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DyNAMIC FACTORS IN THE PRESENCE OF BLOCK
STRUCTURE

Marc HALLIN* and Roman LiSkA*8
Université Libre de Bruxelles
Brussels, Belgium

May 25, 2008

Abstract

Macroeconometric data often come under the form of large panels of time series, them-
selves decomposing into smaller but still quite large subpanels or blocks. We show how the
dynamic factor analysis method proposed in Forni et al (2000), combined with the identi-
fication method of Hallin and Liska (2007), allows for identifying and estimating joint and
block-specific common factors. This leads to a more sophisticated analysis of the structures
of dynamic interrelations within and between the blocks in such datasets, along with an in-
formative decomposition of explained variances. The method is illustrated with an analysis

of the Industrial Production Index data for France, Germany, and Italy.

Key Words: Panel data; Time series; High dimensional data; Dynamic factor model; Business

cycle; Block specific factors; Dynamic principal components; Information criterion.

1 Introduction

1.1 Panel data and dynamic factor models

In many fields—macroeconometrics, finance, environmental sciences, chemometrics, ...—informa-
tion comes under the form of a large number of observed time series or panel data. Panel data
consist of series of observations (length 7') made on n individuals or “cross-sectional items” that

have been put together on purpose, because, mainly, they carry some information about some
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common feature or unobservable process of interest, or are expected to do so. This “common-
ness” is a distinctive feature of panel data : mutually independent cross-sectional items, in that
respect, do not constitute a panel (or then, a degenerate one).

On the other hand, the cross-sectional items of a panel, although carrying some common
information, also are distinct from each other. Cross-sectional heterogeneity is another distinc-
tive feature of panel data: n (possibly non independent) replications of the same time series
would be another form of degenarecy of a panel. Moreover, the impact of item-specific or id-
iosyncratic effects, which have the role of a nuisance, very often dominate, quantitatively, that
of the common features one is interested in.

Finally, all individuals in a panel are exposed to the influence of unobservable or unrecorded
covariates, which create complex interdependencies, both in the cross-sectional as in the time
dimension, which cannot be modelled , as this would require criticable modelling assumptions
and a prohibitive number of nuisance parameters. These interdependencies may affect all (or
almost all) items in the panel, in which case they are “common”; they also may be specific to a
small number of items, hence “idiosyncratic”.

The idea of separating “common” and “idiosyncratic” effects is thus at the core of panel
data analysis. The same idea is the cornerstone of another statistical domain : factor analysis.
There is little surprise, thus, to see a time series version of factor analysis emerging as a powerful
tool in the analysis of panel data. This time series version of factor models, however, requires
an adequate definition of “commonness” and “idiosyncrasy”. This definition should not simply
allow for identifying the decomposition of the observation into a “common” component and an
“idiosyncratic” one, but also should provide an adequate translation of the inuitive meanings of
“common” and “idiosyncratic”.

Denote by X;; the observation of item i (¢ = 1,...,n) at time ¢ (t = 1,...,T); this observation

is usually decomposed into a sum
Xit:Xit+§ita izl,...,n, tzl,,T

of two mutually orthogonal (at all leads and lags) unobservable components : a common compo-
nent x;; and an idiosyncratic one £;;. Some authors identify this decomposition by requiring the
idiosyncratic components to be “small” or “negligible”, as in dimension reduction techniques.
Some others require that the n idiosyncratic processes be mutually orthogonal white noises.
Such characterizations are not reflecting the fundamental nature of factor models: idiosyncratic
components indeed can be “large” and strongly autocorrelated, while white noise can be com-
mon. For instance, in a model of the form X;; = x¢ + &, where x; is white noise and orthogonal
to &t = €it + azei4—1, with ii.d. e4’s, the white noise component x;, which is present in all
cross-sectional items, very much qualifies as being “common”, while the cross-sectionally inde-
pendent autocorrelated &;;’s, being item-specific, exhibit all the attributes one would like to see
in an “idiosyncratic” component.

A possible characterization of commonness/idiosyncrasy is obtained by requiring the common



component to account for all cross-sectional correlations, leading to possibly autocorrelated but
cross-sectionally orthogonal idiosyncratic components. This yields the so-called “exact factor
models” considered, for instance, by Sargent and Sims (1997) and Geweke (1997). These exact
models, however, are too restrictive in most real life applications, where it often happens that
two (or a small number of) cross-sectional items, being neighbours in some broad sense, exhibit
cross-sectional correlation also in variables that are orthogonal, at all leads and lags, to all
other observations throughout the panel. A “weak” or “approximate factor model”, allowing for
mildly cross-sectionally correlated idiosyncratic components, therefore also has been proposed
(Chamberlain 1983; Chamberlain and Rothschild 1983), in which, however, the common and
idiosyncratic components are only asymptotically (as n — oo) identified. Under its most general
form, the characterization of idiosyncrasy, in this weak factor model, can be based on the
behavior, as n — o0, of the eigenvalues of the spectral density matrices of the unobservable
idiosyncratic components, but also (Forni and Lippi 2001) on the asympotic behavior of the
eigenvalues of the spectral density matrices of the observations themselves : see Section 2 for
details. This general characterization is the one we are adopting here.

Finally, once the common and idiosyncratic components are identified, two types of factor
models can be found in the literature, depending on the way factors are driving the common

components. In static factor models, it is assumed that common components are of the form

q
Xit:Zbilflt7 izla"'7n7 tzlu"'7T7 (11)

=1
that is, the x;’s are driven by ¢ factors fi,..., fi+ which are loaded instantaneously. This
static approach is the one adopted by Chamberlain (1983), Chamberlain and Rothschild (1983),
Stock and Watson (1989, 2002a and 2002b), Bai and Ng (2002 and 2007), and a large number

of applied studies. The so-called general dynamic model decomposes common components into

q
Xit = Y _ba(L)uy, i=1,....n, t=1,...T, (1.2)

=1
where uyy, . .., ug, the common shocks, are loaded via one-sided linear filters b;;(L). That “truly

dynamic” approach (the terminology is not unified and the adjective “dynamic” is often used in
an ambiguous way) goes back, under exact factor form, to Chamberlain (1983) and Chamberlain
and Rothschild (1983), but was developed, mainly, by Forni et al (2000, 2003, 2004, 2005), Forni
and Lippi (2001), Hallin and Liska (2007).

The static model (1.1) clearly is a particular case of the general dynamic one (1.2). Its
main advantage is simplicity. On the other hand, both models share the same assumption on
the asympotic behavior of spectral eigenvalues—a behavior which is confirmed by empirical
evidence. But the static model (1.1) places an additional and rather severe restriction on the
data generating process, while the dynamic one (1.2), as shown by Lippi and Forni (2001), does

not—we refer to Section 2 for details. Moreover, the synchronization of clocks and calendars



across the panel is often quite approximative, so that the concept of “instantaneous loading”
itself may be questionable.

Both the static and the general dynamic models are receiving increasing attention in finance
and macroeconometric applications where information usually is scattered through a (very)
large number n of interrelated time series (n values of the order of several hundreds, or even
one thousand, are not uncommon). Classical multivariate time series techniques are totally
helpless in the presence of such values of n, and factor model methods, to the best of our
knowledge, are the only ones that can handle such datasets. In macroeconomics, factor models
are used in business cycle analysis (Forni and Reichlin 1998; Giannone, Reichlin, and Sala 2006),
in the identification of economy-wide and global shocks (Forni, Giannone et al 2005), in the
construction of indexes and forecasts exploiting the information scattered in a huge number
of interrelated series (Altissimo et al 2001), in the monitoring of economic policy (Giannone,
Reichlin, and Sala 2004), and in monetary policy applications (Bernanke and Boivin 2003; Favero
et al 2005). In finance, factor models are at the heart of the extensions proposed by Chamberlain
and Rothschild (1983) and Ingersol (1984) of the classical arbitrage pricing theory; they also
have been considered in performance evaluation and risk measurement (Chapters 5 and 6 of
Campbell et al 1997), and in the statistic analysis of the structure of stock returns (Yao 2008).

Factor models in the recent years also generated a huge amount of applied work: see Artis
et al (2002), Bruneau et al (2003), den Reijer (2005), Dreger and Schumacher (2004), Nieuwen-
huyzen (2004), Schneider and Spitzer (2004), Giannone and Matheson (2007), and Stock and
Watson (2002b) for applications to data from UK, France, the Netherlands, Germany, Belgium,
Austria, New Zealand, and the US, respectively; Altissimo et al (2001), Angelini et al (2001),
Forni et al (2003), and Marcellino et al (2003) for the Euro area and Aiolfi et al (2006) for South
American data—to quote only a few. Dynamic factor models also have entered the practice of a
number of economic and financial institutions, including several central banks and national sta-
tistical offices, who are using them in their current analysis and prediction of economic activity.
A real time coincident indicator of the EURO area business cycle (EuroCOIN), based on Forni
et al (2000), is published monthly by the London-based Center for Economic Policy Research
and the Banca d’Italia: see [http://www.cepr.org/data/EuroCOIN/]. A similar index, based on
the same methods, is established for the US economy by the Federal Reserve Bank of Chicago.

1.2 Dynamic factor models in the presence of blocks: outline of the paper

Although heterogeneous, panel data very often are obtained by pooling together several “blocks”
which themselves can be considered as “large” subpanels. In macroeconometrics, for instance,
data typically are organized either by country or sectoral origin: the database which is used in
the construction of EuroCOIN, the monthly indicator of the euro area business cycle published
by CEPR, includes almost 1000 time series that cover six European countries and are organized
into eleven blocks including industrial production, producer prices, monetary aggregates, etc.

When these blocks are large enough, several dynamic factor models can be considered and



analyzed, allowing for a refined analysis of interblock relations. In the simple two-block case,
“marginal common factors” can be defined for each block, and need not coincide with the “joint
common factors” resulting from pooling the two blocks.

The objective of this paper is to provide a theoretical basis for that type of analysis. For
simplicity, we start with the simple case of two blocks. We show (Section 2) how the Hilbert
space spanned by the n observed series decomposes into four mutually orthogonal subspaces:
the space of strongly common variables, which are common to both subpanesls, the space of
strongly idiosyncratic variables, which are idiosyncratic to both subpanels, and two spaces of
weakly common/weakly idiosyncratic variables, which are common to one subpanel but idiosyn-
cratic to the other. In Sections 3 and 4, we show how the projection of each observation onto
those various subspaces is asymptotically identified and how it can be consistently reconstructed
from the observations. Section 5 is devoted to the general case of K > 2 blocks, allowing for
a decomposition of each observation into 2% mutually orthogonal components. The tools we
are using throughout are Brillinger’s theory of dynamic principal components and the identifi-
cation method developed by Hallin and Liska (2007). Proofs are concentrated in an appendix
(Section 7).

