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1. Introduction

Panel unit root tests are becoming a standard tool in the analysis of mostly macroeconomic
panels. Two procedures, the Levin, Lin and Chu (26@2) the Im, Pesaran and Shin (1997)

test for unit roots are among the most popular. The tests have been applied to a range of
macroeconomic problems,g.to the question whether real exchange rates are random walk
processes or noe(g. O’Connell (1998, Papell(1997) or to investigate the mean reversion
properties of the current accout/(l, 2000. Evans and Karra€l996 use panel unit root

tests to analyze the convergence of regions in the US using a mdd#fiedet al.(2002) test
procedure, whil&traus$2000 addresses the question of permanent components in regional
GDP using these panel unit root tests.

However, relatively little is known about the size and power properties of these tests when
any of the distributional assumptions underlying their construction is violated. The asymp-
totic distribution of both test statistics relies on the independence of the sections of the panel.
This assumption might often be violated in real data, especially in a macroeconomic con-
text. Given their widespread use, it is important to know more about the reliability of the
test results. The impact of such dependence on the performance of the tests is studied in
this paper. Two different forms of sectional dependence are considered. In the short run
(Section3.1), positive cross-sectional dependence of the error terms is analyzed. It is found
that in the case ofommon shocks, eliminating common time effects is remedy enough to
restore the size properties reasonably well. In fact, the test statistic does converge to a stan-
dard normal distribution. In this respect this paper contrasts the findi@gCGnnell (1999,
who attests severe size distortions to tle®in et al.(2002 test in the presence of common
contemporaneous correlation. When the contemporaneous correlation takes different forms,
however, severe size distortions do occur. Long-run sectional dependence might be present if
the series of the panel are cointegrated (Se@iah In this case, the series are nonstationary
but share a common stochastic trend. Early work on the study of this effect on panel unit
root tests has been done Byowder(1997 in a simple cointegration framework. The effect
cointegration has on unit root test is analytically studietlyhagen(2000. However, data
generating process considered in this paper resembles more the one consideneerjae
et al.(2000. In line with the results of these studies, it is found that the tests are oversized
as a consequence of cointegration, as long as the errors are kept independent. In3S&ction
cointegration is combined with sectional correlatioa, long and short run dependence are
brought together. This seems natural as there is no prior reason to believe that these phenom-

LA previous version of this test was knownlzsvin and Lin(1993. See alsd.evin and Lin(1992.
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ena should be mutually exclusive. The result is surprising. Considered separately, long and
short run dependencies tend to yield oversized test results. If brought together, under some
parameter configurations the size distortions go in the opposite direction: the over—rejection

of the null hypothesis of a unit root vanishes and the tests become undersized. As a result,
without further knowledge about the data generating process, panel unit root tests in presence
of sectional dependence are inconclusive.

The application in Sectiof contributes to the purchasing power parity debate by address-
ing the question of mean reversion in a panel of real exchange rates. A panel of 18 exchange
rates is first analyzed by estimating the contemporaneous covariance matrix of the error terms
and corresponding standard errors. Different ways of estimating covariance matrices in the
presence of heteroscedasticity and serial correlation are discussed and a bootstrap algorithm
developed byPolitis and Roman@1994) is suggested as a way of obtaining standard errors
for these estimates. To know whether long-run sectional dependence is present in the data, a
cointegration analysis followingohansei(1999 on a subset of exchange rates is conducted.
Together with the simulation results obtained earlier, the existence of both dependencies in
the data puts a big caveat on the use of panel unit root tests in this context in particular, and
on cross-sectionally dependent data in general.

2. Panel Unit Root Tests

The test developed Ryevin et al.(2002 (henceforth LLC) can be seen as a natural extension

of the Dickey and Fuller(198J) test for a unit root to a set of time series. It builds on the
method previously suggested Quah(1990 andBreitung and Meye(1991]). In the light of

the criticism byPesaran and Smi{1995 of the use of pooled regressions of the LLC type,

Im et al. (1997 (henceforth IPS) allow for heterogeneity of the series under the alternative
and do not make use of traditional panel estimation techniques. They propose instead a
group-mean Lagrange multiplier test and a group me#@st based on the individual ADF

test statistics. The asymptotic properties for both tests are derived by assuming a diagonal
path limit. The behaviour of the cross-section dimensi@j) &nd the time dimensiof|) are
functionally tied,i.e. (T'(N), N — o). For LLC, as both go to infinity]" increases faster
thanN, such thatV/T — 0, whereas IPS only requirg N /T — 0.
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This section presents the framework for the analysis of panel unit root tests. As in the uni-
variate case, three forms of deterministics are considered starting from the following data
generating process (DGP) that yields nonstationary series if the autoregressive coefficient
is equal to one:

Az = (pi — V)1 + pi + i - t + €ir.

The index indicates the section of the panek 1, ..., N) and the time indexranges from
1toT. The constant of each section is denoted:.bgndgj; - t represents a time trend in the
data. The assumptions on the error tefnare discussed further below. Tallsummarizes
thea priori restrictions and the hypothesis to be tested in each of the three models. The most
general specification, model = 3 in the classification of LLC, is designed to discriminate
between a set of I(1) processes with drift under the null and a set of trendstationary processes
under the alternative. In model 2, the trend parameter is restricted toazemori. It is

Table 1: Different models and hypothesis

model | a priori | Null-hypothesis and alternative
m=3 HY  pi=1Vi(=pm #0,5 =0)
HY | pi|<1Vi(= 6 #0)
m=2| Bi=0|HY:p=1Vi(= p; =0)

HP | pi |< 0V i (= p; #0)

m=1| B;=0 | HY :p;=0Vi

pi=0 | HY | p; <0 Vi

used to discriminate between a set of I(1) processes without drift under the null and allows
stationary processes with an expected value different from zero under the alternative. This
model will be used throughout the Monte Carlo study. In the simplest model, under the null
hypothesis of a unit root;;; is a set of I(1) processes without drift, while under the alternative

it is a set of stationary processes all with an expected value of zero.

2.1. Levin, Lin and Chu (2002)

The LLC test is implemented in four steps.

Step 1: Elimination of time specific effects.The cross-section averagetas subtracted
from the dataj.e. z;; = Z;; — JLVZZN:@“, which is equivalent to the introduction of time
specific dummy variables. This step will play a crucial role in the simulation exercise in

Section3.
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Step 2: Computation of ADF-statistics and normalized residuals. The choice of the
lags L; to be included should be based on a common information critegan @kaike
or Schwartz) and donefter the elimination of time specific effects. Instead of the usual

equation:
L;

Aziy = 01 + Z 0:ij Air—j + pi + Bit + €,
j=1
the coefficient of interest);, is estimated by partitioning the regression using the Frisch—
Waugh theorem to obtain residuals from each step:

L;
Afﬂit = Z efjl)A,fL'thj + ,Ugl) + ﬁz(l)t + e = éit
j=1

Tit—1 = Z egf)Axit—j + ,UZ@) + @-(2)?5 + Vit—1 = Vir—1.
=1

The regression of the residuals gives an estimatod#;for
it = 0ilj—1 + €41 (1)

In order to control for heterogeneity in the variances of the series, the residuals are normalized
by the standard errar,; of regressionX), estimated by:

