integers) 15 256,004 6
FFT2DB wsaverow (temporaries) 512 1,508,267 1,508,267
FFT2DB wsaverow (constants) 512 0 0
FFT2DB wsaverow (integers) 15 256,004 6

Table 6.10: Genuine denormal array accesses in 187.facerec

6.5.8 Removing denormals

From the origin tracking and heatmaps, a path can be traced backwards through
the program of where the denormals came from:

• The origin tracking shows that wsaverow and ftemp repeatedly pass denormals
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back and forth between each other, and their equal load and store counts suggest
neither of them are the source of the denormals.

• Origin tracking shows that ftemp receives some of its denormals from fctemp.

• Origin tracking also shows that fctemp gets all of its marked denormals from the
kernel.

• Finally, the profiling showed that the kernel gets its denormals from its initiali-
sation with the expf function in ComputeKernel.

If ComputeKernel is modified to store 0.0 in the kernels when expf produces a result
smaller than 10−20, and 187.facerec is rerun, the output of the program is identical
to that of the unmodified 187.facerec. This shows that 187.facerec’s algorithm
is not sensitive to these tiny denormal values.

Re-running the patched 187.facerec using DIP produces Table 6.11. The profile
shows the 15,100 denormals calculated in ComputeKernel, but these values are
immediately discarded, and no further denormal operations occur.

Address Source Count
0xb7ee9660 libm expf() 15,100
Total 15,100

Table 6.11: Denormal exception profile for patched 187.facerec

Running the patched 187.facerec under DART gives the denormal profile in
Table 6.12. The only loads and stores in this table are the spurious use of integers
in the FFT working space data structures.

Subroutine Name Dimensions Loads Stores
FFT2DF wsavecol (integers) 15 6,404 6
FFT2DF wsaverow (integers) 15 6,404 6
FFT2DB wsavecol (integers) 15 256,004 6
FFT2DB wsaverow (integers) 15 256,004 6

Table 6.12: Denormal array accesses in patched 187.facerec

The instruction profile from DART is in Table 6.13. The only denormals that occur
are the spurious ones from the FFT workspace arrays, and the libm exp calls that
calculate denormal values. The profile shows these 15,100 values are calculated
and returned to ComputeKernel, but never stored to a marked array.
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This means that the source of unnecessary denormal values in 187.facerec has
been identified correctly and removed without affecting the numerical output of
the program. Since there are no longer any denormal values in any of the data
structures in the program, there will be no denormal arithmetic except for the few
initial calculations in ComputeKernel.

Although there was no large scale denormal-based performance variability to speak
of in the original 187.facerec—all the image processing that occurred had a fixed
structure to it, so every image filtered would be penalised by denormal arithmetic
in exactly the same way—variability could still be seen on a finer grained level.
Fig. 6.10(d) shows when the ftemp array receives values from wsaverow. This
happens when the 1-D iFFT routine is called once for each row of ftemp. As can
be seen, some of the rows are almost entirely black (signifying a large number of
denormal calculations for all or most of the elements in the iFFT), and others have
no denormal values whatsoever. So in the original 187.facerec some of these
iFFTs will run substantially slower than others.

As shown in Table 6.6 only 7.3 million denormal floating point operations occurred
in 187.facerec when run for approximately 5.5 seconds. This may seem rela-
tively insignificant, however due to the overhead of the denormal operations this
leads to a noticeable slowdown. Appendix H shows the results of benchmarking
187.facerec with and without the patch on a number of CPUs released from late
2002 to mid 2007. As can be seen, on the AMD CPU, the speedup when denormal
operations are removed is a relatively low 6%, but on all the Intel CPUs the speedup
is between 20% and 25% due to their less efficient denormal implementation. This
is a substantial performance improvement considering the patch simply prevented
a small number of denormal operations that are irrelevant to the output of the
program.

6.6 Limitations

The above analyses show that with the aid of a denormal tracing tool such as DART,
it is possible to infer a great deal about the working of an application and the flow
of denormal values within it. A substantial amount of information is supplied to
the programmer without getting bogged down in the irrelevant details of function
calling conventions, register usage, temporary variable usage and so on. However
this information comes at a cost. Firstly there are some restrictions due to the design
of DART:

1. A simplifying assumption is made about what kinds of values are significant.
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Address Source Loads FP ops Stores
libm’s exponential functions
0x0410c092 0 15,100 0
CFFTF in the 1D inverse FFT
0x0804dc3b cfftf.f90:18 2,560 0 0
0x0804dc62 cfftf.f90:23 10,240 0 0
CFFTB1 in the 1D inverse FFT
0x0804b32a cfftb.f90:18 102,400 0 0
0x0804b351 cfftb.f90:23 409,600 0 0
CFFTI initialisation of the workspaces
0x0804e071 cffti.f90:32 0 0 16
0x0804e0c9 cffti.f90:42 0 0 4
0x0804e0ce cffti.f90:43 0 0 4
0x0804e104 cffti.f90:49 16 0 0

Table 6.13: DART denormal profile for patched 187.facerec

DART assumes arrays of possibly dynamically allocated memory are where
most denormals will come from and be written to, and these make up the marked
memory ranges. There are cases where this assumption causes some odd results.
For example, Table 6.7 shows the writes of the denormal exponential values to
the kernel array in 187.facerec, but other methods were required to find which
calculations generated those denormals.

2. Simplifying assumptions are made about the ‘life cycle’ of a value. It is assumed
that a value that is written to a marked array is the result of a, hopefully small,
DAG of floating point operations whose leaf nodes are loads from other marked
locations. This is certainly true for the most part for both applications in this
chapter. jacobiis simple enough that this completely covers all its behaviour, but
187.facerec exhibits some anomalies. One of these is when the compiler creates
temporary arrays to hold intermediate values. As long as this temporary array
is used together with a marked array, reads from and writes to these arrays can
be seen, but if a chain of more than one temporary array is used, and operations
between two temporaries occur, these groups of intermediate operations are not
reported to the end user. This can be seen in the transpose lines of Table 6.6.

3. All important operations are assumed to operate on arrays. This is true of
187.facerec and jacobi but may not be true in the general case. For exam-
ple consider an application with a helper routine which calculates a value by
some iterative method, and incidentally causes many denormal operations to
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occur without generating a denormal result. DART will certainly notice these
denormal values — it tracks any denormal value generated by a floating point
operation, not just the ones with marked sources, however these denormals will
only be reported in an instruction profile unless they are written to a marked
array.

4. DART does not distinguish between denormal values that are generated by
different pieces of code. If it had a means of doing this, for example by attaching
a stack trace to each write, the problem of integer values being stored in a
floating point workspace explored in Sec. 6.5.7 would have become apparent
more quickly.

5. Finally, as is inherent in a dynamic analysis tool, DART can only highlight
denormal arithmetic found in a specific run of an application, it cannot identify
potential denormal arithmetic that may occur with different data sets or under
different scenarios.

Some of these issues could be resolved by refining how DART’s reporting occurs.
In most of the cases, the desired metadata is generated and propagated correctly,
it simply is not reported to the user. A balance needs to be struck between over-
whelming the user (and memory subsystem) with mountains of irrelevant data
on the one hand, and missing important patterns of behaviour on the other. One
possible extension to DART’s metadata would be to identify common call-paths in
an application by recording frequently occurring stack traces for each array.