The potential of the method is briefly illustrated, in Section 6, with a panel of Industrial
Production Index data for France and Germany (K = 2, four distinct components), then France,
Germany, and Italy (K = 3, hence eight distinct components). Simple as it is, the analysis
of that dataset reveals some striking facts. For instance, both Germany and Italy exhibit a
“national common factor” which is idiosyncratic to the other two countries, while France’s
common factors are included in the space spanned by Germany’s. The (estimated) percentages
of explained variation associated with the various cases also are quite illuminating : Germany,
with 25.9% of common variation, is the “most common” out of the three countries. But it
also is, with only 4.9% of its total variation, the “least strongly common” one. France has the
highest proportion (79.6%) of marginal idiosyncratic variation but also the highest proportions
of strongly and weakly idiosyncratic variations (72.7% and 6.9%, respectively).

We do not attempt here to provide an economic interpretation for such facts. Nor do we
apply the method to a more sophisticated dataset. But we feel that the simple application we
are proposing provides sufficient evidence of the potential power of the method, both from a

structural as from a quantitative point of view.

2 The dynamic factor model in the presence of blocks

We throughout assume that all stochastic variables considered in this paper belong to the Hilbert
space Lo (Q), F,P), where (2, F,P) is some given probability space. We will study two double-

indexed sequences of observed random variables

Y :={Yy,ieN,te€Z} and Z:={Zj,jeNtel}



where t stands for time and 4, j are cross-sectional indices. Let Y, := {Y,, ;,¢t € Z} and
Z,, = {Z,, .t € Z} be the n,- and n,-dimensional subprocesses of Y and Z, respectively,
where

Yo, 0= Yie...,Yo)  and Zp ;= (Zu ..., Znu),

and write Xn¢ == (Yir -, Yo, Z1t - Znot) o= (Yq, 1 25, )" with n = (ny,n;) and n =
ny + n.. The Hilbert subspaces spanned by the processes Y, Z and X are denoted by H,, H.
and H, respectively.

The following assumption is made throughout the paper.
ASSUMPTION Al. For all n, the vector process {Xns;t € Z} is a zero mean second order
stationary process.

Denoting by X,.,,(f) and X..,.(0) the (n, x n,) and (n. x n.) spectral density matrices

of Yo, 1, Zn. 1, respectively, and by E,..n(0) = X, ,(f) their (n, x n.) cross-spectrum matrix,

5,(0) = [ v () Zyzin(0)
" T\ Zyin(0) T, (0)

for the (nxn) spectral density matrix of Xy, ¢, with elements o;,4,(6), 0,4, (0) or 04;(0), 4,11, 12 =

write

1,...,ny, j4,J1,J2 = 1,...,n.. On these matrices, we make the following assumption.
ASSUMPTION A2. For any k € N, there exists a real ¢, > 0 such that ox(0) < cx for any
0 € [—m, 7.

For any 6 € [—m, 7], let Ayp, i(0) be By (0)’s i-th eigenvalue (in decreasing order of mag-
nitude). The function 6 — Ay, ;(0) is called £, (0) i-th dynamic eigenvalue. The notation
0 — X, j(6) and 0 — A, () is used in an obvious way for the dynamic eigenvalues of ¥..,,_(6)
and Xy, (0), respectively.

The corresponding dynamic eigenvectors, of dimensions (n, x 1), (n, x 1), and (n x 1), are
denoted by py:n,.i(6), Pzin.,;(0), and pyi(0), respectively. These dynamic eigenvectors can be
expanded in Fourier series, e.g.

e e}

1 ™ : :
Pnk(0) = Gy Z {/ Pn,k(e)elsedﬂ} o8t

§=—00 -

where the series on the right hand side converge in quadratic mean, which in turn defines square

summable filters of the form
1 & & .
Pl =5 O [ / pn,k(e)elsf’de} L.
Similarly define P, (L) and p_, j(L) from py;p, i(0) and p..,. j(6), respectively.
Tyingy,t Tzng, My, Mz,
On those dynamic eigenvalues, we make the following assumptions.
ASsuUMPTION A3. For some qy,q, €N,

(i) the qy-th dynamic eigenvalue of Ly, (0), Ayin,.q,(0), diverges as ny — 0o, a.e. in [, 7],
while the (qy + 1)-th one , Ay, q,+1(0), is 0-a.e. bounded;



(1) the q.-th dynamic eigenvalue of X,.,_(8), Az, q.(6), diverges asn, — oo, a.e. in[—m, 7],
while the (q, + 1)-th one, A, q.+1(0), is 0-a.e. bounded.

The following lemma shows that this behavior of the dynamic eigenvalues of the subpanel
spectral matrices ., (6) and X..,_(0) entails a similar behavior for the dynamic eigenvalues
An,k(6) of Xy, (6).

LEMMA 1. Let Assumptions A1-A3 hold. Then, there exists ¢ € N, with max(qy,q.) < ¢ <
qy + G-, such that ¥,(0)’s g-th dynamic eigenvalue Ay 4(0) diverges as min(ny,n,) — 0o, a.e. in
[—m, 7], while the (¢ + 1)-th one, A\nq+1(8), is 0-a.e. bounded.

PROOF. See the appendix (Section 8.1). O

Theorem 2 in Forni and Lippi (2001) establishes that the behavior of dynamic eigenvalues
described in Assumption A3 and Lemma 1 characterizes the existence of a dynamic factor
representation. We say that a process X := {Xy,k € N, ¢t € Z} admits a dynamic factor

representation with q factors if X; decomposes into a sum

q o0
Xt = Xut + &ty With Xpe == b(L)uy  and  b(L) == > b L™, k€N, t€Z,
=1 m=1

such that

(i) the g-dimensional vector process {u; := (uy; ugs ... ug)';t € Z} is orthonormal white noise;

ii) the (unobservable) n-dimensional processes = (&1 Eor - &)t € are zero-mean
i) th b bl di ional £, STRS Ent) Z

stationary for any n, with (idiosyncrasy) 6-a.e. bounded (as n — o0) dynamic eigenvalues;

(iii) &+, and w4, are mutually orthogonal for any k,[,t; and to;

o0

(iv) the filters by (L) are square summable: Z b2m < oo forall ke Nand I =1,...,q, and
m=1
(v) ¢ is minimal with respect to (i)-(iv).
The processes {uy,t € Z}, | =1,...,q, are called the common shocks or factors, the random

variables & and xps the idiosyncratic and common components of Xy, respectively. Actually,
Forni and Lippi define idiosyncrasy via the behavior of dynamic aggregates, then show (their
Theorem 1) that this definition is equivalent to the condition on dynamic eigenvalues we are
giving here.

This result of Forni and Lippi (2001), along with Lemma 1, leads to the following proposition.
PROPOSITION 1. Let Assumption A1 and A2 hold. Then,

(a) Assumption A3(i) is satisfied iff the process Y has a dynamic factor representation (gy
factors; call them the (common) y—factors)

qy
}/it = Xy;it + gy;it = Z by;il(L)uy;lt + gy;it ) (XS Na te Z; (23)
=1



(b) Assumption AS3(ii) is satisfied iff the process Z has a dynamic factor representation (q.

factors; call them the (common) z— factors)
gz
th - Xz;jt + Sz;jt - Z bz;jl(L)uz;lt + Sz;jt ’ ] € N7 te Z; (24)
=1

(c) Assumption A3 is satisfied iff the process X has a dynamic factor representation (q factors,

with q characterized in Lemma 1; call them the joint common factors)

q
Xt =Yy = Xayzit T gwy;it = Z b:cy;il(L)ult + émy;it 5 k€ N, teZ (25)
=1

in case X = Yy and
q
Xpt = th = Xazz;jt T gxz;jt = waz;jl(L)ult + sz;jt , keN, tek (26)
=1

in case Xgy = Zj;.
All filters involved have square-summable coefficients.

PRrROOF. The proof follows directly from the characterization theorem of Forni and Lippi(2001),
along, for part (c), with Lemma 1. O

It follows that, under Assumption A3, the processes Y and Z admit two distinct decom-
positions each: the marginal factor models (a) and (b), with marginal common shocks .y
(l=1,...qy) and uzy (I = 1,...q,), respectively, and the joint factor model (c), with joint
common shocks uyy (I = 1,...q). This double representation allows for refining the factor de-
composition. Call z—, y—, or z—idiosyncratic a process which is orthogonal (at all leads and
lags) to the z—, y—, or z—factors, respectively. Similarly, call z—, y—, or z—common any pro-
cess belonging to the Hilbert space generated by the x—, y—, or z—factors. The joint common

components Xgzy:it and xg..j; then further decompose into
Xzxy;it = gby;it + T;Z)y;it + Vyit and Xzz;jt = gbz;ij + ¢z;jt + Vit

where ¢+ and ¢..;; are y— and z—common, v,.;; and v, ;; are y—common but z—idiosyncratic,

and vy;; and v.;; are z—common but y—idiosyncratic. We thus have

Xzy;it Xz z;jt

}/;t = (by;it + wy;it + Vyiit +§xy;it and th = (bz;jt + wz;jt + Vzijt +§xz;jt ) Z,j € Na t€Z. (27)

Xy;it Eysit Xz;jt Exijt
More precisely, consider the Hilbert subspaces Hy, HX, and H* of H spanned by the common
components {xy.it, ¢ € N,t € Z}, {xzjt, 7 € N,t € Z}, and {xy.it, X21jt, ©,J € N,t € Z},
respectively. Similarly define, for idiosyncratic components, Hg, HE, and HE. These subspaces

induce a partition of H into four mutually orthogonal subspaces: H? := HY N HY (containing

8



Gyzit and @), HZ = HijﬂHg (containing 1y and v,.j), HY = H§HH§ (containing vy
and v.;), and HE = Hg N HE (containing Exysit and Epzijr).

