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Noise Response Data Reveal 
Novel Controllability Gramian for 
Nonlinear Network Dynamics
Kenji Kashima

Control of nonlinear large-scale dynamical networks, e.g., collective behavior of agents interacting 
via a scale-free connection topology, is a central problem in many scientific and engineering fields. 
For the linear version of this problem, the so-called controllability Gramian has played an important 
role to quantify how effectively the dynamical states are reachable by a suitable driving input. In this 
paper, we first extend the notion of the controllability Gramian to nonlinear dynamics in terms of the 
Gibbs distribution. Next, we show that, when the networks are open to environmental noise, the newly 
defined Gramian is equal to the covariance matrix associated with randomly excited, but uncontrolled, 
dynamical state trajectories. This fact theoretically justifies a simple Monte Carlo simulation that can 
extract effectively controllable subdynamics in nonlinear complex networks. In addition, the result 
provides a novel insight into the relationship between controllability and statistical mechanics.

Control, i.e., external forcing aimed at achieving desirable dynamical trajectories, of nonlinear large-scale dynam-
ical networks is of major interest in many research fields such as gene regulatory networks, infection spreads, 
human brains, financial markets, smart grids, to list just a few1–4. To investigate how difficult such networks are 
to control, controllability, originally defined in control theory5,6, has attracted much attention, mainly in physics 
research1,2,7–15. Among them, Kalman’s controllabilty matrix has played an important role to determine whether 
every dynamical state of a linear system is reachable1. Beyond this controllability determination, the so-called 
controllability Gramian, that is only defined for linear systems, provides much of the quantitative information 
concerning this problem. For example, every dynamical state is reachable if and only if the Gramian is nonsin-
gular. Moreover, the minimum control energy required to drive the current state to a target one is represented as 
a quadratic form associated to the inverse of the Gramian, which is utilized to analyze the effect of connection 
topology7. In this context, the condition number of the Gramian is a meaningful index to characterize the nonlo-
cality of linear complex networks8.

The controllability of complex networks with nonlinear dynamics is also being actively investigated16,17. The 
Lie bracket gives a natural extension of Kalman’s controllability matrix rank condition for the controllability 
determination16. However, an analogous controllability Gramian for nonlinear dynamics has not yet been devel-
oped, even in control theory18–23, although the controllability Gramian of a linearized system is useful in some 
applications. One of only a few existing approaches is the empirical Gramian24 that appears in simulation-based 
model reduction methods25,26 mainly developed in computational physics and numerical analysis. The empir-
ical Gramian is constructed using simulation data, which is in stark contrast to the controllability Gramian. 
Furthermore, it has been widely applied to nonlinear large-scale systems24,27. However, although this is equal to 
the controllability Gramian when the dynamics are linear, there are no theoretical underpinnings for such an 
application to nonlinear cases.

The goal of this paper is to introduce a novel matrix measure for the controllability quantification of nonlinear 
network dynamics, to reveal its specific feature under stochastic noise, and to provide a simulation-based method 
for dynamical network reduction, together with its theoretical justification. To this end, we first extend the notion 
of the controllability Gramian to nonlinear systems from a statistical mechanics viewpoint, and show the validity 
through its application to controllability quantification. Then we show that, when the network is open to environ-
mental noise, the newly proposed Gramian is equal to the covariance matrix of the uncontrolled dynamics. This 
equality brings about new insights into the relationship between controllability, simulation data, and stochasticity. 
This work is largely inspired by the path integral approach proposed by Kappen28. Although this concept is not 
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directly used as a numerical procedure to solve the optimal control problem below, it is a key building block to 
prove the main result.