1 T 2
~D ~ PN
i =7 7. 1 Z <eit - 5ivit—1> 5
T—-L;,—1 N
and the normalization is done as follows:
é B Vi
Cit = “ and Vig—1 = ZAt -
Uez O¢;

Step 3: Computation of the long-run variance For each series the long-run variance is
computed using the first differences:

1
&il = ﬁ A‘rzt + 2 Z ?,UKT( Z Amztszt 7—) (2)
The choice of covariance weights ensures positive estimates of the long-run variances. LLC
suggest the Bartlett weights,, = 1—7/(K+1). The estimate is consistent if the truncation
parametefs grows exponentially at a rate less tHBLLC suggests = 3.217"/3. The ratio

of the estimated long-run variation and the standard deviation is computed, which under the
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null approaches one. For the adjustment, the average of this ratio across sections is also
needed:

& 1 &
~ xi A
§; = — and = —

Step 4: Computation of the test statistic.Under the null hypothesis the normalized resid-
ualsé;; are independent of the normalized lagged residugls. This is estimated using
OLS:

€it = 001 + €. (3)

Under the null hypothesis and in model 1, the regressistatisticts is asymptotically nor-
mal, but has to be adjusted in models 2 and 3, so that, in general:

_NTS o2 SEo (m)
t;: N E0) 1y, T 5 N(0,1),
O

where SEJ) is the standard error df, 6. is the standard error of the regressia, w =
ando” - are necessary adjustments for the mean and the standard deviation. These vary
according ton, the model chosen arif, the average number of observations per section in
the panel adjusting for lagged differencés= T' — + =V, L, (see Table 2 in LLC).

The asymptotic properties are derived_igvin and Lin(1993 Section 4) In model specifi-
cations 2 and 3 the estimatbhas a downward bias, which is due to the dynamic specification
of the panel, especially for smalland/N (Nickell, 1987). This makes the mean adjustments
necessary. Furthermore, under the null, the variance of the estimaiits at the ratey’-,
reflecting super—consistency. A& grows large, the variance éfgets smaller and smaller,
which makes the variance adjustment necessary. If not adjusted, mean and variance bias
would force thel—value to negative infinity in models 2 and 3. Under the alternaiiyds
already stationary, sdz;; has asymptotically zero variation at zero frequency, meaning that
each standard deviation ratipas well as the average rathf becomes small. In this case

the mean adjustment does not influence thealue adjustment, so that the adjusted value
diverges to negative infinity. This shows the advantage of using an estimate of the long-run
variance to discriminate between stationary and nonstationary processes.

2In the case of a trend the steps above should be implemented after demeaning the differenced series.
3See also pag26in the Appendix for a detailed treatment of the asymptotic properties in thexcasd..
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2.2. Im, Pesaran and Shin (1997)

The IPS test extends the LLC framework by allowing for a mixture of stationary and nonsta-
tionary series under the alternative hypothesis. The test is defined for models 2 and 3, and
the alternative is modified to:

Hl(IPS) =pi < 07 Vi= 172a~-'N17pi = 07 Vi= N1 +1”N

IPS suggest a group mean lagrange multiplier (LM) test and a group tr&sst based on
the individual ADFt—values. In simulations done by the authors#hiest outperforms the
LM test slightly. According to the ADF lag order chosen in each section and the I&hgth
adjustments are necessary to the mean and variance. The test statistics becomes:

VN{ing = & S5 Eltir(Li,0) | o= 0]} e
Wi = ~  N(0,1).

VESY Varltur(Li,0) | pi = 0

The adjustments]...] and Var|[...] are tabulated in the paper. The expressign =

% Zfil t:(L;, 0;) is the mean of the actual ADF test statistics. IPS also suggest the in-
clusion of time specific effects in the regression or, alternatively, the demeaning of the panel
at eacht. Note, however, that in contrast to LLC, the IPS—test uses an averagstafistics

and not a single estimateedsalue from the pooled series.

3. The effect of cross-sectional dependence

The model considered in this paper is designed to discriminate between a set of I(1) series
without drift and a set of AR{) series with expectation different from zero. In terms of
standard macroeconomic time series, this configuration refers to, for example, interest rates,
exchange rates and possibly price indices. The DGP takes the following form:

A _
o) —ap | T + 1+ €. 4)
Ay yi-1

Both x, andy, are (V x 1) vectors,u ande, are QN x 1) vectors. The vector of interest

is alwaysx;. They, are used to simulate potentially shared stochastic trends if desired. The
matricesA andB determine the long-run relation between the variables and will be defined
according to the set of experiments. For example, if

—I 0 10
A=a , B = andu = 0,
0 -1 0 I
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anda = 0, thenx, will be a set of independent I(1) variables without drift. The short run
correlation is modeled through the error structure:

0
eth(O,a2Q)andQ:<O I>'

Note that contemporaneous correlation only affects the vegtonot y,. The innovation
variance is chosen to hee = 1 throughout the paper. In general, the correlation mafrix
takes the following fornd:

1
w21 1
Eleg) = X = wy wyp 1 ; (5)

where the correlations afev;; |< 1.

3.1. Cross-sectional Correlation

The first set of experiments is designed to measure the impact of cross-sectional correlation.
The absence of error correlation;{ = 0, Vi, j) produces the desired size properties, see
Table A.1 in the Appendix. Once a common, positive sectional correlation is introduced
(wi; = 0.7, Vi, j), the tests appears to be slightly oversized (Talpeespecially for small

N. This contrasts sharply the findings ©fConnell (1999 who finds size distortions of

as much as 50 % for the 5 % size. Such distortions can be reproduced if step one of the
LLC test,i.e. the elimination of common time effects, is not carried out. The results for
different values ofv are presented in Tablésand4 for the LLC and IPS test respectively.

The power of the LLC test and the IPS test was analyzed for the two alternative$ and

p = .95, wherep = 1 — . This exercise was repeated for varying covariance structures,

w =4{0,0.7,0.8,0.9}, N = 25, T = {60, 100}, andp = 1. The results of this analysis are
reported in Table3 for the LLC test and in Tabld for the IPS test. They show that once
common time effects are eliminated, the power of the tests is not severely affected by cross-
sectional correlation. More interestingly, the distortions in power and size are independent of
the degree of cross-sectional dependence. The natural question that arises is why demeaning,
or, equivalently, the inclusion of time dummies, seems to be such an effective instrument if
errors are correlated in the way studied here. The expected value of the outer product of the

4Considering only the firs\V elements of;.
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Table 2: Size properties with common shocks, eliminating common time effects

w=0.7 LLC IPS
nominal size 10%
N=5 N=10 N=20| N=5 N=10 N =20
T=25| .128 .115 A11 116 .100 .104
T=50| .127 112 .106 117 .108 .102
T =100 | .115 .110 .106 .110 .108 101
nominal size 5%
N=5 N=10 N=20| N=5 N=10 N =20
T=25| .065 .052 .059 .064 .052 .058
T=50| .067 .054 .049 .068 .053 .050
T =100 | .060 .056 .055 .054 .058 .055
nominal size 1%
N=5 N=10 N=20| N=5 N=10 N=20
T=25| .014 .009 .013 .016 .010 .015
T=50| .015 .011 .011 .016 .012 .013
T =100 | .011 .012 .014 .014 .015 .011