Clearly, Hj and HX are subspaces of HX. Since H) is spanned by the gy-tuple of mutually
orthogonal white noises {uy., 1 <1 < qy,t € Z}, it has dynamic dimension g,. Similarly, HX
has dynamic dimension ¢., and HX dynamic dimension g. Denote by g, the dynamic dimension
of the intersection H? of H}¥ and HX. This intersection may reduce to the origin in H, in which
case ¢y, = 0; it may coincide with HY (resp., with HX) when HY C HX (resp., HY C HY),
with ¢, = min(qy,q.). Whenever ¢q,. > 1, let {vy, 1 <1 < gy, t € Z} denote a g,.-tuple of
of mutually orthogonal white noises spanning this intersection. This g,.-tuple can be extended
into a gy-tuple {vig, vyme, 1 <1< qyz, 1 <m < qy—qy., t € Z} spanning HY, or into a g,-tuple
{vit, Vot 1 <1< qy., 1 <m <gq,—qy., t €Z} spanning HX. We then have

Qyz qdy—Qqyz qz—qyz

¢y;it = Zdil(L)Ult s ¢y;it = Z dy;il(L)Uy;lt y  Vysit = Z dyz;il(L)vz;lt )
=1 =1 =1

and
Qyz qz—qyz qy—Qqy=z
¢z,jt - Z djl(L)vlt 5 wz,jt = Z dz,jl(L)vz;lt 5 Vzt = Z dzy,jl(L)vy;lt-
=1 =1 =1

Note that 1), j; and v, ; are common in the joint model (2.5)-(2.6), but that 1), j; is idiosyncratic
in the marginal models (2.3), 1, in the marginal model (2.4)—therefore call them weakly
common. Similarly, v.;; and v,.; are are common in the joint model (2.5)-(2.6), but idiosyncratic
in in the marginal models (2.3) and (2.4), respectively—call them weakly idiosyncratic. We say
that ¢y.;+ and ¢, j;, which are both y- and z-common, are strongly common; similarly, £;,.;; and
z2:jt, being y- and z-idiosyncratic, are called strongly idiosyncratic.

In the following sections, we propose a procedure that provides consistent estimates of ¢y,

Yysits Vysits Saoyzit a0d @2 e, V2 iy Va gty Eazijt, hence ity Eayiity S2pjt, a0d Epzijr

3 Identifying the factor structure; population results

/
Based on the n-dimensional vector process Xy ; = (Y;L%t, Z;%t) , we first asymptotically identify
Gyits ysits Vysit, Gzijts Vaije and Vs as min(ny,n,) — oo. More precisely, we show that,
under specified spectral structure, all those quantities can be consistently recovered from the

observations Xy, ;.

3.1 Recovering the joint common and strongly idiosyncratic components

Under the joint factor model, Proposition 2 in Forni et al (2000) provides X, ;-measurable
reconstructions—denoted by x7,.;; and x7..;;, respectively—of the joint common components
Xayit and Xz, which converge in quadratic mean for any 4, j and ¢, as min(n,,n,) — oo; we
are using the terminology “reconstruction” rather than “estimation” to emphasize that spectral

densities here, unlike in Section 4, are assumed to be known.



Write M* for the adjoint (transposed, complex conjugate) of a matrix M. The scalar process
{Vagt = E:,k (L)Xnt,t € Z}, k=1,...,n, the spectral density of which is A\, (), will be called
Xn,t's k-th dynamic principal component. The basic properties of dynamic principal components
imply that {Vy k,+} and {Viq g,e }, for k1 # ko, are mutually orthogonal at all leads and lags. Forni
et al (2000) show that the projections of Y and Z;; onto the closed space spanned by the present,
past and future values of V1, K = 1,..., ¢ yield the desired reconstructions of of xg,.;x and
Xzzjt- They also provide (up to a minor change due to the fact that they are considering row

rather than column-eigenvectors, as we do here) the explicit forms

Xayit = Ky i (D) Xne  and x4, =Kl (L) Xny i=1,...,ny, j=1,...,n; (3.8)

=y, =Xzin,j
with
Kymi(L ZPW f0) and K. ank,] P, 4 (L)
where Bn,k,i(L) denotes the i-th component of En,k(L) such that Xz = Yj; and ka,j(L) the j-th

component of p k(L) such that Xy = Zj;.

We then can state a first consistency result.

PROPOSITION 2. Let Assumptions A1-A3 hold. Then,

. n . ‘ . n . '
. lim X;cy;it - Xny;Zt and X lim sz;jt - XfEZ;jt
min(ny,n;)—oo min(ny,n;)—oo

in quadratic mean, for any i, j, and t.
PROOF. The proof consists in applying Proposition 2 in Forni et al (2000) to the joint panel.[]

It follows from (3.8) that x7,;, has variance

q ™
Var(y) = 3 [ 1pnkd(6) PAnc(6)d8
k=1""T

Averaging this variance over the subpanel produces a measure

—ZV&I‘ Xxy zt / ’pnkz ’ An k( ) (3.9)

Ny i3 nyz 1k=1

of the contribution of joint common factors in the variability of the y-subpanel. Dividing it by

the averaged variance
Ty

1
— Z Var( zt / /\y,ny,z

i=1 Ny i3

of the y-subpanel yields an evaluation

ZZ/ Dok, (0) A1 (0 dG/Z Ayny, )do (3.10)

i=1 k=1

10



of its “degree of commonness” within the joint panel. For the z-subpanel, this measure takes

the form

ZZ/ ‘pn k,] | )‘Ilk d@/Z/ )‘znz,] (311)

j=1k=1

As for the strongly idiosyncratic components &,yi¢, and &,...j¢, they are consistently recovered,

as min(n,, n,) — oo, by
n v n n 7. n
gmy;it =Y — Xzy;it and gmz;jt = th — Xzzijtr

respectively. In view of the mutual orthogonality of common and idiosyncatic components, the

variance of £ ;, writes
)

q T
Var(€2) = Var(i) = - [ Ipni(6) PAn(6)d6:
k=17"T

the complement to one of (3.10) therefore constitutes a measure of the “degree of idiosyncrasy”
of the y-subpanel within the joint panel. Similar formulas hold for the strongly idiosyncratic
component &g,
3.2 Recovering the marginal common, marginal idiosyncratic, and weakly

idiosyncratic components

If g, = ¢, then the marginal common and idiosyncratic components xy.;; and &,.;; coincide
with their joint counterparts Xgy.;+ and &zy.ir, which were taken care of in the previous section.
Assume therefore that ¢ > ¢,; the marginal and joint y-common spaces then do not coincide
anymore.

Applying to the y- and z-subpanels separately the same type of technique as we used in
Section 3.1, consider the spectral density matrix ¥, (), with eigenvectors py.n, :(f) and the
corresponding filters P, (L) i =1,...,qy. A consistent reconstruction of x,.;; is obtained by

projecting Y;; onto the closed subspace spanned by the first g, dynamic principal components

Vyfi’n e 7Vy;qyt of ¥y, (), where y;kt = Py . k(L)Yny,t. This projection takes the form
XZizt Giiny (L)Y 0 (3.12)
with
ay
Gyin,, (L Z Py i PPy (L) (3.13)

Similarly, the reconstruction x77; of X is

XZ:?t gz nz,] n27 sz nzk ’] an’k(L)an,t- (314)

11



We then have a second consistency result.
PROPOSITION 3. Let Assumptions A1-A3 hold. Then

= Xz;jt

. Ny . .
Mm Xyf = Xyae ond - lm XT3
in quadratic mean for any i, j, and t.

PROOF. The proof again is a direct application of Proposition 2 in Forni et al (2000) to the y-

and z-subpanels, respectively. O

. . mn .
The variance of the reconstructed marginal y-common component Xy-yit writes
)

qy T
Var(XZ;yit) = Z/ |py;ny,k,i(9)|2>‘y;ny,k(0)d9
k=1""T

The averaged variance explained by the y-common factors in the y-subpanel is thus

1 n y
— > Var(xh,) = / [Py i (0)* Ay, Z Ayin, k(0)d0.  (3.15)

—1 yz 1k 1 nyk 1/

Similarly, the averaged variance explained by the z-common factors in the z-subpanel is

- lz Noona ] (3.16)

k=1

Consistent reconstructions of the marginal idiosyncratic components §,.;; and &..;; are straight-

forwardly obtained as

Ny _ T Nz .__ Az

it = Yit = Xy and  E25 = Zj — X5y (3.17)
whereas the weakly idiosyncratic components vy.;; and v..;; can be recovered as

n ._ .n Ny _ Ny n n ._ .n Ny __ ¢Nz n
Vysit = Xaysit — Xyzit = Ey;it T Swysit and Vagt *= Xazgt = Xzgjt = Szt — Sazgt (3.18)

respectively. The averaged variance of weakly idiosyncratic components (or its ratio to Z?:yl Var(Yit)),
which measures extent to which the z-common factors contribute to y-idiosyncratic variation,
(which is joint

is also a quantity of interest. Clearly, since £y g = Eoys

idiosyncratic) and v, (which is joint comon) are mutually orthogonal,

n n
it + Vy;itv where émy;it

Var( y zt) Var(fy zt) Var( Ty; zt) (319)

so that

—ZVar yzt [ii/w |pnkz | )\nk d9 Z/ /\ymy7 (9)(19}

My i=1
Similar formulas hold for v}’ ;.
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3.3 Disentangling the strongly and weakly common components

As explained in Section 2, each element of the Hilbert space spanned by the observed vari-
ables decomposes into a sum of four mutually orthogonal components—the strongly common
(both y- and z-common), the weakly common/weakly idiosyncratic (either y-common and z-
idiosyncratic or y-idiosyncratic and z-common), and the strongly idiosyncratic one (both y-
and z-idiosyncratic). So far, we have been able to reconstruct some of these components by
implementing the Forni et al (2000) filtering, which asymptotically separates common and id-
iosyncratic components. In order to separate the strongly common component ¢, ;; of Y;; from
the weakly common one 1), ;;, however, we need another procedure. Intuitively, three equivalent
projections are possible, all on the z-common space or, more precisely, on the approximation ot

the z-common space based on the n,-dimensional z-subpanel :

(a) either Yj; is projected, yielding a consistent reconstruction XZ;,it (see (3.20)) of the z-

common component ¢y i+ + vy i+ of Y, from which v, (obtained in Section 3.2) is easily

y,it
subtracted, yielding the desired ¢y ;;;

(b) or Xay,it (obtained in Section 3.1) is projected, leading, up to quadratic mean negligible
quantities, to the same result, as the difference Yix — x73, ;4 18 &3y ;4» Which consistently

reconstructs the strongly idiosyncratic &y it;

(c) or XZfit (obtained in Section 3.2) is projected, immediately providing the result ¢ ,, since

;;lvit7
XZf’it = ¢y.it + Py.it, Wwhere 1), ;; is z-idiosyncratic.
For the sake of simplicity, as all these projections eventually coincide, we concentrate on projec-
tion (a).
The following result is adapted from Theorem 8.3.1 in Brillinger (1981), and provides the

explicit form of such projections.

