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C hapter 1 

In trod u ction

Habitually, economists attack a problem by calculating an equilibrium. Though this 

can often be gruelling for the economist, calculation of equilibrium strategies by the 

agents themselves is typically assumed to be costless and, even in dynamic models, 

timeless. This may be defensible given perfectly rational agents with complete infor­

mation and unlimited intellectual capacity. With less heroic assumptions, the route 

to equilibrium is likely to be more protracted. Learning, in the economic context, is 

the explicit modelling of this process whereby equilibrium is achieved.

The link between economics and evolution may not at first seem obvious. In partic­

ular, the neoclassical paradigm of the maximising individual and biological evolution, 

where intentionality is only noticeable by its absence, seem diametrically opposed. 

Yet Friedman, in his famous essay The Methodology of Positive Economics (1953) 

marshalled a form of social evolution in defence of the neoclassical approach. He sug­

gested that firms which failed to maximise their profits would not survive the rigours 

of the competitive market, and hence would be supplanted by others. However, if the 

predictions of neoclassical economics are to be empirically accurate, it is necessary to 

assume that such an evolutionary process has already taken place, or is in any case 

unobservable. To Friedman, modelling this process was not worthwhile.

1



2 CHAPTER 1. IN T R O D U C T IO N

The situation has changed dramatically over the last couple of years. There has 

been an explosion in research on learning and on evolution. While the analysis of 

imperfect information has been a mainstay of economic theory for many years, what 

marks out the recent literature is that the assumption of the maximising-agent is ab­

sent. Conventionally, the revelation that the behaviour of agents was less than fully 

optimal would be a sign of fundamental weakness in a model. However, models which 

possess agents whose behaviour is extremely myopic have become commonplace. Fur­

thermore, there has been a widespread use of evolutionary models developed by biol­

ogists to explain animal behaviour.

This change has come about not just because of skepticism about the realism of 

the optimising model, but also because of doubts about its internal consistency. The 

economist’s model of rationality may not be complete in that there may be situations 

where it fails to prescribe any action. More commonly, it fails in the sense that 

the action its prescribes is not unique. With the growth of game theoretic models 

in microeconomics, and rational expectations models in macroeconomics, multiple 

equilibria have become ever more frequent. It is a problem to which the literature on 

refinements, extensive though it is, has provided only a partial solution. Lastly, an 

economic equilibrium is, by definition, a state where, (or at least a state where agents 

possess the belief that), a departure from current behaviour would lead to a reduction 

in payoff or profit. In other words, an equilibrium is defined by a set of conjectures 

held by agents about what would happen out of equilibrium. Hence, without a serious 

treatment of what happens out of equilibrium it is not clear whether equilibrium is 

defined at all.

To this point, therefore, economists’ growing interest in learning and evolutionary 

models has mainly been directed at two issues. First, are existing equilibrium con­

cepts, (Nash, rational expectations), robust to the introduction of limited information 

or bounded rationality? That is, can a learning or evolutionary process ensure that
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agent behaviour converges to equilibrium strategies? Second, can this process pick 

out a particular equilibrium in situations of multiple equilibria? It might be the case 

that the path of out-of-equilibrium adjustment would only lead in one direction.

It is too early to judge the success of this research programme. It is also not 

clear what the criteria for success would be. Perhaps the final impact will only 

be a lengthening of the long list of refinements of Nash equilibrium. Alternatively 

even if more significant progress is made it will be on a purely abstract level. Once 

the present unsatisfactory foundations to maximisation and optimisation have been 

repaired and replaced, mainstream economics will continue largely unaffected. Or 

possibly, given the previously central position held by the rationality assumption in 

modern economics, the method and practice of economics will have been substantially 

changed.

The purpose of this introduction is to set the content of this thesis in the context 

of the existing research in the field. The first section deals in quite general terms with 

the possibility and the consequences of evolutionary argument in economics. The 

second examines whether such analysis can serve to discriminate between different 

equilibria. The third section is concerned with the particular problems that are 

posed to an evolutionary approach by mixed strategies. The fourth looks at applying 

learning models to economic problems. Along the way, the thesis itself is summarised.

1 . 1  F r i e d m a n  a n d  t h e  “ C l a s s i c  D e f e n c e ”

The argument that Milton Friedman put forward in his The Methodology of Positive 
Economics (1953) has since been dubbed the “Classic Defence”. This is because it at­

tempts to justify the neoclassical methodology, but also perhaps because it is still the 

reflexive response of the present generation of economists to criticism of the neoclassi­

cal orthodoxy. However, this “Defence” is more complex than is usually admitted and
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has often been misinterpreted. The major criticism, to this day, of the neoclassical 

approach is that agents neither possess the required information nor mental skills to 

calculate an optimum strategy. The rival school of behavioural economics is based on 

the assumption that there is a wide gap between optimal behaviour and the actual 

behaviour of economic agents. However, Friedman’s principal argument was that the 

assumptions of economics, or indeed any science, are warranted not by their strict 

accuracy but the accuracy of the predictions they imply. In particular, the predic­

tions generated by the assumptions of rational maximising agents will not be too far 

wrong.

Friedman employs two separate and quite different arguments in support of the 

empirical accuracy of the neoclassical model, and in particular, its hypothesis that 

economic agents act so as to maximise their returns. First, (an argument which I 

will label “Defence 1”), individuals will learn through experience and trial and error. 

The example given is the expert billiard player who can pot balls without being 

able to explain how he does it. This has been called “as iF rationality in that an 

agent behaves as if he knew the parameters and laws of motion of the system in 

which he is in. Friedman’s second argument, “Defence 2”, concerns not the learning 

of individuals but a form of social evolution. Competing firms may use different 

methods or claim different objectives. However, only those firms that, whether they 

intend to or not, maximise profits will survive. Competitive pressures will “select” for 

profit maximisation. What these two arguments have in common is that the adaptive 

process, whether learning or evolution, is assumed already to have taken place. Thus 

its actual form is immaterial because competitive pressures ensure that agents will 

be observed in (approximate) equilibrium.

Both arguments are vulnerable to the criticism that convergence to the optimum, 

or close to it, cannot simply be assumed. Indeed there are many counterexamples. 

First, there is evidence, both from experiments and from real economic situations,
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of systematic suboptimal behaviour. Second, the recent literature on learning and 

evolution has thrown up its share of examples of non-convergen ce. Furthermore, even 

when Friedman’s argument seems valid, one can argue how close “as if’ rationality is 

to full rationality. The ability to perform one action well because of repetition is not 

the same as the generalised capacity for optimisation that the conventional definition 

of rationality requires1. There is also a strong difference between rationality in the 

traditional economics of single agent decision problems and the rationality required in 

the strategic situations analysed by game theory. Indeed, Friedman’s two arguments 

seem divided along these lines.

The transfer of evolutionary arguments to human society is more problematic 

than at first it might seem. Game theory has been successful in evolutionary biology2 

partially because in this context the idea of Darwinian fitness exists as a single un­

ambiguous scale with which to measure payoffs. That is, the outcome of the game is 

assessed by its direct impact on the rate of reproduction of the participants. Hence, 

selection operates against strategies which have poor fitness because animals adopt­

ing these strategies have few offspring. Selten (1991) argues that such evolutionary 

forces are too slow to have a significant impact within a social timescale. Only the 

most extreme examples of suboptimal behaviour will result in the extinction of their 

exponents.

Nonetheless, it seems a reasonable assumption, and it is Friedman’s argument, 

that also in human society, successful strategies spread and unsuccessful strategies 

die out, even though the mechanism is the death of ideas or institutions rather than 

of individuals. However, in an economic context, payoffs may only be observable 

as money payments to particular individuals. The exact relation between monetary 

payoffs and rate of spread of ideas in a population is less clear. To be fair to Friedman,

l For an extended critique see W inter (1986).

2Maynard Smith (1982) and Hofbauer and Sigmund (1988) are both full o f examples.

a
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he advanced Defence 2 for firms not for people. The identification of a firm’s fitness 

with its financial position may not be too controversial. The problem is that if the 

unit of selection is the firm, it is unclear what the conclusions are for the behaviour 

of individuals.

What kind of rationality therefore do Friedman’s arguments support? As Sen 

(1985) puts it, there are two different common conceptions of what constitutes eco­

nomic rationality: consistency in choices made, and the pursuit of self-interest. Though 

these definitions are not mutually exclusive, they are quite distinct. Defence 1 seems 

to support consistency: agents will learn to make good choices. However, it is less 

clear where Defence 2 leads. It is not an argument for, as is Defence 1, “as iff ra­

tionality. While Friedman’s billiard player certainly has the objective of potting the 

ball, economic agents may be unaware that they are maximising profits. Or as in 

the analysis of Elster (1978), this type of evolutionary explanation is not a part of, 

but an alternative to, explanation by the theory of rational choice. Decision makers 

are being pushed along by forces beyond their control. Choices made may be opti­

mal with respect to economic survival but may be suboptimal with reference to the 

agents’ own aims and preferences.

In fact, what is taken to be a defence of the rationality of economic agents is a hy­

pothesis on something on which economics has traditionally been silent: the content 

of agents’ preferences. For example, consider an agent with the intransitive prefer­

ences A ^  B >z C  >: A, and another completely rational (in the first sense) agent 

with transitive preferences A V B  >z C . As is well-known, the second agent could run 

a money pump against the first. However, there is nothing in the definition of ratio­

nality as consistency such that A =  $20, B =  $30,(7 =  $40 could not be true. While 

someone with the more normal preferences C >z B >z A could presumably clear up at 

the expense of the previous two, this merely emphasises the point that consistency of 

choices is not enough for survival. One must also have suitable preferences.



L2. LU C A S ’S CO NJECTURE 7

This is illustrated by the results of Blume and Easley (1992). They find that a 

rational updating of beliefs is less important to market survival than the rate at which 

agents save, or, in other words, the exact form of their preferences over present and 

future consumption. One could argue that these results provide support for the idea 

of economic rationality as pursuit of self-interest. This is not necessarily the case. 

An agent can have a discount rate which is too high to permit long term economic 

survival, while at the same time maximising personal utility. In this case, subjective 

assessment of self-interest is at variance with either economic or evolutionary fitness.

In conclusion, there may be certain behaviour which maximises the chance of 

economic survival, there is, however, nothing in either of the two definitions of ratio­

nality, consistency or self-interest, that necessitates a rational agent to choose it. It 

is simply not clear, a priori what type of behaviour evolution selects for, and to what 

degree this overlaps with existing definitions of rational behaviour. Recent research 

has produced only very partial answers.

1 . 2  L u c a s ’s  C o n j e c t u r e

Nonetheless, the evolutionary analysis of economic behaviour potentially offers a com­

promise between the neoclassical and behaviourist approaches. It can seek to explain 

where to expect optimal behaviour and why in some cases, behaviour, which is sub- 

optimal from the neoclassical perspective, can persist. Perhaps the first person to 

suggest the use of learning dynamics to select between different equilibria was Robert 

Lucas (1987). His careful analysis of the methodological issues presents a modifica­

tion of the neoclassical position. For example, he notes that even laboratory pigeons 

settle down to consistent and stable choice patterns. “The economic theory of choice 

is thus interpreted as a description of a kind of stationary “point” of this dynamic, 

adaptive process.” Economic theory has little to say about the learning process before

ígi HIHHHHHHIB [tliHllliy lkJ !f Hg{ UIIIUIIUH SUIHIUIIf HIHU
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this happens. Indeed, in the real world, unlike in a laboratory experiment, one cannot 

start observations from “t= 0” when the agents are still unfamiliar with the problems 

they face. Secondly when dealing with macro data it would be impossible to untangle 

individual adaptive behaviour. This behaviour is likely to be idiosyncratic depend­

ing upon (unobservable) initial beliefs, which will evolve according to any number of 

other variables which agents think relevant. Thus follows, Lucas claims, the necessity 

of assuming real economies to be in equilibrium.

Lucas does make one concession that surely follows from certain problems that 

Friedman did not have to face. There have been a growing number of economic 

models that demonstrate that the usual assumptions of economics may not lead to  

any predictions, let alone accurate ones. Thus in the cases where economic theory 

does not give a clear prediction, that is, in the case, of multiple equilibria, Lucas 

suggests an examination of adaptive processes to help in the selection of a particular 

equilibrium. Lucas was prepared to conjecture that “reasonable” adaptive processes 

should only pick out “reasonable” equilibria.

The term “Lucas’s Conjecture” was coined by Woodford (1990), who goes on to  

show that a learning process can lead to the kind of “sunspot” equilibria that Lucas 

conjectured would be avoided. In general, the evolutionary/learning literature gives 

the conjecture little support. In game theory, even early studies such as Nachbar 

(1990) found little overlap between existing equilibrium refinements and stability 

under adaptive processes. More recently Noldeke and Samuelson (1993) do not find 

much support for subgame perfect equilibrium, which has been part of most of the 

successful empirical applications of game theory in recent years.

These results complement the extensive literature on experimental games. One 

famous example is the ultimatum bargaining game, in which experimental subjects 

consistently and persistently fail to play the subgame equilibrium (see for example,
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Thaler, 1988). Some have therefore claimed that game theory in general fails to 

predict and that in real life people do not fit the economist’s model of the maximising 

individual. Of course, the aim of using evolutionary game theory is to show that 

these two propositions are not necessarily linked. Indeed, the results of Roth and 

Erev (1995), and those of Gale, Binmore and Samuelson (1995) seem to indicate that 

stability under a learning dynamic seems to predict the behaviour of experimental 

subjects rather better than subgame perfect equilibrium. Thus, Lucas was correct in 

at least one sense. It is possible to use learning dynamics to select between equilibria 

and hence to predict real world behaviour. However, these predictions are often at 

variance with those of neoclassical economics.

The main contribution of this thesis in this area is to be found in Chapter 2, 

Learning, Matching and Aggregation. There, it is shown that refinements to Nash 

equilibrium based on evolutionary considerations do have relevance to social and 

economic problems. This is because the aggregation of learning behaviour across a 

population of agents is qualitatively similar to evolutionary dynamics. This holds 

for learning rules such as those employed by Roth and Erev (1995), or for example, 

fictitious play. Given that results are similar for a wide range of adaptive processes, 

both learning and evolution, it is possible to make quite strong predictions about the 

stability properties of different equilibria. In Chapter 4, these results are applied to 

the problem of multiple equilibria in models of price dispersion. Even in this rather 

more complex environment, learning dynamics can be used to discriminate between 

different equilibria and different models, the stability of equilibrium depending on 

what search rule consumers use.
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1 . 3  T h e  P r o b l e m  w i t h  M i x e d  S t r a t e g i e s

Sherlock Holmes (in his Adventures) takes a train to the Channel ports pursued by 

Moriarty. Holmes gets off at Canterbury, assuming Moriarty will take the fast train 

to catch him at Dover. But why did Holmes reason,

SH: I know that Moriarty is following me, so I should alight at Canterbury,

and not have realised Moriarty could reason as follows,

M: I know that SH knows I am following him. Therefore, he will get off 

at Canterbury, and therefore, so will I.

And,

SH: I know that Moriarty knows that I know he is following me. Moriarty 

will go to Canterbury, so I can continue safely to Dover.

Forty years later Morgenstern3 was able to see that there was a infinite regress 

involved in this situation. Within a few more years a formal solution was found to 

this problem. The Nash equilibrium for the game between Holmes and Moriarty is 

that each should make a random choice between Dover and Canterbury.

Mixed strategies continue to cause problems. A literal application of game- 

theoretic models with mixed strategy equilibria would have economic agents ran­

domising over their possible choices. However, as sceptics like to point out, we do 

not often see governments, industrial managers or others, rolling dice, and the idea 

that they should remains bizarre4. Harsanyi (1973) introduced the idea of purifica­
tion, whereby each player’s payoffs are subject to random shocks the value of which

3Quoted in Brams (1993). This famous example is also discussed in Schelling (1960)

4Equally, for those not versed in game theory, the deterministic choice Sherlock Holmes made is

probably more in tu itive ly plausible than i f  Conan Doyle had had his hero toss a (suitably-weighted)

coin.
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is private information. These shocks to payoffs will cause each player positively to 

prefer one of the pure strategies in the support of the mixed strategy equilibrium. 

However, his opponents will have as little idea of what action he will take as if he 

were randomising. They, in turn, will choose a strategy according to their own private 

information and will be equally unpredictable.

Rubinstein (1990) find such arguments unsatisfactory. Either this private informa­

tion is truly exogenous to the game, for example, what the manager ate for breakfast, 

or the game has been incompletely described. The assumption that decision-makers 

make use of completely irrelevant factors may be more unpalatable than having them 

spin roulette wheels. Put another way, agents may behave as though “substantively 

rational”, their behaviour is optimal in that it is not predictable to their opponents, 

even though their actions are not “procedurally rational”, they form their decisions 

through, for example, irrational hunches. As Elster (1989) argues, if agents are not 

explicitly randomising, they are not fully rational.

Purification clearly relies on some kind of evolutionary or adaptive argument. The 

dependence on the breakfast menu is a rule of thumb which has evolved to a close 

approximation of the optimal behaviour, randomisation. We might therefore look 

to the growing literature on learning in games for a model to provide such a result. 

Unfortunately, most of the perceived failures of learning and evolution are with mixed 

strategies. Shapley (1964) shows that the fictitious play process fails to converge for 

a class of games which possess unique mixed strategy equilibria. Crawford (1985) 

demonstrated that for another class of learning rules all mixed strategy equilibria are 

unstable. However, more recently, Fudenberg and Kreps (1993) have demonstrated 

convergence to a mixed strategy equilibrium, when, in the spirit of purification, payoffs 

are subject to random shocks.
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The literature on learning and evolution has also thrown up two further ways of 

implementing mixed strategies without requiring any agent to randomise. First, if a 

player’s opponent is randomly drawn from a large population then that player effec­

tively faces a random distribution over the strategies present in that population. This 

type of model originates in the evolutionary biology literature. Second, the learning 

mechanism known as fictitious play can converge to a situation where opponents cycle 

between different pure strategies. The time average of strategies played is equal to a 

mixed strategy equilibrium.5 Thus a mixed strategy can be interpreted as some kind 

of average, either across players or across time.

Hence, one can take a positivist stance. Some empirical studies have discovered 

economic agents behaving at least as if they were randomising. That is, the empirical 

frequency of pure strategies played approximated the predicted frequency. When 

a model has been confirmed in such a way, it seems superfluous then to ask the 

participants whether they were really randomising. Furthermore, what we are looking 

for is effective unpredictability. Agents might actually use some random-number 

generator to choose their course of action. Anybody familiar with computing will 

know that these algorithms are, in fact, deterministic. What we have is a case where 

the deterministic strategy is simply too complicated to predict. This is all we require.

However, it is easy to find examples where predicted and empirical frequencies do 

not coincide. Voter turn-out in elections is a prominent example (see for example, 

Elster, 1989). Even if we accept that agents may behave as though they randomise, 

there is the further question as to how they came to do so, and why they continue 

to do so. Why follow some complicated deterministic strategy when tossing a coin is 

both the rational strategy and relatively costless?

5One can also interpret this as a form of correlated equilibrium.
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The answer to this may lie in the following. A large part of what lies behind 

mixed-strategy equilibria is the assumption of common-knowledge. That is, both 

participants know that the other knows to the infinite degree. It is the knowledge that 

any attempt to deduce an optimum course of action leads to an infinite regress which 

forces the rational agent to randomise. In practice, information may be incomplete. 

For example, it may have been the case that Holmes knew that (or indeed assigned 

any positive probability to the fact that) Moriarty did not know that Holmes knew 

Moriarty was following him. In which case, Holmes was right to get off at Canterbury 

without further thought.

However, common knowledge might fail not because of lack of information but 

because agents’ capacity to process that information is bounded. Bacharach, Shin 

and Williams (1992) introduce the idea of depth limits. They draw on the empirical 

fact that human beings have limits on the number of iterations of the knowledge 

operator ( “I know that you know that . . . ”) that they can carry out. Clearly, if 

agents are bounded in this way, then the infinite regress, which randomisation is 

meant to resolve, does not in fact occur. The example of Conan Doyle/Holmes shows 

that even intelligent people can fail to use the capacity that they have.

This is borne out by the experimental results obtained by Rubinstein and Tversky 

(1993). The subjects were asked to hide an object from the other participants in one 

of three locations, one of which was in some way prominent. The choice of hiding- 

place showed a marked bias against the prominent location, thus suggesting that the 

participants had the same depth limit as Sherlock Holmes, that is, one. Perhaps, 

however, a better interpretation would be that of Stahl and Wilson (1994) who claim 

to find amongst experimental subjects a distribution of levels of sophistication. In 

such a case, in the presence of naive play which can be exploited, it may not be 

optimal even for rational agents to randomise.
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In Chapter 2, Learning, Matching and Aggregation, there are results which have 

considerable relevance to the problems of mixed strategy equilibrium. It is demon­

strated that when learning behaviour is aggregated across a large population there are 

many qualitative similarities with evolutionary dynamics. For example, learning can 

lead to a situation where the strategy profile within a population matches a mixed 

strategy equilibrium, even though each agent plays a pure strategy. Furthermore, 

while Crawford (1985,1989) found that for a class of learning rules, mixed strategy 

equilibria are unstable, I have shown that for this type of rule many mixed equilibria 

are stable in average strategy. That is, although no member of the population plays 

a mixed strategy with the correct frequency, the average frequency in the population 

does correspond to the mixed strategy equilibrium. However, equally importantly, it 

is shown in Chapter 2 that there are many mixed equilibria which are unstable for 

both learning and evolutionary dynamics. This potentially offers a testable predic­

tion on the ability of learning theory to predict the behaviour of human agents, in 

that convergence is predicted for some games and divergence for others. Furthermore, 

Chapter 4 shows that this result has some economic significance.