Further to this, there are some implementation-level issues:

1. The primary issue is that DART is written in Valgrind and as such is subject
to a floating point behaviour different to that of the x87 FPU. Valgrind uses
64-bit registers internally for all its calculations, whereas the x87 uses 80-bit
registers. As seen in Sec. 6.4.3 this can cause profiling anomalies depending on
the application.

2. Valgrind and shadow memory tracking exacts a significant performance over-
head — on the order of 30–40×. This is not a significant problem for either of
the applications in this chapter, as they can be easily run with small datasets, but
may be an issue for other codes. The instrumentation of every single load and
store causes a large part of the slowdown. It may be possible to apply heuristics
to apply this instrumentation to a more limited set of instructions.
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3. The current implementation of DART assumes that only 32-bit floats are used
and is insensitive to the difference between floating point instructions used to
copy data, and integer instructions to do the same task. The integer loads and
stores correctly copy the tags, but arguably should be reported separately from
floating point loads and stores as the integer loads and stores do not have any
performance overhead when dealing with denormal data.

6.7 Summary

This chapter described the workings of two applications: one simple C applica-
tion used for verification purposes, and another more complex Fortran benchmark
which generates large numbers of denormals. It showed three ways of reporting the
large volumes of tracking data generated by DART — instruction profiling, array
heatmaps and origin tracking. One requirement raised in Chapter 4 was the need
to know the distribution of denormal values in the program’s data sets. Heat maps
provide this information. Another concern was to find the source of the denormal
data and how it evolves over time. Origin tracking allows the denormal sources
to be found, and by generating a sequence of heat maps and origin maps as the
program runs the behaviour of the program can be tracked over time.

Finally a detailed analysis was performed on the two applications using both DIP
from Sec. 4.4 and DART. The results of both were compared, and using DART the
source of denormals in the Fortran benchmark was isolated and removed. This
removed the performance penalty caused by denormal arithmetic, and removed
the fine grained variability which could be seen in the image processing code.
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CHAPTER 7
Conclusions

7.1 Summary

Over the past 60 years, continuing efforts on the part of hardware designers have
produced a series of huge increases in CPU power and system capability. Modern
high end systems consist of large clusters of compute nodes each containing several
CPU cores with a significant degree of architectural complexity and internal state
in each of them.

Application performance models are often used to guide the choice of hardware
during the procurement process for a compute cluster. Once purchased and in-
stalled, middleware is used to schedule and allocate tasks to resources, and these
task schedulers need to be able to estimate the resource usage of the tasks they
manage to work effectively. In smaller systems, an inability to predict an applica-
tion’s runtime can hinder its use in time critical applications. Many performance
monitoring and performance modelling toolkits have been written to address these
concerns.

The task of performance modelling is made significantly more difficult by the
increases in the internal complexity of CPUs. Performance modelling tools could
once assume that counting instruction mixes and memory accesses was enough to
characterise an application. Today, with large multilevel caches, extensive pipelines,
and sophisticated out of order execution engines, the context in which an instruction
runs is far more relevant to performance than the instruction itself. Approximate
analytical models have been developed for some of these features, but not for others,
and some tools sidestep the problem entirely by directly benchmarking application
kernels. However none of these address the issue of data-dependent performance
variability.

7.2 Contributions

In this thesis we have examined some of the existing performance modelling tech-
niques and have shown some of their limitations. We have examined a large C++

based medical imaging application that exhibits more than an order of magnitude
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of variation in runtime depending on the input data given to it. Because of how
it is written, this application does not admit ready analysis using existing tools,
but the source of runtime variability for the application turns out to be algorithmic
in nature — the application does more work with some datasets than others. A
performance model was built for this application based on running ‘probe tasks’
which use subsampled input images in order to predict the behaviour of the full
scale tasks, making a hitherto unpredictable application much more predictable.

By contrast, other numerical applications we examined have a fixed pattern of ex-
ecution, but still exhibit runtime variability. The variability in these applications
arises from their occasional use of denormal arithmetic which incurs a severe per-
formance penalty on some CPU architectures. Two tools were written to analyse
this behaviour, DIP, a limited tool based on floating point exceptions, and DART,
a more sophisticated tool based on dynamic binary instrumentation. DIP makes it
possible to identify the amount of denormal arithmetic occurring in an application
and the instructions responsible for them. However, these ‘proximate causes’ do
not show the distribution of the denormals in an application’s data and provide
insufficient information to find the origins of the denormals. DART, in contrast,
makes it possible to trace the lifecycle of the denormal values, and by producing
denormal read/write maps and denormal origin maps for an application’s prin-
cipal data structures, allows the distribution and evolution of denormal values
therein to be tracked. This information is used to isolate and remove the source of
unnecessary denormal values for two applications, thus removing the slowdown
caused by denormal arithmetic and producing more regular applications with less
data-dependent runtime variability.

7.3 Future work

7.3.1 Generalising DART

The problem DART tries to solve can be envisaged on a more abstract level: Running
an application takes a set of input values; and through several or many phases of
processing, it generates intermediate values, finally producing an output. Each
input value can be envisaged as following an unbroken path through memory and
registers via CPU operations having its value transformed along the way until it
reaches its final location and value.

If an intermediate value is used by more than one subsequent calculation, the path
will branch into multiple paths. Similarly if multiple values are used to calculate
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a new value (as in a binary, or n-ary operation), independent paths will join. If an
intermediate value ends up not contributing to the output, that branch of the path
terminates before the application finishes running. Each initial value can be given
a unique label, and for every branch or join in a path, a new label can be created
identifying both the new path, and where it came from.

Depending on the application’s algorithms, some of these paths will have similar
histories for at least some of their length, remaining in some sense ‘close’ to each
other, and thus can be grouped together into bundles. These bundles may occur
because of, for example, a phase of computation performing a similar calculation
on all the members of an array.

A subset of all the possible values in this application history (the denormal values)
cause performance problems on some hardware, and the problem at hand is to
determine the past paths of those values when they are encountered in a running
application; to identify the bundles they belong to; to characterise the bundles; and
to identify the code responsible for each bundle.

DART tackles a subset of this problem. As described in Sec. 5.6.3.2, it chops the
full paths described above into pieces bounded by reads from a principal data
structure in the application and terminating in writes to another principal data
structure. The branches and joins within a path fragment are identified using the
technique in Sec. 6.2.4, and a primitive type of bundle characterisation is performed
by instruction profiling, as in Table 6.6, and array access profiling, as in Table 6.7,
Table 6.8 and Fig. 6.9.

To join these ‘piecewise’ bundles together into a full history currently requires
considerable interpretation and understanding of the application’s algorithms as
is evidenced by Sec. 6.5.3 and Sec. 6.5.4. A more ambitious tool would automate
some or all of this process, or would avoid the constraints of a piecewise entirely.