Results
Controllability function and Gramian. Consider the nonlinear controlled dynamics:

= + =
d
dt

t t t u tx f x g x x x( ) ( ( )) ( ( )) ( ), (0) (1)0

where t represents time, x(t) =  [x1(t), … , xn(t)]T and u(t) are the state and input variables, and smooth functions f 
and g describe the autonomous dynamics and the input effect, respectively. In (1), the initial state x0 is fixed, 
which affects both controllability determination and quantification. This can be arbitrarily chosen, although typ-
ically the initial state is fixed to a stable equilibrium in the conventional controllability quantification results of 
nonlinear systems22. Moreover, all the results in this paper hold for any probabilistic initial state (i.e., x0 is a ran-
dom variable) and multi input cases as far as x0 is independent of the input noise below. For a final time τ >  0, the 
minimum control effort ∫

τ u t dt( )
0

1
2

2  to achieve τ = x x( )  is referred to as a controllability function denoted by 
τ
L x( ). When the dynamics are linear, i.e., f(x) =  Ax and g(x) =  B with constant matrices A, B of compatible 

dimensions, the matrix ∫=τ
τ dsG BBe es T sA A

0

T
 is called the controllability Gramian. It is well known that 

=τ
τ
−

  L x x G x( ) T1
2

1  provided Gτ is nonsingular when x0 =  0 6,8,18. However, this definition of Gτ cannot straightfor-
wardly be extended to nonlinear systems. Here, the controllability function and Gramian were introduced inde-
pendently, and then a simple quadratic relation was shown. By changing our way of thinking, let us define G(Lτ), 
which we call Gibbs Gramian, in terms of the Gibbs distribution associated with the given controllability 
function

∫
∫

φ φ= = .
−

−
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When =τ
τ
−

  L x x G x( ) T1
2

1 , the Gaussian integral formula shows G(Lτ) =  Gτ. Therefore, this definition is consistent 
with the conventional one for linear dynamics. It should be noted that the definition of the controllability func-
tion does not assume linearity. Thus, this definition can readily be employed also for nonlinear cases. Another 
important feature is that we do not need to care about the reachability of each state. Even if some x are not reach-
able by any finite energy input (e.g., linear dynamics for which Gτ is singular), = +∞τ

L x( )  causes no problem 
in (2) because it simply leads to φ =τ

x( ) 0L . This means we can handle network dynamics that evolve on a specific 
domain due to the dynamics’ structure or physical constraints.

For linear systems with the initial state at the origin, eigenstructure of the controllability Gramian Gτ is useful 
for identifying directions in the state space that require small control energy to be reached. The Gibbs Gramian 
enjoys a similar property. Specifically, principle component analysis on G(Lτ) reveals all effectively reachable 
directions. For instance, by setting =τ

τ
−

  L x x G x( ) T1
2

1 , we observe for the linear case that the principle eigenvector 
of G(Lτ) =  Gτ minimizes 

τ




L x
x

( )
2

, that is, the control effort divided by the squared distance takes its minimum value 

when the final state x lies on the principle eigenvector. Another interpretation is that, of every possible direction, 
with a fixed control energy the state can be driven the furthest from the origin by driving it to a destination state 
that lies along the principle eigenvector. Interpretation for the nonlinear case has similarities with the linear case. 
Note that, for any unit vector e, large φ τ

 x e x( )L
T 2

 implies that a small energy input can be used (i.e., small τ L x( ), 
and consequently large φ τ

x( )L ) to place the state far from the origin along the direction of e (i.e., large 
e xT 2

) at the 
final time. Then, its spatial integral over all final states x satisfies the following theorem, which readily follows 
from the equality ∫φ=τ

τ
  L de G e x e x x( ) ( )T

L
T 2

:
The integral ∫φ τ

  dx e x x( )L
T 2

 is maximized when e is the principal eigenvector of G(Lτ).
In this sense, the principal eigenvector of the Gibbs Gramian captures the direction along which the states can 

be reached furthest from the origin by a control effort that is small on average. In addition, it is trivial to change 
the reference point. For example, one can modify the definition as ∫φ= − −   L dG x x x x x x( ) ( )( )( )L

T
0 0  to eval-

uate the travelling distance instead of the distance from the origin. Similarly, the secondary, and further, eigenvec-
tors enable us to characterize an effectively reachable subspace. See also the subsection entitled Dimensionality 
reduction of nonlinear network dynamics below for another interpretation in terms of the minimal projection 
error. The conclusion is that the Gibbs Gramian introduced G(Lτ) in (2) is a proper extension of the conventional 
controllability Gramian Gτ for nonlinear dynamics.

