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Abstract. In this study, we quantified carbonaceous PM2.5 in

Malaysia through annual observations of PM2.5, focusing on

organic compounds derived from biomass burning. We deter-

mined organic carbon (OC), elemental carbon and concen-

trations of solvent-extractable organic compounds (biomark-

ers derived from biomass burning sources and n-alkanes).

We observed seasonal variations in the concentrations of

pyrolyzed OC (OP), levoglucosan (LG), mannosan (MN),

galactosan, syringaldehyde, vanillic acid (VA) and choles-

terol. The average concentrations of OP, LG, MN, galac-

tosan, VA and cholesterol were higher during the south-

western monsoon season (June–September) than during the

northeastern monsoon season (December–March), and these

differences were statistically significant. Conversely, the sy-

ringaldehyde concentration during the southwestern mon-

soon season was lower. The PM2.5 OP /OC4 mass ratio al-

lowed distinguishing the seven samples, which have been af-

fected by the Indonesian peatland fires (IPFs). In addition,

we observed significant differences in the concentrations be-

tween the Indonesian peatland fire (IPF) and other samples of

many chemical species. Thus, the chemical characteristics of

PM2.5 in Malaysia appeared to be significantly influenced by

IPFs during the southwestern monsoon season. Furthermore,

we evaluated two indicators, the vanillic acid / syringic acid

(VA /SA) and LG /MN mass ratios, which have been sug-

gested as indicators of IPFs. The LG /MN mass ratio ranged

from 14 to 22 in the IPF samples and from 11 to 31 in the

other samples. Thus, the respective variation ranges partially

overlapped. Consequently, this ratio did not satisfactorily re-

flect the effects of IPFs in Malaysia. In contrast, the VA /SA

mass ratio may serve as a good indicator, since it significantly

differed between the IPF and other samples. However, the

OP /OC4 mass ratio provided more remarkable differences

than the VA /SA mass ratio, offering an even better indica-

tor. Finally, we extracted biomass burning emissions’ sources

such as IPF, softwood/hardwood burning and meat cooking

through varimax-rotated principal component analysis.

1 Introduction

Peatland is a terrestrial wetland ecosystem where organic

matter production exceeds its decomposition, resulting in

net accumulation (Page et al., 2006). Indonesia has the third

largest peatland area and the largest tropical peatland area in

the world (270 000 km2; Joosten, 2010). Peatland fires occur

predominantly in the Sumatra and Kalimantan islands, In-

donesia (Fujii et al., 2014; Page et al., 2002), during the dry

season (June–September) mostly due to illegal human activi-

ties (Harrison et al., 2009). Because peatland fires are usually

underground fires, they are extremely difficult to extinguish.

The resulting haze comprises gases and particulates that are

emitted because of biomass burning. It extends beyond In-

donesia to the neighbouring countries including Malaysia

and Singapore (Betha et al., 2014; Engling et al., 2014; Fujii

et al., 2015b; He et al., 2010; See et al., 2006, 2007), limiting
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visibility and causing health problems to the local population

(Emmanuel, 2000; Othman et al., 2014; Pavagadhi, et al.,

2013; Sahani et al., 2014). Therefore, Indonesian peatland

fires (IPFs) have been recognised as an international prob-

lem (Yong and Peh, 2014; Varkkey, 2014).

The main constituent of particulates derived from biomass

burning is PM2.5 defined as particles having aerodynamic di-

ameters below 2.5 µm, which has been associated with se-

rious health problems (Federal Register, 2006; Schlesinger,

2007). These particulates are primarily composed of organic

carbon (OC), which constitutes 50–60 % of the total par-

ticle mass (Reid et al., 2005). At present, there are only

four papers concerning the PM2.5 chemical speciation result-

ing from IPFs; these papers are based on surface-recorded

source-dominated data (Betha et al., 2013; Fujii et al., 2014,

2015a; See et al., 2007). Organic matter is the main compo-

nent of PM2.5 from IPFs as well as from biomass burning in

general (Fujii et al., 2014; See et al., 2007). The primary or-

ganic compounds such as cellulose and lignin pyrolysis prod-

ucts have been quantified and potential Indonesian peatland

fire (IPF) indicators at the receptor site have been suggested

by Fujii et al. (2015a). Additional compounds have been dis-

cussed by Betha et al. (2013) (metals) and See et al. (2007)

(water-soluble ions, metals and polycyclic aromatic hydro-

carbons).

Several studies exist on the chemical characteristics of

haze ambient particulates, which have been potentially af-

fected by IPFs in Malaysia and Singapore (e.g. Abas et al.,

2004a, b; Betha et al., 2014; Engling et al., 2014; Fang et

al., 1999; Fujii et al., 2015b; He et al., 2010; Keywood et

al., 2003; Narukawa et al., 1999; Okuda et al., 2002; See et

al., 2006; Yang et al., 2013). In most cases, the field observa-

tion periods were short. Even when long-term observations

have been obtained, however, only typical chemical species

such as ions and metals have been analysed. Nevertheless, or-

ganic compounds significantly contribute to the IPF aerosols

(Fujii et al., 2014). In Malaysia especially, there are no avail-

able quantitative data regarding variations of several organic

compound concentrations based on long-term observations

of PM2.5.