One possibility is to trace denormal operations backwards to the loads from the
principal data structures, as is currently done, but then to permanently tag the
values, and observe their evolution beyond the current boundary of a store to an-
other principal data structure. To reduce the volume of reporting data, it might be
possible to identify a single or limited number of paths that represent the overall
behaviour of an entire bundle. Perhaps these paths always involve the same in-
structions, or each principal data structure load and store uses memory locations at
fixed distances from each other. These paths could be reported individually along
with a count of the bundle size, and the remaining paths silently discarded.
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7.3.2 Observation and analysis

A more fundamental question is whether or not the observation of a single instance
of a running application is enough to characterise the data flows within that ap-
plication. As noted before, different inputs can trigger different paths of execution
within an application. A single, or limited number of runs of an application may
not exercise all the important paths of execution within in application, and these
paths could have markedly different data flow characteristics.

Speculatively, it might be possible to apply data-flow analysis to the control flow
graph of small fragments an application to try to determine what ranges of inputs
cause them to produce denormal values. Similarly, it might be possible to analyse
if, when denormal data is fed into a fragment of the application, whether it is copied
and grows in frequency or whether it dies away.

This type of analysis may have to approximate what could be a denormal-generating
operation, and may have to measure these using probabilistic terms rather than
strict binary predicates, as for all the basic arithmetic operators, if one input is
held fixed, it is almost always possible to find a second input that will produce a
denormal result.
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APPENDIX A
Floating point representations

01234

Exponent Mantissa

02231

Si
gn Exponent Mantissa

Fig. A.1: 5 bit minifloat compared to IEEE-754 float

This miniature floating point format uses 5 bits of storage; three bits for the expo-
nent, and two bits for the mantissa, and the base is 2. The bias for the exponent is
chosen to be -2 to allow the smallest non-zero number to be 1.

There is no sign bit, so only positive numbers can be represented.

Apart from the limited size of the fields, and the lack of a sign bit, it is similar in
design to the IEEE-754 standard.

There are two choices of interpretation for the format. The first one uses the IEEE-
754 convention of using the smallest possible exponent to indicating denormalized
numbers, and the largest possible exponent to indicate the infinity and non-numeric
values.

The second interpretation deviates from IEEE-754 by extending the range of valid
exponents for normalized numbers to include the largest possible exponent. This
removes the ability to represent Infinity or NaN, but increases the range of valid
numbers.
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Fig. A.2: A 5 bit ‘minifloat’ format

Exponent bits Mantissa bits Interpretation Value
Denormalized

000 00 0 0
000 01 0.012 × 22 1
000 10 0.102 × 22 2
000 11 0.112 × 22 3

Normalized
001 00 1.002 × 22 4
001 01 1.012 × 22 5
001 10 1.102 × 22 6
001 11 1.112 × 22 7
010 00 1.002 × 23 8
010 01 1.012 × 23 10
010 10 1.102 × 23 12
010 11 1.112 × 23 14
011 00 1.002 × 24 16
011 01 1.012 × 24 20
011 10 1.102 × 24 24
011 11 1.112 × 24 28
100 00 1.002 × 25 32
100 01 1.012 × 25 40
100 10 1.102 × 25 48
100 11 1.112 × 25 56
101 00 1.002 × 26 64
101 01 1.012 × 26 80
101 10 1.102 × 26 96
101 11 1.112 × 26 112
110 00 1.002 × 27 128
110 01 1.012 × 27 160
110 10 1.102 × 27 192
110 11 1.112 × 27 224

Large or Infinity/NaN
111 00 1.002 × 28/Inf 256/Inf
111 01 1.012 × 28/NaN 320/NaN
111 10 1.102 × 28/NaN 384/NaN
111 11 1.112 × 28/NaN 448/NaN

Table A.1: 5 bit unsigned minifloat values
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APPENDIX B
Performance modelling in PACE

The following example demonstrates writing CHIP3S scripts and using the tools
provided with PACE.

At the bottom of PACE’s layered system are the hardware characterisations. These
are created by a suite of benchmarking tools which, when run on idle machines,
measure various properties of the hardware. As can be seen in Fig. B.1, the hardware
models are flexible and extensible.

config SunUltra10 {

hardware {

Tclk = 1 / 300,

Desc = "SUN Ultra 10, U-SPARC II/300MHz, SunOS 5.8";

}

cache {

L1_CAPACITY = 16 * 1024,

L1_LINE_SIZE = 32,

L1_ASSOC = 1,

L1_READ_MISS_CYCLES = 11,

...

}

clc { /* C language characterisation */

IFBR = 0.00113894

CALL = 0.02192,

LFOR = 0.0101134,

...

}

mpi {

DD_COMM_A = 1024,

DD_TSEND_B = 96.7032,

DD_TRECV_B = 152.81,

...

}

}

Fig. B.1: Excerpts from the SunUltra 10.hmcl hardware model

Since the example code is strictly sequential, the parallel template used (Fig. B.2) is
extremely simple. It consists of a single step declaration, representing a sequential
block of operations. The confdev Tx statement associates the primitive operations
in a subtask’s compute statements with the currently selected hardware model. This
association means that when the runtime for the subtask is calculated it will use
timings from the chosen hardware model.

While the CHIP3S compiler can be regarded as the core of PACE, other tools pro-
vided in the toolkit make PACE significantly easier to use. One of these tools, capp,
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partmp async {

var compute: Tx;

option { nstage = 1, seval = 0; }

proc exec init {

step cpu {

confdev Tx;

}

}

}

Fig. B.2: The async.la parallel template

parses C source code, and, with some user input, generates cflow blocks written in
CHIP3S .

As an example, it will be shown how to generate an application model for a simple
C function (Fig. B.3). The function blend is a straightforward image processing
routine1 which alpha-blends two bitmaps together.

/* Composite (ie alpha blend) img2 on top of img1. img1 and img2 are

w*h pixels in size, each pixel consists of an unsigned 8 bit (r,g,b)

triple. Pixels are stored left-to-right and top-to-bottom.

*/

void blend(unsigned char *img1, unsigned char *img2, int w, int h, float alpha)

{

float beta = 1.0 - alpha;

int i, j, k;

for(i = 0; i < h; i++) {

for(j = 0; j < w; j++) {

for(k = 0; k < 3; k++) {

*img1++ = (*img1 * beta) + (*img2++ * alpha);

}

}

}

}

Fig. B.3: blend.c

When capp is used on this source code, capp cannot determine the loop bounds for
itself, so it prompts the user for appropriate values. capp produces the contents
of proc cflow blend, and the user provides the rest of the subtask by hand. The
results can be seen in Fig. B.4. The cflow block characterises the performance of the
function in terms of the image size, and the costs of computational primitives such
as multiplication and pointer arithmetic. The user provided code links to the async
parallel template, by assigning to Tx the cost of the sequence of operations generated
by cflow blend. The var numeric statement exposes the variables Width and
Height as parameters which can be changed by other subtasks.

1It implements Porter and Duff’s over operator [PD84].
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subtask blend {

include async;

var numeric: Width, Height;

link { async: Tx = blend(); }

proc cflow blend {

compute <is clc, FCAL, 4*FARL, FARF, AFDL, TFSL, SILL>;

loop (<is clc, LFOR>, Height) h{

compute <is clc, CMLL, SILL>;

loop (<is clc, LFOR>, Width) {

compute <is clc, CMLL, SILL>;

loop (<is clc, LFOR>, 3) {

compute <is clc, CMLL, 3*POC1, 2*MCHL, 3*INLL, ACHL, TCHL>;

}

compute <is clc, INLL>;

}

compute <is clc, INLL>;

}

}

}

Fig. B.4: blend.la – the blend subtask

Finally, an application model is defined where the user-configurable variables Width
and Height are exposed. The link section sets the number of processors available to
1 (this information is used by the parallel template code) and passes the appropriate
input variables in to the blend subtask.