PROPOSITION 4. Assume that the (r + s) vector valued second-order mean zero stationary
process {(C;,m;), t € Z} is such that the spectral density matriz fy(0) of 0, is nonsingular.
Then, the projection of {; onto the closed space H, spanned by {9, ,t € Z} —that is, the r-tuple
A(L)n, of square summable linear combinations of the present, past and future of n; minimizing
E[(¢, — A(L)n,) (¢, — A(L)n,)'] is f(n(L)ﬁrTnI(L)ﬂt} where

1 00 00 T

ﬁ('r](L) — % Z [ " fcn(e)eise d0:| L and ﬁ;nl(L) = % Z |:/ [f,,m(e)]_leise do| L*,

=—00 VT s=—0o0 T

and f¢)(0) denotes the cross-spectrum of ¢, and n,. vspace2mm
Actually, Brillinger also requires (¢},n})’ to have absolutely summable autocovariances, so that
the filter fcn(L)fgnl (L) also is absolutely summable. We, however, do not need this here.

Now, the z-common space HX on which we have to project Y;; has reduced dimension ¢, < n,,
and Proposition 4 thus does not directly solve our problem. Nor does it apply it to the finite-

sample reconstruction of HX based on Xx..,,:, as the spectral density fy,(6), for 9, = Xzin. ¢,

13



is singular. Fortunately, a full rank ¢.-dimensional random vector spanning the same space
as Xz:n.,t is available : the g,-tuple
/!
V/z nat (‘/z;nz,lty cee 7Vz;nz,qyt) where Vz;nz,kt = B*

Z;n .,k

(L)an7t7

of ¥..,.(0)’s first dynamic principal components, which are mutually orthogonal. Proposition 4

thus applies to the (n,+g.) random vector (Y, ;, VZ.,, ;)'. The spectral matrix for that vector is

Zin,t

with Byy (0) = Zy, (0) (ny x ny), Byv(0) = Byon(0)(Pin.,1(0); - - s Painayg. (0)) (ny X q2),
and (since the principal components V..,,_:’s, with spectral densities A..,_ x(#), are mutually
orthogonal) ¥vv(0) = diag(Azin. 1(0), ..., Azin..q. (0)) (g2 X q2).

This yields, for Yj;, a projection (which we propose as a reconstruction of the z-common

component ¢y s + vy i of Yiy)

Xpia = (ga(D) 0 (D)) (., [(D),-p,,  (L))diagAh (L), A0k o (L) Vi
qz
= (ea(L) @ (L) Y ASL (Dp, (DR, (D) Zn
k=1
= Han,z(L)an,t (320)

where (denoting by 0;;(6) the element in ¥, (6) corresponding to the cross-spectrum of Yj
and Zj;)

1 - T is S 1 - T —1 s S
0(L) = =) [/_W 013 (6) d@] L and A7l (D)= = 2 [/_W[Amz,k(e)] L dg| I,

(IAzim. 6(0)|, B = 1,...,q. safely can be assumed to be f-a.e. larger than one: see p. 551 of
Forni et al (2001), Assumption (A) and the comments thereafter; the filters associated with their
inverses then are well defined, and square summable).

Our reconstruction of Yj;’s strongly common component then is

¢y it - —y,nz,z(L)an,t - Vgljl,it‘

Similar definitions, with obvious changes, are made for ¢ .,. Parallel to Propositions 2 and 3,

z,gt*

and ¢

we then have the following consistency result for ¢

y,it z,gt*

PROPOSITION 5. Let Assumptions A1, A2, and A3 hold. Then

: n___ ; n - __
_lim Gyit = Gyt ond  lim b2t = Pzt
min(ny,n.)—oo min(ny,n;)—oo

in quadratic mean for any i, j, and t.
PROOF. See the appendix. O
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It follows from (3.20) that the spectral density of x; 7 ;; is of the form

Z Sy viin(0)12 Ao x(0);

the variance of XZ; ;; therefore writes

AL (6)de (3.21)

zZinz,k

Z 02] pz,j k

j=1

x4z
Var( Xyzn / Z

T k=1

as By v,ik(0) = 22721 005 (0)p=j k(0). Since X7 ;; decomposes into the sum of ¢y ;, and vy, which

are mutually orthogonal, the reconstructed strongly common component ¢! ,, in view of (3.19),

y,it?
has variance

x 4=
Var(¢ yzt / Z

T k=1

2

Zazy pz,]k an, de Z/ |pnkz | Ank( )

7=1

qy T
+ Z / |py;ny,k,i(0)|2>\y;ny7k(9)d9.
k=17"T

Averaged over the subpanel, this yields

2
1 & r
n—y;Var((bryl,it) = Z/sz:l 2310” )Pk (0 )\Z—;iz7k(9)d9
= j
——ZZ/ Pni (0)* Ak (0 d9+_z/ Ay (0
My =1 k=1 ny =

which measures the contribution of the strongly common factors in the total variation of the
y-subpanel. Similar quantities are easily computed for the z-subpanel.
Consistent reconstructions of the weakly common components now readily follow by taking

differences :

T,Z)y it - Xyz it égy;it and wz,jt Xzy Jt ggrvlz;jt'

The contributions of those weakly common components to the total variation are be obtained

along the same lines as above, i.e. for ¢}, we get
)

S T 4z 2
izyvar( pit) = _ZVar it) — —Z/ > Zaw W=ik(0)] AL (6)d6
nyi:1 ’ yzl y21 T =1 [i=1 N,

LSS [ s @010
Yi=1k=1""T

Dividing by niy S, Var(Yy) = % S J7 2 Ay, k(0)dO yields the correponding relative quan-

tities. Up to obvious changes, the formulas for the z-subpanel are identical.
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4 Recovering the factor structure; estimation results

The previous section shows how all components of Yj; and Z;; can be recovered asymptotically
as min(n,,n,) — oo, provided that the spectral density X, and the numbers ¢, ¢,, and ¢, of
factors are known. The estimates ¢}, ¥y, and vy}, all take the form of a filtered series of the

observed process X ;. We have indeed

(b;l,it - HZ nz,z(L)an,t - ;it
- Hz,n Z(L)an tt gz Ny, Z(L)Y K; n Z(L)Xn,t

- [<g;;ny, (L), H,, (L)) — K;;mw)} X
= K(gby;n,z(L)Xn,t’

wzrfl,it = Xzyit—ﬁb;it
= G, (L)Y, — K (D)X g

= [Kpni(D) — (0, B, (1)] Xay
= Kwy;n,z(L)Xm“ and

Vgt = X;:Iyit_xzyit
= Kan(L) anyz( )Yny,t
= [Kjn(L) - (G;nyx ), 0)] X
= sz,nz(L)Xn,ta
with
K5 ni(L) =[G, (D), Hyy, (L)) = Kji(L)]
K, (L) = [ smi(L) — (0, HZnZJ(L))}, and
sz;n,i(L) = [—y,n z( ) (—y My 0 (L)7 O)} .

These three filters all are functions of the spectral density matrix X, (#) which of course in
practice is unknown, as we only observe a finite realization Xg; = (X1, Xn2, -+, Xnr) of Xy

Since its actual value is unknown, we need an estimator X2 () of £,(6). Consistent esti-
mation of the spectral density ¥,(6) requires strengthening slightly Assumption Al into the
following Assumption Al’:

AsSuMPTION A1’. For alln, the vector process {Xn;t € Z} admits a Wold representation of the
form X =302 o Ci€y_p, where ¢, is full-rank n-dimensional white noise with finite fourth
order moments, and the n x n matrices Cy, = (Cyjx) are such that 332 |k||Cijr|"/? < oo for
all i, 7.

Under Assumption A1, if 1 (6), with elements o 1j(0), denotes any periodogram-smoothing

or lag-window estimator of X, (), we have, for all n, 4, j, and £ > 0,

lim P [ sup ‘a,ff,-j(e) — aij(ﬂ)‘ > E] =0
T—o00 0e[—m,m ?

16



(see e.g. Brockwell and Davis 1987, p. 433). In Section 6, we consider lag-window estimators of

the form
M~ '
20(0) = > Tlwee ™ (4.22)
k=—Mrp

where I'}, is the sample covariance matrix of Xp; and X, and wy, := 1 — |k|/(M7 + 1) are
the weights corresponding to the Bartlett lag window of size M. Consistency then is achieved

provided that the following assumption holds:
ASSUMPTION B. My — oo, and M7T~t — 0, as T — oo.

A consistent estimator X1 () of £,(0) however is not sufficient here. Deriving, from this
estimator®’ (), estimated versions KTy (L), KTy (L) and K:;F m,i(L), of the filters Ky, . 5(L),
Ky, ni(L) and K, ., ;(L) indeed also requires an estimation of the numbers of factors ¢, ¢, and ¢,
involved. The only method allowing for such estimation is the idendification method developed
in Hallin and and Liska (2007), which we now briefly describe, with a few adjustments taking
into account the particular notation of this paper. For a detailed description of the procedure, we
refer to the section entitled “A practical guide to the selection of ¢” in Hallin and Liska (2007).

The lag window method described in (4.22) provides estimations £2(6;) of the spectral
density at frequencies 0, := wl/(Mp + 1/2) for l = —Mp, ..., Mp. Based on these estimations,
consider the information criterion

T 1 < 1 S +
1C,.(k) :=log o i;ﬂ Myt 1 l:_ZMT Ani(01) | +kep(n,T), 0 <k < Guax, c€ Ry, (4.23)

where the penalty function p(n,T) is o(1) while p~1(n,T) = o (min(n, M2, MT_1/2T1/2) as both
n and T tend to infinity, and ¢y, is some predetermined upper bound; the eigenvalues AZ (6))

are those of £1(6;). Depending on ¢ > 0, the estimated number of factors, for given n and T, is

qf;c = argminogkgqmaxlcg;c(k). (4.24)

Hallin and Liska (2007) prove that this qg;c is consistent for any ¢ > 0. An “optimal”
value ¢* of ¢ is then selected as follows. Consider a J—tuple of the form qépfhj, j=1,....J,
where n; = (ny;,n.,;) with 0 < ny < ... < nyg=mny, 0 < nyq < ... < nyy = ng, and
0<Ty <...<Tjy=T. This J—tuple can be interpreted as a “history” of the identification
procedure, and characterizes, for each ¢ > 0, a sequence qz}hj, j=1,...,J of estimated factor

numbers. In order to keep a balanced representation of the two blocks, we only consider .J—tuples
along which n,.;/n..; is as close as possible to n,/n..
The selection of ¢* is based on the inspection of two mappings: ¢ — qg;c, and ¢ — S., where
=J- Z] 1(‘111],0 J~ ZJ 1 qn], ¢)? measures the variability of qZﬁ;c over the “history”. For
n and T large enough, S. exhibits “stability intervals”, that is, intervals of ¢ values over which

S. = 0. The definition of S, implies that ¢ +— q;f;c is constant over such intervals. Starting in
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the neighborhood of ¢ = 0, a first stability interval (0, cf) corresponds to qg;c = (max; Choose c*
as any point in the next one, (¢, c; ). The selected number of factors is then ¢l = qg;c*. The
same method, applied to the Y- and Z-subpanels, yields estimators qu and qg:z of g, and g;
qtj;yz = qu + qu — qg provides a consistent estimator of g,..

