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Abstract

The first chapter, joint with Dominik Thaler, is a New Keynesian model of

how monetary policy can influence the risk-taking behaviour of banks. Lower

interest rates change bank incentives, making them prefer riskier investments.

This mechanism alters the tradeoff faced by the monetary authority, affecting

optimal policy conduct. After estimating the model, we find that the monetary

authority should react less aggressively to inflation, trading off more inflation

volatility in exchange for less financial market distortions.

The second chapter, written with Prof. Massimiliano Marcellino, investigates

whether modelling parameter time variation and stochastic volatility improves

the forecasts of three major exchange rates vis-a-vis the US dollar. We find that

modelling time-varying volatility significantly refines the estimation of forecast

uncertainty through an accurate calibration of the entire forecast distribution at

all forecast horizons.

Similar empirical tools are employed in the third chapter, where I show that

the inclusion of default risk and risk aversion measures improves the forecasts

of key activity and banking indicators. The bulk of forecast improvement takes

place during the 2001 and 2008 recessions, when credit constraints were arguably

binding. A structural VAR further reveals that an unexpected credit spread

increase in 2010 causes an output contraction that lasts for about two years, and

explains up to 35% percent of output variation.

The final project, joint with Sandra Eickmeier, Prof. Massimiliano Marcellino

and Wolfgang Lemke, investigates the changing international transmission of

financial shocks over 1971-2012. A time-varying parameter FAVAR shows that

global financial shocks, measured as unexpected changes in a US financial condition

index, strongly impact growth in the nine countries considered. In addition,

financial shocks in 2008 explain approximately 20% of the GDP growth variation

in the 9 countries, as opposed to an average of 5% percent before the crisis.
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Chapter 1

Monetary policy effects on bank risk

taking

Joint with Dominik Thaler

1.1 Introduction

The recent financial crisis has marked the importance of monitoring the different types of risks

to which the financial sector, and ultimately the real economy, are exposed. A relevant aspect

is whether interest rates, and therefore monetary policy, can influence the risk-taking behavior

of financial intermediaries. This transmission mechanism, known as the risk-taking channel of

monetary policy,1 could have contributed to the excessive levels of financial sector balance-sheet

risk which lead to the 2008 financial crisis. In the aftermath of the crisis interest rates have fallen

considerably in many countries, raising concerns on whether financial market participants might

be once again induced to reallocate portfolios towards riskier investments, creating the risk of yet

another crisis.2

This paper addresses these concerns from a theoretical point of view, motivated by structural

VAR evidence that expansionary monetary policy shocks increase bank asset risk in the US. We

build a monetary DSGE model, where investment in capital is intermediated by a banking sector

and is furthermore risky. Building on Dell’Ariccia et al. [2014], we assume that banks can choose

from a continuum of investment projects, each defined by different risk-return characteristics.

Every project has a certain probability of yielding capital in the next period. The safer the

project is, however, the lower is the return in case of success. Since depositors cannot observe the

investment choice, and because bank owners are protected by limited liability, an agency problem

emerges: banks are partially isolated from the downside risk of their investment and hence choose

1The term was first coined by Borio and Zhu [2008].
2See for instance: (2015, 26 September). Repeat Prescription, The Economist.
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a risk level that exceeds what would be chosen if these frictions were absent. This problem could

be mitigated if bankers held more equity. Yet, banks optimally rely on both types of funding and

hence the agency problem persists, because equity is relatively more costly than deposits due to

deposit insurance and a friction in the equity market. Since the importance of these distortions is

proportional to the real rate of return, lower levels of the real risk-free rate induce banks to increase

leverage and choose riskier investment projects. This implies that the investment intermediated

by banks becomes less efficient, leading to a sizeable decline in the capital stock both directly,

as a lower fraction of capital projects is successful, and indirectly, as households will not save as

much. Overall, a monetary policy expansion worsens the financial market distortions, which in

turn attenuate the positive output effects of the interest rate cut.

This connection between interest rates and asset risk raises the question of whether the monetary

authority should take this channel into account when setting the interest rate. Since the answer

to this question is of quantitative nature, we embed the banking sector in a medium scale Smets

and Wouters [2007]-type DSGE model, known to fit the data well along many dimensions, and

estimate it on US data with Bayesian techniques. We find that the inclusion of this additional

channel improves the in-sample fit of the model, yields impulse responses that are broadly in line

with the results of our VAR analysis, and predicts a path of risk taking for the estimation period

that matches survey evidence

We then analyze optimal monetary policy in the estimated model using simple rules and find

that, if the risk-taking channel is active, monetary policy should be less responsive to inflation

and output fluctuations. In this way, the monetary authority allows more inflation volatility

in exchange for stabilizing the real interest rate, which in turn reduces the welfare detrimental

volatility of the banks’ risk choice. The welfare gains from taking the risk-taking channel into

account are significant.

Our work relates to a small but growing theoretical literature that links monetary policy to

financial sector risk in a general equilibrium framework. Most of the existing works focus on funding

risk, associating risk with leverage, and build on the financial accelerator framework of Bernanke

et al. [1999].3 The mechanism in these models relies on the buffer role of equity and therefore

leverage is found to be counter-cyclical with respect to the balance sheet size. Our model on the

contrary gives rise to pro-cyclical leverage, which is in line with the empirical evidence reported

in Adrian and Shin [2014] and Adrian et al. [2015]. Following a different strategy, Angeloni and

Faia [2013] and Angeloni et al. [2013] augment the financial accelerator framework and construct a

model where higher leverage induced by expansionary monetary policy does not just amplify other

shocks but also translates into a higher fraction of inefficient bank runs.

3For example in Gertler et al. [2012] and de Groot [2014] a monetary expansion increases banking sector leverage,
which in turn amplifies the financial accelerator and strengthens the propagation of shocks to the real economy.
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In this paper by contrast we model asset risk, i.e. the riskiness of the assets on the banks’

balance sheets, another aspect of financial sector risk that seems to have played an important role

in the lead-up to the 2008 financial crisis. This type of risk has so far mainly been discussed in

the literature on optimal regulation such as Christensen et al. [2011] and Collard et al. [2012]. In

these papers however, either the depositors or the financial regulator ensure that risk is always

chosen optimally, so monetary policy has no influence on risk taking.4 In contrast to the previous

two papers we provide microfoundations for the asset risk-taking channel and focus on monetary

policy while abstracting from regulation.5 Adding to the literature on both types of risk taking,

we furthermore systematically explore how this novel channel affects optimal monetary policy in

an estimated medium scale model, where the policy maker needs to trade off several conflicting

frictions.

The lack of theoretical papers on the asset risk-taking channel is not mirrored by a lack of

empirical evidence. Several studies find a causal link between monetary policy and risk taking.

Most of the existing research relies on loan or bank level panel data and identification is based

on the assumption that monetary policy is exogenous. Jimenez et al. [2014] use micro data of

the Spanish Credit Register from 1984 to 2006 and find that lower interest rates induce banks to

make relatively more loans to firms that qualify as risky ex ante (firms with a bad credit history

at time of granting the loan) as well as ex post (firms that default on the granted loan). They

argue that this effect is economically significant and particularly strong for thinly capitalized

banks. These findings are confirmed for Bolivia using credit register data in Ioannidou et al. [2015],

and for the US using confidential loan level data from the Terms of Business Lending Survey in

Dell’Ariccia et al. [2013]. For the US, these findings are furthermore corroborated by evidence from

aggregate time series data, where identification is obtained through restrictions on the dynamic

responses. Angeloni et al. [2013] and Afanasyeva and Guentner [2014] find that monetary policy

shocks increase asset risk, respectively proxied by the debt stock of households and non-financial

corporations, and by the net percentage of banks reporting tighter lending standards in the Fed

survey of business lending. These results are confirmed for small banks by the FAVAR analysis

of Buch et al. [2013], who use a more direct measure of bank risk from the Terms of Business

Lending Survey. We complement these results in the following section, where we show that further

evidence on the risk-taking channel for the whole banking sector can be obtained using a more

parsimonious setup. All these findings can be summarized by the stylized fact that interest rate

cuts increase bank asset risk

A second stylized fact that used in the theoretical model is found by Buch et al. [2013] and

Ioannidou et al. [2015]. Both show that the increase in risk taking induced by low interest rates

4Both papers feature ad-hoc extension that relate risk to the amount of lending and hence indirectly to monetary
policy.

5One could reinterpret our model as applying to an economy where regulation is not able to fully control risk
taking.
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is not accompanied by an offsetting increase in the risk premium on loans, indicating that the

additional risk might be priced inefficiently.

Motivated by this comprehensive empirical evidence and the VAR analysis in section 2, we

develop in section 3 a DSGE model of asset risk-taking, where banks respond to low interest

rates by inefficiently taking more risk. Section 4 presents the results from the estimation of the

model and discusses the steady-state and dynamic implications of bank risk taking. Section 5

analyzes how monetary policy should be conducted if a risk-taking channel is present and section

6 concludes.

1.2 The asset risk-taking channel in the US

To motivate our subsequent theoretical analysis, we provide additional empirical evidence on the

existence of the asset risk-taking channel in the US. We employ a classical small-scale VAR that

includes inflation, output, a measure of bank risk-taking and the effective federal funds rate, taken

as the monetary policy instrument. Output is measured by real GDP growth, while inflation is

defined as the log change in the GDP deflator.

Measuring risk taking is less straightforward. There are many notions of asset risk. One can

distinguish between ex-ante, ex-post and realized asset risk. The former is the risk perceived by

the bank when making a loan or buying an asset. Banks can influence this class of risk directly,

when making their investment decisions (the ex-ante risk choice). On the other hand, the ex-post

risk of a bank’s balance sheet is also affected by unforeseen changes in asset riskiness, that take

place after origination and are largely outside the banks’ influence. Lastly, the payoff ultimately

paid by an asset is a materialization of the former two types of uncertainty (realized asset risk).

In this paper we focus on active risk taking, that is the level of ex-ante risk that intermediaries

choose, which is however difficult to observe directly.6 Therefore, we use a survey-based proxy for

bank risk-taking as in Dell’Ariccia et al. [2014] given by the weighted average of the internal risk

rating assigned by banks to newly issued loans, provided by the US Terms of Business Lending

Survey. See appendix 1A for a plot of this risk index.7

6Inferring it from realized risk (e.g. loan losses) is hardly possible with aggregate data. Inference from the spread
between bank funding costs and loan rates neglects the fact that this spread not only reflects default risk but
also incorporates a liquidity premium and the markup, which are likely to be affected by the same variables
that influence the risk choice.

7The average loan risk is a perfect measure for bank risk taking if we assume that the volume of loans is constant.
Else, banks could also minimize their risk exposure by reducing the quantity of loans as their average quality
goes down. While the correlation between risk and loan volume growth is slightly negative, it is not significant
at a 10% significance level. For a more in-depth discussion of the data we refer to Buch et al. [2013].
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Figure 1.1: Monetary policy shock on bank risk-taking: Impulse responses over a 3-year horizon,
identified through the sign restriction scheme in Table 1. Error bands correspond to 90% confidence
intervals reflecting rotation uncertainty. Loan safety is defined as the inverse of the average loan risk
rating, standardized to take values between 0 and 100. The remaining variables are annualized. See
text for further details.
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We estimate a VAR over the period 1997:Q2, the start of the survey-based proxy for risk

taking, to 2007:Q38. The lag length is chosen to be 1, as indicated by the BIC information

criterion. We identify an unexpected monetary policy shock by using a conventional set of sign

restrictions that are robust across a variety of general-equilibrium models. In particular, we assume

that an expansionary monetary policy shock decreases the nominal risk-free interest rate, and

increases inflation and output, both at the time of the shock and in the quarter immediately after.

Risk is left unrestricted. Note that the response of inflation ensures that this shock is identified

separately from a productivity shock, which increases output but decreases both the interest rate

and inflation.

The response of bank asset risk to an expansionary monetary policy shock is shown in figure

1.1. An unexpected decrease in the monetary policy interest rate is followed by a moderate

macroeconomic expansion: output growth increases for less than a year, while inflation displays a

longer reaction of about two years. The results are compatible with the existence of a risk-taking

channel in the US: a fall in the nominal interest rate leads in fact to a decrease in the ex-ante proxy

for the safety of banks’ assets, i.e. banks issue riskier loans. Interestingly, the implied responses of

the nominal interest rate and the risk measure are approximately proportional. These results are

robust to using a recursive identification scheme, as shown in appendix 1B.9

8We have decided to cut the zero-lower bound period, but our results still hold when the latest available data are
used.

9We tested two orderings (output, inflation, interest rate, risk) and (output, inflation, risk, interest rate).
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1.3 A Dynamic New Keynesian model with a bank

risk-taking channel

In this section we build a general-equilibrium model where monetary policy can influence the

risk-taking behavior of banks, thus providing an explanation for the risk-taking channel observed in

the data. As a starting point we use a standard New Keynesian model with imperfect competition

and price stickiness in the goods market, which implies a role for monetary policy. We augment

this basic framework with an intermediation sector based on Dell’Ariccia et al. [2014]: competitive

banks obtain funds from depositors and equity holders, which they invest into capital projects

carried out by capital producers. Every bank chooses its investment from a continuum of available

capital production technologies, each defined by a given risk-return characteristic. The risk choice

of the representative bank is affected by the level of the real interest rate, and can be shown to be

suboptimal. This model reproduces two features found in the data: risk taking depends on the

contemporaneous interest rate and is priced inefficiently.

While the aforementioned blocks are the necessary ingredients, in order to obtain a quantitatively

more realistic model we add further elements, which are typically used in the DSGE literature. In

particular we follow Smets and Wouters [2007] and allow for internal habits, investment adjustment

costs and imperfect competition and wage stickiness in the labor market. Our model therefore

features seven agents that are typical for DSGE models (households, unions, labor packers, capital

producers, intermediate goods producers, final goods producers, and a central bank) and two

agents that we introduce to model risk taking (banks, funds). Eight structural shocks hit the

economy: these affect productivity, investment, time preferences, the equity premium, wage and

price markups, as well as monetary and fiscal policy.

1.3.1 Households

The representative household chooses consumption ct, working hours Lt and savings in order to

maximize its discounted lifetime utility. Saving is possible through three instruments: government

bonds st, deposit funds dt, and bank equity funds et. The nominal return on government bonds is

safe and equal to the nominal interest rate Rt. The two funds enable the representative household

to invest into the banking sector, and pay an uncertain nominal return of Rd,t+1 and Re,t+1.
10

Households maximize their lifetime utility function:

maxdt,et,st,ct,Lt E

[
∞∑
t=0

βtεBt
(ct − ιct−1)1−σC

1− σC
exp

(
ϕL1+σL

t

σC − 1

1 + σL

)]
, (1.1)

10Note that in our notation the time index refers to the period when a variable is determined.
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subject to the per-period budget constraint in real terms:

ct + dt + et + st + Tt = Ltwt + dt−1
Rd,t

πt
+ et−1

Re,t

πt
+ st−1

Rt−1

πt
+ Πt , (1.2)

where πt is the inflation rate, while Tt and Πt are taxes and profits form firm ownership, expressed

in real terms. We allow for habits in consumption (ι) and a time preference shock εBt . This shock

is assumed to be persistent with log-normal innovations, like all following shocks unless otherwise

specified. The household’s optimality conditions are given by the usual Euler equation and two

no-arbitrage conditions:

Λt = βEt
[
Λt+1

Rt

πt+1

]
, (1.3)

Et

[
Λt+1

Rd,t+1

πt+1

]
= Et

[
Λt+1

Rt

πt+1

]
, (1.4)

Et

[
Λt+1

Re,t+1

πt+1

]
= Et

[
Λt+1

Rt

πt+1

]
, (1.5)

where Λt = εBt (ct − ιct−1)−σC − βιEt
[
εBt+1 (ct+1 − ιct)−σC

]
is the marginal utility of consumption.

1.3.2 Labor and goods sectors

The labor and goods sectors feature monopolistic competition and nominal rigidities, which allow

for a role for monetary policy. Since the modeling of these sectors follows the canonical New

Keynesian model, we discuss them only briefly and refer to Smets and Wouters [2007] and Adjemian

et al. [2008] for further details. The corresponding equilibrium conditions are listed in appendix

1C.

Final good producers assemble different varieties of intermediate goods through a Kimball

[1995] aggregator with elasticity of substitution εp and Kimball parameter kp, taking as given

both the final good price and the prices of intermediate goods. Their optimization problem yields

demand functions for each intermediate good variety as a function of its relative price.

A continuum of firms produces differentiated intermediate goods using capital Kt−1 and “packed”

labor ldt as inputs. The production function is Cobb-Douglas and is affected by a total factor

productivity shock εAt . Firms use their monopolistic power to set prices, taking as given their

demand schedule. As in Calvo [1983], they can reset their prices in each period with probability λp,

otherwise they index their prices to past inflation with degree γp and to steady state inflation with
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degree (1− γp). Furthermore they are subject to a time-varying revenue tax εpt that is equivalent

to a markup shock, up to a first-order approximation.

The labor market resembles the product market: Packed labor is produced by labor packers,

who aggregate differentiated labor services using a Kimball [1995] aggregator with elasticity of

substitution εw and Kimball parameter kw.

Differentiated labor services are produced by a continuum of unions from the households labor

supply. They use their monopolistic power to set wages. Wages are reset with probability λw,

otherwise they are indexed to past inflation (with degree γw) and steady state inflation. Like

intermediate firms, unions are subject to a stochastic wage tax εwt .11

1.3.3 Equity and deposit funds

As we explain in detail below, there is a continuum of banks which intermediate the households’

savings using deposits and equity. Each bank is subject to a binary idiosyncratic shock which

makes a bank fail with probability 1 − qt−1, in which case equity is wiped out completely and

depositors receive partial compensation from the deposit insurance. We assume that households

invest into bank equity and deposits through two funds. The function of the equity (deposit) fund

is to eliminate the idiosyncratic bank default risk by buying a perfectly diversified portfolio of 1

period equity (deposits) of all banks.

The deposit fund works without frictions, and represents the depositors’ interests perfectly.

The deposit fund raises money from the households and invests it into dt units of deposits12. In

the next period, the fund receives the nominal deposit rate rd,t from each bank that does not

fail. Deposits of failing banks are partially covered by deposit insurance. Most deposit insurance

schemes around the world, including the US, guarantee all deposits up to a certain maximum

amount per depositor13. We represent this capped insurance model by assuming that the deposit

insurance guarantees deposits up to a fraction ψ of total bank liabilities lt, which are the sum of

deposits dt and equity et. We assume that the deposit insurance cap is inflation adjusted, to avoid

complicating the monetary policy trade-off by allowing an interdependence between monetary

policy and deposit insurance. As we will show later, the deposit insurance cap is always binding

in equilibrium, i.e. the bank’s liabilities exceed the cap of the insurance rd,tdt > ψ(dt + et)πt+1.

Defining the equity ratio kt = et
dt+et

, the deposit fund therefore receives a real return of ψ/(1− kt)
per unit of deposits from each defaulting bank at t. The deposit fund hence pays a nominal return

11Both εpt and εwt follow the standard shock process augmented by an moving average component, as in Smets and
Wouters [2007].

12We use deposits to refer to both units of deposit funds and units of bank deposits since they are equal. We do
the same for equity.

13For a comprehensive documentation see, for instance, Demirguc-Kunt et al. [2005].
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of:

Rd,t+1 ≡ qtrd,t + (1− qt)
ψ

1− kt
πt+1 . (1.6)

Unlike the deposit fund, which is managed frictionlessly, the equity fund is subject to a simple

agency problem. In particular, we assume that the fund manager faces two options. He can behave

diligently and use the funds et, raised at t, to invest into et units of bank equity. A fraction qt of

banks will pay back a return of re,t+1 next period while the defaulting banks pay back nothing.

Alternatively the fund manager can abscond with the funds, in which case he consumes a fraction

ξt of the funds in the subsequent period and the rest is lost. Since he is a small member in the

big family of the representative household his utility from doing so is Λt+1ξtet. To prevent the

fund manager from absconding funds, the equity providers promise to pay him a premium pt

at time t + 1 conditional on not absconding. This premium is rebated to the household in a

lump-sum fashion and the associated utility for the fund manager is Λt+1pt. Equity providers pay

the minimal premium that induces diligent behavior, i.e. pt = ξtet. Once absconding is ruled out

in equilibrium, the equity fund manager perfectly represents the interests of the equity providers.

The nominal return on the bank equity portfolio is qtre,t+1 per unit of equity, hence one share of

the equity fund pays:

Re,t+1 ≡ qtre,t+1 − ξtπt+1 . (1.7)

We allow the equity premium ξt to vary over time.14 Note that, since bank equity is the residual

income claimant, the return of the equity fund is affected by all types of aggregate risk that

influences the surviving banks’ returns.

The two financial distortions introduced so far have important implications. The agency

problem implies an equity premium, i.e. a premium of the risk-adjusted return on equity over the

risk-free rate. Deposit insurance on the other hand acts as a subsidy on deposits, which implies a

discount on the risk-adjusted return on deposits. As explained below, the difference in the costs of

these two funding types induces a meaningful trade-off between bank equity and bank deposits

under limited liability.

1.3.4 Capital producers

We assume that the capital production process is risky in a way that nests the standard capital

production process in the New Keynesian model. In particular, capital is produced by a continuum

of capital producers indexed by m. At period t they invest imt units of final good into a capital

14This shock, driving a wedge between deposit and safe rates on one hand and equity rates on the other is similar
to the risk premium shock often found in medium scale DSGE models (e.g. Smets and Wouters [2007]).
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project of size omt . This project is successful with probability qmt , in which case the project yields

(ω1 − ω2

2
qmt )omt units of capital at t+ 1. Else, the project fails and only the liquidation value of

θomt units of capital can be recovered (where θ � a− b
2
qmt ). Each capital producer has access to a

continuum of technologies with different risk-return characteristics indexed by qm ∈ [0, 1]. Given a

chosen technology qmt , the output of producer m therefore is:

Km
t =


(
ω1 − ω2

2
qmt
)
omt with probablity qmt

θomt else

This implies that the safer the technology (higher qmt ), the lower is output in case of success.

The bank orders the capital projects and requires the capital producer to use a certain

technology, but this choice cannot be observed by any third party. Given the technology choice qt

and assuming that the projects of individual producers are uncorrelated, we can exploit the law of

large numbers to derive aggregate capital:

Kt = ot

(
qt

(
ω1 −

ω2

2
qt

)
+ (1− qt)θ

)
. (1.8)

Furthermore we assume that capital, which depreciates at rate δ, becomes a project (of undefined

qt) at the end of every period. That is, existing capital may be destroyed due to unsuccessful reuse,

and it can be reused under a different technology than it was originally produced.15

The total supply of capital projects by the capital producers is the sum of the existing capital

projects ooldt = (1− δ)Kt−1, which they purchase from the owners (the banks) at price Qt, and

the newly created projects onewt , which are created by investing it units of the final good. We

allow for investment adjustment costs and investment efficiency shocks, i.e. we assume that it

units of investment yield εIt (1− S(it/it−1)) units of project, where S = κ
(

it
it−1
− 1
)2

. Hence

ot = onewt + ooldt and onewt = εIt

(
1− S

(
it
it−1

))
it. Capital producers maximize their expected

discounted profits taking as given the price Qt and the households stochastic discount factor16:

maxit,ooldt Et

∞∑
0

βtΛt

[
Qtε

I
t

(
1− S

(
it
it−1

))
it +Qto

old
t − it −Qto

old
t

]

15This assumption ensures that we do not have to keep track of the distribution of different project types. Think
of a project as a machine that delivers capital services and that can be run at different speeds (levels of risk).
In case it is run at higher speed, the probability of an accident that destroys the machine is higher. After each
period the existing machines are overhauled by the capital producers and at this point the speed setting can be
changed.

16Their out of steady state profits are rebated lump sum to the household.
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While the old capital projects are always reused, the marginal capital project is always a new

one.17 Hence, the price of projects Qt is determined by new projects according to the well known

Tobin’s q equation.

1.3.5 The Bank

The bank is the central agent of our model and is modeled similarly as in Dell’Ariccia et al. [2014].

Banks raise resources through deposits and equity and invest them into a risky project. Since

depositors cannot observe the banks’ risk choice and banks are protected from the downside risk

of their investment by limited liability, an agency problem arises between them when the banks

choose the risk level. The less equity a bank has, the higher the incentives for risk taking. Yet,

since deposit insurance and the equity premium drive a wedge between the costs of deposits and

equity, the banks’ optimal capital structure comprises both equity and deposits, balancing the

agency problem associated with deposits with the higher costs of equity. We will show that the

equilibrium risk chosen by the banks is excessive, and that the interest rate influences the degree

of its excessiveness.

We assume that there is a continuum of banks who behave competitively so that there is a

representative bank (we therefore omit the bank’s index in what follows). The bank is owned

by the equity providers, and hence maximizes the expected discounted value of profits18 using

the household’s stochastic discount factor. Every period the bank raises deposits dt and equity et

from the respective funds (optimally choosing its liability structure). These resources are then

invested into ot capital projects, purchased at price Qt. When investing into capital projects, the

bank chooses the risk characteristic qt of the technology applied by the capital producer. This risk

choice is not observable for depositors. Each bank can only invest into one project and hence faces

investment risk19: with probability qt the bank receives a high pay-off from the capital project;

with probability 1 − qt the investment fails and yields only the liquidation value. Assuming a

sufficiently low liquidation value θ, a failed project implies the default of the bank. In this case,

given limited liability, equity providers get nothing and depositors get the deposit insurance benefit.

In case of success the bank can repay its investors: depositors receive their promised return rd,t

and equity providers get the state contingent return re,t+1.

17We abstract from a non-negativity csonstraint on new projects.
18Profits in excess of the opportunity costs of equity.
19The assumption that the bank can only invest into one project and can not diversify the project risk might sound

stark. Yet three clarifications are in place: First, our setup is isomorphic to a model where the bank invests into
an optimally diversified portfolio of investments but is too small to perfectly diversify its portfolio. The binary
payoff is then to be interpreted as the portfolio’s expected payoff conditional on default or repayment respectively.
Second, if the bank was able to perfectly diversify risk, then limited liability would become meaningless and we
would have a model without financial frictions. Third, we don’t allow the bank to buy the safe asset. Yet this
assumption is innocuous: since the banks demand a higher return on investment than the households due to the
equity premium, banks wouldn’t purchase the safe asset even if they could.
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It is useful to think of the bank’s problem as a recursive two-stage problem. At the second

stage, the bank chooses the optimal risk level qt given a certain capital structure and a certain cost

of deposits. At the first stage, the bank chooses the optimal capital structure, anticipating the

implied solution for the second-stage problem. Note that not only the bank but also the bank’s

financiers anticipate the second-stage risk choice and price deposits and equity accordingly, which

is understood by the bank. Below we derive the solution for this recursive problem.

Before we do so, we establish the bank’s objective function. Per dollar of nominal funds raised

(through deposits and equity) in period t the bank purchases Qt/Pt units of the capital project

from the capital producer, choosing a certain riskiness qt. If the project is successful it turns

into (ω1 − ω2

2
qt)/(QtPt) capital goods. In the next period t+ 1, the bank rents the capital to the

firm, who pays the real rental rate rk,t+1 per unit of capital. Furthermore the bank receives the

depreciated capital, which becomes a capital project again, with real value of (1− δ)Qt+1 per unit

of capital. The bank’s total nominal income, per dollar raised, conditional on success is therefore:

(
ω1 −

ω2

2
qt

) rk,t+1 + (1− δ)Qt+1

Qt

Pt+1

Pt

At the same time, the bank has to repay the deposit and equity providers. Using the equity

ratio kt, the total nominal repayment per dollar of funds due in t + 1 in case of success is

re,t+1kt + rd,t (1− kt).

The bank maximizes the expected discounted value of excess profits, i.e. revenues minus funding

costs, using the stochastic discount factor of the equity holders, i.e. the household. Given the

success probability of qt and the fact that the equity providers receive nothing in case of default,

the bank’s objective function is:

max
qt,kt

βE

[
Λt+1

πt+1

qt

((
ω1 −

ω2

2
qt

) rk,t+1 + (1− δ)Qt+1

Qt

πt+1 − rd,t(1− kt)− re,t+1kt

)]
. (1.9)

Note that we did not multiply the per-unit profits by the quantity of investment. In doing so

we anticipate the equilibrium condition that the bank, whose objective function is linear in the

quantity of investment, needs to be indifferent about the quantity of investment. The quantity

will be pinned down together with the return on capital by the bank’s balance sheet equation

et + dt = Qtot, the market clearing and zero profit conditions.

The bank’s problem can be solved analytically, yet the expressions get fairly complex. Therefore

we derive here the solution for ψ = θ = 0, that is without deposit insurance and with a liquidation

value of 0. This simplifies the expressions but the intuition remains the same. Allowing ψ and θ
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to be nonzero on the other hand is necessary to bring the model closer to the data. The solution

for the general case is discussed in section 3.5.5.

To make notation more tractable we rewrite the bank’s objective function (1.9) in real variables

expressed in marginal utility units20:

ω1qtr̃l,t −
ω2

2
q2
t r̃l,t − qtr̃d,t(1− kt)− qtr̃e,tkt , (1.10)

For later use we rewrite the household’s no-arbitrage conditions (1.3) and (1.5) combined with the

definition of the funds’ returns (1.6) and (1.7) as r̃d,t = R̃t
qt

and r̃e,t = R̃t+ξ̃t
qt

. Let us now solve the

bank’s problem recursively.

Second-stage problem:

At the second stage, the bank has already raised et + dt funds and now needs to choose the risk

characteristic of the investment qt, such that equity holders’ utility is maximized. As already

mentioned, we assume that the bank cannot write contracts conditional on qt with the depositors

at stage one, since qt is not observable to them. Therefore at the second stage the bank takes the

deposit rate as given. Furthermore, since the capital structure is already determined, maximizing

the excess profit coincides with maximizing the profit of equity holders. The bank’s objective

function is therefore:

max
qt

ω1qtr̃l,t −
ω2

2
q2
t r̃l,t − qtr̃d,t(1− kt) . (1.11)

Deriving problem (1.11) with respect to qt yields the following first-order condition21:

qt =
ω1r̃l,t − r̃d,t (1− kt)

w2r̃l,t
. (1.12)

20That is we use the following definitions: r̃l,t = Et

[
Λt+1

(
rk,t+1+(1−δ)Qt+1

Qt

)]
, r̃d,t = Et

[
Λt+1

rd,t
πt+1

]
, r̃e,t =

Et

[
Λt+1

re,t+1

πt+1

]
, R̃t = Et

[
Λt+1

Rt
πt+1

]
, ξ̃t = Et [Λt+1ξt] .