The option section sets the default hardware model used to be an Apple PowerMac
G5. Characterisation data will be read from AppleG5_2GHz.hmcl.

The proc exec init section is where the evaluation of the model begins. In this
case only the blend subtask needs to be evaluated.

application blend_app {

include hardware;

include blend;

var numeric: Width = 320, Height = 240;

link {

hardware: Nproc = 1;

blend: Width = Width, Height = Height;

}

option {

hdruse = "AppleG5_2GHz";

}

proc exec init { call blend; }

}

Fig. B.5: blend app.la – the application model
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To create an executable application model, each of the CHIP3S scripts, which are
stored as .la files, are compiled using the chip3s tool. This tool generates some
intermediate C code which it then compiles into an object file. These object files are
linked together with the CHIP3S runtime into an executable. The build process is
represented by the Makefile in Fig. B.6.

all: blend_app

blend_app: blend_app.o blend.o async.o

chip3sld -o $@ $ˆ

%.o: %.la

chip3s -o $@ $<

Fig. B.6: Makefile

The executable can be run, and the variables (in this case Width and Height) can be
modified. By default, the executable model outputs just a simple execution time.
By using different command line options, individual processor usages and various
trace and debug output can be produced.
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APPENDIX C
A Linux/x86 LD PRELOAD denormal profiler

Below is included an annotated version of a simple floating point profiler for Linux
on x86 platforms.

Assuming it is saved in a file called denormprofiler.c, it can be compiled and invoked
as follows:

cc -fpic -shared denormprofiler.c -o ./denormprofiler.so

LD_PRELOAD=./denormprofiler.so mybinary

Normally, the profiling logs are written to stdout, but if the environment vari-
able DENORMPROF LOG is defined, denormal events will be written to the file
DENORMPROF LOG.pid, where pid is the process ID of the binary being profiled.

The logs consist of lines like the following

DENORM: 1233852477.093087 0xb8b2 0xb7e5292d 0xdd00

Where the first number is a POSIX timestamp, the second the FPU status word, the
third the address of the instruction, and the fourth the first two bytes of the opcode
of the instruction that caused the exception.

This raw information can be analysed to find denormal hotspots in the code.

denormprofiler.c

Headers for standard UNIX string, time and signal handling

2 #include <stdio.h>

3 #include <stdlib.h>

4 #include <signal.h>

5 #include <unistd.h>

6 #include <sys/time.h>

Headers for floating point and user mode context

7 #include <fenv.h>

8 #include <fpu_control.h>
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9 #define __USE_GNU

10 #include <sys/ucontext.h>

GCC directive to mark init denorm profiler() to run on library load

11 void init_denorm_profiler(void) __attribute__ ((constructor));

Utility function to print a file contents into the log

12 FILE *profilelog = NULL;

13 static void copyfile(char *name)

14 {

15 char buf[128];

16 FILE *f = fopen(name, "r");

17 if (f == NULL) return;

18 while(!feof(f)) {

19 fgets(buf, 128, f);

20 fprintf(profilelog, "%s", buf);

21 }

22 fclose(f);

23 }

The exception handler proper. If a denormal exception occurred, it reports it, clears the
denorm flag, switches off denorm trapping, and single steps the next instruction so it can
complete.

24 #define FP (uc->uc_mcontext.fpregs)

25 #define EFLAGS_TF 0x100

26 void fpe_handler(int sig, siginfo_t *si, void *ptr)

27 {

28 ucontext_t *uc = (ucontext_t *)ptr;

29 unsigned int op;

30 /* If there is no a denorm, return immediately... */

31 if (FP->sw & _FPU_MASK_DM == 0) { return; }

32 /* Read the first 2 bytes of the opcode of the trapping insn */

33 op = ((unsigned char *)FP->ipoff)[0] << 8;

34 op |= ((unsigned char *)FP->ipoff)[1];

35 struct timeval tv;
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36 gettimeofday(&tv, NULL);

37 fprintf(profilelog, "DENORM: %d.%06d 0x%04x 0x%08x 0x%04x\n",

38 tv.tv_sec, tv.tv_usec,

39 FP->sw,

40 (unsigned int)FP->ipoff,

41 op);

42 fflush(profilelog);

43 /* Disable denorm trapping */

44 FP->cw |= _FPU_MASK_DM;

45 /* Clear the denorm-occurred flag in the FPU status reg */

46 FP->sw &= ˜_FPU_MASK_DM;

47 /* Enable single-stepping the next user-mode instruction */

48 uc->uc_mcontext.gregs[REG_EFL] |= EFLAGS_TF;

49 }

The trap handler is invoked after a single user-mode instruction has been completed. It
turns back on the denormal trapping and disables single-stepping.

50 void trap_handler(int sig, siginfo_t *si, void *ptr)

51 {

52 ucontext_t *uc = (ucontext_t *)ptr;

53 /* Turn on denorm trapping again */

54 FP->cw &= ˜_FPU_MASK_DM;

55 /* Disable single-step mode*/

56 uc->uc_mcontext.gregs[REG_EFL] &= ˜EFLAGS_TF;

57 }

Initialisation called on library load. Open the log file, if any, report that the profiler has
started; register the floating point and trap handlers, and enable denormal exceptions.

58 void init_denorm_profiler()

59 {

60 char tmp[32];

61 char *logname = getenv("DENORMPROF_LOG");

62 if (logname == NULL) {

63 profilelog = stdout;

64 } else {

65 sprintf(tmp, "%s.%d", logname, getpid());

66 profilelog = fopen(tmp, "a");

67 }
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68 fprintf(profilelog, "Initializing denorm profiler on ");

69 sprintf(tmp, "/proc/%d/cmdline", getpid());

70 copyfile(tmp);

71 fprintf(profilelog, "\n");

72 /* We potentially want to unmask any of the bottom 5 bits

73 * in the x86 control word (ie Invalid, Denorm, Div-by-0,

74 * Overflow, Underflow).

75 * Specific to x86 and Linux.

76 */

77 fpu_control_t cw = _FPU_IEEE & ˜ _FPU_MASK_DM;

78 _FPU_SETCW(cw);

79 struct sigaction action;

80 action.sa_sigaction = fpe_handler;

81 action.sa_flags = SA_SIGINFO;

82 sigemptyset(&action.sa_mask);

83 sigaction(SIGFPE, &action, NULL);

84 action.sa_sigaction = trap_handler;

85 sigaction(SIGTRAP, &action, NULL);

86 }
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APPENDIX D
Integer Optimisations for FP on x86

D.1 Storage classes

GCC stores data in different sections of an executable and generates different
DWARF debugging annotations depending on how the C data structures are de-
clared. When the bounds can be determined at compile time, array sizes and
loop iteration counts are used to trigger different code generation heuristics. The
compiler optimisation level, specified on the command line, triggers other code
generation heuristics. Some of the possibilities are listed here.