Note: Based on 4,000 replications. The values reported are the percentage of
rejections using the indicated nominal level. Ideally, real and nominal size should
be equal.

error terms is (considering the relevant firételements)Ee,€;] = . The elimination of
time effects can be rewritten as:
_ Y U U !
(e, — &) — &) = [(I - N)et} [(I — N> et} wherel = (1,...,1)
Qe:(Qer)’ = Qe,6,Q' = QXQ".

whereQ is:
-+ -+ . -1 N-1 1 .. -1
N N. N
Q = 1-% . -+ :i N-1 .. -1
NxN - N
1— % N -1

If 3 takes the form where all off-diagonal elements are equal, tthhe above expression
further simplifies to:

N -1 -1 -1
N-1 .. -1

—
|
_
‘ |
—

=
I
—
z
=
=
=L

I
—~
—_
|
&
~
I
I
—~
—
|
&
~
|

(6)
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Table 3: Size and power properties of LLC for varyingndp

N =25 nom. size power
p=.9 p=.95
| w=0]10% 5% 1%|10% 5% 1% 10% 5% 1%
T=60| .09 .04 .005 .99 .98 .85/ 56 .38 .13
T=100| .01 .04 .002] 1 1 1| .83 .68 .31
[ w=07]10% 5% 1% 10% 5% 1%|10% 5% 1%
T=60| .10 .04 .005] 99 .98 .84| 54 .37 .12
T=100| .11 .04 .009] 1 1 99| .79 .64 .29
| w=08]10% 5% 1% |10% 5% 1% 10% 5% 1%
T=60| .10 .04 .005 .98 .96 .80 54 .36 .10
T=100| .11 .05 .011] 1 1 1| .80 .60 .24
| w=109]10% 5% 1% |10% 5% 1% 10% 5% 1%
T=60| .10 .04 .005 .99 .97 .82 54 .36 .12
T=100| .11 .04 .008 1 1 1|.79 .64 .28

Note: Based on 2,000 replications. One minus the power is the probability that
the test fails to reject the null if it is false for a given significance level.

After demeaning, the degree of cross-sectional correlation (the valuglefves the rela-

tion of the off-diagonal to the diagonal elements unchanged, but it is this relation which
determines the degree to which independence is violated. It is therefore not surprising that
the LLC and IPS test do not show significant differences in power and size for vavying
Moreover, for reasonable largé€, the off—diagonal entries are smadlg. with N = 20 the
remaining 'effective’ correlation is -0.05. For largé this approaches zero, just as it is in

the absence of any cross correlation. In fact, as shown in Appendixthe test statistic
approaches a standard normal distribution.

This argument is limited, however, to the special formdfvhere allw;; = w. Because

this might not always be the case, the correlation matrix is now chosen to be a band matrix,
where the correlation coefficient decreases with the distance from the main diagonal. The
idea behind this specification is that there might be some natural ordering of the sections,
reflectinge.g. the geographical distribution of units in a spatial model. Errors are more
correlated the closer two sections are:

1 w! w? W3 wN-1
1wl Ww? whN—2
1 Wl WwhN-3
Elee] = EX]N = 1 (7)
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Table 4: Size and power properties of IPS for varyingndp

N =25 nom. size power
p=.9 p=.95
| w=0]10% 5% 1% |10% 5% 1% 10% 5% 1%
T=60| .11 .05 .013] 1 1 99| 8 .76 .46
T=100| .11 .05 .010 1 1 1| 1 .99 .95
[ w=07]10% 5% 1% 10% 5% 1%|10% 5% 1%
T=60| .12 .07 .010 1 1 99| 87 .77 .47
T=100| .12 .05 .008 1 1 1] 1 .99 .93
| w=08]10% 5% 1% |10% 5% 1% 10% 5% 1%
T=60| .12 .07 o010 1 1 99| 89 .78 .47
T=100| .12 .05 .006/ 1 1 1| 1 .99 .93
| w=109]10% 5% 1% |10% 5% 1% 10% 5% 1%
T=60| .12 .07 .010 1 1 99| 87 .77 .46
T=100| .11 .05 .009 1 1 1| 1 99 .94
Note: See Tables.

Table5 reports the effect of this disturbance has on the performance of the LLC test, given
w = 0.7 and varyingN andT'. It shows that the test performs quite poorly. Increasihg
seem to worsen the results.

Table 5: Size properties of LLC with errors as if) (

nom. size 10% nom. size 5% nom. size 1%
W=07|N=10 N=25|N=10 N=25|N=10 N =25
T =20 227 .235 .156 170 .066 .080
T =60 .249 .250 170 .180 .064 .078
T =100 .258 .252 A77 .180 .068 .084

Note: based on 10,000 replications.

Short run correlation of this type does affect the size properties, no matter if common
time effects are eliminated or not. In the case of common effects, the distortions are far less
worrisome than previously claimed.

3.2. Cross-Sectional Cointegration

There are several parameters that influence the specific form of cointegration that one can
observe in a vector of time series. One aspect is the number of cointegrating vectors (CIVs)
in a system, or, complementarily, the number of stochastic trends driving it. Another set of

parameters are the values of the loading matrix. In the extreme case, all variables are just
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linear combinations of one stochastic trend, and the ’long-run’ equilibrium is realized almost
immediately after a shock. The performance of the tests might depend on how strongly the
variables are tied to the long-run relation. In a set of experiments not reported here, where
cointegration takes that form, both the LLC and the IPS test were very badly oversized. Since
in that setup a common stochastic trend is a time specific effect common to all series, step one
of LLC just eliminates it and transforms all series into stationary processes. Lower values
of the loading matrixA may seem more realistic and loosen the tightness of the long-run
relation. Here the DGP takes the following form:

A=0.1 -0 andB = I -
0 -I 0 C

the cointegrating matri is:

1 -1 0 0o .. O

0 1 -1 0 .. 0

0 0 1 -1 ... 0
C =

0 0 0 0o .. O

0 O 0 o .. O

The number of zero rowg) determines the number of common trends driving the system.
There areV — b cointegrating relationships. The following number of cointegrating vectors
were considered¥ — 1, N/2 andN/4, in case of a fraction the integer part of it is chosen.

Table 6: Size properties with cointegratién= N — 1

LLC \ IPS
b=N-1 nominal size 10%
N=5 N=10 N=20|N=5 N=10 N=20
T=25| .167 157 .158 .164 .150 .164
T=50| .192 .167 173 .261 .255 274
T =100 | .249 227 .203 .520 479 449

nominal size 5%
N=5 N=10 N=20| N=5 N=10 N =20

T=25| .094 .078 .088 .096 .086 .096
T=50| .105 .081 .088 153 147 174
T =100 | .139 132 117 .383 .378 .356

nominal size 1%
N=5 N=10 N=20| N=5 N=10 N=20

T=25| .024 .019 .024 .030 .024 .026
T =50 .024 .017 .017 .044 .044 .055
T =100 | .031 .029 .034 159 .182 198

Note: Based on 4,000 replications.
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Table 6 reports the results fof'/V = N — 1. The tests are oversized and the problem
increases ir{". Together with Tables..2 andA.3 in the Appendix, where results for other
values ofC'IV are presented, it becomes clear that the tests perform worse the thgre
are present.

