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Abstract 

This paper evaluates the impact of intermittent wind generation on hourly equilibrium prices and 
output, using data on expected wind generation capacity and demand for 2020. Hourly wind data for 
the period 1994-2005 are used to obtain wind output generation profiles for thirty regions (onshore 
and offshore) across Great Britain. Matching the wind profiles for each month to the actual hourly 
demand (scaled to possible 2020 values), we find that the volatility of prices will increase, and that 
there is significant year-to-year variation in generators’ profits. In the presence of significant market 
power (the equivalent of two symmetric firms owning fossil-fuelled capacity, rather than six), the level 
of prices more than doubled, and their volatility increased. Our results lend support to the theoretical 
findings of Twomey and Neuhoff (2005), showing that the impact of market power should be expected 
to raise revenues less for wind than for thermal generators. 

Keywords 
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1. Introduction* 
If the UK is to meet its targets for renewable electricity generation, a very large amount of wind power 
capacity (onshore and offshore) will have to be installed. It is well known that wind generation can be 
intermittent and unpredictable, and that this can pose problems for the industry. Put simply, if there is 
little wind when the demand for power is high, there is a significant risk that a system with a high 
penetration of wind capacity will have a shortage of power, unless that system carries a large amount 
of reserve plant, and accepts the costs entailed in doing so. The recent assessment by the UK Energy 
Research Centre (Gross et al, 2006) studies these costs, and shows that they should be acceptable for 
the UK, at least up to penetration levels of around 20% of intermittent generation. This assessment 
was made from a technical point of view, however, and while it looked at the impact on the costs of 
the electricity system, it did not study the impact on market prices. That is the purpose of this paper. 

Our aim is to predict the amount of price and revenue volatility that could arise from variable wind 
speeds in 2020. This is the year by which the EU’s 20% renewable energy target is to be met. In the 
UK’s case, the target is likely to require around a third of electricity to come from renewable sources, 
and the majority of this would be from wind power. We will present frequency distributions for short-
term hourly energy prices in each month, of the kind that a standard real-time electricity market would 
produce.1 We will also present distributions of the annual revenues received by wind stations in 
different locations, to see whether the volatility of wind speeds is a significant risk to the generators. 

We use hourly data from the Meteorological Office, covering 1994 to 2005, which give wind 
speeds at a variety of locations around Great Britain. We transform this wind data to give the level of 
output from a typical turbine at each location, using standard relationships between wind speed and 
power. We have used data from the British Wind Energy Association, giving the locations of existing 
stations and those at various stages of the planning and construction process, to guide our estimates of 
where to site wind capacity.  

We have used the Supergen Futurenet scenarios for 2020 (Elders et al, 2008) for predictions of the 
amount of thermal plant in Great Britain, and the overall level of demand. These scenarios were 
constructed to show how the system might evolve over the next few years, and are themselves 
intermediate stages towards a set of scenarios for 2050. The focus of the scenarios is on the impact on 
electricity networks, and in future work, we will be considering the network implications of our output 
patterns. We take the costs of each type of generator from the DTI Energy Review of 2006, using fuel 
prices from their Central Case favouring coal (which implies medium-high gas prices).  

While the overall level of demand is taken from the Supergen Futurenet scenarios, the demand 
patterns within the year need consideration, since the weather (and hence wind speeds) is intimately 
linked with demand on a day-to-day basis. Our approach is to match wind patterns and demand 
patterns from individual days, while scaling demand from its original year to match that predicted in 
2020. We are conscious that this does not allow for the impact of climate change on demand, and hope 
that this will be limited in the period to 2020. 

We use a numerical supply function equilibrium model to calculate the market outcomes on an 
hourly basis. The model allows for imperfect competition between generating firms, and is a better 
representation of this than the Cournot models that are the most common alternative. In particular, if 

                                                      
*  This research is funded by the Engineering and Physical Sciences Research Council and our industrial partners, via the 

Supergen Flexnet Consortium, Grant Number EP/E04011X/1. We would like to thank participants at the workshop on 
wind power and market design, held at Univesité Paris Sud in June 2008, and at the Toulouse Conference on the 
Economics of Energy Markets, June 2008, for helpful comments. The views expressed are ours alone. 

1  Great Britain does not actually have such a market at present, relying on bilateral trading between generators and the 
system operator, but creating one would be an appropriate response to the challenges of integrating large amounts of 
renewable generation (Green, 2008b) 
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there are a reasonable number of firms, off-peak prices will be very close to the companies’ marginal 
costs, while peak prices can still rise above marginal fuel and O&M costs, as seen in real electricity 
markets. The particular version of the model used is based upon that of Green (2008a). 