The success of this identification method however also requires strengthening somewhat the
assumptions; from now on, we reinforce Assumption A1’ into Assumption A1” and Assump-
tions A2 and A3 into Assumptions A2’ and A3’

AssumpPTION A1”. Same as Assumption A1, but (i) the convergence condition on the
Cijk’s is uniform, sup; jen > pe— oo Cij el |k[Y? < oo, and, for all 1 < £ <4 and 1 < j < ¢,
SUD;, iy [ Dby o0 - -+ Dby 1 =—oo | Ciroig (K15 - - .,k'g_l)” < 0.

AsSUMPTION A2'. The entries 0;;(0) of 3n(0) (i) are bounded, uniformly in n and 6 —that is,
there exists a real ¢ > 0 such that 0;;(0) < ¢ for any i,j € N and 0 € [, 7] —and (i) they have
bounded, uniformly in n and 0, derivatives up to the order two—mnamely, there exists Q < o
such that sup; ;en supy }%0@'(9)’ <Q,k=0,1,2.

AssuMPTION A3'. Same as Assumption A3, but moreover
(1) Ayiny,q,(0) and X, 4. (0 diverge at least linearly in n, and n., respectively, that is,
lim inf,, o infy n;l)\y;ny,qy(ﬁ) >0, and liminf,,, o infgn; '\, 4. (0) >0, and

(1) both ny/n. and n/n, are O(1) as min(n,,n,) — oco.

This “at least linear” divergence assumption is also made in Hallin and Liska (2007), and
can be considered as a form of cross-sectional stability of the two panels under study.

Once estimated values of the numbers ¢, ¢, and ¢, of factors are available, the estimated
counterparts of of Ky ., (L), Ky (L) and K, ., ;(L) are obtained by substituting 21(0), ¢Z,
q,:fy and q,:fz for ¥4(0), ¢, gy and ¢, in all definitions of Section 3, then truncating infinite sums
as explained in Section B of Forni et al (2000) (a truncation which depends on ¢, which explains
the notation), yielding KT?f;n7i(L), KTz;n’i(L) and KZE;M(L). Parallel to Proposition 3 in Forni
et al (2000), we then have the following result.

PROPOSITION 6. Let Assumption A1”, A2, A3, and B hold. Then, for all ¢, > 0 and n > 0,
k =1,2,3, there exists Ny(€1, €2, €3,Mm1,M2,M3) such that

p HKTt. * (L)X — byt

— yfnvl

> 51} <m, P HKTt-;,i(L)Xn,t — Pyt

=Py

> 62} < 12,

and
P HKTt vi(D) Xt — Vit

0,

> E3:| < 13,
for all t = {(T) satisfying, for some a,b such that 0 < a <b <1,

(T HT
a< liminf% < limsupM <b,

T—o0 T—o00

all n > Ny and all T larger than some Ty(n, €1, €2, €3,M1,72,73).
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PrROOF. The proof consists in reproducing, for each projection involved in the reconstruction
of @yits Yy.ie and vy, the proof of Proposition 3 in Forni et al (2000). Lengthy but obvious
details are left to the reader. ]

Consistent estimations of the various contributions to the total variance of each subpanel
can be obtained either by substituting estimated spectral eigenvalues and eigenvectors for the
exact ones in the formulas of Section 3, and replacing integrals with the corresponding finite
sums over Fourier frequencies, or by computing the empirical variances of the estimated strongly

and weakly common, strongly and weakly idiosyncratic components.

5 Dynamic factors in the presence of K blocks (K > 2).

The ideas developed in the previous sections readily extend to the more general case of K > 2
blocks. Instead of Yj; for the first block and Zj; for the second one, denote all observations
as X; (i = 1,...,n), with an additional label [k] indicating, when needed, that X;; belongs
to block k, k = 1,..., K: the notation X[j,;; for instance means that the first series in the
panel belongs to the first block. Marginal k-common and k-idiosyncratic spaces are defined in
an obvious manner by considering the kth block as an individual subpanel. The number of
mutually orthogonal components in the decomposition (2.7) of each observation X[).;; however
increases exponentially with K, and the general case requires 2% distinct components, with

somewhat heavy notation: for each ¢ and ¢, X;; = Xp),;; decomposes into

(a) one strongly common component ®(k);it» denoting the projection of X(;.;; on the intersection

of the K marginal common spaces,

(b) 25=1—1 weakly common components, of the form VK] (k1 yeoke)-(kegr ki1 );it> denoting the
projection of X[;).;; on the intersection of the k-, k1-, ..., k;-common and kyi1-, ..., k-1~
idiosyncratic spaces, where ({k‘l, v ket {kogq, - k‘K_l}) ranges over all partitions of
{1,...,k—1,k+1,..., K} into two nonoverlapping nonempty subsets, £ = 0,1,..., K —2;

(c) 25~1—1 weakly idiosyncratic components, of the form VK] (k1. k) .it» denoting

kkey,nkx—1)
the projection of X[),;; on the intersection of the ki-, ..., k;-common and k-, kpy1-, ...,
kx _1-idiosyncratic spaces, where ({k‘l,...,k:g}, {kps1, - .,k‘K_l}) similarly ranges over
all partitions of {1,...,k — 1,k +1,..., K} into two nonoverlapping nonempty subsets,

(=1,..., K —1;
(d) one strongly idiosyncratic component {|j).;4, denoting the projection of Xp).;; on the inter-
section of the K marginal idiosyncratic spaces.
In view of the notational burden, we will not pursue any further with formal developments,
since it is clear that the methods previously described, with a well-designed sequence of projec-

tions, allow for a consistent reconstruction of all those components.

An application for K = 3 is considered in Section 6.2.
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6 Real Data Applications

We applied our method to a dataset of monthly Industrial Production Indexes for France, Ger-
many, and Italy, observed from January 1995 through December 2006. All data were preadjusted
by taking a log-difference transformation (7" = 143 throughout—one observation is lost due to
differencing), then centered and normalized using their sample means and standard errors. A

full description of the panels is given in Table 7.2.

6.1 A two-block analysis

First consider the data for France and Germany. Using Y;; or the Fench data and Zj; for
the German, we have n, = nrp = 96, n, = ng = 114, hence n = npg = 210. Spectral
densities were estimated from the pooled panel using a lag-window estimators of the form (4.22),
with truncation parameter My = 0.5v/T = 5. Based on this estimation, we ran the Hallin
and Liska (2007) identification method on the French and German subpanels, with sequences
npj =96 —-2j,5=1,..., 5and ng; = 96 — 2j, j = 1,..., 5, respectively, then on the pooled
panel, with sequence npg ; = 210—25, j = 1,..., 8 and an “almost constant ” proportion 96,/210,
114/210 of French and German observations (namely, [96npq j/210] French observations, and
|114npq ;/210] German ones. In all cases, we put 7; =T = 143, j = 1,..., 5. The range for
¢ values, after some preliminary exploration, was taken as [0,0.0002,0.0004,...,0.5], and @
was set to 10. In all cases, the panels were randomly ordered prior to the analysis. The penalty
function was p(n,T) = (min [n, M3, MT_1/2T1/2D_1/2.

The results are shown in Figure 6.1, and very clearly conclude for q%';szG) = 3 (for ¢ €
[0.1798,0.1894]), ¢} = 2 (for ¢ € [0.2222,0.2344]), and ¢ 5 = 3 (for ¢ € [0.2032,0.2138]).
This identification of 3 joint common factors, 3 German-common and 2 French-common factors
also provides an estimation of 2 strongly common factors (as ¢y, = ¢y + ¢, — ¢q). The French-
common factors thus are strongly common (no weakly common space), whereas one German-
common factor is French-idiosyncratic.

Table 6.1 is summarizing these findings. For each of the mutually orthogonal subspaces
appearing in the decomposition, we provide the percentage of total variation explained in each
country. The two strongly common factors jointly account for 9.2 % of German total variability
and 20.4 % of French total variability. Germany has an “all-German”, French-idiosyncratic,
common factor explaining 16.7 % of its total variance. Although French-idiosyncratic, that
German factor nevertheless still accounts for 2.6 % of the French total variability. Estimated

percentages of explained variation were obtained via estimated eigenvectors and eigenvalues.

6.2 A three-block analysis

Next consider the three-block case resulting from adding the corresponding Italian Industrial

Production index, with n; = 91 into the previous panel, yielding K = 3. The series length is
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Figure 1: Identification of the numbers of factors for the France-Germany Industrial Production
dataset. The three figures show he simultaneous plots of ¢ — S, and ¢ — qgn needed for
this identification, ((a) and (b)) in the marginal French and German subpanels, and (c¢) in the

complete panel, respectively.
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3 joint 0 factor 2 factors 1 factor
common weakly F-common strongly weakly F-idiosyncratic strongly
factors weakly G-idiosyncratic common weakly G-common idiosyncratic
France (vr) 0% (¢pr) 20.4 % (vr) 2.6 % (€p) T7.0 %
Germany (va) 0 % (9pc) 9.2 % (va) 16.7 % (&q) 741 %

Table 1: Decomposition of the France-Germany panel data into four mutually orthogonal com-

ponents, with the corresponding percentages of explained variation.

still 7" = 143. Adapting the notation of Section 5, let X|p).;; correspond to the French, Xg).is
to the German, and X|z},;; to the Italian subpanel, respectively.

From the resulting panel (n = npgr = 301), we can extract seven subpanels—the three
panels we already analysed in Section 6.1, one new one-block subpanel (the marginal Italian
one, with n; = 91) and two new two-block subpanels (the France-Italy one, with np; = 187 and
the Germany-Italy one, with ng; = 205, respectively). Analyzing these new subpanels along the
same lines as in the previous section (with, using obvious notation, n; ; =91 —-2j, j =1,..., 5,
nerj =191-2j5, 5 =1,...,8, npr; =187—-24, j=1,..., 8, and npgr; =301 - 25, =1,...,
15), still with My = 0.5VT = 5, the same penalty function and the same ¢,,,, = 10 as before,
we obtain the results shown in the four graphs of Figure 6.2.

