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1 Introduction

The gauge/gravity correspondence provides a fascinating arena for studying new aspects

of string theory. A well-studied example is the duality between type IIB superstring theory

on AdS5×S5 and the N=4 super Yang-Mills (SYM) theory in four dimensions [1]. This

duality enjoys a powerful property, integrability (For a big review, see [2]). It enables one to

compute some physical quantities exactly even at finite coupling without supersymmetries.

Thus the integrable structure behind the duality will be more and more important in the

future study.

The integrable structure may provide another insight as well. It is integrable deforma-

tions of the AdS/CFT correspondence. It is well recognized that type IIB string theory on

AdS5×S5 [3], which is often called the AdS5×S5 superstring, is classically integrable [4].

A systematic way to study the deformations is to employ the Yang-Baxter sigma-model

formulation, which was originally proposed by Klimcik [5–7] for principal chiral models1

and generalized by Delduc-Magro-Vicedo [13] to coset sigma models. In this formalism,

1For the SU(2) case, a q-deformed algebra and its affine extension have been revealed in [8–12].
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a deformed target space is determined by specifying the associated classical r-matrix sat-

isfying the modified classical Yang-Baxter equation (mCYBE). This formalism has been

extended to the case with the Wess-Zumino-Witten (WZW)-like term [14].2 One may con-

sider a generalization of it to the standard classical Yang-Baxter equation (CYBE) [18].

A three-dimensional Schrödinger spacetime is contained here as a simple case with the

rank 1 and for this case the classical integrable structure has been recognized as Jordanian

twists [19–22].3

The formalism of the Yang-Baxter deformations is applicable to the AdS5×S5 super-

string [25, 26]. Then it has been generalized to the CYBE case [27]. In comparison to the

mCYBE, there are two advantages. The first is that partial deformations of AdS5×S5 are

possible. For example, one may consider a deformation of either AdS5 or S
5 , while it seems

likely, so far as we see the current achievement, that both of them are inevitably deformed

in the case of mCYBE [25, 26]. The second is that there are a variety of solutions of the

CYBE. In fact, we have already found various examples of classical r-matrices which cor-

respond to solutions of type IIB supergravity. For example, the Lunin-Maldacena-Frolov

background [28, 29] and the gravity duals of non-commutative gauge theories [30, 31] have

been reproduced in [32] and [33], respectively, by following the Yang-Baxter sigma-model

description. Thus, the correspondence of this kind may be called the gravity/CYBE cor-

respondence [32] (For a short summary see, [34]).

A remarkable point of the gravity/CYBE correspondence is the connection to TsT

transformations [35, 36]. That is, a certain class of classical r-matrices satisfying the CYBE

is related to a solution generation techniques in type IIB supergravity. More strikingly, it

is shown in [37] that this connection holds even for Yang-Baxter deformations of a non-

integrable background, AdS5 × T 1,1 [38]. Motivated by these developments, our purpose

here is to pursuit the relation to TsT transformations and discover further examples of the

gravity/CYBE correspondence.

Indeed, we will present further examples of the gravity/CYBE correspondence. In the

previous works, classical r-matrices have been composed of generators of only one of either

so(2, 4) or so(6) . In the preset paper, we consider some examples of r-matrices with both

of them, which are schematically of the form;

r =
∑

i

(ai ⊗ bi − bi ⊗ ai) with ai ∈ so(2, 4) , bi ∈ so(6) . (1.1)

The classical r-matrices of this kind contain (generalized) Schrödinger spacetimes and

gravity duals of dipole theories. It is known that the generalized Schrödinger spacetimes

can also be obtained via a certain class of TsT transformations called null Melvin twists

as discussed in [39–41] and [42, 43]. The metric and NS-NS two-form are reproduced

by following the Yang-Baxter sigma-model description. More concretely, we have found

classical r-matrices corresponding to the following four classes of backgrounds:

1. Schrödinger spacetimes with one parameter [39–41],

2For the related progress on integrability with the WZW-term, see also [15–17].
3It may be significant to unveil the relation between the classical r-matrix and the general invariant two-

form in the coset construction [23]. It is also interesting to figure out the relation to the construction [24].
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2. Schrödinger spacetimes with three parameters [42],

3. supersymmetric Schrödinger spacetimes with three parameters [43], and

4. gravity duals for dipole theories [44–48].4

This paper is organized as follows. Section 2 gives a short review of Yang-Baxter

deformations of the AdS5×S5 superstring based on the CYBE. section 3 presents classical

r-matrices associated with (generalized) Schrödinger spacetimes. Section 4 considers dipole

deformations of the AdS5×S5 background with the corresponding r-matrices. Section 5 is

devoted to conclusion and discussion. In appendix A, we summarize our convention and

notation of the so(2, 4) and so(6) generators. In appendix B, the T-duality rules are listed.

Appendix C gives a derivation of three-parameter dipole deformations of AdS5×S5 .

2 Yang-Baxter deformations of AdS5×S5

Let us first recall the formulation of Yang-Baxter sigma models.

The Yang-Baxter sigma-model description was originally developed for purely bosonic

non-linear sigma models [5–7, 13]. It is now generalized to supersymmetric cases, and inte-

grable deformations of the AdS5×S5 superstring can be described based on the mCYBE [25,

26] and the CYBE [27].