The storage classes for arrays of data are as follows:

• Global vs local

• Constant vs mutable

• Compile time vs static allocation

Not all of these combinations can be used together; for example it is impossible to
have a dynamically allocated array of constant data. The possibilities are:

1. A global array of mutable data allocated at compile time.

double d[] = {1.1, 2.2, 3.3, 4.4, 5.5};

int main()

{

d[2] = 42.0;

return 0;

}

The array d is stored at a fixed offset in the .data section of the executable where
it may be modified. Array accesses are performed relative to this address, for
example a load may use fldl 0x8049600(%eax,8).

2. A global array of constant data allocated at compile time.
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const double d[] = {1.1, 2.2, 3.3, 4.4, 5.5};

int main()

{

return 0;

}

This is similar to the global mutable compile time case, except the data is stored
at a fixed offset in the .rodata section of the executable, and may not be modified.

3. A static local mutable array allocated at compile time.

int main()

{

static double d[] = {1.1, 2.2, 3.3, 4.4, 5.5};

d[2] = 42.0;

return 0;

}

In C, a static local variable is one whose value is preserved after its function is
exited. In implementation, it is identical to a global variable, except at compile
time the variable is not visible outside the function that contains it. As with the
global mutable compile time case, the data is in .data at a fixed offset.

4. A constant local array allocated at compile time.

int main()

{

const double d[] = {1.1, 2.2, 3.3, 4.4, 5.5};

return 0;

}

As with static local mutable arrays, these are implemented exactly as globals are,
except the scope is restricted the containing function at compile time. The data
is in the .rodata section at a fixed offset.

5. A local mutable array allocated at compile time.

int main()

{

double d[] = {1.1, 2.2, 3.3, 4.4, 5.5};

return 0;

}

These arrays have their contents set to their initial value every time they are
entered. They are implemented by allocating space for the array on the stack at
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function entry, and the fixed initial values are copied into the space on the stack
using whatever method the compiler decides is the most efficient. Depending
on the data involved, the initial data may be stored in the .rodata section, or may
be encoded as a literal in several initialisation instructions. Accesses occur using
stack-relative addresses, such as fldl -0x38(%ebp,%eax,8)

6. Mutable array allocated at run time.

int main()

{

double *d = (double *)malloc(sizeof(double)*5);

d[2] = 42.0;

free(d);

return 0;

}

A pointer to the base address of the array is stored on the stack. The storage is
allocated at some arbitrary location in the heap by the memory allocator, and
accesses occur using pointer arithmetic which the compiler can optimise in many
ways depending on the context.

D.2 Assignment

Assignment of a floating point constant to an array element is usually optimised to
a single integer move instruction (for 32-bit floats) and two move instructions (for
64-bit floats), as these are shorter and faster than assigning storage to the constant
in .rodata and using a pair of fld/fst instructions. The d[2] = 42.0 above might
be optimised to

movl $0x00000000,0x80495f0

movl $0x40450000,0x80495f4

0x40450000 is the 32 most significant bits of the 64-bit IEEE-754 encoding of 42.0.
0x00000000 is the 32 least significant bits. For constants where one of the 32-bit
words is 0, such as 42.0 above, this can be optimised even further:

xor %eax,%eax

mov %eax,0x8049654

movl $0x40450000,0x80495f4

Assignment of variable data, i.e., g[i] = f[i] is performed using a fldl and fstpl

pair for 64-bit floats, and a mov instruction for 32-bit floats.
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The code for assignment of entire arrays, as occurs when initalising a local array,
depends on the size of the array. With GCC, if the array is less than 3 64-bit floats in
length, fldl and fstpl instructions are used on data stored in .rodata. If the array
is less than 6 32-bit floats in length, integer mov instructions are used with the data
stored as literal values in the instruction arguments. For longer 32- or 64-bit arrays,
the copy is performed using an integer rep movsl loop, and the data is stored in
.rodata.

If the data is stored inside a structure, and the structure is small, assignment is done
using integer mov or rep movsl instructions. If the structure is larger, it is copied
using memcpy which may use one of a number of optimisations depending on the
CPU available and the alignment of the source and destination.

D.3 DWARF debugging information

DWARF is a tree based debugging format designed to be stored in sections of an
ELF executable. The primary data structure in DWARF is the Debugging Informa-
tion Entry (DIE), and is used to store information such as data types, array bounds,
function entry points, function arguments, variable locations, and the mapping of
code to source files. DIEs are stored in the .debug info section of an ELF executable
and may be nested. One instance of nesting is sub-program DIEs inside a compi-
lation unit DIE. DIEs may also refer to other DIEs, which occurs when defining
complex data types (e.g., an array of pointers to floats).

Each DIE has a tag which identifies its layout, and a set of attributes which label
the information it contains. A number of DWARF forms are defined for the values
an attribute can hold, including booleans, integers, strings, blocks of binary data,
references to DIEs, and expressions. Expressions are calculations represented in a
special bytecode which allow the location of a variable to be defined based on the
contents of registers and memory. This bytecode is needed as many data types
(such as Fortran array descriptors, and local variables) have locations which can
only be determined at runtime. Since the same expressions tend to be used many
times, rather than including them directly in an attribute, they are often stored in
the ELF .debug loc section and referred to by offset.

The internal layout of a DIE is defined by a set of structures in the ELF .debug abbrev
section. For each DIE, it specifies the attributes used, and each of their forms. Since
DIEs with the same tags occur many times in the debugging information, this
centralised definition of their layout in .debug abbrev is a space saving measure.
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An example of the debugging information is the short program below followed by
the DIEs used:

int main()

{

double *d = (double *)malloc(sizeof(double)*5);

int i;

for(i = 0; i < 5; i++) d[i] = 1.1 * i;

d[2] = 42.0;

for(i = 0; i < 5; i++) printf("%f\n", d[i]);

free(d);

}

DIE: <0x1c3> DW_TAG_compile_unit

DW_AT_name test.c

DW_AT_producer GNU C 4.3.3

DW_AT_stmt_list 327

DW_AT_low_pc 0x8048434

DW_AT_high_pc 0x80484cd

DW_AT_language 1

DW_AT_comp_dir /home/bfoley

DIE: <0x207> DW_TAG_base_type

DW_AT_name int

DW_AT_byte_size 4

DW_AT_encoding DW_ATE_signed

DIE: <0x22d> DW_TAG_subprogram

DW_AT_frame_base 0

DW_AT_sibling <0x262>

DW_AT_name main

DW_AT_type <0x207>

DW_AT_low_pc 0x8048434

DW_AT_high_pc 0x80484cd

DW_AT_call_file test.c

DW_AT_call_line 4

DW_AT_external 1

DIE: <0x249> DW_TAG_variable

DW_AT_call_line 5

DW_AT_call_file 1

DW_AT_name d
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DW_AT_location DW_OP_fbreg -0x14

DW_AT_type <0x262>

DIE: <0x255> DW_TAG_variable

DW_AT_call_line 6

DW_AT_call_file 1

DW_AT_name i

DW_AT_location DW_OP_fbreg -0x10

DW_AT_type <0x207>

DIE: <0x262> DW_TAG_pointer_type

DW_AT_type <0x268>

DW_AT_byte_size 4

DIE: <0x268> DW_TAG_base_type

DW_AT_name double

DW_AT_byte_size 8

DW_AT_encoding DW_ATE_float

As we can see, the source code is identified by the compile-unit DIE 0x1c3. This
DIE names the source file, the compiler, and specifies the language (C is language
number 1). The main function in subprogram DIE 0x22d is nested inside DIE 0x1c3.
The type attribute in the subprogram DIE represents the return type of the function
and refers to DIE 0x207 which holds the type. In this case it is a base type — a
simple 32-bit signed integer.