Evolutionary game theory has also shown how randomisation can be avoided al­

together. This occurs when a game is asymmetric in the evolutionary sense, that 

is, when one player is drawn from a different population from his opponent(s). An 

example would be “Battle of the Sexes” game, where males play only against females. 

But also consider the “intersection game” below. It is meant to represent the problem 

of two motorists meeting at an intersection. There are three Nash equilibria, {STOP, 

Go}, {Go, Stop}, and a mixed equilibrium where both players randomise over the 

two options. There is therefore a positive probability of {Go, Go} occurring. How­

ever, if one motorist is told that, for example, she is the “red” player, while the other 

is the “green” player, it is clear that they can use this information to coordinate their

Œ 5 5 9 5 P ?



1.4. M IX E D  STRATEG IES IN  M A R K E T  GAMES 15

play to avoid this unpleasant outcome.

St o p G o

St o p 0,0 1,2
G o 2,1 -2,-2

(1.1)

Those that fail to coordinate will be displaced by those that can, in that the latter 

will on average earn a higher payoff. Consequently, the only evolutionary stable 

outcomes for the game (1.1) are where one player stops and the other goes. It is 

also true that the mixed equilibrium is not dynamically stable under a wide range of 

adjustment processes (see Chapter 3). This makes intuitive sense for this game. The 

problem is however, that no mixed strategy equilibria are asymmetrically stable in 

asymmetric games, even in the case where the mixed strategy is unique. In the case 

of the games analysed by Shapley (1964), there is no interpretation of instability in 

terms of coordination.

In Chapter 3, Learning and Evolution in a Heterogeneous Population, a partial 

solution to this problem is suggested. When there is both learning and evolution, 

convergence properties are quite different from when they are considered separately. 

We show that in fact in this context problem games such as the one considered by 

Shapley (1964) are stable.

1 . 4  M i x e d  S t r a t e g i e s  i n  M a r k e t  G a m e s

One criticism that could be levelled at much of the literature on learning and evolution 

is that it has concentrated on normal form games, when many economic problems 

do not fit into this structure. Of course, when payoffs are non-linear and strategies 

are chosen from a continuum, as they typically are in market models, the analysis 

becomes more complicated. However, in such environments there may be solutions 

to be found to some of the problems discussed above. As the founder of evolutionary
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game theory puts it, “The context in which mixed ESS’s are likely is that in which the 

individual is ‘playing the field1 " (Maynard Smith 1982, p76). What Maynard Smith 

calls “playing the field11, that is, when each individual interacts simultaneously with 

all other members of the population, is recognisable to economists as a market. For 

example, in Cournot type competition, firms do not engage in pairwise interaction 

but affect each others profits through the price mechanism.

Maynard Smith’s argument is that, as we have seen, in pairwise conflicts asymme­

tries can be used to coordinate on a pure strategy equilibrium. In the anonymity of 

what an economist would call market interaction such devices are not available. Only 

in this case are mixed strategies likely. There is a mathematical argument to support 

this. The result that mixed ESS’s are generically unstable for asymmetric games (see 

Hofbauer and Sigmund, 1988) follows from the linearity of payoffs in normal form 

games. If payoffs are nonlinear, and one would expect this in most market situations, 

then there is the possibility of stability even in asymmetric situations.

Up to now, however, learning and evolutionary dynamics have not been frequently 

applied to games with nonlinear payoffs. In Chapter 4, Price Dispersion: an Evolu­
tionary Approach, I investigate the stability of a mixed equilibrium for a game where 

agents can choose from a continuum of strategies and payoffs are indeed nonlinear. 

It is necessary to use mathematics which are somewhat more advanced than in the 

rest of the thesis. But the underlying issues are the same as they were in Chapter 2. 

Some mixed equilibria are stable under evolutionary and learning dynamics. Some 

are unstable. Into which category do dispersed price equilibria fall?

This question was first investigated by Diamond (1971), who examined how prices 

would be adjusted in an economy where consumers had imperfect information about 

prices. This is a reminder that the last few years is not the first time that dise­

quilibrium models have been in fashion. Diamond found that prices would converge



1.4. M IXED ST R A TE G IE S IN M A R K E T  GAMES 17

to the level th a t maximised joint profits. At this equilibrium no consumer would 

search. The result of the price adjustm ent process is not a dispersed price equilib­

rium because under Diamond’s specification, no such equilibrium exists. Subsequent 

research revealed the existence of dispersed price equilibria, if for example, there was 

heterogeneity in the costs of buyers and sellers. However, all such work was in an 

equilibrium framework and the question of stability was not addressed.

A dispersed price equilibrium is a mixed strategy equilibrium in two senses. First, 

by definition, in equilibrium a number of prices are charged. This may be because dif­

ferent sellers are adopting different pure strategies, or because sellers are randomising 

over prices. Second, such behaviour can only be supported in equilibrium if consumers 

differ in their behaviour. For example, if all consumers had the same reservation price, 

a dispersed price equilibrium would not be possible. Because payoffs are non-linear, 

there is no fundamental reason why such an equilibrium, despite being mixed, should 

not be stable under evolutionary or learning dynamics. As it turns out, for reasons 

of economics, not mathematics, some such equilibria are unstable, others stable.

However, there is one other lesson to be learnt from the literature on price disper­

sion. Equilibrium in the model of Varian (1980), for example, cannot be supported 

in the manner of evolutionary game theory, by different sellers using different pure 

strategies. Sellers must randomise. The stability or otherwise of this form of equilib­

rium is very much more difficult to establish. This is something to be investigated in 

future research.

In conclusion, the idea of mixed strategy equilibrium, though it certainly has 

its problems, is not an empty one. It can be used to explain social, economic and 

biological phenomenon as long as one does not have the unrealistic expectation th a t all 

agents concerned should randomise with the exact equilibrium frequencies. Instead, 

it should be enough to find that the predictions hold on average either across time
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or across a population of players, or across both. However, there are many mixed 

strategy equilibria which are unstable under a wide range of adaptive dynamics. For 

these equilibria we should not expect even this weak form of convergence.

THfiBHWU.UJ



C hapter 2

Learning, M atch ing and  

A ggregation

A bstract

Fictitious play and “gradient” learning are examined in the context of a 

large population where agents are repeatedly randomly matched. We show that 

the aggregation of this learning behaviour can be qualitatively different from 

learning at the level of the individual. This aggregate dynamic belongs to the 

same class of simply defined dynamic as do several formulations of evolutionary 

dynamics. We obtain sufficient conditions for convergence and divergence which 

are valid for the whole class of dynamics. These results are therefore robust to 

most specifications of adaptive behaviour.
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2 . 1  I n t r o d u c t i o n

There has been an increasing interest in using evolutionary models to explain social 

phenomena, in particular, the evolution of conventions. However, evolutionary mod­

els have not achieved universal acceptance. There has been some skepticism as to 

the degree to which evolutionary dynamics are relevant to economic situations. In an 

evolutionary system, nature chooses the individuals who embody superior strategies. 

In human society, individuals learn: they choose strategies that seem superior. There 

is no certainty th a t the dynamics generated by the two different processes are iden­

tical. But if one insists on basing social evolution on decisions taken by individual 

agents this presents its own problems. W hat does individual learning behaviour look 

like when aggregated across a population? Little research hats been done on this issue 

and the results tha t do exist, as we shall see below, are not encouraging.

There are a number of potential responses. One adopted by Binmore and Samuel- 

son (1994) is to devise a learning scheme which approximates the dynamics gener­

ated by evolution. Thus the results of evolutionary game theory could be recreated by 

learning. Another is to generalise the evolutionary dynamics by abandoning particular 

functional forms and looking at wide classes of dynamics which satisfy “monotonic­

ity” or “order compatibility” (Nachbar, 1990; Friedman, 1991; Kandori et al., 1993). 

The hope is th a t even if learning behaviour is not identical to evolution, it is suffi­

ciently similar to fall within these wider categories. However, in this paper, a different 

approach is taken. Rather than designing learning models to suit our purposes, we 

examine two existing models of learning behaviour current in the literature. This is 

done in the context of a large random-mixing population.

The question of aggregation of learning behaviour is of interest in its own right. As 

can be seen in for example, Crawford (1989) or Canning (1992), learning behaviour 

aggregated across a large population can be qualitatively different from behaviour
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at the level of the individual. Indeed, we show that aggregation can solve many 

of the problems encountered in existing learning models. Secondly, the resultant 

dynamics are not in general identical to evolutionary dynamics on a similarly defined 

population. They may not even satisfy monotonicity. However, they all belong to a 

class of dynamics which for reasons that will become apparent we will call “positive 

definite” , and share much of their qualitative behaviour.

Fictitious play, our first learning model, was in fact introduced as a means of 

calculating Nash equilibrium, or in the terminology of the time in order to “solve” 

games (Brown, 1951; Robinson, 1951). Play was “fictitious” in tha t it was assumed 

to be a purely mental process by which agents would decide on a strategy. The 

fictitious play algorithm selects a pure strategy that is a best reply to the average 

past play of opponents. One can interpret this as though each player uses past play 

as a prediction of opponents’ current actions. This is, of course, in the spirit of the 

adjustment process first suggested by Cournot in the 19th century. While it m ight not 

be clear a priori where such a naive form of behaviour might lead, in fact, it has been 

shown, for example, that the empirical frequencies of strategies played approaches a 

Nash equilibrium profile in zero-sum games (Robinson, 1951) and in all 2 x 2 games 

(Miyasawa, 1961).

More recently, fictitious play has again attracted interest, this time as a means of 

modelling learning1. This, however, is an interpretation th a t is problematic. The pos­

itive results noted above are qualified by the realisation th a t convergence of fictitious 

play is not necessarily consistent with the idea of players “learning” an equilibrium. 

Convergence to a pure strategy equilibrium is relatively straightforward: after a cer­

tain time, each player will keep to a single pure strategy. However, as Young (1993),

‘Some of the many to have considered fictitious play or similar processes are Canning (1992), 

Fudenberg and Kreps (1993), Jordan (1993), Milgrom and Roberts (1991), Monderer and Shapley 

(1993), Young (1993).
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Fudenberg and Kreps (1993), Jordan (1993) all note, convergence in empirical fre­

quencies to a mixed Nash equilibrium may only entail that play passes through a 

deterministic cycle (of increasing length) through the strategies in its support* In one 

sense, players’ “beliefs” converge, even if their actions do not, in that in the limit 

they will be indifferent between the different strategies in the support of the Nash 

equilibrium. However, if players’ beliefs are predictions of their opponents’ play, while 

correct on average, they are consistently incorrect for individual rounds of play. Im­

plicit in fictitious play is also a strong degree of myopia. In choosing strategies, players 

take no account of the fact tha t opponents are also learning. Similarly, if as noted 

above, play converges to a cycle, players do not respond to the correlated nature of 

play. Finally, apart from the case of zero-sum games, there is no easy m ethod of 

determining whether fictitious play converges.

There are other models of learning in games. We can identify a class of learning 

rules as being based on gradient-algorithms. The behaviour postulated is perhaps 

even more naive than under fictitious play2, indeed, these models were first developed 

by psychologists and animal-behaviourists for non-strategic settings. More recently 

they have been applied to game-theory by Harley (1982), Crawford (1985; 1989), 

Borgers and Sarin (1993), Roth and Erev (1995). Unlike fictitious play-like processes 

agents do not play a single pure strategy which is a best-reply, agents play a mixed 

strategy. If a  strategy is successful the probability assigned to it is increased, or in 

the terminology of psychologists, the “behaviour is reinforced” . Thus such models 

are sometimes called “learning by reinforcement” or “stimulus learning” . As these 

models’ other name “gradient” suggests, behaviour is m eant to climb toward higher 

payoffs. A djustm ent is therefore slower and smoother than under fictitious play. 

However, the results obtained are not notably more positive. Crawford (1985) showing

2There are other models not considered here such as the more sophisticated Bayesian learning of 

Kalai and Lehrer (1993). .
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for example th a t all mixed strategy equilibria are unstable.

Aggregation can help with these problems. Fudenberg and Kreps (1993) in fact 

propose the idea of a random-mixing population of players as a justification for the 

myopia of fictitious play-like learning processes. If there is sufficient anonymity such 

that each player cannot identify his opponent and sufficient mixing, each player has a 

sequence of different opponents, then players may have little incentive to develop more 

sophisticated strategies. A population of players also offers a different interpretation 

of mixed-strategy equilibrium. The distribution of strategies in the population as a 

whole mimics a mixed-strategy profile. This is an equilibrium concept familiar from 

evolutionary game theory. This type of mixed equilibrium can be stable under either 

fictitious play or gradient learning. . <

The main contribution of this paper is to demonstrate tha t is possible to obtain 

precise results on the aggregation of learning behaviour and that furthermore, th a t the 

aggregate dynamics thereby obtained are qualitatively very similar to evolutionary 

dynamics. In fact, we show that the replicator dynamics, in both pure and mixed 

strategy forms, the aggregate dynamics generated by fictitious play, and also the 

aggregate dynamics generated by gradient learning, all belong to a  simply-defined 

class of dynamics. We then show th a t for all of this class that regular Evolutionary 

Stable Strategies (ESSs) are asymptotically stable. Thus we show tha t refinements to 

Nash equilibrium based on evolutionary considerations are relevant also for learning 

models. Secondly, unlike existing models of learning in large populations, such as 

Canning (1992) and Fudenberg and Levine (1993), explicit results on the stability of 

particular equilibria are obtained. Perhaps most im portantly we obtain results which 

are robust to different specifications of learning rules or evolutionary dynamics. Hence 

we can hope th a t these results have some predictive power.
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2 . 2  L e a r n i n g  a n d  E v o l u t i o n a r y  D y n a m i c s

We will examine learning in the context of two-player normal-form games, G  =  

({1,2 } , I , J , A , B ) .  I  is a set of n strategies available to player 1, J  a set of m  

strategies for player 2. Payoffs are determined by A, a n x m m atrix of payoffs, and 

B , which is m x n. A has typical element a,j, which is the payoff an agent receives 

when playing strategy i against an opponent playing strategy j . However, we will 

largely be dealing with games th a t are “symmetric11 in the evolutionary sense, that is, 

games for which A — B A  Generalisations to the asymmetric case are briefly discussed 

in Section 7. We will often be dealing with a population of players, each playing a  

single pure strategy. In this case, the distribution of strategies within the population 

will be described by a vector x  € Sn =  {x =  ( i i , ..., £„) 6 R n : Ex* =  l ,x ,  >  0 

for i — l ,...,rc} . As, in this paper, vectors will be treated ambiguously as either 

rows or columns, to avoid any further confusion, the inner product will be carefully 

distinguished by the symbol tha t is, the result of x  • x is a scalar.

We follow Shapley (1964) and implement the fictitious play algorithm in the fol­

lowing way. A player places a weight on each of her strategies (we can think of these 

as beliefs as to  the relative effectiveness of the different strategies) which we can rep­

resent as a vector w =  (u q , u?2 , ^n) and at any given time plays the strategy which

is given the highest weight. Each player updates these weights after each round of 

play so tha t if her opponent played strategy j ,

+  1) — u>,(f) +  a.ij for i = 1 , n.  (2-1)

Players can also be modelled as maintaining a vector of relative frequencies of oppo­

n en ts’ past play (as in Fudenberg and Kreps, 1993; Young, 1993). They then choose 3 * *

3And all players are drawn from the same population. For a fuller discussion of the difference

between symmetric and asymmetric contests see van Damme (1991) or Hofbauer and Sigmund

(1988).
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strategies th a t maximise expected payoffs as though this vector represented the cur­

rent (mixed) strategy of their opponents. The two methods are entirely equivalent. 

Note that the weights here are (less initial values) simply the relative frequencies 

multiplied by payoffs.

Up to now we have contrasted learning and evolution purely on the basis of their 

origins, one being a social, the other a natural process. However, they are also 

often modelled in contrasting fashion. Fictitious play and Cournotian dynamics both 

assume that agents play some kind of best response. This can involve discontinuous 

jumps in play. Taking as an example the following game which is variously known as 

“chicken”, “hawk-dove” or “battle of the sexes” ,

A = B  =
0 a

1 — a 0
1 >  a > 0 , (2.2)

Figure 2.1a gives the simple best-reply function for (2.2),where each agent in a large 

population plays a best-reply to the  current distribution of strategies4. Here x repre­

sents the proportion of the population playing the first strategy. If x  is greater than 

(respectively less than) a , then the  whole population switches to strategy 2 (strategy 

1). Hence, there is a discontinuity a t the point (x =  a) where the players are indif­

ferent between their two strategies (there is no particular consensus in the literature 

about how players should behave when indifferent between two or more strategies).

In contrast, the evolutionary replicator dynamics, whether in continuous or discrete 

time, are derived on the basis th a t the proportional rate  of growth of each strategy 

is equal to the difference between its payoff (j4x ); (the ith  element of the vector in 

parentheses) and the average payoff in the population5 x-A x. D  is a positive constant.

(Ax), +  D
i i  =  x,[(Ax),- -  x • Ax] or Xi(t +  1) =  Xi(t)

x • A x  +  D
(2.3)

4This is a dynamic as used by, for example Kandori, Mailath and Rob (1994). This is fictitious 

play with a one-period memory.

5In a biological context, this arives from relative reproductive success (see Hofbauer and Sigmund,
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^i+i

1

(a)

Figure 2.1: Dynamics: (a) best response (b) replicator dynamics

Clearly, both dynamics are continuous, the system moving smoothly toward the 

strategies earning the highest payoff. The replicator dynamic (in discrete time) for 

the game (2.2) is drawn in Figure 2.1b. The interior mixed equilibrium is a  global 

a ttrac to r, the pure equilibria at x  =  0,1 being unstable.

Im portant in evolutionary theory is the idea of an Evolutionary Stable Strategy, 

th a t is, ua strategy such tha t, if all members of a population adopt it, then no 

m utant strategy could invade the population under the influence of natural selection.” 

(M aynard Sm ith, 1982, plO). For a large random matching population the conditions 

are

D efin itio n : An Evolutionary Stable Strategy (ESS) is a strategy profile q  that 

satisfies the Nash equilibrium condition

q • Aq >  x  • Aq (2.4)

for all x  € S n and for all x  such th a t equality holds in (2.4), q  must also satisfy the

1988) but may also be an appropriate assumption in modelling learning in a human population (for 

example, Binmore and Samuelson, 1994).

m
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stability condition

q - j 4 x > x - .4 x  (2.5)

The first condition states that to be an ESS, a strategy must be a best-reply to 

itself. Were it not so, a population playing tha t strategy could easily be invaded 

by agents playing the best reply. The second condition demands tha t if there are a 

number of alternative best replies, than the ESS must be better against them  than 

they are against themselves. Thus if a m utant strategy which was an alternative best 

reply were to enter the population, those agents playing it would on average have a 

lower payoff than those playing the ESS and therefore would not grow in number.

There is a strong connection between stability under evolutionary dynamics and 

the static concept of ESS.

P ro p o s itio n  1 Every ESS is an asymptotically stable equilibrium fo r  the continuous 

time replicator dynamics but the converse is not true. That is, there are asymptotically 

stable states fo r  the replicator dynamics which are not ESSs.

P ro o f: See, for example, van Damme (1991, Theorem 9.4.8). □

Fictitious play can also converge on the mixed equilibrium of (2.2), but in a rather 

different manner. Setting a =  0.5, imagine two players both with initial weights of 

(0.25,0). That is, they both prefer their first strategy for the fust round of play. 

Both consequently receive a payoff of 0. Each players observe which strategy the 

opponent chose. They then update the weights/beliefs according to the payoffs tha t 

they would receive against th a t strategy. Thus according to (2.1), weights now stand 

at (0.25,0.5). They now both prefer the second strategy. One can infer tha t player 

1 believes th a t her opponent will continue to play her first strategy, and likewise 

for player 2. After the second round of play, in which again both players receive 

0, the vectors stand at (0.75,0.5). It can be shown th a t, firstly, th a t the players
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continually miscoordinate, always receiving a payoff of 0, and that, secondly, in the 

limit, both play their first strategy with relative frequency 0.5, and their second with 

frequency 0.5. This corresponds to the mixed strategy equilibrium of (2.2). However, 

the players’ behaviour seems to correspond only tangentially with the idea of a mixed- 

strategy equilibrium.

The concept of a mixed strategy equilibrium in use in evolutionary game theory 

seems more intuitive. It is also an average but not across time but across the differing 

behaviour of a  large population: the aggregate strategy distribution is a mixed stra t­

egy equilibrium. One might hope th a t if each individual used a learning rule th a t like 

the replicator dynamics was a continuous function of payoffs, similarly well-behaved 

results could be obtained. However, Crawford (1985; 1989) demonstrates th a t in fact 

mixed strategy equilibria, and hence many ESSs, are not stable for a model of this 

kind. However, while these results are correct, they do not tell the whole story in the 

context of a random-mixing population. The mixed strategy of individuals will not 

approach the equilibrium of the two player game, nonetheless, we are able to prove 

convergence for the mean strategy in the population for all regular ESSs.