Here we consider the latter case [27], where the deformed classical action is given by

S = −1

4
(γαβ − ǫαβ)

∫ ∞

−∞
dτ

∫ 2π

0
dσ STr

(

Aαd ◦
1

1− ηRg ◦ d
Aβ

)

, (2.1)

where the left-invariant one-form is defined as

Aα ≡ g−1∂αg , g ∈ SU(2, 2|4) . (2.2)

When η = 0 , the classical action (2.1) is reduced to the undeformed one [3]. Here the

string world-sheet metric is taken to be flat i.e., γαβ = diag(−1, 1) . The anti-symmetric

tensor ǫαβ is normalized as ǫτσ = 1 .

The operator Rg is defined as

Rg(X) ≡ g−1R(gXg−1)g , (2.3)

where a linear operator R is a solution of CYBE rather than mCYBE. The R-operator is

related to a classical r-matrix in the tensorial notation through

R(X) = STr2[r(1⊗X)] =
∑

i

(

aiSTr(biX)− biSTr(aiX)
)

(2.4)

with r =
∑

i

ai ∧ bi ≡
∑

i

(ai ⊗ bi − bi ⊗ ai) .

The generators ai, bi are some elements of su(2, 2|4) . The supertrace STr of (4|4) × (4|4)
supermatrix is defined as

STr

(

A B

C D

)

= Tr(A)− Tr(D) , (2.5)

4A three-parameter generalization has been done in appendix C of this paper.
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where each of the blocks A,B,C,D is a 4 × 4 matrix of complex numbers, which plays a

crucial role in our argument.

Note that su(2, 2|4) enjoys the Z4-grading property and one can introduce the pro-

jectors Pk (k = 0, 1, 2, 3) from su(2, 2|4) to its Z4-graded components su(2, 2|4)(k) . In

particular, su(2, 2|4)(0) is a gauge symmetry, so(1, 4) ⊕ so(5) . Then the operator d is

defined as a linear combination of Pk ,

d ≡ P1 + 2P2 − P3 . (2.6)

The numerical coefficients are fixed by requiring the kappa-symmetry [27].

To evaluate the action, it is convenient to rewrite the metric part and NS-NS two-form

coupled part of the Lagrangian (2.1) into the following form,

LG =
1

2
STr [AτP2(Jτ )−AσP2(Jσ)] ,

LB =
1

2
STr [AτP2(Jσ)−AσP2(Jτ )] , (2.7)

where Jα is a projected current defined as

Jα ≡ 1

1− 2ηRg ◦ P2
Aα . (2.8)

One can read off the deformed metric and NS-NS two-form from LG and LB , respec-

tively. It is quite messy but straightforward. It would be an easy exercise to derive the

metric and NS-NS two-form by following the previous examples [32–36].

3 Integrability of Schrödinger spacetimes

In this section, we will deduce Shcrödinger spacetimes from classical r-matrices depending

on both so(2, 4) and so(6) . Consequently, the classical integrability of the spacetimes au-

tomatically follows from the Yang-Baxter sigma model formulation. After presenting the

well-known Shcrödinger spacetime in subsection 3.1 , we consider three-parameter general-

izations in subsection 3.2 . More complicated examples are presented in subsection 3.3 .

3.1 Schrödinger geometries as Yang-Baxter deformations

Inspired by the spirit of the gravity/CYBE correspondence, we have found that the follow-

ing classical r-matrix

r = − iβ

4η
p− ∧ (h4 + h5 + h6) (3.1)

corresponds to the Schrödinger background. Here p− is the light-cone generator in so(2, 4)

and h4, h5 and h6 are the Cartan generators in so(6) . Hence the r-matrix in (3.1) is indeed

of the form (1.1). The parameter β measures the deformation.5 For the details of our

convention and notation of the generators, see appendix A.

5The parameter η is not an essential deformation parameter because it is canceled in (2.8).
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To find the metric and NS-NS two-form from (2.7) , we need to evaluate the projected

deformed current P2(Jα) . By solving the equation

(1− 2ηP2 ◦Rg)P2(Jα) = P2(Aα) , (3.2)

which is obtained from the definition (2.8) , the deformed current is evaluated as

P2(Jα) = c1γa1 + c2γa2 + c3γa3 + c0γa0 + c5γa5

+ d1γs1 + d2γs2 + d3γs3 + d4γs4 + d5γs5 , (3.3)

with the coefficients

c1 =
∂αx

1

2z
, c2 =

∂αx
2

2z
, c5 =

∂αz

2z
,

c3 = −β2∂αx
+

2
√
2z3

+
1

2
√
2z

(

∂αx
+ − ∂αx

− + β
(

∂αχ+
1

2
sin2 µ(∂αψ + cos θ∂αφ)

))

,

c0 = +
β2∂αx

+

2
√
2z3

+
1

2
√
2z

(

∂αx
+ + ∂αx

− − β
(

∂αχ+
1

2
sin2 µ(∂αψ + cos θ∂αφ)

))

,

d1 = − i

2
∂αµ , d3 = − i

4
sinµ∂αθ , d5 =

i

2z2
cosµ(z2∂αχ− β∂αx

+) ,

d2 =
i

4z2
cos

θ

2
sinµ

(

2β∂αx
+ − z2(∂αφ+ 2∂αχ+ ∂αψ)

)

,

d4 =
i

4z2
sin

θ

2
sinµ

(

2β∂αx
+ + z2(∂αφ− 2∂αχ− ∂αψ)

)

. (3.4)

Here we have used a parametrization of group element g introduced in (A.10)–(A.13). The

convention of gamma matrices is given in appendix (A.1)–(A.3).