Stochasticity connects Gibbs Gramian and simulation data. For linear dynamics, Gτ is given as a 
solution to a linear matrix equation. On the other hand, the controllability function Lτ is given as a solution to a 
nonlinear partial differential equation for nonlinear dynamics22. Therefore, it is not realistic to compute Lτ, and 
consequently G(Lτ), even for small-scale cases. However, the situation drastically changes when the input is dis-
turbed by random noise:

ξ= + + =
d
dt

t t t u t T tx f x g x x x( ) ( ( )) ( ( ))( ( ) ( )), (0) (3)0

where T >  0 is a noise level or temperature, ξ(t) is white noise such that 〈 ξ2(t)〉  =  1, and the expectation is taken 
over noise samples29,30. There are several theoretical results concerning the controllability determination of 
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stochastic systems (e.g., approximate controllability31,32). In this paper, we define a stochastic controllability func-
tion τ x( ) for the controllability quantification as

∫ τ= + Φ −τ τ
 u t dtx x x( ) inf 1

2
( ) ( ( ) ) ,

(4)u 0

2

where the infimum is taken over all feedback control laws and we define Φ  such that

δΦ = ∝ ∈−Φ0 x x( ) 0, e ( ), (5)nx( )

with the Dirac’s delta function δ. Then, the terminal cost is an alternative representation of the terminal boundary 
constraint τ = x x( ) , since τΦ − = +∞x x( ( ) )  when τ ≠ x x( ) . Therefore, τ x( ) can be viewed as the minimum 
expected value of the control effort to regulate τ = x x( ) ; see Fig. 1a. Similarly to the deterministic case, we do not 
require the boundedness of τ . It should be emphasized that the resulting Gibbs distribution φ τ  is not identical 
to φ τL , and depends on T. Next, we refer to the uncontrolled (u(t) =  0), but randomly excited dynamics tx( ) as 
noise response

ξ= + =
d
dt

t t t T tx f x g x x x( ) ( ( )) ( ( )) ( ), (0) , (6)0

whose sample path is shown in Fig. 1b. The key finding in this paper is the following theorem, the proof of which 
is in the Methods section:

The probability density function of τx( ) is given by φ τ x( )T/ , that is, the noise response τx( ) obeys the Gibbs  
distribution associated with τ T/ .

This result means that the noise response data completely characterizes the minimum required input energy 
τ x( ) for each target state x. An intuitive reason for this nontrivial relation to hold is that the noise in (6) is added 
through the input channel. This type of noise is known to have an ability to search for the solution to a wide class 
of optimal control problems28. By this connection, the noise response data tx( ) inherently contains information 
about the control energy minimization problem. Therefore, this bridges the gap to the controllability function 
that is defined via the minimum energy control input.

Note that the evaluation of τ x( ) over the whole state space based on the density function estimation of τx( ) 
is still computationally intractable. However, in this paper, we focus on the Gramian induced by the stochastic 
controllability function, which is given by the spatial integral in (2), and is much easier to determine than the 
pointwise evaluation of τ x( ). Actually, the theorem above yields the following equality for the stochastic Gibbs 
Gramian τ TG( / ):

 τ τ= .τ TG x x( / ) ( ) ( ) (7)T

This equality tells us that the stochastic Gibbs Gramian can easily be calculated via Monte Carlo sampling of 
the uncontrolled dynamics open to environmental noise. Furthermore, both this computation and also the prin-
ciple component analysis of τ TG( / ) are efficiently implementable because various algorithms to achieve com-
putational scalability exist for both Monte Carlo sampling (e.g., importance sampling) and matrix eigenvalue 
analysis. Thus, the novel equality (7) characterized in this paper leads to the first numerically tractable procedure 
to find an effectively reachable subspace of large scale nonlinear dynamics, when they are open to environmental 
noise, and is particularly useful for network dynamics for which only simulation algorithms, or time-series data 
collected in a noisy environment, are available.