The three major sources of air pollution in Malaysia are

mobile, stationary and open burning sources including the

burning of solid wastes and forest fires (Afroz, et al., 2003).

The annual burned biomass in Malaysia has been estimated

to be 23 Tg on average (Streets et al., 2003). Therefore, it

is necessary to distinguish the effects of IPFs from those

of other sources, particularly local biomass burning. Fujii et

al. (2015b) reported the total suspended particulate matter

(TSP) concentrations in the different carbon fractions (OC1,

OC2, OC3, OC4 and pyrolysed OC (OP)) defined by the IM-

PROVE_A protocol (Chow et al., 2007) in Malaysia dur-

ing the haze periods affected by IPFs. They proposed the

OP /OC4 mass ratio as a useful indicator of transboundary

haze pollution from IPFs at receptor sites even in light haze;

the ratio during the haze periods were higher (> 4) than dur-

ing the non-haze periods (< 2).

In the present study, the carbonaceous PM2.5 components

are quantitatively characterised using annual PM2.5 observa-

tions in Malaysia, with special regard to the organic com-

pounds resulting from biomass burning. Furthermore, the

OP /OC4 mass ratio is used as an indicator to investigate the

effects of IPFs on carbonaceous PM2.5 species in this area. In

addition, other indicators that potentially record the effects of

IPFs are investigated. Finally, possible carbonaceous PM2.5

sources are suggested using varimax-rotated principal com-

ponent analysis (PCA).

2 Experimental method

2.1 Sampling site and period

The sampling site is the Malaysian Meteorological De-

partment (MMD) located in Petaling Jaya (PJ), Selan-

gor, Malaysia (∼ 100 m above sea level; 3◦06′09′′ N,

101◦38′41′′ E). Eighty-one PM2.5 samples were collected on

the roof of the MMD’s main building (eight stories) from

August 2011 to July 2012. A detailed description of the sam-

pling site has been provided by Jamhari et al. (2014). In

brief, PJ is located in an industrial area (Department of Envi-

ronment, 2014) ∼ 10 km from Kuala Lumpur. It is predomi-

nantly residential and industrial with high-density road traf-

fic.

2.2 Sample collection and analysis

PM2.5 samples were continuously collected with a Tisch

high-volume air sampler (model TE-3070V-2.5-BL) on a

quartz-fibre filter for 24 h at a flow rate of 1.13 m3 min−1. Be-

fore sampling, the quartz-fibre filters were heated to 500 ◦C

for 3 h. After sampling, OC, elemental carbon (EC) and

solvent-extractable organic compounds (SEOC; biomarkers

derived from biomass burning sources and n-alkanes) were

measured.

The carbonaceous content was quantified using a DRI

model 2001 OC /EC carbon analyser, which employs

the thermal optical-reflectance method following the IM-

PROVE_A protocol. As shown in our former report (Fujii

et al., 2014), the IMPROVE_A temperature protocol defines

temperature plateaus for thermally derived carbon fractions

as follows: 140 ◦C for OC1, 280 ◦C for OC2, 480 ◦C for OC3

and 580 ◦C for OC4 in helium (He) carrier gas; 580 ◦C for

EC1, 740 ◦C for EC2 and 840 ◦C for EC3 in a mixture of

98 % He and 2 % oxygen (O2) carrier gas. OC and EC are

calculated from the eight carbon fractions as follows:

OC= OC1+OC2+OC3+OC4+OP, (1)

EC= EC1+EC2+EC3−OP, (2)

where OP is defined as the carbon content measured after the

introduction of O2 until reflectance returns to its initial value

Atmos. Chem. Phys., 15, 13319–13329, 2015 www.atmos-chem-phys.net/15/13319/2015/
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at the start of analysis. Blank corrections were performed on

the OC and EC data by subtracting the blank filter value from

the loaded filter values.

SEOC obtained from the quartz-fibre filters were quan-

tified by gas chromatography/mass spectrometry (GC/MS).

Biomarker organic compound speciation was accomplished

following the procedures reported previously (Fujii et al.,

2015a, b). To quantify n-alkanes, aliquots from the quartz-

fibre filter were spiked with internal standards of eicosane-

d42 and triacontane-d62 before extraction. Each spiked fil-

ter was extracted by ultrasonic agitation for 2× 20 min pe-

riods using 8 mL hexane (Kanto Chemical, purity > 96.0 %).

The combined extracts were filtered through a polytetraflu-

oroethylene syringe filter (pore size 0.45 µm), dried com-

pletely under a gentle stream of nitrogen gas and re-dissolved

to 0.1 mL in hexane. Before the GC/MS analysis, ∼ 1.05 µg

of tetracosane-d50 dissolved in 50 µL of hexane was added

as a second internal standard. The n-alkanes values were re-

ported in carbon numbers, ranging from 22 to 33 (C22–C33).

