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LETTER

Three-dimensional distribution of S 
wave reflectors in the northern Kinki district, 
southwestern Japan
Sho Aoki*, Yoshihisa Iio, Hiroshi Katao, Tsutomu Miura, Itaru Yoneda and Masayo Sawada

Abstract 

Distinct reflected waves (S × S) are observed in the northern Kinki district, southwestern Japan. We conducted a high-
resolution reflection analysis by using data from 128 seismic stations with an average spacing of about 5 km. We used 
a stacking method to obtain three-dimensional distributions of relative reflection strengths of S waves and found a 
thin planar zone of high reflection strengths at depths of 25–30 km, which we call a S wave reflector. We also found 
that the zone of high reflection strengths is dipping to the north and that low-frequency earthquakes (LFEs) occurred 
near the edge of the zone at depths around the Moho discontinuity. It is inferred from these results that fluid is 
concentrated in this zone of high reflection strengths. It is likely that the zone of high reflection strengths is a path of 
fluid upwelling from the mantle, together with the hypocentral region of LFEs, that is located near the lower edge of 
the zone. The northern Kinki district is thought to be part of the Niigata-Kobe Tectonic Zone (NKTZ) high strain rates 
region. The high reflection strengths zone may be associated with high strain rates in the NKTZ.

Keywords: Reflection analysis, Niigata-Kobe Tectonic Zone, Fluid, S wave reflector

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made.

Introduction
In the northern Kinki district, southwestern (SW) Japan, 
the Philippine Sea plate subducts beneath the overriding 
Eurasian plate, and there are no active volcanoes. This 
district is also characterized by high strain rates and is 
thought to be part of the Niigata-Kobe Tectonic Zone 
(NKTZ; Sagiya et  al. 2000) as shown in Fig.  1. Micro-
earthquake activity continuously occurs in this district, 
in particular north of the Arima-Takatsuki Tectonic Line 
(e.g., Iio 1996). It is supposed that fluids play an impor-
tant role in the microearthquake activity; however, the 
reason for the continuously occurring microearthquakes 
is not well understood.

Waveforms of microearthquakes that occur in this dis-
trict show distinct reflected S waves (S ×  S) about 10  s 
after the direct P waves (Katao 2002). Katao et al. (2007) 
conducted a reflection analysis and estimated the distri-
bution of S wave reflection points using data observed at 
10 permanent stations. They found a planar distribution 

of the S wave reflection points (S wave reflector) at a 
depth of 20–30 km. Also in this district, Nishigami (2007) 
estimated the distribution of scattering coefficients in the 
crust with a coda-wave inversion analysis (Nishigami 
1991) and found a zone of high scattering coefficients 
distributed at depths of 20–30 km.

S wave reflectors are also found in other regions in 
Japan. For example, Matsumoto and Hasegawa (1996) 
found that S wave reflectors distribute in the mid-crust 
beneath Nikko-Shirane volcano in northeastern Japan. 
They estimated that the reflectors are two very thin layers 
with low S wave velocities. The total thickness of these 
reflectors is about 0.1  km. It is inferred from this fact 
that the reflector body contains liquid material such as 
magma or water. Umino et al. (2002) estimated the loca-
tion of reflectors using the seismograms of aftershocks 
of the 1998 M5.0 Sendai earthquake. They showed that 
a clear reflector is located at a depth of 15–21  km just 
beneath the fault plane of the earthquake (Nagamachi-
Rifu fault), and supposed that it is related to fluids. These 
reflectors are located at relatively shallow depths; how-
ever, S wave reflectors in the northern Kinki district seem 
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to be located at greater depths than those beneath Nikko-
Shirane volcano and the Nagamachi-Rifu fault. Doi and 
Nishigami (2007) estimated the three-dimensional distri-
butions of S wave reflectors in the source region of the 
2000 Western Tottori Earthquake. They reported three 
reflection zones exist beneath the source region, which 
are located at depth of 15–25, 30–40 and 50–60  km 
(Doi and Nishigami 2007). They proposed that the first 
and second reflectors are corresponding to the Conrad 
and the Moho discontinuities, respectively. Moreover, 
they discussed the relationship between the reflection 
strength in the source region and deep low-frequency 
earthquakes occurred beneath the source region of this 
earthquake. They reported the reflection strength is rela-
tively high around the source region of the deep low-fre-
quency earthquakes and suggested the existence of fluids.