Plugging the above expression of P2(Jα) with (2.7) , the resulting metric and NS-NS

two-form turn out to be

ds2 =
−2dx+dx− + (dx1)2 + (dx2)2 + dz2

z2
− β2 (dx

+)2

z4
+ ds2S5 ,

B2 =
β

z2
dx+ ∧ (dχ+ ω) . (3.5)

Here the line element ds2S5 is measured by the metric of S5 with the coordinates

(χ, µ, ψ, θ, φ) ,

ds2S5 = (dχ+ ω)2 + ds2
CP2 ,

ds2
CP2 = dµ2 + sin2 µ

(

Σ2
1 +Σ2

2 + cos2 µΣ2
3

)

. (3.6)

Namely, the round S5 is expressed as an S1-fibration over CP2 , where χ is the fiber coordi-

nate and ω is a one-form potential of the Kähler form on CP2 . The symbols Σi (i = 1, 2, 3)

and ω are defined as

Σ1 =
1

2
(cosψ dθ + sinψ sin θ dφ) ,

Σ2 =
1

2
(sinψ dθ − cosψ sin θ dφ) ,

Σ3 =
1

2
(dψ + cos θ dφ) , ω = sin2 µΣ3 . (3.7)

– 5 –
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The metric of the deformed AdS5 part is nothing but the metric that was originally

proposed in [49, 50]. This metric preserves a non-relativistic conformal symmetry called the

Schrödinger symmetry [51–53]. This metric can be reproduced via a coset construction [23].

As a result, we have proven the classical integrability of the string sigma model whose

target space is given by the Schrödinger background (3.5) in the sense that the Lax pair

has been constructed.6

3.2 Three-parameter generalizations

In the previous subsection, we have considered a one-parameter deformation. Then, one

may consider multi-parameter deformations. An example of three-parameter deformation

is described by the following classical r-matrix,

r(~β) = − i

4η
p− ∧ (β1 h4 + β2 h5 + β3 h6) , (3.8)

where ~β ≡ (β1, β2, β3) are the real deformation parameters.

Since the calculations to find the metric and NS-NS two-form are completely parallel

to the previous section, we do not repeat them here. With the S5 metric (A.21), the final

expressions are written as

ds2 =
−2dx+dx− + (dx1)2 + (dx2)2 + dz2

z2
− f(~β)(dx+)2

4z4
+ ds2S5 ,

B2 =
1

4z2
dx+ ∧K(~β) , (3.9)

where f(~β) and K(~β) are a scalar function and a one-form on S5 , respectively, depending

on ~β . They are explicitly defined as

f(~β) = β2
1 + β2

2 + 2β2
3 + 2(β2

1 − β2
2) cos θ sin

2 µ−
(

β2
1 + β2

2 − 2β2
3

)

cos 2µ ,

K(~β) =
(

2(β1 − β2) cos θ sin
2 µ− (β1 + β2 − 2β3) cos 2µ+ β1 + β2 + 2β3

)

dχ

+ (β1 + β2 + (β1 − β2) cos θ) sin
2 µdψ

+ (β1 − β2 + (β1 + β2) cos θ) sin
2 µdφ . (3.10)

The above expressions are quite messy and it is convenient to rewrite them in terms

of another coordinate system of S5 . In fact, by following the argument in appendix A, one

can rewrite them into the following simpler form:

ds2 =
−2dx+dx− + (dx1)2 + (dx2)2 + dz2

z2
−
(

3
∑

i=1

β2
i µ

2
i

)(dx+)2

z4
+ ds2S5 ,

B2 =
1

z2
dx+ ∧

(

3
∑

i=1

βi µ
2
i dψi

)

, µ2
1 + µ2

2 + µ2
3 = 1 . (3.11)

6Note here that non-integrability of various non-relativistic backgrounds was argued in [54], but the

Schrödinger spactime with the dynamical critical exponent z = 2 has not been covered. Hence, our result

is not in contradiction with [54].
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Here µ1 , µ2 and µ3 are the S5 coordinates defined as

µ1 = cos ζ sin r , µ2 = sin ζ sin r , µ3 = cos r . (3.12)

This background (3.11) nicely agrees with the one obtained by Bobev and Kundu [42] via

null Melvin twists of AdS5×S5 . As a result, this background (3.11) also gives rise to an in-

tegrable background of type IIB string theory. A remarkable point is that the deformation

term of the AdS5 part depends on the S5 coordinates. This dependence does not break the

Schrödinger symmetry. It is possible to consider the background preserving the Schrödinger

symmetry beyond the TsT transformations. Such a geometry has been studied, for exam-

ple, in [55]. It would be interesting to study whether the classical integrability is preserved

for the deformation argued in [55]. A Schrödinger background with a B-field found in [55]

may exhibit an instability concerned with the signature flipping of G++ . The stability of

the solution might be related to the classification of possible classical r-matrices.

Note that when the deformation parameters take the special values,

β1 = β2 = β3 = β , (3.13)

the background (3.11) reduces to the Schrödinger geometry (3.5) by taking account of the

relation,

dχ+ ω = µ2
1dψ1 + µ2

2dψ2 + µ2
3dψ3 . (3.14)

Finally it is worth noting that the Schrödinger spacetimes discussed so far are non-

supersymmetric for generic values. This is basically because T-dualities are taken for R-

symmetry directions and then all of the supersymmetries are broken. For supersymmetric

Schrödinger backgrounds, see the following subsection.

3.3 Other examples

It would be worth giving more examples. We will give five examples of classical r-matrices

satisfying the CYBE. The r-matrices always contain p− from so(2, 4), and the other gen-

erators are picked up from so(6) , which are not the Cartan generators.