21We focus on interior solutions and choose the larger of the two roots, which is the closest to the optimum, as we
will see below.
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First-stage problem:

At the point of writing the deposit contract at stage one, depositors anticipate the bank’s choices at

stage two and therefore the depositors’ no arbitrage condition r̃d,t = R̃t
qt

must hold in equilibrium.22

Using this equation together with the previous first-oder condition (1.12) we can derive the optimal

qt as a function of kt and r̃l,t:

q̂t ≡ qt(kt) =
1

2ω2r̃l,t

(
ω1r̃l,t +

√
(ω1r̃l,t)

2 − 4ω2r̃l,tR̃t(1− kt)
)
. (1.13)

We can now solve the first-stage problem of the banker. The bank chooses the capital structure

kt to maximize her excess profits, anticipating the qt(kt) that will be chosen at the second stage:

max
kt

q̂tω1r̃l,t −
ω2

2
r̃l,tq̂

2
t − qtr̃d,t(1− kt)− qtr̃e,tkt , (1.14)

subject to the no-arbitrage condition for depositors (r̃d,t = R̃t
qt

) and for equity providers (r̃e,t =
R̃t+ξ̃t
qt

). Plugging these in and deriving, we obtain the first-order condition for kt:

ω1r̃l,t
∂q̂t
∂kt
− ξ̃t −

ω2

2
r̃l,t
∂q̂2

t

∂kt
= 0 . (1.15)

which (assuming an interior solution) can be solved for kt as:

k̂t ≡ kt (r̃l,t) = 1− ξ̃t(R̃t + ξ̃t)(ω1r̃l,t)
2

ω2R̃tr̃l,t

(
R̃t + 2ξ̃t

2
) . (1.16)

Closing the bank model: the zero-profit condition

Since there is a continuum of identical banks, each bank behaves competitively and takes the

return on investment r̃l,t as given. Perfect competition and free entry imply that banks will enter

until there are no expected excess profits to be made. In the presence of uncertainty it is natural

to focus on the case that banks make no excess profit in any future state of the world:(
ω1 −

ω2

2
qt−1

)(rk,t + (1− δ)Qt

Qt−1

)
− rd,t−1

πt
(1− k̂t−1)− re,t

πt
k̂t−1 = 0 . (1.17)

Using the equity and deposit supply schedules and taking expectation over this equation we get:

22Note that the agency problem arises from the fact that the bank does not consider this as a constraint of its
maximization problem.
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q̂tω1r̃l,t −
ω2

2
r̃l,tq̂

2
t − k̂tξ̃t − R̃t . (1.18)

Combining (1.18) with the optimality conditions (1.13) and (1.16), we can derive analytical

expressions for the equity ratio kt, riskiness choice qt (the last term in each row is an approximation

under certainty equivalence and Rr
t ≡ Rt/E [πt+1]):

kt =
R̃t

R̃t + 2ξ̃t
≈

Rr
t

Rr
t + 2ξt

(1.19)

qt =
ω1(ξ̃t + R̃t)

ω2(2ξ̃t + R̃t)
≈

ω1(ξt +Rr
t )

ω2(2ξt +Rr
t )

(1.20)

Properties of the banking sector equilibrium

These results for the banking sector risk choice have five interesting implications that we first

summarize in a proposition, before intuitively discussing them in turn.

Proposition 1: Be [r̃l,t, qt, kt] an equilibrium in the banking sector with interior bank choices

under perfect competition. Denote the expected return on investment in capital units by f(qt) ≡(
ω1 − ω2

2
qt
)
qt. Then:

(1) Risk decreases in the real interest rate: ∂qt
∂R̃t

> 0

(2) The equity ratio increases in the real interest rate: ∂kt
∂R̃t

> 0

(3) Risk taking is excessive: qt < argmax f(qt)

(4) The expected return of an investment increases in the real interest rate: ∂f(qt)

∂R̃t
> 0

(5) The expected return of an investment is a concave function of the real interest rate ∂2f(qt)

∂R̃2
t
< 0

The proof can be found in appendix 1D.

The first two results can be easily seen from equations (1.19) and (1.20). As the real risk-free

rate Rr
t decreases, the equity ratio kt falls as banks substitute equity with deposits and the riskiness

of the bank increases (qt falls).23 The intuition behind this result is as follows: On one hand,

a lower risk-free rate decreases the rate of return on capital projects, reducing the benefits of

safer investments, conditional on repayment. This induces the bank to adopt a riskier investment

23At least under certainty equivalence or up to a first order approximation, when the Λt+1 terms contained in the
tilde variables cancel out.
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technology. On the other hand, the lower risk-free rate reduces the cost of funding, leaving more

resources available to the bank’s owners in case of repayment: this force contrasts the first one,

making safer investments more attractive. There is a third force: a lower risk-free interest rate

means that the equity premium becomes relatively more important. As a result the bank shifts

from equity to deposits, internalizing less the consequences of the risk decision and choosing a

higher level of risk. The first and third effects dominate, and overall a decline in the real interest

rate induces banks to choose more risk. Notice that these two results depend on the assumption

that the (discounted) equity premium is independent of the (discounted) real interest rate. If we

allowed the equity premium to be a function ξ̃t

(
R̃t

)
of the real interest rate, the result would

continue to hold under the condition that ξ̃t

(
R̃t

)
> ξ̃t

′ (
R̃t

)
R̃t, which rules out proportionality.

This mechanism provides a rationalization of the empirical finding in section 2: that a decline in

the nominal interest rate24 causes an increase in bank risk taking behavior.

The third result implies that the bank’s investment could have a higher expected return (in

units of capital) if the bank chose a higher level of safety. In other words, risk taking is excessive,

i.e. suboptimally high. This is due to the agency problem, which arises from limited liability and

the lack of commitment/contractability of the banker regarding his risk choice. The importance of

this friction can be assessed by comparing the solution of the imperfect markets bank model to the

solution of the model without any frictions. The frictionless risk choice can be derived under any

of the following alternative scenarios: Either both equity premium and deposit insurance are zero

(which eliminates the cost disadvantage of equity and leads to 100% equity finance), or contracts

are complete and deposit insurance is zero (which eliminates the agency problem and leads to 100%

deposit finance), or liability is not limited and deposit insurance is zero (as before), or household

invests directly into a diversified portfolio of capital projects (which eliminates the financial sector

all together). Since in a frictionless model qt is chosen to maximize the consumption value of the

expected return:

maxqt r̃l,t(ω1 −
ω2

2
qt)qt

the optimal level of qt trivially is qot = ω1

ω2
. Comparing the frictionless risk choice qot and the choice

given the friction qft

qft = qot
ξ̃t + R̃t

2ξ̃t + R̃t

≈ qot
ξt +Rr

t

2ξt +Rr
t

24In a monetary model, a cut in the real interest rate, the standard monetary policy tool, is followed by a decline
in the real interest rate due to price stickiness.
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we observe that the agency friction drives a wedge between the frictionless and the actually

chosen risk level. This wedge has two important features. First, it is smaller than one,25 implying

that under the agency problem the probability of repayment is too low, and hence banks choose

excessive risk. Second, note that the wedge depends on Rr
t and that the derivative of the first

order approximation of the wedge w.r.t. Rr
t is positive. This implies that the wedge increases, i.e.

risk taking gets more excessive, as the real interest rate falls. As we move further away from the

optimal level of risk the expected return on investments necessarily falls, which is the fourth result

above.

Note that this feature of the model is consistent with the empirical finding of Ioannidou et al.

[2015] and Buch et al. [2013] that the additional loan risk taking spurred by low interest rates is

not fully compensated by a sufficient increase in the return on loans: As qt decreases, (ω1 − ω2

2
qt)

increases but not sufficient to avoid a drop in (ω1 − ω2

2
qt)qt.

But not only the bank risk choice is suboptimal. Also the capital structure is chosen suboptimally,

given the equity premium. If banks could commit to choose the optimal level of risk, they would

not need any skin in the game. Hence they would avoid costly equity and would finance themselves

fully by deposits: kot = 0. Instead they choose kft = R̃t
R̃t+2ξ̃t

. The equity ratio resembles the two

features of the risk taking. First, there is excessive use of equity funding. Second, the equity ratio

is increasing in Rr
t up to a first order approximation.

Both the risk and the capital structure choice have welfare implications. A marginal increase

in qt means a more efficient risk choice, i.e. a higher expected return, and hence should be

welfare improving, ceteris paribus. At the same time a marginal increase in kt implies, due to the

equity premium, a higher markup in the intermediation process, which distorts the consumption

savings choice and hence lowers welfare, ceteris paribus. Since both qt and kt are increasing

functions of the real interest rate, this begs the question of whether an increase in the real rate

alleviates or intensifies the misallocation due to the banking friction.26 The answer to this question

depends on the full set of general equilibrium conditions. Given the estimated model, we will

later numerically verify that the positive first effect dominates, i.e. an increase in Rr
t has welfare

improving consequences on the banking market.27 The existence of these opposing welfare effects

motivates our optimal policy experiments in section 1.5.

Finally, the last statement of the proposition implies that a mean preserving increase in the

variance of the real interest rate decreases the mean of the expected return of the banks investment.

This has implications for optimal monetary policy. As we discuss in detail later, the monetary

25This is true under certainty equivalence, i.e. up to first order approximation.
26These two opposing forces are well known from the literature on bank capital regulation, where a raise in capital

requirements hampers efficient intermediation but leads to a more stable banking sector.
27The dominance of the risk-taking effect is intuitive for two reasons: First, while risk taking entails a real cost,

the equity premium just entails a wedge but no direct real costs. Second, as the real interest rate increases the
equity premium becomes less important, so a more efficient allocation is intuitive.
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authority cannot affect the nonstochastic steady state of the real rate, but it can influence its

volatility. The policy maker therefore has an incentive to keep the real interest rate stable, at least

as long as the opposing effect of the equity premium is negligible.

Full model with deposit insurance and liquidation value

The simplified version of the bank’s problem presented so far is useful to explain the basic

mechanism. Yet deposit insurance and a non zero liquidation value are important to improve the

quantitative fit of our model to the data.

The assumptions made about deposit insurance and the liquidation value imply that depositors

get the maximum of the amount covered by deposit insurance and the value of the capital recovered

from a failed project. That means that their return in case of default is:

min

(
rd,t
πt+1

,max

(
rk,t+1 + (1− δ)Qt+1

Qt(1− kt)
θ

1− kt
,

ψ

1− kt

))
.

To make deposit insurance meaningful we assume that the liquidation value θ is small enough

such that
rk,t+1+(1−δ)Qt+1

Qt(1−kt)
θ

1−kt <
ψ

1−kt , which eliminates the inner maximum.28 As the following

lemma, proven in appendix 1D, states, the outer maximum is unambiguous in equilibrium.29

Lemma: There can be no equilibrium such that the insurance cap is not binding, i.e.
rd,t
πt+1

> ψ
1−kt .

Deposits therefore pay ψ
1−kt in case of default. Combining the nominal return on the the deposit

funds (1.6) with the households no-arbitrage condition, and defining ψ̃t = E [Λt+1]ψ, we can write

the deposit supply schedule as:

qtr̃d,t + (1− qt)
ψ̃t

1− kt
= R̃t . (1.21)

We assume that the deposit insurance scheme, which covers the gap between the insurance cap

and the liquidation value for the depositors of failing banks, is financed through a variable tax on

28In principle the fact that the return on capital is determined only one period later implies that we could have
cases where this inequality is satisfied for some states of the wold and violated for others. Since we will later
approximate our model locally around the steady state, which allows us to consider only small shocks, we
abstract from this complication. Note that this simplification is quantitatively unimportant if shocks are small
and the difference between the LHS and the RHS is big in steady state.

29For this result we again abstract from the effect of uncertainty. See the previous footnote.
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capital that is set ex post each period such that the insurance scheme breaks even. The return on

loans r̃l,t can then be rewritten as:

r̃l,t ≡ Et

[
rk,t+1 + (1− δ)Qt+1 − τt+1

Qt

]
where τt =

Qt−1
1−qt−1

qt−1

(
ψ − θ rk,t+(1−δ)Qt

Qt−1

)
ω1 − ω2

2
qt−1

This way the tax also perfectly offsets the distortion on the quantity of investment caused by

the deposit insurance. Deposit insurance therefore influences only the funding decision of the bank

and, through that, the risk choice. Hence, if qt was chosen optimally (or was simply a parameter)

the deposit insurance would not have any effect.

The same procedure as outlined above can be applied to obtain closed-form solutions30 for the

risk choice and the equity ratio. The solutions can be found in appendix 1C. As state below in

proposition 2, the equilibrium characterizations in subsection 1.3.5 remain valid. In particular note

that the deviation of the chosen risk (equity ratio) from the optimal level decreases (increases)

in the real interest rate. Given our estimation, the risk effect dominates in terms of welfare

implications. The intuition for the risk-taking channel is similar as before.

Deposit insurance makes deposits cheaper relative to equity: As a result, the bank will demand

more deposits and choose a riskier investment portfolio. Deposit insurance furthermore strengthens

the risk-taking channel, which is now affected not only by the importance of the equity premium

relative to the real interest rate, but also by the importance the the deposit insurance cap relative

to the real interest rate. On the other hand, the efficient risk level is not affected by the deposit

insurance.

The liquidation value on the other hand is irrelevant for the banks’ and investors’ choice since

it is assumed to be smaller than deposit insurance. Yet it eases the excessiveness of risk taking

since it increases the optimal level of risk: qot = ω1−θ
ω2

.

Finally, we would like to point out that none of the results in proposition 1 is due to the

functional form that we have assumed for the risk return trade-off . The statement holds even for

a generic function f(qt)
31 under relatively weak assumptions, some of which are sufficient but non

necessary. For a proof and a discussion of these assumptions see appendix 1D.

Proposition 2: Consider proposition 1, but replace f (qt) by the expected return taking into

account the liquidation value of failed projects: f (qt) + (1− qt)θ.

30In this case, one needs to apply the adjusted deposit supply schedule (1.21) and to make sensible assumptions
about the relative size of parameters and about the root when solving the zero-profit equation.

31Given the recovery value f(qt) now describes the expected return conditional on success.
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(1) Given this adjustment, all statements of proposition 1 hold for the full bank model with

deposit insurance and a small enough liquidation value as well.

(2) Given this adjustment, statements (1)-(4) of proposition 1 hold for a generic conditional

expected return function f(qt) with deposit insurance and a small enough liquidation value

under the additional assumptions that f(qt) satisfies f(qt) ≥ 0, f ′′(qt) < 0, f ′′′(qt) ≤ 0,

f ′′′′(qt) ≤ 0. Statement (5) holds if furthermore either the default probability is low relative

to the parameters qt
(1−qt) ξ̃t ≥ R̃t − ψ̃t or there is no deposit insurance ψ̃t = 0.

1.3.6 Monetary and fiscal policy

The central bank follows a nominal interest rate rule, targeting inflation and output deviations

from the steady state:

Rt − R̄ = (1− ρ) (φππ̂t + φyŷt) + ρ
(
Rt−1 − R̄

)
+ εRt , (1.22)

where ρ is a smoothing parameter, the hat symbol denotes percentage deviations from the steady

state values, R̄ = πss
β

is the steady state nominal interest rate, and εRt is a monetary policy shock.

In addition, the fiscal authority finances a stochastic expenditure stream gyȲ ε
G
t :

ln
(
εGt
)

= ρgln
(
εGt−1

)
+ uGt + ρGAu

A
t ,

where we are allowing for a correlation between exogenous spending and innovations to total factor

productivity.32 For simplicity we rule out government debt (st = 0), implying that all expenditures

are financed by lump sum taxes; i.e. gyȲ ε
G
t = Tt .

1.4 Steady-state and dynamic implications of excessive

risk taking in the estimated model

We have embedded our risk-taking channel in a medium-scale model which closely resembles the

non-linear version33 of Smets and Wouters [2007] and we next estimate the model parameters using

Bayesian techniques. This serves two purposes. First, in order to perform a sound monetary policy

evaluation we need a quantitative model that is able to replicate key empirical moments of the

32This is a shortcut to take exports into account. Productivity innovations might rise exports in the data, and a
way to capture it in a closed-economy model such as ours is to allow for ρGA 6= 0 as in Smets and Wouters
[2007].

33Our model deviates from Smets and Wouters [2007] only to the extent that we abstract (for simplicity) from
capital utilization, shown by the authors to be of secondary importance once wage stickiness is taken into
account, and growth. Furthermore, since we use one additional time series we have added a time preference
shock and reinterpreted it as an equity premium shock that affects only bank equity.
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data. Second, it helps to understand whether our channel is quantitatively important compared to

other monetary and real frictions that affect the monetary policy trade-off.

In this section we first discuss the estimation, and then examine the steady-state and dynamic

macroeconomic implications of the risk-taking channel, before we turn to optimal monetary policy

in section 1.5.

1.4.1 Model estimation

We estimate a linearized version of the model with Bayesian techniques using eight US macroe-

conomic time series covering the period of the great moderation from 1984q1 to 2007q3. These

include the seven series used by Smets and Wouters [2007], i.e. the federal funds rate, the log

of hours worked, inflation and the growth rates in the real hourly wage and in per-capita real

GDP, real consumption, and real investment. To identify the banking sector parameters we add a

series of the banking sector equity ratio, which we construct from aggregate bank balance-sheet

data provided by the FDIC. For a full description of the data we refer to appendix 1A and to

the supplementary material of Smets and Wouters [2007]. The observation equations, linking the

observed time series to the variables in the model, as well as the prior specifications can be found

in appendix 1C. While the priors of the non-bank parameters follow Smets and Wouters [2007],

the priors for the banking sector parameters are motivated by historical averages and external

estimates for the US. Note that, instead of forming priors directly about ω2 (risk return trade-off)

and ψ (deposit insurance), we rewrite these parameters as functions of the steady state equity

ratio k̄ and default rate q̄. The prior mean of the steady state equity premium ξ is centered around

an annualized value of 6%, in line with the empirical estimates of Mehra and Prescott [1985], while

the prior distribution for k̄ is diffuse and centered around the historic mean of 12%. The prior for

the liquidation value is set such that the prior value is contained between 0.3 and 0.7 with 95%

probability, in line with the evidence provided by Altman et al. [2003]. The default rate q̄ is not

well identified and is therefore fixed to 0.99, which implies an annual default rate of 4%, roughly

in line with the historical average of delinquency rates on US business loans. Sensitivity tests have

moreover shown that this parameter is only of small quantitative relevance.34 Lastly, we normalize

the units of capital versus final goods by setting ω1 (return of most risky asset) such that one unit

of final good is expected to produce one unit of capital good in steady state.

Table 1.1 summarizes the posterior parameter values, which are broadly in line with existing

empirical estimates for the US. The steady state inflation rate is estimated to be about 2.5% on an

annual basis, while the posterior mean of the discount factor implies an annual steady-state real

interest rate of around 1.7%. Wages are slower moving than prices: wages are reoptimized every

34In particular, the implications for optimal monetary policy behavior are very robust to the value of the steady
state default rate. What matters is the importance of the channel over the business cycle, determined by the
liquidation value and the extent of deposit insurance.
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Table 1.1: Model estimation : prior and posterior values
parameter prior shape prior mean prior std post. mean 90% HPD interval

structural parameters

µy trend growth norm 0.4 0.1 0.4264 0.3908 0.4618

µl labor normalization norm 0 2 -0.0938 -1.6569 1.4777

α output share norm 0.3 0.05 0.2001 0.1602 0.2395

100 1−β
β

real rate in % norm 0.25 0.1 0.427 0.2992 0.5485

ε̄P price markup norm 1.25 0.12 1.5068 1.3621 1.6523

π̄ inflation in % gamma 0.62 0.1 0.6263 0.4893 0.7616

φπ TR weight on inflation norm 1.5 0.25 1.8723 1.5489 2.2003

φy TR weight on output norm 0.12 0.05 0.0198 -0.0348 0.0753

ρ TR persistence beta 0.75 0.1 0.8411 0.8057 0.8768

κ investment adj. costs norm 4 1.5 7.4584 5.5992 9.3376

ι habits norm 0.7 0.1 0.7774 0.7042 0.8532

σc risk aversion gamma 1.5 0.375 1.7362 1.2809 2.1939

σl disutility from labor gamma 2 0.75 2.0183 0.9726 3.0566

λp price calvo parameter beta 0.5 0.1 0.6206 0.5429 0.701

λw wage calvo parameter beta 0.5 0.1 0.8476 0.8099 0.8864

γp price indexation beta 0.5 0.15 0.1533 0.0537 0.2479

γw wage indexation beta 0.5 0.15 0.448 0.2066 0.6829

ξ equity premium norm 0.015 0.01 0.0213 0.0054 0.0348

θ liquidation value norm 0.5 0.1 0.7416 0.6425 0.8385

k̄ equity ratio norm 0.12 0.05 0.1231 0.1208 0.1254

structural shock processes

σA stdev TFP unif 0 10 0.3665 0.3172 0.414

σB stdev preference unif 0 10 3.4696 2.2271 4.6946

σG stdev govt. spending unif 0 10 2.2678 1.984 2.5382

σI stdev investment unif 0 10 4.7269 3.0495 6.3757

σP stdev price markup unif 0 1 0.1332 0.109 0.1574

σR stdev monetary unif 0 1 0.1164 0.1009 0.1315

σW stdev wage markup unif 0 10 0.4742 0.4088 0.5389

σξ stdev equity premium unif 0 10 0.5805 0.199 1.0255

ρA persistence TFP beta 0.5 0.2 0.4623 0.3496 0.5765

ρB persistence preference beta 0.5 0.2 0.9004 0.8549 0.9486

ρG persistence gov. spending beta 0.5 0.2 0.9009 0.8471 0.9556

ρI persistence investment beta 0.5 0.2 0.1924 0.0357 0.3396

ρP persistence price markup beta 0.5 0.2 0.9772 0.9625 0.9925

ρR persistence monetary beta 0.5 0.2 0.9585 0.918 0.9967

ρW persistence wage markup beta 0.5 0.2 0.7721 0.6706 0.8734

ρξ persistence equity premium beta 0.5 0.2 0.8156 0.7623 0.8699

ρG,A correlation gov. spending &
TFP

beta 0.5 0.2 0.6513 0.3835 0.9394

mp MA component of price
markup

beta 0.5 0.2 0.7765 0.6826 0.875

mw MA component of wage
markup

beta 0.5 0.2 0.9741 0.9516 0.9972

year and a half, while prices are reoptimized approximately every three quarters. The coefficient

of relative risk aversion σc is estimated to be 1.7, above its prior mean. The posterior estimates of

the Taylor rule parameters show a strong response to inflation (1.87), a small response to output

(0.02), and a high degree of interest rate smoothing (0.84).

The key banking sector parameters that determine the importance of the risk-taking channel

are well identified by the data. The steady state equity ratio has a tight posterior around 12%, the

posterior mean of the equity premium is around an annualized value of 9%, and the liquidation

value is about 74%.35 For the following quantitative analysis we set the parameters to their

posterior means.

35The implied mean value for deposit insurance cap ψ of about 88% implies that 99% of deposits are insured
in steady state. Demirguc-Kunt et al. [2005] report that the explicit deposit insurance scheme in the US is
estimated to cover between 60% and 65% of deposits. The divergence can be interpreted as implicit deposit
guarantees resulting from the expectation of bailouts. The implied mean values of ω1 (1.13) and ω2 (0.2561)
yield a corner solution for qopt at 1.
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Table 1.2: Steady state comparison : The model without banking sector frictions features an undetermined
equity ratio and risk equal to the socially optimal level; i.e. qo = 1. Parameters are fixed to the
posterior mean estimates of the bank model reported in table 1.1.

variable model with banking frictions model without banking frictions

q loan safety 0.99 1

k equity ratio 0.1231 0

Y output 0.9484 0.9803

C consumption 0.6289 0.6376

I investment 0.1488 0.1662

K capital 5.9517 7.0227

L labor 1 1

π inflation 0.0063 0.0063

R interest rate 0.0106 0.0106

1.4.2 Steady-state and dynamic implications of excessive risk taking

In Table 1.2 we compare the non-stochastic steady state of the model with banking frictions

(henceforth bank model) with that of the model without banking frictions. In the latter model the

capital structure is undetermined and risk is equal to the socially optimal level. For the given set

of estimated values, the optimum is a corner solution: qo = 1. In the bank model, the capital ratio

is below one, implying that banks do not fully internalize the implications of their risk choice, and

hence choose an excessive level of risk. This implies that the capital production technology is

inefficient. Consequently, the bank economy is under-capitalized in the steady state, and output,

consumption and welfare are inefficiently low.

To understand the dynamic effects of the risk-taking channel, we assess how the propagation

mechanism of the model differs if a risk-taking channel is present. For illustration, we discuss

an expansionary monetary policy shock. As we have just seen, the economy without financial

frictions and the bank economy have different steady states. This makes dynamic comparisons

of the two models difficult, since both the different behaviors of qt and kt as well as the different

steady states imply different dynamics. In order not to mix the two effects, we focus on comparing

models with the same steady state. For this purpose we alter the model without financial frictions

by treating the risk choice qt and the equity ratio kt as parameters, which we set to the steady

state values of the bank model. This model, henceforth benchmark model, not only has the same

steady state as the bank model but also corresponds to a standard New Keynesian model with a

small markup in capital markets.

In figure 1.2 we compare the dynamic responses in the bank model (solid red lines) and in

benchmark model (dashed blue lines) to an expansionary monetary policy shock. A monetary

policy expansion triggers a set of standard reactions, which are evident in the benchmark model.

An unexpected fall in the nominal risk-free rate causes a drop in the real interest rate, since prices
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Figure 1.2: Monetary policy shock in the bank and benchmark models: dynamic responses in the
bank model (solid red lines) and in the benchmark model (dashed blue lines) to an expansionary
monetary policy shock, at the mean of the posterior distribution. Shaded areas denote the highest
posterior density interval at 90% for the bank model impulse responses and the black line the steady
state level. Inflation and interest rates are quarter on quarter rates.
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are sticky. Consequently, consumption is shifted forward, firms that can adjust the price do so

causing an increase in inflation, while the remaining firms increase production. The risk-taking

channel adds two further elements as both the risk level and the capital structure chosen by the

bank respond to the real interest rate movement. On impact, the drop in the real interest rate

cause banks to substitute equity for deposits, since the relative cost advantage of deposits increases.

Consequently, banks have less skin in the game and hence take more risk (lower loan safety).

The risk choice therefore moves further away from the optimal level and the expected return on

aggregate investment f(qt) = qt(ω1 − ω2/2qt) + (1− qt)θ drops.36 To maintain the same path of

capital as in the benchmark case, households would have to invest more and consume less. Yet this

would not be optimal because of consumption smoothing and because of the lower expected return

on investment. Therefore investment rises by less then what would be needed to compensate the

loss in investment efficiency, which makes the capital stock decline considerably. Overall, agents

are worse off (in terms of welfare) in the bank model than in the benchmark economy.

We conclude this section with a few remarks on the fit of the estimated model. Comparing our

bank model to the benchmark Smets and Wouters [2007]-type model we find that the parameter

36Note that the decline in the equity ratio diminishes the distortion due to the equity premium, which reduces
the cost of capital. Yet this effect is tiny relative to the increase in the cost of capital due to lower investment
efficiency.
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Figure 1.3: Risk taking in the model and in the data: The figure compares the value of loan safety qt
implied by the estimated model (in particular we plot the mean of the series posterior distribution)
with the risk index discussed in section (2.3)
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estimates are rather similar and the fit of the two models is comparable.37 The posterior odds

ratio of exp(2.86) favors the bank model, though it is close but not above the value of exp(3),

which, according to Jeffreys [1961], can be interpreted as conclusive evidence.

To evaluate the fit particularly with respect to the risk-taking channel we look at three statistics

that were not targeted by the estimation. First, note that the responses shown in figures 1.2 are in

accordance with the structural VAR results in section 2.3, in particular with the finding that the

response of risk is proportional to that of the interest rate, even though our model displays a higher

degree of persistence. Second, we compare the model-implied series for the risk variable qt with

the risk-taking index used in the VAR analysis. Figure 1.3 shows that the model implies a cyclical

pattern of risk that is roughly in line with the survey measure (the correlation is 60%). Third, the

responses in figure 1.2 also show that, conditional on the monetary policy shock, leverage (the

inverse of the equity ratio kt) is pro-cyclical with respect to the the size of the bank balance sheet

et + dt. Conditional on the full set of shocks we find a correlation of 43% which is in line with

the evidence for US data provided by Adrian and Shin [2014] and distinguishes our model from

canonical financial accelerator models that build on Bernanke et al. [1999].38

Lastly, we find that the introduction of the banking frictions reduces the role of the investment

efficiency shock. In particular, we find that the forecast variance of the output level drops by a

third, while the variance decomposition share of the investment shock drops from around 49%

(estimated benchmark model) to 34% (estimated bank model) for horizons between 3 and 8

quarters. This relates to the argument of Justiniano et al. [2011], who find that the large role of

this shock in explaining GDP volatility in the canonical medium-scaled Smets and Wouters [2007]

DSGE model could be a spurious result that captures unmodeled financial frictions. In reducing

37Recall that the Smets and Wouters [2007] model is obtained by turning off the banking sector frictions. Hence
bank leverage is no longer defined. For the comparison we therefore estimate the two versions of the model
(with and without the banking frictions) using only the seven macro aggregates used by Smets and Wouters
[2007], and calibrate the banking parameters in the bank model to the posterior estimates in table 1.1.

38See, for instance, the discussion in Adrian et al. [2015].
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the importance of this shock, the risk-taking channel proves to be capable of capturing at least

some of this missing mechanism. This is intuitive because both the investment shock εIt and the

expected return of the banks’ investment qt
(
ω1 − ω2

2
qt
)

+ (1− qt)θ enter the capital accumulation

equation multiplicatively:

Kt =
[
εIt (1− S(it/it−1)) it + (1− δ)Kt−1

] [
qt

(
ω1 −

ω2

2
qt

)
+ (1− qt)θ

]
,

Yet they are not perfectly isomorphic, since the shock affects only net investment (new capital),

while the expected return on investment affects gross investment (all capital). Moreover the path

of εIt backed from the estimated benchmark model is strongly correlated with the path of the

return on investment in the estimated bank model.39

Overall, we interpret these findings as suggestive that the additional dynamics implied by the

risk-taking channel are not rejected by the data and, on the contrary, help to reduce the mismatch

between the benchmark model and the data.

1.5 Monetary policy with a risk-taking channel

We have seen that the risk-taking channel has both static and dynamic effects. While monetary

policy does not affect the non-stochastic steady state, it can influence the dynamics of the economy.

In particular, it can influence the real rate and hence affect bank risk taking. But are these

additional mechanisms implied by the risk-taking channel actually quantitatively significant for

monetary policy? To answer this question we determine the optimal simple implementable monetary

policy rule in the risk-taking channel model. We then compare this policy to the optimal policy in

the benchmark economy with the same steady state but without the risk-taking channel. This

comparison has an interesting interpretation. Suppose that the actual economy features the

risk-taking channel (the bank model), but that the central bank is unaware of this channel and

believes that risk is an irrelevant constant from her point of view. The central bank would then

implement optimal policy based on a wrong model (the benchmark model). Our comparison

then answers the question of how important understanding the risk-taking channel is, in terms of

optimal policy and welfare.

Notice that in this paper we consider a central bank that has no policy tools besides the interest

rate. With a second instrument, such as capital regulation, the central bank could do better or

39For this exercise we use only the 7 nonfinancial series. Notice that the specification of our model is not exactly the
same as Smets and Wouters [2007] and Justiniano et al. [2011] since we have abstracted from capital utilization.
This means that the numbers are not directly comparable.
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even eliminate the friction. Exploring optimal macroprudential regulation is however beyond the

scope of the present paper.40

In what follows, we first discuss the concept of the optimal simple implementable monetary

policy rule, and then present our results.

1.5.1 The central bank problem

We follow Schmitt-Grohe and Uribe [2007] and characterize optimal monetary policy as the policy

rule that maximizes welfare among the class of simple, implementable interest-rate feedback rules41

given by:

Rt − R̄ = φππ̂t+s + φyŷt+s + φkk̂t+s + ρ
(
Rt−1 − R̄

)
. (1.23)

where the hat symbol denotes percentage deviations from the steady state, and the index s allows

for forward- or contemporaneous-looking rules (respectively by setting s = 1 or s = 0). The policy

rule specification (1.23) is chosen for its generality, as it encompasses both standard Taylor-type

rules (setting φk = 0), and the possibility that the central bank reacts to banking sector leverage,

the inverse of the equity ratio k (φk 6= 0). A fall in the equity ratio implies that banks increase their

debt financing, i.e. they increase leverage. As a consequence banks internalize less the downside

risk of their investments, and choose loans with a higher default probability. Hence, a fall in the

equity ratio signals an increase in risk taking, to which the central bank may want to respond by

increasing the interest rate. We choose not to let the interest rate depend on risk taking directly,

because the latter is not a readily observable variable. We furthermore impose that the inertia

parameter ρ has to be non-negative. Since we are interested in the effect of systematic monetary

policy, we switch off the monetary policy shock for this experiment.