We calculate the equilibrium market price patterns on the basis of the actual wind profiles and the 
historic demand levels, scaled up to 2020 levels, for each day between 1994 and 2005. This gives us 
between 339 and 372 price profiles per month (depending on the number of days in the month), which 
is sufficient to show a significant amount of volatility. We also consider annual revenue risks, which 
are based on the actual annual wind profiles. Using random combinations of 12 months or 365 days 
could have generated more observations (some of which would have been extreme) but ran the risk of 
(implicitly) creating a time series of wind speeds that could not occur in nature.  

Finally, we will consider the sensitivity of our results to the level of market power among thermal 
generators. Twomey and Neuhoff (2005) have shown how market power can amplify the revenue 
volatility faced by renewable generators, because the margins between price and marginal cost are 
likely to be at their highest when thermal demand is high (and hence wind output is low), and lower 
when high wind outputs depress the demand for thermal plant. Their model is a largely theoretical one, 
and our simulations offer a chance to explore the importance of this issue in practice. 

In the next section, we consider previous work on the interaction between wind generation and 
electricity wholesale markets. We then outline our simulation model in more detail, and discuss the 
steps needed to obtain a set of hourly wind outputs at locations around Great Britain. Section 5 
presents our results for the volatility of prices and generators’ revenues in a workably competitive 
wholesale market. In section 6, we consider the impact of a duopoly – which in the context of 
electricity is far from a workably competitive market – on these results. Finally, section 7 offers 
conclusions and suggestions for further work. 

2. Previous Work 

Given the dramatic increase in the amount of wind generation, it is hardly surprising that it has 
attracted academic attention. Much of this work is in the engineering literature, studying the technical 
challenges of integrating a potentially large amount of variable and intermittent generation into the 
electricity system. Studies relevant to the UK are surveyed and summarised by Gross et al (2006). 
They find that with about 20% of intermittent generation, the costs of additional balancing capacity 
(for short-term fluctuations) and reserve (for periods without wind) would be around £5-8/MWh of 
wind generation. 

The interaction between wind generation and the wholesale market can be considered on a variety 
of scales. At the micro scale, some studies consider trading strategies for individual generators. For 
example, Bathurst et al (2002) showed how the NETA imbalance pricing regime (since amended) 
might mean that a wind generator in England and Wales would obtain a negative average revenue. In 
the Nordic market, in which a generator normally has to trade between 12 and 36 hours before 
delivery, Holttinen (2005) shows trading between 6 and 12 hours in advance would increase its net 
income by 4%, and trading just one hour before delivery would increase net income by 8% (in total). 
This would also reduce the cost of thermal power, according to Müsgens and Neuhoff (2006), since 
there would be fewer times when a thermal station would be started up on the basis of trading in the 
day-ahead markets, only to find that wind power that had not been expected at that point would 
substitute for their output. 

At a macro scale, Sensfuss et al (2007) and Sáenz de Miera et al (2008) have shown that wind 
generators can depress wholesale prices by reducing the average demand for thermal generation. 
Sensfuss et al study Germany while Sáenz de Miera et al study Spain, but in both cases, the estimated 
impact on wholesale market prices is roughly equal to the cost of supporting renewable generators. 
This implies that in the short term, the support for renewable generators has come from thermal 
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generators rather than electricity consumers. In the longer term, as Sáenz de Miera et al point out, 
electricity wholesale prices should return to the level needed to remunerate the appropriate mix of 
capacity for the expected pattern of demand. The long-run time-weighted average price should hardly 
react to the amount of wind generation.2 The amount and pattern of price volatility should still affect 
the demand-weighted average price, however.  

The amount of volatility depends on the characteristics of the national wind resource, of course. In 
the UK context, Sinden (2007) used wind speed data from the British Atmospheric Data Centre (which 
we also use) to show that wind speeds and likely wind outputs were higher, on average, at the times of 
higher electricity demand, and that the correlation between the output of wind generators would 
decrease as they were placed further apart. This would reduce the impact of wind variability on the 
market. Sinden did not, however, choose to present any distributions of wind output, to show the 
minimum contribution that might be reasonably anticipated, and hence the need for back-up plant. 
Oswald et al (2008) remedy this omission and also show that conditions of low wind speeds over the 
UK would often be correlated with low wind speeds on the Continent, reducing the benefits of 
interconnection. They present data on the variable demand that thermal stations in the UK would have 
to meet, but do not translate this into price impacts.  