In the northern Kinki district, a dense temporary seis-
mic network has been operating since 2009 using the 
“Manten” system (Miura et  al. 2010) with an average 
station spacing of about 5  km. Thus, we can investigate 
crustal structure with high resolution using data from 
this dense temporary seismic network combined with 
the permanent network. In this study, we used data from 
these stations to estimate the detailed distributions of S 
wave reflectors.

Data and analysis method
In the northern Kinki district, there are 40 perma-
nent short-period high-sensitivity seismometers and 
88 temporary seismic stations within an area of about 
70 × 70 km2 (Fig. 1). We used waveforms obtained from 
these stations from February 2009 to February 2011. 
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Fig. 1 Map showing the seismic stations and the hypocenters used in this study. Black dots represent 182 hypocenters used in this analysis. Green, 
purple, yellow, orange and red and blue reverse triangles represent permanent stations of Kyoto University, AIST, NIED and JMA, and temporary 
stations of Kyoto University, respectively. Light blue stars and red lines indicate hypocenters of low-frequency earthquakes (LFEs) and active faults, 
respectively. Green dashed line indicates NKTZ shown in Hyodo and Hirahara (2003)
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We manually checked waveforms of microearthquakes 
recorded at two permanent seismic stations of Kyoto 
University, DP.YGI and DP.KHK, and selected 182 earth-
quakes that show clear reflected waves. These earth-
quakes have magnitudes of M2.0 or greater. We show 
an example of waveforms observed at DP.YGI in Fig.  2. 
Reflected S waves are seen clearly about 6  s after the S 
wave onset on both the EW and NS components.

In this analysis, we used the stacking method by Doi 
and Nishigami (2007) which was based on the analyses of 
Inamori et  al. (1992). Inamori et  al. (1992) assume that 
coda waves after direct S waves are composed of S waves 
reflected at horizontal planes, and convert travel times 
of coda waves to depths of reflectors. Doi and Nishigami 
(2007) modified the method of Inamori et  al. (1992) by 
using a normal moveout (NMO) correction for aligning 
aftershock waveforms. Doi and Nishigami (2007) esti-
mated a three-dimensional distribution of reflectors by 
stacking the energies of reflected waves after the NMO 
correction.

In this analysis, the two horizontal components were 
converted to the transverse direction and a 5–8  Hz 
band pass filter was applied, because the dominant 

frequency of the reflected wave is 5–8 Hz. Then, we cor-
rected amplitudes of coda waves by assuming a coda-Q 
(QC) with the amplitudes (A(t)) given by the following 
expression,

where t is the elapsed time from the occurrence of the 
earthquake, f is the frequency and QC is the attenu-
ation factor of the coda waves. We calculated QC for 
each waveform by a least-squares fit of Eq. 1 to the coda 
amplitudes, using a time window of 30  s starting at the 
time after the origin time which corresponds to twice 
the S wave travel time. QC values for individual traces 
take values of 300–600 in our analysis. We obtained an 
average QC = 450 by averaging all the estimated QC val-
ues and used this value to correct the coda amplitudes. 
By correcting amplitudes of waveforms by the above 
expression, we can emphasize the reflected waves. We 
conducted similar analyses using QC = 300 and QC = 600 
and confirmed that there are no significant differences 
for the results for this range of assumed QC values. We 
also applied the coda normalization method (Aki 1980) 
to correct amplitudes between different traces. Because 
waveforms in the period of 25–28 s after the origin time 
did not include large phases, we averaged amplitudes in 
this time window to normalize the waveforms. Further-
more, the waveforms were converted into the envelopes. 
The envelope F(t) is formed from the real seismic trace 
f(t) and the Hilbert transformed trace f*(t), as follows,

For details, see Taner et al. (1979). In order to avoid the 
effect of the direct S waves, we used only the envelopes 
starting at times after the origin time that correspond to 
twice the S wave travel time.