To present the examples, the following polar coordinates of S5 are more convenient:

n1 = µ1 cosψ1 , n2 = µ1 sinψ1 ,

n3 = µ2 cosψ2 , n4 = µ2 sinψ2 ,

n5 = µ3 cosψ3 , n6 = µ3 sinψ3 , (3.15)

where µ1 = cos ζ sin r , µ2 = sin ζ sin r , µ3 = cos r .

The above coordinates satisfy the following condition:

(n2
1 + n2

2) + (n2
3 + n2

4) + (n2
5 + n2

6) = µ2
1 + µ2

2 + µ2
3 = 1 . (3.16)
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1) classical r-matrix with γs

1
. The first examples is a classical r-matrix composed of

p− and γs1 like

r = − i

4
p− ∧ γs1 . (3.17)

This r-matrix gives rise to the following metric and NS-NS two-form:

ds2 = ds2AdS5 + ds2S5 + η2(µ2
1 cos

2 ψ1 + µ2
3 cos

2 ψ3)
(dx+)2

z4

= ds2AdS5 + ds2S5 + η2(n2
1 + n2

5)
(dx+)2

z4
,

B2 =
η

z2
dx+ ∧

(

(µ1 cosψ1) d(µ3 cosψ3)− (µ3 cosψ3) d(µ1 cosψ1)
)

.

=
η

z2
dx+ ∧ (n1dn5 − n5dn1) . (3.18)

2) classical r-matrix with n13. The second example is a classical r-matrix,

r =
1

2
p− ∧ n13 . (3.19)

The resulting metric and NS-NS two-form are given by

ds2 = ds2AdS5 + ds2S5 − η2(µ2
1 cos

2 ψ1 + µ2
2 cos

2 ψ2)
(dx+)2

z4

= ds2AdS5 + ds2S5 − η2(n2
1 + n2

3)
(dx+)2

z4
,

B2 =
η

z2
dx+ ∧

(

(µ1 cosψ1) d(µ2 cosψ2)− (µ2 cosψ2) d(µ1 cosψ1)
)

=
η

z2
dx+ ∧ (n1dn3 − n3dn1) . (3.20)

3) classical r-matrix with n15. The third example is a classical r-matrix,

r = −1

2
p− ∧ n15 . (3.21)

The resulting metric and NS-NS two-form are given by

ds2 = ds2AdS5 + ds2S5 − η2(µ2
1 cos

2 ψ1 + µ2
3 sin

2 ψ3)
(dx+)2

z4

= ds2AdS5 + ds2S5 − η2(n2
1 + n2

6)
(dx+)2

z4
,

B2 =
η

z2
dx+ ∧

(

(µ1 cosψ1) d(µ3 sinψ3)− (µ3 sinψ3) d(µ1 cosψ1)
)

=
η

z2
dx+ ∧ (n1dn6 − n6dn1) . (3.22)

4) classical r-matrix with n12 , n23 and n34. The fourth example is a classical

r-matrix,

r =
1

4
p− ∧ (α1n12 + α2n23 + α3n34) . (3.23)

– 8 –
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The resulting metric and NS-NS two-form are given by

ds2 = ds2AdS5 + ds2S5

− η2
(

α2
1(n

2
1 + n2

2) + α2
2(n

2
2 + n2

3) + α2
3(n

2
3 + n2

4)− 2α2(α1n1n3 + α3n2n4)
)(dx+)2

z4
,

B2 =
η

z2
dx+ ∧

(

α1(n1dn2 − n2dn1) + α2(n2dn3 − n3dn2) + α3(n3dn4 − n4dn3)
)

. (3.24)

5) classical r-matrix with n12 , n34 and h6. The fifth example is a classical r-matrix,

r =
1

4
p− ∧

(

α1n12 + α2n34 −
iα3

2
h6

)

. (3.25)

Here it is noted that three so(6) generators n12 , n34 and h6 commute each other. The

resulting metric and NS-NS two-form are given by

ds2 = ds2AdS5 + ds2S5 − η2
(

α2
1(n

2
1 + n2

2) + α2
2(n

2
3 + n2

4) + α2
3(n

2
5 + n2

6)
)(dx+)2

z4
,

B2 =
η

z2
dx+ ∧

(

α1(n1dn2 − n2dn1)

+ α2(n3dn4 − n4dn3) + α3(n5dn6 − n6dn5)
)

. (3.26)

It should be remarked that the background with (3.26) agrees with the one found in [43].

Thus the existence of the associated classical r-matrix (3.25) indicates that the string

theory defined on the background [43] is classically integrable in the sense that the Lax

pair is constructed.

According to the Killing spinor analysis in [43], for values satisfying the condition

α1 ± α2 ± α3 = 0 , (3.27)

two real supersymmetries are preserved. When, in addition to the condition (3.27), at least

one of the αi (i = 1, 2, 3) vanishes, four real supersymmetries are preserved. Thus, depend-

ing on classical r-matrices, the remaining supersymmetries should be different. Hence it

would be interesting to study the relation between classical r-matrices and the classifica-

tion of super Schrödinger algebras [56–58]. It would also be nice to study the relation to

warped AdS3 geometries, for example, along the line of [59].

4 Integrability of gravity duals for dipole theories

In this section, we shall derive gravity duals of dipole theories [44–47] from the viewpoint of

the Yang-Baxter deformations. We find out classical r-matrices associated with the dipole

backgrounds and derive the deformed metric and NS-NS two-form both for a one-parameter

case and a three-parameter case, in subsection 4.1 and 4.2 , respectively.