At a theoretical level, Twomey and Neuhoff (2005) consider how the relationship between wind 
output and market prices is affected by market power. First, they show that wind generators are likely 
to receive less than the time-weighted average price of power, since high levels of output from wind 
generators (assuming a sufficiently high share of capacity) will tend to depress the spot price. Second, 
they show that since generators with market power are likely to exercise it to a greater extent when 
their residual demand is high, this will tend to strengthen the inverse relationship between prices and 
wind generation, and hence exacerbate this effect. (The exercise of market power does increase the 
profits of price-taking renewable generators, but by less than those of the conventional generators.) 
Third, they find that long-term contracts (forward contracts or, particularly, option contracts) reduce 
the second effect – renewable generators now share a higher proportion of the gains of market power 
achieved by conventional stations. They work with a small-scale model, using plausible numbers, but 
not a full representation of the electricity system.  This paper considers the impact of wind generators 
on market prices within a full-scale simulation of the British wholesale market.  

3. The Model 

The model is based on that used in Green (2008a) and Yago et al (2008), but with additional detail in 
the wind sector. We assume that generators compete in supply functions, offering a schedule of prices 
and quantities to the market. The original paper on supply function equilibria (Klemperer and Meyer, 
1989) assumed that this was because the firms faced an uncertain demand function. Green and 
Newbery (1992) applied this concept to the British electricity market, pointing out that variation in 
demand due to uncertainty was mathematically equivalent to variation due to changing conditions over 
time. In the British electricity market of the early 1990s, in which generators had to submit offers that 
would last for an entire day, the latter source of demand variation was far more important than the 
former. In the future, when generators trade in separate markets for every half-hour, and the output 
from wind power is hard to predict, uncertainty may be the more important source of demand 
variation. 

For a mathematical description of the supply function model, see Green (2008a). The model 
calculates the industry supply function, rather than individual firm functions, “as if” the industry 

                                                      
2  Sáenz de Miera et al point out that since the rise in wind generation will reduce fossil generation and hence the demand 

for permits in the EU (carbon) Emissions Trading Scheme, this would reduce their price, causing additional indirect 
effects on the marginal cost of electricity – that is, assuming that policy-makers do not reduce the number of permits 
available, using the expansion of renewable generation to accept a tougher target for carbon emissions. 
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contained a number of symmetric firms. That number is given by the inverse of the industry’s 
Herfindahl index. This allows us to work with an industry-wide cost function, and ignore the 
difficulties of numerically deriving asymmetric supply functions – Evans and Green (2005) show that 
for the linear case in which exact solutions exist, this approximation is a good one. In our base case, 
we assume the equivalent of six symmetric firms, which implies little change in concentration from 
current levels. 

We have taken the capacity of the main types of thermal plant from the Supergen “supportive 
regulation” scenario (Elders et al, 2008). This is a scenario in which there is some expansion of 
renewable generation, over and above the wind power that we are modelling here, and a modest 
increase in nuclear capacity. Most of the additional and replacement capacity that will be needed, 
however, comes from combined cycle gas turbine stations. These are shown in table 1. 

Table 1: Generation Capacity by type of plant 

Generation technology Installed Capacity (MW) 

Onshore wind 11,018 
Offshore wind 19,016 
Marine generation 2,000 
Biomass 1,453 
Hydro 2,000 
Micro-generation 250 
Nuclear 13,000 
CCGT 38,000 
Coal 12,000 
Total 98,737 

 

The industry cost function used is based on data from the UK government’s 2006 Energy Review 
(DTI, 2006). For each type of plant, the review gives data on capital cost, operating and maintenance 
cost, and the efficiency with which it converts its fuel to electricity (if applicable). We do not consider 
the costs of starting a plant, or changing its output levels – this is an important extension for future 
work. However, the margin between price and marginal cost is highest at high output levels, and it is 
only at peak times of day that start-up costs make a significant contribution to marginal cost. At other 
times, plants which were started to meet the rising load in one period would have been needed in the 
subsequent period in any case, and so their start-up cost contributes little or nothing to the marginal 
cost of meeting demand at those times. We use the DTI Central Case favouring Coal (i.e., a medium-
high gas price) for our fuel prices. Our supply function for thermal plant is shown in figure 1.  

Our model is calibrated to 2020, and we assumed that the nuclear power stations currently owned 
by British Energy would still be independent of the industry’s other large firms at that date. This 
means that we subtract the available nuclear capacity from demand when we calculate the supply that 
needs to come from the industry’s “strategic” firms, rather than adding it to those firms’ supply 
functions.3 

Similarly, we subtract the output of wind stations from demand, rather than adjusting the supply 
functions. In practice, most wind farms are owned by the large electricity companies, which might 

                                                      
3  A recently-announced agreement between British Energy and EdF makes this assumption incorrect, but its consequences 

are quantitative rather than qualitative differences in the results we report. 