The extract samples were analysed on a Shimadzu GC/MS

system (GCMS-QP2010-Plus, Shimadzu) equipped with a

30 m HP-5MS column (0.25 µ m film thickness, 0.25 mm

ID). The carrier gas was helium (purity > 99.9 %) at a pres-

sure of 73.0 kPa (37.2 cm s−1 at 100 ◦C). The GC oven

temperature program was as follows: isothermal at 100 ◦C

for 5 min, 100–300 ◦C at 10 ◦C min−1 and then 300 ◦C for

20 min. The injection port and transfer line were maintained

at 300 ◦C. The data for quantitative analysis were acquired

in the electron impact mode (70 eV). The mass spectrom-

eter was operated under the selected ion-monitoring scan-

ning mode, and the monitored ions for the quantification

of n-alkanes were 85 m/z. The monitored ions correspond-

ing to the internal standards were 66 m/z. The recovery

ratios for known amounts of n-alkane standards (1 µg ad-

dition) on the quartz-fibre filters ranged from 73 to 110 %

(mean± standard deviation: 94± 6.3 %). Blank corrections

were performed on the biomarker and n-alkane data by sub-

tracting the blank filter value from the loaded filter values.

2.3 Source apportionment method

Varimax-rotated PCA was used to identify the possible car-

bonaceous PM2.5 sources at PJ. The following two data sets

were considered: (i) PJ_A data, which includes 25 variables

(all quantified compounds) and 81 samples (all samples), and

(ii) PJ_S data, which includes 25 variables and 65 samples

(excluded are the samples acquired in September 2011 and

June 2012, which are influenced by IPFs as shown in Sect. 3).

PCA results with these data sets are expected to show IPF

effects on other sources. It has been suggested that the mini-

mum number of samples (n) for factor analysis should satisfy

the following condition (Henry et al., 1984; Karar and Gupta,

2007):

n > 30+
V + 3

2
, (3)

where V represents the number of variables. Both data sets

satisfy this condition.

Varimax-rotated PCA followed the procedure proposed by

Karar and Gupta (2007) and was accomplished with the R-

software (http://www.R-project.org). The eigenvalues corre-

spond to the number of factors, which was selected to ensure

that the cumulative variance contribution rate is greater than

80 %.

3 Results and discussion

3.1 Air quality and monthly hotspot data

Figure 1 presents the daily variability of the Malaysian Air

Pollutant Index (MAPI) and visibility during the sampling

periods. The MAPI data were obtained from the Department

of Environment Ministry of Natural Resources and Environ-

ment website (http://apims.doe.gov.my/apims/hourly2.php,

last access: 10 March 2015). Hourly visibility data (07:00–

17:00 local time) provided by the MMD were used to pro-

duce the daily variation in visibility after removing the hourly

data corresponding to periods of rainfall. The MAPI values

of 0–50, 51–100, 101–200, 201–300 and > 300 correspond to

good, moderate, unhealthy, very unhealthy and hazardous air

quality conditions (Department of Environment, 2014; Fujii

et al., 2015b). Good MAPI levels dominate the sampling pe-

riods except in August 2011, September 2011 and June 2012.

However, moderate air quality is observed in August 2011,

September 2011 and June 2012. The two MAPI values for

15 and 16 June 2012 indicate unhealthy air quality condi-

tions. The average visibility during these two sampling peri-

ods (Fig. 1) was below 2.7 km, corresponding to extremely

low visibility compared with other intervals.

Figure 2 presents the monthly hotspot counts on Suma-

tra Island detected by the NOAA-18 satellite (Indofire,

http://www.indofire.org/indofire/hotspot, last access: 17 July

2013). During the southwestern monsoon season in Septem-

ber 2011 and June 2012, hotspots exceeded 3000 on sev-

eral occasions. The hotspot counts in September 2011 and

June 2012 mainly derived from the South Sumatra (60 % of

the hotspot counts) and the Riau (42 %) provinces respec-

tively. The sampling site is predominantly downwind of the

Sumatra Island during the southwestern monsoon season.

Thus, some samples have probably been affected by IPFs.

The 3-day backward air trajectories for the sampling periods

(Fig. S1 in the Supplement) support this conclusion.

www.atmos-chem-phys.net/15/13319/2015/ Atmos. Chem. Phys., 15, 13319–13329, 2015
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Figure 1. Daily variability of the MAPI and visibility during the sampling periods.

4000

3000

2000

1000

0

H
ot

sp
ot

 c
ou

nt
s (

#)

A
ug

-1
1

Se
p-

11
O

ct
-1

1
N

ov
-1

1
D

ec
-1

1
Ja

n-
12

Fe
b-

12
M

ar
-1

2
A

pr
-1

2
M

ay
-1

2
Ju

n-
12

Ju
l-1

2

 Others
 South Sumatra
 Jambi
 Riau
 North Sumatra

Figure 2. Monthly hotspot counts in the Sumatra Island.

3.2 PM2.5 chemical characteristics and seasonal

variations

3.2.1 OC and EC

The annual average concentrations of OC and EC are

7.0± 5.4 and 3.1± 1.1 µg C m−3 respectively. The OC and

EC concentrations’ statistical results for each monsoon sea-

son appear in Table 1. The average OC concentration dur-

ing the southwestern monsoon season (June–September) is

higher than that during other seasons. In particular, an ex-

tremely high OC concentration (> 25 µg m−3) is observed on

12 September 2011 and on 15 and 16 June 2012. There is no

statistically significant difference in the EC concentration be-

tween the southwestern and northeastern (December–March)

monsoon seasons according to the two-sided Wilcoxon rank

sum test (p value: p > 0.05) with R software. In Bangi

(∼ 30 km southeast of the sampling site), the OC concen-

tration was 11± 3.2 µg C m−3 in September 2013 (Fujii et

al., 2015c), in good agreement with the present results for

the southwestern monsoon season. The OC /EC mass ratios

during the southwestern monsoon, post-monsoon (October–

November), northeastern monsoon and pre-monsoon (April–

May) season range among 1.2–6.5, 1.4–2.4, 0.99–3.0 and

1.2–2.3 respectively. A high OC /EC mass ratio value (> 4)

is found only for some samples collected in September 2011

and June 2012. These values have probably been affected

by biomass burning, because aerosols emitted from biomass

burning usually present higher OC /EC mass ratios (Cong et

al., 2015).