These graphs again very clearly allow for identifying a total umber of qa rar = 4 joint
common factors (for ¢ € [0.1710,0.1718]), anI = 3 (for ¢ € [0.1838,0.1886]), inl = 4 (for
¢ € [0.1786,0.1800]), and ¢}, ; = 2 marginal Italian factor (for ¢ € [0.2118,0.22218]). Along
with the figures obtained in Section 6.1 for France and Germany, this leads to the results
summarized in Figure 6.2. The space spanned by he three blocks now decomposes into eight
mutually orthogonal subspaces: seven (jointly) common ones, namely, the strongly common
(F,G,I-common), the F,G-common/I-idiosyncratic, the G,I-common/F-idiosyncratic, the F,I-
common/G-idiosyncratic, the F-common/G,I-idiosyncratic, the G-common/F I-idiosyncratic,
the I-common/F,G-idiosyncratic one, and the strongly idiosyncratic (F,G,I-idiosyncratic) one.
Since the total number of factors is 4, three at least of the common subspaces must have dimen-
sion zero (they only contain the origin). The relations between the various (dynamic) dimensions

of the seven common spaces are very easily obtained; for instance
q(annG)vFG: q”F7F+ qnG7G_ q(npﬂlg)?
a relation which we already used in Section 6.1, or

Anpng),FG= np,Ft Gng,Gt Gnp, 0 = Qnp ng),FG~ QUnpnr),FI1~ Angng),GI T Anpngnr), FGI-

A two-dimensional table however cannot display the various interrelations between the seven

common subspaces, which we rather provide in the diagram shown in Figure 6.2, along with
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Figure 2: Identification of the numbers of factors for the France-Germany-Italy Industrial Pro-

duction dataset. The four figures show he simultaneous plots of ¢ — S. and ¢ — qZ:n needed for

this identification: (d) for the marginal Italian subpanel, ((e) and (f)) for the France-Italy and

Germany-Italy subpanels, and (g) for the complete three-country panel, respectively.
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the various percentages of explained variances.

common to the three countries under study.

FRA

NCE

GERMANY
F,G-common

F-common
G,l-idiosyncratic

/

F,G,l-idiosyncratic
strongly idiosyncratic

EF 1 72.7% EG 170.9%

Figure 3: Decomposition of the France-Germany-Italy panel data into eight mutually orthogonal
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components, with the corresponding percentages of explained variation.

7 Appendix.

7.1 Proof of Lemma 1.

PRrOOF. Denote by (:)y the set (with Lebesgue measure zero) of 6 values for which divergence
in Assumption A2(i) does not hold. Similarly define ©,, and let © := ©, U ©,: O also has

Lebesgue measure zero. Since X, (¢) is a principal submatrix of ¥, (), a classical result (see

24

Inspection of that diagram reveals that the
three countries all exhibit a high percentage of about 60 % of strongly idiosyncratic variation.
As already noted, France has no common components but the two shared with Germany and
Italy (one), and with Germany alone (one). Both Italy and Germany have a “national common

component. Italy’s only “non national” common factor is the strongly common one, which is



Corollary 1, page 293, in Lancaster and Tismenetsky 1985) implies that, for any n = (ny,n.)
and 0, Ayip,.i(0) < Ani(0), i = 1,...,ny. Since Ayp, 4,(0) diverges for all 6 € © as n, — oo,
so does Ang,(#). The same result of course also holds for the A, ;’s. It follows that, for all
0 € O, Anmax(qy.q.) () diverges as min(ny, n,) tends to infinity.

Note that the same result by Lancaster and Tismenetsky (1985) also implies that, for all #
and k, Ap x(6) is a monotone nondecreasing function of both n, and n. and, therefore, either is
bounded or goes to infinity as either n, or n, — oo.

Next, let us show that Ang,4q.11(0) is bounded as min(n,,n.) — oo, for all § € ©.
For all 8 € O, consider the sequences of n-dimensional vectors (,,(0) := ((;my(ﬁ),f'zmz(ﬁ))’
which are orthogonal to the ¢, + ¢, vectors (p’ym%l(ﬁ),O, 0 (Pl g, (0),0, ..., 0)" and
0,...,0,p%.1(0)) 5. (0,...,0,p,.,,.,.(0)). The collection of all such &,’s is a linear sub-
space Z,(0) of dimension at least n — ¢, — ¢,. For any such §,(#), in view of the orthogonality

of Ey;ny (0) and py;ny,l(e)a <y Pying,qy () (resp., of Ez;nz (0) and pZ;nz,1(9)7 -3y Pzinz,qg. (9)),

1€ (0)| 725 (0)2n(0)6,(6)

= 1l %€, (O)Zyin, (0)&n, (0) + en (O] €, (O)Bin. (0., ()
Hn (O30, (O)Zyzin (0. (0) + € (O)] 65,0, ()% ()€ i, (6)
2(I1,..., O €0, OV in,Eyin, 0) + €., (O 620 (0)i0.6.10.(0) )
< Q(Az;ny,qyﬂ(e) + Ainz,qzﬂ(@))

for all # € © and n = (ny,n,). Since )\z;ny7qy+1(0) and )\z,nz’qzﬂ(@) are bounded, for any
6 € O, as min(ny,n,) — oo, so is &, (0)Xn(0)€,(8). Hence, for all 6 € © and n = (ny,n.),

En (with dimension at least n — g, — ¢.) is orthogonal to any eigenvector associated with a

IN

diverging sequence of eigenvalues of ¥, (). It follows that the number of such eigenvalues
cannot exceedg, + ..
Summing up, for all # € O, the number of diverging eigenvalues of ¥,,(#) is finite—denote it

by ¢—and comprised between max(gy,q.) and g, + ¢., as was to be shown. ]

7.2 Proof of Proposition 5.

The proof of Proposition 5 is an extension of the proof of Proposition 2 in Forni et et al (2000).

We systematically denote by ¢y;ny,t’ Xyiny,t» - - - column ny-vectors of the form (ysits- - s Pymyt)
(Xys1ts - - - 7Xy§nyt)/ , ... ; these vectors thus belong to the “exact” strongly common, the “exact”
y-weakly common, ... spaces. The notation ¢;t, XZ;yt’ ... on the contrary is used for the
corresponding “reconstructions” (¢g.q¢, - - - ,(JS?myt), , (XZ;ylt’ R XZ;ynyt), , ... ; these vectors which
belong to the finite-(n,,n.) approximations of the same “exact” strongly common, “exact”
y-weakly common, ... spaces. Similar notation is used for Z,,, ;.

With this notation, each observation Y, ;, for given n = (ny,n.), decomposes into
— _ n n n n
Y”yﬂf - ¢y;ny,t + 1/’y;ny,t T Vyinyt + gwy;ny,t =@yt "/)y;t TVt gﬂcy;t’
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where
qbgtj;it + Vg?;zt = Ez,nz,z(L)Z EZ nz,z(L)(‘ﬁz;nz,t + wz;nz,t + Vit + gxz;nz,t)'

Hence, letting Xy..it 1= (Gyit + Vysit) and Xy, i = Hy o (L) (@4, ¢ + ¥, 1), We have

{Xyzn't - Xyzmz,it] + [wy;it - /l/};;;it:| + [&cy;it - g?y;it} = Hz;nz,i([/) [Vzmz,t + gxz;nz7t}‘ (7.25)

The outline of the proof is as follows. We first show (Lemma 2) that the spectral density of
H.,. .(L) [VZ;nz7t+§mz;nz, } Hj.,. (L)..,. . tends to zero, f-a.e. uniformly, as n, — oo, which
implies that the corresponding process tends to zero in quadratic mean. The same therefore also
holds for the left-hand side of (7.25). Denote by A,,_ ;(#) the spectral density of that right-hand
side, by B,,..i(0), Cn,i(), and Dy, ;(0) the spectral densities of xy..it — Xyzimn..its Vysit — Yyit» and
Erysit — §;‘y;it, respectively (all these spectral densities are scalar). Noting that xy..it — Xyzimn..it
is z-common, whereas 1),.;; and ;¢ are z-idiosyncratic, and that vy.;; is y-common whereas

Erysit 1s y-idiosyncratic, we have that

A, i(0) = By, i(0) 4 Cn,i(0) + Dni(0)
—2R(Eni(0)) — 2R(Fni(0)) + 2R(Gn,i(0)) — 2R(Zni(0)) — 2R(Tn,i(0))

where £ni(0), Fn,i(0), Gni(0), Zni(0) and Jn;(0) are the cross-spectra of Xy..it — Xyzin. it and
Yty Xyzsit — Xyzma,it and &gy, Yy and &5y, hye and & 4y, and Py, and &gyt respectively,
and R(z) stands for the real part of a complex z € C. Whe then show (Lemma 3) that those
five cross-spectra all pointwise converge to zero, -a.e., as min(n,,n,) — oo. It follows that
By..i(0), Cn,i(#), and Dy ;(#) also pointwise converge to zero #-a.e. min(n,,n,) — oco; moreover
(Lemma 4), their norms are #-a.e. bounded. These two facts jointly imply that the corresponding

processes tend to zero in quadratic mean, as min(n,,n,) — co. This concludes the proof.