We can also see main’s two local variables nested inside this DIE as two variable
DIEs. Each of them has a name, a type and a location. The i variable points to
the same 0x207 DIE as the return type for main, since they both are 32-bit signed
integers. The type for d is a little more complex — it is a pointer to a 64-bit
float. Since data types in most programming languages can have qualifiers and
hierarchical definitions, types are represented in DWARF using a tree of DIEs. d is
defined as having the type of DIE 0x262 — a pointer to another type defined in DIE
0x268. DIE 0x268 is a base type that represents a 64-bit float.

The two local variables also illustrate the bytecode used by DWARF to locate a
variable. In this case, both variables are local and have a constant offset relative to
the stack frame base register.

A more complex example is one for a Fortran dynamically allocated array. The
declaration below is for a complex 2D array, allocated at runtime, to be saved
across function calls and whose bounds are unknown at compile time.
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Complex(4), Allocatable, Save :: FImage (:, :)

This produces the following debugging information

DIE: <0x511b> DW_TAG_variable

DW_AT_call_line 31

DW_AT_call_file 1

DW_AT_name fimage

DW_AT_location DW_OP_addr 0x805adc0

DW_AT_type <0x5239>

DIE: <0x51f0> DW_TAG_base_type

DW_AT_name complex(kind=4)

DW_AT_byte_size 8

DW_AT_encoding DW_ATE_complex_float

DIE: <0x5239> DW_TAG_array_type

DW_AT_sibling <0x5274>

DW_AT_name array2_complex(kind=4)

DW_AT_ordering 1

DW_AT_allocated DW_OP_push_object_address DW_OP_deref

DW_OP_lit0 DW_OP_ne

DW_AT_data_location DW_OP_push_object_address DW_OP_deref

DW_AT_type <0x51f0>

DIE: <0x524f> DW_TAG_subrange_type

DW_AT_byte_stride DW_OP_push_object_address DW_OP_plus_uconst

0xc DW_OP_deref DW_OP_lit8 DW_OP_mul

DW_AT_lower_bound DW_OP_push_object_address DW_OP_plus_uconst

0x10 DW_OP_deref

DW_AT_upper_bound DW_OP_push_object_address DW_OP_plus_uconst

0x14 DW_OP_deref

DIE: <0x5261> DW_TAG_subrange_type

DW_AT_byte_stride DW_OP_push_object_address DW_OP_plus_uconst

0x18 DW_OP_deref DW_OP_lit8 DW_OP_mul

DW_AT_lower_bound DW_OP_push_object_address DW_OP_plus_uconst

0x1c DW_OP_deref

DW_AT_upper_bound DW_OP_push_object_address DW_OP_plus_uconst

0x20 DW_OP_deref

The location attribute in DIE 0x511b shows that the fimage array descriptor pointer
is treated as a global variable. It is stored at the fixed address 0x805adc0 in .data.
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The type of the variable is substantially more complex. From DIE 0x5239, we learn
that it is an array type, and from the array DIE’s type attribute, the elements in the
array are complex values with 32-bit real and imaginary components.

The allocated attribute tells a debugger how to determine at runtime if the array has
been allocated. This is done by dereferencing the first word in the array descriptor
and comparing it with zero. Since the first word of the descriptor is the base address
of the array data, this shows that the base address of the array is used to imply
allocatedness and zero is an invalid address.

The array DIE has two subrange DIEs. These indicate the upper and lower bounds
and the stride of each of the dimensions of the array. The rank of the array is
the same as the number of subrange child DIEs. The stride of a dimension is the
number of bytes an address has to be increased by to advance from index i to i + 1.

For the gfortran implementation, we happen to know that the array descriptor
consists of three words — the base pointer to the data, an offset, and a word that
describes both the array element data type and the rank of the array. These three
words are followed by triples of words defining the stride, lower bound and upper
bound for each dimension of the array. This can be seen in the bytecodes for each
of the subranges of the array type DIE. The first subrange uses the 4th, 5th and 6th

words in the descriptor (at offsets 12, 16 and 20), and the second subrange uses the
7th, 8th and 9th words.

We can see the gfortran array descriptors store strides as counted by elements, as
the stride bytecodes multiply these values by 8 (the size of a 32-bit complex value
in bytes) to get the size of the stride in bytes.
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APPENDIX E
Valgrind Intermediate Representation and instrumentation

Here we will examine the following sequence of three instructions from the appli-
cation 187.facerec described in Sec. 6.1.2.

0x080507b6: mov 8(%ebp),%edi

0x080507b9: fmuls (%edi)

0x080507bb: fstps -88(%ebp)

The first instruction loads a word from the address EBP+8 and stores it in the
register EDI.

The second instruction reads a 32 bit float from the address in EDI, multiplies the
topmost register in the floating point stack by it, and stores the result in the topmost
register. This, in effect, treats EBP+8 as a pointer to a floating point value.

The third instruction stores the topmost register in the floating point stack as a 32
bit float at the address EBP-88 and then pops the value from the floating point stack
(by updating the top of stack pointer). EBP-88 behaves as a temporary value on the
current function’s stack frame.

These three operations cause two loads (the pointer load, and the floating point
value load), a multiply, and a store, along with a number of register accesses.

The instrumented IR is shown below. Valgrind inserts IMark statements before the
IR for every instruction to inform tools of the instruction’s address and length.

Each load is instrumented with a call to a load helper function, as is each store. GETs
and PUTs (i.e., register reads and writes) are instrumented with corresponding
GETs and PUTs for shadow registers. The exception to this is the parts of the guest
state that are not directly accessible by the user and cannot store interesting data.
Examples of this are FTOP and FPTAG which Valgrind uses to store the x87 stack
state.

The instrumentation statements added by DART appear in bold italic.