The daily variations of the OC fractions’ mass concentra-

tions during the sampling periods are presented in Fig. 3.

The annual average concentrations of OC1, OC2, OC3, OC4

and OP are 0.51± 0.80, 1.9± 1.1, 2.3± 1.4, 1.2± 0.36 and

1.1± 2.2 µg m−3 respectively. Statistically significant differ-

ences among the OP concentrations during the southwestern

and northeastern monsoon seasons are observed according to

the two-sided Wilcoxon rank sum test (p < 0.001). In partic-

ular, high OP concentrations are clearly observed in Septem-

ber 2011 and June 2012, in addition to the higher OC /EC

mass ratios described above. Fujii et al. (2015b) supported

that the enhanced OP concentrations in TSP, which are ob-

served in Malaysia during the haze periods, are affected by

the IPFs. The enhanced OP concentrations in PM2.5 during

the southwestern monsoon season, which are observed in

the present study, are also probably affected by IPFs from

Sumatra Island. The increased number of hotspots recorded

(Fig. 2) and backward air trajectories (Fig. S1) further sup-

port this conclusion.

3.2.2 Biomarkers

Ten biomarkers are identified in this study that have been

suggested as indicators of biomass burning processes such as

wood burning and meat cooking. The annual average con-

centrations of levoglucosan (LG), mannosan (MN), galac-

tosan, p-hydroxybenzoic acid, vanillic acid (VA) and sy-

ringic acid (SA) are 86± 95, 4.8± 5.7, 1.2± 1.6, 1.1± 1.3,

0.19± 0.28 and 0.25± 0.28 ng m−3 respectively; notably,

they exhibit great variability. The annual average concen-

trations of vanillin, syringaldehyde, dehydroabietic acid

Atmos. Chem. Phys., 15, 13319–13329, 2015 www.atmos-chem-phys.net/15/13319/2015/
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Table 1. Statistical results of chemical species concentrations. Av is the average; SD is the standard deviation.

Southwestern monsoon Post-monsoon Northeastern monsoon Pre-monsoon

(June–September) (October–November) (December–March) (April–May)

Compounds Av±SD Range Av±SD Range Av±SD Range Av±SD Range

OC and EC (µg m−3)

OC 10± 7.8 3.6–36 5.6± 2.4 2.5–11 5.2± 1.4 2.7–8.2 4.2± 1.4 2.8–7.3

EC 3.0± 0.95 1.0–5.6 3.2± 1.3 1.1–5.9 3.4± 1.1 1.6–6.1 2.6± 1.2 1.4–4.5

Biomarkers (ng m−3)

Levoglucosan 160± 130 32–490 64± 39 19–130 40± 14 17–64 49± 21 23–86

Mannosan 8.4± 8.2 1.5–30 3.4± 2.6 0.95–9.1 2.6± 1.2 0.84–5.3 2.5± 1.2 1.2–5.3

Galactosan 2.3± 2.3 0.38–8.3 0.86± 0.72 0.29–2.8 0.60± 0.35 0.13–1.3 0.62± 0.34 0.33–1.5

p-Hydroxybenzoic acid 1.9± 1.9 0.18–7.5 0.79± 0.67 0.036–2.2 0.64± 0.30 0.20–1.2 0.50± 0.25 0.24–1.0

Vanillin 1.6± 1.1 0.54–5.5 1.2± 0.66 0.45–2.2 1.0± 0.38 0.21–1.7 0.96± 0.42 0.30–1.7

Syringaldehyde 0.29± 0.22 0.085–1.0 0.59± 0.22 0.26–1.2 0.77± 0.54 0.074–2.2 0.36± 0.22 0.093–0.77

Vanillic acid 0.39± 0.39 0.074–1.9 0.11± 0.070 0.031–0.22 0.073± 0.057 0.013–0.26 0.066± 0.027 0.034–0.12

Syringic acid 0.35± 0.41 0.075–2.4 0.26± 0.21 0.058–0.59 0.17± 0.13 0.029–0.64 0.16± 0.084 0.049–0.28

Dehydroabietic acid 1.7± 1.1 0.10–5.4 1.1± 0.69 0.31–2.4 1.1± 1.1 0.14–4.6 0.67± 0.24 0.16–0.98

Cholesterol 1.8± 0.82 0.50–3.7 1.2± 0.51 0.57–2.0 0.98± 0.51 0.026–2.0 1.3± 0.56 0.51–2.0

n-Alkanes (ng m−3)