Market behaviour with large amounts of intermittent generation 

5 

support the alternative approach of including their output (at zero marginal cost) in the marginal cost 
function from which the industry supply function is calculated. This would potentially imply a 
different supply function for each hour, depending on the level of wind output. A study of the best way 
to incorporate this (remembering that much trading takes place in well in advance of real time, before 
accurate wind forecasts are available) is another area for further research. For the time being, 
subtracting the level of wind output from demand is broadly equivalent to assuming that fossil-fuelled 
power stations base their bids on an assumed level of wind output, rather than adjusting their bids to 
the latest wind forecast. 

As described in the next section, we use hourly wind data, and so calculate hourly, rather than half-
hourly prices and outputs. The demand curves are based on actual hourly demands from our period, 
scaled up to reflect assumed demand growth of 1.1% a year to 2020. The scaling is based on the 
annual weather-adjusted energy requirements, rather than peak demand figures, and thus preserves the 
variation in year-to-year demand due to weather conditions. We use a linear demand slope of –80MW 
per £/MWh, which gives an elasticity at the mean values of price and quantity of approximately –0.2 
(based on the wholesale price). The demand elasticity based on the retail price (which is higher) is 
around – 0.3, the level used in the Office of Gas and Electricity Market’s regulatory impact 
assessments. 

4. Wind Data and Outputs 

We predict hourly outputs from wind generators located in nineteen onshore and eleven offshore 
regions. They reflect the distribution of existing and proposed wind stations around Great Britain, 
using information available from the British Wind Energy Association (2008). We have assumed that 
capacity equivalent to that existing, under construction or in the planning process is built in each 
onshore region, scaled up (but only by a small amount) to give 11 GW of onshore wind. We also 
distributed 19 GW of offshore wind over our offshore regions, largely in the English part of the North 
Sea. These headline figures are those which the transmission system operators are currently 
considering in their investment planning process (National Grid, 2008). The regions and their 
capacities are shown in table 2. Some weather stations are used for both coastal and offshore wind 
generators – we describe the adjustment we made to their wind speeds below. 

We have obtained hourly wind speed data from 1994 to 2005 for selected weather stations from the 
UK Meteorological Office (available at badc.nerc.ac.uk/data/ukmo-midas). Our choice of stations was 
based on two criteria: first, the station had to be in an area with a significant amount of wind 
generation (existing or planned); second, the data series needed to be reasonably complete. Rather than 
dropping days for which we did not have a complete set of observations across all of our 25 stations, 
we created synthetic data for the (relatively small) number of missing observations. When a single 
hour at a time was missing from the series, we interpolated the missing values. When more than one 
hour was missing, we imputed values from a regression of that station’s wind speed on the speeds 
observed at nearby stations which had a high correlation with it in that year.4  

We used a standard power curve for the relationship between wind speed, measured at a 10 metre 
mast, and the output from a 1.75 MW turbine with a 65 metre hub height. In practice, some turbines 
will be higher and some lower than this – the higher turbines will have greater outputs, as the wind is 
faster away from the ground. This gave us a provisional set of outputs for 19 areas onshore and 11 
offshore. These outputs were provisional because we knew our weather stations could well have a 
lower (or higher) average wind speed than the sites preferred by wind generators. For example, a 
number were at Royal Air Force bases which required large areas flat enough for runways, while wind 
farms are often built on hills. We have assumed that when it is relatively windy at our weather station, 

                                                      
4  We used annual estimates to minimise the impact of any clustered missing values in the proxy stations wind speed series. 
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it would also be relatively windy at wind farms in the region, but recognise that the absolute speeds 
will differ.  

Table 2: Wind Generation Capacities by Region  

 
Wind region Representative Weather Station 
Onshore: 

Installed 
Capacity (MW) Name SRC ID 

Aberdeen 236 Dyce 161 
Argyll 709 Machrihanish 908 
Cornwall 129 St Mawgan 1405 
Cumbria 328 Warcop Range 1076 
Devon 147 Chivenor 1346 
E Anglia 560 Wittering 583 
Fife 686 Leuchars 235 
Galloway 697 West Freugh 1039 
Mid Wales 575 Aberporth 1198 
Moray 734 Kinloss 132 
N East 475 Boulmer 315 
N Wales 173 Valley 1145 
Orkney 41 Kirkwall 23 
S Wales 300 Pembrey Sands 1226 
SE Scotland 2526 Charterhall 268 
SW Scotland 1295 Eskdalemuir 1023 
Thames 105 Manston 775 
W Isles 726 Stornway Airport 54 
Yorkshire 575 Waddington 384 
Offshore:    
Aberdeen Offshore 500 Inverbervie No 2 177 
Moray Offshore 510 Kinloss 132 
N East Offshore 2094 Boulmer 315 
N Wales Offshore 990 Valley 1145 
Norfolk Offshore 1560 Weybourne 421 
S Wales Offshore 108 Pembrey Sands 1226 
SW Scotland Offshore 180 Carlisle 1070 
Thames Offshore 1562 Manston 775 
Walney Offshore 1460 Walney Island No 2 1078 
Wash Offshore  6752 Holbeach 421 
Yorkshire Offshore 3300 Donna Nook No 2 405 