------ IMark(0x80507B6, 3) ------

t10 = GET:I32(EBP) Read the value in EBP
t64 = GET:I32(s_EBP) Read the tag for EBP
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t9 = Add32(t10,8) Add 8 to calculate the effective address

t11 = LDle:I32(t9) Load from the effective address
t65 = DIRTY :: help_load(t9) Call helper to read the tag for the address

PUT(EDI) = t11 Store value into EDI
PUT(s_EDI) = t65 Store tag into shadow EDI

------ IMark(0x80507B9, 2) ------

t15 = LDle:F32(t11) Load value at EDI. EDI previously set to t11
t66 = DIRTY :: help_load(t11) Call helper to read the tag for the address
t50 = F32toF64(t15) Valgrind internal convert to 64 bit float

t12 = GET:I32(FTOP) Read the pointer to the top of the FP stack
t51 = GETI(FPREG:8xF64)[t12,0] Read the value at the top of the FP stack
t68 = GETI(s_FPREG:8xI32)[t12,0] Read the tag at the top of the FP stack

t52 = F64i{0x7FF8000000000000} 64 bit NaN constant
t53 = GETI(FPTAG:8xI8)[t12,0] Get the x87 stack tag for top of stack
t54 = Mux0X(t53,t52,t51) Set value to NaN if tag indicates stack is empty
t69 = Mux0X(t53,0,t68) Tag for above. NaN is constant, so T = 0

t55 = MulF64(0,t54,t50) Multiply top of stack by value from EDI
t72 = DIRTY ::

help_bin_fpop(t55,t69,t66) Calculate tag for the multiply

PUTI(FPREG:8xF64)[t12,0] = t55 Write the result to the stack
PUTI(s_FPREG:8xI32)[t12,0] = t72 Write the tag to the top of stack

------ IMark(0x80507BB, 3) ------

t23 = Add32(t10,-88) EBP previously read into t10. Calculate EBP-88

t33 = GET:I32(FPROUND) Get the FP rounding mode
t32 = And32(t33,3) Keep the bottom two bits
t25 = F64toF32(t32,t55) Round top of stack (set to t55 previously) to 32 bit

DIRTY :: help_store(t23,t25,t72) Update tag and perform any logging for the store
STle(t23) = t25 Perform the store

PUTI(FPTAG:8xI8)[t12,0] = 0 Update the x87 tag for the top of stack: no value
t35 = Add32(t12,1) Increment the top of stack pointer (read into t12 previously)
PUT(FTOP) = t35 Update the top of stack pointer
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APPENDIX F
187.facerec denormal profile

Address Source Loads FP ops Stores
libgfortran3’s complex transpose
0x040a48a0 172,804 0 0
0x040a48a7 341,992 0 0
0x040a48ad 170,123 0 0
Total 684,919 0 0
libm’s exponential functions
0x0410c094 0 15,100 0
libc’s memcpy
0x041c9b76 604,000 0 0
CFFTB1 in the 1D inverse FFT
0x0804b32a cfftb.f90:18 102,400 0 0
0x0804b351 cfftb.f90:23 409,600 0 0
Total 512,000 0 0
CFFTF in the 1D inverse FFT
0x0804dc3b cfftf.f90:18 2,560 0 0
0x0804dc62 cfftf.f90:23 10,240 0 0
Total 12,800 0 0
Array copy in FFT2DB
0x0805035e fft2d.f90:172 245,051 0 0
0x08050360 fft2d.f90:172 0 0 488,423
0x08050362 fft2d.f90:172 488,021 0 0
0x08050365 fft2d.f90:172 0 0 488,021
0x08050377 fft2d.f90:172 243,372 0 0
Total 976,444 0 976,444
Transpose in FFT2DB
0x080504f5 fft2d.f90:182 0 0 342,927
0x080504fb fft2d.f90:182 0 0 341,992
Total 0 0 684,919
exp(x) in ComputeKernel
0x080508c1 gaborRoutines.f90:199 0 0 15,100
GaborTrafo
0x08051542 gaborRoutines.f90:110 604,000 809,520 0
0x0805154a gaborRoutines.f90:110 0 615,920 0
0x0805154f gaborRoutines.f90:110 0 488,021 0
0x08051554 gaborRoutines.f90:110 0 488,423 0
0x08051614 gaborRoutines.f90:110 0 0 488,423
0x08051616 gaborRoutines.f90:110 0 0 488,021
Total 604,000 2,401,884 976,444
Total 3,394,163 2,416,984 2,652,907

Table F.1: DART denormal profile for 187.facerec, part I
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Address Source Loads FP ops Stores
PassB4 in the 1D inverse FFT
0x0804a64b cfftb.f90:267 87,434 0 0
0x0804a650 cfftb.f90:267 89,105 173,544 0
0x0804a65d cfftb.f90:269 88,411 0 0
0x0804a662 cfftb.f90:269 90,177 87,827 0
0x0804a66e cfftb.f90:270 0 86,544 0
0x0804a673 cfftb.f90:271 86,795 0 0
0x0804a679 cfftb.f90:271 87,894 173,402 0
0x0804a687 cfftb.f90:273 89,626 0 0
0x0804a68c cfftb.f90:273 87,635 0 0
0x0804a690 cfftb.f90:273 0 256,138 0
0x0804a69d cfftb.f90:275 0 0 83,649
0x0804a69f cfftb.f90:276 0 84,622 0
0x0804a6a3 cfftb.f90:276 0 0 84,622
0x0804a6a7 cfftb.f90:277 0 84,371 0
0x0804a6a9 cfftb.f90:277 0 0 84,371
0x0804a6ae cfftb.f90:278 0 84,896 0
0x0804a6b2 cfftb.f90:278 0 0 84,896
0x0804a6bb cfftb.f90:279 0 85,605 0
0x0804a6bd cfftb.f90:279 0 0 85,605
0x0804a6bf cfftb.f90:280 0 89,051 0
0x0804a6c5 cfftb.f90:280 0 0 89,051
0x0804a6c9 cfftb.f90:281 0 84,208 0
0x0804a6cb cfftb.f90:281 0 0 84,208
0x0804a6ce cfftb.f90:282 0 88,517 0
0x0804a6d0 cfftb.f90:282 0 0 88,517
0x0804a87d cfftb.f90:287 402,490 0 0
0x0804a885 cfftb.f90:287 384,024 0 0
0x0804a889 cfftb.f90:287 0 761,494 0
0x0804a895 cfftb.f90:289 491,218 0 0

Table F.2: DART denormal profile for 187.facerec, part II
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Address Source Loads FP ops Stores
PassB4 in the 1D inverse FFT continued...
0x0804a89d cfftb.f90:289 327,814 0 0
0x0804a8a1 cfftb.f90:289 0 567,457 0
0x0804a8a5 cfftb.f90:289 0 60,013 0
0x0804a8aa cfftb.f90:291 401,320 0 0
0x0804a8af cfftb.f90:291 382,599 0 0
0x0804a8b3 cfftb.f90:291 0 761,493 0
0x0804a8bc cfftb.f90:293 493,441 0 0
0x0804a8c7 cfftb.f90:293 328,764 0 0
0x0804a8c9 cfftb.f90:293 0 316,236 0
0x0804a8d6 cfftb.f90:294 0 594,298 0
0x0804a8df cfftb.f90:295 0 0 279,828
0x0804a8e1 cfftb.f90:296 0 563,038 0
0x0804a8ea cfftb.f90:297 0 0 279,603
0x0804a8ee cfftb.f90:298 0 847,216 0
0x0804a8fb cfftb.f90:301 0 281,956 0
0x0804a8ff cfftb.f90:302 0 281,927 0
0x0804a91b cfftb.f90:303 0 833,586 0
0x0804a926 cfftb.f90:303 0 0 282,079
0x0804a92a cfftb.f90:304 0 290,076 0
0x0804a932 cfftb.f90:304 0 543,096 0
0x0804a93d cfftb.f90:304 0 0 282,567
0x0804a94c cfftb.f90:305 0 847,653 0
0x0804a954 cfftb.f90:305 0 0 282,695
0x0804a958 cfftb.f90:306 0 851,813 0
0x0804a962 cfftb.f90:306 0 0 284,834
0x0804a971 cfftb.f90:307 0 836,711 0
0x0804a979 cfftb.f90:307 0 0 282,122
0x0804a97d cfftb.f90:308 0 837,850 0
0x0804a985 cfftb.f90:308 0 0 283,656
Total 3,918,747 11,454,638 2,942,303