Docosane 3.2± 0.82 1.8–5.0 2.9± 0.61 2.0–4.0 3.0± 0.53 1.9–4.2 4.0± 4.8 2.1–19

Tricosane 3.6± 1.2 2.0–7.2 3.2± 0.91 2.0–4.8 3.2± 0.65 1.8–4.4 5.0± 7.6 2.1–29

Tetracosane 5.8± 3.2 2.5–19 5.7± 1.7 3.3–8.7 6.1± 2.3 2.9–15 6.3± 8.5 2.7–33

Pentacosane 8.9± 6.7 3.5–34 5.7± 2.3 3.1–11 6.0± 1.6 3.7–9.2 5.8± 5.5 3.2–23

Hexacosane 13± 9.8 4.3–49 8.6± 3.7 3.6–18 9.7± 2.8 5.0–16 7.1± 5.3 3.5–23

Heptacosane 16± 14 4.7–64 7.2± 2.6 3.6–12 8.2± 2.4 3.7–14 5.8± 3.4 3.3–16

Octacosane 12± 12 2.6–54 4.3± 1.8 1.7–7.9 5.9± 3.0 2.3–17 3.6± 1.7 2.3–8.2

Nonacosane 13± 13 3.0–55 4.9± 2.1 1.5–8.7 6.3± 2.2 3.3–13 4.5± 1.4 2.6–7.8

Triacontane 7.9± 7.8 2.0–36 3.8± 2.0 1.6–9.0 5.2± 2.7 2.0–16 3.3± 1.7 1.7–8.3

Hentriacontane 14± 14 2.8–59 4.8± 1.9 1.8–8.4 5.7± 2.0 3.3–11 4.3± 1.2 2.9–6.9

Dotriacontane 6.7± 5.5 1.6–27 3.4± 0.72 2.4–4.5 4.6± 1.3 2.8–7.8 3.1± 0.88 1.8–4.4

Tritriacontane 6.8± 7.1 1.2–33 2.5± 0.97 1.1–4.2 2.8± 0.92 1.2–5.0 2.1± 0.72 1.5–3.8
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Figure 3. Daily variation of the OC fractions’ mass concentrations during the sampling periods.

and cholesterol are 1.2± 0.80, 0.51± 0.42, 1.3± 1.0 and

1.3± 0.72 ng m−3 respectively. The biomarker statistical re-

sults for each monsoon season are listed in Table 1.

LG is a specific indicator for cellulose burning emissions

and is generally formed during cellulose pyrolysis at tem-

peratures above 300 ◦C (Fujii et al., 2015b; Lin et al., 2010;

Shafizadeh, 1984; Simoneit et al., 1999). The MN and galac-

tosan are derived from hemicellulose pyrolysis products;

they can also be used as tracers of biomass burning besides

LG (e.g. Engling et al., 2014; Fujii et al., 2014, 2015b; Zhu

et al., 2015). Statistically significant differences are observed

among the concentrations of LG, MN and galactosan ob-

tained during the southwestern and northeastern monsoon

seasons on the basis of the two-sided Wilcoxon rank sum

test (p < 0.001); high concentrations of these compounds are

mostly observed during the southwestern monsoon season

(especially September 2011 and June 2012; Fig. S2). In Sin-

gapore, Engling et al. (2014) suggested that the enhanced

concentrations of these compounds during the haze periods

were due to the IPFs during the southwestern monsoon sea-

son. Thus, the presently observed enhanced concentrations

of these compounds may also be attributed to the IPFs.

In a previous report, PM2.5 lignin unit-originating com-

pounds in samples collected at the IPF source were quan-

tified (Fujii et al., 2015a). Lignin is an aromatic polymer

consisting of phenylpropane units linked through many ether

www.atmos-chem-phys.net/15/13319/2015/ Atmos. Chem. Phys., 15, 13319–13329, 2015
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and C–C linkages. Its aromatic structure varies depending

on the species; softwood lignins exclusively contain guaia-

cyl (G) types and hardwood lignins include both G and sy-

ringyl (S) types, whereas herbaceous plants includeG, S and

p-hydroxyphenyl (H ) types (Fujii et al., 2015a, b). The com-

position of these aromatic nuclei within the lignin pyrolysis

products resulting from biomass burning may be useful in

identifying the biomass type (Fujii et al., 2015a; Simoneit et

al., 1993). In the present study, vanillin and VA (compounds

derived from G units), syringaldehyde and SA (compounds

derived from S units) as well as and p-hydroxybenzoic acid

(compounds derived from H units or the secondary decom-

position of G and S units) (Fujii et al., 2015b) have been

quantified. There are significant differences between the con-

centrations of syringaldehyde and VA derived from lignin

pyrolysis during the southwestern and northeastern monsoon

seasons on the basis of the two-sided Wilcoxon rank sum

test (p < 0.001), corresponding to seasonal variations. The

average VA concentration during the southwestern monsoon

season is 5.3 times greater than that during the northeast-

ern monsoon season. In contrast, the average concentration

of syringaldehyde during the northeastern monsoon season

is 2.6 times greater than that during the southwestern mon-

soon season. This may be due to the transboundary pollution

by prevailing winds from the Chinese region including Thai-

land and Vietnam during the northeastern monsoon season

(Fig. S1; Khan et al., 2015).