An analytical treatment of the asymptotic behavior of the LLC test statistics for the cases
considered in the simulation exercise would give insights into the origins of the size distor-
tions. The interested reader is referred.ydagen(2000, who provides an analytical argu-
ment for the special case in which there &re 1 cointegrating relations and an instantaneous
adjustment to the equilibrium takes place £ 1). He derives the limiting distributions for
the t—statistic. The variety of parameters that can determine the cointegration among the
sections (number of CIVsy) makes a general analytical treatment of this bias rather compli-
cated. Furthermore, the additional insight of an analytical treatment is limited as a potential
correction of the size distortion would have to account for all possible cases.

3.3. Cross-Sectional Correlation and Cointegration

The two previous sections indicated that both kinds of dependencies have oversizing effects
and therefore yield to an over—rejection of the null-hypothesis. Neither econometric nor eco-
nomic theory gives any reason to believe that the two dependencies are mutually exclusive.
In this sections the two are brought together. The cointegration is chosen to be as in the above
section, and, in addition, the errors are correlated in the way specified in Séction

The results reported in Tableare surprising. The distribution of the test statistic is shifted
to the right. The bias increases withand yields a considerable distortion in the opposite
direction. This of course causes the power of the test to come close to unity.

In theory, corrections to the test statistics are possible. The variety of das&s fumber
of CIVs, «), however, limits the practicability of such an approach. Hence, in practice, a
careful assessment of the dependencies present in the data is necessary before applying any
unit root test.
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Table 7: Size properties with cointegration and correlation

CIV = N/2 LLC | IPS
w=0.7 nominal size 10%
N=5 N=10 N=20|N=5 N=10 N=20
T=25| .092  .055 029 | .065  .036 015
T=50| .094  .058 029 | .054  .035 .007
T=100| .111  .064 025 | .061  .024 .004

nominal size 5%
N=5 N=10 N=20| N=5 N=10 N =20

T=25| .049 .030 .012 .038 .019 .007
T =50| .055 .033 .014 | .030 .010 .004
T =100 | .067 .039 .012 .035 .010 .002

nominal size 1%
N=5 N=10 N=20| N=5 N=10 N=20

T=25] .011 .007 .002 .011 .003 .001
T=50| .018 .001 .003 .007 .001 .001
T =100 | .032 .013 .002 011 .004 .000

Note: Based on 4,000 replications.

4. Should panel unit root tests be applied to real exchange
rates?

With the growth of the panel unit root methodology, the debate over the validity of the pur-
chasing power parity (PPP) has experienced a revival. While previous research could hardly
find any empirical evidence for PPP, one could expect more insight from the application of
panel methods.In a non technical way, PPP means that once different currencies are con-
trolled for, the same basket of goods should cost the same amount of money no matter in
which country it is purchased. The existence of permanent deviations from such an equilib-
rium seems implausible as it would allow arbitrage gains, which in turn would push the real
exchange rate back to the equilibrium. Although nobody believes in arbitrage possibilities
with fast food, a popular application of PPP is the Economist’s Big Mac index. Assuming
PPP holds, actual exchange rates are expressed as the deviation from the McParity, hint-
ing on the current under— or overvaluation of curren€igdthough many arguments have
been put forward in the theoretical literature why PPP might fail, PPP is still a very popular
concept and something many economists like to believe in. However, one cannot reject the
impression that much of the debate centres on the applied methods.

SFor a survey of empirical results before the panel eragsgéroot and Rogof{1995.
®The fall of the Euro after its introduction was predictable if one had believed in Burgernomics. For more on the issue, see
Economist(2001, April 21st).
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4.1. PPP - revisited

If PPP holds, in the long-run the real exchange rate between two countries is stable and devia-
tions from equilibrium are not permanent. L&t denote the nominal exchange rage between
country: and abase country at timef. Then, multiplying a basket of goods (normalized to
one) with the ratio of the prices in countfy P,;, and in the country of the base currency,
Ppese defines the real exchange radg:

1 P
Qit - E_itf)tbase
or, taking logs:
Giv = Pie — Py — €. (8)

Since prices and exchange rates are recognized to be nonstationary time series, a natural way
of looking at the problem is to ask if there is a linear combination of the series which renders
a stationary real exchange rate, if the prices and the exchange rate are cointegrated.

A distinction is made between the strong and weak form of PPP. The weak form allows
for coefficients different from (1, -1) on the price indices. The weak form of PPP has its
economic justification in the presence of measurement errors, which would persist in the
long-run, or varying effects of productivity shocks which may cause the cointegrating coef-
ficients to differ from unity. The weak form of PPP has been tested in an error correction
approache.g.by Cheung and L&i1993 or Corbae and Ouliari€l991). Edison et al(1997)
andKouretas(1997 apply aJohanserf1995 procedure, the latter to investigate PPP of the
Canadian dollar and five other currencies.

The strong form of PPP, restricts the coefficients to (1a pyiori and tests the resulting
real exchange rate for a unit root. Only this test is of interest in the panel unit root frame-
work. The PPP hypothesis translates into the stationarity of the real exchangg: raxely
if this series is mean reverting and does not accumulate shocks permanently, can PPP hold.
Interestingly, the majority of the studies apply tests that have a unit root as a null hypothesis
and literally accept stationarity if nonstationarity is rejected, which clearly is a loose inter-
pretation of the unit root rejectionKouretas(1997 andKuo and Mikkola(1999 are two
studies which test both stationarity and nonstationarity in a panel framework. In a univariate
framework,Engel (2000 points out that even if one rejects the unit root and fails to reject
stationarity there is a possibility of a unit root in the series. This might be caused by a size
distortion in the unit roots tests and the low power of the stationarity tests.

Several issues make PPP an interesting application from the perspective of panel unit root
tests. The increased power when taking into account a set of time series allows for a more
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precise statement on the stationarity of the series. While single country analyses often reject
PPP because a unit root is found in the real exchange rate, this might be due to the low
power of single equation unit root tests with an autoregressive coefficient close to unity.
Therefore, the panel approach might give more insights. However, there are drawbacks on
the use of panel methods. Interestingly, some authors find differing results according to the
base currency choseapell(1997 rejects the unit root when the Deutschmark is chosen

as a base currency, but has mixed results when the panel is US$ based. Note that the series
to be tested for a unit root formed following equati@) éxhibit cross-sectional correlation

by construction, as they are expressed with respect to one base currency. Hence, shocks that
affect this exchange rate are directly reflected in the entire panel. This means that the degree
of cross-sectional correlation depends on the base currency chosen. However3 Galolés

in Section3.1show that the actual value of the cross-sectional correlation does not influence
the performance of the test. It is more plausible that the choice of the base currency affects
the degree to which the data is contaminated with cointegration.

There is, of course, a debate on what long-run means in this context. While some authors
argue that PPP should hold regardless to the exchange rate regime, and consequently apply
the tests to long series from, say 1949-1996d and Mikkolg 1999, or even over 100 years
(Engel 2000, most of the studies rely on the time period of the current ficatfrom 1973
onwards.