Figure 1. Typical behavior of controlled and uncontrolled dynamics open to environmental noise. (a) Sample 
paths of (3) controlled by a fixed feedback law that regulates τ = x x( ) . The corresponding control effort is measured 
by ∫〈 〉

τ u t dt( )
0

1
2

2 , which is the average of ∫
τ u t dt( )

0
1
2

2  over these sample paths. Then, τ x( )  is the minimum of 
these average values over all such control laws. (b) Sample paths of the noise response tx( ) in (6).
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Dimensionality reduction of nonlinear network dynamics. The controllability quantification enables 
us to characterize subspaces that require a large control energy to be reached. By eliminating such subspaces, we 
can obtain a reduced order model, which is expected to well approximate the state trajectories as long as the input 
energy is not large. Actually, the dimensionality reduction of (mainly linear18,33) dynamical systems, which is 
helpful for understanding the hidden core mechanism, or to perform efficient numerical simulation, is an impor-
tant application of the controllability quantification. In this section, we investigate two conceptually different 
nonlinear model reduction methods in the light of the Gibbs Gramian.

Let an integer k(<n) be the desired order of the reduced model and define the set of (n ×  k)-matrices 
Πk =  {ρ : ρTρ =  I} where I denotes the identity matrix. Suppose some ρ ∈ Πk satisfies

ρρ− ≈ .t tI x( ) ( ) 0 for all (8)T

Then, the reduced state ρ= … =t z t z t tz x( ) [ ( ), , ( )] ( )k
T T

1  can approximately recover the original one by 
x(t) ≈  ρz(t). Hence, we expect the Galerkin projection given as ρ ρ ρ ρ= +d t dt t t u tz f z g z( )/ ( ( )) ( ( )) ( )T T  to be a 
good reduced order model of dynamics (1). In what follows, we focus on the problem of finding such a ρ.

In computational physics, the Proper Orthogonal Decomposition (POD), or Karhunen-Loeve method, has a 
long history of intensive research25,26. This is a simulation-based model reduction method, and is widely used for 
the simulation of nonlinear large-scale dynamical systems as found in computational fluid dynamics and aero-
space engineering. Suppose we replace the requirement (8) by ρρ τ∑ −τ∈ I x( ) ( )T 2

  where the error is evalu-
ated at multiple, given time instances τ ∈  . (This optimization criterion is equivalent to the maximal singular 
value of (I −  ρρT) [x(τ1), x(τ2), … ]). This is the fundamental idea of the POD, and is referred to as the method of 
snapshots. If we need to approximate only the autonomous system dx(t)/dt =  f(x(t)), this optimization is compu-
tationally tractable even for nonlinear large-scale dynamics, and the resulting Galerkin projection yields a satis-
factory reduced model. However, when controlled dynamics (1) are of interest, we need to determine which input 
signal u(t) should be injected when collecting snapshots, because we cannot simulate the trajectories correspond-
ing to all possible input signals. Many practically useful techniques, as well as theoretical analysis tools, for this 
have been developed; see34 and references therein. On the other hand, from a controllability quantification view-
point, it is also reasonable to find ρ such that ρρ− ≈I x( ) 0T  if x is reachable with a small energy input u(t). For 
this purpose, the Gramian-based model reduction for linear systems employs a ρ that maximizes Trace(ρGτρT). 
The Galerkin projection associated with this choice extracts effectively reachable subdynamics, in that the result-
ing projection eliminates a subspace on which =τ

τ
−L x x G x( ) T1

2
1  is large. However, as mentioned at the beginning 

of the previous section, for nonlinear dynamics it is unrealistic to compute the controllability function Lτ, which 
is no longer a quadratic form. This is the main reason why there have been no practical methods for the 
control-theoretic model reduction of general nonlinear large-scale systems20–22,34. This limited applicability shows 
a clear contrast to the POD. There are many results that attempt to solve optimal control problems by the POD35–37. 
However, the relation between the simulation-based and Gramian-based model reductions has not yet been fully 
understood.