Dehydroabietic acid and cholesterol are quantified as in-

dicators of softwood burning and meat cooking respec-

tively (Fujii et al., 2015b; Lin et al., 2010). The two-sided

Wilcoxon rank sum test indicates that the difference be-

tween the cholesterol concentration during the southwestern

and northeastern monsoon seasons is statistically significant

(p < 0.001). The dehydroabietic acid and cholesterol concen-

trations recorded in the interval between June and July 2014

in Bangi, which is located∼ 30 km southeast of the sampling

site, range between 2.6–8.7 and 1.5–5.7 ng m−3 respectively

(Fujii et al., 2015b). The PJ industrial area’s concentrations

of these compounds are lower than those in the Bangi subur-

ban area owing to the decreased impact of softwood burning

and meat cooking in PJ.

3.2.3 N -alkanes

The total annual average concentrations of n-alkanes is

79± 63 ng m−3. The total n-alkanes concentrations dur-

ing the southwestern monsoon, post-monsoon, northeastern

monsoon and pre-monsoon seasons are 110± 93, 57± 20,

67± 18 and 55± 41 ng m−3 respectively. The highest con-

centration is observed during the southwestern monsoon sea-

son. Figure 4 illustrates the molecular distribution of n-

alkanes during the southwestern and northeastern monsoon

seasons. There are no significant differences among the con-

centrations of C22–C26, C29, C30 and C32 in the two seasons

(p > 0.05). High concentrations of > C24 are mainly observed
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Figure 4. Box-and-whisker plots of molecular distributions of n-

alkanes during the (a) southwestern and (b) northeastern monsoon

seasons. The horizontal lines in the box represent the 25th, 50th

and 75th percentiles. The whiskers represent the 10th and 90th per-

centiles.

in September 2011 and June 2012 when many hotspots are

detected in the Sumatra Island (Fig. 2). Fujii et al. (2015a)

suggested that IPFs increase the C27, C28 and C29 concentra-

tions in PM2.5 at the receptor site relative to other sources

such as vehicle and biomass burning. Thus, the enhanced

n-alkanes concentrations in PM2.5 during the southwestern

monsoon season may be mainly attributed to IPFs.

The carbon number maximum (Cmax) in n-alkanes during

the southwestern and northeastern monsoon seasons is C27

(in 83 % of the samples) and C26 (89 %) respectively (Fig. 5).

Reported Cmax values range from 27 to 33, characteristic of

biogenic sources (higher plant wax), whereas lower Cmax val-

ues may indicate major petrogenic input (Abas et al., 2004a;

Gogou et al., 1996; He et al., 2010). The Cmax during the

southwestern monsoon season (C27) suggests primarily bio-

genic sources and is in perfect agreement with the measured

value for the IPF source (Fujii et al., 2015b).

The carbon preference index (CPI) has been widely used

to roughly estimate the effects of anthropogenic or biogenic

sources (e.g. Bray and Evans, 1961; Chen et al., 2014; He et

al., 2010; Yamamoto et al., 2013). The CPI values are calcu-

lated by the following equation based on the suggestion by

Bray and Evans (1961).

Atmos. Chem. Phys., 15, 13319–13329, 2015 www.atmos-chem-phys.net/15/13319/2015/
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Figure 5. Number fraction of Cmax in the PM2.5 samples for each

monsoon season.

CPI= 0.5×

(
C25+C27+C29+C31

C26+C28+C30+C32

+
C25+C27+C29+C31

C24+C26+C28+C30

)
(4)

The CPI values are generally high (CPI> 5) when there is

no serious input from fossil fuel hydrocarbons (CPI= 1) (Ya-

mamoto et al., 2013, and references therein). The CPI values

during the southwestern and northeastern monsoon seasons

are 1.3± 0.12 and 1.0± 0.14 respectively; these values are

close to one for both seasons, indicating an anthropogenic n-

alkane source. Thus, the CPI value is not susceptible to IPF

influence, since the CPI value at the IPF source is 1.6± 0.13

(Fujii et al., 2015a), which is not high. Consequently, the CPI

cannot be used to identify IPF sources at a receptor site.

3.3 Indonesian peatland fire effect

The hotspot data and backward air trajectories suggest that

IPFs strongly modify many chemical species concentrations

mostly during the southwestern monsoon season. However,

IPFs do not always occur during the southwestern monsoon

season. Therefore, significant differences in some chemical

species concentrations among samples affected by IPF and

other sources should be observed. To distinguish IPF sam-

ples from other samples obtained during the southwestern

monsoon season, the OP /OC4 mass ratio is used, which

is a useful indicator for IPF (Fujii et al., 2015b). The ra-

tio value is > 4 for seven samples (11–13 September 2011

and 14–17 June 2012); these samples are regarded as the

IPF samples. The OP /OC4 mass ratio for the IPF and other

samples is 7.4± 3.4 and 0.44± 0.49 respectively, exhibit-

ing significant differences among them according to the two-
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Figure 6. P values to determine significance in the two-sided

Wilcoxon rank sum test between the IPF and other samples.

sided Wilcoxon rank sum test (p < 0.001). Figure 6 shows

the p values used to determine the statistical significance in

a hypothesis test of the differences between the IPF and other

samples for all the quantified species. Significant differences

(p < 0.001) are recorded for many chemical species. Thus,

the chemical characteristics of PM2.5 in Malaysia are signif-

icantly influenced by IPFs.