All studies mentioned above, includirigedroni(1999, do not consider the possibility
of cross-sectional cointegratiorBanerjee et al(2001) confirm the result of the previous
cointegration analysis that if cross-sectional cointegration is not taken into account when the
real exchange rate is computed, severe distortions may arise. Although one should be aware
of the possibility of cross-sectional cointegrating relations and the serious distortions this
causes, one has to recognize that large dimensional systems cannot be estimated without an
a priori restriction. To illustrate this argument, a full Johansen estimation of the weak form
of PPP would yield a system @f countries, each with 3 variables, so that an unrestricted
estimation of the cointegration matrixwould not be feasible with some 100 observations.

As mentioned earlier, the study §’'Connell (1998 examines PPP in the presence of
short run dependencies in the form of cross-sectional correlations. Moreover, the size and
power of the LLC test are explicitly analyzed. O’Connell comes to the conclusion that the
performance of the LLC test in the presence of cross-sectional correlation is very poor and
suggests a new GLS type estimator. The impact of the O’Connell critique was considerable
and has to some extent discredited the LLC test. There are some things worthwhile noticing.

Apparently O’Connell does not use the adjustedalue when he evaluates his simulations
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results. Not adjusting the-values means that the finite sample adjustments are not made.
Also, common time effects are not eliminated in his simulation exercise. This becomes
clear as the distortion in size he reports can only be reproduced if one does not perform this
elimination. The poor power properties that are attested to the LLC test are not related to the
cross-sectional correlation (see TaB)elt should be pointed out that with a specification of

p = 0.96 even univariate unit root tests have poor power res@thyerf 1989. Thus the

poor power properties are not panel specific. The proposed GLS estimate may seem more
appealing than the removal of common time effects. However, this procedure involves the
estimation of a covariance matrix and relies on the consistency and accuracy of this point
estimate.

4.2. Shortrun dependence

The main finding of the simulation exercise above is that it is essential to know more about
the covariance structure of the data before applying unit roots tests. This poses some method-
ological problems because estimators have to deal with possible heteroscedasticity and serial
correlation in the data. Robust estimators are needed. In addition, once a point estimate of
a covariance matrix is obtained, it is necessary to conduct some inference on the parame-
ters in order to asses the significance of the correlations. Parani&ércHaan and Levin
1996 and nonparametric\ewey and WestL987) methods for robust estimations of covari-
ance matrices are discussed in Appendi. In addition, a bootstrap algorithr®¢litis and
Romang 1994 is suggested to test for significance of the estimated correlations. The data
used are a panel of real exchange rates for 18 OECD countries, using the US$ as the base
currency. To be consistent with the covariance estimators that operate under stationarity, the
first difference of the real exchange rates form the basis for the following analysis. This is
consistent while working under the null hypothesis of a unit root. The parametric (Jable
and the nonparametric (Tabfe6 in the Appendix) estimation yield similar results for the
covariance matrix and show clear signs of significant positive correlation.

One can argue that the parametric estimate is superior because it explicitly considers
prewhitening which is the main drawback of the nonparametric estimator used. On the other
hand the differenced exchange rates do not, in general, have very high order autoregressive

"The data used is from the IMF data sets, namely the International Financial Statistics and covers quarterly nominal spot
exchange rates and CPI, for the period 1973:1 to 1997:3 for 18 OECD countries. A plot of the data can be found in the
Appendix.

5The estimates presented are not sensitive to the choice of parameters (information criterion, lag lengths, t&ipcation
Although the two estimates are not identical, their results are very similar, and the deviations from each other are in a
plausible range (see,g[Section 6Pen Haan and Levi(1997).
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Table 8: Testing different covariance structures for 16 currencies

p=0.25

w Q p-val
0.5 ] 295.82 1.00
0.6 | 85.75 0.01
0.7 2.06 0.00
0.8| 44.76 0.00
0.9 | 213.84 1.00

Note: Q is x3,, distributed.

components$, so the impact of serial correlation on the nonparametric estimator might be
limited.

More than the nonparametric estimate, the parametric estimates detect negative correlation
of the Canadian Dollar with most other currencies in the point estimates. However, the
standard errors indicate that it is not significant. Recalling that all variables are constructed
the following way: x;; = %,th = % and that from the 18 countries chosen most
are European, it is not surprising that Canada seems to react in a different way to shocks —
if affected at all. The same is true for Korea. The Japanese Yen, on the other hand, does
exhibit similar reactions to the European currencies. In the parametric case, the standard
errors are in a plausible range of 0.02 to 0.2, whereas in the nonparametric case, the standard
errors become very small, especially if the estimated correlation is close to unity. Overall,
the parametric estimation seems more plausible.

Having in mind the results from the simulation and the asymptotic considerations of Sec-
tion 3, it is desirable to have a homogeneous dataset in terms of error correlation. Therefore,
the two countries with a different error correlation (Canada and Korea) were dropped from
the sample yielding a panel with almost equally correlated errors. The tests on different struc-
tures of the the covariance matrix of the remaining 16 countries reported in Jaidecate
that a common correlation coefficient in the order of .6 to .8 cannot be rejected, with 0.7
yielding an exceptionally low test statistic.

9The average lag length is 2.7, with a range from zero to 7 in one case.
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Table 10: Trace test for cointegration in a subsample of 9 exchange rates

Ho:ranksp | =TS log(1— ;) 95%
p=0 234.5** 192.9
p<1 183.3** 156.0
p<2 136.7** 124.2
p<3 97.49* 94.2
p<4 65.67 68.5

Note: ** indicates that the hypothesis is rejected
at least at the 95%-level.

4.3. Long-run dependence

A full assessment of the long-run dependency in the real exchange rate data is not possible
using a maximum likelihood approach due to the few numbers of observations in relation
to the entire system. A/AR (p) specification of the process that satisfies minimal residual
properties would require a lag order higher thar= 2, which is the highest feasible in

the system of 16 exchange rates. Estimation might be achievable by imposing further
priori restrictions on the parameter matrices, but theory does not give any further guidance.
However, the interesting question whether there is cointegration or not can positively be
answered in subsystems of the 16 exchange rates. For the sake of presentation, here the
result of a subsample of 9 exchange rates is preséhtad:ointegration analysis following
Johanserf1995 suggests that the data are cointegrated. The trace test detects at least three
cointegrating relations in this subsample of the data (see TableThis exercise could be
repeated with varying subsamples yielding similar results.

4.4. Results

The individual lags that were included in the different sections were determined after the
removal of common time effects. This lag structure differs from the optimal lag structure

if each of the series would be tested individually before demeaning. However, because the
absence of serial correlation is essential for the LLC and IPS test this should be carried out
after the demeaning. A series of tests was used to analyze the residuals of each series for
their white noise properties. Tablé reports the results and the main white noise indicators.
Further, the—values of the included lags were considered which had to be significant at least
for the highest lag considered. Normality is not rejected for all residual series.

%A VAR(3) was fitted allowing for seasonal dummies and a constant. All Box Pierce statistics testing for the absence
of serial autocorrelation up to 11 lags cannot be rejected, the same is true for ARCH(4) effects. Absence of vector
autocorrelation is rejected at th&—level, vector normality is not rejected.
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Table 11: ADF - lags selection

USS$ based

lags AR(4) BP lags AR(4) BP

DE| 3 59 99 FN| 4 25 .58
UK | 1 90 34| GR| 5 87 .71
AT | 1 57 87| ES| 1 78 .60
BE| 3 g7 .24 AU | 3 96 .84
DK | 2 44 45| IT | 2 .80 .85
FR| 1 74 83| CH| 1 54 85
NL | 3 A7 90| NW | 3 87 .12
JP| 5 41 60| SW| 2 84 .85

Note: In all cases the null hypothesis is absence of the respec-
tive disturbance. The reported values arephvalues at which

this hypothesis can be rejected. AR(4) stands for a test on au-
tocorrelation to the 4th order, BP is the Breush Pagan test for
heteroscedasticity.