 

Our procedure to deal with this is based on that used by Oswald et al (2008). For onshore regions, 
we converted our provisional output patterns for 2005 into load factors and compared them with the 
load factors achieved by actual wind generators in the same region in that year. (These were obtained 
from the Renewable Energy Foundation, at www.ref.org.uk.) We then scaled the wind speed up or 
down so that the resulting load factor was close to that achieved in practice.5 We also checked that the 
average across all our regions was close to the 27% load factor achieved UK-wide in 2007. For 

                                                      
5  Oswald et al used a different correction factor for each month within a three-year dataset. We had a much longer dataset, 

and no reference against which to correct early years, so used a single annual figure throughout. 

http://www.ref.org.uk
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offshore wind stations, where experience to date has been limited and disappointing, we chose scaling 
factors that gave load factors averaging 38%, in line with predictions for “settled operation”. 

If we have over-predicted our load factors, then we will get more output from a given set of wind 
generators than would occur in practice. Since the EU is adopting a target for renewable output, and 
not renewable capacity, this implies that a greater amount of capacity would be required to meet the 
target. Assuming that this target binds, and that wind generation remains the favoured way of meeting 
it, then a larger amount of wind capacity would be built, and the total output would be similar to that 
assumed in our simulations. Any impact on the pattern of that output over time, and hence on our price 
predictions, would be second order.  

Given the relatively limited number of wind stations, we slightly over-estimate the variation in 
wind output – we would expect the load factor of a range of turbines within a region to be less variable 
than that of a single turbine. However, we do not take account of wind variation within an hour, and 
this would tend to reduce the amount of variation in our results. 

5. Results – Competitive Market 

The amount of price volatility due to wind power in an electricity market depends on two factors. The 
first is the amount of variation in wind output. The second is the relationship between prices and the 
net demand for thermal generation. If there are many hours with similar levels of wind output, we will 
not see much price volatility in those hours – unless the relationship between price and net demand is 
extremely sensitive. Alternatively, if part of the supply curve has a very flat slope, so that large 
changes in the net thermal demand have little impact on the market price, we will see little price 
volatility during hours in which the wind output places us on that part of the supply curve. Significant 
price volatility requires first, sufficiently changing levels of wind output, and second, a strong 
relationship between net demand and price. We start to explore these relationships in a case with the 
equivalent of six competitive generators – a workably competitive wholesale market.  

Figure 2 shows the distribution of output from our 30 GW of wind stations for each hour of the day 
during January, based on 403 daily wind profiles. We show the maximum level of output we obtained, 
the minimum, the median, and four intermediate percentiles. The maximum outputs imply that almost 
all our stations were simultaneously very close to full capacity, whereas the minima imply that there 
were some hours in which the wind was nowhere strong enough to generate more than a trivial amount 
of power. The median output is around 40% of capacity, with slightly more wind in the afternoon than 
in the early hours of the morning. The lower quartile is at around 20% of capacity, and the upper 
quartile at around 60%. We are therefore likely to have more hours with a wind output of between 4 
GW and 5 GW than with a wind output of between 24 GW and 25 GW, but we will find that the 
distribution is more even than in the summer months. With volatile wind outputs, our first 
precondition for volatile prices is fulfilled.  

Figure 3 shows the resulting price simulations, giving the distribution of prices for each hour of the 
day. For much of the day, we obtain a wide range of prices – at the early evening peak, the maximum 
price we observe is more than double the minimum. This reflects the variability in wind speed, and its 
significant impact on total production (and hence the net demand for thermal plant, on which the price 
depends) once the amount of wind capacity has grown. The variation in prices is greatest in the peak 
demand hours, because the supply function is convex, and so a given variation in wind output (and 
thermal demand) produces a greater variation in prices when they are already high.  