W hat we are going to show is th a t with a large population of players who are 

continually randomly matched, this type of outcome is possible even under fictitious 

play. This does not follow automatically from aggregation. In particular, if all players 

in the population have the same initial beliefs, the tim e path for the evolution of 

strategies will be the same as for fictitious play with two players6. Imagine in the  above 

example, there were an entire population of players with initial weights of (0.25,0). 

No m atter with whom they are matched they will meet an opponent playing, strategy 

1. Hence, all players will update their beliefs a t the same rate, and the same cycle is 

reproduced. However, this is only possible given the concentration of the population

6A fact which Fudenberg and Kreps (1993) exploit. They do not consider the case where, within 

a population  of players, individuals possess differing beliefs. ,
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on a single point. If instead there is a non-degenerate distribution of weights across 

the population, it may be th a t not all the population will change strategy at once.

Imagine now tha t the players have initial weights or beliefs (6,0) where 6 is uni­

formly distributed on [0,1]. Only those in the population with 6 < 0.5, that is half 

the population, will change strategy after the first round of play. In fact, we have 

arrived immediately at the population state equivalent to the mixed strategy equilib­

rium with half the population playing each strategy. It is easy to check tha t under 

random matching, in such a  state, there is no expected change in each player’s s tra t­

egy. In this case, aggregation has had a smoothing effect because there was sufficient 

heterogeneity in the population. We will go on to make a somewhat more precise 

statem ent about convergence of fictitious play in a random matching environment. 

A necessary first step is to consider the modelling of random matching itself in more 

detail.

2 . 3  M a t c h i n g  S c h e m e s

Any study of the recent literature on learning and evolution will reveal, firstly, th a t 

random matching within a large population of players is a  common assumption, and 

secondly, that there are several ways of modelling such interaction. This diversity is 

in fact im portant both in term s of what it implies for theoretical results and in what 

cases are such results applicable. For example, there are some economic or social 

situations where random matching m ight seem a reasonable approximation of actual 

interaction, others where it will not. Only in some cases will agents be able to obtain 

information about the result of matches in which they were not involved, and so on.

Fudenberg and Kreps (1993) suggest three alternative schemes. Assuming a large 

population of potential players (they suggest 5000 as a reasonable num ber), they 

propose the following:

if
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“Story 1. At each date f, one group of players is selected to play the 

game...They do so and their actions are revealed to  all the potential play­

ers. Those who play at date t are then returned to  the pool of potential 

players.

Story 2. At each date t +here is a random matching of all the players, so 

th a t each player is assigned to a group with whom the game is played.

At the end of the period, it is reported to all how the entire population 

played....The play of any particular player is never revealed.

Story 3. At each date t there is a  random matching of the players, and 

each group plays the game. Each player recalls a t date t what happened 

in the previous encounters in which he was involved, without knowing 

anything about the identity or experiences of his current rivals.”

Fudenberg and Kreps (1993, p333)

It is worth drawing out the implications of these different matching schemes. Story 

3 is the “classic” scheme assumed as a basis for the replicator dynamics. The popu­

lation is assumed to be infinite and hence, despite random matching, the dynamics 

are determ inistic (this has been rigorously analysed by Boylan, 1992). It is also de­

centralised and does not require, as do Stories 1 and 2, any public announcements of 

results by some auctioneer-like figure. However, there are other procedures similar to 

Story 2 which do not require such a mechanism. These include,

Story 2a. In each round7, the players are matched according to Story 1

or Story 3 an infinite number of times.

7The “round” is the time-unit of, in evolutionary models, reproduction, in learning models, 

decision. T hat is, strategy frequencies are constant within a round, even if the round contains many 

matches.
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Story 2b. In each round there is a “round-robin” tournam ent, where each 

player meets each of his potential opponents exactly once.

Stories 2a and 2b have been used in the learning literature principally for reasons 

of tractability8. They ensure a deterministic result to the matching procedure even 

when population size is finite. The infinite number of matchings in Story 2a, by the 

law of large numbers, ensures that a proportion equal to the actual frequency over 

the whole population of opponents playing each strategy will be drawn to play. W hat 

Stories 2, 2a and 2b have in common is that all players know the exact distribution 

of strategies in the population when choosing their next strategy. There is little room 

for the diversity of beliefs one might expect in a large population.

In contrast, under Story 3, as the overall distribution of strategies is not known, 

it makes more sense to use past matches to estimate the current distribution. Fur­

thermore, depending upon with which opponent they are matched, different players 

will receive different impressions about the frequency of strategies in the population 

of opponents. Under Story 3, if the population is finite, even if players use a de­

terministic rule to choose their strategy, such as the fictitious play algorithm, the 

evolution of the aggregate strategy distribution is stochastic. In this paper, however, 

we concentrate on the case of an infinite population, where both Story 2 and Story 3 

produce deterministic results.

2 . 4  P o p u l a t i o n  F i c t i t i o u s  P l a y

The next stage is to examine population fictitious play (P F P ) where learning takes 

place in a large random-mixing population. We will deal both with the case where 

the population is large but finite, and with the case where the population is taken 

to be a continuum of non-atomic agents (an assumption familiar from evolutionary

8See for example, Kandori et al. (1993), Binmore and Samuelson (1994).
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game theory). While the beliefs of a given individual can be represented by point, the 

beliefs of the population will be represented by a distribution over the same space. 

We investigate how the distribution of beliefs, and therefore how the distribution 

of strategies, changes over time. It will help to create some new variables. Let 

Pij =  Wj — u?,*, j  ^  i. Thus, p, is a vector of length n — 1. We will use this to work in 

R Tl" 1 instead of R n. For example, if a player has to  choose between two strategies, we 

can summarise her beliefs by the variable pi2. If p i2 < 0 she prefers her first strategy, 

if pi2 > 0 her second, and if P12 =  0 she is indifferent. A player’s decision rule or 

reaction function can then be considered as a mapping from the space of beliefs to 

strategies, i.e. R n_l —► 5„, tha t is, the n-simplex. This mapping will not, in general 

be continuous for individual players: the fictitious play assumption limits players to 

pure strategies. See also Figure 2.1a.

Let Fi be the population distribution function of p; over R n_1. Agents will play a 

strategy if it is the strategy given the highest weight in their beliefs. In other words, 

the beliefs of those playing strategy i m ust be in Ei = {p* G R "_1 : p,j <  0, V j  /  ¿}. 

W hat if agents are indifferent between two or more strategies, that is, if their beliefs, 

for some j  are such that pij =  0 ? One way to finesse this problem would be to  assume 

tha t initial beliefs are given by irrational numbers and payoffs by rational ones or vice 

versa. Another method is to assume th a t beliefs are given by a continuous distribution 

on R n _ l. In any of these cases then, if the proportions of the population playing each 

of the n  strategies is given by the vector x  € 5„, =  Fi(0), where 0 is a vector of

zeros of length n — 1. For example, if all agents have the  beliefs Pij < 0 V j  then 

x, =  F ,(0) =  1.

A t the  basis of the deterministic model of P F P  is the assumption tha t agents 

update their beliefs as if they knew x  € Sny the true current distribution of strategies 

in the population. This could be supported by Story 3 in an infinite population or 

by Story 2 in a  finite or infinite population. We are, however, going to trea t each
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X{ as a  continuous variable and assume that the probability of meeting an opponent 

playing strategy i is x,.9 For example, over a period of length A t, each agent is 

matched within a single large population. If this matching is repeated an arbitrarily 

large number of times in each period (Story 2a), each agent will meet a proportion 

of opponents playing strategy i. We assume tha t in a period of length At, players 

adjust their beliefs by At as much as they would in a period of length 1. According 

to (2.1), which describes the fictitious play algorithm, we have for each agent

w (t A t )  =  w (t) +  A i  Ax. (2.6)

Similarly we can derive a system of difference equations for p , the vector of the agent’s

beliefs,

Pi(< +  A i) =  r ( p i , x )  =  Pi(<) +  At [(i4x)i)ti -  (Ax),], (2.7)

where (Ax)J?ti is a vector of length n — 1, constructed of all the elements of Ax except 

(Ax);. We will be interested in the properties of the inverse of the function T with 

respect to  Pi to be written r _1(p,). Given that T(.) is a simple linear function the 

existence of T“ 1 is therefore guaranteed. In fact, we have

r  1 (p .) =  P i(i) +  At [(Ax), -  (A x)j5il] (2.8)

To illustrate the properties of the deterministic model with a simple example, 

we consider 2 x 2  symmetric games, tha t is, games where every player must choose 

between the same two strategies. Let Ft(p) be the cumulative distribution of p — pX2 =  

—P21 on R . This distribution of beliefs determines the distribution of strategies. As 

the t subscript indicates, this distribution will change endogenously over time, as the 

beliefs of each agent are updated according to (2.7). This is shown in Figure 2.2, (in

9These are both approximations if the population is finite. We treat finite populations with 

greater accuracy in Section 7.
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Figure 2.2: Change in the distribution of beliefs
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the figure, a density function ƒ  =  dF/dp  is assumed; its existence is not necessary to 

the analysis of this section). In particular,

r - ‘(p) >  P : Ft+*t(p) = Ft(p) +  dF  = F ,(T -'(p ))  

r - ' ( p ) < p : F l+* to )  = Ft( p ) - f f . lM i F = F tir - 'to ) )

Any agents possessing beliefs equal to r _1(0) will update their beliefs to po. If 

r-* (0 ) >  0, as is the case in Figure 2.2, F(0) will increase by the proportion of 

agents who possessed beliefs on the interval [0 ,r_1(0)]. The linear nature of (2.7) 

implies tha t the whole distribution simply shifts to the left or to the right. This in 

turn will have an effect on the distribution of strategies. For example, an agent whose 

beliefs change from p = l t o p  =  —1 will change from her second to her first strategy. 

By definition, if F  is continuous at p =  0, that is, there is no mass of agents indifferent 

between strategies, X\ = F (0) and hence

1 i(< + At) = fi(r-'(0 )) = Ft(Af[(i4x)i -  (4x)2]). (2.10)

That is, in Figure 2.2, Xi increases by an amount equal to the shaded area. It is not 

difficult to extend this analysis to games of n strategies. In a time interval of length 

Af, the change in x,- is given by

Xi(i + At) = F,(r-*(0)) = Fit( A t [ [ A x \  -  (Ac)^]) , (2.11)

where Fi is the joint cumulative distribution function of p< on R n_l. Clearly, if a

strategy i currently has a higher expected payoff than any other strategy, then the 

proportion of the population playing th a t strategy x,- is increasing. We can state th a t 

more formally as:

L em m a 1 I f  (Ax); >  (A x)j V j  /  i then pij is strictly decreasing at a rate bounded 

away from  zero V j  ^  i and n  is increasing. I f  (Ax). =  (A x); V j  then p^-V j  ^  i, 

and X{ V i, are constant.
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While the  state  variable of the P F P  process is the distribution of agents’ beliefs, 

our main focus of interest is the distribution of strategies. We therefore define a  

fixed point for the PFP process as a  population strategy profile which is unchanging 

under the dynamic specified by (2.7), even though beliefs may continue to change. W e 

find a  one-to-one correspondence between fixed points and strategy distributions th a t 

are Nash equilibria of the game. Mixed strategies are supported by the appropriate 

distribution of pure strategies across the population. For the proof of the following 

proposition, we assume th a t if an agent is indifferent between two or more strategies, 

the choice of which of these strategies to play can be made according to any m ethod. 

However, once th a t choice is made, no further change in strategy will be made as long 

as the agent remains indifferent.

P ro p o s it io n  2 A strategy profile q  in the simplex Sn is a fixed point for the deter­

ministic PFP dynamic i f  and only i f  it is a Nash equilibrium.

P ro o f: We can start by observing th a t if q  is a Nash equilibrium then from (2.4) 

above, if Io C ƒ is the set of strategies in the support of q , then

V i j  €  Io (Aq)i =  (v4q)j >  (j4q)fc V k £ I0 (2.12)

(a) If. If an agent plays ¿, she m ust prefer it. That is, io; >  Wj V j .  From Lemma 

1 and (2.12), no agent will change preference either between the strategies in the 

support of q  or toward any other strategy.

(b) O n ly  if. Let q  now denote a  rest point which is not a Nash equilibrium. Let 

Io C I  be the set of strategies in its support. If q  is not a  Nash equilibrium then there 

must be a set of strategies ƒ* such th a t 3 i € Io (.Aq)* <  (Aq)* V k € /*• From (2.7), 

for each agent playing strategy j, u?t* — Wk must be decreasing at a constant ra te  as 

long as the system is at q. W ithin finite time, a  positive measure of agents playing i  

must switch to  a strategy in Ik- Hence the system is no longer at q. □

The following propositions are also immediate consequents. •
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P ro p o s itio n  3 All pure strict Nash equilibria are asymptotically stable.

P ro o f: A pure strict Nash equilibrium is a state  q  €  Sn with one strategy i in 

its support such that there exists an open ball B  with centre q  such tha t in B  fl £n, 

(Ax), > (A x)j V j  /  i. Clearly, if the system enters B  by the previous Lemma it 

cannot leave. While in £ ,  for all agents, each p,y V j  ^  i is decreasing at a non­

vanishing rate. In finite time, all agents play i. □

P ro p o s itio n  4 All strictly dominated strategies have zero population share in finite  

time.

P ro o f: This follows immediately from Lemma 1. □

These results are hardly surprising given that we have a population of agents tha t 

play only best replies, but they are sufficient to show convergence for many games. 

However, because mixed strategy equilibria are never strict, to deal with them  we 

will need to change our approach.

2 . 5  P o s i t i v e  D e f i n i t e  D y n a m i c s

We will now modify our existing model in two im portant ways. First, we will move 

from discrete to continuous time. This is not a neutral step. Our defence is th a t 

a discrete time model implies that all players are m atched, and hence update their 

behaviour, simultaneously, a degree of coordination unlikely in a large population. 

Second, it is necessary to impose additional assumptions to  ensure tha t the distribu­

tion of beliefs is continuous. For example, if there were mass points, discontinuous 

jumps in the value of x  would be possible as positive measures of players switched 

beliefs. As we have seen the deterministic cycles of normal fictitious play are possible 

even in the  large population model, but only with extreme restrictions on initial be­

liefs. Indeed, any perturbation to the distribution of beliefs will change the dynamic 

behaviour substantially.
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Zeeman (1981) faced a similar problem in modelling mixed-strategy evolutionary 

dynamics. We follow the same strategy of assuming tha t the distributions we consider 

are subject to noise. For Zeeman, who was considering a  biological model this was 

caused by m utations. Here, we can either assume tha t players make idiosyncratic, 

independently distributed mistakes in updating their beliefs, or, in the spirit of pu ­

rification (see also Fudenberg and Kreps, 1993), we can imagine that each individual 

payoffs are subject to idiosyncratic shocks. More formally, we imagine a once-otf 

shock of the form:

w ( i - f A i )  =  w (i) +  ij, (2.13)

where 77 is a  vector of normally-distributed independent random variables each w ith 

zero mean and finite variance. This would rule out the possibility of mass points of 

agents holding exactly the same beliefs. For example, in the two strategy case, if 

p =  — 1 for all agents, that is, they all prefer their first strategy, with the addition of 

the noise, beliefs would instead be normally distributed with mean - 1 . We can choose 

the variance of rj sufficiently small such th a t the new distribution approximates the old 

arbitrarily closely. Indeed, as Zeeman notes, distributions which satisfy our conditions 

are open dense in the set of all distributions. We sta te  these conditions in more detail:

A ssu m p tio n  o f C o n tin u ity : the distribution of beliefs is such th a t F, is abso­

lutely continuous with respect to p<. There exist continuously differentiable density 

functions /¿j =  f j i  =  dFi/dpij on R n _ 1  such that / ,j  > 0 everywhere on R ”“ 1.

The last inequality in turn  implies tha t x<(f) >  0 V i ,f .  However, it is possible 

for the  system to  approach the boundary of the simplex asymptotically. Consider th e  

case where there is a single strictly dom inant strategy i. In the previous section, we 

saw th a t, without noise, within a finite time only th a t strategy would be played. Here, 

the noise means th a t some agents will always prefer other strategies, but over tim e the 

numbers doing so will drop away to zero. The reason is th a t, from (2.6) and (2.13), we
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have E\pij(t +  A t) — jty(f)] <  0 V j  ^  i, the strength of preference for the dominated 

strategies is always decreasing. The result is that, limt—oo P r [wj +  17j >  u* +  ry,] =  0. 

Hence, lim ^oo x 3 =  0 and limt_»ooF(0) =  1.

We are now going to take the continuous time limit. Returning to Figure 2.2, in 

discrete time, all agents with beliefs in the interval [0, T“ 1 (0)] changed strategy. As 

we will see, moving to continuous time is equivalent of taking the limit r _1(0) — * 0. 

That is, the ra te  of change at any given point in time is going to depend on the 

number of agents who are, a t that instant, passing from preference of one strategy 

to preference of another. In other words, the rate of change will be proportional to  

the density of agents at the point of indifference, in Figure 2.2, ƒ(0). Subtracting Xi 

from both sides of (2.11),

*.■(* + Af) -  X i ( t )  = Fit{ A t[ (Ax). -  (Ax )J9£J  ) -  F«(0). (2.14)

Given the presence of a random disturbance in (2.13), the reader may be surprised 

to  see none in the above formula. The errors, however, have been subsumed in the 

distribution function /¿ . Note that the right hand side of (2.14) can be approximated 

by A f E i*  fij(0 )[(A x)i — (ylx)j], and th a t this approximation increases in accuracy 

as A t and hence T-1 approach zero. Next, we divide through by A t and take the 

limit A t —► 0 to obtain

ii ---- £  [(¿x); -  (Axjj] /¡j(0). (2.15)

This also can be derived from dFi/dt =  dFi/dpi • dpi/d t. The last term  of the chain 

can be obtained from (2.8) by subtracting p,(t) from both sides, dividing by A t, and 

taking the limit A —* 0. It is also consistent with the theory of surface integrals which 

scientists and engineers use to  calculate the flow of fluid (in this case, beliefs) across 

a  surface. It will be useful to write (2.15) in matrix form,

x =  Q (F (/))A x. (2.16)



(For the sake of simplicity, we will often suppress the ex tra  arguments tha t follow Q ). 

Clearly, (2.15) is very close to the continuous-time replicator dynamics (2.3) and th e  

linear dynamics proposed by Friedman (1991),

^  = ; E P X)‘ - ( H 1  (2-17)
n ,*i

In particular, if the distribution of beliefs is symmetric, such that f\j  — fik, V j ,  A:, 

then the continuous time PF P  is identical to the linear dynamics. However, if th e  

distribution is such that fij  =  X{Xj, then the replicator dynamics are reproduced. In 

any case, w ithout placing any restrictions on the  shape of the distribution, we have 

the following results

L em m a 2

1. Every element o f Q is continuously differentiable in x ,

2. limXl_ 0 Q.j =  0 V j,

3. Q u =  0, where u denotes the vector (1 ,1 ,..., 1),

4 . Q is positive semi-definite. That is, i f  A x  is not a multiple o f u , and x  has fu ll  

support, then A x  • Q A x  >  0,

5. Q is symmetric.

P ro o f: Q has a diagonal Qa =  fij and off-diagonal QtJ =  Qji =  — f a .  

Satisfaction of Conditions 1 and 2 is guaranteed by the Continuity Assumption. Hence 

at a  vertex of Sn, Q consists of zeros. Clearly Q n  =  u  Q — 0.* However, x ■ Q x — 

ƒ;;(*.•- S j ) 2 > 0 - * □

Geometrically, the operator Q maps the vector of payoffs A x  from R n to  the  

subspace R J =  {z € R n : u  • z =  0} (if the vector Q A x  did not add to zero then  x  

would cease to  add to one). It has nullspace u. T ha t is, a t a mixed Nash equilibrium
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where payoffs are equal (A x  is a multiple of u), x  =  0. For other Nash equilibria, 

if a strategy j  is not in the support of q, then at q, fij =  0. Because Q is positive 

definite the angle between A x  and Q A x  is less than 90°. This last property is what 

Friedman (1991) calls “weak compatibility”.

D efin ition : Any dynamic of the form x =  Q A x, where the matrix Q , satisfies 

the above 5 conditions, we call a positive definite dynamic.

We can demonstrate tha t evolutionary concepts are im portant in the context of 

population fictitious play. In particular, we can show that all ESSs are asymptotically 

stable. First we need a preliminary result,

L em m a 3 Any ESS  q  is negative definite with respect to the strategies in its support. 

That is, (x  — q) • A(x — q) <  0 for all x  with the same support as q  (see van Damme,

1991; Theorem 9.2.7).

The following lemma and proposition are based upon work of Hines (1980), Hof- 

bauer and Sigmund (1988) and Zeeman (1981). However, the result obtained here 

generalises the above results and indeed extends beyond the continuous time P F P  

process to any dynamics which are symmetric positive definite transformations of the 

vector of payoffs Ax.

L em m a 4 I f  A is negative definite when constrained to R£ (that is, z  ■ A z  < 0 V z € 

r s ;, then QA is a stable matrix (i.e. all its eigenvalues have negative real parts when 

Q A is constrained to

P ro o f: The eigenvalue equation is Q A z = pz  for some z € C J  =  {z =  Zi +  z2i G 

C n : Z j , z 2 6 R J} . We can construct a vector y  such tha t z =  Qy, where z € Cg. 