Table 12: Test results

p—-values adj. power (5 %)
test coefficient | N(0,1) simulated | p=.9 p=.95
b=15 b=38

LLC¢* -1.911| 0.028 0.014 0.020 0.94 0.38
IPS¥; -2.856| 0.002 0.001 0.002 0.99 0.73

Note: Simulated values based on 4,000 replications.

Both dependencies are present in the data. The simulation exercise has shown that in this
case it is not possible to make predictions about the direction of a potential size bias. New
critical values can be computed simulating panels of exchange rates, and thereby following
as close as possible the presumed DGP. Therefore, a panel of 16 variables with 15 (and 8)
cointegrating relations and an error correlation structure using the point estimate of Table
9 was simulated and the test statistic was computed. Under the alternative, variables with
an autoregressive coefficient pf= {.9,.95} and the same error structure were simulated.
Tablel12reports the results of the LLC and the IPS test, the percentiles of the normal and the
simulated distribution. In addition, Figufieshows kernel densities of the estimatedalues,
the standard normal distribution, the actual test value and thé.9 alternative.
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Figure 1: LLC test results.

One has to keep in mind, however, that this test result is sensitive to the assumed structure
of the data, in particular the presence of both long and short run dependence. While the
short run correlation with all errors sharing the same correlation coefficient does not appear
to influence the test result, the presence of cointegration is much more worrisome. If one
is willing to assume that the values obtained via the simulation reflect the true properties of
the DGP, the null of nonstationarity of the real exchange rates can be rejected at a very low
p—value, hence providing some argument for the validity of PPP.

5. Conclusion

The simulation exercise has shown that two of the most popular panel unit root tests are
sensitive to dependencies among sections of the panel. Analyzed separately, both short run
dependence in the form of correlated errors and long-run dependence in the form of cointe-
gration lead to a significant oversizing of the test. However, if put together, the effect goes
into the opposite direction. The determination of the actual presence of dependencies is
therefore necessary in order to interpret the test results. The estimation of and the inference
on contemporaneous correlation is crucial, although not easy to perform.
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The application to a set of real exchange rates has shown that both dependencies are present
in the data. Hence, the test results are likely to be biased. In order account for these depen-
dencies, simulated critical values were used which origin from a data generating process that
resembles the actual data. The null hypothesis of a unit root can be rejected providing some
empirical evidence for the validity of he purchasing power parity. However, in the light of
the simulation results obtained earlier, the reliability of the test results are questionable. This
exemplifies the the problems with the use of panel unit root tests on sectional dependent data
in general.
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A. Appendix

A.1. Asymptotic normality of LLC with common shocks
Absence of shocks

Consider a model without constant and no additional lagged differences, along the lisesadt al.
(2002. Following the notation from Sectioh 1, in this case, for largé&v andT’, no adjustments are
necessary ant}f = ts. The least squares estimatordoproposed by LLC under the null hypothesis
is:H

5o Yo Y €
- N T 2
Doim 2t=1 T

Define
1 Z

T
1 2
§ur = P ; €itTit—1 and&or = 272 tz_; Lit—1

and, using an estimator for the standard deviation the corresponding-value is:

N
\/% Zi:l fliT
5 N 1/2°
(%) [% Zi:l §2iT]
Sectional correlation is a violation concerning thNe Taking the easiest form of multi index asymp-

totics, namely sequential limit®tillips and Moon1999 first the limiting distributions wheff goes
to infinity is, for N fixed:*®

lim & = &1, with E[é] = 0 andVar([§y;) = %
Tlgréo Eoir = Eoi With E[&o;] = 3 andVar[§y] = 3
one obtains
1 N
N i= gli
ty = — YN 21 (A.2)

()& TLiea]”

If the errors were uncorrelated ahAda consistent estimator of, averaging over the sections of the
panel would give the known result thigt= N (0, 1). The convergence in probability of the denomi-
nator of (A.2) is established by the following application of a law of large numb@ilirfigsley, 1986

p. 290):

gee Section. 1.
12For example:

Ziv:l Zthl TitTit—1

vazl Zle T3, .
These results are due Rhillips and Durlauf{1986), cf. Levin and Lin(1992 p. 14).

6’:
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Theorem A.1 Suppose that for each time-series dimensigrthe variablesZ;; are independent
and identically distributed across individualswith meany and variancé) < o2 < oo, and that

= lmyp_ o pp. If imp_ o X]—i =0. ThenNiT Zi]\fl Zir 5 .

The inner expression of the denominator has expectation 1/2 and fothedl expectations of the
variance are finite. Hence, the denominator convergegité. The convergence in distribution of
the numerator is established by applying the following central limit theoiittingsley, 1986 p.
368):

Theorem A.2 Suppose that for each time-series dimensigrthe variablesZ;; are independent
and identically distributed across individualsvith meanu; and variancd < a% < 00, and that
n = lim7_ wr, ando? = limp_ o O’%. Thenﬁ Zi\;Tl(ZiT — MT) = N(O, 0’2).

For each, the numerator has expectation 0 and finite variance 1/2. Hence, it converges in distribution
to N(0,0.5). Using the results obtained ir\(l) and applying both theoremsA ) converges to
N(0,1).1

Common shocks

In the case of sectional correlation, however, the crucial assumption used in both theorems about the
independence of the random variables is violated and their application fails. The numera&t@) of (

no longer converges (0, 0.5). To be more precise, assume the easiest case in which the correlation
among sections takes the following forf:

E[éliélj] 75 0 andCov[fh-flj] = (IJl for ¢ 75 j

To see which central limit theorem can be applied, it is necessary to check the properties of
§1 = limy 00 ﬁ S

N
E[&)] = E[\/lﬁ > &ul =0and
=1

| X L X N-1 N
Var[¢] = Var[\/—]v > &l = N<Z Var(6) +2) 0 Y C’ov(gh»,glj))
i=1 i—1 i=1 j=i+1
- %(% + NN = )i )= % +a (N —1)

The variance of the numerator increases wNthCentral limit theorems for dependent random vari-
ables require a finite variance to establish convergencedsge@illingsley (1986 p. 376) andVhite
(2001 p. 122)). Hence, no convergence result can be stated for this general form of dependence.