4.1 A one-parameter case

Let us first consider a one-parameter dipole background. It can be obtained by a TsT-

transformation (x3, ψ1)α1
, where α1 is a shift parameter α1 [48]. From this information on
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the TsT-transformation, one can easily guess the corresponding classical r-matrix based

on the knowledge obtained [35].

A natural candidate of the associated r-matrix is given by

r =
iα1

4η
p3 ∧ h4 , (4.1)

where p3 is a Poincaré generator in so(2, 4) and h4 is a Cartan generator in so(6) . In

fact, the classical r-matrix leads to the deformed metric and NS-NS two form given by,

respectively,

ds2 =
−(dx0)2 + (dx1)2 + (dx2)2 +G−1

1 (dx3)2 + dz2

z2

+ dµ2
1 +G−1

1 µ2
1 dψ

2
1 +

∑

i=2,3

(dµ2
i + µ2

i dψ
2
i ) ,

B2 = α1G
−1
1 z−2µ2

1 dx
3 ∧ dψ1 . (4.2)

Here the scalar function G1 is defined as

G1 ≡ 1 + α2
1 µ

2
1 z

−2 . (4.3)

We have also used the coordinates of S5 given in (3.12) . Indeed, the background with (4.2)

perfectly agrees with (6.30) in [48]. Thus it has been shown that the classical r-matrix (4.1)

corresponds to this TsT transformation. This result gives a further support for the grav-

ity/CYBE correspondence.

4.2 A three-parameter case

The next is to consider a three-parameter generation of the classical r-matrix (4.2) .

Since so(6) has the three Cartan generators h4, h5 and h6 , one may consider the

following three-parameter generalization;

r =
i

4η
p3 ∧ (α1 h4 + α2 h5 + α3 h6) , (4.4)

with three real constants α1, α2 and α3 . Note that, when α2 = α3 = 0 , it reduces to

the one-parameter case (4.2) . After some computations, the resulting metric and NS-NS

two-form are given by

ds2 =
−(dx0)2 + (dx1)2 + (dx2)2 +G−1

3 (dx3)2 + dz2

z2

+
3

∑

i=1

(dµ2
i + µ2

i dψ
2
i )−G−1

3 z−2
(

3
∑

i=1

αi µ
2
i dψi

)2
,

B2 = z−2G−1
3 dx3 ∧

(

3
∑

i=1

αi µ
2
i dψi

)

. (4.5)

Here the scalar function G3 is defined as

G3 ≡ 1 + z−2(α2
1 µ

2
1 + α2

2 µ
2
2 + α2

3 µ
2
3) . (4.6)

When α1 = α2 = α3 = 0 , G3 becomes 1 and B2 vanishes.
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The deformed background with (4.5) can also be obtained by a sequence of three

TsT-transformations: 1) (x3, ψ1)α1
, 2) (x3, ψ2)α2

and 3) (x3, ψ3)α3
. The derivation is

straightforward but the result has not been listed in [48]. Hence we have derived the

explicit expressions in appendix C. The resulting metric and NS-NS two-form completely

agree with the expressions in (4.5).

5 Conclusion and discussion

We have presented further examples of the gravity/CYBE correspondence. In the previous

works, classical r-matrices have been composed of generators of only one of either so(2, 4)

or so(6) . In this paper, we consider some examples of r-matrices with both of them. The

r-matrices of this kind contain (generalized) Schrödinger spacetimes and gravity duals of

dipole field theories. It is known that the generalized Schrödinger spacetimes can also

be obtained via a certain class of TsT transformations called null Melvin twists. The

metric and NS-NS two-form are reproduced by following the Yang-Baxter sigma-model

description. Thus, this agreement shows that these backgrounds are classically integrable

at the bosonic sigma-model level in the sense that the Lax pairs exist. We have to make

efforts to prove this statement including the fermionic sector.

So far, the gravity/CYBE correspondence has been confirmed only for the metric (in

the string frame) and NS-NS two-from. Hence the remaining task is to check the dila-

ton and R-R sector. In general, the dilaton is not constant and the R-R sector is also

very complicated. Thus it does not seem so easy to check the remaining sector by explic-

itly evaluating the operator insertion into the classical action. However, the Schrödinger

spacetime with a one-parameter is a bit special. Although the metric is deformed and the

NS-NS two-form is newly turned on, the dilaton is still constant and the R-R sector is not

modified. This result indicates that the Schrödinger spacetime would be a nice laboratory

to check the gravity/CYBE correspondence at the full-sector level. We hope that we could

report the result in the near future [60].

There are various applications of the results presented here. An exciting issue is to

consider applications to integrable deformations of type IIA string theory on AdS4 ×
CP3 [61, 62]. This system is dual to the N=6 SU(N) × SU(N) Chern-Simons matter

system in three dimensions [63]. This system was proposed by Aharony-Bergman-Jafferis-

Maldacena (ABJM) [63] and it is often called the ABJM model. Hence the deforma-

tions of the string-theory side should correspond to deformations of the ABJM model,

and there should be the associated classical r-matrices in the spirit of the gravity/CYBE

correspondence.

In particular, the most significant one is a non-relativistic limit of the ABJM model [64,

65]. This system preserves a super Schrödinger symmetry and the internal symmetry is

also revealed. However, the gravity dual for this non-relativistic ABJM model has not

been constructed yet.7 Thus, it may be interesting to try to find out the gravity dual by

7Early trials to look for the gravity dual [66, 67] have supposed the five-dimensional Schrödinger geome-

tries. This is a possible line of approach, but as another possibility one of the internal directions may be

external by acting a classical r-matrix. This is what we have in mind.
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employing the Yang-Baxter deformations of type IIA string theory. The information on

the isometry obtained in [64, 65] would be a key ingredient to find out the corresponding

classical r-matrix. We hope that our results shed light on the gravity dual for the non-

relativistic ABJM model.
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A Notation and convention

We summarize here the notation and convention of the so(2, 4) and so(6) generators, and

a coset representation of AdS5×S5 .