In most hours, the minimum price recorded is close to zero. If the wind output is high enough, 
relative to demand, to displace all the gas and coal-fired plant, this implies prices would have to fall to 
the level at which either wind or nuclear generators would have to be constrained off. In our 
simulations, we set this to be a small positive price – in practice, however, both nuclear and wind 
generators might perceive a high negative cost of spilling output. Some nuclear plants are inflexible 



Richard Green and Nicholas Vasilakos 

8 

and would not be able to reduce output (except by the very costly process of shutting down), while 
wind generators in receipt of output-linked subsidies would need compensation for the subsidy 
foregone if they reduce output. In the early hours of the morning, exceptionally high winds are enough 
to cause this to happen, even with average levels of demand, whereas at other times, high wind and 
unusually low demand are both required for prices to fall this low. 

In the early hours of the morning, the distance between the 10th and 90th percentiles of prices is 
relatively small – within this range, the different levels of wind output have relatively little impact on 
wholesale market prices at these times. The industry supply function is relatively flat when little fossil-
fuelled plant is running, and so the price is insensitive to the exact amount of thermal generation 
required. In other words, the second condition for volatile prices, introduced at the start of this section, 
does not hold.  

This flat section of the supply function is also responsible for the relative insensitivity of the market 
price to the level of wind generation in daytime hours when the wind is above average and prices are 
low. The gap between the median and the minimum price in daytime hours is far smaller than that 
between the maximum and the median. This implies that the marginal impact of a moving a set 
number of places through the distribution of wind outputs is lower when the wind is strong than when 
it is weak. Although moving from the 75th to the 90th percentile of wind outputs implies a greater 
change in output than a move from the 10th to the 25th percentile, the supply curve is so much flatter 
over the range that is relevant when the wind output is high than when it is low that this effect 
dominates. We thus find prices that are relatively insensitive to wind conditions when winds are high, 
and more sensitive when they are low. 

Figure 4 shows the pattern of wind outputs for July. While the maximum output is between 70% 
and 90% of the industry’s capacity, the median output is generally between 10% and 20%, with only a 
few hours in the afternoon where it approaches 30%. For fourteen hours of the twenty-four, the lower 
quartile output is less than 10% of capacity. In other words, the distribution of outputs is heavily 
skewed towards the lower end of the range. 

Figure 5 shows how this pattern of wind outputs feeds through to prices. Once again, high winds 
can send prices to the minimum level allowed in the simulation. If this does not happen, however, the 
level of price variation is much lower than in January, whatever the time of day. The demand for 
thermal generation is much lower, even after adjusting for the lower levels of availability during the 
summer maintenance period, and taking the generally lower wind speeds into account. This means that 
the industry stays on a flatter part of its supply function than in January, and prices vary less with the 
wind output. Furthermore, the variation in wind output between the highest and the lowest profiles is 
smaller than in January, and the asymmetry between the marginal effects of higher and lower levels of 
wind output has disappeared. The other key difference is that prices are highest around lunchtime, 
which is when demand is highest. 

The price distributions for the other months, which we do not report here, are somewhere between 
those for January and July. The “winter” profiles between November and March have their highest 
prices in the early evening, whereas “summer” profiles between April and October see prices peaking 
around lunchtime. Prices are most dispersed in the winter months, and the dispersion falls as we move 
towards mid-summer. 

These price distributions imply that anyone trading – on either side of the market – on the basis of 
spot prices is likely to see wide variations in their daily profitability, depending on the wind. Thermal 
generators that are only required on a few occasions (but are then vital to prevent power cuts) could 
see a significant part of their earning potential disappear if they are not in fact available to generate at 
those times. This provides a strong incentive to be ready to run when needed, but also makes the task 
of designing adequate systems to remunerate these plants particularly challenging. 
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We are not convinced that daily variability in prices matters for wind generators, however. It would 
be completely inappropriate to measure their financial performance over such a short timescale. 
Instead, figure 6 shows the range of annual profits received by our onshore wind stations, giving the 
maximum, minimum and median among our 12 simulated years. The variation between years is 
clearly visible, with an average range between the highest and lowest revenues of £25/kW-year. This 
is equal to one-third of the median revenues (note that our graph has a false zero). It is obviously 
something that should concern a generator (100% debt finance would seem inadvisable), but this level 
of risk, on its own, would not make them uneconomic.  

Figure 7 shows all 12 annual revenue figures for each station, with lines that link the figures for 
each year. While the detail is hard to read (and we do not advise readers to try), one clear message is 
that the lines frequently cross each other – that is, when one wind station is receiving relatively low 
revenues, another one is benefitting from relatively high earnings. This implies that a portfolio of 
stations will be less risky than a single station.  

6. Results – Duopoly  

We repeated our analysis for a case in which the industry’s thermal capacity was split between the 
equivalent of just two symmetric firms. This is an extreme case, unlikely to be seen again in the UK, 
although it was representative of the situation shortly after privatisation in 1990. In some countries on 
the Continent, however, there is a single dominant firm, and a highly concentrated market remains a 
real possibility, although (enough) cross-border transmission can provide effective competition. 