However, the analysis of the elimination of common time effects above (seeSpdges shown
that theeffective disturbance to the correlation mattiker removing common time effects is itself a
fynction of N. More specifically, using the result from equati@) thatw; = (1 — 031)(%1\;%11) =
©1=1 one can rewrite the above after removing common time effects as:

1 -1

Varl&] = st

14 : . N(0,0.5)\ _ 0.5 _
For the variance, notice th&tar( NG ) = 2 =1

. 0.
®Note that ifar(e;:) = 1 the covariances equal the correlation coefficients.
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As N goes to infinity the variance converges to the same value as in the case without sectional
correlation. Using a central limit theorem which does not require independgviciée( 2001, p.
125):

Theorem A.3 Suppose that for each time series dimendio; is a stationary process with mean
,UT and variancé < o7 < oo, and thatVar (= SNt Zir) B 0% where0 < 0% < oco. Then
F Z Zir) = N(0, UN)

Since each section has a finite variance and the variance of the average over all sections converges to
1/2, the numerator convergesig0, 0.5). For the denominator write:

E[{Qifzj] #0 andCO’U[ggifgj] = @9 for %7

Again, checking the properties of = limy_ oo % Zfil &, itis easily seen that:

El&] = - as before and
Varlgy) = Var[~ Zf% =3 (Z Var(&y) + 2 Z Z Cov(&1i,€15))
=1 j=1+1
;2 <]§ +N(N = 1)in )= SLN +w2NA; !

The variance of the denominator decreases Wittiollowing White (2001, p. 44), the following law
of large numbers is applicable to weakly dependent data:

Theorem A.4 SupposeZ; is a stationary ergodic scalar sequence Wil¥;] = p < oo. Then
Zi (Ef L.

Almost sure convergence (a.s.) implies convergence in probaliiléyilson(1994). Hence, the de-
nominator converges in probability tg'(0.5) regardless to the dependence in the data. Summarizing,
with common sectional correlation and after removing common time effe&i®) yill converge in
distribution toN (0, 1) as it is the case without sectional correlation. This is in line with the simulation
results obtained earlier, that the problem of oversizing diminishesAigmdT .

Other shocks

In the case where the covariance matrix takes the form of a band matrix (se@) fplagemmon time

effects were not eliminated, the variance of the numerator, in terms of the expressions above, would
again not converge for larg& as it become$/ar(&1) = 1/2 + Za 1 L aw™N=a. If common time

effects are eliminated, the structure of the correlation matrix becomes even less homogeneous and no
convergence is achieved. The resulting matrix is a straightforward but rather unpleasant combination
of N's andw’s. Here is a numerical example:

1 1

o | 7o ;| oas 1

TE=1 49 7 1 thenQEQ = "o 4
34 49 7 1 ~79 —81 46 1

Hence, the elimination of common time effects in this case does not provide any remedy for the
test. The test statistic will not converge to a N(0,1)
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A.2. Estimation of and Inference on (Co-)Variances

Much attention has been devoted to so called heteroscedasticity and autocorrelation consistent (HAC)
or robust estimators of covariances from to stationary series. Under nonstationarity, covariances are
not constant over time and methods designed for stationary series can no longer be used. In this
case one can either use the differences of the series to compute the covariances or the residuals from
regression on the lagged variabl8chwert(1989 finds that, in the univariate case, the difference
based approach has a smaller bias in finite samples. Therefore, and in order to proceed consistently
under the null of non-stationarity, the following lines apply to the first differences of an 1(1) process
without drift.

Analogous to the univariate problem of variance estimation, the aim is to get a consistent estimate
of the covariance matrix at zero frequenéylo estimate the spectrum of an unknown DGP correctly,
all T autocovariances have to be estimated, which is not feasiblefwithservations. The class of
parametric estimators imposes a certain structure on the data and constructs estimators that would be
implied by the model, while nonparametric procedures use a weighted average of autocovariances.

Parametric estimators

The parametric estimator VARHAC (vector autoregressive heteroscedasticity and autocorrelation
consistent) was developed IBen Haan and Levit§1996 and fits a vector autoregressivEAR)

model to the series under consideration using an information criterion to determine the optimal lag
length. To the residuals of th&AR a standard covariance estimator is applied.

More specifically, for each sectiarof the N-dimensional stationary of the process an autore-
gressive process is fitted using a lag order suggested by either the Akaike (AIC) or the Schwarz’
Bayesian (BIC) information criterion, and given a maximum lag order. The optimal lag order may
differ across sections. The coefficients are collected in a mAtg@(,X ) for each lagk, taking zero
values for section if £ exceeds the maximum lag order of that section. For the highest lag l1&nhgth
chosen, /AR is fitted and the residuaés are used to compute the innovation matrix:

T
. 1 o
SVARHAC _ = Z &8
t=K
The the spectral density estimator is then given by:
K K
S¥ARHAC — [I _ ZAk]—lz\/ARHAC[[ _ Z Ak]_l- (A3)
k=1 k=1
Den Haan and Levii{1996 analyze the performance of this estimator compared to some nonpara-
metric alternatives and find better finite sample properties. According to their results, the individual
choice of lag lengths for each section makes this procedure superior to nonparametric estimates, in

which one weighting function is applied to all sections.

Nonparametric estimators

In the nonparametric case two concepts are introduced to handle the problem of estimating the co-
variances: windowing and weighting. The most frequently used kernels in the time series literature

18For the following, se®en Haan and Levi(1997).
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are the Bartlett kernel and the Parzen kernel. For the Bartlett kernel, the weights assigned to the
autocovariances decline from 1 (the sample variance) to O (when the truncation is reached). This
kernel ensures a positive estimation of the long-run variance — or, in the multivariate case — a positive
definite estimate of the covariance matridefvey and West1l987). Since the theoretical guidance

in the choice of the truncation is quite unsatisfactory, it might be useful in empirical applications to
conduct robustness checks in terms of varying kernels and truncation parameters. Starting point for
the estimation of the covariance matrix in the presence of serial correlation is:

K
T=1

wherewg, is a kernel K a truncation parameter, and

T
P, = % S (i — %) (1 — %)
t=7+1
Refinements to this estimator are possible. Kernel based estimations of the long-run variance matrix
in the presence of serial correlation were found to give quite poor results. The major source of bias
is that kernels, which ensure a positive definite spectral density matrix place weights less then unity
on autocovariances other then at lags zéwadrews and Monahaf1992) therefore suggest a kernel
based prewhitening of the series and observe an improvement using this technique. In an expression
similar to equation 4.3) the covariance matrix is placed between the inverse of the prewhitening
coefficients. Newey and Wes(1994 propose an automated bandwidth selection procedure for the
estimator in A.4).

A.3. Bootstrap methods for dependent data

Inference on covariance matrix estimators is rarely done. But the estimation results itself are mean-
ingless if they remain unrelated to some standard errors. In both the parametric and nonparametric
case, bootstrap methods may be used to make inference on the estimates.

There is little known about the properties of bootstrap algorithms when the underlying process
contains a unit root. But even if the root of the process comes close to Boisg (1989 shows
that bootstrap approximations deteriorate. However, bootstrapping results will remain valid if the
bootstraps are applied to the differenced data. Hence, the following applies to the first differences of
a non-stationary process.

For time dependent data, however, the algorithms have to be extended because random resampling
would not account for the time dependency of the data, which, as it is the case for the covariance
matrix, is a crucial part of the estimatdrFor time dependent processes, resampling in the frequency
domain is suggestee.g. by Franke and Haerdl€1992 for the univariate case. This method is
designed for making inference about the entire spectrum. In this context the only estimate of interest
is the variation of the covariance matrix at zero frequency, and therefore these methods do not seem
appropriate. In the time series domain the following methods are suggested. The so called model-
based resampling requires reasonable good knowledge of the true model. In short, the assumed DGP
is applied to the series, innovations are computed and then used to resample a series again assuming
the same DGP. Among the methods that do not require knowledge of the DGP is the so called block

17Seee.g. Davison and Hinkley1997).
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resampling. The basic idea here is to divide the data bnibdocks of equal lengtli. The new
resampled series is a randomly order of blocks. Typically, those estimates will be biased, because
the resampled series are more independent than the original one, since whenever a block changes,
artificial independence is introduced. Furthermore, this break causes the artificial series to exhibit
nonstationarity properties, because distribution parameters become time depéndent.