The gamma matrices. In the following, we use the gamma-matrices represented by

γ1 =

(

0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

)

, γ2 =

(

0 0 0 i
0 0 i 0
0 −i 0 0
−i 0 0 0

)

, γ3 =

(

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

)

,

γ0 = iγ4 =

(

0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

)

, γ5 = iγ1γ2γ3γ0 =

(

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

)

. (A.1)

To describe the so(2, 4) and so(6) subalgebras of the psu(2, 2|4) superalgebra, it is necessary
to introduce the following 8× 8 gamma matrices:

γaµ =

(

γµ 0

0 0

)

, γa5 =

(

γ5 0

0 0

)

with µ = 1, 2, 3, 0 , (A.2)

γsi =

(

0 0

0 γi

)

, γs5 =

(

0 0

0 γ5

)

with i = 1, 2, 3, 4 . (A.3)

Here each block of the matrices is a 4× 4 matrix.

The bosonic generators. Then, the Lie algebras so(2, 4) and so(6) are spanned by

the bases:

so(2, 4) = spanR{ γaµ , γ
a
5 ,mµν =

1

4
[γaµ, γ

a
ν ] ,mµ5 =

1

4
[γaµ, γ

a
5 ] | µ, ν = 1, 2, 3, 0 } ,

so(6) = spanR{ γsi , γ
s
5 , nij =

1

4
[γsi , γ

s
j ] , ni5 =

1

4
[γsi , γ

s
5] | i, j = 1, 2, 3, 4 } . (A.4)

Note that the subalgebras so(1, 4) and so(5) are generated by

so(1, 4) = spanR{ mµν ,mµ5 | µ, ν = 1, 2, 3, 0 } ,
so(5) = spanR{ nij , ni5 | i, j = 1, 2, 3, 4 } . (A.5)

For the coset construction of AdS5 with the Poincaré coordinates, the following basis

of so(2, 4) is convenient;

so(2, 4) = spanR{ pµ , kµ , h1 , h2 , h3 ,m13 ,m10 ,m23 ,m20 | µ = 0, 1, 2, 3 } , (A.6)
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where the Cartan generators h1, h2, h3 and pµ , kµ are given by

h1 = 2im12 = diag(−1, 1,−1, 1, 0, 0, 0, 0) , pµ =
1

2
γaµ −mµ5 ,

h2 = 2m30 = diag(−1, 1, 1,−1, 0, 0, 0, 0) , kµ =
1

2
γaµ +mµ5 ,

h3 = γa5 = diag(1, 1,−1,−1, 0, 0, 0, 0) . (A.7)

Note that the generators pµ and kµ commute each other,

[pµ, pν ] = [kµ, kν ] = [pµ, kν ] = 0 for µ, ν = 0, 1, 2, 3 . (A.8)

On the other hand, the Cartan generators of so(6) read

h4 = 2in12 = diag(0, 0, 0, 0,−1, 1,−1, 1) ,

h5 = 2in34 = diag(0, 0, 0, 0,−1, 1, 1,−1) ,

h6 = γs5 = diag(0, 0, 0, 0, 1, 1,−1,−1) . (A.9)

A parameterization of the bosonic group elements. We are now ready to parame-

trize bosonic group elements of PSU(2, 2|4) . The group elements of SO(2, 4) and SO(6)

are parametrized as

ga = exp
(

x1p1 + x2p2 + x3p3 + x0p0
)

exp
(1

2
log zγa5

)

= exp
(

x1p1 + x2p2 + x+p+ + x−p−
)

exp
(1

2
log zγa5

)

∈ SO(2, 4) , (A.10)

gs = exp(ψ1h4 + ψ2h5 + ψ3h6) exp(−ζn13) exp
(

− i

2
rγs1

)

∈ SO(6) . (A.11)

Here the light-cone coordinates and the associated generators are given by

x± =
x0 ± x3√

2
, p± =

p0 ± p3√
2

. (A.12)

Thus, a bosonic element g of PSU(2, 2|4) is represented by

g = gags ∈ SO(2, 4)× SO(6) ⊂ PSU(2, 2|4) . (A.13)

Coset projector. To derive the metric of AdS5×S5 from the left-invariant one-form,

A = g−1dg ∈ so(2, 4)⊕ so(6) , (A.14)

it is necessary to introduce the coset projector;

P2 : so(2, 4)⊕ so(6) −→ so(2, 4)

so(1, 4)
⊕ so(6)

so(5)
. (A.15)

For any x ∈ so(2, 4)⊕ so(6) , it is explicitly defined as

P2(x) =
1

4

(

ηµνγaµTr[γ
a
νx] + γa5Tr[γ

a
5x] + δijγsiTr[γ

s
jx]

)

, (A.16)

where the range of the indices are µ, ν = 0, 1, 2, 3 and i, j = 1, 2, 3, 4, 5 . Then the four-

dimensional Minkowski metric is given by

ηµν = diag(−1, 1, 1, 1) . (A.17)
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The AdS5×S5 metric. With the left-invariant one-form (A.14) and the coset projec-

tor (A.16), the AdS5×S5 metric can be reproduced as

STr[AP2(A)] = ds2AdS5 + ds2S5 , (A.18)

where ds2AdS5
and ds2S5 are the metrics of AdS5 and S5 respectively,

ds2AdS5 =
1

z2

(

−2dx+dx− + (dx1)2 + (dx2)2 + dz2
)