LEMMA 2. For all t, Hy ., (L), , tends to zero in quadratic mean, with spectral densities
tending to zero pointwise 0-a.e.-uniformly as n, — oo.
PrOOF. With the notation of Section 3, the filter H., (L) defined in (3.20) can be written as

T2Yinz,i

—y,nz,l Z )\z nz,k EYV;ik(L)EZ;nZ’k(L)7

where ¥yv.;;(0) stands for the (scalar) cospectrum of Yy and V.., r;. Then, in view of the

mutual orthonormality of eigenvectors,

qz qz
Hyon i (0)17 =Y Ak OSyvan(O)* = > 1A k(O [Syvr(0)
k=1 k=1

The Cauchy-Schwarz inequality implies that [Eyv.ix(0)* < |04(0)]| A sin. £(0)|. Hence,
|Hy;nz,z < Ci Z |)‘z nz,k
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a quantity which, in view of Assumption A3(ii), tends to zero as n, — oo. The claim then

follows from Forni et al (2000)’s Lemma 3 and the fact that &,.,,_, is an idiosyncratic process.[]

LEMMA 3. The cross-spectra En i(0) of Xyzit — Xyzm.,it and Vit Fn,i(0) of Xyz:it — Xyzin.,it and
wyiits Ini(0) of ¥y and €8 1, Tni(0) of Yy and &4, and Tni(0) of Uy and Euy.ir tend to
zero pointwise, 0-a.e., as n — oo.
PROOF. Since Xy.:it—Xyz:n.,it 18 z-common, it admits a representation of the form Z] 1 G ij (L),
where a,, ;;(L), j = 1,...,q. are square-summable filters and w1, ..., Usq.¢ are ¢, mutually
orthogonal white noise processes spanning the z-common space HX and providing for the Z;;’s
a dynamic factor representation of the form (2.4); the existence of such a representation (not its
unicity) is guaranteed by Proposition 1.
Contrary t0 Xyz;it — Xyzm.,it, which belongs to the “exact” z-common space HY, ¢y, is a
“reconstructed” quantity, belonging to the orthogonal complement, HS. .n.» Sy, of the space HY,,,_
spanned by the first ¢, dynamic principal components V;;lt, .. V"zzt of ¥..,.(0) (the spectral
densities Az, 1(0), ..., Azin. q.(0) of which diverge). Associated with those dynamic principal

components, consider the normalized dynamic principal components W3 KT , W= . where

2;qzt)

Whe = AL (L)VEs = A0 (L)p!

z;jt 2n2,J zijt T Szng,j _z;nz,j(L)Z"Z’t'

For any n,, the WZn;t’s clearly, are spanning the same reconstructed z-common space HY,, as
the VZ’?;t’s themselves, but their covariance is a g, X g, unit matrix. The convergence of HY,,
to HX is characterized in the following way (see Lemma 4 of Forni et al 2000). Projecting
W2 o= (Wi, ..., Wi ;) onto HY yields

zZ; A
n /
Wzﬁt - Azmz (L)(UZ;lta s 7“2;qzt) + Rzmzﬂfv

where A, (L) is an appropriate n, X n, matrix of square-summable filters and the residual
R..,. : is orthogonal to HX. They show that the spectral density matrix of R..,_; converges to
zero @-a.e., and that R..,_ ; itself converges to zero in quadratic mean, as n, — co. Moreover,

the projection onto HY,, of u,;:= (Uziity - -+ Usg.t) takes the form

= AL, (LYW W) + San

Zn z; 2;qzt

where the spectral density of S..,,; also converges to zero f-a.e., and S,.,_; also converges to
zero in quadratic mean, as n, — oo.
Turning back to the cross-spectrum &, ;(0) of Xyziit — Xyzin.,it and Yy.it» we thus have
Xyzjit — Xyzin.,it = aé(L)uz,t = a;(L)AZ N (L_I)WZZt + a;(L)SZWszt’
with aj, (L) := (an.i1(L),. ., an.iq.(L)). Because 1y, is orthogonal to the space HY

Zmy

spanned by ngt, the cross-spectrum &, ;(6) actually is the cross-spectrum between a}(L)S..,_ +
and -

wit- Since aj(L)S.,,. ¢ has spectral density aj(e 19)25 (0)a;(e'?) tending to zero f-a.e. as

2Nz
n, — 00, and since the spectral density of ¢y}, is dominated by that of Yj;, the squared modulus

of &£n,i(0) also tends to zero f-a.e. as n, — oo.
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The argument for the cross-spectrum Fy, ;(0) of Xyz:it — Xyzin. it and &oysie 18 entirely similar.
As for the cross-spectrum Gy, ;(6) of Yy and &y, note that, parallel to the decompositions
of H into products of mutually orthogonal subspaces H = HX x HS, H = HX x HS, H =
Hy % Hg, etc., based on the “exact” common/ idiosyncratic components, we have, for each n,
decompositions of the form H = HX x H5, H = HY.,,, X HE, o H=Hp, X Hyn , etc., based
on the “reconstructed” common/idiosyncratic components. Here, &7, ;; belongs to H&. On the

other hand, ¢;.;, was defined as
n z J— n z n J— z
Vit = Xyt — Xzt T Vagit = Xysit — Xyeit T Xaysit — Xoyoit = Xagsit — Xyait-
Since, by construction, x3,.;; € Hy, and Xyz 4+ € HX,,,, they both are strictly orthogonal to
€ Hn and the cross-spectrum Gy, ;(0) is #-a.e. equal to zero for any n.
Sxy it bl p 5 q y

The argument for the cross-spectra In,i(e) of Py and &7, 44, and the cross-spectra Jn i(0)

of ¢y, and &yy.ir 1s entirely similar. O
LEMMA 4. The spectra By,_;(6), Cni(6),and Dy (0) are 0- a.e. bounded.
PRrROOF. We successively consider B,,_;(6), Cn(0),and Dy, ;(0).
(a) The spectral density By,_;(6) of xyz:it — Xyzmn. it has squared modulus
|Bo.,i(0)]F = aj(e™)ai(e),
which is bounded since the a,,_ ;;(L)’s are square-summable filters.

(b) In order to show that the spectral density Cni(0) of ¥yt — ¥y, is f-a.e. bounded, it is
sufficient to show that the spectral densities of ¢y and ¢y.;, are. The spectral density
of 1,.;+ is dominated by the spectral density of Y;; and therefore is - a.e. bounded in view

3 n
of Assumption A2. As for ¢;;,, we have
P = Y =t =X —HE L (L) Zy VR
Yyt Xyﬂ't yit — Xy,it — yin, i nz,t it

(Lt (W)
= ervly;it - ﬂy.nz,i(L)an7t
= K (DXn,—H:, (D)Zp. 4

=Xyin,t ——Ynz,

The spectral density of Kj ., ;(L)Xn, is

q
Kan(e)zn( ynz Z’pnkz ’ )\nk( )

which is bounded by the spectral density of X;; (see Lemma 1 of Forni et al 2000). Similarly
as in the proof of Lemma 2, the spectral density of Hy.,, ;(L)Zp, ; writes

Z [Svvan@AZL, 4O)] Auine k(0) N2 4OV v, (0)]
= Z Sy v (@) AL, £(0) < ¢:00(0) < gzci,
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and therefore is also 6- a.e. bounded; - a.e. boundedness of Cy, ;(#) follows.

(c) Turning to the spectral density Dn;(0) of &pyir — € note that the spectral density of

n
Ty;it?
Ery:it, being dominated by that of Yy, is 6- a.e. bounded because of Assumption A2; as for

*
==yn,

Y is 6- a.e. bounded by Assumption A2, while the spectral density of K. (L)X is -

==y,

Eryits 1t is of the form Yy — x7, ;0 = Yie — (L)Xn,t, where the spectral density of of

a.e. bounded because K, ,, ;(L) has square-summable coefficients. The claim follows. [

ACKNOWLEDGEMENT. The authors thank Marco Lippi and Mario Forni for many stimulating

discussions and helpful comments.

References

[1] d’Agostino, A., and D. Giannone (2005), Comparing alternative predictors based on large-
panel dynamic factor models, ECB Working Paper #680, Frankfurt, European Central
Bank.

[2] Aiolfi, M., L. Catao, and A. Timmerman (2006), Common factors in Latin America’s
business cycle, Working Paper 06/49, International Monetary Fund.

3] Altissimo, F., A. Bassanetti, R. Cristadoro, M. Forni, M. Hallin, M. Lippi, and L. Reichlin
) Y ) Y Y Y pp Y
(2001), A real time coincident indicator of the euro area business cycle. CEPR Discussion

Paper 3108, London: Center for Economic Policy Research.

[4] Angelini, E., J. Henry, and R. Mestre (2001). Diffusion index based inflation forecasts for
the euro area, ECB Working Paper 61, Frankfurt: European Central Bank.

[5] Artis, M., A. Banerjee, and M. Marcellino (2002). Factor forecasts for the UK, CEPR

Discussion Paper 3119, London: Center for Economic Policy Research.

[6] Bai, J., and S. Ng (2002). Determining the number of factors in approximate factor models.
Econometrica 70, 191-221.

[7] Bai, J., and S. Ng (2007). Determining the number of primitive shocks in factor models;

Journal of Business and Economic Statistics 25, 52-60.

[8] Bernanke, B. S. and J. Boivin (2003). Monetary policy in a data rich environment. Journal
of Monetary Economics 50, 525-546.

[9] Boivin, J. and S. Ng (2006). Are more data always better for factor analysis? Journal of
Econometrics 132, 169-194.

[10] Brillinger, D.R. (1981). Time Series : Data Analysis and Theory. Holden-Day, San Fran-

cisco.

29



[11]

[22]

[23]

Bruneau, C., De Bandt, A., Flageollet, A., and Michaux, E. (2003). Forecasting inflation

using economic indicators: the case of France. Working Paper 101, Paris: Banque de France.

Campbell, J.Y., A'W. Lo, and A.C. MacKinlay (1997). The Econometrics of Financial

Markets, Princeton: Princeton University Press.

Chamberlain, G. (1983). Funds, factors, and diversification in arbitrage pricing models.
Econometrica 51, 1281-1304.

Chamberlain, G. and M. Rothschild (1983). Arbitrage, factor structure and mean-variance

analysis in large asset markets. Econometrica 51, 1305-1324.

Den Reijer, A.H.J. (2005). Forecasting Dutch GDP using Large Scale Factor Models. DNB
Working Paper 28, Amsterdam, De Nederlandsche Bank.

Dreger, C., and Schumacher, C. (2004). Estimating large scale factor models for economic
activity in Germany. In A. Wagner, ed., Jahrbicher fiir Nationalokonomie und Statistik,
Stuttgart: Lucius & Lucius Verlagsgesellschaft, 731-750.

Engle, R.F. and M.F. Watson (1981). A one-factor multivariate time series model of

metropolitan wage rates. Journal of the American Statistical Association 76, 774-781.

Favero, C., M. Marcellino, and F. Neglia (2005). Principal components at work: empirical
analysis of monetary policy with large data sets. Journal of Applied Econometrics 20, 603-
620.

Forni, M., D. Giannone, M. Lippi, and L. Reichlin (2005). Opening the black box: identify-
ing shocks and propagation mechanisms in VAR and factor models. IAP Technical Report
Series TR # 0482, Université catholique de Louvain.

Forni, M., M. Hallin, M. Lippi, and L. Reichlin (2000), The generalized dynamic factor

model: identification and estimation, the Review of Economics and Statistics 82, 540-554.