The welfare criterion that defines the optimal parameter combination for rule (1.23) is the

household’s conditional lifetime utility:

V ≡ E0

∞∑
t=0

βtεBt u(ct, Lt) . (1.24)

This measure is commonly used in the literature and yields the expected lifetime utility of the

representative household, conditional on the economy being at the deterministic steady state. To

40For a thorough analysis of macroprudential policy in an economy with bank risk-taking see Collard et al. [2012].
41The implementability criterion requires uniqueness of the rational expectations equilibrium, while simplicity

requires the interest rate to be a function of readily observable variables. For a complete discussion, see
Schmitt-Grohe and Uribe [2007]. Notice that we drop their second requirement for implementability which is
that an implementable rule must avoid regular zero lower bound violations.
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Table 1.3: Optimal simple rules : optimal parameters for policy rules of the class Rt− R̄ = φππ̂t+s+φy ŷt+s+

φyk̂t+s+ρ
(
Rt−1 − R̄

)
. The hat symbol denotes percentage deviations from the steady state. Current-

(forward-) looking rules let the interest rate react to current (future) deviations of variables from
their steady state values. The second colum descibes the restrictions we enforced. The first line for
example corresponds to the standard taylor rule with no smoothing. The last two lines are somehwat
different. The penultimat line reproduces line 2 for the benchmark model and in the bank model
shows the otimal rule given that the first three parameters are fixed to their benchmark values. The
last line shows the estimated taylor rule. V is the welfare level associated with each policy in the
bank model. Ω is the welfare cost (in % of the consumption stream) associated to implementing
in the bank model the optimal policy rule of the benchmark model (given the same restrictions on
parameters). For the benchmark model the restriction φk = 0 is irrelevant, since the equity ratio is a
constant in the benchmark model. Entries in italics indicate restricted parameters.

benchmark model bank model

s rule ρ φπt+s φyt+s ρ φπt+s φyt+s φkt V Ω

0 φk, ρ = 0 0 7.100 0.115 0 3.080 0.126 0 -185.321 0.476

0 φk = 0 0.000 7.100 0.115 1.059 0.510 0.005 0 -184.750 0.898

0 ρ = 0 0 7.100 0.115 0 2.637 0.097 0.027 -185.314 0.481

1 φk, ρ = 0 0 17.222 0.148 0 4.294 0.172 0 -185.209 0.687

1 φk = 0 0.236 12.084 0.124 1.114 0.072 0.074 0 -184.656 0.813

0 choose φk 0.000 7.100 0.115 0 7.100 0.115 -0.177 -185.438 0.389

0 estimated - - - 0.841 0.298 0.003 0 -185.201 0.332

be able to make meaningful comparisons of welfare levels we furthermore define the measure Ω as

the fraction of the consumption stream that a household would need to receive as a transfer under

the suboptimal rule to be equally well of as under the optimal rule. If o denotes the optimal and s

another suboptimal rule, this fraction Ω is implicitly defined by the equation:

V o = E0

∞∑
t=0

βtεBt u((1 + Ω)cst , L
s
t) .

1.5.2 Findings

Using the welfare criterion just described we numerically determine the coefficients of the op-

timal simple implementable rules in the benchmark and in the bank model using second order

approximations around the non-stochastic steady state. The first 5 rows of table 1.3 report the

optimal coefficients for 5 different specifications of the monetary policy rule: contemporaneous and

forward-looking, without inertia and with optimal inertia, without and with reaction to current

leverage. The coefficients of the optimal rules generally vary greatly between the two models. A set

of results, which are robust across policy rule and estimation42 specifications, are worth noticing.

42We have experimented with different estimation samples and calibrated parameter values: while the optimized
parameters and transfers slightly change, the qualitative results discussed in the text are very robust.
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Table 1.4: Differences in moments associated to the optimal simple rules in the benchmark and in
the bank model : This table shows the % differences in the mean and standard deviation associated
to applying the different optimal rules in the bank model. The first entry, for example, indicates that
under the optimal bank policy rule average risk would be 0.15% lower than if the rule optimal for the
benchmark model had been applied.

mean standard deviation

s rule q Rr π y c q Rr π y c

0 φk, ρ = 0 0.151 0.002 -0.051 0.311 0.499 -43.880 -47.975 52.470 -0.843 -4.108

0 φk = 0 0.214 0.007 -0.038 0.439 0.701 -67.949 -77.760 64.393 -9.545 –9.566

0 ρ = 0 0.152 0.003 -0.015 0.323 0.506 -41.666 -47.248 53.194 -0.773 -3.800

1 φk, ρ = 0 0.194 0.011 -0.037 0.413 0.652 -50.536 -55.417 57.719 -2.781 -6.906

1 φk = 0 0.195 0.004 -0.054 0.458 0.724 -65.839 -76.3112 71.906 -10.373 -11.737

0 choose φk 0.130 0.001 -0.070 0.244 0.417 -41.691 -41.948 31.838 3.323 -0.345

0 estimated 0.005 0.001 -0.024 0.114 0.158 -15.742 -31.419 -2.9113 -12.908 -6.045

First, the optimal coefficients on inflation deviations are smaller in the bank model compared

to the benchmark model. For any given change in inflation, the nominal interest rate should

move less if a risk-taking channel is present. Furthermore, if the central bank can optimize over

its smoothing parameter, then full interest rate smoothing is optimal in the bank model. Given

that the optimal output coefficient is close to zero, the optimal rule is closer to a stable real

interest rate rule in the bank model than in the benchmark model. In doing so, the central bank

limits fluctuations in the real interest rate and hence in risk taking and slightly raises the average

level of q towards the efficient value, as it can be seen in table 1.4. At the same time inflation is

significantly more volatile under the optimal rule. If a risk-taking channel is present, the central

bank should accept higher inflation fluctuations in order to reduce the distortion stemming from

risk taking.

This is because monetary policy cannot affect the deterministic steady state, but it can control

the real interest rate and therefore the fluctuations in excessive risk. Upward movements of the

real interest rate are welfare enhancing since they lower the level of risk taking towards the efficient

level, whereas downward changes of the real interest rate lead to even more excessive risk taking.

But this does not mean that movements in the interest rate are irrelevant. Since the expected

return on investments qt
(
ω1 − ω2

2
qt
)

+ (1 − qt)θ is concave in the real interest rate, as we have

shown above, a mean preserving increase in the volatility of the real rate reduces the average

expected return of investments. Therefore the risk-taking channel provides a motive for keeping

the real interest rate constant. This adds a third dimension to the central bank problem: besides

trading off inflation versus output stabilization the central bank would now also like to stabilize

the real interest rate. As a result, the optimal policy is tilted away from inflation stabilization.

To understand how different the equilibria associated to the two optimal rules are, and therefore

how important it is for the central bank to take the risk-taking channel into account, we compute
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the cost Ω of applying the rule that is optimal for the benchmark model in the bank model. These

costs, expressed in % of the lifetime consumption stream, are reported in the last column of table

1.3. Though the costs vary a lot across policy specifications, they are always non significant. For

the best performing policy (fifth row of table 1.3), the costs of applying the benchmark policy

in the bank model is around 0.81% of the lifetime consumption stream. Hence, internalizing the

feedback effect that the nominal interest rate has on bank risk taking pays off in terms of welfare.

Second, including an explicit reaction to banking sector leverage, in addition to inflation and

output, improves welfare only marginally (compare the last column of the first and third row of

table 1.3). Recall that leverage depends on both the nominal interest rate and expected inflation.

By setting the nominal rate optimally as a function of current inflation, the central bank can

already steer risk taking, to the extent that current and expected future inflation are highly

correlated. The fact that this correlation is not perfect, and that our approximation allows for

nonlinearities, accounts for the small improvement in welfare obtained by allowing a response to

leverage to the policy function. To further illustrate this point, in line 6 we fix the coefficients

of current inflation and output to the values optimal in the benchmark economy, and allow the

central bank to respond optimally only to leverage. In this case, it is optimal to strongly raise

the interest rate in response to higher leverage (lower equity ratio k). Thereby the central bank

again stabilizes the real interest rate and does not much worse in terms of welfare than when the

responses to inflation and output are chosen optimally (compare the last column of the third and

sixth row of tables 1.3 and 1.4).

Finally, we also compare the estimated policy rule to the corresponding optimized rule. We

find that the estimated rule is associated with more volatility in output and in the real rate, and

entails a welfare cost of 0.3% of lifetime consumption compared to the optimized rule. Thus, a

greater stabilization of the real interest rate over the analyzed period would have yielded sizable

welfare gains.

1.6 Conclusion

The recent financial crisis has highlighted the importance of monitoring the level of risk to which

the financial sector is exposed. In this paper we focus on one aspect of financial sector risk, ex-ante

bank asset risk, and on how the latter can be influenced by monetary policy.

First, we provide new empirical evidence of the impact of monetary policy on bank risk taking.

We document that unexpected monetary policy shocks, identified through sign restrictions in

a classical VAR framework, increase a measure for ex-ante bank risk taking in the US. This

conclusion, robust to using a recursive identification scheme, is compatible with the monetary
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policy transmission mechanism in the theoretical model that we build to explain the effects of

monetary policy on risk taking.

For this purpose, we extend the work of Dell’Ariccia et al. [2014] and build a dynamic general-

equilibrium model where low levels of the risk-free interest rate induce banks to make riskier

investments. At the core of this mechanism is an agency problem between depositors and equity

providers: the latter choose the level of risk but are protected by limited liability. In general

equilibrium, this friction leads to a steady state with excessive risk taking, and inefficiently low

levels of capital, output and consumption. Furthermore, risk taking alters the dynamic response

of the economy to shocks. In particular, an expansionary monetary policy shock has non-standard

consequences: because banks choose a riskier and less efficient investment strategy, the growth of

capital, output and consumption will be lower than in the model without the risk-taking channel.

In order to assess the importance of the risk-taking channel and to study optimal monetary

policy, we estimate the model on US data using Bayesian methods. Including this additional

channel improves the in-sample fit, yields a path for risk taking that matches survey evidence

for the US and implies a pro-cyclical behavior of leverage with respect to total assets which is

in line with US evidence documented by Adrian and Shin [2014]. Our policy experiments using

optimal simple rules suggest that, if a risk-taking channel is present and the interest rate is the

only instrument available to the monetary authority, the optimal rule should stabilize the path of

the real interest rate more than without the risk-taking channel. This implies that the central

bank should tolerate higher inflation volatility in order to reduce welfare detrimental fluctuations

in risk taking. The welfare gains of taking the channel into account are found to be significant.

Nevertheless, these results do not rule out that an alternative instrument could perform better at

maximizing consumer welfare, an issue that deserves to be investigated in future work.

1.7 Appendix 1A: Data description

1.8 Appendix 1B: Empirical motivation - recursive

identification scheme

1.9 Appendix 1C: The full model - Equilibrium and

estimation details

Model summary: We report here the equations that enter the non-linear model, grouped

by sector. Note that following Smets and Wouters [2007] we assume that different varieties of
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intermediate goods and of labor are assembled through a Kimball [1995] aggregator, rather than a

Dixit-Stiglitz one. This latter assumption is introduced in order to obtain estimates of price and

wage rigidity that are closer to micro estimates, but we do not derive the recursive formulation

here (see e.g. Adjemian et al. [2008]). Also note that the variables regarding the equity and deposit

funds Rd and Re have been substituted out.

Competitive equilibrium: The competitive equilibrium is a path of 41 variables (Λ, K, L, y,

l, c, q, k, d, e, π, rk, rd, re, R, W , mc, onew, o, π?, Zp1, Zp2, Zp3, Zw1, Zw2, Zw3, ∆p1, ∆p2, ∆p3,

∆p4, ∆w1, ∆w2, ∆w3∆p4, W ?, i, R̃, ξ, ξ̃, ψ̃, τ) that satisfy the following 41 equations at each point

in time given initial conditions and the exogenous shock processes εA, εB, εG, εI , εP , εR, εW , εξ.

Household

Λt = εBt (ct − ιct−1)−σC − βιEt
[
εBt+1 (ct+1 − ιct)−σC

]
(1.25)

Et

[
Λt+1

qtrd,t+1 + (1− qt) ψ
1−ktπt+1

πt+1

]
= Et

[
Λt+1

Rt

πt+1

]
(1.26)

Et

[
Λt+1

qtre,t+1 − ξtπt+1

πt+1

]
= Et

[
Λt+1

Rt

πt+1

]
(1.27)

Λt = βEt

[
Λt+1

Rt

πt+1

]
(1.28)

yt = ct + it + gyȲ ε
G
t (1.29)

Goods sector

Ldt
Kt−1

α

1− α
=
rk,t
wt

(1.30)

34



mct =
1

At
α−αrαktw

1−α
t (1− α)α−1 (1.31)

π?t =
εp (1 + kp)

εp (1 + kp)− 1

Zp1,t
Zp2,t

+
kp

εp − 1
(π?t )

1+εp(1+kp) Zp3,t
Zp2,t

(1.32)

Zp1,t = (1− τp,t)Λtmctyt∆εp(1+kp)/(1−εp(1+kp))
p1,t + βλpEt

[(
πt+1

π
γp
t π̄

1−γp

)εp(1+kp)

Zp1,t+1

]
(1.33)

Zp2,t = (1− τp,t)Λtyt∆εp(1+kp)/(1−εp(1+kp))
p1,t + βλpEt

[(
πt+1

π
γp
t π̄

1−γp

)εp(1+kp)−1

Zp2,t+1

]
(1.34)

Zp3,t = Λtyt + βλpEt

[(
πt+1

π
γp
t π̄

1−γp

)−1

Zp3,t+1

]
(1.35)

∆p1,t = (1− λp) (π?t )
1−εp(1+kp) + λp∆p1,t−1

(
πt+1

π
γp
t π̄

1−γp

)εp(1+kp)−1

(1.36)

1 =
1

1 + kp
∆

1/(1−εp(1+kp))
p1,t +

kp
1 + kp

∆p2,t (1.37)

∆p2,t = (1− λp) π?t + λp∆p2,t−1

(
πt+1

π
γp
t π̄

1−γp

)−1

(1.38)

∆p3,t =
1

1 + kp
∆
εp(1+kp)/(1−εp(1+kp))
p1,t ∆p4,t +

kp
1 + kp

(1.39)
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∆p4,t = (1− λp) (π?t )
−εp(1+kp) + λp∆p4,t−1

(
πt+1

π
γp
t π̄

1−γp

)εp(1+kp)

(1.40)

AtK
α
t−1

(
Lt

∆p3,t

)1−α

= ∆p3,tyt (1.41)

Labor sector

w?t =
εw (1 + kw)

εw (1 + kw)− 1

Zw1,t

Zw2,t

+
kw

εw − 1
(w?t )

1+εp(1+kp) Zw3,t

Zw2,t

(1.42)

Zw1,t = εBt L̄L
1+σL
t w

εw(1+kw)
t (Ct − ιCt−1)1−σc exp

(
L̄
σc − 1

1 + σl
L1+σL
t

)
∆
εw(1+kw)/(1−εw(1+kw))
w1,t (1.43)

+βλwEt

[(
πt+1

πγwt π̄1−γw

)εw(1+kw)

Zw1,t

]

Zw2,t = (1− τw,t)ΛtLt
[
w∆

1/(1−εw(1+kw))
w1,t

]εw(1+kw)

+ βλwEt

[(
πt+1

πγwt π̄1−γw

)εw(1+kw)−1

Zw2,t+1

]
(1.44)

Zw3,t = (1− τw,t)ΛtLt + βλwEt

[(
πt+1

π
γp
t π̄

1−γp

)−1

Zw3,t+1

]
(1.45)

∆w1,t = (1− λw)

(
w?t
wt

)1−εw(1+kw)

+ λw∆w1,t−1

(
wt−1

wt

)1−εw(1+kw)(
πt+1

πγwt π̄1−γw

)εw(1+kw)−1

(1.46)

1 =
1

1 + kw
∆

1/(1−εw(1+kw))
w1,t +

kw
1 + kw

∆w2,t (1.47)

∆w2,t = (1− λw)

(
w?t
wt

)
+ λw∆w2,t−1

(
wt
wt−1

πt+1

πγwt π̄1−γw

)−1

(1.48)
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∆w3,t =
1

1 + kw
∆
εw(1+kw)/(1−εw(1+kw))
w1,t ∆w4,t +

kw
1 + kw

(1.49)

∆w4,t = (1− λw)

(
w?t
wt

)−εw(1+kw)

+ λw∆w4,t−1

(
wt
wt−1

πt+1

πγwt π̄1−γw

)εw(1+kw)

(1.50)

Government

Rt − R̄ = φπ
πt+s
π̄

+ φy
yt+s
ȳ

+ φk
kt+s
k̄

+ ρ
(
Rt−1 − R̄

)
(1.51)

Capital producer

Kt = qt

(
ω1 −

ω2

2
qt

)
ot + (1 − qt)θ (1.52)

ot = onewt + (1− δ)Kt−1 (1.53)

onewt = εIt it

(
1− κ

2

(
it
it−1

− 1

)2
)

(1.54)

Qtε
I
t

[
1− S

(
it
it−1

)
− S ′

(
it
it−1

)
it
it−1

]
− 1 = βEt

[
Λt+1

Λt
εIt+1Qt+1S

′
(
it+1

it

)(
it+1

it

)2
]
. (1.55)

Bank

qt = 1− R̃

ψ̃t
+

√
ω2

(
R̃t − ψ̃t

)
(R̃t + 2ξ̃t)

(
2ω1ψ̃t

(
R̃t + ξ̃t

)
+ ω2

(
R̃t − ψ̃t

)
(R̃t + 2ξ̃t)

)
ω2ψ̃t(R̃t + 2ξ̃t)

(1.56)

kt =
R̃t − ψ̃t
R̃t + 2ξ̃t

(1.57)
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(
ω1 −

ω2

2
qt−1

) rk,t + (1− δ)Qt − τ:t

Qt−1

− rd,t
πt+1

(1− kt)−
re,t+1

πt+1

kt = 0 (1.58)

τt =
Qt−1

1−qt−1

qt−1

(
ψ − θ rk,t+(1−δ)Qt

Qt−1

)
ω1 − ω2

2
qt−1

(1.59)

ξ̃t = ξtEt [Λt+1] (1.60)

ξt = ξεξt (1.61)

R̃t = Et

[
Λt+1

Rt

πt+1

]
(1.62)

ψ̃t = ψEt [Λt+1] (1.63)

otQt = et + dt (1.64)

kt = et/ (et + dt) (1.65)

Shock processes

log
(
εBt
)

= ρP log
(
εBt−1

)
+ σBuBt (1.66)
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log
(
εQt

)
= ρI log

(
εQt−1

)
+ σQuQt (1.67)

log
(
εξt

)
= ρξ log

(
εξt−1

)
+ σξuξt (1.68)

log
(
εPt
)

= (1− ρP ) log
(
ε̄Pt−1

)
+ ρP log

(
εPt−1

)
+ σP

(
uPt +mpu

P
t−1

)
(1.69)

log
(
εWt
)

= (1− ρW ) log
(
ε̄Wt−1

)
+ ρW log

(
εWt−1

)
+ σW

(
uWt +mWu

W
t−1

)
(1.70)

log
(
εAt
)

= ρA log
(
εAt−1

)
+ σAuAt (1.71)

log
(
εRt
)

= ρR log
(
εRt−1

)
+ σRuRt (1.72)

log
(
εGt
)

= ρG log
(
εGt−1

)
+ σGuGt + ρGAσ

AuAt (1.73)

Observational equations: The observation equations, linking the observed time series (left

hand-side) to the variables in the non-linear model (right hand-side) are the following:

100∆ log

(
Yt
Yt−1

)
= 100∆ log

(
yt
yt−1

)
+ 100µy

100∆ log

(
Ct
Ct−1

)
= 100∆ log

(
ct
ct−1

)
+ 100µy
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100∆ log

(
It
It−1

)
= 100∆ log

(
it
it−1

)
+ 100µy

100∆ log

(
Wt

Wt−1

)
= 100∆ log

(
wt
wt−1

)
+ 100µy

100∆ log

(
Pt
Pt−1

)
= 100πt

100 log

(
Ht

H̄

)
= 100 log

(
Lt
L̄

)
+ 100µl

(
Rt

4

)
= 100R

Ẽt = 100kt

where H̄ are hours worked in 2009 and µl is a shift parameter. Since there is no growth in the

model, we estimate the mean growth rate in the data µy. The equity ratio in the data Ẽt is

transformed by taking deviations from its linear trend and adding back the mean.

Prior specifications: We fix parameters that are not identified to values commonly used in the

literature. In particular, we choose a depreciation rate δ of 0.025, a steady-state wage markup ε̄W

of 1.05, a steady-state spending to GDP ratio gy of 18%, a weight of labor in the utility function

L̄ such that steady-state hours are equal to 1, and curvatures of the Kimball aggregator for goods

and labor varieties of 10.

For all structural shocks, we employ a non-informative uniform distribution. The persistences

of the shock processes are assumed to have a beta prior distribution centered at 0.5, and with

standard deviation of 0.2. Following Smets and Wouters [2007], we further assume that the two

markup shows have a moving average component.
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The priors of the Taylor rule parameters are centered around very common values: the

smoothing parameter has a Beta distribution with a mean of 0.75, while the responses to inflation

and output are assumed to follow a Normal distribution with a mean of 1.5 and of 0.5/4 = 0.125.

Since we use level data of the inflation rate and of the nominal interest rate, we choose the

priors for the steady state of the inflation rate π̄ and the real interest rate 1/β − 1 to match the

mean in the data, i.e. we assumed they follow a gamma distribution respectively centered around

annualized values of 2.5% and 0.9.

The parameters affecting price and wage stickiness have a beta distribution centered at 0.5

with standard deviation of 0.1. Our prior is that prices and wages are reoptimized on average every

6 months, and that the degree of indexation to past inflation is only up to 50%. The steady-state

price markup is assumed to be centered around 1.25, slightly above the steady-state wage markup.

We employ very common priors for all the parameters of the utility function. Habits are

centered around 0.7, the intertemporal elasticity of substitution σc has a prior mean of 1.5, while

the elasticity of labor supply σl has a prior mean of 2. The capital share in production has a prior

mean of 0.3 while the investment adjustment costs parameter has a loose prior around 4.

For the discussion on the priors for the banking sector parameters, we refer to section 4.1 in

the main text.

1.10 Appendix 1D: Proofs

The risk-taking channel for a generic expected return function

Consider the bank problem discussed in section 3 with deposit insurance partial recovery but

replace the expression for the expected return conditional on success qt (ω1 − ω2/2qt) by the generic

function f(qt).

Assume there exists an equilibrium [r̃l,t, qt, kt] under perfect competition that satisfies the

following conditions: (1) the bank’s choices are interior, i.e. [kt,qt] ∈ [0, 1]2, (2a) the default

probability is low relative to the parameters qt
(1−qt) ξ̃t ≥ R̃t− ψ̃t or (2b) there is no deposit insurance

ψ̃t = 0, the conditional expected return function f(qt) satisfies (3) f(qt) ≥ 0, f ′′(qt) < 0 and (4)

f ′′′(qt) ≤ 0, f ′′′′(qt) ≤ 0.

Notice that assumption 2a), which is sufficient but by no means necessary and only needed

for claim (e), is weak if we consider the empirically relevant section of the parameter space with

a low equity premium (around 0.0x), a real rate just above 1 (1.0x) and high deposit insurance

(0.x) and high repayment probabilities (0.9x). Assumption 3 is straightforward as it guarantees a
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meaningful risk turn trade-off with an interior solution. Assumption 4 is another a sufficient but

non necessary condition.

We prove that, if such a solution exists, then:

(a) risk taking is excessive: qt < argmax f(qt)

(b) the safety of assets qt is a positive function of R̃t:
∂qt
∂R̃t

> 0,

(c) the equity ratio kt is a positive function of R̃t:
∂kt
∂R̃t

> 0,

(d) the expected return of an investment is a positive function of R̃t:
∂f(qt(R̃t))+(1−qt(R̃t))θ

∂R̃t
> 0,

(e) the expected return of an investment is a concave function of R̃t:
∂2f(qt(R̃t))+(1−qt(R̃t))θ

∂R̃2
t

< 0.

For a generic return function f(qt) the bank’s objective function at the second stage is:

max
qt

f (qt) r̃l,t − qtr̃d,t(1− kt)

Deriving this problem with respect to qt yields the following first-order condition, which by

concavity is necessary and sufficient:

f ′(qt)r̃l,t = r̃d,t(1− kt) (1.74)

Notice that this condition implies f ′(qt) > 0 (kt ∈ (0, 1] by assumption,r̃d,t > 0 by the deposit

supply schedule, and r̃l,t > 0 by the zero profit condition). Notice further that in a frictionless world,

e.g. without limited liability, the banks risk choice would satisfy qoptt = argmax f(qt) + (1− qt)θ,
i.e. f ′(qoptt ) = θ. Since we have assumed above that the recovery value is smaller than the

deposit insurance cap, which in turn is smaller than the cost of deposits by lemma 1, we have:

r̃l,tθ < ψ̃t < r̃d,t(1 − kt). Combining this with equation (1.74) and the frictionless optimality

condition and rearranging, we obtain f ′(qt) > f ′(qoptt ). Given f ′′(qt) < 0 this implies excessive risk

taking, i.e. qt < qoptt (claim(a)).

Since the deposit supply schedule must hold in equilibrium, we can rewrite this condition as

f ′(qt)r̃l,t −
R̃t(1− kt) + (1− qt)ψ̃t

qt
= 0 (1.75)

Equation (1.75) implicitly defines q̂t(kt). Using the implicit function theorem we find that,

f ′(qoptt ) = θ < r̃d,t(1− kt) = f ′(qt)r̃l,t
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∂qt
∂kt

=
−qtR̃t

(1− kt)R̃t − ψ̃t + q2
t r̃l,tf

′′(qt)

At the first stage the maximization problem is

max
kt

f (qt) r̃l,t − qtr̃d,t(1− kt)− qtktr̃e,t .

which, using the deposit and equity supply schedules r̃d,t =
R̃t− 1−qt

1−kt
ψ̃t

qt
r̃e,t = R̃t+ξ̃t

qt
, can be written

as

max
kt

f (q̂t) r̃l,t + (1− qt)ψ̃t − ktξ̃t − R̃t .

The corresponding FOC is

(
f ′ (q̂t) r̃l,t − ψ̃t

) ∂qt
∂kt
− ξ̃t . (1.76)

Finally, the zero profit condition can in expectations be written as

f (q̂t) r̃l,t + (1− qt)ψ̃t − ktξ̃t − R̃t . (1.77)

Equations (1.75), (1.76),(1.77) implicitly define qt, kt and r̃l,t. Solving the latter two equations

for kt and r̃l,t we obtain:

kt =

(
−ξ̃tR̃t + qtR̃tψ̃t + ξ̃tψ̃t

)
f(qt)− qt

(
R̃t − (1− qt)ψ̃t

)(
R̃tf

′(qt) + qtξ̃tf
′′(qt)

)
−ξ̃t

(
R̃tf(qt)− qt

(
R̃tf ′(qt) + qtξ̃tf ′′(qt)

)) (1.78)
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r̃l,t =

(
R̃t + ξ̃t

)(
R̃t − ψ̃t

)
R̃tf(qt)− qt

(
R̃tf ′(qt) + qtξ̃tf ′′(qt)

) (1.79)

Plugging these equations into (1.75) and rearranging we obtain the following equation, which

implicitly defines qt

(
R̃t + ξ̃t

) R̃tψ̃tf(qt)−
(
R̃t

(
R̃t + ξ̃t

)
−
(

(1− qt)R̃t + ξ̃t

)
ψ̃t

)
f ′(qt)− qtξ̃t

(
R̃t − (1− qt)ψ̃t

)
f ′′(qt)

−ξ̃t
(
R̃tf(qt)− qt

(
R̃tf ′(qt) + qtξ̃tf ′′(qt)

)) = 0

We can simplify this condition further by multiplying with the denominator and dividing by(
R̃t + ξ̃t

)
R̃t

F (qt, Rt) ≡
R̃tψ̃tf(qt)−

(
R̃t

(
R̃t + ξ̃t

)
−
(

(1− qt)R̃t + ξ̃t

)
ψ̃t

)
f ′(qt)− qtξ̃t

(
R̃t − (1− qt)ψ̃t

)
f ′′(qt)

R̃t

= 0

(1.80)

Using the implicit function theorem on equation (1.80) we find that

∂qt
∂Rt

= −
∂F
∂Rt
∂F
∂qt

(1.81)

where

∂F

∂Rt

=

(
R̃2
t + ξ̃tψ̃t

)
f ′(qt) + (1− qt)qtξ̃tψ̃tf ′′(qt)

−R̃2
t

∂F

∂qt
=

(
R̃t − (1− qt)ψ̃t

)((
R̃t + 2ξ̃t

)
f ′′(qt) + qtξ̃tf

′′′(qt)
)

−R̃t

Using our assumptions on f , the parameters and assuming an interior solution it is obvious

that ∂F
∂qt

> 0. How about the ∂F
∂Rt

?

To get at the sign of ∂F
∂Rt

, we solve 1.80 for f(qt)
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f(qt) =

(
R̃t

(
R̃t + ξ̃t

)
−
(

(1− qt)R̃t + ξ̃t

)
ψ̃t

)
f ′(qt) + qtξ̃t

(
R̃t − (1− qt)ψ̃t

)
f ′′(qt)

R̃tψ̃t

and plug this expression into the equations (1.78) and (1.79) for kt and r̃l,t:

kt =
f ′(qt)(R̃t + ξ̃t)(R̃t − ψ̃t) + f ′′(qt)qtξ̃t(R̃t − (1− qt)ψ̃t)

R̃t

((
R̃t + ξ̃t

)
f ′(qt) + qtξ̃tf ′′(qt)

)2 (1.82)

r̃l,t =

(
R̃t + ξ̃t

)
ψ̃t(

R̃t + ξ̃t

)
f ′(qt) + qtξ̃tf ′′(qt)

(1.83)

Since in equilibrium r̃l,t > 0 and since the numerator of r̃l,t is obviously positive it must hold that

its denominator is also positive: (
R̃t + ξ̃t

)
f ′(qt) + qtξ̃tf

′′(qt) > 0 (1.84)

Similarly, since kt > 0 and since the denominator of kt is obviously positive, the numerator must

be positive too:

f ′(qt)(R̃t + ξ̃t)(R̃t − ψ̃t) + f ′′(qt)qtξ̃t(R̃t − (1− qt)ψ̃t > 0 (1.85)

Since f ′ > 0 and f ′′ < 0 we can conclude from the previous inequality that for any [x1, x2] ∈ R2 it

must hold that f ′(qt)x1 + f ′′(qt)x2 > 0 if

x1

x2

≥

(
R̃t + ξ̃t

)
(R̃t − ψ̃t)

qtξ̃t(R̃t − (1− qt)ψ̃t)
(1.86)

We now test this condition for the numerator of ∂F
∂Rt

R̃2
t + ξ̃tψ̃t

(1− qt)qtξ̃tψ̃t
≶

(
R̃t + ξ̃t

)(
R̃t − ψ̃t

)
qtξ̃t

(
R̃t − (1− qt)ψ̃t

)
Rearranging, multiplying only with positive values, yields
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0 ≶ −R̃t(R̃t − (1− qt)ψ̃t)− qtψ̃tξ̃t −
(
R̃t(1− qt)ψ̃t + (1− qt)ψ̃tξ̃t

) qtψ̃t(
R̃t − (1− qt)ψ̃t

)
The RHS is obviously negative since from the proposition that every deposit insurance cap will be

exceeded it follows that R̃t > ψ̃t. Hence the condition
R̃2
t+ξ̃tψ̃t

(1−qt)qtξ̃tψ̃t
≥ R̃t+ξ̃t

qtξ̃t
is satisfied and we can

conclude the the numerator of ∂F
∂Rt

is positive. Hence ∂F
∂Rt

< 0 and therefore ∂qt
∂Rt

> 0 (claim (b)).