For calculating the three-dimensional distribution of 
the S wave reflections, we set X, Y and Z axes as parallel 
to latitude, longitude and the vertical directions, respec-
tively. The size of the analysis area is 300 km along the X 
axis, 300 km along the Y axis and 60 km along the Z axis, 
and its center is the point (N35.2°, E135.7°). This analysis 
area is sufficiently larger than the distribution of the seis-
mic stations and hypocenters of earthquakes used in this 
study. We divided the analysis area into 2,400,000 blocks 
with an interval of 1.5  km along the X and Y axes and 
1 km along the Z axis. We assumed an S wave velocity of 
3.5 km/s and assigned envelope amplitudes to appropri-
ate blocks by the NMO correction. Thus, the wavelengths 
of S waves used in this study are about 400–700 m. Then, 
we stacked relative envelope amplitudes and averaged 
them for each block. We defined the averaged value for 

(1)A(t) =
1
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Fig. 2 Example of waveforms on USD, NS and EW components 
observed at DP.YGI. In the inset map, the star represents the epicenter 
of a M2.0 earthquake on March 8, 2010, and the circle indicates the 
seismic station (DP.YGI). Red lines indicate active faults (Nakata and 
Imaizumi 2002). Reflected waves indicated as S × S are seen about 6 s 
after from the S wave onset
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each block as the reflection strength. Furthermore, we 
evaluated the confidence of the results by the number 
of data for each block. The number of data is calculated 
as a sum of the sampling data points of waveform enve-
lopes assigned for a block by the NMO correction. When 
S waves pass through a block vertically, a block includes 
about 71 data points for one trace, because the sampling 
frequency of the “Manten” system is 250 Hz, the S wave 
velocity is 3.5 km/s, and the vertical block size is 1 km. 
For example, a number of data of 10,000 means that 
about 140 traces are assigned to that block.

Results
We projected reflection strengths onto the NS and EW 
vertical planes and horizontal plane in Figs.  3, 4 and 5, 
respectively. A value of reflection strength of 1 is equal to 
the averaged reflection strength in blocks that correspond 
to the reference time window for the coda normalization. 
In these figures, we show the number of data assigned 
each block, in order to evaluate the reliability of the 
results. In the inset map of Figs. 3 and 4, we contoured the 
number of data at depth of 26 km with a thick blue line for 
50,000 and thin blue lines for contour intervals of 2000. 
The number of data is related to the number of traces that 
pass through the block. Although we show results for all 
the blocks where reflection strengths are calculated, here 
we will only discuss the blocks with the number of data 
more than 10,000, enclosed by blue lines in each section, 
because the number of the data decreases quickly in the 
area of those less than 10,000, as shown in Figs. 3 and 4.

In Figs.  3 and 4, we show hypocenters of ordinary 
earthquakes and low-frequency earthquakes (LFEs, 
determined by JMA) that occurred in 2009–2011, regard-
less of magnitudes. Hypocenters shown in the sections 
are located within 5 km from each section. In Fig. 5, we 
show the hypocenters of LFEs regardless of magnitudes 
and depths. In Figs.  3 and 4, reflection strengths at the 
depth of 40 km are nearly the same, because of the effect 
of the coda normalization.

We show the results for NS vertical planes in Fig. 3a–e. 
It seems that the zone of high reflection strengths (R1) 
becomes deeper northward in Fig.  3a–c and that LFEs 
occurred near the northern edge of the zone in Fig. 3b. In 
Fig. 3a (X = −23.25), a zone of high reflection strengths 
(higher than 1.5) is located at depths of 25–28 km in the 
central part of R1, and zones of moderately high reflec-
tion strengths (higher than 1.2) are distributed around the 
zone of high reflection strengths. In Fig. 3b (X = −12.75), 
a zone of high reflection strengths is located at depths 
of 23–30 km (R1). In Fig. 3c (X = −3.75), a zone of high 
reflection strengths is located at depths of 21–28  km 
(R1), and a zone of moderately high reflection strengths 
becomes deeper northward (R1), similar to that in 

Fig. 3b. In Fig. 3e (X = 15.75), a zone of high reflection 
strengths is located at depths of 28–32 km (R4), and LFEs 
occur near these high reflection strengths. There are 
small patches of moderately high reflection strengths at 
depths of 24–27 and 32–34 km (R2 and R3) in Fig. 3c, at 
26–29 km (R4) and 32–35 km (R5) in Fig. 3d.