,

ds2S5 = dr2 + sin2 r
(

dζ2 + cos2 ζ(dψ1)
2 + sin2 ζ(dψ2)

2
)

+ cos2 r(dψ3)
2 . (A.19)

This is the standard representation of the AdS5×S5 metric. It is noted that the ranges of

S5 coordinates are restricted as follows:

0 ≤ r ≤ π

2
, 0 ≤ ζ ≤ π

2
, 0 ≤ ψi ≤ 2π (i = 1, 2, 3) . (A.20)

The coordinate systems of S5. When we argue the Schrödinger geometry, it is more

convenient to rewrite the S5 metric (A.19) as an S1-fibration over CP2 :

ds2S5 = (dχ+ ω)2 + ds2
CP2 ,

ds2
CP2 = dµ2 + sin2 µ

(

Σ2
1 +Σ2

2 + cos2 µΣ2
3

)

, (A.21)

where χ is the S1-fiber coordinate and ω is the one-form potential of the Kähler form on

CP2 . The symbols Σi (i = 1, 2, 3) and ω are defined by

Σ1 =
1

2
(cosψdθ + sinψ sin θdφ) ,

Σ2 =
1

2
(sinψdθ − cosψ sin θdφ) ,

Σ3 =
1

2
(dψ + cos θdφ) , ω = sin2 µΣ3 . (A.22)

The coordinate transformation from (A.19) to (A.21) is given by

ψ1 = χ+
1

2
(ψ + φ) , r = µ ,

ψ2 = χ+
1

2
(ψ − φ) , ζ =

1

2
θ ,

ψ3 = χ . (A.23)

B The T-duality rules

The rules of T-duality [68–70] are summarized here. We basically follow the rules of [70].

The transformation rules between type IIB and type IIA supergravities are listed below.

Note that the T-duality is performed for the y-direction and the other coordinates are

denoted by a, b, ai (i = 1, . . .) . The fields of type IIB supergravity are the metric gµν , NS-

NS two-form B2 , dilaton Φ , R-R gauge fields C(2n) . The ones of type IIA supergravity

are denoted with the tilde, the metric g̃µν , NS-NS two-form B̃2 , dilaton Φ̃ , and R-R gauge

fields C̃(2n+1) .
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From type IIB to type IIA

g̃yy =
1

gyy
, g̃ay =

Bay

gyy
, g̃ab = gab −

gyagyb −ByaByb

gyy
,

B̃ay =
gay

gyy
, B̃ab = Bab −

gyaByb −Byagyb

gyy
, Φ̃ = Φ− 1

2
ln gyy ,

C̃
(2n+1)
a1···a2n+1

= −C
(2n+2)
a1···a2n+1y − (2n+ 1)By[a1

C
(2n)
a2···a2n+1]

+ 2n(2n+ 1)
B

y[a1
g
a2|y|

C
(2n)
a3···a2n+1]y

gyy
,

C̃
(2n+1)
a1···a2ny = C

(2n)
a1···a2n + 2n

g
y[a1

C
(2n)
a2···a2n]y

gyy
, (B.1)

where the anti-symmetrization for indices is defined as, for example,

A[aBb] ≡
1

2
(AaBb −AbBa) .

The symbol |y| inside the anti-symmetrization means that the indices other than the index

y are anti-symmetrized.

From type IIA to type IIB

gyy =
1

g̃yy
, gay =

B̃ay

g̃yy
, gab = g̃ab −

g̃yag̃yb − B̃yaB̃yb

g̃yy
,

Bay =
g̃ay

g̃yy
, Bab = B̃ab −

g̃yaB̃yb − B̃yag̃yb

g̃yy
, Φ = Φ̃− 1

2
ln g̃yy ,

C
(2n)
a1···a2n = C̃

(2n+1)
a1···a2ny − 2nB̃y[a1

C̃
(2n−1)
a2···a2n]

+ 2n(2n− 1)
B̃

y[a1
g̃
a2|y|

C̃
(2n−1)
a3···a2n]y

g̃yy
,

C
(2n)
a1···a2n−1y = −C̃

(2n−1)
a1···a2n−1

− (2n− 1)
g̃
y[a1

C̃
(2n−1)
a2···a2n−1]y

g̃yy
. (B.2)

C Derivation of dipole deformations of AdS5×S5

Let us here derive gravity duals for dipole theories by performing TsT transformations for

AdS5×S5 . In the following, we will concentrate on the NS-NS sector. The T-duality rules

we utilize is summarized in appendix B.

C.1 One-parameter deformation

First of all, we consider a one-parameter deformation of AdS5×S5 . The starting point is

the following metric, NS-NS two-form B2 and dilaton Φ:

ds2 =
−(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2 + dz2

z2
+

3
∑

i=1

(dµ2
i + µ2

i dψ
2
i ) ,

B2 = 0 , Φ = Φ0 (const.) . (C.1)
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For this background, we will perform a TsT transformation (x3,ψ1)α1
. For this pur-

pose, the relevant part is

ds2 =
1

z2
(dx3)2 + µ2

1 dψ
2
1 , B2 = 0 , Φ = Φ0 . (C.2)

The first step is a T-duality for the x3-direction. The resulting background is given by

ds̃2 = z2(dx̃3)2 + µ2
1 dψ

2
1 , B2 = 0 , Φ = Φ0 −

1

2
ln

(

1

z2

)

. (C.3)