Equation (1.82) defines kt = K(qt, R̃t). Its derivative is given by

∂kt

∂R̃t

=
∂K

∂R̃t

+
∂K

∂qt

∂qt

∂R̃t

where

∂K

∂R̃t

=

(
(f ′(qt))

2 R̃2
t + 2f ′(qt) (f ′(qt) + f ′′(qt)(1− qt)qt) R̃tξ̃t + (f ′(qt) + f ′′(qt)qt) (f ′(qt)− f ′′(qt)(1− qt)qt) ξ̃2

t

)
ψ̃t

R̃2
t

(
f ′′qξ̃t + f ′(R̃t + ξ̃t)

)2

∂K

∂qt
=
qtξ̃tf

′′(qt)ψ̃t

(
2
(
R̃t + ξ̃t

)
f ′(qt) + qtξ̃tf

′′(qt)
)

R̃t

(
f ′′qξ̃t + f ′(R̃t + ξ̃t)

)2

From (1.86) it is immediately obvious that the numerator of ∂K
∂qt

is negative, hence ∂K
∂qt

< 0. After

division by ψ̃t, the numerator of ∂K
∂R̃t

can be rewritten as

((
R̃t + ξ̃t

)
f ′(qt) + qtξ̃tf

′′(qt)
)2

− (f ′′(qt))
2
q3
t ξ̃

2
t − f ′′(qt)f ′(qt)q2

t ξ̃t(2R̃t + ξ̃t)

Since the first term is positive and bigger then the absolute value of the second term we can see

that ∂K
∂R̃t

> 0. Hence we have shown that ∂kt
∂R̃t

> 0 (claim (c)).

Applying the implicit function theorem a second time on equation (1.80) we can find the

following expression for the second derivative of qt

∂2qt

∂R̃2
t

=

(
∂2F

∂Rt∂qt
+ ∂2F

∂q2
t

∂qt
∂Rt

)
∂F
∂Rt
−
(

∂2F
∂Rt∂qt

∂qt
∂Rt

+ ∂2F
∂R2

t

)
∂F
∂qt(

∂F
∂qt

)2 (1.87)
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where

∂2F

∂R̃t∂qt
=

(
R̃2
t + 2(1− qt)ξ̃tψ̃t

)
f ′′(qt) + qt(1− qt)ξ̃tψ̃tf ′′′(qt)

−R̃t

∂2F

∂q2
t

=
ψ̃t

(
qtξ̃tf

′′′(qt) +
(
R̃t + 2ξ̃t

)
f ′′(qt)

)
+
(
f ′′′′(qt)qtξ̃t + f ′′′(qt)

(
R̃t + 3ξ̃t

))(
R̃t − (1− qt)ψ̃t

)
−R̃t

∂2F

∂R2
t

=
2 (f ′(qt) + f ′′(qt)(1− q)q) ξ̃tψ̃t

R̃3
t

since f ′′ < 0 and f ′′′ ≤ 0 f ′′′′ ≤ 0 and all parameters are positive it is obvious that ∂2F
∂Rt∂qt

> 0 and
∂2F
∂q2
t
> 0. The term∂2F

∂R2
t

is less straight forward. A sufficient condition for ∂2F
∂R2

t
> 0 can be found

using again condition (1.86)

1

(1− qt)qt
≥

(
R̃t + ξ̃t

)(
R̃t − ψ̃t

)
qtξ̃t

(
R̃t − (1− qt)ψ̃t

)
Which simplifies to

qt
(1− qt)

ξ̃t ≥ R̃t − ψ̃t

Given the signs of the terms in (1.87) we have finally verified that

∂2qt

∂R̃2
t

=
((+) + (+) (+)) (−)− ((+) (+) + (+)) (+)

(+)
< 0

Under alternative assumption (2b) the expression for ∂2qt
∂R̃2

t
simplifies to

∂2qt

∂R̃2
t

= −
f ′(qt)

(
−2f ′′(qt)f

′′′(qt)qtξ̃t − 2 (f ′′(qt))
2
(
R̃t + 2ξ̃t

)
+ f ′(qt)

(
f ′′′′(qt)qtξ̃t + f ′′′(qt)

(
R̃t + 3ξ̃t

)))
(
f ′′′(qt)ξ̃t + f ′′(qt)

(
R̃t + 2ξ̃t

))3
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which is negative without further conditions.

Using the signs of the derivatives of qt and the fact that f ′(qt) > f ′(qoptt ) = θ, we can finally

determine the slope and curvature of the expected return of the bank’s investment.

∂ [f(qt) + (1− (qt))θ]

∂R̃t

= (f ′(qt)− θ)︸ ︷︷ ︸
+

∂qt

∂R̃t︸︷︷︸
+

> 0

∂2 [f(qt) + (1− (qt))θ]

∂R̃2
t

= (f ′(qt)− θ)︸ ︷︷ ︸
+

∂2qt

∂R̃2
t︸︷︷︸

+

+ f ′′(qt)︸ ︷︷ ︸
−

∂qt

∂R̃t︸︷︷︸
+

< 0

This completes the proof of claims (d) and (e).

Notice that the quadratic functional form we assumed for f(qt) in the model section satisfies

assumptions (3) and (4) and we focussed on interior solutions (assumption (1)). Therefore claims

(1), (2), (3) and (4) in propositions 1 and 2 hold. Furthermore, claim (5) in proposition 1 holds

since assumption (2a) is satisfied. Finally, to see that claim (5) in proposition 2.1 holds independent

of assumption (2a) and (2b), consider the solution for qt

qt = 1− R̃

ψ̃t
+

√
ω2

(
R̃t − ψ̃t

)
(R̃t + 2ξ̃t)

(
2ω1ψ̃t

(
R̃t + ξ̃t

)
+ ω2

(
R̃t − ψ̃t

)
(R̃t + 2ξ̃t)

)
ω2ψ̃t(R̃t + 2ξ̃t)

The second derivative of this expression is

∂2q

∂R̃2
t

= −

 ω1ω2

{
2ω2

(
R̃t − ψ̃t

)3

ξ̃t

(
R̃t + 2ξ̃t

)
+ ω1ψ̃t...

...
[
R̃4
t + 2R̃t

(
4R̃2

t − 3R̃tψ̃t + 2ψ̃t
2
ξ̃t

)
+
(

12R̃t − 4R̃tψ̃t + 5ψ̃t
2
)
ξ̃2
t + 4

(
2R̃t + ψ̃tξ̃

3
t + 4ξ̃4

t

)]}


(
R̃t + 2ξ̃t

){
ω2

(
R̃t − ψ̃t

)(
R̃t + 2ξ̃t

) [
2ω1ψ̃t

(
R̃t + ξ̃t

)
+ b
(
R̃t − ψ̃t

)(
R̃t + 2ξ̃t

)]}2/3

Both numerator and denominator are obviously positive, so ∂2q

∂R̃2
t
< 0. Hence ∂2[f(qt)+(1−(qt))θ]

∂R̃2
t

< 0.

�
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Deposits in excess of insurance

The proof is by contradiction: Assume that there exists an equilibrium with no excess profits

where the bank would issue so little deposits that the promised repayment rd,t would be lower

than the cap on deposit insurance ψ/(1 − kt)πt+1.
43 In this case the deposit rate rd,t would be

equal to the risk free rate Rt.

The second stage maximization problem of the bank would then be

max
qt∈[0,1]

f(qt)− qtR̃t(1− kt)

and its solution q̂t is implied by

f ′(qt) = R̃t(1− kt)

The first stage maximization problem would be

max
kt∈[0,1]

V (k) = f(q̂t)− q̂R̃t(1− kt)− (ξ̃t + R̃t)kt

q̂t can either be a corner or an interior solution. If q̂t is a corner solution, the first stage

objective function of the bank is obviously decreasing in kt, hence kt = 0 is optimal. If q̂t is an

interior solution, the first derivative of the first stage objective function is

R̃t − ξ̃t − R̃t(1− q̂t)

Since q̂t ∈ [0, 1] this derivative is negative for all kt ∈ [0, 1], i.e. the objective function again

is decreasing in k. Hence the solution to the first stage problem is kt = 0. Optimality with

full insurance therefore requires that the bank uses only deposits. This contradicts our initial

assumption. This result implies that any insurance cap smaller than 100% would be exceeded by

the deposit liabilities in case of default. Depositors are therefore never fully insured.

Notice that for a cap to be effective in the sense of ruling out full insurance equilibria, the cap

has to be low enough. Formally speaking, it needs to hold thatrd,t(1− kt) > ψ̃t even under full

insurance, i.e. R̃t > ψ̃t.�

43For simplicity, we abstract from the possibility that the cap is binding for some states of the future but not
for others, which would be possible due to the inconsistency between the timing of inflation and the nominal
deposit rate. Note that this distinction disappears under certainty equivalence or first order approximation.
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Table 1.5: Data description : All level variables are expressed in per-capita terms (divided by N). Hours
are measured as H1 ·H2/N where H1 is converted into an index. The nominal wage W is deflated
by the GDP deflator. We define equity capital as equity plus reserves plus subordinated debt, and
total liabilities as equity plus deposits. In doing so we net out two types of liabilities, since they are
typically overcollateralized: federal funds purchased & repurchase agreements and federal home loan
bank advances. Furthermore we omit a few categories of debt that match neither of our concepts of
insured deposits and equity, or that are simply not well enough characterized: other borrowed money,
uncategorized liabilities, trading book liabilities, banks liability on acceptances. All of these balance
sheet positions are minor. Over the observation period, the first group accounts for roughly 11% of
the balance sheet, the second for about 9%. All indexes are adjusted such that 2009 = 100. The
estimation sample spans from 1984Q1 to 2007Q3 for the DSGE and from 1997Q2 to 2007Q3 for the
VAR.

symbol series mnemonic unit source

Y real gross domestic product gdpc96 bn. usd fred / bea

P gdp deflator gdpdef index fred / bea

R effective federal funds rate fedfunds % fred / board of governors

C personal consumption expenditure pcec bn. usd fred / bea

I fixed private investment fpi bn. usd fred / bea

H1 civilian employment ce16ov thousands fred / bls

H2 nonfarm business (..) hours prs85006023 index department of labor

W nonfarm business (..) hourly compensation prs85006103 index department of labor

N civilian population lns1000000 0ce16ov bls

q average weighted loan risk own calculation % board of governors

E equity capital over liabilities own calculation % fdic

Figure 1.4: Bank risk taking and nominal interest rate: The risk measure (solid blue line, left axis) is
redefined such that a decrease is associated with higher risk-taking of the banking sector, matching
the definition in the theoretical model discussed later. The nominal interest rate (dashed line, right
axis) is the effective federal funds rate.
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Figure 1.5: An expansionary monetary policy shock - Recursive identification scheme, Federal
funds rate ordered last: Error bands correspond to 90% confidence intervals obtained by bootstrap.
Loan safety is defined as the inverse of the average loan risk rating, standardized to take values
between 0 and 100. The remaining variables are annualized. See text for further details.
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Figure 1.6: An expansionary monetary policy shock - Recursive identification scheme, Risk or-
dered last: Error bands correspond to 90% confidence intervals obtained by bootstrap. Loan safety
is defined as the inverse of the average loan risk rating, standardized to take values between 0 and
100. The remaining variables are annualized. See text for further details.
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Chapter 2

Point, interval and density forecasts of

exchange rates with time-varying

parameter models

Joint with Prof. Massimiliano Marcellino

2.1 Introduction

Exchange rates have an impact on the production decision of firms, on portfolio allocation, on a

country’s prices, and more generally on its competitiveness. Hence, there is a clear need for reliable

models that track the current evolution of exchange rates and predict their future behaviour,

especially in times of uncertainty and financial stress. In fact, exchange rate volatility has changed

over the years. It has fallen after the price shocks and inflationary pressures of the 1970s, and it

has increased again in the last decade, as a consequence of the great financial crisis and possibly

of the quantitative easing measures enacted by central banks around the world.

So far, a vast literature has been devoted to the construction and evaluation of the point

forecasts of exchange rates. It has established, with few exceptions, that the best forecast model is

a simple random walk. This puzzle, originated by the seminal work of Meese and Rogoff [1983], has

not yet been solved. One explanation that has been proposed is that exchange rate unpredictability

arises from the instability of the underlying stochastic process. In addition, competing models have

so far been evaluated mainly on the basis of their point forecasts. Though the latter are clearly of

interest, interval and density forecasts of exchange rates are also relevant for the decision making

of economic agents and for the pricing of financial assets. On this latter point the literature is

more limited.
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Our contribution to the literature is to examine whether and to what extent the point, interval

and density forecasts of three major exchange rates vis-a-vis the US dollar can be improved by

assuming time variation in the coefficients of the data generating process. The exchange rates

analysed are the monthly averages of the British Pound, the Japanese Yen, and the Euro, over the

period 1971m1 to 2013m6. As it can be seen in figure 2.1, the volatility of these three currencies

has changed over time: a constant-volatility model could therefore lead to the incorrect estimation

of forecast intervals, underestimating them in periods of high volatility and overestimating them

otherwise.

To model time variation, we experiment with two methods recently proposed in the literature:

the time-varying parameter Bayesian vector autoregression with stochastic volatility developed by

Cogley and Sargent [2005] and Primiceri [2005], and its approximation proposed by Koop and

Korobilis [2013], based on forgetting factors and on an exponentially weighted moving average

estimator of the shocks’ covariance matrix. Unlike the Bayesian model, the forgetting factor VAR

does not take into account sampling uncertainty. On the other hand, it is considerably faster to

estimate and is not as densely parametrised as its Bayesian counterpart, allowing for possible

efficiency gains. The performance of these models is compared to that of two benchmarks, a

Bayesian vector autoregression and a random walk (with and without garch innovations), by

juxtaposing the respective point, interval and density forecasts.

Several results emerge. First, parameter time variation leads to smaller mean squared forecast

errors, though the random walk remains the best forecast model at horizons longer than one

month. Secondly, modelling time-varying volatility significantly enhances the estimation of forecast

uncertainty through an accurate calibration of the entire forecast distribution. By contrast, time

variation in the slope parameters is found to be modest and to offer only a negligible contribution

to forecast improvement. Lastly, models with time-varying parameters typically perform better

than their constant-parameter counterparts also when evaluated in terms of gains from forecast

based trading strategies.

To our knowledge our comprehensive evaluation is the first of its kind in the empirical literature

on exchange rate forecasting, not only for the methodology used but also for the emphasis on

interval and density forecasts. A wide variety of methods has been used in the empirical literature

on exchange-rate forecasting, and the consensus is that the most difficult benchmark to beat,

in terms of point forecast accuracy, is the random walk1. Carriero et al. [2009] and Dal Bianco

et al. [2012] have improved upon the point forecasts of a random walk by relying respectively on

a Bayesian vector autoregression with a large set of exchange rates, and on a mixed-frequency

dynamic factor model with four weekly exchange rates and lower-frequency macroeconomic

1As documented in Rossi [2013], the methodologies that have been shown to deliver lower mean squared forecast
errors than a random walk are typically sensitive to the forecast horizon and to the sample used.
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Figure 2.1: Stylized facts: Exchange rate volatility over the years, measured as the square monthly percentage
change in the exchange rate.
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fundamentals. Very few papers have instead focused on density forecasts. Relevant exceptions2

are Yongmiao et al. [2007] and Balke et al. [2013], who both show that the density forecasts of a

random walk can be improved upon either with non-linear models, or with univariate Taylor-rule

models with semiparametric confidence intervals. In addition, Mumtaz and Sunder-Plassmann

[2013] show that a structural time-varying stochastic volatility vector autoregression outperforms

its constant-parameter counterpart on the basis of the mean squared forecast error and of the

Bayesian deviance information criterion. A paper closely related to ours is Della Corte et al.

[2009], who establish that modelling time-varying volatility is important for the one-month ahead

predictive ability of macroeconomic fundamentals. In contrast to the aforementioned works, our

forecast evaluation exercise comprises forecast horizons greater than one month, a wider set of

evaluation criteria, and is based on a larger forecast sample that includes the 2008 financial crisis3.

The paper is organised as follows. In the next Section we describe the two time-varying

parameter models used in the forecasting exercise. Section 3 compares the results delivered by

the different models based on statistical criteria, while Section 4 evaluates the models through a

simple trading strategy. Section 5 concludes.

2Another related paper is Canova [1993] who shows, on a sample of weekly data from 1979 to 1987, that a
time-varying coefficient Bayesian model with exchange rates and short-term interest rates has a higher predictive
ability than a random walk. Our work stems from a similar idea, though both the methodology and the time
span considered significantly differ.

3Della Corte et al. [2009] employ statistical evaluation criteria, relative mean squared errors and log-likelihoods, as
well as economical ones, based on the utility function of investors. In addition, the economic criterion supports
an optimal combination of the model forecasts through Bayesian model averaging.
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2.2 Models with time-varying parameters and changing

volatility

2.2.1 The time-varying parameter stochastic volatility BVAR

We start with a short description of the time-varying parameter stochastic volatility Bayesian

vector autoregression (tvp sv bvar), developed by Cogley and Sargent [2005] and Primiceri

[2005], to whom we refer for additional details. The model is written in state space form, and the

measurement equation is:

yt = Ztβt + ut , (2.1)

where yt is a n×1 vector of observed variables, Zt is a n×k matrix of regressors, βt is a k×1 vector

of time-varying coefficients and ut is a n× 1 vector of innovations with covariance matrix Ωt. Let

Zt contain a constant and p lags of each variable; it is then defined as Zt = In ⊗ [1, y′t−1, . . . y
′
t−p]

with dimension n× k = n× n(1 + np).

Following Primiceri [2005], the covariance matrix Ωt can be decomposed as follows4:

AtΩtA
′
t = ΣtΣ

′
t , (2.2)

where Σt is a diagonal matrix, with the standard deviations of the structural innovations as its

elements; while At is a lower triangular matrix with ones on its main diagonal, which summarises

the contemporaneous relationships between the variables in yt. Using the structural decomposition

in 2.2, the measurement equation 2.1 can be rewritten in terms of the white-noise, homoskedastic

and uncorrelated shocks εt:

yt = Ztβt + A−1
t Σtεt, with E[εt, ε

′
t] = In . (2.3)

To close the model, three transition equations are specified, describing the evolution of the

parameters over time:

βt = βt−1 + νt ,

αt = αt−1 + ξt ,

log σt = log σt−1 + ηt ,

(2.4)

4The decomposition in 2.2 emphasises the two drivers of the time variation in Ωt: variation in the variance of the
innovations and in their correlation structure.
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where αt is the vector of the non-zero, non-one elements of At stacked by rows, and σt is the vector

of the diagonal elements in Σt. While the slope coefficients and those in the contemporaneous

impact matrix are assumed to follow a random walk, the standard deviations of the structural

innovations are modelled as geometric random walks. Finally, all the innovations of the model are

posited to be distributed as a multivariate normal, with zero mean and with the following block

diagonal covariance matrix:

V = V ar


εt

νt

ξt

ηt

 =


In 0 0 0

0 Q 0 0

0 0 S 0

0 0 0 W

 . (2.5)

The objectives of the estimation are the unobserved paths of the parameters in 2.4, indicated

by (BT , AT , ΣT ), and the hyperparameters in V . Sampling from the posterior density requires

the specification of a prior distribution, as well as the use of a posterior simulator algorithm. A

description of both is given below.

The covariance matrices (Q, W, S) are assumed to have an inverse-Wishart distribution and

to be therefore characterised by a number of degrees of freedom and a scale matrix, set to a

constant fraction of the covariance matrix’s training sample estimate. The initial states of the

three types of time-varying coefficients, β0, α0, log σ0, are assumed to be normally distributed.

This, together with the transition equations in 2.4, implies that conditional on (Q, W, S) the prior

distributions of the entire sequence of VAR coefficients, contemporaneous relationships, and log

standard deviations are themselves normal. Further details on the prior specification, related to

the empirical application of this paper, are provided in Section 2.3.

Sampling from the posterior density To generate a sample from the posterior of (BT , AT , ΣT , V )

we rely on a Gibbs-sampler, following Primiceri [2005] and Del Negro and Primiceri [2013].

The first step is to sample the sequence of VAR coefficients βT , given an initial guess of the

parameters. For this task, a simulation smoother like the one proposed in Carter and Kohn [1994]

can be used, exploiting the fact that the distribution of βT , conditional on AT and ΣT , is linear

and normal. The sequence of AT can be drawn in a similar way, as its posterior distribution is

normal, given BT and ΣT .

To draw the sequence of standard errors, the model needs to be transformed, given that it is

neither linear nor Gaussian in ΣT . More specifically, at this stage of the sampler the innovations

to the measurement equation are distributed as a logχ2. The transformation of the system can be

achieved by using a mixture of normal approximations of the logχ2 distributions, as described
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in Kim et al. [1998]. After sampling sT , the matrix of indicator variables that rules the normal

approximation5, the system is approximately linear and Gaussian, conditional on AT , BT , V and

sT : a standard simulator smoother can then be applied, to recover the smoothened estimates of

the volatility and of the variance of its innovations.

The last step is a draw from the inverse-Wishart distributions of the block components of V ,

yielding a sample of the model’s covariance matrix.

Sampling from the predictive density Let us denote with yt and θt = (Bt, At, Σt, V ), the

history of the variables and of the coefficients from period 1 up to period t. We want to forecast up

to h steps ahead in the future, that is, to make predictions on the vector yt+h = [y′t+1, . . . , y
′
t+h].

For this, we need the predictive density of the tvp sv bvar model, which can be factored as

follows, emphasising the different sources of forecast uncertainty:

p(yt+i, θt+i| yt) = p(yt+i| θt+i, yt) · p(θt+i| θt, yt) · p(θt| yt), i = 1, . . . , h . (2.6)

To make the simulation from the predictive density p(yt+h, θt+h| yt) less time consuming,

we assume that the coefficients in θt+i are fixed out of sample6. Conditional on each Gibbs

sampler draw from p(θt| yt), we simulate a value for βt+1 by drawing the innovations νt+1 in 2.4,

and for the innovations ut+1, drawn from a Normal distribution with variance Ωt. A path for

ŷt+i, i = 1 . . . h is then generated, conditioning on ŷt+i−1 and on ut+i ∼ N(0,Ωt). We repeat this

procedure a thousand times, and store the mean and the relevant percentiles of the simulated

values {ŷt+i, κ, i = 1 . . . h}1000
κ=1 . After the Gibbs sampler is completed, we take the average of these

values across the posterior draws.

2.2.2 The time-varying parameter forgetting factor VAR

Using the stochastic volatility Bayesian VAR for a recursive forecasting exercise generally demands

a high computational time, as the number of iterations required for the convergence of the Gibbs

sampler is large. To reduce the computational time, Koop and Korobilis [2013] have developed a

procedure which approximates the model in 2.1, by replacing the posterior draws of the covariance

matrices Q and Σt with empirical estimates.

5The parameters used for the approximation to the logχ2 distribution are those of Primiceri [2005].
6This simplification is justified only if the time variation of the coefficients is moderate and, as is the case in our

empirical application. Results obtained by letting θt+i drift for h ≥ 1 are indeed very similar and available upon
request.
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The assumptions of the tvp sv bvar model imply that, given information up to t− 1, the

slope coefficients in t are draws from a normal distribution:

βt | Ft−1 ∼ N(βt|t−1, Pt|t−1) . (2.7)

The Kalman filter routine, used in the first step of the Gibbs sampler, entails a prediction for the

coefficients’ covariance matrix, Pt|t−1 = Pt−1|t−1 +Q, which involves the posterior draw of Q. To

circumvent this problem, the following approximation is used:

Pt|t−1 =
1

λ
Pt−1|t−1, with λ ∈ (0, 1] , (2.8)

where the parameter λ is a forgetting factor which discounts past information. A value of λ equal

to 0.99 implies, in the case of monthly data, that observations one year ago receive 89% as much

weight as current observations.

A similar approximation is used for the covariance matrix of the non-structural innovations, Ωt.

The latter is estimated as a weighted average of its past value, and of its current estimate7:

Ω̂t = κΩ̂t−1 + (1− κ)ε̂′tε̂t , (2.9)

where the weight is represented by the decay factor κ. To summarise, the procedure developed

by Koop and Korobilis [2013] is based on the Kalman filter and relies on the parametrisation of

equations 2.8 and 2.9, as well as on the choice of initial conditions for the covariance matrix Ω0, for

the slope coefficients β0 and their variance P0. Further details on the paramerisation are provided

in the next Section.

There are three main differences between the tvp sv bvar model and its approximation

based on the use of forgetting factors. Firstly, the latter delivers filtered, rather than smoothed,

estimates and should hence be better suited for a forecasting exercise but less suited for a full

sample evaluation. Secondly, and more importantly, equations 2.8 and 2.9 in the forgetting factor

model do not provide any rule for the out-of-sample evolution of the covariance matrices Q and Ωt.

Lastly, while the tvp sv bvar embeds a structural decomposition of the innovations covariance

matrix, its approximation deals solely with non-structural innovations. However, this should not be

a concern, so long as the objective of the researcher lies in forecasting, rather than in a structural

analysis.

Sampling from the predictive density As it has been already noted, equation 2.9 is not a

proper law of motion for the covariance matrix of the innovations. In order to generate samples

from the predictive density, we follow Koop and Korobilis [2013] and assume Ωt to be fixed out of

7This is the Exponentially Weighted Moving Average estimator, commonly used in the finance literature.
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sample. In a similar way, the out-of-sample path for the slope coefficients βt+h is assumed to be

fixed out of sample and centred around the last estimated values for β̂t|t and for P̂t|t. Given these

assumptions, we simulate 5000 values for the vector ŷt+h = [ŷ′t+1, . . . , ŷ
′
t+h], and store the mean

and the relevant percentiles of the values {ŷt+i, κ, i = 1 . . . h}5000
κ=1 .

2.3 Modelling and forecasting exchange rates

In this Section the two methodologies previously discussed are applied to jointly model and forecast

three main exchange rates vis-a-vis the US dollar: the British Pound, the Japanese Yen8, and the

Euro9. The currencies, defined such that an increase pertains to a depreciation, cover the period

from 1971m1 to 2013m6 and have been downloaded from Datastream. Figure 2.1 shows that the

volatility of the three exchange rates has changed over the years. In particular, note that after the

2008 financial crisis the volatility of the Euro and of the Pound has increased after a period of

relative moderation in the previous decade.

After a description of the empirical exercise, we assess the out-of-sample forecasting performance

of the time-varying parameter models relative to two benchmarks: a random walk with or without

garch innovations, and a constant parameter bvar estimated recursively.

2.3.1 Description of the estimation and forecasting exercises

To correctly compare all forecast models, we ensure that all of them are estimated on the same

data transformation and that their priors, or initial values, coincide. The three currencies are

measured as percentage changes, approximated through the differences in the log levels. This

transformation, common in the literature, is necessary to ensure the stability of the tvp sv bvar

forecasts. All models but the garch are estimated using a lag length of 12, to capture any seasonal

component that might be present in the data. We use a driftless random walk prior for the slope

coefficients of all the VARs, and set the priors (or initial values) for the covariance matrix of the

innovations and of the slope parameters through a training sample of four years.

The remaining details of the tvp sv bvar model prior distribution follow closely those in

Primiceri [2005] and are summarised in table 2.1. The estimation coincides with the procedure

8The Yen has been standardised by a factor of a 100 to avoid computational problems due to the scale of the
variable.

9As we need a long sample for the estimation, we proxy the Euro through the German Mark series provided by
the Bank of England and retrieved from Datastream. The series is equal to the German Mark prior to the
introduction of the Euro, and to the Euro itself afterwards, scaled by the conversion rate fixed on 1 January 1999.
After January 1999 the Euro and the series used in this paper exhibit a correlation equal to 0.995. Furthermore,
Bruggemann et al. [2008] show that back-casting a post-euro area series with German data works as well as
back-casting it with an Euro-area average, if the series behave similarly to each other.
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described in the theoretical section with one major modification: explosive draws of the VAR

coefficients are rejected in the first step of the Gibbs sampler. This is equivalent to sampling from

a restricted posterior density, with the restricted law of motion for the var coefficients being a

truncated and renormalised version of the unrestricted one10.

Table 2.1: The hat notation refers to OLS estimates on a 4-year training sample. M and K are the number of
variables and of parameters. S1 and S2 pertain to the non-zero blocks of S, the covariance matrix
of A. For the variables with an Inverse-Wishart prior distribution, the chosen number of degrees of
freedom is the lowest admissible (one more than the size of the variable), to minimise the prior weight.
The shrinkage parameters k2Q, k

2
S , k

2
S are all set to 0.1.

variable distribution mean variance d.f.

B0 N Âols 4 · V (B̂ols) −
A0 N B̂ols 4 · V (Âols) −
log σ0 N log σ̂ols IM −
Q IW k2Q · V (B̂ols) − K + 1

S1 IW k2S · 2 · V (Â1,ols) − 2

S2 IW k2S · 3 · V (Â2,ols) − 3

W IW k2W · 4 · IM − 4

In order to explore the source and the extent of parameter time variation, we experiment with

different parametrisations of the forgetting factor models. In particular, we consider forgetting

factor models with only time varying slope parameters (ffvar tv slope), only time varying

innovation volatility (ffvar tv vola), and with both or neither sources of volatility active

(respectively ffvar tvp and ffvar const). The constant parameter model is obtaining by

setting both forgetting factors λ and κ to 1. Time variation is the slope parameters and in

the innovation volatility is obtained by setting respectively λ = 0.99 and κ = 0.96, as in Koop

and Korobilis [2013]. In all constant volatility models we estimate the variance of the residuals

recursively, in each point of time.

The flexibility of the forgetting factor models could in principle be used to study the role of

macroeconomic and financial predictors of exchange rates. We consider a range of additional

predictors in Appendix A and find that none improves on the performance of the model with only

exchange rates over the whole forecast sample, but that adding stock prices improves the relative

performance of the benchmark model with only exchange rates during the 2008 financial crisis

(see figure 2.6 in Appendix A).

The two benchmark forecast models are the random walk with garch residuals, and the

constant parameters Bayesian VAR. Point forecasts from a random walk are obtained by setting

10For additional details, see Cogley and Sargent [2005].
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Table 2.2: Exchange-rate prediction models

models description

1 ffvar tvp forgetting factor model with time-varying slope and volatility, λ = 0.99 and κ = 0.96

2 ffvar tv slope forgetting factor model with time-varying slope and constant volatility, λ = 0.99 and κ = 1

3 ffvar tv vola forgetting factor model with constant slope and time-varying volatility, λ = 1 and κ = 0.96

4 ffvar const forgetting factor model with constant slope and volatility, λ = 1 and κ = 1

5 tvp sv bvar bayesian model with time-varying parameters and stochastic volatility

6 bvar bayesian model with constant parameters

7 garch univariate garch(1,1) model

ŷrwi,t+h|t = yit, ∀h, while density forecasts are retrieved by estimating a garch(1,1) model on the

transformed data and then cumulating the forecasts11.

A summary of all competing models is given in table 2.2. Accounting for data transformation,

lag length and training sample data, the estimation sample runs from 1976m2 to 2000m1. The

estimation sample is then progressively enlarged in a pseudo-real time exercise: at each step,

models are re-estimated12 and forecasts up to one-year ahead are computed and cumulated. Finally,

to gauge how the financial crisis might have influenced the forecasting ability of the competing

models, we split the forecast sample in two: a pre-crisis sample that ends in August 2008, such

that the last forecasted period is always one month before the Lehman bankruptcy filing, and a

crisis sample that starts in September 2008 and ends in June 201313.