By the symmetry of Q, we have y c ■ Q — z c where zc is the conjugate of the complex 

vector z. This gives us

y cQ A z  =  zc • A z =  p y c • z =  p y c • Q y (2.18)
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As Q is symmetric positive definite, y c • Q y  is real and positive. The real part of 

zc • A z  is negative, hence the real part of p is negative. Since all its eigenvalues are 

negative or have negative real part for eigenvectors in Rg, QA is a stable m atrix on 

that space. □

A strategy profile q  is a re g u la r  ESS if it is an ESS that satisfies the additional 

requirement tha t all strategies th a t are a best reply to q  are in its support. We are 

now able to prove

P ro p o s itio n  5 All regular ESSs are asymptotically stable for any positive definite 

dynamic.

P ro o f: Let q  be a fully mixed ESS. Differentiating Q (x)A x with respect to x

and evaluating at q, we obtain £?(q)A +  dQ /dx  Aq. At a Nash equilibrium Q A x  — 0. 

It follows that for each x;, dQ /dxi Aq =  0. Thus the Jacobian of the system at q  is 

given by (¡)(q)A. By Lemma 4 all its eigenvalues have real part negative.

If a regular ESS q  is on a face S q C Sn, th a t is, ^  >  0 if and only if i G I q 

C / ,  then it is also asymptotically stable under the continuous time positive definite 

dynamic. Because it is an ESS, A is a  negative definite form on Sq, and so is Q A  is 

stable on Sq. It remains to show th a t the dynamic will approach Sq from the interior 

of Sn.

We adapt the proof of Zeeman (1981). Define A =  u q  ■ A q—Aq. This is a vector 

whose ith  element is zero for i € Iq and positive for i £ Iq. Hence, we can define the 

function A = A • x  >  0, with equality on S q, and A =  A • Q A x . We choose an e such 

that for all x in some neighbourhood of q , x  =  q  +  f  with | f; |< c, and | Qij |<  e for 

i f  Iq by Conditions 1 and 2 of the definition of a positive definite dynamic. Then

=  Y .  Q . j ( ^ q ) j  +  Y  Q a A : k i k
3 j ,k
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Now, if i i  Iq then the first term of the above is of order e, the second is of the order 

t 2. Thus, in the neighbourhood of q  we can approximate A by A • Q (u q  • A q  — A) =  

-A  ■ QX < 0 .  □

W hat is particularly attractive about this result is th a t to determine stability 

one no longer has to examine the potentially complicated function Q(x). Instead, 

one can confine attention to  the properties of A alone. For example, for the PF P  

dynamics it is not necessary to know the shape of the distribution of beliefs. The last 

two conditions on Q are the substantive ones. Positive definiteness seems a minimal 

condition to place upon a dynamic. Nonetheless, it becomes a sufficient condition for 

stability when combined with symmetry. Why this should lead to asymptotic stability 

for ESSs can be seen in the traditional economic terms of convexity and concavity. A 

“positive definite” dynamic is a gradient-climber. The negative definiteness of ESSs of 

course implies concavity. Any positive definite dynamic will move “uphill” toward the 

ESS. Condition 1 is the necessary condition for an unique solution to the differential 

equation (2.16). Condition 2 ensures tha t the dynamic remains upon the simplex. 

Of course, both the replicator dynamics and Friedman’s linear dynamics satisfy these 

conditions (the la tter only on the interior of the simplex).

The im portance of symmetry can be illustrated by comparing positive definiteness 

with the Friedman’s (1991) concept of order compatibility or the monotonicity of 

Nachbar (1990) and Samuelson and Zhang (1992). Monotonicity requires tha t x./x,- > 

i j / x j  iff (Ax), >  (Ax); , and order compatibility, x, > i j  iff (Ax), >  (Ax); . It is 

easy to check th a t if a dynamic can be written x  =  Q (x)A x both monotonicity 

and order compatibility imply the positive definiteness of Q (as Friedman points 

out order compatibility implies weak compatibility which is equivalent to positive 

definiteness). However, monotonicity and order compatibility do not imply symmetry. 

The existence of asymmetric order-compatible dynamics is what enables Friedman 

(1991) to dem onstrate that ESSs may be unstable under order compatible dynamics.
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Similarly, there are dynamics which are monotonic but which diverge from ESSs. 

Conversely, there are positive definite dynamics which are not monotone or order 

compatible.

In the case of only two strategies, for any such positive definite dynamic, we have

¿ 1  =  C?n[(^x)! -  (A x)2] (2.19)

For 2 x 2 games, the orbits produced by the positive definite dynamics will, after a 

suitable rescaling, be identical.

P ro p o s itio n  6 For 2 x 2  games, all positive definite dynamics generate orbits which 

are identical up to a change in velocity.

P ro o f: Continuous dynamical systems are invariant under positive transform a­

tions, which represent a change in velocity (see for example, Hofbauer and Sigmund, 

1988, p92). By positive definiteness Q n  is positive on the relevant state space. □

2 . 6  M i x e d  S t r a t e g y  D y n a m i c s

The replicator dynamics do not allow individuals the use of mixed strategies. As 

van Damme (1991) notes it would be preferable to examine mixed strategy dynamics 

which perm it this possibility. The problem is tha t they are less tractable than the 

replicator dynamics which they generalise. In this section, we are able to  show tha t 

they also fall within the class of positive definite dynamics. Furthermore, we show 

that the aggregation of gradient learning can be treated in a similar manner.

Zeeman (1981, Section 5) examines the properties of the mixed-strategy replicator 

dynamics (see also Hines, 1980). The main assumption is th a t there is an infinite 

random-mixing (Story 3) population whose individuals play mixed strategies. Thus 

each individual can be represented by a vector y  6 5 n. The population is summarised



2.6. M IX E D  S T R A T E G Y  D Y N A M IC S 45

by a distribution F  on 5n. The mean strategy in the population is given by x  =  ƒ y dF  

and the symmetric covariance matrix Qm =  / ( x  — y)(x  — y) dF  (m is for mixed- 

strategy dynamic). Zeeman worked only with distributions that were full, th a t is, 

distributions for which Qm has maximal rank amongst those populations having the 

same mean x. As noted above, Zeeman justified this restriction by appealing to 

mutations. Summarising his results, we have

L em m a 5 I f  x  is in the interior o f Sn then z • Q mz > 0 fo r  any z which is not a 

multiple o f  u . (Zeeman 1981, p265).

Assuming as for the pure strategy replicator dynamic th a t the proportional growth 

rate of a strategy is equal to the difference between its and the average payoff gives

ƒ( y) = /(y)[y •A* -  x-Ax]

and hence

L em m a 6 The dynamic for the mean mixed strategy satisfies x  =  QmA x . (Zeeman 

1981, p266).

We can find similar results for the type of learning dynamics considered by Harley 

(1982), Borgers and Sarin (1993), Crawford (1989) and Roth and Erev (1995). This 

may seem strange in tha t, first, Borgers and Sarin rightly point out this learning pro ­

cess when aggregated across a population of players is not identical to the replicator 

dynamics for either pure or mixed strategies, and th a t, second, Crawford proves th a t 

in such a large population, under such dynamics the mixed-strategy equilibrium of a  

simple game like (2.2) is unstable. However, Crawford’s definition of a mixed-strategy 

equilibrium is the state  where every agent plays the equilibrium mixed-strategy, th a t 

is, in game (2.2), they all play their first strategy with probability a. However, I 

would argue tha t in a random-mixing population this definition is over-strict. It is 

possible to have a  state  where the average strategy in the population, and hence,
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the expected strategy of an opponent, is equal to  the mixed strategy equilibrium, 

although no agent plays the exact mixed strategy equilibrium profile. For example, 

the tth  member of the population could play her first strategy with probability a +  €; 

with ei — 0«

We assume, as for fictitious play, th a t each player has a vector w , each element 

representing the “confidence” placed on each strategy. However, rather than choosing 

the strategy with the highest weight, each player plays strategy t with probability

_  Wi Wi

y> = = w '

Thus, here, in a similar way to the model of Zeeman, we can represent each individual 

as a point y  € distributed according to a function F. However, here we have to  

take account of the magnitude of W , the sum of an agent’s weights. We assume 

that they are distributed on R  according to a function G, and let H  be the  joint 

distribution function (incorporating F  and G) on Sn x R . And again, in a large 

random-mixing population, the probability of meeting an opponent playing strategy 

i will be a:,-, where again we define the  population mean as x = ƒ y  dF. However, 

rather than  strategy distributions being changed according to  an evolutionary process, 

each individual learns by adjusting the probability tha t she plays each strategy in 

relation to the payoff tha t the strategy earns. If a  strategy is chosen, and playing 

that strategy yields a positive payoff, then the probability of playing that strategy 

is “reinforced” by the payoff earned. In particular, if an individual plays strategy i 

against an opponent playing strategy j ,  then the ith  element of w is increased by the 

resulting payoff, again scaled by the length of the period A t,

Wi(t +  A t) =  Uij(t) +  A t diy

However, all o ther elements of w remain unchanged. This is the “Basic Model” of 

Roth and Erev (1995), who give a num ber of reasons why this may be a reasonable
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approximation of human learning. Thus the expected change is given by,

E  [u7t(i +  Ai)] -  in (u>,(t) +  At (4 x ) t) +  (1 -  y,)u>,(0- (2.20)

There are three im portant differences between this learning rule and fictitious play. 

First, it is stochastic, not deterministic. Second, while under fictitious play, agents 

have a limited capacity for assessing what they might have received if they had used 

some other strategy, here agents only consider what actions they actually play and 

what payoffs they actually receive (this type of learning model was developed to anal­

yse animal behaviour). Third, for the probabilities to remain well defined, we m ust 

require all payoffs to be non-negative10, and that all agents s tart with all elements of 

their vector w strictly positive. From (2.20), we can obtain

E [yi(t + A t ) - y t(t)] =
A t  y, (( Ax)j — y  • j4x )

(2.21)
W  +  A t  y  • A x

This is a special case11 of the RPS rule of Harley(1982). Crawford (1989) characterises 

individual behaviour in a large population of players by the deterministic continuous 

time equation,

yi =  y .[(4x), -  y  • Ax]. (2.22)

Borgers and Sarin (1993) show that by using a slightly different specification of the 

updating rule one can obtain a continuous time limit similar to Crawford’s equa­

tion (2.22)12. The advantage of the approach of Borgers and Sarin and Crawford is 

th a t learning behaviour is easier to characterise, but only a t the cost of additional 

assumptions.

10 Either we consider only games with positive payoffs, or we add a positive constant to all payoffs

sufficiently large to make them positive. Clearly such a transformation would make no difference to

a game’s strategic properties, though, in a dynamic context it can change the rate of adjustment.

See the discussion of discrete time processes in the next section.

n The equation (2.21) can be obtained by setting what Harley calls the “memory factor” to 1.
12It would be the same if Borgers and Sarin considered as did Crawford a single random-mixing

population.
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In any case, the next step is to  derive an expression for the evolution of th e  

population mean. If we think of the change made by each agent as a draw from  

the distribution th a t describes the population, x*(f +  A t) — x,(f) is then the sam ple 

mean. Hence, the variance of the change in x,- is decreasing in the number of agents. 

Thus, if the population is infinite, then the evolution of the population mean will be 

deterministic (the case of a  finite population will be dealt with in the next section). 

We have

Xi(t +  A f) -  xt(f) =  ƒ E[yi(t + Af) -  y;(f)] dH

-  ƒ A t  y,[(Ax), -  y  • A x]/(W  +  Af y  • Ax) dH  

=  ƒ Af y.-fc -  y ] /(W  +  Af y  • Ax) dH  • Ax. 

where e* is a vector of zeros except for a 1 in the ith  position and W  +  Af y  ■ A x >  0 

(by the assumption of non-negative payoffs). We divide through by A t  and take th e  

continuous time limit. This in turn  gives us,

x  =  QgA x  (2.23)

where the y-subscript is for gradient learning. The diagonal of Qg has the  form  

/ y , ( l  — y i) /W  d H , the off-diagonal — f  ViVj/W  dH. Hence Qg is symmetric and  

Qgu =  0. Clearly z • Qgz — ƒ ViV j/W  dH  (Z{ -  Zj)2 > 0. Consequently Qg is 

positive semi-definite. To obtain th e  model of either Borgers and Sarin (1993) or 

Crawford(1989) it simply necessary to  set W  — 1 for all agents. Clearly this would 

not change the conclusion th a t although Qg /  Qm,

P ro p o s itio n  7 The mean o f the mixed strategy replicator dynamic and the mean o f  

the gradient learning process are positive definite dynamics.

This, together with Proposition 5, extends the existing results on gradient dy ­

namics.

A n  E x a m p le . Take the  game (2.2), assume a =  .5* that F (y i) =  yf, and  

hence x \  =  2/3. Under the mixed strategy replicator dynamics, we have f ( y i )  =



2.7. GAM ES W ITH O  UT ESSS 49

2j/i[1/9 — yi/3]. T hat is, those agents playing the first strategy with probability less 

than one third, and hence far from the equilibrium strategy, are increasing in number. 

For the gradient dynamics, we have jh =  —j/i(l — yi)/(6 IF ). In words, all agents are 

decreasing the weight they place on their first strategy. This also demonstrates the 

difference between the two dynamics. The evolutionary dynamic replaces badly- 

performing agents by better performers13, under the gradient dynamics, all agents 

respond to the situation by changing strategy. As Crawford (1989) discovered, the 

state where all agents have y\ =  0.5 is not going to be stable. In this example, 

the agents who are currently playing the “equilibrium” mixed strategy (yj =  0.5) 

are respectively dying off and moving away from it. However, for both dynamics 

we have — Q n  [1/2 — X\],  and hence the mean strategy clearly approaches the 

equilibrium14.

2 . 7  G a m e s  w i t h o u t  E S S s

Since the concept of an ESS is a  strong refinement on Nash equilibrium and conse­

quently there are many games which do not possess any equilibrium which satisfies its 

conditions, one might wonder how positive definite dynamics perform in these cases. 

For any constant-sum game for any x  6 5 n, x -Ax = t>, where uis the value of the game. 

It follows, if the game has a fully mixed equilibrium q, tha t (x — q) * A (x  — q) =  0. 

From Proposition 5 and in particular (2.18) we have that,

C o ro llo ry  X The eigenvalues o f the linearisation o f any positive definite dynamic at 

a fully mixed Nash equilibrium of a zero-sum game have zero real part.

13Though perhaps this type of dynamic could be reproduced in a population that learns by 

im ita tion.

l4IIarley (1982, p624) reproduces two graphs of the results he obtained from simulations of a 

similar game using his learning model. Two things are apparent: the population mean approaches 

the mixed strategy equilibrium, the strategy of individual players (typically) does not.
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This result unfortunately is of the “anything can happen” type. For the linear dy­
namics (2.17), because they are linear, the Corollary implies that such an equilibrium 
must be a neutrally stable centre (it is easy to check that V = l(x — q) * (x — q)is a 
constant of motion in this case). For non-linear dynamics the fact that their lineari­
sations have zero eigenvalues may hide asymptotic stability or instability.

Secondly, there are games which possess equilibria which are positive definite. It 
is an obvious corollary of Proposition 5 that positive definite dynamics diverge from 
such equilibria. This can prove useful in terms of equilibrium selection. Unstable 
positive definite equilibria can be rejected in favour of stable ESSs. This works well 
in games with both ESSs and positive definite equilibria.

a,,6, > 0, i = 1,2,3 (2.24)

But the game (2.24) has an unique equilibrium which, for example, for a* = 1,6, = 
3, t =  1 ,2 ,3  is positive definite. Hence, no positive definite dynamic can converge. 
This might seem problematic, but in fact it offers a strong empirical prediction. For 
rational players under the full-information assumptions of conventional game theory, 
for a game with an unique Nash equilibrium it should not matter whether it is positive 
or negative definite. However, we can conjecture that in a random-matching envi­
ronment under experimental conditions, the strategy frequencies of human subjects 
would converge if, for example, a* = 3 and 6, = 1 but not if cq = 1 and 6, = 3. This 
conjecture we can make with a degree of confidence because so many different specifi­
cations of adaptive learning are consistent with positive definite dynamics. Such diver­
gence is not necessarily “irrational” or “myopic”. Indeed, if a; =  1,6, =  3, t =  1 ,2 ,3  

average payoffs are at a minimum at the mixed equilibrium. Divergence increases 
average payoffs.

0 0 ! - 6 1

- 6 2 0 a2

<*3 — 63 0
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The robustness of these results, however, does depend on the property of positive 

or negative definiteness. For equilibria which are neither positive neither negative def­

inite, it is possible for stability properties to vary according to  the exact specification 

of the dynamics. Such equilibria can be attractors or repellors. Using (2.24) again as 

an example, the pure strategy replicator dynamics converge iff aia2a3 > b\b2bz, the 

linear dynamics iff ai +  a2 +  0 3  >  hi +  b2 4 - 6 3 , while simulation suggests tha t the P F P  

dynamics will converge to any equilibrium of the game which is not positive definite.

We conclude this section with discussion of the extension of the above results to 

discrete tim e and to asymmetric games. Consider a positive definite dynamic such

that

x (t +  1) =  x(t) +  <2 Ax, (2.25)

where Q again satisfies the five conditions outlined above. In this case, pure strategies 

which are regular ESSs will be asymptotically stable, the second part of the proof of 

Proposition 5 applying equally well in discrete time. The problem is, as always, with 

mixed strategies. From (2.25), the linearisation at a  fully mixed fixed point q will be

ƒ +  Q (q)A . (2.26)

As we have shown, the eigenvalues of QA  are negative. If however, they are too 

“large”, the absolute values of the eigenvalues of ƒ H- QA will be greater than one. 

So it is possible for a discrete time positive definite process to diverge from a mixed 

ESS. This is going to depend on the magnitude of the change in strategy distribution 

made each period. In the case of a pure strategy equilibrium, it must be true th a t 

II x  — H II >11 Q A x  || otherwise the dynamic would jum p over the fixed point and out 

of the simplex. In contrast, unless the rate of change is sufficiently slow, it is possible 

to  shoot right past a mixed-strategy equilibrium. Note tha t, for example, for the 

discrete time replicator dynamics given in (2.3), the rate of adjustment is decreasing 

in the constant D. Hence, stability of ESSs can be assured if D  is sufficiently large. In
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the case of gradient learning, the rate  of change is decreasing over time as the size of 

individuals1 weights (W  in the notation of the last section) increases. Furthermore, in 

the case of positive definite equilibria, where QA  has positive eigenvalues, then all the 

eigenvalues of the linearisation (2.26) are clearly greater than one and the equilibrium 

will most certainly be unstable.

In the case of asymmetric games, it is well known th a t no mixed strategy equilibria 

are ESSs. Furthermore, it is also well known that mixed strategy equilibria are either 

saddles or centers for the replicator dynamics (Hofbauer and Sigmund, 1988). It is 

easy to show that this result generalises to  all positive definite dynamics. In particular, 

let x give the strategy frequencies in the  first population and y  in the second, and  

x  = Q A y , y  =  P B x , where Q and P  are positive definite matrices satisfying the 

conditions outlined above. Then the argum ent outlined in Hofbauer and Sigmund 

(p i42-3) goes through unchanged.

2 . 8  C o n c l u s i o n

There has been some debate as to whether the replicator dynamics, in spite of their 

biological origins, can serve as a learning dynamic for human populations. The results 

obtained here on one level give some support to the skeptics. The aggregation of 

learning behaviour across a large population is not in general identical to the replicator 

dynamics, in either their pure or mixed strategy formulation. However, it is clear 

tha t all these dynamics, whether of learning or evolution, share many of the same 

properties.

This is valuable in that, as the literature on learning and evolution has been 

growing a t a significant rate over the past few years, there has been a proliferation 

of different models and consequently different results. The hope here is th a t we have 

obtained a result th a t is reasonably robust: ESSs are asymptotically stable for m any
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apparently different adaptive processes when these processes are aggregated across 

a large random-mixing population. An ESS is quite a strong refinement on Nash 

equilibrium. Furthermore, it has been discredited in the eyes of some because it does 

not correspond exactly to asymptotic stability under the pure strategy replicator 

dynamics (Proposition 1). However, these are not the only dynamics of interest, and 

for results on stability that are robust to different specifications, the concept of ESS 

is the one tha t is relevant. In extending existing results on fictitious play, gradient 

learning and mixed-strategy replicator dynamics, it has been the negative definiteness 

of ESSs which has been essential.
i-

Researchers have begun to test the predictions of models of learning and evo­

lution by carrying out experiments. The results presented in this paper may be 

relevant in several ways. First, they are in accordance with the results reported by 

Friedman (1995), who reproduced in the laboratory the anonymous random matching 

environment considered here. In what he terms “Type 1 Games” , Friedman found 

convergence in average strategy to a mixed ESS although most subjects tended to 

stick to a single pure strategy. Second, Mookherjee and Sopher (1994), for example, 

a ttem pt to determine whether fictitious play or gradient type rules best describe the 

learning behaviour of their subjects. As we have shown, the differences between these 

two types of model, in a random-matching environment at least, are smaller than  

previously thought. Our results would also point to a reason why Gale et al. (1995), 

using the replicator dynamics, and Roth and Erev (1995), using a  gradient type learn­

ing process obtain similar results in trying to simulate the behaviour of experimental 

subjects playing the ultim atum  bargaining game. Third, there has been some debate 

(Brown and Rosenthal, 1990; Binmore, Swierzbinski, and Proulx, 1994) about what 

constitutes convergence to equilibrium in experimental games. W hat we show here is 

th a t it may be foolish to expect more than  convergence in the  average strategy in a  

population of players. Last, we offer further predictions to be tested. Games which
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possess ESSs should converge. For games which possess positive definite equilibria, 

our predictions are equally clear. Learning processes should not converge to such 

equilibria.