Then, by shifting ψ1 as ψ1 = ψ̃1 − α1 x̃
3 , the background (C.3) is rewritten as

ds̃2 = (z2 + µ2
1 α

2
1)(dx̃

3)2 + µ2
1 dψ̃

2
1 − 2µ2

1 α1 dψ̃1dx̃
3 ,

B̃2 = 0 , Φ̃ = Φ0 +
1

2
ln z2 . (C.4)

Finally, a T-duality is performed for the x̃3-direction. Together with the undeformed part,

the resulting background is given by

ds2 =
−(dx0)2 + (dx1)2 + (dx2)2 +G−1

1 (dx3)2 + dz2

z2
+

3
∑

i=1

(dµ2
i + µ2

i dψ
2
i ) ,

B2 = α1G
−1
1 z−2µ2

1 dx
3 ∧ dψ1 , e2Φ = e2Φ0 G−1

1 . (C.5)

Here we have removed the tilde from ψ1 and a scalar function G1(z) is defined as

G1(z) ≡ 1 + α2
1 µ

2
1 z

−2 .

C.2 Two-parameter deformation

We will next consider the second TsT transformation (x3, ψ2)α2
for the background (C.5) .

The relevant part is

ds2 = G−1
1

(dx3)2

z2
+G−1

1 µ2
1 dψ

2
1 + µ2

2 dψ
2
2 ,

Bψ1x3 = − µ2
1 α1

z2 + µ2
1α1

, Φ = Φ0 −
1

2
lnG1 . (C.6)

We first perform a T-duality for the x3-direction. The above part is rewritten as

ds̃2 = z2G1 (dx̃
3)2 + µ2

1 dψ
2
1 + µ2

2 dψ
2
2 − 2µ2

1 α1 dψ1dx̃
3 ,

B̃2 = 0 , Φ̃ = Φ0 +
1

2
ln z2 . (C.7)

Then, by shifting ψ2 as ψ2 = ψ̃2 − α2 x̃
3 , the background (C.7) is rewritten as

ds̃2 = (z2G1 + α2
2 µ

2
2) (dx̃

3)2 + µ2
1 dψ

2
1 + µ2

2 dψ̃
2
2 − 2µ2

1 α1 dψ1dx̃
3 − 2µ2

2 α2 dψ̃2dx̃
3 ,

B̃2 = 0 , Φ̃ = Φ0 +
1

2
ln z2 . (C.8)
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Finally, we perform a T-duality for the x̃3-direction. Together with the undeformed part,the

resulting background is given by

ds2 =
−(dx0)2 + (dx1)2 + (dx2)2 +G−1

2 (dx3)2 + dz2

z2

+
3

∑

i=1

(dµ2
i + µ2

i dψ
2
i )− z−2G−1

2 (α1 µ
2
1 dψ1 + α2 µ

2
2 dψ2)

2 ,

B2 = z−2G−1
2 dx3 ∧ (α1 µ

2
1 dψ1 + α2 µ

2
2 dψ2) , e2Φ = e2Φ0 G−1

2 . (C.9)

Here we have removed the tilde from ψ2 and a scalar function G2(z) is defined as

G2(z) ≡ 1 + z−2(α2
1 µ

2
1 + α2

2 µ
2
2) .

C.3 Three-parameter deformation

Finally, let us perform the third TsT transformation (x3, ψ3)α3
for the background (C.9) .

The relevant part is given by

ds2 = G−1
2

(dx3)2

z2
+

3
∑

i=1

µ2
i dψ

2
i − z−2G−1

2 (α1 µ
2
1 dψ1 + α2 µ

2
2 dψ2)

2 ,

Bψ1x3 = −µ2
1 α1

z2
G−1

2 , Bψ2x3 = −µ2
2 α2

z2
G−1

2 , Φ = Φ0 −
1

2
lnG2 . (C.10)

By performing a T-duality for the x3-direction, the above part is recast into

ds̃2 = z2G2 (dx̃
3)2 +

3
∑

i=1

µ2
i dψ

2
i − 2α1 µ

2
1 dψ1dx̃

3 − 2α2 µ
2
2 dψ2dx̃

3 ,

B̃2 = 0 , Φ̃ = Φ0 +
1

2
ln z2 . (C.11)

Then, by shifting ψ3 as ψ3 = ψ̃3 − α3 x̃
3 , the background (C.11) is rewritten as

ds̃2 = (z2G2 + α2
3 µ

2
3) (dx̃

3)2 + µ2
1 dψ

2
1 + µ2

2 dψ
2
2 + µ2

3 dψ̃
2
3

− 2µ2
1 α1 dψ1dx̃

3 − 2µ2
2 α2 dψ2dx̃

3 − 2µ2
3 α3 dψ̃3dx̃

3 ,

B̃2 = 0 , Φ̃ = Φ0 +
1

2
ln z2 . (C.12)

Finally, we perform a T-duality for the x̃3-direction. Together with the undeformed part,the

resulting background is given by

ds2 =
−(dx0)2 + (dx1)2 + (dx2)2 +G−1

3 (dx3)2 + dz2

z2

+
3

∑

i=1

(dµ2
i + µ2

i dψ
2
i )− z−2G−1

3

(

3
∑

i=1

αi µ
2
i dψi

)2

,

B2 = z−2G−1
3 dx3 ∧

(

3
∑

i=1

αi µ
2
i dψi

)

, e2Φ = e2Φ0 G−1
3 . (C.13)
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Here we have removed the tilde from ψ3 and a scalar function G3(z) is defined as

G3(z) ≡ 1 + z−2
3

∑

i=1

α2
i µ

2
i .
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