Forni, M., Hallin, M., Lippi, M. and L. Reichlin (2003). Do financial variables help fore-
casting inflation and real activity in the Euro area? Journal of Monetary FEconomics 50,
1243-1255.

Forni, M., M. Hallin, M. Lippi, and L. Reichlin (2004). The generalized dynamic factor

model: consistency and rates, Journal of Econometrics 119, 231-255.

Forni, M., M. Hallin, M. Lippi, and L. Reichlin (2005). The generalized dynamic factor
model: one-sided estimation and forecasting, Journal of the American Statistical Associa-
tion 100, 830-840.

Forni, M., and M. Lippi (2001). The generalized factor model: representation theory, Econo-
metric Theory 17, 1113-1141.

30



[25]

[30]

[31]

[38]

Forni, M., and L. Reichlin (1998). Lets get real: a factor analytical approach to disaggre-
gated business cycle dynamics, Review of Economic Studies 65, 453-473.

Geweke, J. (1977). The dynamic factor analysis of economic time series. In D.J. Aigner
and A.S. Goldberger, Eds, Latent Variables in Socio-Economic Models, North-Holland,

Amsterdam.

Giannone, D. and T. Matheson (2007). A new core inlaion index for New Zealand. Inter-
national Journal of Central Banking 3, 145-180.

Giannone, D., L. Reichlin, and L. Sala (2005). Monetary policy in real time. In M. Gertler
and K. Rogoff, Eds, NBER Macroeconomic Annual 2004, Cambridge, M.I.'T. Press, 161-
200.

Giannone, D., L. Reichlin, and L. Sala (2006). VARs, factor models and the empirical

validation of equilibrium business cycle models, Journal of Econometrics 132, 257-279.

Hallin, M. and R. Liska (2007). Determining the number of factors in the general dynamic
factor model, Journal of the American Statistical Association 102, 603-617.

Ingersol, J. (1984). Some results in the theory of arbitrage pricing. The Journal of Finance
39, 1021-1039.

Lancaster, P. and M. Tismenetsky (1985). The Theory of Matrices, 2nd Edition, Orlando:

Academic Press.

Marcellino, M., J. Stock, and M. Watson (2003). Macroeconomic forecasting in the euro

area: country specific versus area wide information. Furopean Economic Review 47, 1-18.

Nieuwenhuyzen, C. (2004). A generalized dynamic factor model for the Belgian economy.

Journal of Business cycle measurement and Analysis 2, 213-248.

Sargent, T.J. and C.A. Sims (1977). Business cycle modelling without pretending to have
too much a priori economic theory. In C.A. Sims, Ed., New Methods in Business Research,

Federal Reserve Bank of Minneapolis, Minneapolis.

Schneider, M., and Spitzner, M. (2004). Forecasting Austrian GDP using the generalized

dynamic factor model. Working Paper 89, Vienna: Osterreichische Nationalbank.

Stock, J. H., and M. W. Watson (1989). New indices of coincident and leading indicators.
In O. J. Blanchard and S. Fischer, Eds, NBER Macroeconomics Annual 1989, Cambridge:
M.I.T. Press.

Stock, J. H. and M. W. Watson (2002a). Macroeconomic forecasting using diffusion indexes,
Journal of Business € Economic Statistics 20, 147-162.

31



[39] Stock, J. H. and M. W. Watson (2002b). Forecasting using principal components from a
large number of predictors, Journal of the American Statistical Association 97, 1167-1179.

[40] Stock, J. H. and M. W. Watson (2005). Implications of dynamic factor models for VAR
analysis, NBER Working Paper 11467.

[41] Yao, T. (2008). Dynamic factors and the source of momentum profits. Journal of Business
& FEconomic Statistics 26, 211-226.

32



NACE code  Description Germany | France | Ttaly
E401____ Production and distribution of electricity x x x
E402___ Manufacture of gas; distribution of gascous fucls through mains X x X
T403  Steam and hot water supply x

CA101 _ Mining and agglomeration of hard coal x x x
CAT02 __ Mining and fon of lignite x
CA103___ Extraction and agglomeration of peat x
CAILL__ Extraction of crude petroleum and natural gas x X x
CATI2__ Service activities mcidental to oil and gas extraction excluding surveying x
CBII___ Quartying of stone x x
CBI42  Quarrying of sand and clay x X x
CB143 _ Mining of chemical and fertilizer minerals x x
CBI4___ Production of salt X x x
CBI45  Other mining and quarrying n.e.c X x x
DA151 _ Production, processing, preserving of meat, meat products x x
DAI52 __ Processing and preserving of fish and fish products x x x
DAI53___ Processing and preserving of fruit and vegetables X x x
DAI54  Manufacturc of vegetable and animal ofls and fats X X x
DAI55  Manufacture of dairy products x x x
DAI56___ Manufacturc of grain mill products, starches and starch products X x x
DAT57  Manufacturc of prepared animal feeds x x x
DAI58  Manufacture of other food products x x x
DAT50 __ Manufacture of beverages x x x
DBI71___ Proparation and spinning of textile fibres x x x
DBI72 Textile weaving X x x
DBI73  Finishing of textiles x x x
Manufacture of made-up textile articles, except apparel x x x
Manufacture of other textiles x X x
Manufacture of knitted and crocheted fabrics x x x
Manufacture of knitted and crocheted articles x x x
NManufacture of leather clothes x x
Manufacture of other wearing apparel and accessorics x X x
Dressing and dyeing of fur; manufacture of articles of fur x x
Tanning and dressing of leather X x
DCI92  Manufacture of luggage, handbags and the like, saddler X X
DC193  Manufacture of footwear x x x
DD201 __ Sawmilling and planing of wood, impregnation of wood x x
DD202  Manufacturc of vencer shects; manufacture of plywood, laminboard, particle board, fibre board and other pancls and boards X x
DD203  Manufacture of builders’ carpentry and joinery x x x
DD204___ Manufacture of wooden containers x x x
DD205___ Manufacturc of other products of wood; manufacture of articles of cork, straw and plaiting materials x
DE211 Manufacture of pulp, paper and paperboard x X x
DE212  Manufacture of articles of paper and paperboard x x x
DE221 __ Publishing x x x
Printing and service activities related to printing X X
Reproduction of recorded media x
Manufacture of coke oven products x x
NManufacture of refined petroleumn products x x x
Processing of nuclear fuel x
Manufacture of basic chemicals x x x
Manufacture of pesticides and other agro-chemical products X x x
Manufacture of paints, varnishes and similar coatings, printing ink and mastics X X x
Manufacture of pharmaceuticals, medicinal chemicals and botanical products x x x
Manufacture of soap, detergents, cleaning, polishing x x x
Manufacture of other chemical products x X x
Manufacture of man-made fibres x x x
Manufacture of rubber products x x x
Manufacture of plastic products x x x
Manufacture of glass and glass products x X x
Manufacture of non-refractory ceramic goods other than for construction purposes; manufacture of refractory ceramic products x x x
Manufacture of ceramic tiles and fags X x x
Manufacture of bricks, tiles and construction products X X x
Manufacture of cement, lime and plaster x x x
Manufacture of articles of concrete, plaster, cement x x
Cuiting, shaping and finishing of ornamental and building stonc X x
Manufacture of other non-metallic mineral products x X x
Manufacture of basic iron and steel and of ferro-alloys (including production of on- Terro-alloys in NACE Rev.1.1) x x
Manufacture of tubes X x
Other first processing of iron and steel (excluding production of non-ECSC ferro-alloys in NACE Rev.1.1) X X
Manufacture of basic precious and non-ferrous metals x x x
Casting of metals x x x
Manufacture of structural metal products x x x
Manufacture of tanks, reservoirs and containers of metal; manufacture of central heating radiators and boj x x x
Manufacture of steam generators, except central heating hot water boilers x x x
Forging, pressing, stamping and roll forming of metal; powder metallurgy x x x
Treatment and coating of metals; genoral mechanical cngineering x X
Manufacture of cutlery, tools and general hardware x x x
Manufacture of other fabricated metal products x x x
DK291  Manufacture of machinery for the production and use of mechanical power, except aireraft, vehicle and cycle engines X x x
DK202  Manufacture of other general purpose machinery x x x
DK203___ Manufacture of agricultural and forestry machinery x x x
DK201___ Manufacturc of machine-tools (split into DK2941, DK2042 and DK2043 in NACE Rev.1.1) X x x
DK205  Manufacturc of other special purpose machinery x X x
DK206  Manufacture of weapons and ammunition x x x
DK297 __ Manufacture of domestic appliances m.e.c. X x x
DL31T  Manufacture of clectric motors, gencrators and transformers X x x
DL312  Manufacture of electricity distribution and control apparatus x x x
DL313___ Manufacture of msulated wire and cable x x x
DL314___ Manufacture of accumulators, primary cells and primary batterics x x x
DL315___ Manufacture of lighting cquipment and electric lamps x X x
DL316___ Manufacture of electrical equipment me.c x x x
DL321__ Manufacture of electronic valves and tubes and other electronic components x x
Manufacture of television and radio transmitters and apparatus for linc telephory and lie telegraphy x X x
Manufacture of television and radio receivers, sound or video recording or reproducing apparatus and associated goods x x x
Manufacture of medical and surgical equipment and orthopaedic appliances x x x
Manufacture of instruments and appliances for measuring, checking, testing, navigating and other purposes, except industrial process control equipment X x x
Manufacture of industrial process control equipment x X
Manufacture of optical mstruments,photographic equipement x x x
Manufacture of watches and clocks X x
Manufacture of motor vehicles X X x
Manufacture of bodies (coachwork) for motor vehicles; manufacture of trailers and semi-trailers x x x
Manufacture of parts, accessorics for motor vehicles X x x
Building and repairing of ships and boats x x x
Manufacture of railway, tramway locomotives, rolling stock x x x
NManufacture of aircraft and spacecraft x x x
D351 Manufacture of motorcycles and bicycles X x
D355 Manufacture of other transport equipment n.e.c. x X
DN361  Manufacture of furniture x
DN362___ Manufacture of jewellery and related articles x
DN363  Manufacturc of musical instruments X x
DN364  Manufacture of sports goods x
DN365___ Manufacturc of games and toys x x
DN366___ Miscellaneous manufacturing n.c.c. x x
DN371 ling of metal waste and scrap x
DN372___ Recycling of non-metal waste and scrap, x
DD_DE221_ Manufacturc of wood and paper products, publishing and paper X x

Table 2: Data description: the Industrial Production Index based on the 3-digit NACE Rev.1.1 classifi-
cation, monthly, seasonally adjusted data, from January 1995 through December 2006. Source: Eurostat.
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