The remainder of this section is devoted to forming a theory-bridge to connect these two model reduction 
approaches that were developed independently for similar purposes. Concerning the input selection for the POD, 
the impulse signals for the empirical Gramian24, or the sinusoidal signals for the frequency domain POD21,25, may 
be suitable for linear systems. Actually, the POD with these input signals is equivalent to the Gramian-based 
model reduction for linear systems [34, Chapter 5], [18, Section 9.1]. However, although it is technically easy to 
inject the same inputs for nonlinear systems, there is no solid justification for their use. An interesting solution is 
to choose white noise ξ(t) for the input signal, and minimize the snapshots’ ensemble average of the squared pro-
jection error, that is, ρρ τ〈∑ − 〉τ∈ I x( ) ( )T 2

 . Note that (7) leads to

T T
L∫∑ ∑ρρ ρρτ φ− = − .

τ τ∈ ∈

τ
  dI x x I x x( ) ( ) ( ) ( )

(9)
T

T
T2

/
2

Therefore, the approximation error of the noise response data is equal to the projection error weighted by the 
Gibbs distribution associated with the stochastic controllability function τ . Consequently, the POD evaluates the 
projection errors on the trajectories that are realizable by a small control effort, without computing any minimum 
energy input. In this sense, the POD with noise response data can be regarded as an easily implementable nonlin-
ear model reduction method that explicitly takes the controllability into account.

Note that (9) is equal to L LT Tρ ρ∑ − ∑τ
τ

τ
τ

∈ ∈T TG GTrace( ( / )) Trace( ( / ) )T . Therefore, the stochastic 
Gibbs Gramian-based reduction (the maximization of LTρ ρ∑τ

τ
∈ TGTrace( ( / ) )T ) is equivalent to the best 

approximation of effectively reachable states (the minimization of the right-hand-side of (9)). This is another 
justification for the conclusion that the Gibbs Gramian is a proper extension of the conventional controllability 
Gramian.

Furthermore, equality (9) holds even for any nonlinear projection in the place of ρρT, although its optimiza-
tion is nontrivial. In the case of linear systems, observability, a dual concept of the controllability, is also investi-
gated, and often referred to as the balanced POD34. Extensions in this direction are currently under investigation.

Discussion
The dynamics’ nonlinearity makes the controllability sensitive to T. This temperature dependency is discussed in 
this section. First, τ T/  in (7) and (9) indicates that the input cost is inversely proportional to the noise level, that 
is, a less noisy (accurate) control channel is more expensive. In particular, as T → 0, the criterion 
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ρρ τ〈∑ − 〉τ∈ I x( ) ( )T 2
  evaluates the error at the snapshots located almost on the trajectory of the autono-

mous system dx(t)/dt =  f(x(t)). Its interpretation from a controllability perspective is as follows: The input weight 
T−1 becomes unboundedly large, and consequently the states reachable with small control energy are limited to a 
small neighborhood around the autonomous trajectory (the noise is negligible because T → 0).

Next, we demonstrate the nontrivial effect of the noise level by means of a numerical example of p identical, 
coupled neuronal oscillators of the FitzHugh-Nagumo model. The individual neuron generates the stable limit 
cycle shown in Fig. 2a. The state variable of the i-th neuron is denoted by vi(t) =  [vi(t) wi(t)]T, and the dimension 
of the entire system’s state x(t) =  [v1(t)T v2(t)T …  vp(t)T]T is n =  2p. The dynamics of the i-th neuron, subject to the 
diffusive coupling with nonuniform intensity and external forcing, are given by

∑ η









 =






− −
. − .






+








− + 






.≠

ˆd
dt

v t
w t

v v w
v w

v t v t u t( )
( )

/3
0 08( 0 8 )

( ( ) ( )) ( )