In the EW vertical planes shown in Fig. 4a–e, it is seen 
that a zone of high reflection strengths (R1) becomes 
deeper to the north at X  =  −20 to −0 in Fig.  4b–e. 
Around the hypocenters of LFEs in Fig.  4B, a zone of 
moderately high reflection strengths is seen down to 
a depth of about 35  km. Other zones of high reflection 
strengths are seen at X = 10 (R4) in Fig. 4a–c, and LFEs 
occurred near the patch at X = 15, as shown in Fig. 4b.

These features are clearly seen in the horizontal section 
shown in Fig. 5a–f. Depths of the zone of high reflection 
strengths become deeper to the north, and they are deep-
est around the epicenters of LFEs around X = −15 and 
Y = −5.

Discussions
As mentioned above, we set the analysis area of 
300 × 300 × 60 km with the center (N35.2°, E135.7°), and 
this area is sufficiently larger than the distribution of the 
seismic stations and the hypocenters used in this study. 
However, we do not discuss the results obtained for 
blocks that have the number of the data less than 10,000, 
because the number of the data decreases quickly in the 
area of blocks of less than 10,000, as shown in Figs. 3 and 
4, and it is difficult to compare results obtained at blocks 
with a large difference in the number of data.

In this study, we found a zone of distinct north dipping 
high reflection strengths at depths of 21–30 km (X = −20 
to 0, Y = −35 to 3), which we call the S wave reflector. 
We calculated the averaged value and standard deviation 
of reflection strengths using the data for all the blocks, 
where reflection strengths were obtained. Then, we found 
that the reflection strengths in the S wave reflector are 
within one standard deviation (σ) from the mean value. 
Katsumata (2010) reported the depth of the Moho and 
the Conrad discontinuities beneath the Japanese islands. 
According to Katsumata (2010), the Conrad discontinuity 
exists at depth of 15–20 km in this district. Therefore, it 
is thought that the high reflection strengths zone is not 
the Conrad discontinuity. We also found small zones of 
high reflection strengths at depths of 32–34  km (R3), 
28–32  km (R4) and 32–35  km (R5). Katsumata (2010) 
estimated the depth of the Moho discontinuity is deeper 
than 34 km near these zones. Since these zones are basi-
cally located deeper than the Moho discontinuity and the 
extents of these zones are limited in small portions, it is 
likely that these zones do not reflect the Moho disconti-
nuity but heterogeneities in the crust.
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Ito et  al. (2006) carried out the refraction and wide-
angle reflection surveys by controlled sources and found 
some reflectors. They reported that the reflector existed 

at depth of 20–30  km and LFEs occurred beneath this 
reflector. The location and depth of this reflector cor-
respond to those of the S wave reflector in this analysis. 
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Katao et al. (2007) used a mirror-imaged station method 
with onset times of S ×  S phases and first found that S 
wave reflection points are dipping to the north. The 
result of Katao et al. (2007) is in accordance with the high 
reflection strengths zone estimated in this study at depth 
of 25–30 km. However, the reflected points estimated by 
Katao et al. (2007) are more widely scattered than the S 
wave reflector estimated by this study, probably due to 
uncertainties of S × S onset times. In this study, it is not 

necessary to pick onsets of S ×  S phases. Furthermore, 
this analysis has an advantage that 3D distributions of 
relative reflection strengths are objectively determined by 
the waveform stacking.

A very large impedance contrast, in particular an S 
wave velocity contrast, is necessary to produce dis-
tinct S wave reflectors. Thus, it is expected that fluid 
is concentrated in the high reflection strengths zone. 
This expectation is supported by the fact that LFEs 

0

10

20

30

40

50

D
ep

th
(k

m
)

−50 −40 −30 −20 −10 40
X (km)

0.0

0.5

1.0

1.5

2.0

0 10 20 30

0

10

20

30

40

50

D
ep

th
(k

m
)

−50 −40 −30 −20 −10 40

X (km)

0 10 20 30
0

10

20

30

40

50

−50 −40 −30 −20 −10 40

X (km)

0 10 20 30

0

10

20

30

40

50

D
ep

th
(k

m
)

−50 −40 −30 −20 −10 40

X (km)

0 10 20 30
0

10

20

30

40

50

−50 −40 −30 −20 −10 40

X (km)