Finally, as we noted in Section 1, under fictitious play for some mixed strategy 

equilibria there is convergence in beliefs without convergence in play. In the random- 

mixing models considered here, the opposite is possible. The distribution of strategies 

in the population matches exactly the equilibrium strategy profile. However, individ­

ual agents play any mix over the strategies in its support, including a  single pure 

strategy. One might say tha t none has “learnt” the mixed strategy equilibrium, but 

equally, given the assumption of random  matching none has an incentive to change 

strategy.



C h a p t e r  3

L e a r n i n g  a n d  E v o l u t i o n  i n  a  

H e t e r o g e n e o u s  P o p u l a t i o n

A bstract

A framework is proposed for investigating the effect of evolutionary selection 

on a population where some agents learn. It is shown that learning behaviour 

when aggregated has different properties than when considered at the level of 

the individual and that a combination of learning and evolution has different 

properties in terms of stability than when considered separately. Convergence 

is shown for all 2 x 2 games and a famous 3 x 3  example.

55
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3 . 1  I n t r o d u c t i o n

Game theorists have recently shown an increasing interest in modelling both learning 

and evolution. Nash equilibrium (and its refinements) place strong requirements 

on the rationality and the computational ability of players and on the information 

they must possess. In switching to  models with boundedly-rational agents the hope 

has been not only to weaken those demands but also to select between equilibria 

in a  m anner which is more intuitive. Unfortunately, the dynamics considered do 

not necessarily converge and thus fail to give clear predictions. The results here 

indicate th a t in part this failure arises from too narrow a focus. Most research has 

concentrated on properties of individual algorithms. We examine a model where 

there is both learning and evolution and find quite different results from when they 

are considered separately. In particular, there is convergence for a  wider class of 

games.

There are obvious similarities between the properties of adaptive learning and 

evolutionary dynamics. Typically, both are concerned with the development of the 

distribution of strategies within some large population1. As Cabrales and Sobel (1992) 

show, evolutionary dynamics under certain conditions can be “consistent with adap­

tive learning” in the sense of Milgrom and Roberts (1991). But this is only a  con­

dition on the  asymptotic behaviour of a selection or learning process. In the short 

run, although “consistent” , different processes may behave quite differently. In par­

ticular, while selection dynamics are typically smooth functions of current strategy 

distributions, under fictitious play or Cournotian dynamics, where players make best 

responses to previous play(s) of opponents, there can be discontinuous jumps in play. 

Convergence to mixed strategies is in particular troublesome (for example, see Fu- 

denberg and Kreps 1993; Jordan, 1993). Here it is shown tha t if one aggregates such

lSome papers in the first camp include Milgrom and Roberts (1991), Kandori et al. (1993), 

Young (1993); in the second, Nachbar (1990) , Samuelson and Zhang (1992).
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behaviour across a large population, smoothness is obtained.

The standard evolutionary dynamic framework assumes tha t agents compete in 

some game and then reproduce according to the success they obtain. Here I make 

the (strong) assumption tha t the population is randomly matched an infinite number 

of times in each “generation” to play the game. The population is heterogeneous in 

that some agents learn. At the end of their “lifespan” agents reproduce according to 

the success of the strategies they develop, or, to be precise, according to the limit 

of this learning process. Thus, there are two mechanisms tha t can change the mix 

of strategies in the population. Agents can change their own strategies, a “learning” 

process, and an evolutionary mechanism also chooses between different agents, the 

“selection” process.

The combination of the two has quite different implications for the stability of equi­

librium than each considered in isolation. We show th a t the  distribution of strategies 

in the population converges to Nash frequencies for all 2 x 2  asymmetric games and 

also for a famous 3x3 game first proposed by Shapley in 1964. Shapley’s original pes­

simistic result has been confirmed and generalised by more recent research, (Jordan,

1993). It is therefore particularly striking that, even given the particular assumptions 

of this model, tha t a population can converge to the Nash equilibrium of such a  game.

3 . 2  L e a r n i n g  a n d  S e l e c t i o n

In this section, we first set out a standard model of evolutionary dynamics. We then 

explain why mixed strategies of asymmetric games are typically unstable in this setup. 

We go on to modify the model by the introduction of a simple learning process.

An infinite population is repeatedly, randomly m atched to play a two-player 

normal-form game, G =  ({1,2},X , ¿7”, A, B). We develop the model and notation
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on the basis that the game is asymmetric (in the evolutionary sense), in which case 

the players labelled 1 are drawn from a different “population11 from the players la ­

belled 2. For example, in the “Battle of the Sexes” game, players are matched so th a t 

a female always plays against a  male. 1  is a set of n strategies, available to the first 

population, J , the set of m  strategies of the second population. Payoffs for the first 

population are determined by v4, a n x m matrix of payoffs, with typical element a ,j, 

which is the payoff a member of the  first population receives when playing strategy i 

against a  member of the second population playing strategy j .  B , with typical ele­

ment is the m x n  equivalent for the second population. There are n +  m  “types” 

of agent, each associated with one strategy. The state  of the system can thus be sum ­

marised by the proportions of the population playing each strategy x  =  (x i,.. . . ,x n), 

y  =  ( ¡ /i ,..., ym). T hat is, the s ta te  space is the Cartesian product of the simplexes, 

5n x 5m where 5n =  {x = (x i , . . . ,x n) R n : Ex^ =  1 ,x,- >  0,for i  — l , . . . ,n } . D e­

fine the interior (or, int S n x 5 m), as all states where all types have strictly positive 

representation, and define the boundary as all states where at least one type has 

zero representation. The symbol indicates multiplication by a transpose, and th e  

notation (> ly in d ic a te s  the ¿th element of the vector in parentheses.

The problem with which we are really concerned with here is the generic instability 

of mixed strategy equilibria in asymmetric games under adaptive dynamics. Hofbauer 

and Sigmund (1988) set out the reasons for this in the case of evolutionary dynamics. 

In an environment where each member of the first population is randomly matched 

with a member of the second, the expected payoffs for the first population are A y 

and B x  for the second. We assume that

x  = Q (x)A y  and y  =  P ( y ) B x  1 (3.1)

where Q, P  are symmetric positive definite matrices. This is a very general formula­

tion for adaptive processes, including the evolutionary replicator dynamics and some
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learning processes as special cases (see Chapter 2). If we linearise the dynamics a t a 

fully mixed fixed point £, we obtain

( 0 <3(£)A

 ̂ P(S)B  0
R = (3.2)

Because the payoffs of the first population depend only on y  and not x  and conversely 

for the second population, the trace of this matrix (3.2) is zero. Consequently the 

eigenvalues are either a mixture of negative and positive or they have zero real part. 

In discrete time all such equilibria are always unstable. If we replace x  and y  in (3.1) 

by x(t +  1) — x(i) and y (t +  1) — y (t) respectively, then the linearisation at a mixed 

equilibrium is /  +  R, and has eigenvalues 1 +  r, where r  is the vector of eigenvalues of 

R. Given th a t, as we have seen, R  possesses either a m ixture of positive and negative 

eigenvalues or eigenvalues with zero real part, it is easy to  show that the matrix I  + R  

always has at least one eigenvalue of absolute value greater than one. However, in 

continuous time, in the case of eigenvalues with zero real part, the linearisation does 

not determine stability, this will be determined by the equations1 higher order terms. 

Such equilibria are not structurally stable in tha t small changes in the structure of 

the game or the dynamics will affect stability. For example, equilibria can be stable 

in continuous time even though unstable in discrete time.

However, most mixed equilibria in asymmetric games are sad Jlepoints. Saddle- 

points are of course unstable and this property is structurally stable. In other words, 

small variations in the specifications of the dynamic cannot make the equilibrium 

stable. Instability of these mixed equilibria can often make intuitive sense in tha t 

there are games which also possess stable pure equilibria which seem more plausible 

outcomes (see the discussion of asymmetric games in M aynard Smith, 1982; or in the 

context of human society, Sugden, 1989). Or to put it another way, the instability 

allows us to select between equilibria. However, there are many games which possess 

a unique mixed equilibrium. A famous example is the following game first discussed
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by Shapley (1964). This is a  saddle, with convergence only occurring if the first pop­

ulation starts in its equilibrium state , th a t is, with each of the three strategies with 

equal representation. From all other initial conditions, any dynamic satisfying (3.1) 

will diverge from equilibrium.

(3.3)

Could heterogeneity help with this problem? That is, if there were a diversity in 

the types of behaviour present in either one or both populations, could this change 

the stability properties of mixed equilibria? In the  framework we have sketched up to 

now, it will not. If we require learning rules to be expressible in the m anner of (3.1) 

as a positive definite transformation of the payoffs, it does not m atter how m any such 

rules are present in the population. It is easy to verify that the aggregation of any 

such rules would itself be a positive definite function of the payoffs. To produce real 

qualitative change, it is necessary to  consider a wider deviation.

It is tem pting to  look in the direction of best response dynamics or fictitious play, 

because they offer behaviour which is qualitatively different. Rather than offering a 

smooth reaction to payoffs, there can be discrete jumps in play. It is not th a t this in 

itself makes convergence properties any better. For example, Krishna and Sjostrom

(1995) have recently found th a t mixed strategies are also generically unstable for 

fictitious play. Rather it is the possibilities offered by the combination of different 

processes. Banerjee and Weibull (1995) consider the case where a proportion of the 

population is “rational”, th a t is, they play a strategy which is a best reply to the 

current state  of the population2. The result is quite striking. Every Nash equilibrium 

becomes stable. It is very interesting to  see rationality only on a part of the population

2The rational players know that there are rational players amongst their opponents. The best 

reply is calculated on this basis.
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is enough to give results very similar to those of standard game theory. However, given 

that one of the main reasons for investigating adaptive dynamics is to  select between 

equilibria, another approach is required.

The basic model is modified here by the addition of a type capable of inherit­

ing rules more complex than  simply to play a fixed strategy. Thus, we now have 

n + 1, m  +  1 types, and we work in Sn+i x 5m+i- We can think of each generation 

being divided into an infinite number of subperiods (0 ,1 ,..., s , ...). As a reminder, 

the selection process operates between generations, the learning process within gen­

erations. We assume tha t the n -f 1th and m  +  1th type adjust their strategies so 

that they play what is an optim um  response to the strategy of their previous oppo­

nent: the “best-response” or Cournotian dynamic. Similar behavioural hypotheses 

have been employed in recent learning literature (for example, Milgrom and Roberts, 

1991; Kandori et ah, 1993; Young, 1993), but here the implementation is particularly 

simple. Agents do not need to know anything about the overall distribution of s tra te ­

gies in the population or to have a memory longer than one subperiod. Yet, as we 

will see, this is enough to ensure convergence to Nash equilibrium in a  large class of 

games.

Thus, at any given time, different members of the additional type may be playing

different strategies. Let p (s) =  (pi(s), ...,pn(s)) and q (s) =  (<?i(-s),.....i<7m(5)) where

p,(s) and qj(s) denote respectively the proportion of this n -j- 1th type of population 

1 playing the ith  strategy, and the proportion of the m +  1th type playing the jfth 

strategy at a given subperiod s. As T, J  are finite, it is a standard result that for any 

pure strategy in J ,  there exists at least one element of J  which is a best response 

to that strategy. Or Vi G I  3 b3»i > bji. First, define T ,J *  as those subsets of T  

and J  respectively of strategies which have current positive representation in the two 

populations. Second, let represent the number of strategies in I  which are equal 

best responses to strategy j .  Third, let J i  =  { j  £ J*  : i =  argmaxt€j  a (J} be the
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set of strategies to which i  is the best reply, and, equivalently, let Tj — {i 6 1* ' j  =

argm ax^j 6;,}.

The probability that an individual of type n +  1, in population 1, meets an indi­

vidual of type j  in the second population is yj. There is also a probability g>j/m+i of 

meeting an individual of type 1 currently playing strategy j .  In either case, faced 

with an opponent playing strategy j ,  the individual will play in the next subperiod 

a strategy which is a best reply to j .  Thus, within each generation, each p; evolves 

according to a mapping Sm —► [0,1]

p.(* +  i ) = E -  +  £ y - *Wj(3) (3-4)
j e J ,  P j  j e j ,  h

Thus, although individual choices are made according to the best-reply dynamic, the 

distribution of strategies in the population is a continuous function of the previous 

subperiod’s distribution. We make the assumption that when there are alternative 

best responses each agent chooses independently. Then by the law of large numbers 

each alternative response is chosen by an equal number of agents. This explains the 

presence of /ij, denoting the number of alternative best replies. Naturally if J i  =  0, 

Pi =  0, and if J i  — J ' ,  p,- =  1. These represent respectively the cases where i is not 

a best reply to  any strategy, and where it is the dominant strategy. Similarly, for the 

second population,

qj(s +  1) -  2
i£lj P'

x n+i Pi(s) 

Vi
(3.5)

L em m a 7 If, at time t, 1 >  i n+j(<),pm+|( i) , the learning process represented by 

equations (3.4), (3.5) has an unique fixed point p*,q" € 5„ x Sm.

P ro o f: Though they change between generations, within each generation the 

population proportions x ,y  are fixed and are therefore constants for (3.4), (3.5). 

Consequently, th e  equations are simple, linear difference equations. W ritten in matrix 

form, they become

P(s + l) = X o  + Ĵ iP(5)
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where P  =  ( p i , pn, 9i-.., 9m), x0 is the vector of terms in x^, y; , and X \  is the m atrix 

of terms in x„+i or ym+i. In equilibrium we have, P* =  ( I — By inspection of

(3.4), (3.5), it is possible to  see th a t the coefficients on the p, in the first n equations 

are all zero, as are the coefficients on the qj in the next m  equations. Hence, ( /  — A'i ) 

can be partitioned in the following manner:

I - X ,
- X 12 \

 ̂ —Â21 I  }

Each column of X u  and X 2\ sums to ym+l and xn+i respectively. Thus (I  — A'i) 

is singular if and only if neither X \2 and A 21 are linearly independent of ƒ, which 

can only be the case if xn+1 = J/m+i =  1. Otherwise, there is a unique fixed point, 

P " (x ,y ) =  (p*, c|*). Because of the linearity of these equations, this solution will be 

a function of (x ,y ) , continuous on the interior of Sn+i x S m+i. □

The exact value of this solution depend entirely on the value of the x,, y, and not on 

the value of p , q  a t the beginning of the learning process. Furthermore, the sufficient 

condition for the existence of an unique fixed point is also a sufficient condition for 

convergence.

Lem m a 8 If, at time t, 1 >  x„+1(f),ym+i(i), the learning process converges to its 

unique fixed point.

P ro o f: (3.4), (3.5) represent a  system of n +  m  linear first order difference equa­

tions. The x,,y,- are constant within each generation, and therefore are constants for

(3.4), (3.5). In particular, the coefficients on the variables p ,q  on the right hand side 

are the x„+i/p,-, the sum of which in each equation have an upper bound in

value of either x„+i or ym+i. By the elementary theory of difference equations if this 

sum is less than unity for all equations, so are all the roots of the dynamic system. □

It is worth remarking th a t here convergence is not convergence in empirical fre­

quencies, a notion of convergence that has been forcefully criticised in the recent
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literature (Young, 1993; Fudenberg and Kreps, 1993; Jordan, 1993). In this case, one 

does not have to take a time average. As the limit approaches, strategies are actually 

played at limiting frequencies.

I make the assumption th a t payoffs during the learning process do not affect the 

rate of reproduction. Rather it is the limit of the learning process, denoted (p*,q") 

which determines reproductive fitness. This construction has some analytic conve­

nience: if one assumes only a finite number of plays each period, the values of p, q 

will be dependent on their (arbitrary) initial values. We would have to make further 

assumptions about how much of the behaviour learnt within a period is transmitted 

between the generations. For example, we could assume th a t each generation starts 

from scratch: a t the beginning of each period p (0),q(0) are randomly determined. 

That is, “children’1 learn nothing from their “parents” . Or we can assume th a t the 

initial values are some function of play by the previous generation. However, using 

the lim it, the value of (p",q*) will be the same in either case. This procedure is in 

any case defensible on the grounds th a t as (3.4), (3.5) are convergent, even after a 

few plays the process will be close to  the limit3.

As stated we use these limiting values to determine fitness. At the end of the 

learning process the total proportion of the first population adopting the tth strategy 

will be given by Zi — x, -f z n+Jp*, and, the proportion of the second population 

adopting the j t h  strategy by Wj = t/j -f Given the assumption of random

matching it is these overall distributions which decide fitness. For the first n, m types 

this will be, given the normal form game G,

TTr, =  (Aw),, 7rw = (Bz)j, (3.6)

3Compare Harley’s assumption (e): “The learning period is short compared to the subsequent 

period of stable behaviours” (1981, p613).



3.2. LE AR N IN G  AND SELECTIO N 65

and for the learners,

tfxn+1 =  p' • 4 w , 7T„m+1 =  q* • B x  (3.7)

With fitnesses defined, we can propose as a selection mechanism the following repli-

cator dynamics:

Xi(t +  1) =  /x ,(x ,y )  =  +  =  - ^ x ’y ) =  y ^ ^ B i  + C ’

(3.8)

where C is an arbitrary constant. Alternatively, taking the limit, as generations 

become arbitrarily short:

¿t =  Fxi(x ,y )  =  a:i(f)(7rri -  z • Aw), y, =  Fyj(x ,y )  =  y > (f)(* w  -  w • B z)  (3.9)

where z - Aw, w  • B z  are the average payoffs for the two populations. Inspection 

of (3.9) shows tha t this continuous selection mechanism has the following im portant 

property:

Invariance. As Fxi =  F yJ =  0, the interior of the simplex is invariant

under F . Starting from any interior point, the boundary is never reached in finite 

time. T hat is, if (x(0),y(0)) € int 5„+i x Sm+i, then (x (f) ,y (f))  € in t 5„+i x 5m+i 

for all t €  R.

If we impose the condition that C is sufficiently large such tha t both denominator 

and numerator in (3.8) are strictly positive4 for all i , j , invariance will also hold for 

the discrete dynamic ƒ. Given that p*,q* are themselves functions of the frequencies 

of types in the population, fitnesses will not be linear in x ,y  - a usual assumption of 

the replicator dynamics - and perhaps not even be defined when xn+i and ym+i are

4 An increase in the value of C  is equivalent to the addition of an equal am ount to the  game 

m atrices A, B.  T his will not change the best response structu re  or Nash equilibria bu t may change 

the qualitative behaviour of the discrete replicator dynamics. See C abrales and Sobel (1992) for a 

discussion o f the issues involved.
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equal to one. However, by Lemmas 7 and 8, fitnesses are continuous functions of x ,y  

elsewhere. This, combined with invariance implies th a t from any fully-mixed initial 

conditions, (th a t is, > 0 , i =  l....n  1 and yj > 0, j  =  l...m  +  1), the learning

process converges, and fitnesses are defined, for all t 6 R . Thus while both ƒ and F  

are not continuous on all of S„+i x Sm+i they are continuous on its interior. In other 

words, both ƒ  and F  possess a limit even along a dynamic path with an accumulation 

point on the boundary of Sn+ 1  x Sm+j, even if th a t limit may be path-dependent.

W hat is im portant about this definition of fitness is tha t there is a fundamental 

difference from the standard evolutionary model. Fitnesses for the first population, 

for example, depend on w which through q* depends on x . Consequently dirxi /d x  ^  0 

and any linearisation at a fully mixed equilibrium does not have the same structure 

as (3.2). T hat is, mixed strategy equilibria of asymmetric games are not generically 

unstable in this model. W hat however are their stability properties is as yet unknown. 

This we now investigate.

3 . 3  E q u i l i b r i u m

Equilibrium in this model consists of a population distribution which is a rest point 

for both  selection and learning processes. That is, a state  of the system where the 

limit of the learning process is such th a t all types present in the population earn the 

same average payoff. In the standard  evolutionary model, that is, in the absence of 

the learners, under the selection dynamics defined by (3.8) or (3.9), denote the  rest 

points for the game G in the interior of Sn x Sm, (x*,y*). It is well known th a t 

such rest points are Nash equilibria (Hofbauer and Sigmund, 1988; Nachbar, 1990)5. 

For the extended game, the conditions for an interior rest point under the selection

5 All states that consists of just one type are also rest points, but not all are Nash equilibria.
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dynamics are

7TX| = .... =  TTxn+1» 7Tyi =  ....TTym + l (3.10)

Furthermore, as (x ,y ) are both constant if (3.10) holds, the limit for the learning 

process is also unchanging across all subsequent generations. The consequent dis­

tribution of strategies is a Nash equilibrium. Comparison of equations (3.6), (3.7), 

reveal tha t any values of (x ,y )  th a t satisfy the above condition (3.10), also satisfy 

x, +  p"xn+j =  x*, and yj +  q*ym+i =  Vj• T hat is, it is a  Nash equilibrium for the 

original game G  in the sense that an outside observer would see, as the learning pro­

cess reached its limit, strategies being played with the Nash equilibrium frequencies, 

(x*,y*). Note th a t for each population there is now one less independent equation 

than there are independent variables. This means th a t any isolated equilibrium of 

the original game in the interior of Sn x Sm will be represented by a continuum of 

fixed points in the interior of 5 n + 1  x 5 m+i.