Figure 8 shows the distribution of prices we obtained for our January demand profile. It should be 
noted that this is on a very different scale to figure 3, and that prices are much higher in every hour of 
the day. The mean price over the day is twice as great with two firms as with six. There is also far 
more variation in prices. The range between the 10th and 90th percentiles averages £62.59/MWh, or 
around 80% of the median price. With six strategic firms, the range had an average of £10.38/MWh, 
just over 30% of the median price.  

As before, we find that particularly large amounts of wind output can drive prices to the minimum 
level allowed in the simulation. Apart from this, the distribution is much more nearly symmetric with 
regard to the wind. In other words, the impact on prices of moving from the 25th to the 10th percentile 
of wind outputs will be similar to that of moving from the 90th to the 75th. The more competitive 
supply function had a long section that was nearly flat, over which changes in wind output would have 
had little impact on the market price. This was the section which was relevant for high wind speeds, 
and had outweighed the fact that a one-percentile change in wind output implied a greater change in 
GW when the wind was strong than when it was weak. With only two firms, the industry supply 
function is steeper than with six firms. For a given number of firms, the supply function will still be 
steeper when the wind output is low than when it is high, but the difference is now less pronounced, 
and is balanced by the greater absolute changes in wind output seen at high wind speeds.  

Figure 9 shows the distribution of prices in July. The average level of prices and their variability 
are lower than in January, but much higher than in the simulation for July with six strategic firms. The 
marginal impact of moving a given number of places through the distribution of wind outputs has now 
been reversed – it is greater when the wind is high than when the wind is low. This is because the wind 
outputs in July are clustered around low values. When the wind speed is low, an increase of one 
percentile in the rank order will imply a lower gain in wind output than an increase of one percentile 
when the wind is blowing strongly. With a small change in output, the change in prices is also small, 
even though an equal change in output would have given a greater change in prices, given the greater 
slope of the supply function. In the more competitive case, the supply function is so flat for low levels 
of thermal output that this outweighs the impact of having a greater change in wind output for a given 
move through the ranking. 
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Figure 10 shows the annual variability in revenues, for the duopoly case and also for the equivalent 
of six competitive firms. The wind generators’ revenues are quite clearly both higher and more 
variable in the less competitive case. However, the variability is no greater, in proportion to the 
average revenues, than in the six-firm simulation. This implies that the presence of market power 
would not increase the relative level of risk faced by wind generators, and it would certainly raise their 
profitability.  

Twomey and Neuhoff (2005), however, have pointed out that wind generators will not gain as 
much from market power as thermal generators do. Our simulations allow us to calculate the 
significance of this point, and we present the relevant figures in table 3. In the competitive (6-firm) 
case, the time-weighted annual average price that would be received by a base-load generator 
(ignoring the need for maintenance) averages £32.13/MWh, with a range from maximum to minimum 
of just 3% of this mean value. On average, our onshore wind generators earn £31.50/MWh, two 
percent less than the base-load price. This difference is quite small, because two factors have opposite 
effects on the wind generators’ revenues. First, within each month, the price is lower when the wind 
generators’ output is higher, which tends to depress the wind generators’ average earnings. Second, in 
the UK, there is more wind in the winter months when prices are (on average) higher, and this tends to 
raise the wind generators’ average earnings.  

Table 3: Annual average prices and revenues 

6 firms 

Price: 
time-weighted 

average (£/MWh) 

Revenues for an 
onshore station 

(£/MWh) 

Revenues for an 
offshore station 

(£/MWh) 
   Max      32.75       32.66       31.38  
   Mean      32.13       31.50       30.97  
   Min      31.65       30.30       30.16  
   Range        1.09         2.36         1.22  
  (relative to mean)        0.03         0.07         0.04  
2 firms    
   Max      76.71       70.11       66.65  
   Mean      73.94       65.66       64.81  
   Min      71.04       61.64       62.97  
   Range        5.66         8.47         3.68  
  (relative to mean)        0.08         0.13         0.06  

We find that offshore wind generators earn £30.97/MWh, four per cent less than the time-weighted 
average price. There are more offshore than onshore generators, and so their outputs will have a 
greater impact on the market price. This will tend to increase the gap between their output-weighted 
price and the time-weighted price for a given day. Furthermore, their outputs are slightly less skewed 
towards the winter months of higher prices, reducing the impact of a factor that raised the average 
revenues of onshore stations. 