0

i

i

i i i

i i
j i

ij j i i
3

By using (7), we computed ∑τ τ
∈ TG( / )LT  for  = . . …{0 1, 0 2, , 1000} based on 1000 paths of the uncontrolled 

trajectories tx( ) with u(t) =  0, and its normalized eigenvector ei corresponding to the i-th largest eigenvalue λi. 
Low (TL =  0.052) and high (TH =  0.52) noise levels are considered. Let p =  4 and ξ= +û u t T t( ) ( )i  for all i, 
which means that only a common input is allowed. The symmetric coupling strengths ηij(= ηji) are given by 
η12 =  η34 =  0.1, η23 =  0.005, and 0 for other pairs. The initial states are v1(0) =  − v3(0) =  [− 1 0]T, v2(0) =  − v4(0) =   
[0 2]T. For the uncontrolled trajectories tx( ) with u(t) =  0, apart from the fluctuation shown in Fig. 2, we observed 
the following 3 (de)synchronization phenomena with a high probability: (A) (v1 −  v2) and (v3 −  v4) quickly 
decayed due to their strong couplings, (B) (v2 −  v3) decayed only slowly for T =  TL because their coupling is weak, 
(C) (v2 −  v3) quickly decayed for T =  TH because noise-induced synchronization occurred38,39. See Fig. 3 for these 
phenomena observed in a sample path.

As explained in Table 1, e1 and e2 approximately span the subspace given by

= = = 


. − .
. − .



 =

= = = = .

T T

T T

v v v v v

v v v v

: 0 0406 1 0199
1 4383 0 4133 , ,

:

L 1 2 3 3 4

H 1 2 3 4

Recall that ρ =  [e1 e2] minimizes (9) because LTρ ρ∑τ
τ

∈ TGTrace( ( / ) )T  is maximized; see the previous section. 
Thus, the Galerkin projection onto this subspace extracts core subdynamics in the following two senses. First, 
from a POD perspective, this subspace best approximates the noise response data; see the left-hand-side of (9). 
This is confirmed by the fact that quick convergence to this subspace is nothing but the aforementioned (de)syn-
chronization phenomena. Second, from a controllability perspective, this subspace best approximates the effec-
tively reachable states; see the right-hand-side of (9). In other words, even if we apply the optimal feedback 
control, it is expensive to avoid the (de)synchronization phenomena.

This can also be understood from the structure of the dynamics. Concerning (A) and (C), since only the com-
mon input is allowed, the synchronization induced by the strong coupling and noise is difficult to prevent, inde-
pendently of T. On the other hand, concerning the desynchronization in (B), even though some well designed 
entrainment signals exist38, they are not effective enough when the input weight T−1 is large. As observed in this 
example, controllability of highly nonlinear phenomena can be suitably captured from the noise-driven simula-
tion data. Note that reduced order models for controlled complex networks obtained by the proposed method do 
not always allow such a simple interpretation. In other words, this method can extract nontrivial core dynamics 
purely from time series data.

In summary, we have proven that the noise response of the uncontrolled dynamics reveals the 
temperature-dependent controllability of general nonlinear network dynamics. This contribution consists of the 
following two achievements: One is a novel extension of the celebrated controllability Gramian for linear systems. 
To the author’s best knowledge, this is the first nonlinear extension of the controllability Gramian, which was 

Figure 2. A phase portrait of the FitzHugh-Nagumo neuronal oscillator in the (v, w)-plane. (a) The stable 
limit cycle of the noise-free individual dynamics. (b) A sample path of v1(t) for T =  TL. (c) A sample path of v1(t) 
for T =  TH.
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introduced over half a century ago and played a central role in the development of modern control theory5. The 
second achievement is equality (7), which mathematically proves that, when the system is open to environmental 
noise, the newly introduced Gramian is equal to the covariance matrix of the noise response data. This result 
forms a theory-bridge connecting controllability quantification and time series data analysis. An important out-
come is that the equality (9) yields an easily implementable method to a control-theoretic nonlinear model reduc-
tion problem for the first time. An extensive amount of noisy data is presently being gathered, and has been 
gathered to date, for a variety of uncontrolled systems. The equality (7) makes such data useful to glean insight 
into the modeling/controllability of controlled systems. We believe that this result can provide new methods and 
viewpoints in many research fields in view of the fact that much controllability related work is inspired by the 
pivotal contribution by Liu et al.1 For example, the condition number of the Gibbs Gramian should characterize 
the effect of nonlinearity on the network nonlocality analogously to the linear case8. Also, in view of the numerical 
simulation above, the relation between the noise effect and the connection topology of the dynamical complex 
networks40 can be analyzed. Furthermore, the fact that any uncontrolled nonlinear dynamics subject to environ-
mental noise obey the Gibbs distribution associated with τ T/ , which is the minimum input energy divided by 
the temperature, suggests a nontrivial link to the canonical distribution that is used in statistical mechanics.