Furthermore, we can show tha t for all 2 x 2 games the  system will converge to a 

Nash equilibrium. (3,11) gives a generalised 2 x 2  game.

B  =

Define fli — a 12 — a22t a2 =  ^ 2 1  — a n ; £>i — &12 — ¿2 2 * ^ 2  =  ^21 — £>n* If 0 1 0 2  >  0 

and 6 1 6 2  > 0  then there is a mixed Nash equilibrium where the first strategy of 

each population are represented with frequencies (6, a) =  (¿¡+¿7 , af+a^) resPecfively* 

The interesting case is when a\bi <  0, as in this case, the mixed Nash equilibrium 

is unique, yet the standard evolutionary dynamics do not converge. However, the 

addition of an arbitrarily small initial population of learners is enough to stabilise 

the dynamics. The problem with proving this is tha t there is, as noted above, a 

continuum of equilibrium points. The key is a transform ation of the variables, which 

also has the advantage of allowing us to look at the problem on S2 x £ 2 .

¿11 6 1 2

£>21 ¿ 2 2

(3.11)
an a j2

021 a 22
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P ro p o s itio n  8 I f  axb\ < 0, then the mixed equilibrium is asymptotically stable.

P ro o f: Define a  =  x j/(x i  +  x2) and ¡3 — y i/(y i  +  3/2 )- Given the continuous time 

replicator dynamics (3.9), this gives us

a  =  a ( l  — a)[(i4w)j -  ( ¿ w ) 2], ft =  P ( l  -  ¡3)[{Bz)l -  ( £ z ) 2).

Clearly, these new equations have a fixed point where (¿i,u>i) =  (6 ,a). Taking the 

linearisation a t this point we have the Jacobian

j _ l  (fli + a2)a(l -  a ) ^  (a, + a2)o(l -  o ) ^  \

+ ~(bi + h W  ~ )

W ithout loss of generality, take ax to  be negative. Note tha t in this case (3.4), (3.5) 

gives us tha t z \  =  (xx +  x3yi +  x3y3) / ( l  +  x3y3) and uj* =  (yx +  y3 -  x iy3) / ( l + x 3y3). 

Substituting out x3 and y3, we can calculate d w \/d a  > 0, d w \/d ¡3 < 0, d z \ jd a  > 0, 

dz^/d/3  > 0. Thus J  has the sign pattern

+

and therefore has eigenvalues with real part negative. Hence the equilibrium is asymp­

totically stable.

The equivalent discrete system has linearisation ƒ *f J \  where J ' is identical to 

J  except tha t the  first row is divided by (o, 1 — a )  ■ j4w  -f C, and the second by 

(/?, 1 — /?) • B z  +  C. Hence, J ' also has eigenvalues with real part negative, whose 

absolute value decreases to zero as C —* 0 0 . Thus, there is a C  for which the 

eigenvalues of I  +  J '  are less than  one in absolute value. □

Note tha t not all mixed strategies are stable. T hat is, the dynamics can still be 

used to  select between equilibria. If a\b\ > 0  then this interior equilibrium is a saddle. 

Similar argum ents to  those employed in Proposition 8, can be used to show that in this
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case, the system behaves in much the same way as standard  evolutionary dynamics 

and flows toward the Nash equilibria located on the boundaries of the simplex.

The mixed equilibrium when a\b\ < 0  is non-hyperbolic (tha t is, the linearisation 

has eigenvalues with zero real part) for the continuous tim e replicator dynamics and 

hence not structurally stable. In this sense, a modification of the dynamics would 

be expected to change their qualitative behaviour. However, for the discrete time 

dynamics, the equilibrium is hyperbolic and hence robustly unstable. We have shown 

that even in this case, the addition of learning can stabilise the equilibrium. We go on 

to show that it can drive convergence to an equilibrium which seems to be unstable 

under every form of adaptive dynamic.

3 . 4  A  3 x 3  E x a m p l e

The famous example given by Shapley (1964) to dem onstrate non-convergence of 

fictitious play is shown in (3.3). The only Nash equilibrium of this game is interior, 

where both row and column play each of their strategies with equal probability. As we 

have seen, interior (mixed) equilibria of asymmetric games are never asymptotically 

stable under the replicator dynamics. Thus this game does not converge for the 

replicator dynamics, just as it does not for fictitious play. Recent research on learning 

and evolution has only served to confirm the robustness of this result (see for example, 

Jordan, 1993). However, under this modified system this game converges to  the 

unique Nash equilibrium.

■ Starting from a fully-mixed initial state, the 

strategy evolve according to:

proportions of type 4 playing each
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f yi N ( _ N
 ̂r t s) '

P(4+1) = ya + y4q(s), q(s + 1) = X, + x4 pi(«)

l  yi I l  X2 >  ̂M s) )

(3.12)

This is a system of six linear difference equations. By Lemma 2  we know that the 

fixed point of this system is the limit of the learning process. This can be calculated 

using standard methods. It would be possible to eliminate p ,q  by substitution using 

these results. However, it is easier to  work in the other direction. We construct Zi(t) =  

x,(f) +  x4 (<)p*(f),u>j(f) =  Vj +  =  li2 ,3 , where Z{ is the total number

of the first population playing strategy i y and wj is the total number of the second 

playing strategy j .  Note th a t (3.12) here implies tha t z (t) =

w =  p  and th a t q-B =  2-A . There is an interior equilibrium for this system: the 

plane such th a t arx =  x2 =  x3, yi = J/2  =  J/3 , which we denote (x ,y ). In such an 

equilibrium, (3.12) in turn implies th a t p  — q =  (1 /3 ,1 /3 ,1 /3 ). I now prove that 

the limit point of all solutions under ƒ , given fully-mixed initial conditions, is on this 

plane (normally for the discrete dynamics the interior equilibrium is a repellor).

P ro p o s itio n  9  The plane o f equilibria (x ,y )  under ƒ attracts all other points on the 

interior o f S4 x S4.

D' ,/lw
P ro o f: Define l /(x ,y )  = ^ aVa- Given that x 4{t -f 1 ) =  x4 ( t)^  and that

y4(t +  1 ) =  it follows th a t V (t  +  1 ) -  V (t)  >  0 if and only if
w-Bz

p -/lw  q-Bz -  z-ylw w*Bz =  w w z z - z w w z * > 0  (3.13) 

where z* =  (2 3 , z u z2). Divide through by w ■ w z • z to obtain:

1 — cos 6ZW cos > 0

It follows th a t V (t +  1 ) > V (0  w»th  equality only at (x ,y ) . V (x ,y ) is therefore a 

strict Liapunov function on all of th e  interior of S 4 x S 4 less (x ,y ). It is therefore
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unclear whether the system will have its limit a t V  =  1, or whether it will come 

to rest a t another point on (x ,y ) . However, in either case limt_*ooP =  limt_ooq =  

(1 /3 ,1 /3 ,1 /3 ) . □

We consider briefly two other examples. The first (3.14) is the familiar ROCK- 

SCISSORS-PAPER game, the second (3.15) is a game proposed by Dekel and Scotchmer 

(1992). They show that the DUMB strategy survives in th e  limit under the discrete 

replicator dynamics although it is never a best response and therefore not rationaliz- 

able.

A = B  =

ROCK b a c

SCISSORS c b a

PAPER a c b

a > b >  c (3.14)

ROCK-SCISSORS-PAPER is well-known as a problem game. While it does converge 

for fictitious play, it does so only in empirical frequencies. It (typically) does not 

converge for the discrete replicator dynamics. As for the first example, the limit 

of these games when learners are also present is the unique Nash equilibrium. As 

both these two additional examples have a similar structure, it is not surprising tha t 

they elicit similar behaviour. The function, arn+iym+i, will again work as a Liapunov 

function and shows that in both cases there is convergence in population frequencies 

to the unique Nash equilibrium.

ip ■ <

ROCK 1 2.35 0 0.1

SCISSORS 0 1 2.35 0.1

PAPER 2.35 0 1 0.1

DUMB 1.1 1.1 1.1 0

(3.15)

3 . 5  D i s c u s s i o n

Games such as (3.3) cause problems for conventional models because they possess 

cycles of best responses. One might think that random perturbation, for example,
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trembles or m utations, would also break up these deterministic cycles. However, this 

is not the case. For example, in Young (1993), cyclic games are excluded from the 

results on the  convergence of a stochastic learning process. Adding noise enables 

the system to  jum p between the different possible paths of the original deterministic 

process. If, as is the case for (3.3), all such paths are divergent, the stochastic process 

must be also.

The fundamental reason tha t this model gives qualitatively different behaviour is 

tha t there are two distinct processes determining the change in the distribution of 

strategies, working at different speeds. By changing strategies, the learners anticipate 

the next stage of the cycle and “dam p11 the non-convergent tendencies of the original 

model. The dependence is two-way. W ithout the non-learners, the best-response 

process would not converge for this game.

One might argue that the simple learning rule considered here would be displaced 

by more sophisticated behaviour. For example, Harley (1981) claims th a t for a learn­

ing rule to be evolutionary stable it m ust be a “rule for ESSs” . That is, it must be able 

to lead the population to the evolutionary stable strategy (ESS) in one generation. 

This would suggest that any learning rule which was able to survive evolutionary 

selection would have to be fairly flexible and sophisticated. However, some doubts 

have been cast on Harley’s model and methodology (Maynard Smith et al., 1984; 

Houston and Sumida, 1987). The la tte r paper raises a further point. While Harley’s 

claim m ight have some validity for single-agent optimisation problems, when there 

is strategic interaction with other agents things may be very different. T hat is an 

argum ent th a t finds support in more recent work (Banerjee and Weibull, 1995; Blume 

and Easley, 1992; Stahl, 1993), where rational agents do not necessarily displace less 

rational ones. There is no claim th a t the learning rule considered here is the “cor­

rect” one. However, there is also no strong evidence th a t evolution will select for 

more complex or sophisticated behaviour in a strategic environment.
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Learning and evolution are ostensibly similar processes. However, while evolution 

is defined at the level of a population, learning is carried out by individuals. Crawford 

(1989) dem onstrates that even when agents’ learning is modelled in a similar manner 

to the replicator dynamics, an aggregation of their behaviour does not have the same 

properties in term s of stability as evolutionary dynamics. Similarly, in this paper even 

the most elementary learning behaviour gives increased stability when considered at 

the level of the population. This opens up the possibility of further research about the 

aggregate properties of populations where a number of different classes of behaviour 

are present.
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C h a p t e r  4

P r i c e  D i s p e r s i o n :  a n  E v o l u t i o n a r y  

A p p r o a c h

A bstract

In many markets it is possible to find rival sellers charging different prices 

for the same good. Earlier research has explained this phenomenon by demon­

strating the existence of dispersed price equilibria when consumers must make 

use of costly search to discover prices. This paper re-examines the question 

of price dispersion from an evolutionary, disequilibrium perspective. That is, 

firms and consumers adjust behaviour adaptively in response to current market 

conditions. We find tha t dispersed price equilibria are unstable when consumers 

use a fixed sample size search rule but may be stable when t* reservation price 

rule is used.
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4 . 1  I n t r o d u c t i o n

It is a common experience to  find th a t prices vary between different sellers, giving 

consumers an incentive to search for low prices. Stigler (1961) introduced the notion 

of modelling consumer search as repeated random draws from the current distribution 

of prices. In response Rothschild (1973) set up a challenge. He argued that it was 

not enough to examine, as had Stigler, the search behaviour of consumers faced with 

an exogenous distribution of prices. Sellers, presumably, would only charge prices 

different from those of their competitors if they could make a profit by doing so. To 

explain price dispersion, economists m ust show th a t such price-setting behaviour was 

a rational response by traders to the search behaviour of consumers, and vice-versa. 

In game-theoretic terms, it was necessary to find a Nash equilibrium, where each firm 

and consumer adopted a strategy th a t was a best reply to the play of all other firms 

and consumers.

In fact, Diamond (1971) had introduced a model which satisfied Rothschild’s con­

ditions. However, the model’s main result is usually viewed as a paradox. Diamond 

was able to show tha t for any positive search costs, in equilibrium, no consumer 

would search, and all firms would charge the price tha t maximised joint-profits. This 

is clearly a Nash equilibrium: when prices are identical, there is no incentive to search; 

when there is no search, there is no incentive to cut prices to increase sales. Note 

tha t the  converse s ta te  where all consumers are fully-informed and all firms charge a 

competitive price cannot be a Nash equilibrium. For positive search costs and w ith all 

prices identical, active search is not optim al. Since consumers are not fully informed, 

firms can raise prices without losing all customers. While those economists raised 

on the “Law of One Price” might have expected price dispersion to be fragile it was 

surprising that the collapse was in this direction.

Faced with this challenge, subsequent authors, (a partial list includes Salop and
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Stiglitz, 1977, 1982; Wilde and Schwartz, 1979; Varian, 1980; Burdett and Judd, 
1983; Rob, 1985; Bester, 1988; Wilde, 1992; Benabou, 1993), produced models with 
dispersed price equilibria. However, there remains an unresolved problem with this 
earlier literature, that of multiple equilibria. There may be more than one equilibrium 
at which prices are dispersed, and typically, the joint-profit maximising outcome 
found by Diamond remains a Nash equilibrium even in the presence of these others.1 
Selecting between these equilibria is not straightforward. It is easily verified that 
for strictly positive search costs the joint-profit maximising outcome is a strict Nash 
equilibrium. That is, any deviation leads to strictly lower payoffs. It cannot therefore 
be easily dismissed.2

The other striking difference about the model of Diamond (1971) is that it is “A 
Model of Price Adjustment” not of equilibrium. There are several advantages to such 
a disequilibrium approach. First, it answers the question of how an economy arrives 
at equilibrium and why one equilibrium is chosen over another. Second, it allows a 
different approach to the modelling of consumer search. Some models assume as did 
Stigler that consumers use a fixed sample size search rule, that is, the consumer’s 
problem is to choose a sample size n. The consumer then collects n prices and 
then takes the lowest offer. More popular has been the assumption of sequential 
search, that is, after each price quotation the consumer must decide whether to buy 
at that price or to obtain a further quotation. However, in both cases the common if 
implausible assumption is that the consumer knows the distribution of prices before 
starting searching. Here, just as did Diamond (1971), we can relax this assumption. 
Consumers do not have to know the distribution of prices in order to determine the 
optimum level of search effort; it can be learnt from experience or from the experience

lThis problem occurs in many different models. See Wilde (1992).

2For a formal definition of strictness and its place in the heirarchy of equilibrium refinements, see 

for example van Damme (1991).
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of other consumers.3

More recently, disequilibrium models have been back in fashion under the title of 
learning and evolution. While this work has up to now mostly been on a very abstract 
level, there may now be enough theoretical ammunition to analyse the problem of 
price dispersion. Here we present an dynamic, evolutionary model which is able to 
select between the multiple equilibria present in these models. Evolutionary models 
are not new to economics but have not always been well received by economists. In 
particular, the assumption of evolutionary game theory that agents use a single fixed 
strategy which determines their rate of reproduction may seem ill-suited to economic 
applications. However, the translation of models between disciplines is not intended 
to be over-literal. In human society, the births and deaths are of ideas and strategies, 
not people. We can assume that at each point in time a population of individuals have 
to choose between different strategies. The state of the system can be summarised by 
the proportions of the population playing each strategy. The system changes state as 
agents change strategies. In fact, in an earlier paper (Hopkins, 1995) I was able to 
show that if one aggregates such learning behaviour across a population, the resulting 
aggregate dynamic is qualitatively similar to the evolutionary replicator dynamics.4 
The exact dynamics do not have to be specified, rather it is possible, as shown by 
for example, Nachbar (1990), Friedman (1991), Samuelson and Zhang (1992) and 
Kandori, Mailath and Rob (1993), to work with wide classes of dynamics, which 
share certain qualitative properties. While this might not represent the behaviour of 
perfectly rational agents, it encompasses a wide range of plausible adaptive processes 
and learning schemes, including some quite sophisticated behaviour.

3 Unfortunately, we were unable to  obtain analytic results for simultaneous learning by sellers and 

consumers in the case of sequential search.

4 Both Hofbauer and Sigmund (1988) and van Damme (1991) present excellent surveys of the 

field of dynamic evolutionary game theory, including description of the replicator dynamics.
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A further criticism might be that much of the recent work in evolutionary games 
has been in the context of two-player normal-form games, a context that does not 
encompass most economic problems. Indeed, the game here is an asymmetric game 
with many players. These are divided in two distinct groups, buyers and sellers. 
The payoff of each player depends upon the actions of all other players. The payoffs 
are not linear. Firms can choose from a continuum of prices. It is a situation very 
far from that of a normal-form game. Nonetheless, it is possible to apply the same 
evolutionary techniques.

Up to now, evolutionary and learning models have been applied to similar prob­
lems by using a discrete approximation of a continuous strategy space (for example, 
Roth and Erev, 1995). This may be a problem in that, for the many models of dis­
persed price equilibria, the existence and character of equilibrium depends on the 
properties of the continuum. Hence we develop learning dynamics on the Hilbert 
space £,2 5 where we look at the evolution of the functions describing the distribution 
of prices. While this does involve some technical difficulties, we are able to show that 
even when firms can choose from a continuum of prices, it is possible to obtain clear 
results on the stability of dispersed price equilibria under different assumptions. In 
particular, dispersed price equilibria may be stable when consumers use a reservation 
price rule when searching but unstable when they use a fixed sample size rule.

This result rests on quite a simple argument. Assume that firms and consumers 
are at some dispersed price equilibrium. Then assume that a positive mass of firms 
simultaneously raise prices, say from pi to p2 , while consumer behaviour remains 
unchanged. If consumers are using a reservation price rule then these firms will 
simply lose all the customers with reservation prices on the interval [pi,p2 )- However, 
if consumers use a fixed sample size rule, some of them may be unlucky and only 
draw prices greater than or equal to p2. Thus, the fall in demand is not as great as in 
the previous case. Furthermore, there is a positive return in raising prices. By raising
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prices, sellers increase the probability that a consumer will be “unlucky” and find 
only high prices, and therefore increase the expected sales of all high priced sellers. A 
consequence of this externality is that deviations from equilibrium are self-reinforcing. 
In this case, dispersed price equilibria are unstable.

4.2 Som e Simple Examples
J . - ' 1

In classical perfect competition there can only be one price. While concerned with 
a market for a good which is entirely homogeneous, this result allows for a certain 
amount of other types of heterogeneity: consumers may have different marginal val­
uations of the good, firms different costs; but in the absence of any monopoly power, 
and, importantly, with perfect information, a single market-clearing price will be 
charged. This is in contrast with the existing evidence, formal and informal, that for 
many goods, there is a wide dispersion of prices.

There is a line of skepticism that argues that all apparent differences in prices can 
be explained by heterogeneity in terms of quality, distances in time or space. The 
convenience store sells its goods at a higher price, but only has significant custom 
when the neighbouring supermarket is closed. Shop A charges more than B, but offers 
superior service. The argument on quality can be countered by the existing empirical 
data where the variance in prices seems too large to support such an explanation. 
As to differences in time and space, these are not inconsistent with most models of 
price dispersion. Typically, they are concerned with consumers who differ in search 
costs, which of course may include such factors as impatience or willingness to travel. 
A more telling criticism is that, if sellers are clearly differentiated in either time or 
space, modelling search as purely random draws from a distribution of prices is not 
appropriate.

Nonetheless, it seems intuitively plausible that identical goods could be sold in the
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same time and place for different prices, some retailers selling a high volume at a low 
margin, others selling a low volume at a high margin. However, the possibility of such 
an equilibrium is going to depend quite delicately on the specification of, first, the 
sellers’ costs, so that it is possible that a high volume is as profitable as a low volume, 
and, secondly, consumers1 information and behaviour, their search “technology”, so 
that demand is decreasing in price, but not so abruptly as under perfect competition.

We consider two cases, first, where consumers use a fixed sample size rule, and 
second, where search is sequential. In the first case, the consumer must decide how 
many quotations to obtain at a constant cost c (the convention is that the first 
quotation is free). Only once all the n price quotations have arrived can the consumer 
purchase from the firm that offers the lowest price. Such nonsequential search can 
be optimal (Morgan and Manning, 1985), and fits the case where a consumer must 
write away for quotations, or where a number of quotations can be obtained by 
buying a magazine or newspaper. Sequential search is where a consumer obtains one 
quotation and then decides whether to take another. The classic result is that when 
the distribution of prices is known, optimal sequential search takes the form of a 
reservation price rule. That is, the consumer decides on a target price and continues 
to search until it is found. What is common to both forms of search is the possibility 
of ex post heterogeneity of information. That is, while starting out with identical 
information, some consumers will find a better price than others. This is of course 
what allows the existence of a dispersed price equilibrium.