Furthermore, the VA /SA and LG /MN mass ratios in the

IPF source are investigated as potential indicators, as sug-

gested in previous studies (Fujii et al., 2014, 2015a). The

VA /SA mass ratio for IPF and other samples is 1.7± 0.36

and 0.59± 0.27 respectively, providing a good indicator

(p < 0.001). Although the VA /SA mass ratio at the IPF

source is 1.1± 0.16 (Fujii et al., 2015a), the ratios for IPF

samples are higher. Opsahl and Benner (1998) reported pho-

tochemical reactivity of VA and SA in the Mississippi River

water. They demonstrated that the early degradation of SA in

the water is mostly due to its higher photochemical reactivity

compared with VA. Even though there are no reports of such

degradations in air, SA is considered to be less stable than VA

in air as well as in water, which leads to an increased VA /SA

ratio after long-range transportation. The LG /MN mass ra-

tio for the IPF and other samples ranges from 14 to 22 and

11 to 31 respectively (Fig. S3). Therefore, the LG /MN mass

ratio is inappropriate to extract the effects of IPF in Malaysia,

because its value’s ranges in the IPF and other samples par-

tially overlap.

The daily variability of the C27 and LG concentration as

well as the VA /SA and OP /OC4 mass ratios are presented

in Fig. 7; similar trends are observed in all cases. However,

the concentrations of LG, MN and galactosan (Fig. S2) in-

crease abruptly on 10 August 2011, although this sample

is not categorised as an IPF sample. We hypothesised that

this increase results from local biomass burning, since LG

emissions are produced by several different biomass burn-

ing sources (Oros and Simoneit, 2001a, b; Oros et al., 2006).

Therefore, LG levels are not directly indicative of the IPF

www.atmos-chem-phys.net/15/13319/2015/ Atmos. Chem. Phys., 15, 13319–13329, 2015
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Figure 7. Daily variability of the C27 and LG concentration as well as the VA /SA and OP /OC4 mass ratios during the sampling periods.

contribution in Malaysia; instead, C27 may be a useful indi-

cator (Fig. 7). Although the VA /SA mass ratio can be used

as an IPF indicator, as we mentioned before, the OP /OC4

mass ratio highlights the differences between the IPF and

other samples better than the VA /SA mass ratio (Fig. 7).

3.4 Carbonaceous PM2.5 contributions

The possible sources of carbonaceous PM2.5 are investi-

gated through varimax-rotated PCA of the PJ_A and PJ_S

data sets. Over 80 % of the cumulative variance in the PJ_A

and PJ_S data sets is explained by three and five factors

respectively (Table 2). For the PJ_A data (Table 2a), the

total variance explained by the three factors is 80 %. Fac-

tor A1, which explains 60 % of the variance, is heavily loaded

(loading factor: > 0.65) with OC, LG, MN, galactosan, p-

hydroxybenzoic acid, VA and C25–C33, which direct towards

an IPF source. Factor A2, which corresponds to 12 % of the

variance, is heavily loaded with C22–C24, suggesting a petro-

genic source (Abas et al., 2004a; Gogou et al., 1996; He et al.,

2010). Factor A3, which explains 8.0 % of the variance in the

data set, is heavily loaded with SA and dehydroabietic acid,

indicating mixed (softwood and hardwood) biomass burning

sources. For the PJ_S data set (Table 2b), the total variance

explained by five factors is 82 %. Factor S1 explains 43 %

of the data’s variance and is heavily loaded with C27–C33,

which suggests tire wear emission (Rogge et al., 1993). Fac-

tor S2 explains 19 % of the variance and is heavily loaded

with LG, MN, galactosan, VA and SA, which correspond to

a biomass burning source. Factor S3, which explains 11 %

of the variance, is heavily loaded with C22–C26, which in-

dicate a petrogenic source, similar to factor A2. Although

heavy loading with only syringaldehyde is found in factor S4

(5.0 % of the variance), its source could not be identified. Fi-

nally, factor S5 explains 4.5 % of the variance and is heavily

loaded with EC and cholesterol, which are produced when

cooking meat.

Differences of the factor loadings between PJ_A and PJ_S

data are observed. For the PCA result of the PJ_A data set,

the factors such as tire wear (factor S1) and cooking (fac-

tor S5) as shown in Table 2b are not extracted due to the

strong influence of the IPFs. Although a petrogenic source

is identified from both results, C25 and C26 are not heavily

loaded for the PJ_A data set. This is also considered to be

due to the strong influence of the IPFs.

Wahid et al. (2013) reported varimax-rotated PCA re-

sults on the distribution of inorganic ions within fine-mode

aerosols (< 1.5 µm) at Kuala Lumpur, which is close to the

present study’s sampling site (∼ 10 km). They extracted three

principal components from this analysis: (1) motor vehicles,

(2) soil and the earth’s crust and (3) sea spray. Jamhari et

al. (2014) applied varimax-rotated PCA on polycyclic aro-

matic hydrocarbon data in PM10 at Kuala Lumpur. They ex-

tracted two factors, which were attributed to (1) natural gas

emission and coal combustion and (2) vehicles and gaso-

line emissions. In the present study, only biomass burning

could be identified as a factor through comparison with these

previous analyses. Factors such as soil, sea spray and coal

combustion could not be identified, because the key inor-

Atmos. Chem. Phys., 15, 13319–13329, 2015 www.atmos-chem-phys.net/15/13319/2015/
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Table 2. (a) Factor loadings from varimax-rotated PCA of PJ_A

data. A1–A3 indicate factors. (b) Factor loadings from varimax-

rotated PCA of PJ_S data. S1–S5 indicate factors.