Methods
For simplicity of exposition we let T =  1, but note that general results can be shown similarly. It is well known28 
that the optimal value of the stochastic control problem in (4) satisfies  =τ



Lx x( ) (0, )0  where the real scalar 
function L t x( , ) is the solution to the Hamilton-Jacobi-Bellman equation

Figure 3. (De)Synchronization phenomena in a sample path. For both noise levels, (w1(t) −  w2(t)) and 
(w3(t) −  w4(t)) quickly decay due to the synchronization caused by the strong couplings. Synchronization is not 
observed in (w2(t) −  w3(t)) for T =  TL because the coupling strength η23 is small. It shows a clear contrast to the 
quick noise induced synchronization for T =  TH.

T = TL T = TH

ρ1



− . .
− . .





0 0805 0 0629
0 4985 0 4906




− . .
− . − .





0 0619 0 4947
0 4954 0 0697

ρ2



− . .
− . .





0 0890 0 0669
0 4869 0 5013




− . .
− . − .





0 0622 0 4954
0 4966 0 0702

ρ3



. .
. .





0 0724 0 0902
0 4913 0 4969




− . .
− . − .





0 0611 0 4968
0 4964 0 0533

ρ4



. .
. .





0 0801 0 0871
0 4971 0 4868




− . .
− . − .





0 0611 0 4976
0 4964 0 0531

Table 1.  The eigenvectors of  ∑τ τ
∈ TG( / )LT  for the example. For both noise levels, λi/λ1 <  0.15 for i =  3, 4,  

…, 8. The eigenvectors e1, e2 are given by ρ ρ ρ ρ=e e[ , ] [ ]T T T T T
1 2 1 2 3 4  with ρi listed above. Based on the standard 

correlation analysis, we conclude that ρ1 ≈  ρ2, ρ3 ≈  ρ4, ρ2 ≉ ρ3 for T =  TL, and ρ1 ≈  ρ2 ≈  ρ3 ≈  ρ4 for T =  TH.
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τ

∂
∂
−
∂
∂

∂
∂
+
∂
∂
+





∂
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=

= Φ − .

    



L
t

L L L L

L

x
gg

x x x
gg 0

x x x

1
2

f 1
2

Trace ,

( , ) ( )

T
T T T

2

2

Next, the logarithmic transformation ψ = −t x( , ) e L t x( , ) yields the linear PDE

ψ ψ ψ

ψ τ

∂
∂
+
∂
∂
+





∂
∂





=

= .−Φ −

t
f

x x
gg 0

x

1
2

Trace ,

( , ) e

T T

x x

2

2

( )

This form allows us to apply the Feynman-Kac formula29 to obtain

ψ = .τ−Φ −x(0, ) e x x
0

( ( ) )

Based on ψ= =− −τ


 xe e (0, )Lx x( ) (0, )
0

0  and (5), we have

∫ ∫
φ

δ τ
δ τ

δ τ

δ τ
δ τ=

−

−
=

−

−
= −τ





 



 



d d
x

x x
x x x

x x
x x x

x x( )
( ( ) )
( ( ) )

( ( ) )
( ( ) )

( ( ) ) ,
(10)



and consequently,

∫ ∫ ∫φ δ τ δ τ τ= − = − =τ
        w d w d w d wx x x x x x x x x x x x( ) ( ) ( ( ) ) ( ) ( ( ) ) ( ) ( ( )) (11)

for an arbitrary smooth function w(x) defined on n, where we exchanged the order of expectation and spatial 
integral. The arbitrariness of w(x) in (11) means the probability density function of τx( ) is given by φ τ x( ). Finally, 
(11) with w(x) =  xxT yields (7).
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