2.3.2 Point forecasts

Point forecasts from model a are compared with this from model b through their relative mean

squared forecast error:

RMSFEa,b
i,h =

∑Tf
t=1(ŷai,t+h|t − yi,t+h)2∑Tf
t=1(ŷbi,t+h|t − yi,t+h)2

, (2.10)

where Tf is the number of forecasts, while i and h respectively index the variable and the horizon.

Table 2.3 reports the mean squared forecast errors of the competing models relative to those of a

random walk. Two (one) stars denote the horizon and variable for which the two mean squared

11A random walk with garch innovations is better suited than a simple random walk to deliver density forecasts.
Density forecasts from a simple random walk are available upon request, and are the worst among all models
considered, a result consistent with the findings of Balke et al. [2013].

12In the case of the time-varying stochastic volatility model of Primiceri [2005], the model is re-estimated every
year as opposed to every month, due to the computational time required by the posterior simulation algorithm.

13The second forecast sample is inevitably shorter due to data availability.
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errors being compared are significantly different from each other, according to a Diebold and

Mariano test at a 5% (10% ) significance level, modified using the small sample size correction

of Harvey et al. [1998]. We can draw three broad conclusions. First, constant parameter models

deliver on average larger mean squared forecast errors, particularly in the period of the financial

crisis. Second, the tvp sv bvar has generally lower MSFE than the ffvar tv vola, due to

its better performance during the crisis period. In addition, both time varying parameter models

improve on the point forecasts of a random walk at a one-month horizon. At longer horizons

however, the assumption of parameter time variation does not lead to a significant improvement

in the MSFE with respect to a random walk, with the exception of the Yen.

Table 2.3: Mean squared forecast errors of the competing models models relative to a random walk
for different forecast samples and horizons. Two (one) stars denote significantly different RMSFE at
a 5% (10%) significance level according to a Diebold-Mariano test, modified using the small-sample
correction of Harvey et al. [1998]. The forecasting models are described in table 2.2. The pre-crisis
sample goes from 2000:m2 to 2008:m8. The crisis sample spans the period from 2008:m9 to 2013:m6.

pre-crisis sample crisis sample full sample

h £ e U £ e U £ e U

ffvar tv vola

h = 1 1.01 0.90?? 1.09? 0.97 1.08? 0.83?? 0.99 0.99 0.98

h = 3 1.00 0.91? 1.04 1.19 1.28?? 0.85? 1.11 1.07 0.94

h = 6 0.87 0.85? 1.03 1.49? 1.44?? 0.91? 1.15 1.13 0.96

h = 12 0.84 0.88 1.13 2.47? 1.72?? 0.89 1.15 1.16 0.96

tvp sv bvar

h = 1 0.94? 0.88?? 1.02 0.84? 0.94 0.64?? 0.89?? 0.91? 0.86

h = 3 0.98 0.93?? 0.96 1.03 1.08 0.74? 1.02 1.00 0.84??

h = 6 0.90?? 0.96 0.91? 1.21?? 1.16? 0.88 1.05 1.05 0.90

h = 12 0.88? 1.05 0.90 1.60?? 1.29? 1.07 1.02 1.11?? 0.96

bvar

h = 1 1.12?? 1.02 1.07 0.95 1.10 0.99 1.04 1.06 1.04

h = 3 1.13 1.13 1.26?? 1.02 1.25?? 1.13 1.08 1.18?? 1.19?

h = 6 1.31?? 1.20 1.65?? 1.46?? 1.55?? 1.60 1.29?? 1.35?? 1.60??

h = 12 1.56?? 1.29 2.20?? 5.71? 2.88?? 2.19? 1.78?? 1.75?? 1.99??

ffvar tv slope

h = 1 1.15? 0.93 1.12? 1.17 1.02 0.81?? 1.15? 0.98 0.99

h = 3 1.17 0.94 1.17? 1.66 1.04 0.83 1.40? 1.01 0.99

h = 6 0.94 0.94 1.35 2.46? 1.03 1.02 1.48 1.04 1.15

h = 12 1.00 0.88 1.73 5.98? 1.49?? 1.23 1.51? 1.13 1.37

ffvar constant

h = 1 1.15? 0.93 1.12? 1.16 1.03 0.80?? 1.15? 0.98 0.99

h = 3 1.17 0.94 1.17? 1.66 1.04 0.82? 1.40? 1.01 0.98

h = 6 0.95 0.94 1.34 2.46? 1.03 1.02 1.48 1.04 1.14

h = 12 1.02 0.88 1.74 5.96? 1.49?? 1.23 1.52? 1.13 1.37
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2.3.3 Interval forecasts

We proceed to examine whether allowing for parameter time variation improves the calibration of

the 68% and 95% forecast confidence intervals, the two most commonly used in empirical studies.

The statistic we use is the coverage rate of each competing model, measured as the percentage

of times in which the actual exchange rate is contained in the forecast confidence interval. As

it has been previously discussed, an accurate assessment of the uncertainty surrounding point

forecasts is likely to be of interest to a wide variety of forex market participants, from central

banks to private investors. A model that delivers coverage rates which are significantly below

their nominal counterparts underestimates forecast uncertainty. To the other extreme, coverage

rates of a 100% imply that the estimated forecast confidence intervals always contain the actual

values, but the confidence bands are so wide to be of little practical use. A model with correctly

calibrated forecast intervals would have coverage rates which do not significantly differ from their

nominal counterparts.

The empirical coverage rates of the different models, corresponding to 68% and 95% nominal

coverages, are reported in table 2.4. Values in bold are not statistically different from their nominal

counterparts, according to a likelihood-ratio test with 1 degree of freedom14. Over the whole

forecast sample, the model which has the best calibrated coverage rates is the ffvar model with

time-varying volatility. The improvement over its constant volatility counterparts (bvar, ffvar

const and ffvar tv slope) is evident at a 68% confidence level. Splitting the samples, we

notice that the better performance of the time-varying volatility ffvar model arises mainly in the

pre-crisis forecast sample, when the competing models overestimate the variance of the series and

deliver excessively large confidence intervals. The other time-varying volatility models, the tvp

sv bvar and garch, tend to overestimate the variance as well. One explanation for the better

performance of the ffvar tv vola model could lie in its parsimonious treatment of the volatility

process: the losses due to its approximation of volatility through an exponentially weighted moving

average process seem to be more than outweighed by its efficiency gains.

We exemplify the results of table 2.4 in figures 2.2 and 2.3, where we plot the 68% forecast

confidence intervals of the ffvar tv vola model together with those of the tvp sv bvar (darker

area, figure 2.2) and of the bvar (darker area, figure 2.3), and with the actual exchange rates (in

red), across forecast horizons (rows) and currencies (columns)15. At short and medium forecast

horizon, the forgetting-factor model provides the narrowest confidence bands, which we know from

table 2.4 to be accurately calibrated. Hence, while the ffvar tv vola model yields an efficient,

as well as correct, estimation of uncertainty, its competitors overestimate forecast uncertainty,

particularly for horizons greater than 6 months.

14For details of the test we refer to Clements [2005].
15The graphs of the remaining model’s forecast confidence intervals are available upon request.
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Figure 2.2: Forecast confidence intervals: 68% forecast confidence intervals delivered by the ffvar tv vola,
and by the tvp sv bvar (darker area), by exchange rate (columns) and horizon (rows). Actual
exchange rates in red.
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Figure 2.3: Forecast confidence intervals: 68% forecast confidence intervals delivered by the ffvar tv vola,
and by the bvar (darker area), by exchange rate (columns) and horizon (rows). Actual exchange
rates in red.
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2.3.4 Density forecasts

Probability integral transforms: Since the seminal work of by Dawid [1984] and Diebold

et al. [1998], probability integral transforms have been extensively used to evaluate competing

density forecasts. In particular, Diebold et al. [1998] have shown that, if the forecast model

p(y) coincides with the data generating process f(y), the series {zt}
Tf
t=1 =

{ ∫ yt
−∞ p(yt)dy

}Tf
t=1

of

probability integral transforms is an i.i.d. sample from a U(0, 1) distribution16.

We start with a visual inspection: figure 2.4 plots the histogram of the probability integral

transforms of the one-month ahead density forecasts delivered by the competing models. The

ffvar model with time-varying volatility is the only one, together with the rw garch model,

that delivers a uniformly distributed p.i.t. sequence. By contrast, the p.i.t. sequences of the

constant volatility models, as well as of the tvp sv bvar, are slightly hump-shaped denoting

an over estimation of the variance17 and confirming the earlier findings of the coverage rates. A

formal test of uniformity reported in table 2.5, achieved through the Kolmogorov-Smirnov test

(KS), reveals that the only model for which the null of uniformity is never rejected at any horizon

is the forgetting factor with time-varying volatility. For the constant volatility forgetting factor

models, the null of uniformity for one-month ahead forecasts cannot be rejected only at a 10%

significant level. The coverage rate results remain therefore valid also when the entire forecast

distribution is taken into consideration: a parsimonious modelling of time-varying volatility such as

in the ffvar tv vola correctly calibrates the forecast distribution, while the competing models

lead to a misspecification of the conditional variance.

Figure 2.4: Evaluating density forecasts: Normalised histograms of the one-step ahead p.i.t. sequences.

16These conclusions are easily extended to a multivariate setting, such as ours. See for instance Diebold et al.
[1998] and Clements [2005]

17See discussion in Mitchell and Wallis [2011].
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Table 2.5: Testing the probability integral transforms: Main table values are p-values for the null hypoth-
esis of the Kolmogorov-Smirnov test that the p.i.t. sequence of the model in the column header is
U(0, 1). The Bonferroni correction is used for horizons greater than 1; see text for details.

models

horizon ffvar tv vola tvp sv bvar bvar ffvar tv slope ffvar tv const rw garch

1 0.60 0.00 0.03 0.02 0.02 0.62

3 0.57 0.02 0.014 0.37 0.38 0.00

6 0.62 0.20 0.27 0.42 0.42 0.00

12 0.64 0.24 0.41 0.36 0.37 0.11

Log-predictive likelihoods: We now turn to an alternative evaluation of the competing predic-

tive densities, and in particular we focus on the evolution over time of the log-predictive likelihoods,

i.e. the log likelihood of observing the actual realisation of the variable, given a forecast model:

log pj, h, t(y1, t+h | Fj, t−1) , (2.11)

where pj, h, t(·) denotes the predictive likelihood of model j at horizon h (possibly time-varying and

thus depending on time t), y1 is a vector of target variables (one or all of the three exchange rates),

Ft−1, j is the information set of model j available at t. Of interest is the cumulative difference

between the log-predictive likelihood of the ffvar model with time-varying volatility, log p1, h, t,

and that of one of the alternative benchmarks, log gj, h t:

Sj,h =

Tf−h∑
t=1

[
log p1, h, t(y1, t+h | F1, t−1)− log gj, h t(y1, t+h| Fgj , t−1)

]
. (2.12)

This exercise is similar to what is undertaken in Amisano and Geweke [2010] and Amisano and

Geweke [2013], and enables us to gauge the contribution of different observations over time in favour

or against the ffvar tv vola model. Moreover, the statistic in 2.12 can be interpreted as the

summed difference in density forecast errors18 and can be justified in terms of the Kullback-Leibler

distance (KLIC). The latter can be expressed as the expected difference between the true log

predictive density, ft(·), and the predictive density of model j, pj,t(·):

E[log ft(y1, t+1 | Fj, t−1)− log pj, t(y1, t+1 | Fj, t−1)] , (2.13)

where we consider the case h = 1 and drop the horizon subscript for expositional purposes. Under

some regularity conditions, the average of the sample quantities of ft and pj,t yields a consistent

estimator of the KLIC distance. Hence, when two different predictive densities are being compared,

18See the discussion in Hall and Mitchell [2007].
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p1, t and p2, t, the average difference between their logarithms is inherently related to their KLIC

distance:

1

Tf

Tf∑
t=1

(
log p2, t(·)− log p1, t(·)

)
=

1

Tf

Tf∑
t=1

(
log ft(·)− log p2, t(·)

)
−
[

1

Tf

Tf∑
t=1

(
log ft(·)− log p2, t(·)

)]
,

(2.14)

so that, among a class of alternative models, choosing the one with the highest average log-predictive

likelihood entails selecting the model with the minimal KLIC distance.

Figure 2.5 plots the statistic S in equation 2.12 at selected forecast horizons19, providing

further insights on the relative predictive ability of the competing models. At all forecast horizons

considered, the ffvar with time-varying volatility has a higher predictive likelihood than all

competing models. The ffvar with constant parameters and the bvar perform very similarly

to each other, and both perform relatively better than the ffvar tv vola in the period of the

financial crisis. Nevertheless, the relative predictive likelihood of the ffvar tv vola model

improves immediately after the crisis, as the model discounts the Kalman filter prediction errors

through equation 2.9.

Figure 2.5: Cumulative differences in log-predictive likelihoods between the ffvar with time varying
volatility and various benchmarks: tvp sv bvar (solid line), bvar (dashed line), rw-garch
(dashed-dotted line) and the ffvar const (dotted line) at selected forecast horizons. Increases in
the plotted statistics indicate whenever the ffvar tv vola performs better than the alternatives.
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To gauge whether the differences observed in figure 2.5 are statistically significant, we use the

general test of equal predictive ability proposed by Amisano and Giacomini [2007] and report the

19The statistic obtained when the benchmark model is a simple random walk is not shown, but it is available
upon request. It is always lower than that obtained when the benchmark model is a random walk with garch
innovations.
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results in table 2.6. In the forecast subsample that excludes the financial crisis, the ffvar model

with time-varying volatility has a significantly higher predictive likelihood than all competing

models. Once the crisis forecast subsample is considered, the ffvar tv vola model does instead

slightly worse than the competing models for all horizons greater than one month, though the

differences are never statistically significant. Over the whole sample modelling time-varying

volatility delivers significantly smaller density forecast errors at both one-month and one-year

ahead horizons, and does on average better at medium forecast horizons, though the difference is

not always statistically significant.

Table 2.6: Amisano-Giacomini test statistic: The null hypothesis is that the ffvar tv vola model has the
same predictive ability of the forecast model indicated in the row header. Two (one) stars denote the
combination model-forecast horizon at which the difference in log-predictive likelihood is significant
at a 5% (10%) significance level. The pre-crisis sample goes from 2000:m2 to 2008:m8. The crisis
sample spans the period from 2008:m9 to 2013:m6.

pre-crisis sample crisis sample full sample

models h = 1 h = 3 h = 6 h = 12 h = 1 h = 3 h = 6 h = 12 h = 1 h = 3 h = 6 h = 12

tvp sv bvar 12.23?? 9.39?? 5.30?? 6.63?? 1.64? −0.49 −0.83 −0.40 8.69?? 2.38?? 1.11 1.74??

bvar 3.27?? 4.22?? 3.69?? 6.76?? 0.79 −0.54 −0.42 0.31 3.11?? 1.47? 1.11 2.20??

ffvar tv slope 5.86?? 5.51?? 3.14?? 5.19?? 0.44 −0.49 −0.62 −0.30 4.03?? 1.33? 0.54 1.29?

ffvar const 5.86?? 5.59?? 3.20?? 5.19?? 0.39 −0.50 −0.62 −0.29 3.98?? 1.33? 0.55 1.30?

rw garch 4.14?? 14.84?? 12.97?? 18.42?? 1.02 0.07 0.00 0.79 3.98?? 3.71?? 3.06?? 4.05??

2.4 Economic evaluation

So far, we have relied on purely statistical criteria to evaluate exchange-rate forecasts from

competing models. However, an evaluation based on economic criteria might be of interest,

particularly if the statistical models are to be used in real-world applications. In what follows, we

asses the performance of the competing models through a simple trading strategy, described in

Carriero et al. [2009]. We take the perspective of a US-based investor who grounds her investment

decisions on the predictions of a given forecast model, and has an investment horizon of one

month20. The investor buys foreign currency only if she expects the latter to appreciate over the

period of interest; no investment is made if the currency is instead expected to depreciate. At

the end of the investment period, the investor liquidates the realised gain/loss (if the currency

actually appreciated/depreciated) and reinvests the initial capital. We consider trading strategies

based on all competing models, as well as on a naive strategy that in each time attributes a 50%

probability to a currency appreciation over the investment period. Trading strategies are evaluated

on the basis of their average return µ(π), on the returns’ standard deviation σ(π), as well as on the

20We have chosen to report results only for one-month ahead forecasts to limit the amount of information in the
table. Results for different forecasting horizons are available upon request.
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Sharpe ratio (SR)21, over both the pre-crisis and crisis forecast subsamples. The three statistics

are reported in table 2.7, together with the difference in the Sharpe ratio over the naive strategy

(∆SR), the percentage of periods in which the currency is traded, and the percentage of times

when the predicted currency change is correct.

Table 2.7 clearly shows that modelling parameter time variation seems to be important also from

an economic perspective. Differently from what we observed through the statistical criteria however,

the best performing model is almost always the Bayesian VAR with time-varying parameters and

stochastic volatility. This is particularly evident in the case of the Pound, where it is possible to

achieve a positive average return also in the subsample that includes the financial crisis. The better

performance of the tvp sv bvar can be attributed to its superior ability in point forecasting, as

resulting from the MSFE comparisons.

Table 2.7: Economic evaluation: Key figures the trading strategies based on the different forecast models:
average return µ(π), returns’ standard deviation σ(π), Sharpe ratio (SR = µ

π ), difference in the
Sharpe ratio over the naive strategy (∆SR), percentage of periods in which the currency is traded (n)
and percentage of times when the predicted currency change is correct (c). In bold, best performing
strategies by criterion (column) and currency.

pre-crisis sample crisis sample

models µ(π) σ(π) SR ∆SR n c µ(π) σ(π) SR ∆SR n c

£

ffvar tv vola 0.27 1.61 0.17 0.08 59.80% 90.20% −0.12 1.27 −0.10 0.04 41.38% 89.66%

tvp sv bvar 0.31 1.45 0.21 0.12 60.78% 94.12% 0.23 1.57 0.15 0.29 43.10% 89.66%

bvar 0.17 1.46 0.12 0.03 56.86% 91.18% −0.02 1.09 −0.02 0.12 36.21% 93.10%

ffvar tv slope 0.26 1.44 0.18 0.09 53.92% 87.25% −0.29 1.30 −0.22 −0.08 34.48% 86.21%

ffvar const 0.27 1.43 0.19 0.10 53.92% 87.25% −0.28 1.30 −0.22 −0.08 32.76% 87.93%

e

ffvar tv vola 0.65 1.91 0.34 0.16 64.71% 92.16% −0.14 1.63 −0.08 0.01 51.72% 96.55%

tvp sv bvar 0.67 1.69 0.40 0.22 51.96% 95.10% −0.16 1.44 −0.11 −0.02 37.93% 91.38%

bvar 0.41 1.83 0.22 0.04 63.73% 89.22% −0.17 1.84 −0.09 −0.00 51.72% 93.10%

ffvar tv slope 0.61 1.95 0.31 0.14 65.69% 92.16% −0.09 2.11 −0.04 0.05 65.52% 81.03%

ffvar const 0.61 1.95 0.31 0.14 66.67% 92.16% −0.11 2.12 −0.05 0.04 67.24% 79.31%

U

ffvar tv vola 0.06 1.73 0.04 0.05 62.75% 88.24% 0.63 1.73 0.37 0.30 62.07% 81.03%

tvp sv bvar 0.12 1.58 0.08 0.10 56.86% 87.25% 0.59 1.59 0.37 0.31 46.55% 86.21%

bvar 0.08 1.88 0.04 0.06 64.71% 84.31% 0.35 1.88 0.19 0.12 63.79% 86.21%

ffvar tv slope 0.02 1.73 0.01 0.03 56.86% 86.27% 0.57 1.91 0.30 0.23 67.24% 77.59%

ffvar const 0.02 1.73 0.01 0.03 57.84% 86.27% 0.57 1.91 0.30 0.23 67.24% 77.59%

2.5 Conclusions

A big puzzle in the foreign exchange literature is the inability to predict the future behaviour of

exchange rates. In this paper we have focused on the idea that the unpredictability might be

caused by time variation in the parameters of the underlying stochastic process. In particular,

21The Sharpe ratio is defined as the ratio between the mean return and its standard deviation, and it is an effective
way to summarise the mean-variance trade-off of a given investment strategy.
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we have assessed whether the modelling of time variation in the slope and volatility parameters

improves the point, interval and density forecasts of three major exchange rates vis-a-vis the US

dollar. We have used two state-of-the-art time-varying parameter models: the stochastic volatility

bvar of Cogley and Sargent [2005] and Primiceri [2005], and its forgetting factor approximation

recently proposed by Koop and Korobilis [2013]. These models have been compared with several

benchmarks: the random walk, with or without garch innovations, a constant-parameter bvar,

and a constant parameter forgetting factor model.

The forecast evaluation exercise provides evidence of time variation in the covariance matrix of

the VAR innovations, while the contribution of time variation in the slope parameter appears to

be modest. The performance of constant parameters models is in fact significantly improved only

through the modelling of time-varying volatility. In particular, the ffvar mode with time-varying

volatility, though not improving point forecasts relative to a random walk, significantly refines

the estimation of forecast uncertainty through an accurate calibration of the forecast confidence

intervals. Analysing the forecast probability integral transforms further conveys the result that

it is the entire forecast density of the three exchange rates to be correctly calibrated, and not

just the 68% and 95% confidence intervals. In addition, the comparison based on density forecast

errors shows that the ffvar tv vola model has on average higher predictive likelihoods than

all competitors at all forecast horizons, though it performs relatively worse during the financial

crisis. The better performance of the forgetting factor model relative to the tvp sv bvar is

likely caused by its more parsimonious modelling of parameter time variation, such that the bias

due to the approximation is outweighed by its efficiency gains. Lastly, we have evaluated the

competing models on the basis of a simple trading strategy and found that modelling parameter

time variation allows to achieve higher mean returns and Sharpe ratios over the whole forecast

sample.
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2.6 Appendix 2A: The role of macro financial predictors

Several variables qualify as potential predictors of future exchange rates. The purchasing power

parity theory (PPP), first developed by Cassel [1918], postulates that the nominal exchange rate

(st) should be equal to the sum of the real exchange rate (qt), and the difference in the general

price level between the foreign and the home country (p∗t − pt). Moreover, the uncovered interest

rate parity (UIRP) condition suggests that exchange rate movements compensate differentials in

the nominal interest rate levels (i∗t − it). Empirical evidence on these models is mixed. Among

others, Cheung et al. [2005] show that while the mean squared errors from PPP models are lower

than those of a random walk for longer horizons, UIRP models do not significantly improve on the

random walk at any horizon. On the contrary, both models are found to outperform the random

walk by Della Corte et al. [2009], on the basis of statistical and economic criteria.

A relatively recent branch of exchange-rate prediction models is based on Taylor rules. These

models build upon open economy frameworks, and assume that the policy rule followed by the

central bank targets the country’s exchange rate, as well as output and inflation. Equating the

modified Taylor rules for the home and the foreign country yields a relationship between the

exchange rate and differentials in output, inflation and interest rates. The good performance of

Taylor rule models has been documented, among others, by Molodtsova and Papell [2009] and

Inoue and Rossi [2012], while it has been questioned by Rogoff and Stavrakeva [2008].

Finally, increasing attention is being paid to financial predictors of exchange rates. Molodtsova

and Papell [2012] find that the performance of their proposed Taylor rule models can be improved,

in some cases, when they are augmented with credit spreads or measures of financial conditions.

In addition, Shin et al. [2010] have shown how US credit aggregates, taken as proxies for the risk

appetite of financial intermediaries, can help forecasting a wide set of exchange rates.

The empirical literature shows that, contrarily to what exchange-rate determination models

posit, macroeconomic fundamentals do not appear to robustly improve the prediction of future

exchange rates. A possible explanation for this puzzle lies in the instability of the relationship

that links exchange rates to their fundamentals. This instability has been documented, among

others22, by Rossi [2006] through a series of instability tests. We take this perspective here and

how the performance of the forgetting-factor model containing only the three exchange rates

(henceforth core model), varies when the set of regressors is enlarged with different macroeconomic

and financial predictors, typically used in the exchange-rate prediction literature. The choice of

the forgetting factor methodology is motivated not only by its computational advantages over its

22 Using survey data, Cheung and Chinn [2001] have explained that instability might result from the behaviour
of foreign exchange-rate traders, who frequently change the weight they attach to fundamentals. In addition,
Bacchetta and van Wincoop [2009] show that the unstable relationship between fundamentals and exchange
rates can be generated within a model whose structural parameters are unknown to economic agents, and evolve
gradually over time.
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Bayesian counterpart, but also by the fact that it delivers similar point forecasts to those of the

tvp sv bvar, while improving on its interval and density forecasts. The additional predictors

considered are the nominal short term interest rate, the term structure slope and the growth

in stock prices23, measured as differentials with respect to the US. We find that none of these

additional predictors improves on the performance of the core model. To exemplify this point we

report the log-predictive likelihood of the macro models with respect to the core model in figure

2.6. At short horizons the performance of the macro models is very similar to that of the core

model, while at larger forecast horizons the performance worsens considerably. Perhaps the most

interesting result is that stock price differentials improve the performance of the core model during

the financial crisis, though on average the latter displays smaller density forecast errors.

Figure 2.6: Cumulative differences in log-predictive likelihoods between the ffvar tv vola with only
exchange rates and the the ffvar tv vola model augmented with macro financial differentials:
nominal short term interest rates (uirp - dotted line), stock prices growth (sp - dashed line), and
term structure slope (solid line) at selected forecast horizons. Increases in the plotted statistics
indicate whenever the ffvar tv vola with only exchange rates performs better than the alternatives.
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Note: All macro variables are monthly and expressed as differentials from the US counterpart. The term structure
slope is measured as the difference between the 10-year government bond yield (source: oecd - mei) and the money
market interest rate (source: ifs - ifm). Stock prices are transformed into real through the core CPI and are taken
as growth rates (source: Datastream).

23We have also considered differentials in inflation, output growth, and trade balances. For brevity we do not
report the results, which are available upon request.
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Chapter 3

Forecasting macroeconomic indicators

with default risk and risk aversion

measures

3.1 Introduction

The financial and the real side of the economy are heavily intertwined: financial intermediaries

provide means for firms to invest and for households to smoothen consumption with, and shocks

from one sector typically transmit to the other magnifying their initial impact, as shown by the

recent financial crisis in the US.1

In this work I investigate whether measures of default risk and of risk aversion have any

predictive content for key US macroeconomic quantities, such as output, prices and lending

activity, and whether their predictive power has changed over time. Three different indicators are

considered: two credit spread measures that have been found to be good predictors in the empirical

literature, and one measure of risk aversion. The two credit spread measures are the difference

between Baa and Aaa-rated bond yields, and the measure recently developed by Gilchrist and

Zakraǰsek [2012] using prices of individual corporate bonds traded in the secondary market. Both

measures capture variations in default risk only with a noise, as they are affected by other factors

such as risk aversion and, to a lesser extent, liquidity premia and bond taxation conditions. I take

this problem into account by considering a third predictor that captures precisely risk aversion: the

excess bond premium, also developed by Gilchrist and Zakraǰsek [2012]. To assess time variation in

the predictive power of these indicators I employ a series of time-varying forgetting factor models

recently proposed by Koop and Korobilis [2013]. These models, which can be considered a classical

approximation of the time-varying Bayesian VARs of Cogley and Sargent [2005] and Primiceri

1A recent study of the Dallas FED estimates that the output loss in the US caused by the recent financial crisis is
between $6 and $14 trillions.
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[2005], are considerably faster to estimate and, since they are not as densely parametrised, they

have been often found to be good forecasting tools.

Several results emerge from the forecasting analysis. Controlling for the credit spread developed

by Gilchrist and Zakraǰsek [2012], improves the point and density forecasts of both industrial

production and employment after 2000. This result complements the findings in Gilchrist and

Zakraǰsek [2012] by showing that the enhanced predictive performance is limited to the recession

periods of 2001 and 2008, when credit constraints were arguably binding. An additional key result

is that both default risk and risk aversion matter for improving the forecasts of activity indicators.

These two conclusion are strengthened by a structural VAR which shows that both increased

risk aversion and worsened macroeconomic fundamentals lie behind the latest US recession and

subsequent slow recovery. Moreover, credit spread shocks display significant real effects only after

the latest recession. In particular, an unexpected increase in the credit spread causes in 2010

an output contraction that lasts for about two years, with an annualised through of 4.8%, and

explains up to 35% of the forecast error variance of industrial production.

This work is theoretically grounded in a growing number of models that rationalise the link

between the financial sector and the real side of the economy, as well as the nominal one. One

important transmission channel is the ’financial accelerator’ mechanism, introduced in economic

theory by the seminal works of Bernanke and Gertler [1989] and Bernanke et al. [1999]. Market

frictions such as imperfect information create an ’external finance premium’, a wedge between the

actual cost of external funding faced by borrowers, and the opportunity cost of these funds. Shocks

that increase the external finance premium raise the cost of borrowing, causing a suboptimal

contraction in borrowing and investment, and a consequent decline in aggregate output. To the

extent that the external finance premium can be proxied by credit spread measures, i.e. yield

differences between securities of different credit quality, movements in credit spreads will cause

future fluctuations in output. Credit spreads movements might anticipate changes in real variables

in other ways. For example, as shown in Philippon [2009], worsened business fundamentals or

productivity are likely to increase the default probability of both borrowers and lenders, thus

increasing credit spread measures before causing fluctuations in slower moving real variables.

Indicators of financial conditions might contain predictive power for prices as well. Recently

Gilchrist et al. [2015] have shown, using a novel industry-level dataset, that during the great

financial crisis firms with different financial positions displayed different pricing behaviours. In

particular, while financially unconstrained firms decreased their prices, financially constrained ones

actually increased them. They rationalize their finding through a two-sector general equilibrium

model where, in response to adverse financial shocks, financially constrained firms are forced to

increase prices in order not to rely on costly external finance, and overall inflation increases despite

the drop in output.
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There is a vast empirical literature that seeks to assess to what extent macroeconomic activity

can be forecasted by credit spreads. None of it has however sought to establish whether this

predictive power has varied over time. Gilchrist and Zakraǰsek [2012] find that their newly

developed credit spread measure has a significantly higher predictive power for macroeconomic

activity indicators than other measures such as the Baa-Aaa corporate bond spread, or the

paper-bill spread. They moreover show that most of the predictive content of their spread measure

can be attributed to its component that captures the compensation required by investors to

bear default risk, and that can be considered a measure of overall risk aversion (the excess bond

premium). Using a different methodology I show that, once time variation is taken into account,

the predictive power of credits spreads is limited to the 2001 and 2008 recession periods, and that

the excess bond premium does not exhaust the informational content of the credit spread measure.

A similar conclusion is hinted at by Faust et al. [2012], without however seeking to establish the

relative role of risk aversion versus default risk. In particular, the authors forecast macroeconomic

activity2 with a Bayesian model averaging (BMA) scheme that includes, alongside with a large

set of macroeconomic and financial predictors, 20 credit spreads constructed from a confidential

database of corporate fixed income securities, and differentiated by risk and maturity categories.

The BMA models are found to deliver lower mean squared forecast errors than an autoregressive

model, particularly during NBER-dated recessions. Disentangling their results, the authors find

that the highest BMA weights are assigned to the credit spread measures and it is their inclusion

that significantly improves on the autoregressive point forecasts.