(a) A1 A2 A3

OC 0.97 0.10 0.16

EC 0.29 0.37 0.51

Levoglucosan 0.81 −0.05 0.17

Mannosan 0.89 0.00 0.11

Galactosan 0.90 0.02 0.08

p-Hydroxybenzoic acid 0.94 0.04 0.22

Vanillin 0.61 0.15 0.25

Syringaldehyde −0.17 0.12 0.40

Vanillic acid 0.65 −0.10 0.55

Syringic acid 0.28 −0.11 0.81

Dehydroabietic acid 0.15 −0.01 0.86

Cholesterol 0.36 0.14 0.39

C22 0.03 0.95 0.05

C23 0.07 0.95 0.05

C24 0.30 0.92 0.06

C25 0.81 0.54 0.14

C26 0.86 0.43 0.13

C27 0.95 0.23 0.13

C28 0.96 0.18 0.07

C29 0.97 0.13 0.12

C30 0.92 0.25 0.05

C31 0.97 0.10 0.13

C32 0.93 0.15 0.11

C33 0.97 0.10 0.13

% variance 60 12 8.0

% cumulative 60 72 80

(b) S1 S2 S3 S4 S5

OC 0.47 0.47 0.10 0.08 0.57

EC 0.39 0.20 0.25 0.26 0.65

Levoglucosan 0.09 0.71 −0.03 −0.52 0.19

Mannosan 0.19 0.84 0.02 −0.26 0.28

Galactosan 0.17 0.83 0.06 −0.09 0.41

p-Hydroxybenzoic acid 0.26 0.62 0.08 0.23 0.42

Vanillin 0.22 0.32 0.07 0.05 0.61

Syringaldehyde 0.24 0.13 0.01 0.74 0.07

Vanillic acid −0.12 0.81 −0.04 0.22 −0.01

Syringic acid 0.02 0.81 0.00 0.37 0.26

Dehydroabietic acid 0.18 0.44 0.04 0.12 0.60

Cholesterol 0.01 0.17 0.15 −0.21 0.77

C22 0.05 −0.02 0.97 −0.04 0.05

C23 0.05 0.00 0.97 −0.04 0.04

C24 0.28 −0.03 0.94 0.04 −0.01

C25 0.33 0.10 0.85 0.05 0.35

C26 0.61 0.05 0.68 0.14 0.24

C27 0.67 0.08 0.53 0.10 0.35

C28 0.86 0.06 0.27 −0.01 0.01

C29 0.89 0.14 0.18 0.08 0.29

C30 0.84 0.03 0.33 0.04 −0.12

C31 0.77 0.24 0.07 0.10 0.47

C32 0.88 −0.04 0.02 0.10 0.16

C33 0.72 0.28 −0.03 0.14 0.49

% variance 43 19 11 5.0 4.5

% cumulative 43 62 72 77 82

ganic compounds produced from these sources were not de-

termined.

4 Conclusions

Annual PM2.5 observations in Malaysia have been conducted

to quantitatively characterise carbonaceous PM2.5, especially

focusing on organic compounds derived from biomass burn-

ing for the first time. The main conclusions are summarised

as follows:

Concentrations of OP, LG, MN, galactosan, syringalde-

hyde, VA and cholesterol exhibit seasonal variability. The

average concentrations of OP, LG, MN, galactosan, VA and

cholesterol during the southwestern monsoon season are

higher than those during the northeastern monsoon season,

and the differences are statistically significant. In contrast,

the syringaldehyde concentration during the southwestern

monsoon season is lower.

Seven IPF samples are distinguished on the basis of the

PM2.5 OP /OC4 mass ratio. In addition, significant differ-

ences are observed for the concentrations of many chemical

species between the IPF and other samples. Thus, the PM2.5

chemical characteristics in Malaysia are clearly influenced

by IPFs during the southwestern monsoon season. Further-

more, two previously suggested indicators of IPF sources

have been evaluated: the VA /SA and LG /MN mass ra-

tios. The LG /MN mass ratio ranges from 14 to 22 in the

IPF samples and from 11 to 31 in the other samples. The

two ratio distributions partially overlap. Thus, the LG /MN

mass ratio is not considered appropriate for extracting the

effects of IPFs in Malaysia. In contrast, significant differ-

ences among the VA /SA mass ratios in the IPF and other

samples suggest that it may serve as a good indicator. How-

ever, the OP /OC4 mass ratio differentiates the IPF sam-

ples better than the VA /SA mass ratio. Consequently, the

OP /OC4 mass ratio is proposed as a better indicator than

the VA /SA mass ratio. Finally, varimax-rotated PCA en-

abled to discriminate biomass burning components such as

IPFs, softwood/hardwood burning and meat cooking.

The Supplement related to this article is available online

at doi:10.5194/acp-15-13319-2015-supplement.
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