The stationary bootstrap

The stationary bootstrap suggestedRuylitis and Roman@1994) is a sophistication of the afore-
mentioned methods. Moreover, this bootstrap is unbiased and does not produce nonstationarity in
the above sense. Another advantage of this method is that its validity for the covariance estimation
of a multivariate process was shown, which is precisely what is needed in this cdPbdikis (and
Romang 1994 Theorem 4). The algorithm is as follows:

e Letx; be aN-dimensional vector of time series fram=1, ..., T

o Defineb, ; = {x;,x¢41,...x¢411—1} as a block of subsequent observations in the sample, start-
ing at some. If the end of the sample is reached before the end of the bleek (-1 > T)),
the block is filled up with observations of the beginning of the sample € xo, xy+1 = X1

).

e The lengthi of the blocks is determined randomly, where the lengths follow a geometrical
distribution with some fixed parametge [0, 1]. The probability of a block lengti is P{l =
m} = (1 —p)™Ypform=1,2,.... Denote those random numbersipy

e Once the lag length is determined, the beginning of the block is determined by a random vari-
able; which is discretely uniformly distributed dn, 7).

e The pseudo time series; = {x]...x}} is generated by the random sequence of blocks
By, 1., Br,.1,---» Where the end is trimmed @t The resampling is donB times.

e Let the true vector of parameters of interesthdn the same way as the distributionzotcan
be approximated by the large number of pseudo safiethe distribution o conditional on
x can be approximated by the distributionaikf(x*).

e Applying this procedure to the inference on a covariance mafiris,a vector containing the
correlations between th®¥ units of the the vectok;. If one restricts attention to the triangle
below the diagonal, this amountst§(N — 1)N) = d elements. Denote b§(x) a consistent
(parametric or nonparametric) estimator of the covariance matrix. After computing the covari-
ances for each resampled, one can estimate the asymptotic variance of the estimatét by:

B
V(6] = £ > 16°() - 61167 () — ] (5)
b=1

The diagonal elements &f contain the variances of each element of the estimator, hence the
root of the diagonal contains the standard error to be placed around the point esimates

18For methods on how to overcome this and other problemsiaéet al.(1995.
19SeeGreeng200Q p. 174).
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e Assuming that the bootstrapped values follow a normal distribution, then a simple test for

9201 is:

Q=0-6)VO-6)
whereV is an estimate of the covariance matrix of the form:

b=1

Then@ will be approximatelyy? distributed, where! is the dimension 06.2°

A.4. Additional tables

Table A.1: Size properties when all assumptions are fulfilled

w=.0 LLC IPS
nominal size 10%
N=5 N=10 N=20| N=5 N=10 N =20
T=25| .136 .120 .118 .120 114 .109
T=50| .122 .101 101 114 .100 .104
T =100 | .118 .100 .100 .101 101 .098

nominal size 5%

T=25| .073 .058 .058 .069 .059 .059
T=50| .062 .053 .047 .064 .052 .054
T =100 | .058 .056 .049 .058 .057 .048
nominal size 1%

N=5 N=10 N=20|N=5 N=10 N =20

T=25| .015 .011 .010 .018 .012 .012
T=50| .013 .011 .009 .015 .013 .009
T =100 | .013 .010 .009 .013 .012 .009

Note: Based on 4,000 replications.

23ee alsden Haan and Levif1997 p. 299).

(A.6)
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Table A.2: Size properties with cointegration
LLC IPS
CIV =N/2 nominal size 10%
N=5 N=10 N=20| N=5 N=10 N=20
T=25| .155 .146 147 .150 142 142
T=50| .169 151 145 179 .185 .194
T =100 | .178 .160 .149 .267 291 301
nominal size 5%
N=5 N=10 N=20| N=5 N=10 N=20
T=25| .081 .080 077 .081 .083 .080
T=50| .086 077 072 .099 .103 116
T =100 | .010 .088 .078 167 .188 .202
nominal size 1%
N=5 N=10 N=20|N=5 N=10 N=20
T=25| .017 .014 .016 .020 .017 .022
T=50| .020 .014 .013 .031 .027 .024
T =100 | .026 .022 .014 .052 .064 .072
Note: based on 4,000 replications.
Table A.3: Size properties with cointegratidn= N/4
LLC \ IPS
b= N/4 nominal size 10%
N=5 N=10 N=20| N=5 N=10 N=20
T=25| .144 137 135 126 132 139
T =50\ .147 132 .130 152 143 142
T =100 | .164 .146 142 .184 184 .186
nominal size 5%
N=5 N=10 N=20| N=5 N=10 N =20
T=25| .074 .072 .073 .069 077 .074
T=50| .074 .070 .072 .085 .078 077
T =100| .070 .082 .074 .108 .109 112
nominal size 1%
N=5 N=10 N=20| N=5 N=10 N=20
T=25| .016 .014 .014 .019 .021 .017
T=50| .014 .016 .017 .021 .016 .019
T=100| .021 .017 .019 .029 .026 .024

Note: Based on 4,000 replications.
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Table A.4: Size properties with cointegration and correlatiorbfer N — 1

LLC IPS

b=N-1 nominal size 10%
w=07|N=5 N=10 N=20| N=5 N=10 N=20
T=25| .092 .056 .023 .079 .045 .022
T=50| .084 .045 .020 .086 .032 .013
T =100 | .052 .038 .013 122 .062 .019

nominal size 5%
N=5 N=10 N=20| N=5 N=10 N =20
T=25| .045 .027 .017 .042 .021 011
T=50]| .042 .019 .007 .043 .013 .005
T =100 | .025 .018 .007 .064 .031 .008

nominal size 1%
N=5 N=10 N=20| N=5 N=10 N =20
T=25| .010 .007 .003 .011 .006 .002
T=50| .011 .004 .001 .010 .003 .001
T =100 | .008 .005 .001 .018 .007 .001

Note: Based on 4,000 replications.

Table A.5: Size properties with cointegration and correlatiorbfer N/4

LLC IPS

b=N/4 nominal size 10%
w=07|N=5 N=10 N=20| N=5 N=10 N=20
T=25| .080 .054 .026 .059 .033 .013
T=50| .091 .068 .029 .046 .021 .005
T=100| .118 .068 .039 .048 .016 .005

nominal size 5%
N=5 N=10 N=20| N=5 N=10 N=20
T=25| .043 .029 .012 .034 .017 .005
T=50| .054 .041 .014 .023 011 .003
T =100 .081 .042 .025 .028 .010 .001

nominal size 1%
N=5 N=10 N=20| N=5 N=10 N=20
T=25| .013 .007 .002 .008 .003 .001
T=50| .017 .012 .004 .005 .002 .001
T =100 | .030 .018 .009 .008 .003 .000

Note: Based on 4,000 replications.
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Figure A.1: PPP data with US$ as base currency
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