When we consider the case with market power, the annual time-weighted price that a conventional 
base-load generator would receive (ignoring maintenance) has a mean of £73.94/MWh, more than 
double the previous case. The variability of prices has also increased, both absolutely and relatively, 
with a range equal to 8% of the mean. Wind generators do not fare as well in this scenario, relative to 
their conventional cousins. Onshore generators receive only £65.66/MWh, eleven per cent below the 
time-weighted average price. As Twomey and Neuhoff predicted, there is a stronger negative 
correlation between the output of wind stations and the market price in the presence of market power, 
and this reduces the wind generators’ earnings – albeit only in a relative sense. Furthermore, in the 
supply function model, we find that average prices in the summer increase by relatively more than in 
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the winter. While winter prices remain higher than summer prices, their lower (relative) increase 
reduces the benefit that wind stations gained from producing more in the winter than in the summer. 

Our offshore wind generators earn £64.81/MWh on average, twelve per cent below the time-
weighted average – once again, they tend to fare worse than the onshore generators because their 
greater outputs have a bigger impact on the market price. However, because their outputs are slightly 
more evenly spread across the year than those of the onshore stations, the relative increase in summer 
prices (compared to winter prices) helps the offshore stations. This means that the gap between their revenues 
and the time-weighted annual average price is only slightly greater than that for the onshore stations. 

7. Conclusions 

We have found that electricity wholesale spot prices in Great Britain would be significantly affected 
by the amount of wind generation in each hour, if the UK relies on wind generation to meet a large 
share of its targets for renewable energy. This short-term volatility would be exacerbated in the 
presence of market power. 

For many generators and electricity consumers, however, short-run volatility of this kind should 
not be a major problem, even without the use of hedging instruments, as much of the volatility will 
cancel itself out over a longer period. In the absence of market power, the range of annual time-
weighted prices between the year with the least wind and the year with the most6 was just three per 
cent. Individual wind generators face more uncertainty, combining their own volatile output with the 
variable market price. The range between the highest and lowest annual revenues for a typical onshore 
station was £25/kW-year, just under one-third of their mean income (from the wholesale market) of 
£74/kW-year. We do not believe that this level of variation would cause serious difficulties, 
particularly remembering that wind generators also receive support from the Renewables Obligation, a 
system of tradable green certificates. 

Finally, we were able to assess the impact of market power (amongst conventional generators) in a 
market with a significant amount of variable generation. We found that prices were higher and more 
volatile, but that the volatility in wind generators’ incomes rose only in proportion to those incomes. 
We did find that wind generators gained less than base-load generators from the increase in prices due 
to market power, as predicted by Twomey and Neuhoff (2005). While the base load price rose by 130 
per cent when we replaced a workably competitive six-firm structure with a duopoly, onshore wind 
generators’ revenues rose by “only” 108 per cent, and offshore generators’ revenues by 109 per cent. 
While the wind generators clearly gain less from others’ exercise of market power than conventional 
generators do, they are hardly disadvantaged by it! 

While we believe that the volatility of generators’ revenues due to wind variation is unlikely to be a 
serious obstacle to them, an obvious extension is to consider the benefits of combining a number of 
wind generators in different parts of the country in a single portfolio, or to combine wind and thermal 
generators – a solution considered by Awerbuch (2000).  If the windiest sites still available for 
development are close together, there will be a trade-off between building most of the new capacity at 
these sites to obtain the highest possible output and dispersing generators to obtain the diversity 
benefits of a less correlated resource. Our model will allow us to quantify this trade-off. 

We have simulated market prices for an assumed level of wind and thermal capacity, and not 
sought to find a long-term equilibrium. For that reason, our results should not be seen as predicting the 
average level of electricity prices, even if out-turn fuel prices are close to those we assume. The next 
stage is to calculate the full static equilibrium of the wholesale market, as described by Sáenz de Miera 

                                                      
6  We mean “most” in the sense of producing the greatest output at times when it has an impact in reducing prices, rather 

than in terms of the physical amount of wind. 
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at al (2008), in which the amount of each kind of capacity is such that it just breaks even from the 
resulting market prices. Such a model would neglect the dynamics of investment, however, as it would 
not show whether generators would find it optimal to own this capacity mix in a world of volatile fuel 
prices. Our long-term aim is to use the short-term model of wholesale pricing described in this paper 
as an input into a study of investment behaviour in an uncertain world. If the volatile prices revealed in 
this paper prove too much of a disincentive for investment, the UK could face significant problems in 
its transition towards a lower-carbon electricity system.  
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Price variation due to wind - January
6 strategic firms
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Price variation due to wind - July
6 strategic firms
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Revenue variability from year to year
6 strategic firms
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Price variation due to wind - July
2 strategic firms 
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