0 10 20 30

Y = -0.75

Y = -8.25 Y = -15.75

Y = -24.75 Y = -32.25

X (km)
Y

 (
km

)

[

[

[
[[

[ [

]

]
] ] ]

] ]

←R4

←R4
←R4

R1→
R1→

R1→ R1→

(A)
(B)
(C)

(D)
(E)

−60

−40

−20

0

20

40

60
−60 −40 −20 20 40 600 a

b c

d e

Fig. 4 Reflection strengths along EW vertical planes [Y = − 0.75 (a), −8.25 (b), −15.75 (c), −24.75 (d) and −32.25 (e)]. The other explanations are 
the same as in Fig. 3



Page 7 of 9Aoki et al. Earth, Planets and Space  (2016) 68:107 

Depth = 21 km Depth = 24 km

Depth = 26 km Depth = 28 km

Depth = 30 km Depth = 33 km

0.0

0.5

1.0

1.5

2.0

−60

−40

−20

0

20

40

60
−60 −40 −20 0 20 40 60

−60

−40

−20

0

20

40

60
−40 −20 0 20 40 60−60

−60

−40

−20

0

20

40

60
−60 −40 −20 0 20 40 60 −60 −40 −20 0 20 40 60

−60

−40

−20

0

20

40

60

−60 −40 −20 0 20 40 60

−60

−40

−20

0

20

40

60
−60 −40 −20 0 20 40 60

−60

−40

−20

0

20

40

60

X (km)
Y

 (
km

)
X (km)

Y
 (

km
)

X (km)

Y
 (

km
)

X (km)
Y

 (
km

)

X (km)

Y
 (

km
)

X (km)

Y
 (

km
)

a b

c d

e f

Fig. 5 Reflection strengths on horizontal planes [depth = 21 (a), 24 (b), 26 (c), 28 (d), 30 (e) and 33 (f) km]. Hypocenters of LFEs are plotted regard-
less of magnitudes and depths. Black lines indicate active faults. Blue lines indicate the contours of 10,000 for the number of data



Page 8 of 9Aoki et al. Earth, Planets and Space  (2016) 68:107 

occur near the lower edge of the S wave reflector, and 
reflection strengths are slightly larger around the hypo-
centers of LFEs, as shown in Fig.  4b. Furthermore, 
LFEs occurred near the other zone of high reflection 
strengths at depths around the Moho discontinuity, 
as shown in Fig.  3e. It is likely that the high reflection 
strengths zone is a fluid path from the mantle, together 
with the hypocentral region of the LFEs. Takahashi and 
Miyamura (2009) reported the occurrences of LFEs in 
Japanese islands. They suggested that LFEs in the north-
ern Kinki region occur around depth of 30 km, near the 
Moho discontinuity, and that they are related to fluid 
dehydrated from the subducting Philippine Sea plate. 
According to Isozaki et al. (2010), there is no stranded 
slab related to the paleo-subduction. Thus, dehydrated 
fluid is thought to relate to the current subduction. 
However, the strengths of the reflections are not clear 
around the upper edge of the S wave reflector, because 
of lack of data. In addition, it is seen that many micro-
earthquakes occur above the reflector; however, the 
relationship between this activity and the S wave reflec-
tor is not well understood by the present study.

Iio et al. (2002) proposed a model of strain concentra-
tion in the NKTZ, in which the lower crust is weakened 
by water upwelling from the subduction plates. If their 
model holds, it is thought that the lower crust in the 
northern Kinki district has a higher fluid content than the 
surrounding region, because the northern Kinki district 
is a part of the NKTZ. This consideration is in accord-
ance with the results obtained in this study.

Conclusion
By using waveforms from a dense seismic network, we 
estimated the distribution of the zones of high reflec-
tion strengths (S wave reflectors) at depths of 25–30 km 
in the northern Kinki district. We found a zone of high 
reflection strengths dipping to the north and that low-
frequency earthquakes (LFEs) occurred near the edges of 
the zone at depths around the Moho discontinuity. It is 
inferred from these results that fluid is concentrated in 
this zone of high reflection strengths. It is likely that the 
zones of high reflection strengths are fluid paths from the 
mantle, together with the hypocentral region of the LFEs, 
located near the S wave reflector.
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