An assessment of the time-varying role played by financial frictions is found in Del Negro

et al. [2014]. They compare the forecasting performance of two DSGE models, with and without

financial frictions, and find that during the great financial crisis the model with financial frictions

has on average a higher predictive density than the alternative.3

The paper is organised as follows. The choice of indicators and the VAR methodology are

discussed in Section 2. The in-sample fit of the competing models is presented in Section 3, while

the out-of-sample evaluation is carried out in Section 4. Sections 5 performs a structural VAR

analysis that establishes whether the macroeconomic effect of shocks to default risk and risk

aversion measures has changed over time. Section 6 concludes.

2The macroeconomic activity considered are the growth rates in real GDP, personal consumption expenditures,
business fixed investment, industrial production, private payroll employment, civilian unemployment rate,
exports and imports, over the period 1986:Q1- 2011:Q3.

3The model with financial frictions uses as credit spread measure the commercial paper spread, the difference
between the annualised Moody’s Seasoned Baa corporate bond yield and the 10-Year Treasury Note Yield at
Constant Maturity.
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3.2 Macroeconomic activity prediction models

The empirical strategy followed in this work has two main dimensions. First, I would like to

investigate what is the marginal contribution of financial condition indicators in forecasting key

macroeconomic variables over a large evaluation period that spans several US recessions and goes

from 1980m1 to 2012m12. I consider three indicators: two measures of default risk, and one

measure of risk aversion. Default risk is captured, noisily, by two credit spread measures: the

difference between Baa and Aaa-rated bond yields (henceforth BA spread), and the credit measure

developed by Gilchrist and Zakraǰsek [2012] (henceforth GZ spread). The latter is constructed by

averaging credit spreads computed for twenty different maturity and credit risk categories from a

confidential database of US firms, and is found to outperform the BA spread in forecasting output

and employment. Gilchrist and Zakraǰsek [2012] further decomposed their spread measures in two

parts: one capturing the countercyclical movements in expected default and another, the excess

bond premium (henceforth EBP), that reflects deviations between the expected default risk of

borrowers and the price of their debt claims. Gilchrist and Zakraǰsek [2012] claim that this latter

component signals the risk aversion of the financial sector, as it spikes during US recessions and is

highly correlated with the leverage of highly leveraged (and high risk) agents (broker-dealers).

Standard financial accelerator theories such as in Bernanke et al. [1999], as well as recently

proposed models such as Gilchrist et al. [2015] show that a shock that increases the default risk

of borrowers or diminishes the risk-bearing capacity of financial intermediaries will be followed

by a sharp contraction in lending and in output, and possibly by either an increase or by only

a moderate decline in prices.4 Based on these models I look at the predictive content of these

three financial indicators for key US macroeconomic aggregates: the month-on-month change

in the industrial manufacturing index and in civilian employment, producer price and personal

consumption expenditure inflation. I further look at the predictive content for two banking sector

variables: the month-on-month change in commercial and industrial loans and the loan interest

rate spread measured as the difference between the lending interest rate and the risk free rate. A

summary of all the variables can be found in the lower panel of Table 3.1 below.

As a second goal, I would like to know whether the predictive power of the two credit spreads

and of risk aversion have changed over time. In particular, I would like to assess whether default

risk or risk aversion matter more in times of economic recessions, and especially during the latest

financial crisis. To do so, I rely on a methodology recently proposed by Koop and Korobilis [2013]:

the time-varying forgetting factor VAR. The latter can be considered a classical approximation

of the time-varying parameter BVAR with stochastic volatility of Cogley and Sargent [2005] and

Primiceri [2005], that exploits one-step ahead prediction errors to determine the degree of variation.

4In their model Gilchrist et al. [2015] show that an adverse financial shock is followed by an output contraction
and an overall increase in inflation, as financially constrained firms are forced to raise prices. By contrast, a
negative demand shock will decrease prices, but by a more modest amount than that posited by a standard
New Keynesian model.
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This model, outlined in detail below, is estimated via the Kalman filter and it is parsimoniously

parametrised. Hence, despite not taking sampling uncertainty into account, it has been shown to

be a very useful forecasting tool.5

To assess the marginal forecasting content of the three financial condition indicators, I first

define a baseline time-varying VAR model that controls for lagged values of the macro variable

being forecasted, as well as for the real interest rate and for the difference between the three-month

and the ten-year constant-maturity Treasury yields. These are the same control variables used in

the forecasting exercise of Gilchrist and Zakraǰsek [2012]. Moreover, the slope of the Treasury

yield curve is typically found to be a good predictor for macroeconomic activity.6 Note that I

rely on a VAR rather than on a regression analysis such as in Gilchrist and Zakraǰsek [2012] as I

believe that there are important dynamic relationships across the variables that should be taken

into account.7 I then augment the benchmark VAR with one indicator at a time and assess how

and to what extent the in sample and out of sample fit of the model changes. In particular, I

evaluate the point and density forecasts of the indicator-based models relative to the baseline,

and to an autoregressive model estimated recursively with the same lag length of the VARs. A

description of all forecast models used is found in Table 3.1 below.

The spreads, the term structure slope and real interest rate measures enter the VAR in levels.

Models are estimated with a lag length of 6. The VARs are initialised by shrinking the model to

random walk or to a white noise process, depending on the variable transformation, while prior

variance is initialised through a training sample. The estimation period is 1975m1−1979m12 while

the forecast period is 1980m1− 2012m12. After 1980m1 the estimation sample is progressively

enlarged, one month at a time, and forecasts are computed up to one year ahead.

3.2.1 The time-varying parameter forgetting factor VAR

The time-varying parameter BVAR with stochastic volatility developed by the seminal works of

Cogley and Sargent [2005] and Primiceri [2005] has become an important econometric tool in recent

years. It features three sources of time variation: in the slope coefficients, in the volatility of the

structural shocks, and in the correlation among the structural shocks. It is estimated via Bayesian

methods with a 5-step Gibbs-sampler and requires a a high computational time, especially to draw

the covariance matrix of the innovations to the slope parameters, and the covariance matrix of

the structural shocks. To reduce computational time, Koop and Korobilis [2013] have developed

a procedure which approximates the Bayesian model by replacing the posterior draws of these

5In a future version of this paper, I plan to add the comparison with the time-varying parameter BVAR with
stochastic volatility of Cogley and Sargent [2005] and Primiceri [2005].

6For recent evidence see for instance Chinn and Kucko.
7If these relationships are revealed by the data not to be important, they will be automatically discounted by the

Kalman filter.
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Table 3.1: Macroeconomic activity prediction models: All var models control for past lags of the activity
variable analysed, as well as for the real interest rate (R), and for the difference between the three-
month and the ten-year constant-maturity Treasury yields, i.e. the slope of the Treasury yield curve
(TS). tvp-var models are estimated using the tvp-ff-var methodology, with a lag length of 6. The
estimation period is 1975m1− 1979m12 while the forecast period is 1980m1− 2012m12.

# models variables

0 autoregressive activity variable

1 baseline tvp-var activity variable, TS and R

2 tvp-var gz spread activity variable, TS, R and GZ spread

3 tvp-var ba spread activity variable, TS, R and BA spread

4 tvp-var ebp activity variable, TS, R and EBP

alternative activity variables considered transformation description

industrial production (ip) growth rates (period on period) industrial manufacturing index

employment (n) growth rates (period on period) index

producer price inflation (ppi) growth rates (period on period) index

personal consumption expenditure inflation (pcepi) growth rates (period on period) index

loans (l) growth rates (period on period) deflated with CPI deflator

loan interest rate spread (ls) levels lending rate - risk free rate

two covariance matrices with empirical estimates. In particular, their time-varying parameter

forgetting factor VAR is based on a state-space representation, just like its Bayesian counterpart.

It is assumed that the n× 1 vector yt of observed variables is expressed as:

yt = Ztβt + ut with Et[utu
′
t] = Ωt , (3.1)

where Zt is a n× k matrix of regressors, and ut is a n× 1 vector of innovations with covariance

matrix Σt. Zt contains a constant and p lags of each variable and is thus defined as Zt =

In ⊗ [1, y′t−1, . . . y
′
t−p]. The measurement equation (3.1) is complemented by the transition equation

for the vector of time-varying slope coefficients βt:

βt = βt−1 + vt , (3.2)

implying that, given information up to t− 1, the slope coefficients in t are draws from a normal

distribution:

βt | Ft−1 ∼ N(βt|t−1, Pt|t−1) . (3.3)

In the prediction step of the Kalman filter routine, the following approximation is used:

Pt|t−1 =
1

λ
Pt−1|t−1, with λ ∈ (0, 1] , (3.4)
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where the parameter λ is a forgetting factor which discounts past information. Throughout this

work, a value of λ equal to 0.99 is used, implying, in the case of monthly data, that observations

one year ago receive 89% as much weight as current observations.

The second modification to the otherwise standard Kalman filter routine pertains to the

estimator of the covariance matrix of the non-structural innovations, Ωt. The latter is a weighted

average of its past value, and of its current estimate8:

Ω̂t = κΩ̂t−1 + (1− κ)ûtû
′
t , (3.5)

where ût are the Kalman filter errors and the weight is represented by the decay factor κ, set in

this application to 0.96 as in Koop and Korobilis [2013].

To summarise, the procedure developed by Koop and Korobilis [2013] is based on a modified

version of the Kalman filter which relies on the parametrisation of equations 3.4 and 3.5, as well

as on the choice of initial conditions for the covariance matrix Ω0, for the slope coefficients β0 and

their variance P0. Differently from its Bayesian counterpart, it does not disentangle the structural

shocks and delivers filtered estimates, which should be better suited for forecasting purposes. More

importantly, the model does not posit a proper law of motion for the covariance matrices of the

slope parameters and of the non-structural errors. To circumvent this problem, the parameters

are assumed to be fixed out of sample, when sampling from the predictive density. Overall, the

time-varying forgetting factor model disregards sampling uncertainty but it is very parsimoniously

parametrised, which could potentially yield efficiency gains big enough to compensate the bias

induced by the approximations.

3.3 In-sample fit of financial condition indicators

As a preliminary step, I assess the marginal contribution of the three financial condition measures

in improving the in sample fit of the target variables by plotting in Figure 3.1 the in-sample

log likelihood of the indicator-based models, relative to that of the baseline TVP-VAR model.

Increases in the plotted statistics denote observations whose fit is improved by adding the indicator

to the baseline model.

The three indicators of financial conditions do not seem to improve the in-sample fit of the

baseline VARs in the 1980s and 1990s. Relevant exceptions are personal consumption expenditure

(Figure 3.1d) and employment (Figure 3.1b). Particularly for the latter, the inclusion of the

BA corporate bond spread marginal improves the in-sample likelihood between 1980 and 2000,

suggesting that the cost of debt might have influenced hiring decisions in this period. During

8This is the Exponentially Weighted Moving Average estimator, commonly used in the finance literature.
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the dot-com crisis in 2001 the pattern changes and controlling for the GZ spread and for the

EBP improves the in-sample log likelihood of output, employment and the two banking sector

variables. By contrast, the in-sample fit of prices falls. Since the in-sample fit of the BA model

does not likewise increase, it is possible to conclude that risk aversion appears to have been the

main contributor of the better in sample fit of activity and banking sector variables during the

2001 crisis.

The great financial crisis in 2008 alludes to a different story. All indicator-based models

improve the in-sample fit of the target variables, but this time the bulk of the improvement can be

attributed to countercyclical variations in default premia. Exceptions are producer prices (Figure

3.1c) and loans (Figure 3.1e), for which risk aversion seems to have played a much bigger role.

Since in-sample and out-of-sample fit are not necessarily related, I now turn to discussing the

out-of-sample forecasting performance of the three indicator-based models.

3.4 Forecasting performance

3.4.1 Point forecasts

The first step of the out-of-sample analysis is to verify to what extent the addition of default

risk and risk aversion indicators improves the point forecasts of the baseline TVP VAR model

and of an autoregressive model estimated recursively. To assess if the forecasting ability of these

models has changed during the great financial crisis period, I have divided the forecast sample

into two: one that excludes the crisis period, ranging from 1980m1 to 2008m8 such that the last

forecasted period is always one month before the Lehman bankruptcy filing, and a crisis forecast

sample that starts in 2007m8 and ends in 2012m12. The mean squared forecast error relative to

the autoregressive model are reported in Table 3.2. Values smaller than one with one (two) star

denote that the model (column index) does significantly better than the autoregressive benchmark

at the horizon indicated in the corresponding row at a 5% (10%) significance level, according to a

Diebold-Mariano test, modified using the small-sample correction of Harvey et al. [1998]. We find

several interesting results.

The TVP-VAR models perform better than the AR model at forecasting the change in industrial

production for horizons of 1 to 3 months over the whole forecast sample. A similar result is found

for employment, but only for the crisis subsample (and not for the core TVP VAR). The best

forecast model for these two activity variables is the one augmented with the GZ spread indicator,

particularly in the crisis forecast subsample. Noticeably, the forecast errors of this model are

smaller than those from the model augmented with the EBP, suggesting that default risk contains

informational content for the point forecasts of both industrial production and employment.
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Figure 3.1: In-sample fit of the indicator-based TVP-VAR models, relative to the baseline
TVP-VAR: Indicators are the GZ spread (solid red line), the BA spread (dashed blue line)
and the EBP (dashed dotted red line).
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Note: Positive values denote that, on average, the indicator-based model provides a better in-sample fit. Increases
in the statistics denote observations in which the fit of the spread-based model model is higher. Shaded areas
denote NBER-dated recessions. 83



Table 3.2: Mean squared forecast errors of the competing models models relative to an AR model
for different forecast samples and horizons. Two (one) stars denote significantly different RMSFE at
a 5% (10%) significance level according to a Diebold-Mariano test, modified using the small-sample
correction of Harvey et al. [1998]. The forecasting models are described in table 3.1. The pre-crisis
sample goes from 1980:m1 to 2008:m8. The crisis sample spans the period from 2008:m9 to 2012:m12.

pre-crisis sample crisis sample full sample

core gz ba ebp core gz ba ebp core gz ba ebp

imi

h = 1 0.94 0.91?? 0.93 0.93? 1.08 0.76?? 0.90? 0.91? 0.97 0.88?? 0.92?? 0.93??

h = 3 0.95 0.91 0.95 0.92 1.05 0.89 1.01 0.94 0.97 0.91 0.96 0.92

h = 6 1.05 0.99 1.05 0.99 1.03 1.04 1.09 1.03 1.05 1.00 1.06 1.00

h = 12 1.01 0.99 1.00 0.99 1.00 1.18 1.11? 1.10? 1.01 1.06 1.04 1.02

employment

h = 1 1.08 1.03 1.01 1.04 1.08 0.75?? 0.82 0.92 1.08 1.00 0.99 1.03

h = 3 1.22 1.13 1.19 1.09 1.11? 0.79 0.88 0.91 1.20 1.07 1.14 1.06

h = 6 1.18 1.09 1.22 1.09 1.09?? 0.86 1.02 0.92 1.16 1.04 1.17 1.05

h = 12 0.94 0.91 1.03 0.92 1.07? 1.08 1.13?? 1.08 0.98 0.96 1.06 0.97

ppi

h = 1 1.22? 1.25?? 1.24?? 1.29?? 1.05 1.18 1.06 1.08 1.21? 1.25?? 1.23?? 1.27??

h = 3 1.38?? 1.40?? 1.40?? 1.48?? 1.10 1.29 1.11 1.12 1.36?? 1.40?? 1.38?? 1.45??

h = 6 1.33?? 1.35?? 1.37?? 1.46?? 1.02 1.39 1.03 1.08 1.30?? 1.36?? 1.34?? 1.43??

h = 12 1.49?? 1.57?? 1.51?? 1.71?? 0.87 1.58?? 0.88 0.99 1.44?? 1.57?? 1.45?? 1.65??

pcepi

h = 1 1.21?? 1.23?? 1.24?? 1.23?? 0.93 0.67 0.90? 0.89? 1.13?? 1.08 1.15?? 1.14??

h = 3 1.38?? 1.41?? 1.41?? 1.42?? 0.88 0.99 0.87 0.89 1.21?? 1.26?? 1.22?? 1.23??

h = 6 1.56?? 1.61?? 1.61?? 1.64?? 0.82? 1.06 0.83?? 0.87 1.28?? 1.40?? 1.31?? 1.35??

h = 12 1.60?? 1.64?? 1.61?? 1.75?? 0.88?? 1.26 0.94 0.96 1.40?? 1.54?? 1.42?? 1.53??

loans

h = 1 0.98 0.97 1.01 0.96 1.00 0.85 0.86 0.83 0.99 0.94? 0.98 0.93

h = 3 1.02 0.99 1.07 0.94 1.00 0.67 0.74 0.65 1.01 0.91 0.99 0.87

h = 6 1.09?? 1.02 1.19?? 0.93 0.99 0.52 0.66 0.49 1.06?? 0.86 1.02 0.79

h = 12 1.09?? 0.99 1.19?? 0.85 0.96?? 0.59 0.73 0.50?? 1.04 0.84 1.02 0.72?

loan spread

h = 1 0.86 0.87 0.87 0.85 0.68?? 0.53? 0.71 0.65?? 0.86 0.86 0.87 0.85

h = 3 0.84 0.84 0.87 0.81? 0.53?? 0.63 0.70 0.59? 0.84 0.84 0.87 0.81?

h = 6 0.78?? 0.78?? 0.84 0.73?? 0.40?? 0.48?? 0.49?? 0.47?? 0.77?? 0.77?? 0.83 0.73??

h = 12 0.70?? 0.71?? 0.78 0.63?? 0.22?? 0.29?? 0.25?? 0.29?? 0.68?? 0.69?? 0.76 0.61??

By contrast, inflation appears to be much harder to forecast, as the autoregressive benchmark

beats the VAR models over the whole forecast sample. A relevant exception is personal consumption

expenditure inflation, which is forecasted well in the crisis subsample by both the BA and EBP

model at horizons up to one year.

Lastly, the TVP VAR models typically forecast better better than the AR model both loans

and the loan interest rate spread. However, only in the case of loans the addition of default risk

and risk aversion indicators improves the performance of the core TVP VAR model.
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3.4.2 Density forecasts

An alternative way to assess the forecasting performance is by examining the entire forecast

distribution, rather than just the point forecasts. The aim of this Section is to gauge to what

extent the inclusion of default and risk aversion measures helps to better characterise the forecast

density and to predict, not only the mean, but also low and high realisations of the variables of

interest. The key statistic is the evolution over time of the differences in log-predictive likelihoods

between one of the three indicator-based TVP VAR models and a benchmark forecast model

(either the autoregressive model or the core TVP VAR):

S ij,h =

Tf−h∑
t=1

[
log pj, h, t(yt+h | Fj, t−1)− log gi, h t(yt+h| Fgi, t−1)

]
, with j = {2, 3, 4} , i = {0, 1} ,

(3.6)

where log pj, h, t(·) denotes the likelihood (in log scale) of observing the realisation of the variable

y at horizon h in time t, given forecast model j, and where Ft−1, j is the information set of model

j available at t.

Figures 3.2 to 3.7 display the relevant S ij,h statistics, where i is either the autoregressive (left

panels) or the baseline TVP VAR (right panels), and where increases in the statistics denote

observations in favour of the indicator-based TVP VAR models. This exercise, similar to what is

undertaken in Amisano and Geweke [2010] and Amisano and Geweke [2013], has a justification in

terms of the Kullback-Leibler distance (KLIC). In particular, if one model has on average higher

predictive likelihood than a competitor, then the forecast model is closest (in terms of the KLIC

distance) to the true data generating process.

Figures 3.2 and 3.3 show that the marginal contribution of financial indicators in forecasting

production and employment starts to be relevant after the 2001 recession but becomes substantial

only after the great financial crisis, when credit constraints were arguably binding. Between

2000 and 2008, the EBP model does equally well or better than the GZ and BA spread models,

indicating that risk aversion is the most important predictor for economic activity in this period.

Default risk premia seem to have played a more important role during the 2008 financial crisis,

particularly at a one-year ahead horizon. In this period in fact the GZ model yields on average

the highest predictive likelihoods among the VARs. Note however that at large horizons all TVP

VAR models perform worse than the autoregressive benchmark after 2008.

By contrast, financial indicators do not seem to have any predictive content for inflation

measures, as shown in Figures 3.4 and 3.5. Inflation is typically very hard to forecast and it is

difficult to find a model that is able to beat an autoregressive benchmark. However, controlling
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for financial indicators and in particular for risk aversion, substantially worsens the forecast of

producer price inflation with respect to the baseline TVP VAR. In the case of personal consumption

expenditure inflation controlling for the GZ spread or the excess bond premium only marginally

improves the forecasts of the baseline TVP VAR model between the mid 1980s and the mid 1990s,

and during the 2008 financial crisis. The improvement is in any case much smaller than that

witnessed for industrial production.

Lastly, financial indicators seem to have some predictive power only for loans and not for the

loan interest rate spread. In the case of loans (Figure 3.6), the three indicator-based models deliver

very similar predictive likelihoods to the baseline TVP VAR and to the autoregressive models for

most of the forecast subsample. After 2001 the EBP model scores progressively better, particularly

at larger horizons, and the bulk of the increase is due once again to the 2008 financial crisis. EBP

offers a marginal improvement to forecasting the interest rate spread of loans (Figure 3.7), but,

this is limited to longer forecast horizons and to the period 1990-2000. Overall, controlling for

past values of the spread, as well as for the term structure and the real risk free rate seems to be

sufficient to deliver accurate forecasts for the loan interest rate spread.

To understand what drives the better performance of the indicator-based models, and in

particular of the GZ model, during the 2008 crisis period, figure 3.8 shows the one-period ahead

point forecasts and 68% forecast confidence intervals of the four TVP-VAR models, together with

those of the autoregressive model (dashed lines). Across the wide range of variables considered, the

point forecasts of the baseline TVP-VAR model are very similar those of the autoregressive model,

though the confidence intervals are narrower. Controlling for credit spreads, and in particular for

the GZ spread, delivers smaller forecast errors during the financial crisis period, and shifts the

entire forecast distribution to lower values, though it still over predicts the two activity indicators.

A similar result holds for employment (figure 3.8b), and for personal consumption expenditure

inflation, but not for producer price inflation or for loans. Conversely, controlling for the GZ

spread helps to capture the increase in the compensation for lending risk in the aftermath of the

2008 financial crisis.

In addition note that all TVP VAR models deliver narrower forecast confidence intervals with

respect to the AR model, suggesting that allowing for parameter time variation significantly

narrows forecast uncertainty.

3.5 Has the importance of shocks to financial conditions

changed over time?

In the previous Section I have documented time variation in the reduced form coefficients of the

VARs, as well as in the predictive ability of financial condition indicators for macroeconomic

86



Figure 3.2: Density forecasts for industrial production
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Figure 3.3: Density forecasts for employment
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Note: Predictive log-likelihoods of the GZ model (solid red line), of the BA model (dashed blue line), and of
the EBP model (dashed dotted red line) relative to the AR model (Figure a) and to the baseline TVP-VAR
model (Figure b) at different forecast horizons. The starred black line in Figure a denotes the log-likelihood of the
baseline TVP-VAR relative to the AR model. Positive values denote that, on average, the model provides a better
out-of-sample fit than the benchmark. Increases in the statistics denote observations in which the fit of the TVP
VAR models is higher. Shaded areas denote NBER-dated recessions.

activity. In particular, credit spreads and the excess bond premium are found to be significant

regressors for macroeconomic activity during the periods of financial distress of 2001 and 2008.

In this section, I seek a causal interpretation of these results and examine whether the effect of
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Figure 3.4: Density forecasts for producer price inflation
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Figure 3.5: Density forecasts for personal consumption expenditure inflation

(a) Relative to the AR model
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Note: Predictive log-likelihoods of the GZ model (solid red line), of the BA model (dashed blue line), and of
the EBP model (dashed dotted red line) relative to the AR model (Figure a) and to the baseline TVP-VAR
model (Figure b) at different forecast horizons. The starred black line in Figure a denotes the log-likelihood of the
baseline TVP-VAR relative to the AR model. Positive values denote that, on average, the model provides a better
out-of-sample fit than the benchmark. Increases in the statistics denote observations in which the fit of the TVP
VAR models is higher. Shaded areas denote NBER-dated recessions.
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Figure 3.6: Density forecasts for loans
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Figure 3.7: Density forecasts for the loan interest rate spread

(a) Relative to the AR model
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Note: Predictive log-likelihoods of the GZ model (solid red line), of the BA model (dashed blue line), and of
the EBP model (dashed dotted red line) relative to the AR model (Figure a) and to the baseline TVP-VAR
model (Figure b) at different forecast horizons. The starred black line in Figure a denotes the log-likelihood of the
baseline TVP-VAR relative to the AR model. Positive values denote that, on average, the model provides a better
out-of-sample fit than the benchmark. Increases in the statistics denote observations in which the fit of the TVP
VAR models is higher. Shaded areas denote NBER-dated recessions.
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Figure 3.8: In-sample fit of the indicator-based TVP-VAR models, relative to the baseline
TVP-VAR: Indicators are the GZ spread (solid red line), the BA spread (dashed blue line)
and the EBP (dashed dotted red line).

(a) Industrial production (b) Employment

(c) Producer prices (d) Personal consumption expenditure

(e) Loans (f) Loan interest rate spread

Note: Positive values denote that, on average, the indicator-based model provides a better in-sample fit. Increases
in the statistics denote observations in which the fit of the spread-based model model is higher. Shaded areas
denote NBER-dated recessions.
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credit spreads shocks on industrial production growth has changed over time. For this purpose, I

rely on a modified version of the forecast models that includes industrial production, inflation,

the measure of financial conditions, the nominal risk-free interest rate and the term structure

slope.9 The VARs are identified recursively, assuming that financial condition measures are not

affected by monetary policy shocks, but that the monetary authority takes into account financial

conditions when setting its rate. This identification scheme is the same as the one used in Gilchrist

and Zakraǰsek [2012] and in other works by the same authors.10 While this identification scheme

has many caveats, I choose it in order to show that the main structural result in Gilchrist and

Zakraǰsek [2012] is driven by the recent financial crisis.

Figures 3.9, 3.11 and 3.13 display the effects of a one-standard deviation shock in one of the

three financial condition indicators at different points in time. These plots clearly show how the

importance of financial condition measures has changed over time. While a GZ credit spread

shock has no significant effect on industrial production before 2000, its importance gradually

increases over time, and in 2010 a one-standard deviation increase in the GZ spread causes an

output contraction that lasts for two years, with an annualised through of 4.8%, despite an easing

of monetary policy. The forecast error variance decomposition shown in Figure 3.10 reveals that

GZ spread shocks account for a negligible fraction of industrial production variance until the end

of the 1990s, but that in 2010 this fraction increases to 35% after two years.

In Figure 3.13 financial conditions are instead measured with the excess bond premium, thus

taking into account only risk aversion and not default risk. The same conclusions obtained with the

GZ spread hold, but the magnitude of the effects are reduced. The decline in industrial production

in 2010 has an annualised through of 2.4%, and the fraction of total variance explained by the

financial condition shock is only 13% after 2 years (Figure3.10). Recalling that the GZ spread

controls for two components, one reflecting countercyclical default premia and one capturing the

extra compensation required by investors to accept default risk, these results show that default

premia are just as important as risk aversion in explaining the decline in industrial production

growth in the recent years. Hence, the fall in output and slow recovery seems to have been caused

by an increased risk aversion of lenders as well as by worsened macroeconomic fundamentals.

Lastly, note that results depend on how financial conditions are measured. If the BA spread

replaces the GZ spread in the VAR (Figure 3.11) the retrieved financial condition shocks are never

found to affect industrial production significantly.

9In this way, no restriction on the coefficients of inflation and of the nominal interest rate are imposed. Moreover,
the shock to the interest rate series can be interpreted as a pure monetary policy shock. Using the real interest
rate does not alter the results.

10Differently from Gilchrist and Zakraǰsek [2012] I employ a smaller set of variables (the same used in the forecast
exercise). In a later stage, I will expand the VAR to include the same set of variables. Results from an alternative
variable ordering do not differ significantly from those reported here and are available upon request.
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Figure 3.9: Responses to a one-standard deviation shock in the GZ spread over the years:
Median impulse response functions (in red) with 95% confidence band (shaded area). SVAR
estimated through the TVP-FF-VAR methodology, with a lag-length of 6 months, and
identified through a recursive scheme, with the credit spread ordered third.
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Figure 3.10: Forecast error variance decomposition: Fraction of Industrial production variance attributable
to a shock in the GZ spread, for selected years.

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

horizon

%
 o

f G
D

P
 v

ar
ia

nc
e 

ex
pl

ai
ne

d 
by

 G
Z

 s
ho

ck

 

 
1995
2001
2008
2010

92



Figure 3.11: Responses to a one-standard deviation shock in the BA spread over the years:
Median impulse response functions (in red) with 95% confidence band (shaded area).
SVAR estimated through the TVP-FF-VAR methodology, with a lag-length of 6 months,
and identified through a recursive scheme, with the credit spread ordered third.
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Figure 3.12: Forecast error variance decomposition: Fraction of Industrial production variance attributable
to a shock in the BA spread, for selected years.
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Figure 3.13: Responses to a one-standard deviation shock in the EBP over the years: Median
impulse response functions (in red) with 95% confidence band (shaded area). SVAR
estimated through the TVP-FF-VAR methodology, with a lag-length of 6 months, and
identified through a recursive scheme, with the EBPordered third.
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Figure 3.14: Forecast error variance decomposition: Fraction of Industrial production variance attributable
to a shock in the EBP measire, for selected years.
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3.6 Conclusions

The recent financial crisis has illustrated how interrelated the financial and the real side of the

economy are. Economic models tell us moreover that the existence of financial frictions strengthens

the transmission of shocks and that movements in default risk or in risk aversion induce changes in

the cost or in the quantity of borrowing which anticipate future movements in loans, output, and

even prices. Based on these theoretical models, I verify to what extent the inclusion of financial

condition indicators improves the point and density forecasts of key macroeconomic variables,

relative to a baseline TVP VAR model with control variables, and to a simple autoregressive model

estimated recursively.

Three financial condition indicators are considered: the spread between Baa and Aaa rated

corporate bond yields, a spread developed by Gilchrist and Zakraǰsek [2012] using a richer corporate

bond database, and the excess bond premium. The latter has been proposed by Gilchrist and

Zakraǰsek [2012] and is defined as the residual component of the GZ spread that is not correlated

to default risk but captures overall risk aversion.

Several result emerge from the forecasting analysis. First, controlling for financial condition

indicators improves the forecasting performance of the baseline TVP VAR model during large

recessions, when credit constraints are arguably binding. By contrast, no role is found for price

measures. However, whether the forecast gain results from controlling also for default risk (credit

spreads) or only for risk aversion (the excess bond premium) depends on the forecasted variable.

The GZ spread delivers more accurate point forecasts for output and employment than the model

that controls for the excess bond premium. This suggests that both default risk and risk aversion

are important predictors for aggregate activity indicators, especially in the forecast subsample that

includes the 2008 financial crisis. Controlling solely for risk aversion suffices instead to improve

the point forecasts of loans and of the loan interest rate premium, relative to the autoregressive

benchmark.