Table F.3: DART denormal profile for 187.facerec, part III
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APPENDIX G
nreg case study data

Experiment Set 1 Set 2 Set 3 Set 4 Set 5 Avg.
light load

FIFO, sequential
Makespan 42,463 s 67,104 s 45,821 s 47,869 s 53,808 s 51,413 s
Idletime 52.62% 58.31% 62.61% 68.47% 49.78% 58.24%

FIFO, parallel
Makespan 34,746 s 48,282 s 29,600 s 26,079 s 466,37 s 37,068 s
Idletime 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

TITAN
Makespan 27,972 s 31,683 s 24,164 s 27,204 s 33,379 s 28,880 s
Idletime 4.26% 7.89% 10.39% 8.40% 6.27% 7.33%

medium load
FIFO, sequential

Makespan 69,952 s 92,259 s 85,053 s 87,765 s 98,435 s 86,692 s
Idletime 34.08% 49.76% 53.97% 61.84% 49.74% 50.50%

FIFO, parallel
Makespan 79,613 s 80,017 s 67,618 s 57,853 s 85,399 s 74,100 s
Idletime 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

TITAN
Makespan 57,069 s 58,114 s 54,483 s 48,332 s 64,326 s 56,464 s
Idletime 6.29% 7.11% 10.06% 7.21% 5.66% 7.20%

heavy load
FIFO, sequential

Makespan 171,145 s 155,330 s 141,049 s 153,092 s 178,035 s 159,730 s
Idletime 39.99% 45.65% 43.18% 47.62% 48.64% 45.05%

FIFO, parallel
Makespan 177,268 s 145,785 s 138,397 s 138,481 s 157,859 s 151,558 s
Idletime 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

TITAN
Makespan 125,236 s 119,656 s 108,909 s 115,611 s 109,823 s 115,847 s
Idletime 6.59% 8.93% 11.12% 8.88% 8.57% 8.76%

Table G.1: Comparing scheduling techniques with varying workloads
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Experiment Set 1 Set 2 Set 3 Set 4 Set 5 Avg.
40 tasks

FIFO, sequential
Makespan 63,724 s 72,124 s 61,339 s 72,343 s 59,609 s 65,827 s
Idletime 56.16% 63.28% 60.55% 69.51% 48.02% 60.00%

Probe 6×
Makespan 46,333 s 41,733 s 42,133 s 43,733 s 44,466 s 43,680 s

Probe 5×
Makespan 46,667 s 42,200 s 42,666 s 44,000 s 43,533 s 43,813 s

Probe 4×
Makespan 47,600 s 41,400 s 42,400 s 41,266 s 45,733 s 43,680 s

Perfect
Makespan 48,750 s 35,625 s 37,210 s 39,522 s 38,827 s 39,986 s
Idletime 14.35% 12.90% 20.32% 20.09% 16.94% 16.84%

80 tasks
FIFO, sequential

Makespan 102,908 s 97,589 s 125,160 s 104,288 s 116,471 s 109,283 s
Idletime 42.54% 44.69% 61.22% 52.33% 51.42% 50.96%

Probe 6×
Makespan 91,467 s 97,266 s 92,133 s 95,000 s 96,400 s 94,453 s

Probe 5×
Makespan 97,933 s 95,933 s 96,333 s 94,133 s 91,533 s 95,173 s

Probe 4×
Makespan 98,533 s 93,066 s 94,266 s 89,066 s 91,666 s 93,319 s

Perfect
Makespan 84,932 s 82,926 s 79,928 s 80,435 s 80,715 s 81,787 s
Idletime 16.93% 20.55% 19.66% 18.98% 19.09% 19.03%

160 tasks
FIFO, sequential

Makespan 168,188 s 205,291 s 187,179 s 177,874 s 182,488 s 184,204 s
Idletime 33.04% 49.47% 45.30% 42.31% 38.58% 42.08%

Probe 6×
Makespan 215,867 s 213,200 s 193,600 s 208,466 s 208,466 s 213,133 s

Probe 5×
Makespan 221,000 s 206,066 s 199,866 s 213,933 s 221,533 s 212,480 s

Probe 4×
Makespan 212,600 s 208,600 s 193,933 s 211,933 s 213,333 s 208,080 s

Perfect
Makespan 182,815 s 179,550 s 160,030 s 177,545 s 186,041 s 177,196 s
Idletime 20.77% 25.83% 21.42% 24.21% 23.32% 23.14%

Table G.2: Comparing different prediction models with varying workloads
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APPENDIX H
187.facerec runtimes

The following table shows the results of benchmarking 187.facerec, both with and
without the patch in Sec. 6.5.8. The test is run on four machines of different ages and
with different microarchitectures. The tests are performed by running 187.facerec

6 times using the largest dataset provided and benchmarked by measuring the user
time reported by the UNIX time utility. The results of the first test are discarded to
allow for any warmup effects, and the remaining 5 results are averaged.

P4Xeon uses a 2.5 GHz Intel dual core Xeon. This dates from late 2002, is based
on the Pentium 4 microarchitecture, has 512 kB L2 cache, 1024 kB L3 cache and was
manufactured on a 130 nm process.

Opteron uses a 2.4 GHz AMD dual core Opteron 250. This dates from mid 2003,
is based on the Sledgehammer microarchitecture, has 1024 kB L2 cache and was
manufactured on a 130 nm process.

Yonah uses a 2.0 GHz Intel Core Duo T2500. This dates from early 2006, is based
on the Pentium M microarchitecture, has 2048 kB L2 cache, and was manufactured
on a 65 nm process.

Kentsfield uses a 2.4 GHz Intel Core 2 Quad Q6600. This dates from mid 2007, is
based on the Core microarchitecture, has 2048 kB L2 cache for each pair of CPU
cores, and was manufactured on a 65 nm process.

Experiment Set 1 Set 2 Set 3 Set 4 Set 5 Avg. Speedup
P4Xeon

Unpatched 531.03s 535.86s 538.48s 536.30s 531.70s 534.67s
Patched 398.31s 396.81s 397.87s 401.93s 405.38s 400.06s 25.2%

Opteron
Unpatched 175.85s 178.93s 176.56s 172.94s 176.39s 176.13s
Patched 164.98s 164.64s 168.28s 161.12s 162.74s 164.35s 6.7%

Yonah
Unpatched 164.65s 166.25s 167.21s 166.57s 167.10s 166.36s
Patched 132.85s 133.10s 132.37s 133.03s 132.09s 132.69s 20.2%

Kentsfield
Unpatched 134.11s 134.19s 134.22s 133.48s 133.77s 133.95
Patched 101.40s 101.49s 101.52s 101.33s 101.15s 101.38 24.3%

Table H.1: Runtimes of 187.facerec on different architectures
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