We now look at the simplest possible example of such equilibria and how learning 
dynamics can be applied to a market game of this kind. We are concerned with a 
market for a homogeneous good. For example, the same model of car or computer 
from a particular manufacturer is often sold by many different outlets, often at differ­
ent prices. Consumers buy this product only infrequently. The sellers we can think 
of as a continuum of identical small shops, which buy the good from a wholesaler
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for a constant cost, which here we assume to be zero. We assume (an average of) 
fi customers per seller. Firms choose prices in order to maximise profits. There is 
an upper bound on prices p*, which can be seen as the profit-maximising price in a 
monopoly situation. A continuum of consumers are uninformed about which firms 
charge which prices. They must engage in costly non systematic search in order to 
obtain price quotations.

For illustrative purposes we simplify even further assuming that firms have a choice 
between only two prices {p,p*}. This is not intended to be realistic but the same 
intuition drives the result in this case as when the analysis is much more complicated. 
We first assume that consumers search with a fixed sample size rule, and again for sake 
of simplicity, we assume that they must choose between sampling one and sampling 
two prices. Their expected costs, if a proportion x of the sellers charge p and 1 — x 

charge p*, will be xp+  (1 — x)p* in the first case and c + (x2 + 2x(l — x))p + (l — x )2p* 

in the second. If q consumers choose the first option, and 1 — q the second, then 
sellers’ profits are respectively

2 lt[q + (1 -  q)(2 -* )], or, p’ft[q + (1 -  g)(l -  *)]. (4.1)

If search costs are not too high, then we have the structure of equilibrium illustrated 
in Figure 1. There are two values of x, {x,x} for which consumers are indifferent 
between searching once and searching twice. The variance of prices, and hence the 
expected return to search, is at a maximum at x = 0.5. At x = 1 or 0, searching once 
dominates searching twice. The curve maps the equal profit line between the sellers’ 
two possible strategies. It is upward sloping because as q rises the profits of firms 
charging p* rises. Profits can only be kept equal if the number of low-priced firms x 

increases, which reduces the number of customers at the high-priced firms.

There are two interior equilibria, and one at the bottom right hand corner (the 
no-search outcome). The arrows are generated by the simple assumption that the
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Figure 4.1: A simple example

proportion of the population playing the strategy which is earning a higher payoff 
will grow at the expense of the other. For example, near the no-search equilibrium, 
searching once is more profitable than searching twice, and p* more profitable than p. 

Hence the arrows point right and down. Both the interior equilibria will be unstable 
under any such simple dynamic. This is simply because the equal profit curve is 
upward-sloping. Looking at (4.1), it is clear that the profits of the firms charging 
p* are increasing in their population share 1 — x. There is a positive externality in 
between these sellers in that the more of them that there are, the less the probability 
of consumers finding a better price. Hence, a deviation from equilibrium which, for 
example, increases the market share of the high-priced firms, (a shift downwards in 
the Figure), increases their profits, leading to a deviation of increased size.

Now we consider the same simple model but with consumers adopting a reservation 
price rule. This time let q consumers have a reservation price greater than or equal to
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pm and 1 - q have a reservation price on the interval [p,p*). That is, the latter group 
will always refuse an offer of p*, while all consumers will accept p. Sellers’ profits are 
therefore

p p [ q + ( l - q ) / x ] ,  or, p mpq,  

while consumers must expect to spend

x p  + ( 1 -  x)p\ or, c(i -  1) + p.
— x  ~

This last result follows because a consumer has an expected 1 /x  searches before 
finding an offer of p (again the first quotation is free). It is easy to see that just as in 
the fixed sample size case, there may exist an interior equilibrium where sellers are 
indifferent between the two possible prices. However, the difference is that the equal 
profit curve for sellers is downward sloping, falling from infinity at q = 0 to zero at 
q = 1. This suggests that stability properties when consumers use ? reservation price 
may be different from the case where they use a fixed sample size.

This is of course a very simple analysis and hence possibly misleading. It might 
be argued, for example, that the instability in the case of a fixed sample size rule 
arises solely from the inadequate nature of the discrete approximation of a continuous 
strategy space. The positive externality shared between the highest-priced firms 
depends on the existence of positive mass of firms charging that price, something 
that may not occur when the strategy space is a continuum. For that reason we will 
examine the dynamics when sellers can choose from a continuum of prices. We find 
that it is still the case that the dispersed price equilibrium is unstable. However, 
the first step is to discuss the exact structure of dispersed price equilibrium in such 
circumstances.
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4.3 D ispersed Price Equilibrium ;

We consider equilibrium in both the cases where consumers use a fixed sample size 
rule and the case where they search sequentially. We continue to assume that there 
is a continuum of sellers with constant zero marginal cost. Burdett and Judd (1983) 

demonstrate how a dispersed price equilibrium can arise without any heterogeneity 
either amongst firms or consumers. The important assumption is that there is ex 
post heterogeneity in consumer information: a proportion q\ of consumers know of 
one price, g2 have two price quotations and so on. This can arise because either 
consumers use a fixed sample size rule or if consumers search sequentially, but the 
search is noisy, for each search made there is a probability g* of finding k quotations 
simultaneously. If the distribution of prices is given by the cumulative distribution 
function F(p), the probability for consumers that a given price p is the lowest that 
they find with two quotations is 2(1 — F(p)), after three 3(1 — F(p))2. Hence, profits 
for firms are then

^(p) = PP J^,<Ikk(l-F(p))k~' (4.2)
fcal

where p is the average measure of consumers per firm. Burdett and Judd show that 
the only possible distribution of prices in equilibrium must have continuous support 
on the interval (p,p*), where p is to be determined endogenously. If there were a 
gap in the distribution on some interval (pt,Pj), a firm charging p, could raise its 
price to fill the gap without losing any customers. If there were a mass point in the 
distribution at some price p;, a firm could cut its price from p, by an arbitrarily small 
amount and gain a discrete jump in sales.

In fact, Burdett and Judd show that when consumers use a fixed sample size search 
rule, a dispersed price equilibrium is only possible when a proportion 1 > q > 0 of 
consumers buy one quotation, and all others 1 — q obtain two. In equilibrium, the

4.3. DISPERSED PRICE EQUILIBRIUM
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profit for all firms must be equal. Given (4.2), and

jr(p*) =  p'fiq = 2P [q + 2(1 -  g)] =  *(p),

we can solve for both p and Ĵ (p)* Denoting the equilibrium cumulative distribution 

function by 0, we have

and

$  =  <

0,

1 -
P* - P  9 

p 2(1 — q)'

p < p

p < p  <p*

P > P *

P
9

(4.3)

Note that the equilibrium distribution is continuous. There is no mass point at p*. 
Thus there does not seem to be the externality present in the simple example of the 
last section. As we shall see this is misleading. The externality is still there, and the 

equilibrium is still unstable.

Is this an equilibrium for consumers? If the price distribution is given by the 
difference between the expected price paid by a consumer who searches once and a 
consumer who searches twice is given by

V(q) = J p  dQ{p) -  2 ƒ  p(l -  $(p)) <®(p).

This is a continuous function of q with a unique maximum on (0,1). That is, if c is 
less than the maximum, there are two values of q such that V(q) = c, that is, such 
that consumers are indifferent between their two strategies. If c is higher than the 
maximum, so that search is not worthwhile, no dispersed price equilibrium exists. 
Burdett and Judd note however, that another equilibrium exists (irrespective of the 
value of c). It is the same outcome that Diamond (1971) found. That is, the state 
with <? = 1 and, for all firms, p = p*.
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Diamond’s result suggest tha t a sequential search rule is not conducive to price 

dispersion. In general terms, given a  uniform cost to each search, a  population of 

rational, maximising consumers will all settle on the same reservation price and will 

not buy for more. Sequential search is obviously therefore not consistent with a 

distribution of prices without a distribution of search costs as Rob (1985), Carlson 

and McAfee (1982) and Benabou (1993) consider.

Here, we follow Rob (1985) and consider again a  continuum of sellers with constant 

zero marginal cost. Buyers have a (nondegenerate) distribution of search costs v(c) 

which leads to a distribution of reservation prices g(r). Obviously sellers who charge 

a price p will only sell to consumers with a reservation price r  >  p. These customers, 

given th a t they search randomly, will be equally divided amongst the F (r) sellers 

whose prices they find acceptable. Thus profits, simply price times sales, for a  firm 

charging a price p are given by the following expression,

S(r)fip
J

■dr, (4.4)
F(r)

where p is again the average number of consumers per firm. In equilibrium, the 

marginal benefit of search will equal its marginal cost, th a t is Jq F (s ) d$ =  c. Conse­

quently,

g(r) = v ( J '  F {s)ds)F (r). (4.5)

Thus, what really determines the existence and form of an equilibrium price dispersion 

is the distribution of the consumers’ costs. Carlson and McAfee (1983) and Rob(1985) 

are able to calculate some examples for particular distributions. However, there is no 

simple or general theory in this case.

4.4 Evolutionary Market Dynam ics

Having described some possible equilibria, we now deal with disequilibrium. We 

imagine the above one-shot game is repeated many times. That is, a t each point
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in tim e firms must choose prices and consumers a  search strategy, for example, how 

m any price quotations to buy or a  reservation price to search for. As is common in the 

literature on learning and evolution, agents do not play some complex intertemporal 

equilibrium. Instead they adjust their play of the stage game. In this context, firms 

change prices in the direction of increasing profits. This is not unreasonable in the 

context of the model. Firms are assumed “small” relative to the size of the m arket and 

have little strategic power. Consumers participate in this market only infrequently. 

This also means tha t firms have little  incentive to build a reputation.

The param eter /x now represents the volume of the flow of consumers on to the 

market. This ra te  is fixed and exogenous.5 We do not assume that consumers know 

the distribution of prices. Instead we assume a type of social learning of the type for 

example set out in Young (1993). T h a t is, consumers have some access to informa­

tion on how consumers have behaved in the past and how successful were the different 

strategies pursued. They obtain this information either from their own past experi­

ence of the m arket or from advice from more recent participants. Thus consumers act 

adaptively using past observations to  form an estim ate of the current distribution of 

prices. But there also needs to be some rule by which they decide on what response 

they make. One alternative would be for consumers to choose a search strategy which 

was a best response to the estim ated distribution. This would be consistent with the 

idea of fictitious play perhaps the most popular learning model in the recent liter­

ature, (see for example, Milgrom and Roberts, 1991; Young, 1993; Fudenberg and 

Kreps, 1993).

However, there are other models of learning. It is possible to use the  evolutionary 

replicator dynamics or their generalisations as a way of modelling human learning 

behaviour, for example, Friedman (1991), while another alternative is the learning

5Fershtman and Fishman (1992) consider the case where rational forward-looking consumers may 

decide to  defer consumption if  they expect prices to fall.
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model considered by Roth and Erev (1995), or the learning by im itation model of 

Schlag (1994). In an earlier paper (Hopkins, 1995), it was dem onstrated tha t the ag­

gregation across a  population of players of all these learning rules were qualitatively 

similar. For example, evolutionary stable strategies (a definition follows) are asymp­

totically stable for all dynamics of this class. It is possible therefore to work with 

the class of positive definite dynamics which include all these models as special cases. 

Within this framework, firms and consumers could have different learning rules, or 

behaviour could vary within the two populations; for example, some agents could 

play mixed strategies, some could play pure.

Much of the work on learning and evolution has been in the context of a  large 

population of agents who are randomly matched to  play a  normal form game. Unfor­

tunately this does not m atch a description of most m arkets, a t least as traditionally 

modelled by economists. First, agents interact not by random  matching but through 

the price mechanism. For example, in Cournot type competition, rather than being 

matched one-to-one, firms interact through the effect their decisions on output have 

on aggregate output and hence on price. Second, profits are non-linear in the firm’s 

decision variable. Lastly, the strategy space is a continuum.

The first difficulty is easily overcome. Even in a random  matching environment 

the aggregate is im portant because it determines each agen t’s expected payoffs. In 

the case of a symmetric normal form game with n strategies, let A  be the n x  n 

payoff matrix, and let each agent play a strategy (possibly mixed) y  G 5„ =  {y =  

( y i j/n) € i?n : =  1 ,y, >  0 for i =  1 ,...,«} . If mixed strategies in the

population are described by a distribution function F  on 5 n, then let x  €  S n =  

ƒ y dF  be the vector of the average propensity in the population to play each strategy 

(If all agents play a pure strategy, then x is simply the  vector of proportions of 

the population following each strategy). Then, an individual playing the strategy y 

against a  population with current state  a:, has expected payoff y ■ Ax.
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A positive definite dynamic is a  dynamic which has the form,

x =  Q (x)A x . (4.6)

where Q is a symmetric semi-positive definite m atrix. There are certain other condi­

tions which are set out in Hopkins (1995). Similar conditions with modifications to 

allow for an infinite number of strategies appear in Section 5 of this paper. However, 

the most significant condition is simply tha t of positive definiteness. This ensures 

that the vector of changes in strategy frequencies x is a t less than a 90° angle to the 

vector of payoffs A x. This is thus a  very weak formulation of the assumption that 

strategies with a  high payoff grow a t th e  expense of those with a lower return.

We can extend these dynamics to  the  case where profits are given by a nonlinear 

function. However, we again assume th a t agents choose between n strategies. The 

return to  each strategy given the s ta te  of the population x  is 7r(x) =  (t̂ ,  ..., tt„). Then 

an agent playing any strategy y €  S n would receive a payoff y - ?r(x). We assume the 

dynamics to be given simply by

x =  Q (x)x(x). (4.7)

The motivation for this approach is evolutionary. In evolutionary game theory 

an evolutionary stable strategy (ESS) is defined as a strategy which is “uninvadable” . 

Agents playing some alternative strategy would not be able to supplant agents who 

stick to  the original strategy. In the  m arket games considered in this paper, in a 

similar way, we want to know whether a  given equilibrium distribution of prices can 

resist any deviation by any firm or group of firms from their equilibrium strategy. 

The conditions for a state <f> to be an ESS are firstly, tha t <j> should be a best reply to 

itself, th a t is, a  Nash equilibrium, or formally,

<t> • ir((j>) >  x  • ff(<£), V x € 5„. (4.8)
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Second, if there are any alternative best replies, any strategy x  for which x  • Tr(<j>) =  

<f> ■ 7r(<̂ ), then <j> is better against them  than they are against themselves.

<j> • ?r(x) > x  ■ 7r(x). (4.9)

W hat this last condition implies is a kind of concavity of the payoff function. If 

for example 7r were linear in x, and 4> was a fully- mixed equilibrium ( ^  > 0 V i),

(4.9) would become (x — <f>) * 7r(x — <f>) < 0, (as (x — <j>) ■ tt(<£) =  0). Now as both 

x and <f> are vectors summing to one, (x — <f>) is an element of Rq, tha t is the space 

{x € R n : £  x, =  0}. Thus, evolutionary stability implies (in most cases) th a t a 

linear profit function, such as for a normal form game, must be negative definite 

on Here, with nonlinear profit functions, what we require is that the linear

approximation at the equilibrium point be negative definite. That is, if II x =  d r /d x , 

then x • n r x < 0, V x £ R q. In fact, such negative definiteness is a sufficient condition 

for dynamic stability under positive definite dynamics.

P ro p o s itio n  10 An equilibrium point <f> is asymptotically stable under positive defi­

nite dynamics i f l i x (<j>) is negative definite on R% and asymptotically unstable 

is positive definite.

This proposition is a special case of Proposition 12 which, together with its proof, 

can be found in Section 5.

4.5 Dynamics on an Infinite Space

As Burdett and Judd themselves suggested

“Examples of further possible work include stability analysis which 

may give further information concerning the durability of equilibrium price 

dispersion and reduce the multiplicity of equilibria in the nonsequential 

mo del.” (1983, p967)
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In this section, we do indeed carry out a  stability analysis, both for fixed sample 

size model of Burdett and Judd  and also when consumers search sequentially. Ideally, 

we would want to analyse the dynamics the case where the  two types of agents, firms 

and consumers, change their behaviour simultaneously. Unfortunately, this proves to 

be too complicated a model to obtain more than very partial results. For the moment, 

we consider only the behaviour of sellers, treating consumer behaviour as fixed. This 

we could justify by the likely observation th a t consumers adjust their behaviour much 

more slowly than  do firms. Second, the problem for consumers is largely unstrategic, 

in tha t a consumer’s payoffs are not affected by the actions of the other consumers. 

As we have seen in the simple examples of Section 2, the stability of equilibrium is 

largely determined by the adjustm ent process of the sellers.

While before we used a vector x  to  describe the state  of the population of firms, 

now its role is taken by a density function ƒ. To simplify things somewhat we nor­

malise pm to 1 and thus we consider distributions of prices on the interval [0,1]. As 

for a dynamic on a finite dimensional space, we take a linear approximation to  the 

nonlinear dynamics a t the equilibrium distribution and we find that, in the first case, 

this equilibrium is positive definite and hence unstable. In the second, that is when 

consumers search sequentially, the results are less clear cut. However, we are able to 

show th a t there is a t least one dispersed price equilibrium which is stable.

This is not the first attem pt to exam ine evolutionary dynamics with a continuous 

strategy space. Hofbauer and Sigmund (1990), for example, note that, unlike in finite 

dimensions, it is possible to have evolutionary stability w ithout dynamic stability 

and vice versa. We do not a ttem pt here to obtain any general results about the 

links between the two concepts. However, we have already seen that when the payoff 

function is non-linear, the condition (4.9) for evolutionary stability is not identical 

to the condition for dynamic stability, th a t is, th a t the linear approximation IIX is 

negative definite. i
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Let £  be a complex Hilbert space, that is a Banach space with the addition of a 

scalar product {f , g ) : E x E —* C . An example is Cn, with the vector inner product 

ƒ * ƒ, where the bar indicates the complex conjugate. However, we will in particular be 

interested in the space £ 2 (0 » 1], th a t is, the space of (Lebesgue) measurable functions 

on the unit interval bounded in the norm ||/ | | =  (ƒ ƒ ƒ dp) and with inner product 

ƒ f g  dp. Let ƒ, g denote elements of this space. The advantage of working with Hilbert 

space is that it is possible to recreate on function space many of the results obtained in 

finite dimensions using m atrix algebra. Functions replace vectors, operators replace 

matrices, a few extra assumptions have to be made, but otherwise much is the same. 

We note th a t £ 2[0, 1] possesses the following two orthogonal subspaces. Let E 0 be a 

subspace such tha t ƒ ƒ dp = 0 V ƒ  6 Eq. Let E\ be the space of constant functions. 

Note tha t {ƒ,g) = 0, ƒ £ Eq, g E E\ and, as Eq is closed, tha t E — Eq +  E \.6 

Of course we will be particularly interested in density functions, tha t is, elements of 

Sc = {ƒ € £ 2 (0 ,1] : ƒ >  0, ƒ ƒ  dp =  1}. We will, however, wish to consider dynamics 

on subspaces of E. If T  is some closed subset of [0,1], and in particular we will be 

looking at the interval [p, p*], then let E t be the elements of E  with support on all 

of T\ let Et i be the elements of E  constant on J 1, and let E tq be the elements of Eq 

for which / r  ƒ  dp =  0.

We now can examine the dynamics for a continuum of prices. At any tim e the 

distribution of prices is described by ƒ € S c ■ Let F(p) =  / o /  dr. When not in 

equilibrium, firms adjust prices. In particular,

ƒ =  « ƒ )* • ’ (4.10)

where Q is a linear operator. When ƒ has support only on T  (i.e. ƒ (p) > 0, i f  ƒ p € 

T), Q possesses the following properties:

1. Q maps E t  —*■ E tq-

6Lang(1993), Corollary V.1.8
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2. Q f  =  0 ,V / €  E Ti .

3. Q  is positive definite elsewhere, i.e. { Q f , f )  >  0, ƒ  £ E t i -

4. Q is self-adjoint, that is, Q =  Q* and hence, (Q f^g) =  (f,Qg)>

5. Q is continuous.

6. A t any point p, lim/(P)^ 0 f(p )  =  0.

7. Q is compact.

The long list of conditions should not hide the generality of the dynamics specified. 

The substantive conditions are numbers 3 and 4. As noted in the previous section, 

positive definiteness ensures tha t population shares of the different strategies grow 

more or less in line with current payoffs. Property 1 ensures that ƒ ƒ dp =  0 and 

hence ƒ ƒ dp continues to be equal to  one. Property 2 means that a mixed Nash 

equilibrium, th a t is when all strategies have the same return, is a fixed point for the 

dynamic. Property 6 implies th a t the dynamic is invariant on Sc- More specifically, 

no strategy present in the initial distribution will disappear in finite time, nor will 

any new strategy be created. Thus we will want to look at cases where all prices 

are present in the initial distribution. This may seem somewhat restrictive, but it 

should be remembered that any distribution, including those where all firms charge 

the same price, can be approximated arbitrarily closely by a distribution with full 

support. Second, this formulation does not prevent the limit of the dynamic process 

being a state like the no-search outcome, where all sellers charge the same price.

Property 7 has two im portant consequences. First, unlike in finite dimensions, 

the spectrum  of an operator on a space such as may include elements which 

are not eigenvalues. However, the spectrum  of a compact operator consists of its 

eigenvalues alone (together with zero if the space is infinite dimensional). Second,
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the Hilbert-Schmidt theorem  (see for example, Hutson and Pym, 1980), states that 

the eigenfunctions of a compact, self-adjoint operator form an orthogonal basis for

E. Since one eigenfunction of Q has eigenspace E\, the others span Eq.

A concrete example of such an operator is given by the replicator dynamics, which 

in their £ 2  form are given by

ƒ (p) =  Q U V (p )  =  / ( p )M p ) -  /  Z(p M p ) M -
Jo

It is easily verified that the operator Q(f) satisfies the above conditions.