Secondly, the analysis of the entire forecast distribution reveals that the marginal contribution

of financial indicators in forecasting output, employment and loans starts to be relevant only

after the 2001 recession and becomes substantial only after the great financial crisis, when credit

constraints were arguably binding. While risk aversion is the most relevant predictor for loans,

default risk premia have played an important role in forecasting output and employment during

the 2008 financial crisis, particularly at a one-year ahead horizon. In particular, controlling fro

the GZ spread helps to forecast the macroeconomic downturn seen at the end of 2008, shifting

the entire distribution of industrial production towards lower values. By contrast, controlling for

financial condition indicators does not improve the density forecasts of prices nor of the interest

rate spread.
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Lastly, I have conducted a structural analysis, to assess whether shocks to financial conditions

have displayed different real effects over time. Following the same identification strategy as in

Gilchrist and Zakraǰsek [2012], I show that their results are mainly driven by the latest financial

crisis. An unexpected worsening in financial conditions displays in fact adverse real effects only

after 2008. Moreover, it appears that default risk premia matter just as much as risk aversion and

that the economic recession and slow recovering after 2008 can be explained by both increased

risk aversion and worsened macroeconomic fundamentals.
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Chapter 4

The Changing International

Transmission of Financial Shocks:

Evidence from a Classical Time-Varying

FAVAR

Joint with Sandra Eickmeier, Massimiliano Marcellino and Wolfgang Lemke

4.1 Introduction

In this paper, we study the temporal evolution in the international transmission of global financial

shocks. We address the following questions.

(i) How large is the impact of global financial shocks on major advanced countries, and have

the shock size and its transmission changed over time?

(ii) Through what channels are global financial shocks both domestically and internationally

transmitted, and can we identify changes in the transmission mechanism over time?

(iii) How strongly were the major advanced economies affected during the global financial crisis

and through which channels?

While several previous papers have focused on the transmission of specific financial shocks

(such as credit, stock price or house price shocks) we focus here on ‘shocks to overall financial

conditions’. Specifically, we identify global financial shocks as unexpected changes in the US

financial conditions index (FCI) proposed by Hatzius et al. [2010], which summarizes 46 different

US financial variables. On the one hand, this choice reflects the fact that financial markets are

closely linked, a feature that has become evident during the recent financial crisis. On the other
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hand, we are aware that the interpretation of results regarding the propagation of a broad financial

shock is more difficult than interpreting those of more narrowly defined financial shocks. The

US FCI is taken as a proxy for worldwide financial conditions, given the dominance of the US

in global financial markets. We will show that indeed the US FCI is very highly correlated with

other countries’ FCIs.

We use the FCI in combination with a newly compiled quarterly dataset for nine major advanced

countries, namely the G7 countries as well as Australia and Spain, two additional large economies.

The dataset contains 203 quarterly real activity, price, monetary, financial and trade variables, over

the sample period 1971Q1-2012Q4. All our variables are jointly modeled in a factor-augmented

vector autoregressive model (FAVAR). Each of the 203 international variables is then decomposed

into a common component, which depends on the FCI and the (remaining) common factors, and

an idiosyncratic component, which is related to variable-specific shocks. Financial shocks can

affect consumption and investment, e.g. through wealth effects, changes in funding costs and

financial accelerator mechanisms. A decline in demand in one country after a financial shock can

then lead via trade to negative economic effects in other countries. In addition, financial shocks

can spill over to other countries via integrated financial markets through foreign asset exposure

and/or contagion effects which lead to highly synchronized asset prices across countries.

Factor models allow to include many international variables that can flexibly interact with

each other, permitting to appropriately capture the global transmission mechanism.1 As a special

feature, our model allows for parameter variation in the VAR for the FCI and the factors (including

changes in the variance-covariance matrix of the shocks) as well as in the loadings associated with

the transmission of changes in the FCI and in the factors to the international variables. This

TV-FAVAR specification and associated classical (as opposed to Bayesian) estimation approach is

suggested by Eickmeier et al. [2014], and extends the constant parameter FAVAR specification

introduced by Bernanke et al. [2005].2 Allowing parameters to change over time is important as

globalization may have increased integration via trade and financial markets and also as the link

between the financial and real sector has potentially become stronger. Our model can also capture

potential asymmetries in transmission as, for instance, different effects over financial crisis and

non-crisis periods.

The paper makes several contributions to the existing literature on international transmission.

While previous studies mostly looked at the international propagation of real or monetary policy

shocks3, we focus instead on the international transmission of financial shocks, as done in Bagliano

1Such models are frequently used in the international business cycle literature, see, e.g., Kose et al. [2003] or Stock
and Watson [2005b]).

2See, e.g, ? for a Bayesian approach.
3E.g. Perez et al. [2006], Galvao et al. [2007], Canova and Marrinan [1998], Canova [2005], Canova and Ciccarelli

[2009], Eickmeier [2007], Eickmeier [2010], Dées and Saint-Guilhem [2011], Dées and Vansteenkiste [2007], Di
Mauro et al. [2007], Karagedikli and Thorsrud [2010], Kim [2001], Liu et al. [2011], Vasishtha and Maier [2013],
Mumtaz and Surico [2009], Neri and Nobili [2010].
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and Morana [2012], Helbling et al. [2011], Eickmeier and Ng [2011] and Sgherri and Galesi [2009] All

these studies also use large models, but they focus on specific types of financial shocks (e.g. shocks

to house or stock prices or credit shocks) while we focus on shocks to overall financial conditions.

Also, all models employed in these three studies are based on constant parameters. This paper, by

contrast, uses a fully time-varying model to assess changes in the size and transmission of financial

shocks.4 Moreover, we look at the transmission not only via the traditional trade channel, but

also via variables capturing financial and asset markets. Finally, we focus on the impact of the

global financial crisis and explore whether its strong impact was due to unusually large shocks,

a particularly strong transmission of that shock or a combination of the two, also by drawing

comparisons to previous periods.

Our results, answering the three questions from the beginning, can be summarized as follows:

First, regarding the size and transmission of global financial shocks, we find that they have

a considerable impact on the nine countries. The transmission to GDP growth in European

countries and Japan has somewhat increased gradually since the 1980s, but in general changes

in the transmission are not statistically significant. The size of US financial shocks also varies

strongly over time, with the ‘global financial crisis shock’ being very large by historical standards.

Second, regarding the transmission channels, we find that improvements in global financial

conditions, as they are reflected in an increase in asset prices and credit in most countries, trigger

positive investment and (somewhat smaller) consumption reactions. Positive TFP responses

probably also contribute to the rise in investment. Financial shocks are propagated internationally

via financial markets and trade. Unlike financial shock volatility, the transmission of global financial

shocks does not differ much across normal times and periods of financial turmoil.

Third, concerning the global financial crisis, we find that the exceptionally deep worldwide

recession was mostly due to a large negative global financial shock combined with a strong

propagation of that shock in the euro area and Japan. Global financial shocks explain on average

approximately 20 percent of the variation in GDP growth during the crisis period, which is very

large compared to an average of 5 percent over the 1971-2007 period, and larger than other turmoil

periods for most countries. The transmission of the global financial crisis has been unusual in a

number of other respects. Many variables, including activity variables, prices, financial variables

and TFP, have reacted particularly strongly in most countries. Exports have declined, in particular

in Canada, Germany and Japan, while interest rates have moved less than in the period before the

global financial crisis, probably because monetary policy reached the zero lower bound in many

countries. Finally, the US real effective exchange rate significantly appreciated during the global

financial crisis (after a negative financial shock), while it depreciated before.

4In this respect, our analysis is most closely related to Liu et al. [2011] who analyze the transmission of global real
and monetary shocks to the UK based on a Bayesian TV-FAVAR.
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The paper is structured as follows. The econometric methodology is explained in section

4.2. Section 3 describes the US FCI and the large international dataset. Section 4 studies the

dynamics of global financial (FCI) shocks and their evolving transmission to GDP growth in

the nine countries in our panel (4.1 and 4.2). Section 4.3 explains the detected pattern of time

variation in the effects of the FCI shock on growth, and pins down the main transmission channels.

In Section 4.5 we report the robustness of our results with respect to the choice of the specific FCI.

Section 5 concludes.

4.2 Econometric Methodology

4.2.1 The constant-parameter FAVAR model

The analysis departs from an N -dimensional vector Xt, which includes a large number of economic

and financial variables for the nine countries under investigation, and is modeled with the aid of a

time-invariant approximate dynamic factor model (Bai and Ng [2002], Stock and Watson [2002]):

Xt = Λ′Ft + et. (4.1)

In equation (4.1), Ft = (f1t, . . . , frt)
′ and et = (e1t, . . . , eNt)

′ denote, respectively, a vector of

common factors that have a major effect on all international variables and may thus be regarded as

the main (common) drivers of all the countries, and a vector of variable-specific (or idiosyncratic)

components. The number of common factors is generally well short of the number of variables

contained in the dataset, i.e. r << N . In addition, Ft may contain dynamic factors and their lags.

To that extent, equation (4.1) is non-restrictive. Common and variable-specific components are

orthogonal. The common factors are also assumed to be orthogonal to each other, and the variable-

specific components can be weakly correlated with one another and also serially correlated in the

sense of Chamberlain and Rothschild [1983]. The matrix of factor loadings is Λ = (λ1, . . . , λN),

where λi is an r-dimensional vector whose elements measure the effect of each factor on variable i,

i = 1, ..., N .

It is assumed that the dynamics of the factors can be described using a VAR(p) model:

Ft = B1Ft−1 + . . .+BpFt−p + wt, E(wt) = 0, E(wtw
′
t) = W. (4.2)

Since the elements of Xt are assumed to be zero-mean processes (and the respective data are

demeaned), equations (4.1) and (4.2) do not contain intercepts.

Following Bernanke et al. [2005] we break down the r-dimensional vector of factors Ft into an

M -dimensional vector of observed factors Gt and an r −M -dimensional vector of unobserved (or
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latent) factors Ht, i.e. Ft = (G′t, H
′
t)
′. For most of the analysis, Gt is the US FCI published by

Hatzius et al. [2010] (and M = 1). This FCI is an aggregate of 46 US financial/asset variables.

We provide a detailed explanation of how the FCI is constructed and of the underlying series in

the next section. By including the FCI, we will be able to identify global financial shocks. The

‘residual’ common factors Ht consist of the other factors which drive our nine countries, most likely

other global shocks or shocks that occur in one country and spill over to the other countries.

The model we have described so far can be estimated in four steps. The first step is to determine

the dimension of Ft, i.e. the number r of common (latent and observed) factors driving our large

dataset; see our discussion below.

In the second step, we estimate Ht by removing the observed factors from the space spanned

by the r factors as follows. We extract the first r principal components from Xt and summarize

them in F̂t. Next, we estimate a regression of the form Gt = γ′F̂t + vt. Ht is then estimated as

Ĥt = γ̂
′

⊥F̂t where the r× (r−M) matrix γ̂⊥ denotes an orthogonal complement such that γ̂
′

⊥γ̂ = 0.

The matrix of (time-invariant) factor loadings Λ can be estimated by an OLS regression of Xt

on (G′t, Ĥ
′
t)
′. We should note that this very easy and fast way of cleaning the factor space from

the observed factor(s) yields latent factors which are mutually orthogonal and orthogonal to the

observable factor(s).

In the third step, we model the dynamics of Ft = (G′t, Ĥ
′
t)
′ with the aid of the VAR (4.2).

In a fourth step, we identify the financial shocks by applying a Cholesky decomposition to

the covariance matrix of the reduced-form VAR residuals where the FCI is ordered before the

international factors. Using this identification scheme, we are as flexible as possible allowing all

international factors to react immediately to global financial shocks. Alternatively, we have also

ordered the FCI last in the VAR. One could argue that the FCI comprises numerous fast-moving

variables such as stock prices or interest rates which can react instantaneously to other disturbances

while our baseline identification scheme restricts the FCI not to respond contemporaneously

(although it does allow the individual financial variables which are summarized in the FCI to react

immediately). Results from this alternative identification scheme, available upon request, do not

considerably differ from our baseline results.5

4.2.2 The time-varying parameter FAVAR model

In order to trace possible changes in the way the FCI shock affects the variables of interest in

the various countries, we modify the baseline FAVAR model in (4.1) - (4.2) by allowing for time

variation in the parameters. To introduce the approach, we first note that the VAR equation (4.2)

5We decided not to employ sign restrictions as opposed to contemporaneous zero restrictions due to the lack of
theoretical models providing a sufficient number of meaningful and widely accepted sign restrictions.
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can be represented as

PFt = K1Ft−1 + . . .KpFt−p + ut, E(ut) = 0, E(utu
′
t) = S, (4.3)

where P is lower-triangular with ones on the main diagonal, and S is a diagonal matrix. The

relation to the reduced-form parameters in (4.2) is Bi = P−1Ki and W = P−1SP−1′.

We relax the assumption of parameter constancy in four dimensions by allowing for time

variation in: (i) the autoregressive dynamics of the factors (K1, . . . ,Kp), (ii) the contemporaneous

relations captured by the matrix P , (iii) the variances of factor innovations, i.e. the elements of S

in (4.3), and (iv) the factor loadings in (4.1). Thus, we consider the following time-varying version

of the single equations of (4.1),

xi,t = Λ′i,tFt + ei,t, i = 1, . . . , N (4.4)

and the VAR (4.3),

PtFt = K1,tFt−1 + . . .+Kp,tFt−p + ut, E(ut) = 0, E(utu
′
t) = St, (4.5)

where again Pt is lower-triangular with ones on the main diagonal, and St is diagonal. Note that

we do not associate any structural interpretation to the P or Pt matrices for the moment, the

decomposition of the variance covariance matrix of the residuals just serves to render the errors in

(4.3) or (4.5) uncorrelated.

Let the time-varying parameters {Pt,K1,t, . . . ,Kp,t,Λ1,t, . . . ,ΛN,t} be collected in a vector αt.

Note that the dimension of this vector is r · (r − 1) · 0.5 + p · r2 +N · r, which can be fairly large.

As is common in time-varying parameter regression models, see e.g. Nyblom [1989], we assume

the parameters to vary slowly over time, as independent random walks

αt = αt−1 + εt, εt ∼ N(0, Q), (4.6)

where Q is a diagonal matrix.

In practice, the matrix Q could be non-diagonal, capturing commonality in some parameter

movements. Our estimation procedure, described below, remains consistent also in this case,

though not efficient. As an alternative, a specific structure could be imposed on Q (to reduce the

number of free parameters), or a different model used for parameter evolution, e.g., a factor model.

However, both these approaches impose precise patterns of commonality in parameter movements,

which we prefer to avoid given the lack of a priori information on this issue.

It is worth mentioning that our time-varying FAVAR specification nests the standard FAVAR,

since when all the elements of the Q matrix are equal to zero the former reduces to the latter.

102



Finally, we also allow for some persistence in the idiosyncratic components in (4.4), assuming

that they follow a first-order autoregressive process:

ei,t = ρiei,t−1 + ξi,t, E(ξi,t) = 0, E(ξ2
i,t) = σ2

i , i = 1, . . . , N (4.7)

The elements of ξt ≡ (ξ1,t, . . . , ξN,t)
′ are assumed to be contemporaneously uncorrelated among

themselves and over time, and uncorrelated with all the elements of ut and εt, which are in turn

assumed to be uncorrelated contemporaneously and over time.

4.2.3 Modeling volatility

A crucial point is how to model time variation in factor innovation volatility. We assume in

our baseline model that the variance of each shock can be approximated by a function of three

observable variables (lagged by one quarter) constructed as follows. We start with the time series

of daily squared logarithmic changes in the US S&P 500 and weekly (due to data availability)

squared changes of the BAA-AAA corporate bond spreads. Similar to Adrian and Rosenberg

[2008] we apply an HP filter to each of the two series and obtain the HP trends at daily and weekly

frequency, respectively. These trends are converted to quarterly frequency by taking averages over

the days (weeks) of the respective quarters. As a third observable variable we use the dispersion

of GDP growth forecasts across forecasters computed as the difference between the 75th and the

25th percentile of individual 1-quarter ahead forecasts for GDP growth (published in the Survey of

Professional Forecasters and provided on the website of the Federal Reserve Bank of Philadelphia).

Stock market volatility and forecast dispersion are widely used measures of uncertainty in the

economy as, e.g., pointed out by Bloom [2009]. We add to these measures the volatility of the

corporate bond spread as an additional proxy.

Hence, the volatility specification of the structural shock in the gth equation has the form

Sgg,t = cg + b′gZt−1, (4.8)

where the scalar cg and the vector bg ≥ 0 are equation-specific, and Zt−1 contains the lagged

observed volatility measures. We use lagged values to avoid possible endogeneity problems, Finally,

the specification in (4.8) nests the homoskedastic case, which would arise from bg = 0.

We assess the robustness of our results with respect to the modeling choice of the time-varying

factor innovation volatilities. More specifically, we add other observables to our Zt and, alternatively,

assume that the volatilities follow GARCH processes. Results from alternative specifications are

similar to those from the baseline specification (4.8) and are available upon request.
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4.2.4 Estimation of the time-varying FAVAR model

The factors

The elements of Ft = (G′t, Ĥ
′
t)
′ are obtained by combining the principal component and the

regression approaches to take care of the observable factor as in the case of the constant-parameter

FAVAR model. We then treat the factors as observable and estimate the time-varying-parameter

factor VAR and the loading equations. Note that, as argued by Stock and Watson [2002], Stock

and Watson [2008] and Breitung and Eickmeier [2011], the factors are still estimated consistently

by principal components even if there is some smooth time variation in the loading parameters

(see also Banerjee et al. [2008] for finite sample simulation evidence). The intuition underlying this

result is that factor estimates at time t are weighted averages of the N xi variables at time t only.

We set the number of factors r to 10. The Bai and Ng [2002] criteria indicate between 6 and 11

factors. As shown by Breitung and Eickmeier [2011], the Bai and Ng [2002] criteria over-estimate

the number of factors if the loadings vary over time. This may be problematic if one is interested

in individual factors. However, the factor space is consistently estimated, which is what we are

after here. Moreover, Stock and Watson [1998] have shown for constant parameter factor models

that the space spanned by the factors is estimated consistently when the number of factors is

overestimated but not when it is underestimated. Lastly, while results are barely affected when

the number of factors is increased beyond 10, they differ when a smaller number of factors is

instead selected. Interestingly, there appears to be more variation in the transmission with less

factors, consistent with the findings of Prieto et al. [2013]. For those reasons, 6 and as we prefer a

sparse parameterization, we carry out the analysis with 10 factors.7 We note that the 10 latent

and observable factors explain a considerable fraction - 54 percent - of the variation in Xt over the

entire sample period.

The cross-sectional relations

Regarding the cross-sectional relations, we put each of the N equations (4.4) into state space form.

Since the idiosyncratic component in (4.4) follows an AR(1) process, rather than being white

noise, it becomes part of the state vector besides the time-varying loading parameters.8 For the

ith equation the state vector is α̃
(i)
t = (Λ′it, eit)

′. The transition equation is given by

α̃
(i)
t = Φiα̃

(i)
t−1 + ε̃

(i)
t , (4.9)

6This approach has been adopted also by Boivin et al. [2008] and Buch et al. [2014].
7Our setup does not allow the number of factors to vary over time. It would certainly be interesting to study

whether this is indeed the case. However, this is beyond the scope of this paper.
8Assuming AR(2) rather than AR(1) processes for the idiosyncratic components does not affect our main results.

Results are available upon request.
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where Φi = diag(1r, ρi), ε̃
(i)
t = (ε

(i)
t , ξit)

′, where ε
(i)
t are the respective elements of εt in (4.6), hence,

E(ε̃
(i)
t ) = 0, and E(ε̃

(i)
t ε̃

(i)′

t ) = diag(q(i), σ2
i ). That is, q(i) contains the random-walk innovation

variances of the time-varying parameters (i.e. the respective elements of Q in (4.6)) and σ2
i is the

innovation variance of the idiosyncratic component process. The measurement equation is

xi,t = Ztα̃
(i)
t , (4.10)

where Zt = (F ′t , 1). We estimate the r + 2 hyperparameters (ρi, q
(i), σi) of the ith loading equation

by maximum likelihood. We then back out the path of time-varying loading parameters using the

Kalman smoother.9

The VAR for the factors

Since our assumptions imply independence (conditional on the factors and volatility regressors)

between the r equations of the VAR representation (4.5), we can likewise estimate the time-varying

parameters contained in the Pt and Ki,t matrices equation by equation. For the gth equation in

state space form, the state vector containing the time-varying parameters is given by

αgt
′ = (−Pg,1,t, . . . ,−Pg,g−1,t,Kg,1,1,t, . . .Kg,r,1,t,Kg,1,2,t, . . .Kg,r,2,t, . . . ,Kg,1,p,t, . . .Kg,r,p,t),

where for g = 1, there are no P parameters showing up. Note that due to the different number of

elements coming from the triangular P matrix, the dimensions of the state vectors are different for

each of the r equations.

The state equation is the random walk for αgt ,

αgt = αgt−1 + εgt , εgt ∼ N(0, Qg), Qg = diag(qg). (4.11)

The measurement equation is given by

fg,t = f gt
′αgt + ug,t, ug,t ∼ N(0, Sgg,t), (4.12)

where

f gt
′ = (f1,t, . . . , fg−1,t, f1,t−1, . . . , fr,t−1, f1,t−2, . . . , fr,t−2, . . . , f1,t−p, . . . , fr,t−p),

and Sgg,t is given by (4.8).

9We initialise the Kalman filter through OLS estimates on a subsample that excludes the financial crisis, to avoid
incurring in unstable estimates.
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In a first step, we estimate for each equation the ‘hyper-parameters’ (qg, cg, bg) by maximum

likelihood. In a second step, we filter out the time-varying parameters of each equation by the

Kalman filter. We make sure that the local VAR dynamics at each time t does not imply explosive

behavior. After that, the Kalman smoothing scheme is applied in the usual fashion.

We set the VAR lag length at p = 1. This choice is suggested both by the need of reducing the

number of parameters, and by the consideration that allowing for parameter time variation likely

reduces the need of longer lags. We have carried out the analysis also with two lags instead of one.

Results (available upon request) were indeed barely affected.

We note that the Monte Carlo results provided in Eickmeier et al. [2014] support a good finite

sample performance of the estimation method.

Impulse response functions and forecast error variance decompositions

Given the estimated TV-FAVAR, the impulse response functions and forecast error variance

decompositions provided in this paper are based on the (smoothed) parameter structure prevailing

at the respective point in time.10 That is, they are computed in the standard way as with

constant-parameter FAVARs but with a new parameter structure at each time t. Confidence bands

for the impulse response functions are computed based on a bootstrap. See Eickmeier et al. [2014]

for details.

4.2.5 Assessing the extent of parameter time variation

One may wonder whether time variation in the parameters is really needed or a constant-parameter

specification would suffice. To gauge the degree of time variation we count the number of parameters,

for which the standard deviation of the Kalman-smoothed parameter path is essentially zero.11 It

turns out that there is actual time variation (i.e. no ‘straight-line’ parameter paths) for: 30 out of

the 100 parameters of the K autoregressive matrix (containing the dynamics of the VAR(1) for

the 10 factors); 19 out of the 45 (= 0.5 · 10 · 9) parameters of the P matrix of contemporaneous

relationships of the VAR; and 856 out of the 2030 loadings (since there are 10 loadings, one for

each factor, for each of the 203 variables).

10As a robustness check we have assessed whether results based on the filtered parameter estimates differ from
those based on the smoothed estimates. This addresses the concern that sudden changes in the dynamics could
be watered down by the Kalman smoother, which would bias our results, especially those regarding possible
asymmetries of the transmission of financial shocks. We find that impulse responses based on filtered estimates
do display more high frequency movements. Our broad picture, however, remains the same. Hence, we prefer to
stick to the smoother in our baseline exercise, since some of the additional variation from the filtered estimates
could just reflect small sample estimation uncertainty.

11In Eickmeier et al. [2014] we argue why this should be a reasonable approach.
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Finally, we have assessed whether there is indeed time variation in the volatilies of the shocks,

i.e. whether the elements of bg in equation (4.8) are significant. We find that 9 out of 30 (= 3 · 10)

parameters are indeed significant at the 5% level.12 More specifically, the FCI shock volatility is

significantly related to the stock market and corporate bond spread volatilities, but not to forecast

dispersion, while the latter measure significantly enters the equations for six of the other nine

(latent) factors.

Hence, as these are all sizeable fractions, we do believe that it is important to take parameter

time variation into account.

4.3 Data description

4.3.1 US financial conditions index

We use in our baseline analysis the FCI for the US which has been recently constructed by Hatzius

et al. [2010] and published on Mark W. Watson’s webpage. This FCI summarizes a broad set

of 46 quarterly financial variables including interest rates and spreads, credit aggregates, survey

measures on credit conditions, asset prices, exchange rates and the oil price. The index is based

on an unbalanced dataset and is available from 1970Q2 onwards. The published FCI ends in 2009,

and we update it until 2012 using the methodology13 by Hatzius et al. [2010].

The FCI used in our analysis is shown in Figure 4.1. An increase in the FCI can be interpreted

as an improvement of ’overall financial conditions’, while a decline reflects a worsening. The

evolution of the index matches with anecdotal evidence on major financial turmoils such as the

financial headwinds period in the early 1990s (see, e.g., Greenspan [1994]), the stock market crash

in 1987, the burst of the dotcom bubble in 2001 and the global financial crisis in 2008-2009. The

FCI is most highly positively correlated with a number of credit variables, in particular with

indebtedness measures. Largest negative loadings are instead associated with various risk spreads,

bank stock market volatility and tightening of lending conditions by banks. The exchange rate

12The t-statistics for the parameters are based on the estimated standard errors obtained from the negative inverse
of the Hessian of the likelihood function.

13In their paper, Hatzius et al. [2010] mainly focus on an FCI constructed as follows. Each series in the large
financial dataset is purged from the influence of contemporaneous and lagged GDP growth and inflation, and
then the FCI is estimated as the first principal component (PC) from the residuals. More precisely, the FCI is
estimated by least squares and iterative methods since an unbalanced panel is used. Were the panel balanced,
the solution to the least squares problem provides the PC of the data. In this work, we measure the FCI as the
first PC of the unpurged data, an alternative discussed in Hatzius et al. [2010], as the macroeconomic influences
are later removed through our empirical application. In section 4.5 we discuss the robustness of our results
when the influence from US macroeconomic aggregates is instead removed prior to the analysis.
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and the oil price do not appear to be major drivers of the FCI. In Eickmeier et al. [2011] we also

show that most loadings barely change over time.14

We refer to Hatzius et al. [2010] and Eickmeier et al. [2011] for more details on the underlying

data, the classification of the variables in the groups, and a careful analysis of the statistical

properties of the FCI.

4.3.2 Large international dataset

The dataset comprises quarterly variables over the period 1971Q1-2012Q4 for nine major advanced

countries, the US, Canada, the UK, France, Italy, Germany, Spain, Japan as well as Australia.

The choice of the sample period is mainly driven by data availability. We have extended the

sample as far back as possible since a long period is needed to assess whether and to what extent

globalization and financial deepening has changed the way US financial shocks are transmitted

internationally. Another advantage is that including earlier periods of financial turmoil, reaching

back up to the beginning of the 1970s helps us to better capture the most recent global financial

crisis.

We include 23 variables for each country, if available for the entire sample period. These

variables comprise several measures of real economic activity (GDP, personal consumption, total

fixed investment, residential and non-residential investment, government consumption, government

primary balance-to-GDP ratio, total factor productivity (TFP), industrial production, unemploy-

ment rate), aggregate price variables (GDP deflator, CPI), trade (activity and price) variables (real

exports, real imports, export prices, import prices, the real effective exchange rate, the bilateral

nominal exchange rate with the US Dollar) as well as monetary and financial variables (equity

prices, residential property prices, private credit, short-term and long-term interest rates). Overall,

the dataset contains N = 203 series.

Asset prices and credit were converted to real variables by division by the GDP deflator.

Exchange rates are defined such that an increase reflects an appreciation of the respective currency.

Data are taken from various international institutions, including the BIS, the IMF, the OECD

and the European Commission. These data are, in some cases, complemented with data from

national sources. House prices are often not available and/or only at a biannual or annual basis.

We take residential property prices from Goodhart and Hofmann [2008], who carefully constructed

a quarterly dataset for 17 OECD countries for the period 1971-2006, and updated their data

with recent data from the BIS. Other series such as TFP and the government balance-to-GDP

14Overall, an increase in the FCI reflects an improvement of overall financial conditions and should lead to an
increase in GDP growth in the countries under investigation. Some variables such as the oil price or the US real
effective exchange rate enter the FCI positively: their increases could potentially lead to negative real effects in
some countries. However, the weights of those series in the construction of the FCI (i.e. the loadings) are very
small, and, hence, movements in the FCI are unlikely to mainly reflect movements in those variables.
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ratios were also available only on an annual basis. We converted annual to quarterly data using

a cubic spline interpolation. An attractive feature of our TV-FAVAR approach is that, at least

theoretically, interpolation errors and other data irregularities should only enter the idiosyncratic

component of each equation, making our analysis robust since it is mostly based on the common

component.

As is common practice in factor analysis, the series are transformed in a multiplicity of ways.

Stationarity, where required, is obtained by differencing; all variables are entered as differences of

logarithmized values, with the exception of interest rates, unemployment rates and government

balance-to-GDP ratios, which are entered in levels. The series are standardized and subsequently

have a zero mean and a unit variance.15 Finally, we remove outliers - defined here as observations

of the (stationary) series with absolute deviations from the median which exceed six times the

interquartile range. Following Stock and Watson [2005a], we replace them with the median of the

preceding five observations.16

Table 1 contains a more detailed description of the series, sources and treatment of the data.

4.4 Global financial shocks and their evolving

transmission to international GDP growth

In this section we discuss the evolution of the size of FCI shocks and their transmission to the FCI

and to GDP growth (as a summary measure of real activity and a key variable of interest) in the

nine countries under study.

4.4.1 FCI shocks

Figure 4.2 shows the estimated time-varying standard deviation of the FCI shocks. Wide fluctua-

tions emerge, with large values of the volatility broadly reflecting major financial turmoils in the

US over the sample period under analysis, including the four postwar financial crises as dated by

López-Salido and Nelson [2010], namely the ‘Bank Capital Squeeze’ in 1973-1975, the ‘LDC (less

developed countries) debt crisis’ in 1982-1984, ‘the Savings and Loan Crisis’ in 1988-1991, and the

15The means we subtract from the variables prior to the FAVAR modeling could be also time-varying. To address
this potential concern, we have applied the sequential multiple breakpoint test of Bai and Perron [1998] and
Bai and Perron [2003] to all series, and in case of rejection we have subtracted properly segmented rather
than constant means from the series prior to estimation of our model. It turns out that the results from this
alternative standardization of the variables are very similar to those presented above.

16Note that this procedure does not alter our results significantly. Results without a preliminary outlier adjustment
of the data are available upon request.
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global financial crisis at the end of the sample.17 In addition, we find high levels of the FCI shock

volatility around the late 1970s/early 1980s which might also be associated with structural changes

in financial markets (regulatory changes and financial innovation),18 the stock market crash in

1987, the Asian and Russian crisis at the end of the 1990s, and the build-up and subsequent burst

of the ‘dot-com’ bubble around 2001. Finally, during the latest crisis we observe an unprecedented

increase in the variance of the shock.

Next, we compute the impulse response of the FCI to its own shock, obtained as the Cholesky

residual associated with the FCI equation in the TV-FAVAR. We have normalized the shock

to raise the US FCI by one unit. This normalization allows us to compare further below the

transmission of shocks of the same size to other variables over time.

To get a sense of the magnitude of a one-unit shock to the FCI we multiply the loadings of the

main financial variables underlying the FCI by their standard deviations. For example, a (positive)

one-unit shock to the FCI leads to impact increases of private nonfinancial debt by 2 percent, and

of bank credit by 2 percent. It is also one that triggers impact declines of the monetary aggregate

MZM, of the 30-year mortgage rate spread and of the Baa corporate bond spread by respectively

4 percent, 0.12 and 0.22 percentage points.

Figure 4.3 presents the point estimates of the impulse responses for all horizons and all points

in time. The chart reveals that the effect of the shock to the FCI itself peaks on impact and turns

to zero after a bit more than two years.