We can state  a preliminary result:

L em m a 9 I f  Q is a compact linear operator and A is a continuous linear operator 

then QA is compact. (Lang, 1993; Theorem XVII. 1.2).

If A is a continuous operator, then it is positive definite when constrained to  Eq 

if { A f J )  > 0 V ƒ € Eq and negative definite if ( A f , f )  <  0.

P ro p o s itio n  11 I f  A is positive (negative) definite on E q then QA has only positive 

(negative) eigenvalues when constrained to Eq.

P ro o f: We have the eigenvalue equation Q A f  =  A ƒ  where ƒ (E Eq. As the 

eigenfunctions of Q corresponding to  its nonzero eigenvalues span Eq, the image of 

Q is Eo. Thus, we can find a g € E  such that ƒ  =  Qg (Q  is not invertible, but this 

simply means th a t g is not unique).

= { Q A f , g )

A (Q g ,t)  = ( A f , Q g )  (4.11)

=  { A U )

As Q is positive self-adjoint, (Q g,g) is a positive real number. The real part of 

(A f , f ) is positive (negative), hence all eigenvalues A for eigenfunctions in E q have



96 C H A P T E R  4. P R IC E  D IS P E R S IO N : A N  E V O L U T IO N A R Y  A P P R O A C H

real part positive (negative). Furthermore, from Lemma 9, all its spectrum is positive 

(negative). □

We can also write the firms’ profits as it — IT/. T hat is, II is an operator mapping 

a distribution of prices ƒ into a distribution of profits tt. It is possible to perform 

calculus on function spaces such as Hilbert spaces, (see Lang, 1993; Hutson and Pym, 

1980). The derivative is itself a linear operator. In particular, the operator n  is 

differentiable a t <j> if there exists a linear operator n '  such tha t

H/jPo lln ( * + / )  -  n (* ) -  n '/ l !  /  II /  II =  o.

Looking at the profit functions, (4.2) and (4.4), we can see th a t they are both contin­

uously differentiable in F. In the fixed sample size model of Burdett and Judd, firms’ 

profits are an affine function of the distribution of prices. Differentiation simply 

removes the “intercept” term  leaving,

n'F/  =  -2 p /i( l  -  q)F  < 0 (a.e.). (4.12)

(The F  subscript, standing for fixed sample rule is to differentiate it from the profit 

function in the sequential case). For the sequential search model, the marginal profits 

evaluated at an equilibrium are

Yl'sf = - p F f i J ^  (a.e.) (4.13)

Profit is decreasing in the number of competitors charging a lower price.

P ro p o s itio n  12 I f  IV, the linearisation o f the profit function taken at an equilibrium 

distribution <j> with support T , is a negative definite linear operator on Eto then ^ 

is asymptotically stable under the positive definite dynamics (4-10) on E j .  I f  it is 

positive definite, 4> ls asymptotically unstable on Et -

P ro o f: If ƒ  =  Qir, then the linearisation at <f> is given by
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where tt(^) =  11^. Now, Q7r(<f>) =  0, so that (dQ/df)7r(<f>) = 0. The theory of 

Hartman and Grobman th a t a non-linear differential equation is locally equivalent 

to its linear part at a hyperbolic fixed point is valid on Banach (and hence Hilbert) 

spaces (Palis and de Melo, 1982). Hence, we can approximate the non-linear equation

(4.10) by

ƒ =  f  € E to- (4.14)

By Proposition 11, this linearisation has only negative (positive) eigenvalues if n '  is 

negative (positive) definite. In either case the linearisation is hyperbolic (there are no 

eigenvalues with real part zero). The solution to the linear equation (4.14) is given by 

ex p (iQ (^ )n ')/0, where f 0 is an arb itrary  initial distribution of prices. (The exponent 

of a linear operator tL  is given by the  polynomial £ £ i 0(fL )fc/k ” Since the normed 

vector space of bounded linear operators on £ 2  is a Banach space, it is complete 

and hence the limit of this convergent series is itself an operator on £ 2 .) Q{4>)IY is 

compact because Q is compact and n ' is linear (Lemma 9). By the spectral theorem 

for compact operators (Lang, 1993; Theorems XVII 3.4, 3.5), we can we can make a 

direct sum decomposition of E  into the (generalised) eigenspaces of Q ($)n '. Thus, 

just as in the finite dimensional case, all negative eigenvalues implies asymptotic 

stability, all positive asymptotic instability. O

P ro p o s i t io n  13 Under the positive definite dynamics (4-10), a dispersed price equi­

librium is unstable when consumers use a fixed sample size rule.

P ro o f: Given an equilibrium density of prices (j> with support T, we construct an 

arbitrary distribution of prices ƒ ^  <f>,

ƒ =  4> +  2 , 2  € ETq, Jt z2 dp > 0.
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Let Z (p ) =  f£  zd r . Of course, Z (0) =  Z( 1) =  0. As ƒ is arbitrary, if the quadratic 

form (!!'(ƒ  — <£),(ƒ — ^)) is positive then II' is positive definite on Ero•

( i r ( / - * ) , ( ƒ - « >  = / r 2 .n 'z d P

=  J'pH'z dZ

Taking (4.12), we have

f  I I pZ dZ  =  —2p(\  — q) f  p Z  d Z ,
Jo  J t

which by integration by parts gives

/i(l — q) J ^ Z 2 dp > 0.

Hence the linearisation (4.12) is positive definite and by Proposition 12 the equilib­

rium is unstable on Ej .  0

Of course, even if an equilibrium is unstable only on a subset of the total state 

space, it is still described as unstable. In contrast, in the  case of consumers using a 

reservation price rule, the results are not so clear cut. From (4.13), we obtain, again 

by integration by parts

JTn ■s2dz = \ ftJTz>(-Pl i + l ~ l idr)dp.

The sign of this expression is ambiguous. However, it is more likely to be negative 

than positive in the following sense. The sign depends on the relative magnitude of 

the two functions

p {-2 and - jT (4-15)
If g / $ 2 is decreasing, as it is likely to be, then its integral (the second expression 

above) will be smaller than the first. In any case, we can show, using an example 

from Rob (1985),

P ro p o s it io n  14 There exists at least one dispersed price equilibrium which is stable 

under the positive definite dynamics (4-10).
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P ro o f: In Appendix 1.

We can place an interpretation on these two results. Firstly, it is im portant to 

realise tha t one consequence of (4.12) and (4.13) being negative is tha t it is possible 

to construct deviations from equilibrium which raise the profits of all sellers (less a  set 

of measure zero). Imagine an alternative distribution ƒ which places greater weight 

on high prices: z — ƒ — <f> would be negative for low prices and positive nearer 1. 

Assume f  < 4> on the interval (p, a), f ( a )  =  <f>{a), and ƒ  >  <f> on the interval (a, 1). 

Because, F  < $  except at the two end points of the distribution and because profits 

are decreasing in F , profits are higher everywhere. For example, in the model of 

Burdett and Judd, profits are

p[q +  2(1 -  ?)(1 -  F)] > p[q +  2(1 -  ?)(1 -  $)],

as F < $  on (p, 1). The change in profits is obviously equal to p 2(1 — </)($ — F ), and 

thus is increasing in price and the difference between the two cumulative distributions. 

Profits are unchanged at p =  1 as both F  and $  must be equal to one at this point. 

The greatest increase in profits will occur at p =  ($  — F ) /(2 ( l  — q) ( f  — (j>)) > 6, 

tha t is, a t a point where the density of firms has increased. Just as for the discrete 

approximation, an increase in density of firms at certain prices leads to an increase 

in profits for all firms charging that price. Under positive definite dynamics, this will 

result in the deviation from equilibrium increasing in magnitude, and is obviously 

destabilising. There is nothing special about this example. Since all eigenvalues of 

IF (when constrained to Eo)  are positive, all deviations have a similarly destructive 

effect.

Under sequential search a similar deviation will raise profits for all sellers where 

F  < $ . This is because as noted above IF5/  < 0, and hence a decrease in the num ber 

of sellers charging lower prices will raise profits. The im portant difference is tha t the 

maximum change in profit may occur on the interval (a, b). W hether this is the case
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is determ ined by the sign of the expression of (4.15), which of course also determines 

the stability of the equilibrium. If indeed d(Vlfs f ) / d p  >  0, the biggest increase in 

profits from the deviation from equilibrium falls to the firms that have kept their 

prices low. In this case, the number of firms charging low prices will grow and the 

distribution of prices will return to equilibrium.

Having considered dynamics for sellers, we now examine what happens when buy­

ers and sellers change behaviour simultaneously. However, we were only able to  obtain 

results for the fixed sample size case. We first obtain a preliminary result.

P ro p o s it io n  15 The no-starch outcome is a strict Nash equilibrium for both buyers 

and sellers, when buyers use a fixed sample size search rule.

P ro o f: If all firms charge their monopoly price p* then any consumers searching 

more than once will undertake costly search which cannot lead to a better price. 

These consumers do strictly worse than consumers who sample only one seller. If all 

consumers m ake only one search then profits for a firm charging p* are strictly higher 

than for any firm charging a price p <  p* as all firms have the same demand. □

P ro p o s it io n  16 The no-search outcome is asymptotically stable under any positive 

definite dynamic.

P ro o f: We consider a positive definite dynamic on L =  Sc  x Sn and let z  =  (ƒ ,? ) 

be a typical elem ent of where ƒ is the distribution of firms’ prices and q the  vector 

of proportions of consumers choosing each of their n possible strategies (i.e. to  take 

from 1 to  n price quotations). We have ƒ — and q =  Q(q)xq. Let 6 be the  no-

search equilibrium, th a t is, the state  where F(p) =  0, p <  p* and g\ — 1. Let tc/(p , 6) 

be the  profit of a firm charging a price p at the  state  6 and Xf(6) is the function 

tha t describes the  (hypothetical) profits for all o ther prices given that in fact all firms 

charge p*, then define a  =  7 1 7(p", S) — 717(6 ). This is a function which is zero a t p* and
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positive elsewhere. And in a  similar way for consumers, let fi =  ?r9(l,<5) — 7rg(£), i.e. 

the difference a t S between the  payoff for sampling once and the payoff for all other 

strategies. If we define V  =  (a , ƒ) -j- (/?,?) >  0, then V  = (Q(f)xf,<x)  +  (Q(<])xq,fi)- 

Since V  has a unique minimum on L  a t by the theory of Liapunov functions, 6 

is asymptotically stable if V  <  0 in the neighbourhood of 6 . We choose an e such 

that for all z in some neighbourhood of £, itj =  tt/(£ ) +  £/ and irq =  r ,(£ )  +  with 

SUP I i f  l<  and I f (p)  |<  e for p < p* and sup | f ,  |<  e, and | q , |<  c for i > 1 by 

Conditions 5 and 6 of the definition of a positive definite dynamic. Then, for example,

ƒ  =  Q*s{S) +  QZi •

Now, at any point with p < p* then the first term  of the  above is of order c, the 

second is of the order e2. Thus, in the neighbourhood of 6 we can approximate V  by

( Q ( * f ( p \ t )  - q) , o) +  <GOt9(1 i £ ) - 0 ) i 0) =  -  (Qfi.fi) < 0.

That is, 6 is asymptotically stable. □

Note tha t in this proof neither Property 2, th a t Q is self-adjoint, or Property 7, 

tha t Q is compact, is used. This result therefore holds under the weakest possible 

conditions on dynamics.

It is im portant to remember tha t the behaviour of other buyers does not enter 

directly into the decision of any individual consumer. The payoff to each consumer is 

determined by his decision on how much and how to  search and the current distribu­

tion of prices, not by the search behaviour of other consumers. Of course, there may 

be an indirect effect. For example, if average consumer search is very intense, then 

there will be a downward pressure on prices, which will in tu rn  change consumers’ 

expected payoffs. But it remains the case that the dynamic stability of a dispersed 

equilibrium is largely determined (just as in the simple examples of Section 2) by 

whether there is stability in the adjustment process for sellers. We use this fact to
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prove the following proposition, where we use a  discrete approximation to  the con­

tinuous distribution. Obviously though, this approximation can be arbitrarily close 

to the  original.

P ro p o s it io n  17 When the changes o f both buyer and seller behaviour are described 

by positive definite dynamics, the discrete approximation to the mixed equilibrium of 

the model o f  Burdett and Judd (1983) is unstable.

P ro o f: In Appendix 2.

4.6 D iscussion

We have shown th a t dispersed price equilibria are unstable when consumers use a  fixed 

sample size rule. In contrast, when a sequential search rule is used, the adjustm ent 

process for sellers may be stable. We are not able to present results on the stability of 

a dispersed price equilibrium when search is sequential and buyers and sellers change 

their behaviour simultaneously. It is possible to  conjecture tha t the dynamics behave 

in the same way in higher dimensions as they do in the simple examples of Section 2, 

where overall stability is determined by the stability of the sellers’ adjustm ent process. 

However, there are further doubts as to whether adaptive learning by consumers would 

lead to  such an equilibrium.

It is not known the way th a t real consumers search, but there are reasons to  believe 

th a t this search does not take the form of a fixed reservation price rule. This is despite 

the fact th a t this has become the dom inant paradigm in economic theory. Firstly, as 

Morgan and M anning (1985) show, the optimal search rule in many cases will take 

the form of a  m ixture between a fixed sample size and a sequential rule. T hat is, the 

searcher immediately obtains several quotations but then may take more if the offers 

received are unsatisfactory. Harrison and Morgan (1990) find that behaviour under
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experimental conditions fits this pattern . Second, as Telser (1973), Rothschild (1974) 

and Gastwirth (1976) all find, the optimality of a reservation price rule is not robust 

to the introduction of imperfect information. If one fails to  calculate the reservation 

price correctly, it is possible to search for an arbitrarily long time without success. 

Or as Telser puts it “if the searcher is ignorant of the distribution, then acceptance 

of the first choice drawn at random from the distribution confers a lower average cost 

than more sophisticated procedures for a wide range of distributions” (1973, p45). 

Lastly, if sequential search is “noisy” , in the sense of Burdett and Judd (1983), then

it is similar to a fixed sample size rule.

\ ‘

Thus in various senses a fixed reservation price rule does not seem robust. It is 

therefore unlikely tha t it would form the  endpoint of an adaptive process. A direction 

for further research would be to see whether the evolutionary approach can pick out 

simple and robust search rules.

It might be worth pointing out tha t the instability result arises from the fun­

damental weakness of dispersed price equilibria, which could also be exposed by an 

equilibrium approach if one desired. For example, the dispersed price equilibria in 

both the fixed sample size and the sequential search models are in a sense not s tra te ­

gically stable in th a t they can be undermined by deviations by coalitions of firms. 

As we have seen if a positive mass, no m atter how small th a t mass, of firms raised 

their prices simultaneously, they would see their profits rise. In a world of perfect 

information, the models specified, would give rise to Bertrand competition. In such 

circumstances, only a  coalition tha t comprised all sellers could be successful.

How then do we explain what seems to be an empirical fact, tha t prices for identical 

goods do vary? One possibility is “disequilibrium price dispersion” . F irst, although 

a dispersed price equilibrium is unstable and the no-search outcome is stable, these 

are both local results. Therefore, it does not follow, although it is quite possible, th a t
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all dynamic adjustm ent paths that diverge from the dispersed price equilibrium must 

arrive a t the no-search outcome T hat is, the learning process may never settle down 

to a single price or search configuration. This is something for further research.

A ppendix 1

Proof o f Proposition 14. Rob (1985) gives some examples of dispersed price equilibria 

under sequential search. We take his example 3 (1985, p501), where the equilibrium 

distribution of prices is uniform. The proof has two stages. First, to show th a t the 

equilibrium is negative definite on its support, T . Second, to show th a t, if the system 

is close to the  equilibrium but with full support, it approaches the equilibrium. The 

equilibrium cumulative distribution function is $(p) =  0, p <  1; $(p) =  p — 1, 1 <  

P <  2; $(p) =  1, p > 2. Of course, here p* =  2 not 1 as we assumed above, but 

clearly this is not im portant. From the  distribution of search costs th a t Rob gives we 

can use (4.5) to calculate g(r) :

9(r) =

. ^r ~  ^ _ 32Iog2

and outside these intervals ^ (r) =  0. We have

r  — 1
1 <

r 2 log 2 
. 9 — (r — l ) 2

r  < 2 

2 < r  < 4

g(p) _  1
$ 2(p) p ( p - l ) l o g 2 ’

and, for p <  2,

/°° 9 j _  f 2 1 j  / 4 9 — (r — l)2 
J p & d r ~ J P r 2(i—  l) lo g 2 dr + J i 3 2 ( r - l ) l o g 2 dr

Straightforward, if lengthy, calculation reveals th a t

I .
00 9 , g(p) , n

-r^dr -  p ^ tt— < 0,
p $ 2 $ 2(p)

1 <  p <  4

and therefore the equilibrium is negative definite.
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We now show convergence to the equilibrium from distributions not in E t - The 

equilibrium profit function is sketched out in Rob (1985, p502). Of course, we have

jr(p < p) < Tr(p < p < pm) =  7T* > 7r(p >  pm).

Define A = 7r(p*) — x(4>)- This is a function, zero on T  and positive elsewhere. We use 

the Liapunov function A = (ƒ, A) > 0, with equality when ƒ has support on T  alone. 

This gives us A =  (Q r, A). For c > 0, we can choose a neighbourhood of distributions 

with full support close enough to <j> such that we have both ir( ƒ) = 7r(d>) - f -  £, with sup 

|£| < and |/(p ) | < t for p $ T. Then in a similar way to the proof of Proposition 

16, we have

A =  (<M 0), A) +  <Q{, A) «  (Q(x(p-) -  A), A> =  -  <QA, A) <  0.

Thus the share in the population of prices not represented in the equilibrium d istri­

bution falls away to zero. □

Appendix 2

Proof of Proposition 17. We assume that firms can choose from only a finite number of

prices. These we label p =  (p i,p 2 , ....., p„), where the elements are given in increasing

order p, >  p,_j. And let the proportion of the population of firms choosing each of 

those prices be x =  (xi, X2 , x n). Define Ft- = xr  The expected payoffs (th a t 

is, the expected price plus cost of searching) for the proportion q of consumers who 

search once, and the 1 — q who search twice are respectively

Ttq =  -p *  x and t t j =  —c -  ^ p , ( x ?  +  2x(l -  F,)). (4.16)

The probability that a consumer who makes two searches finds p, as the lowest price 

is x 2 +2x^(1 — F{). These consumers we assume to be equally divided between the i ,  

firms charging tha t price. Hence if 1 — ^ consumers search twice and q once, profits 

are given by

=  Pi/* [g +  (1 -  q)(xi +  2(1 -  Ft))].

♦ + » :  i  * t r r ?  i j m
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x =  Q(x)jr*(x, 9 ) and q =  Q(q)tt?(x , q)
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where both Q(x)  and Q(g) satisfy the Properties outlined in Section 5. Let z  be the 

combined vector (x,q)  € S  = Sn x We have

/
i  =  Q ( z )tt(z ) =

We have

Q[x)  0  )
I

0  Q(q) j \  x .

is symmetric positive definite as before. The linear approximation of this system 

of equations a t an equilibrium point z* is given by Q (2 *)II'. Given the consumers’ 

payoffs (4.16), dirq/dq  is a m atrix of zeros. Thus the m atrix Q(z*)YV has the form,

' « < •> £  « ■ > ? '

* ■ ■ ' 1 ;  "  )  ■:

Stability in the single population case depended on whether the matrix 11' was positive 

or negative definite on E0. A n x n matrix A  is positive definite on Eo iff the 

(n - 1 ) x (n — 1 ) m atrix C  is positive definite (van Damme, 1991), where C is defined

by

Cij — O-ij Onn n ®nji 1 j  — ™ 1* (4.17)

In the two population case, if there are n strategies available to firms and m to con­

sumers, then we want to know the sign of the eigenvalues of Q(z*)IT when constrained 

to E qo =  {x € : E i  x i =  0 ,ESt™ x * =  °}* To do this, we repeat the procedure

outlined in (4.17) for each of the  four submatrices of Q(z*)II'. We first look at dxx/dx.  

In this case the m atrix (C  +  C T) / 2  is

/

p ( l  “ i)

P n  -  P i 

P n  ~  P2

P n ~ P 2  

P n  - P 2

! Pn P n -1
\

P n -  P n-1
(4.18)

 ̂ Pn Pn—1 Pn Pn—1 Pn Pn—1 J
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If we subtract the nth column from the n — 1th, and the n — 1th from the n — 2th 

and so on, a upper diagonal m atrix is left, with a strictly positive diagonal. Thus 

this matrix and hence C is positive definite. Hence by Proposition 11, Q(x)dnx/dx  

has only positive eigenvalues, when constrained to Eq. So necessarily it has a positive 

trace. Since the bottom right subm atrix of Q(z*) 11' is all zero, its trace is zero both 

before and after the process (4.17). Thus, the m atrix as a  whole when constrained to 

Eoo has a strictly positive trace and hence at least one positive eigenvalue. □
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