4.4.2 The changing transmission of FCI shocks to international GDP

growth

Figures 4.4 and 4.5 show impulse response functions of GDP growth of the nine countries to the

US financial shock. Over the whole sample period the FCI shock is positively transmitted on

impact to all countries. In terms of variation over time, we find smooth changes in the effects in

Europe and Japan, which would be consistent with a gradual structural change in the economies

such as that implied by globalization.

17According to López-Salido and Nelson [2010], these three financial crises in the US fall into the pre-global financial
crisis sample under investigation. The Bank Capital Squeeze was characterized by a strain on bank capital,
several bank failures as well as the risk of default of the New York city government. The LDC debt crisis
was characterized by elevated risk of some Latin American governments of a default on borrowings from US
commercial banks. It culminated in the US government’s rescue of the Continental Illinois Bank. The Savings
and Loan Crisis was reflected in bank and savings and loan failures.

18Structural changes in financial markets are, e.g., the phasing out of regulation Q, the spreading of securitization,
the creation of an interstate banking system, the introduction of risk-oriented capital adequacy requirements and
the promotion of fair-value accounting and increased competition in the interbank market. See, e.g., Boivin et al.
[2010]. These changes might be reflected in financial shocks but might also have led to a changing transmission.
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Over the global crisis period, the impact reaction of GDP growth lies in the 0.4 to 0.8 percentage

points range. The impact effect in this episode is the highest in the euro-area countries and in

Japan, whereas the impact in the other countries is not high by historical standards.19 The effect

of a FCI shock seems to have become more persistent in euro-area countries and Japan. The

one-year ahead responses are typically still positive, significantly so for Japan. We will shed further

light on this in the next subsection.

Another interesting issue to consider is the contribution of the financial shock in explaining the

forecast error variance of GDP growth in the different countries over time. The relevant information

for the one and five-year horizons is provided in Figure 4.6. The variance shares explained by FCI

shocks vary notably over time, from negligible to more than 60 percent. Contributions were largest

during the most recent crisis in most countries. In the US and in Canada, the shares explained

in the early-1980s were similarly high compared to recently observed shares. The time-varying

pattern of the variance decompositions thus resembles closely the FCI shock volatility pattern,

graphed in Figure 4.2, suggesting that, for the variance decompositions, the variation in the size of

the shocks dominates the changes in their transmission. The variance shares for the two horizons

are quite similar, because the effects of FCI shocks on GDP growth die out relatively quickly (often

within one year).

Interestingly, the contribution as well as the transmission of a same-sized shock in the US is

not larger than in several other countries (despite the fact that we use a US FCI). This holds

for much of the sample period and, more specifically, for the latest financial crisis episode and is

consistent with other multi-country time series analyses such as Helbling et al. [2011] and Eickmeier

and Ng [2011] for US credit shocks. Various explanations can be found in the literature. While

Van Wincoop [2013], Bacchetta et al. [2012] and Perri and Quadrini [2011] emphasize that panic

reactions and self-fulfilling expectations may have played a role for the international financial

shock transmission, especially during the global financial crisis, Eickmeier and Ng [2011] argue that

more fundamental channels may have been effective, such as financial institution balance-sheet

effects (Devereux and Yetman [2010], Devereux and Sutherland [2011], Krugman [2008])), arbitrage

(Dedola and Lombardo [2012]) and portfolio reallocation mechanisms (Van Wincoop [2013]). That

line of reasoning would also be consistent in the case of the US-to-euro area transmission with

Kollmann [2013] who emphasises the global banking channel. He shows in a 2-country DSGE

model with a global bank, estimated on US and euro-area data from 1990 to 2010, that loan

default shocks in the US have slightly larger effects on euro-area output than on US output.

To summarize, during the Great Recession we observed a negative global financial shock, which

was very large by historical standards, combined with a somewhat stronger propagation of that

19This finding does not contradict the observation that the overall economic downturn during the crisis was very
strong in most countries. One needs to be always aware that we are looking at normalized (same-sized) FCI
shocks in this exercise. Hence, even if the impact of a same-sized shock may not have a particularly large impact
by historical standards, one has to recall that the standard deviation (‘average size’) of FCI shocks is changing
over time and that it is estimated to be exceptionally large during the recent crisis, as discussed above.
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shock to the euro area and Japan. However, confidence bands typically overlap, and changes in

the transmission over time and across countries tend not to be significant.

4.4.3 Understanding the transmission of global financial shocks

We now try to explain the detected pattern of the consequences of the FCI shock on growth, and

to pin down its main transmission channels by looking at the effects of the FCI shock on a variety

of other variables.

In theory, financial shocks can affect domestic consumption and investment through wealth

effects, changes in funding costs and financial accelerator mechanisms.20 A decline in real activity

in one country can then lead, e.g., to lower import demand, and via trade to negative economic

effects abroad. In addition, financial shocks can spill over to other countries via financial integration

and asset synchronization. The former can be achieved through countries’ portfolio exposure

to foreign assets, which might either result in a better risk sharing and help buffer shocks, or

rather reinforce the international spillovers. Asset synchronization could arise due to, for instance,

investors’ reassessment of the outlook of countries with similar fundamentals, confidence effects

or even herd behavior. Changes in financial conditions abroad would then, through the channels

presented above, affect the real sides of the foreign economies. The extent to which foreign activity

is affected depends also on the policy reaction to financial shocks implemented in foreign countries.

Our setup does not allow us to cleanly disentangle the different transmission channels, but we

will be able to assess how financial, trade and other variables capturing the different transmission

channels respond to the financial shocks.

Tables 4.2 to 4.4 present impulse responses of selected variables to the financial shocks. To

save space, we focus on the impact effect and on the effect after one year, computed as an

average over specific periods. We consider the two ‘normal’ or ‘tranquil’ times 1971Q1-1986Q4

and 1987Q3-2007Q4, from which financial turmoil periods are excluded. We choose this split

because 1987 is often seen as the beginning of financial globalization (see, e.g., Kose et al. [2007]).21

Moreover, we show impulse responses on average over financial turmoil periods experienced in the

US prior to the global financial crisis, which include the financial crises as defined in López-Salido

and Nelson [2010] as well as the two stock market crashes which fall in our sample (see section 4.1).

Finally, we consider the most recent global financial crisis period (either from 2008Q1 to 2009Q2

or 2012Q4). We choose 2008 as the beginning of the global financial crisis since it broadly marks

the start of the latest recession in most countries. We consider both 2009Q2 and, alternatively,

20Cecchetti et al. [2009] give a useful overview on the channels through which negative financial (crisis) shocks or a
worsening of financial conditions can have adverse effects.

21In addition, other structural changes characterize the post 1986 period, namely, the growth of the financial sector
and its relation with the real economy, and the ‘Great Moderation’ (i.e. a marked decline in the volatility of
output and inflation). We will ultimately not be able to cleanly separate the effects of the various structural
changes that occurred after 1986.
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2012Q4 as the end of the global financial crisis. On one hand, the US recession ends in 2009Q2,

as dated by the NBER. On the other hand, the US recession was followed by the sovereign debt

crisis in Europe, which was still ongoing at the end of our sample in 2012Q4.

In what follows we first establish stylised facts about the transmission mechanism of financial

shocks. We then try to understand to what extent the transmission mechanism has changed over

time and, more specifically, to what extent the latest crisis has been unusual.

We report impulse responses of variables related to domestic supply and demand (Table 4.2),

of prices and interest rates (Table 4.3), and of variables related to the external environment

(Table 4.4). The three tables show that positive FCI shocks broadly display the expected effects.

They raise equity prices in all countries and credit and house prices in most countries.22 They

also increase investment and consumption, e.g. via wealth effects, changes in funding costs and

financial accelerator mechanisms. Investment increases by more than consumption. The small but

positive reaction of TFP may have contributed to the positive investment reaction. A decline in

the unemployment rate in most countries (not shown) may have improved the income outlook and

contributed to the positive consumption response. Positive demand reactions trigger price and

interest rate increases. The trade channel seems to be active, and positive import demand in some

countries may have led to a rise in exports in others.

In terms of variation over time, as for GDP growth, we do not detect clear, systematic changes

in the transmission to key variables between the two tranquil periods 1971-1986 and 1987-2007,

perhaps with one exception. The impact and one-year ahead reactions of short-term interest rates

and the one-year ahead reactions of long-term rates have declined over time, possibly because

many central banks moved towards inflation targeting and reacted less to financial developments

in the second half of the sample.23

While we do not find systematic differences between financial turmoil periods (excluding the

latest financial crisis) and tranquil periods, the global financial crisis seems to have been unusual

in several respects.

First, not only GDP but also investment, prices and, to a lesser extent, consumption react more

strongly in some countries compared to normal and previous financial turmoil periods. Second, the

reaction of financial variables, and equity prices in particular, and the one-year ahead reaction of

TFP have been stronger in many countries, which might explain the stronger and more persistent

22The reaction of house prices and credit are not shown in the interest of brevity. The scattered house price
reactions are not surprising and could be explained by differences in local supply factors such as residential
construction policies, regulation and forms of finance, as well as cross-countries differences in demand factors
such as the development and the ageing of the population. Similar directional reactions of credit and house
prices in most countries confirm the view that house price booms (busts) and an increase (a decrease) in leverage
often coincide, which was particularly apparent before and during the crisis (e.g. Eickmeier and Hofmann
[2013]).

23The reaction of long-term interest rates follows closely that of the short-term rates: it is therefore not shown and
available upon request.
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activity reactions. The result for TFP can possibly be explained by postponed innovation and

depressed investments in R&D due to increased risk aversion or inefficient capital allocation among

firms, and a shift in the distribution of firms towards inefficient ones after a tightening in collateral

constraints.24 The result is interesting in the light of recent discussions on whether the global

financial crisis had an impact on trend growth, which tends to be strongly influenced by TFP.25 Our

results, at least, do not stand against this hypothesis. Third, we find a decline in exports, which is

particularly pronounced in Canada, Germany, and Japan. Fourth, short- and long-term interest

rates react very weakly to financial shocks, which can probably be explained with monetary policy

rates in many countries having hit the zero lower bound. Fifth, while the US Dollar depreciated

significantly in real effective terms after negative financial shocks before 2008-2009 (consistent

with standard exchange rate (UIP) theories), it appreciated significantly over the global financial

crisis and possibly contributed to the negative export reaction in the US. The movement of the US

Dollar can be explained by repatriation of investments to the US in the early phase of the crisis,

as well as a worldwide loss in confidence and increase in risk aversion after the bankruptcy of

Lehman Brothers. This triggered substantial safe-haven flows by investors, in particular towards

US government bonds, despite the fact that the crisis likely originated in the US.26

4.4.4 Robustness with respect to the choice of the FCI

We now try to understand to what extent our results are driven by the specific choice of the FCI.

The main advantage of our FCI is that is goes back to 1970, whereas other FCIs start later. On the

other hand, we use the US FCI as a proxy for global financial conditions. Hence, understanding, for

example, to what extent financial developments observed in other countries influence our measure

of global financial conditions will be important.

We consider two additional FCIs.27 First, we use the financial stress index for the US (FSI)

introduced by Hubrich and Tetlow [2012], which was used by the Federal Reserve Board staff

during the crisis to analyze financial conditions and their macroeconomic effects. The index has

been constructed on a daily basis. It comprises 9 indicators capturing risk and uncertainty in

capital markets and starts in 1975. We have converted the daily into a quarterly index by taking

monthly averages. As it measures financial stress rather than financial conditions, we reverse the

sign so that it is positively correlated with the baseline FCI.28

24For a more detailed discussion and references see Eickmeier and Ng [2011].
25E.g. European Commission [2009], European Central Bank [2008], Deutsche Bundesbank [2009].
26See Cecchetti et al. [2009] who describe this mechanism as well as Deutsche Bundesbank [2010] and Eickmeier

and Ng [2011] for a similar finding.
27We are grateful for two anonymous referees for suggesting these checks to us.
28We are grateful to Kirstin Hubrich and Manfred Kremer for providing us with the US FSI and the euro-area

CISS.
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Second, we extract an ‘International FCI’ from a set of four FCIs: our baseline US FCI; the

composite indicator of systemic stress in the financial system (CISS) for the euro area originally

constructed on a daily basis from 15 measures of financial stress by Hollo et al. [2012]; as well

as FCIs for the euro area and Japan published by the OECD and described in Guichard et al.

[2009]. Since all indices (except for the US FCI) start well after the beginning of our sample (the

euro-area CISS in 1999, the OECD FCIs in 1995 and in 1999), we use the expectation maximization

algorithm to convert the unbalanced panel of FCIs into a balanced panel.29 The international FCI

is estimated as the first PC from that panel. Up to 1994, it is identical to the baseline FCI, but

then it is also influenced by international financial conditions.

Lastly we have modified our baseline FCI by removing the influence from US macroeconomic

aggregates, i.e. we have regressed the baseline FCI on US GDP growth, deflator inflation and

the Federal Funds rate and have used the residual as our FCI in the analysis. This allows us to

account more explicitly for (US) macro influences, which are captured in the latent factors in our

baseline specification.

The temporal evolution of the four FCIs is very similar, as shown in Figure 4.7. They all

display the deepest troughs during the global financial crisis, with almost identical magnitudes.

Replacing the baseline FCI with one of the three alternatives, in turn, leads to almost identical

series for the FCI shock volatility, as shown in Figure 4.8. The main visible difference is that

the financial shock volatility tends to be smaller in the early 1980s when the purged FCI is used,

suggesting that our latent factors might not be adequately capturing macro and monetary policy

influences in that period. The impulse responses of GDP growth and the forecast error variance

shares explained by financial shocks are also quite similar across the alternative specifications.

The financial shocks are very highly correlated with those retrieved from the baseline model, with

correlation coefficient of 0.57 (FSI), 0.90 (International FCI), and 0.92 (baseline FCI, where US

macro influence was removed). Given that results are so similar to the baseline results, we do not

show them in the paper, but make them available upon request.

4.5 Concluding remarks

In this paper we derive and explain a number of stylized facts about how global financial shocks are

transmitted internationally, and how the transmission has changed over time. The global financial

shock is measured as an unexpected change in the Hatzius et al. [2010] US FCI. We combine the

FCI with a newly compiled dataset of more than 200 variables from nine large advanced countries:

Australia, Canada, France, Germany, Italy, Japan, Spain, US and UK. The large dataset is modeled

29Note that the correlation between the baseline FCI and the euro area indices is rather high: 0.85 for the OECD
FCI and 0.81 for the CISS. Conversely, the correlation between the baseline FCI and the OECD FCI for Japan
is lower: 0.30.
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by means of a FAVAR specification, enabling us to comprehensively analyze the (virtually) entire

transmission mechanism. We exploit this feature and study not only the final effects of the financial

shock on GDP growth of the nine countries but also the various transmission channels, mostly

through trade and financial variables.

In order to allow for and assess the extent of time variation in the size of shocks and the

transmission mechanism, we adopt the time-varying FAVAR specification introduced by Eickmeier

et al. [2014], which allows for smoothly time-varying loadings, VAR coefficients and factor innovation

variances and covariance. This econometric methodology therefore permits a thorough evaluation

of the temporal evolution of the international transmission of the US financial shocks.

Results show that global financial shocks have a considerable impact on growth in the countries

in our dataset. The time-varying approach further unveils an increase in the transmission to GDP

growth in the European countries and Japan, though most changes in the transmission are not

statistically significant. Moreover, the size of US financial shocks varies strongly over time, with the

‘global financial crisis shock’ being very large by historical standards and explaining approximately

20 percent on average over all countries of the variation in GDP growth during the crisis period

(compared to approximately 5 percent over the 1971-2007 period). Finally, investment, exports,

TFP, and financial variables display a strong decline in most countries during the crisis, as a

consequence of the financial shock.
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Figure 4.1: US financial conditions index (FCI)
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Index computed by Hatzius et al. [2010]; the underlying variables of the FCI have been retrieved from Mark
Watson’s web page and updated.

Figure 4.2: Estimated sequence of the FCI shock volatility
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Figure 4.3: Impulse-response functions of the FCI reacting to a one-unit FCI shock
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The figure shows the time-varying impulse responses of the FCI to a one-unit FCI shock over time and over horizons
(quarters).
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Figure 4.4: Time-varying impulse responses of GDP growth to a one-unit FCI shock, % points
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Figure 4.5: Time-varying impulse responses of GDP growth to a FCI shock at selected horizons
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The figure shows point impulse responses (solid lines) together with the respective 90% confidence bands (dashed
lines), expressed in % points, for selected horizons (impact, after 4 and 8 quarters).

Figure 4.6: Time-varying forecast error variance shares of GDP growth
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The figure shows the time-varying fraction of unexpected changes in GDP growth attributable to FCI shocks, over
horizons of 4 quarters (solid lines) and 20 quarters (dashed lines).
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Figure 4.7: Comparison of different FCI measures
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The reported FCIs correspond to: the baseline FCI (solid line), the US Financial Stress Index (dashed line),
introduced by Hubrich and Tetlow [2012], the ‘International FCI’ (dashed-dotted line), and the baseline FCI were
the influence from US macroeconomic aggregates was preliminary removed (dashed + line). See text for details.

Figure 4.8: Estimated FCI shock volatility using different FCI measures
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See note to Figure 7.
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Table 4.1: Data, sources, and transformations employed to achieve stationarity: 0 = levels and
1 = log-differences

variable source treatment

GDP OECD, ECO 1

Private final consumption OECD, ECO 1

Gross fixed capital formation OECD, ECO 1

Residential gross fixed capital formation OECD, ECO 1

Non-residential gross fixed capital formation OECD, ECO 1

Government consumption OECD, ECO 1

Government primary balance/GDP OECD, ECO 0

Industrial production OECD, ECO 1

Unemployment rate OECD, ECO 0

Exports of goods and services OECD, ECO 1

Imports of goods and services OECD, ECO 1

Total factor productivity EU Commission, AMECO 1

GDP deflator OECD, ECO 1

Consumer price index OECD, ECO 1

Export prices OECD, ECO 1

Import prices OECD, ECO 1

Equity price (real) OECD, ECO 1

Residential property price (real) Hofmann/Goodhart (2008) and BIS 1

Private credit (real) BIS 1

Short-term interest rate OECD, ECO and IMF, IFS 0

Long-term interest rate OECD, ECO and IMF, IFS 0

Real effective exchange rate BIS 1

Bilateral exchange rate with US Dollar Federal Reserve Board 1
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Table 4.2: Impact and one year ahead impulse responses of output (GDP), consumption
(CONS), investment (INV), and total factor productivity (TFP) to FCI shocks

impact effect 1-year ahead effect

normal times crisis times normal times crisis times

72− 86 87− 07 pre-gfc 08− 09 08− 12 72− 86 87− 07 pre-gfc 08− 09 08− 12

US 0.36? 0.33? 0.33? 0.37? 0.36? 0.27 0.44 0.36 0.67 0.72

CA 0.35? 0.35? 0.35? 0.34? 0.35? 0.56 0.55 0.57 0.60 0.62

UK 0.26? 0.32? 0.30? 0.31? 0.29? 0.39 0.83? 0.65? 0.92? 0.85

gdp FR 0.24? 0.22? 0.23? 0.38? 0.37? 0.69? 0.59 0.56 1.22? 1.20?

DE 0.31? 0.24 0.26 0.53? 0.54? 1.05 0.94 0.95 1.85? 1.87?

IT 0.34? 0.26 0.29? 0.48? 0.52? 1.14? 0.82 0.94 1.66? 1.80?

ES 0.13 0.21? 0.18? 0.30? 0.31? 0.49 0.89? 0.68 1.25? 1.27?

JP 0.20 0.31 0.31 0.72? 0.73? 0.67 1.42 1.14 3.57? 3.65?

AU 0.26? 0.25? 0.25? 0.25? 0.25? 0.66 0.57 0.62 0.60 0.59

US 0.10 0.09 0.12 0.23? 0.23? −0.34 −0.33 −0.29 0.42 0.43

CA 0.20? 0.21? 0.20? 0.21? 0.21? 0.10 0.41 0.17 0.57? 0.56?

UK 0.08 0.08 0.08 0.08 0.08 0.01 0.11 0.05 0.20 0.20

cons FR 0.14? 0.10? 0.13? 0.13? 0.13? 0.28 0.36 0.30 0.41 0.42

DE 0.21? 0.19? 0.19? 0.18? 0.19? 0.82 0.70 0.70 0.73 0.76

IT 0.34? 0.33? 0.34? 0.34? 0.34? 1.44? 1.49? 1.44? 1.59? 1.60?

ES 0.13 0.21? 0.16 0.31? 0.32? 0.40 0.76 0.50 1.29? 1.32?

JP 0.18? 0.20? 0.18? 0.22? 0.22? 0.53 0.71 0.54 1.21? 1.25?

AU 0.21? 0.21? 0.21? 0.20? 0.20? 0.75? 0.58? 0.69? 0.47 0.43

US 1.05? 1.05? 1.06? 1.05? 1.05? 1.45 1.43 1.45 1.82 1.89

CA 0.75? 0.80? 0.77? 1.01? 1.03? 1.74 2.73? 2.07 4.01? 4.11?

UK 0.60? 0.62? 0.61? 0.69? 0.69? 1.42 1.58 1.20 1.35 1.43

inv FR 0.51? 0.51? 0.51? 0.51? 0.51? 1.86? 1.95? 1.89? 1.98? 1.98?

DE 0.47? 0.46? 0.47? 0.45? 0.45? 1.50 1.59 1.54 1.66 1.68

IT 0.27? 0.25? 0.27? 0.33? 0.32? 1.41? 1.28? 1.40? 1.55? 1.53?

ES 0.57 0.75? 0.72? 1.41? 1.51? 2.62 3.29? 3.42? 5.13? 5.75?

JP 0.30 0.62? 0.46 0.94? 0.93? 0.78 2.88? 1.71 4.60? 4.57?

AU 0.66? 0.89? 0.71? 1.06? 1.07? 1.51 2.31 1.68 2.80 2.82

US 0.06? 0.06? 0.06? 0.05? 0.06? 0.01 0.03 0.01 0.06 0.03

CA 0.06? 0.08? 0.08? 0.09? 0.08? 0.04 0.17 0.11 0.16 0.14

tfp UK 0.03 0.05 0.03 0.20? 0.17? −0.00 0.08 −0.04 0.61? 0.49

FR 0.07 0.08 0.08 0.12? 0.10? 0.27 0.28 0.32 0.39? 0.33

DE 0.05 0.08 0.06 0.19? 0.17? 0.06 0.19 0.12 0.57? 0.50

IT 0.13? 0.11 0.14 0.14? 0.13? 0.51? 0.41 0.53 0.49 0.43

ES 0.04 0.04 0.05 0.04 0.03 0.18 0.17 0.21 0.15 0.13

JP 0.11? 0.13? 0.13? 0.20? 0.22? 0.44 0.54 0.41 0.76? 0.63

AU − − − − − − − − − −

Table shows impact and cumulated one year ahead impulse responses averaged across periods, expressed in percentage
points. Stars denote average responses which are different from 0 at a 10% confidence level. Impulse response averages
are computed over the following periods. The two ‘normal’ times of 72− 86 and 87− 07 refer to 1971Q1-1986Q4 and
1987Q3-2007Q4, from which financial turmoil periods are excluded. pre-gfc aggregates all financial turmoil periods,
described in Section 4.1, excluding the Great Recession. 08− 09 and 08− 12 respectively refer to 2008Q1-2009Q2 and
to 2008Q1-2012Q4.
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Table 4.3: Impact and one year ahead impulse responses of GDP deflator inflation (INFL),
interest rates (R) and equity prices (EP) to FCI shocks

impact effect 1-year ahead effect

normal times crisis times normal times crisis times

72− 86 87− 07 pre-gfc 08− 09 08− 12 72− 86 87− 07 pre-gfc 08− 09 08− 12

US 0.25? 0.25? 0.25? 0.25? 0.24? 1.24? 1.24? 1.23? 1.26? 1.25?

CA 0.25? 0.30 0.27 0.66? 0.68? 1.20? 1.47 1.35 2.85? 3.01?

UK 0.27? 0.26? 0.28? 0.24? 0.24? 1.64? 1.24? 1.43? 1.18? 1.23?

infl FR 0.25? 0.26? 0.25? 0.27? 0.27? 1.11? 0.96? 0.98? 1.15? 1.15?

DE 0.23 0.26 0.26 0.51? 0.50? 1.14 1.75 1.38 2.84? 2.80?

IT 0.48? 0.50? 0.50? 0.43? 0.43? 2.15? 2.97? 2.62? 2.40? 2.32?

ES 0.40? 0.34? 0.35? 0.51? 0.51? 1.66? 1.60? 1.52 2.41? 2.46?

JP 0.15? 0.13? 0.17? 0.08 0.08 0.72 0.41 0.71 0.08 0.06

AU 0.30? 0.32? 0.31? 0.34? 0.34? 1.18 1.40? 1.23 1.73? 1.77?

US 1.20? 0.61 1.22? 0.44 0.24 1.34? 0.75 1.28? 0.59 0.48

CA 0.57 0.41 0.72 0.46 0.42 0.99? 0.79 1.13? 0.57 0.52

UK 0.40? 0.26 0.37? 0.29 0.29 0.77? 0.53? 0.65? 0.41? 0.37

r FR 0.62? 0.13 0.55 0.09 0.07 0.93? 0.56? 0.88? 0.19 0.16

DE −0.33? −0.35? −0.35? −0.34? −0.34? 0.78 0.14 0.66 −0.11 −0.08

IT 0.65? 0.06 0.60 0.20 0.22 1.01 0.44 0.92 0.31 0.38

ES − − − − − − − − − −
JP 0.01 0.00 0.19 0.03 0.01 0.35 0.18 0.44 0.10 0.09

AU 0.79? 0.66? 0.81? 0.52? 0.52? 1.25? 0.83? 1.31? 0.45 0.39

US 1.30? 1.24? 1.30? 1.18? 1.18? 2.31 2.62 2.29 3.17 3.16

CA 2.13? 2.07? 2.12? 2.04? 2.05? 4.35 4.95 4.26 6.76? 6.85?

UK 1.36? 1.31? 1.38? 1.24? 1.25? 0.12 0.89 −0.09 3.53 3.81

ep FR 2.75? 2.58? 2.73? 2.44? 2.43? 6.63? 6.97 6.41? 8.97 9.10

DE 2.17 4.75? 4.43? 1.93? 2.27 5.55 13.14 12.78? 5.12 6.59

IT 3.68? 3.01? 3.40? 3.00? 2.95? 13.02? 6.67 9.58? 9.92 9.68

ES 3.80? 2.21 3.75? 0.42 1.08 10.71 5.33 10.13 1.07 3.59

JP 2.90? 2.91? 2.89? 3.01? 3.02? 7.08? 7.97? 6.85? 12.51? 12.78?

AU 1.87? 1.25? 1.61? 1.40? 1.44? 2.35 1.76 0.80 5.74 6.10

Table shows impact and one year ahead impulse responses averaged across periods, expressed in percentage points.
The one year ahead impulse responses of inflation and equity prices are cumulated, while those of the interest rates
are kept in levels. Stars denote average responses which are different from 0 at a 10% confidence level. Impulse
response averages are computed over the following periods. The two ‘normal’ times of 72− 86 and 87− 07 refer to
1971Q1-1986Q4 and 1987Q3-2007Q4, from which financial turmoil periods are excluded. pre-gfc aggregates all
financial turmoil periods, described in Section 4.1, excluding the Great Recession. 08− 09 and 08− 12 respectively
refer to 2008Q1-2009Q2 and to 2008Q1-2012Q4.
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Table 4.4: Impact and one year ahead impulse responses of variables related to the external
environment: exports (EXP), imports (IMP), and the real effective exchange rate
(REER) to FCI shocks

impact effect 1-year ahead effect

normal times crisis times normal times crisis times

72− 86 87− 07 pre-gfc 08− 09 08− 12 72− 86 87− 07 pre-gfc 08− 09 08− 12

US 1.08? 1.06? 1.08? 1.01? 1.01? 3.51? 3.34? 3.51? 2.75? 2.69?

CA 0.74? 0.80? 0.70 1.33? 1.37? 0.86 1.04 0.71 3.13? 3.28?

UK 0.73? 0.71? 0.73? 0.69? 0.69? 1.54 1.42 1.54 1.43 1.44

exp FR 0.89? 0.92? 0.90? 0.94? 0.95? 2.52? 3.27? 2.85? 3.09? 3.01?

DE 1.52? 1.32? 1.43? 1.28? 1.29? 3.04 3.78? 3.29 4.28? 4.33?

IT 1.26? 1.25? 1.28? 1.19? 1.19? 2.47 3.46? 3.29? 3.21? 3.10?

ES 0.84? 0.84? 0.84? 0.83? 0.83? 2.15? 2.28? 2.18? 2.59? 2.61?

JP 0.94? 1.16? 0.98? 1.42? 1.47? 3.75? 5.60? 4.12? 6.96? 7.22?

AU 0.32 0.42? 0.34 0.50? 0.50? 1.48 1.64 1.48 2.20? 2.25?

US 0.88? 1.02? 0.92? 1.15? 1.16? 0.84 1.55 1.06 2.32 2.40

CA 0.76? 0.83 0.67 1.64? 1.82? 0.48 1.51 0.72 4.53? 5.01?

UK 0.92? 0.92? 0.92? 0.91? 0.91? 1.90? 1.91 1.89? 2.30? 2.34?

imp FR 0.79? 0.77? 0.79? 0.75? 0.75? 2.14? 2.18? 2.19? 1.94? 1.93?

DE 1.26? 1.12? 1.20? 1.10? 1.11? 6.08? 5.21? 5.81? 4.70? 4.71?

IT 1.17? 1.16? 1.17? 1.14? 1.14? 3.46? 3.45? 3.48? 3.48? 3.49?

ES 0.96? 0.97? 0.97? 0.97? 0.97? 3.67? 3.91? 3.65? 4.35? 4.33?

JP 0.45? 0.43? 0.44? 0.38? 0.39? 0.69 0.57 0.73 0.15 0.12

AU 1.42? 1.44? 1.42? 1.44? 1.44? 4.73? 4.57? 4.73? 3.90? 3.80?

US 0.41 0.21 0.39 −0.49? −0.63? 0.34 0.14 0.29 0.02 0.02

CA 0.15 0.31 0.19 0.46? 0.46? 0.18 0.42 0.22 0.68 0.67

UK 0.81? 0.87? 0.82? 0.92? 0.92? 1.00? 1.12 1.01? 1.24 1.24

reer FR −0.03 −0.05 −0.04 −0.03 −0.03 −0.00 −0.00 −0.06 0.16 0.16

DE −0.29? −0.27? −0.29? −0.25? −0.25? −0.20 −0.11 −0.23 0.04 −0.03

IT −0.06 0.10 −0.01 0.08 0.06 0.25 0.47 0.30 0.57 0.56

ES 0.46? 0.47? 0.46? 0.47? 0.47? 0.16 0.31 0.22 0.41? 0.42

JP −1.34? −1.70? −1.40? −2.04? −2.05? −1.54? −2.80? −1.73? −4.57? −4.66?

AU 0.30 0.01 0.27 −0.56? −0.55? −0.14 −0.05 −0.20 0.03 −0.03

Table shows impact and one year ahead impulse responses averaged across periods, expressed in percentage points.
The one year ahead impulse responses of imports and exports are cumulated, while those of the real effective exchange
rates are kept in levels. Stars denote average responses which are different from 0 at a 10% confidence level. Impulse
response averages are computed over the following periods. The two ‘normal’ times of 72 − 86 and 87 − 07 refer
to 1971Q1-1986Q4 and 1987Q3-2007Q4, from which financial turmoil periods are excluded. pre-gfc aggregates all
financial turmoil periods, described in Section 4.1, excluding the Great Recession. 08− 09 and 08− 12 respectively
refer to 2008Q1-2009Q2 and to 2008Q1-2012Q4.
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