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A non-destructive method for estimating onion leaf 
area
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Abstract
Leaf area is one of the most important parameters for characterizing crop growth and development, and its measurement 
is useful for examining the effects of agronomic management on crop production. It is related to interception of radiation, 
photosynthesis, biomass accumulation, transpiration and gas exchange in crop canopies. Several direct and indirect 
methods have been developed for determining leaf area. The aim of this study is to develop an indirect method, based 
on the use of a mathematical model, to compute leaf area in an onion crop using non-destructive measurements with the 
condition that the model must be practical and useful as a Decision Support System tool to improve crop management. 
A field experiment was conducted in a 4.75 ha commercial onion plot irrigated with a centre pivot system in Aguas 
Nuevas (Albacete, Spain), during the 2010 irrigation season. To determine onion crop leaf area in the laboratory, the 
crop was sampled on four occasions between 15 June and 15 September. At each sampling event, eight experimental 
plots of 1 m2 were used and the leaf area for individual leaves was computed using two indirect methods, one based on 
the use of an automated infrared imaging system, LI-COR-3100C, and the other using a digital scanner EPSON GT-8000, 
obtaining several images that were processed using Image J v 1.43 software. A total of 1146 leaves were used. Before 
measuring the leaf area, 25 parameters related to leaf length and width were determined for each leaf. The combined 
application of principal components analysis and cluster analysis for grouping leaf parameters was used to reduce 
the number of variables from 25 to 12. The parameter derived from the product of the total leaf length (L) and the leaf 
diameter at a distance of 25% of the total leaf length (A25) gave the best results for estimating leaf area using a simple 
linear regression model. The model obtained was useful for computing leaf area using a non-destructive method.
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Introduction 

Leaf area is one of the most important parameters for 
characterizing crop growth and development, and is useful 
for examining the effects of agronomic management on crop 
production (Hooker 1907; Azzi 1959; Gallagher and Biscoe 
1978). This parameter is related to interception of radiation, 
photosynthesis, biomass accumulation, transpiration and gas 
exchange in crop canopies (Kucharik et al. 1998). It is also 
one of the most relevant parameters in experimentation, and 
has been used to predict harvest date (Hammer et al. 1995; 
Kiniry et al. 1996). Variables that are useful in agriculture and 
other disciplines, such as the leaf area index (LAI), which 
is defined as the total one-sided area of leaf tissue per unit 
ground surface area (Watson, 1947) are also computed 
from the leaf area. Accurate measurements of leaf area are 
essential for understanding the interaction between crop 
growth and environment (De Jesus et al. 2001).
Many methods of leaf area measurement have been 
developed for several crops (Gower et al. 1999; Kussner 
and Mosandl 2000; Jonckheere et al. 2004). Marshall (1968) 
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classified methods to determine leaf area as direct and 
indirect. Direct methods measure all the leaves of the plant. 
These methods include the use of millimetric paper (Goodall 
1947; Winter et al. 1956; Bachman and Keller 1965), 
planimetric (Daughtry 1990; Nyakwende et al. 1997) and 
gravimetric techniques (Frear 1935, Miller 1938) and tracing, 
blueprinting and photographing, which require instruments, 
tools and machines such as hand scanners and laser optic 
devices (Peksen 2007). An alternative method is the use of 
image analysis, either with a camera (Tarbell and Reid 1991; 
Baker et al. 1996) or an image scanner (Kershaw and Larsen 
1992; Yonekawa et al. 1996), combined with digitalization of 
images. In these cases, the processing is time consuming 
and sometimes is suitable only for small plants with few 
leaves.
Indirect methods are useful when this equipment is not 
available or non-destructive measurements are needed, 
such as in field conditions or where there is low plant density. 
Regarding indirect methods, the solar radiation intercepted 
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method (Gerdel and Salter 1928; Hibbard et al. 1937), 
automated infrared imaging system (Hatfield et al. 1985) or 
the estimation of leaf area based on linear measurements of 
the leaf (Ackley et al. 1958; Ray and Singh 1989; Astegiano 
et al. 2001) are the most common. Indirect methods enable 
researchers to measure leaf area on the same plants during 
the growth period and may reduce variability in experiments 
(Serdar and Demirsoy 2006). Considering all methods, the 
estimation method from mathematical models involving linear 
measurements of leaves (Coombs and Hall 1982; Beerling 
and Fry 1990) is relatively accurate. Measurements can be 
made without cutting the plants (Kvet and Marshall 1971). 
Simple and accurate models eliminate the need for expensive 
leaf area meters or time-consuming methods, as they are 
easy to apply and are non-destructive. 
The aim of this study is to develop a mathematical model to 
compute leaf area in an onion crop using non-destructive 
leaf area measurements. This model should be applicable at 
different crop stages. The model must also be practical, to 
be used as a Decision Support System tool to improve crop 
management.

Materials and methods

The case study
The field experiment was conducted on a 4.75 ha commercial 
onion plot irrigated with a centre pivot system in Aguas Nuevas 
(Albacete, Spain), during the 2010 irrigation season. The 
study area was in warm Mediterranean climate (Papadakis 
1966). The soil was classified as a Xeric Torriorthent with a 
loam texture, medium depth (>600 mm) and a composition of 
4% coarse sand, 28% fine sand, 44% silt and 24% clay (USDA 
2006). The area was characterised by a flat topography and 
soils had good drainage, with little sign of water erosion. 
Onion seed (cultivar “Pandero”) (Kumar et al. 2007; Sarkar et al. 
2008; Enciso et al. 2009, Jiménez et al. 2010) was directly sown 
(27.7 plants m−2). Irrigation was scheduled using a simplified 
water balance method within the root area, following the Food 
and Agriculture Organization methodology (Pereira and Allen 
1999). According to this methodology, the total amount of irrigation 
water applied was close to 4800 m3 ha−1, with an average of the 
accumulated uniformity coefficient (CUac) close to 92%. Data 
from an agrometeorological station (Campbell Scientific Inc., 
Logan, USA), located 300 m from the plot were used to obtain 
the 10-year average and the 2010 irrigation season weather data.
Weed growth was controlled by pre-emergence treatment with 
pendimethalin (33%) at a dose of 2 l ha−1. When the crop had 
between two and four leaves, a second treatment to control 
weeds was carried out with oxynil (22.5%) at a dose of 1 l 

ha−1. Disease control was carried out with two treatments of 
mancozeb (80%) at 100 and 115 days after sowing. The plot 
was fertilized with nitrogen (230 kg N ha−1), phosphorous (220 
kg P2O5 ha−1) and potassium (190 kg K2O ha−1).

Sampling
In order to determine onion crop leaf area in the laboratory 
during crop development (18 March to 22 September) the 
crop was sampled on four occasions between 15 June and 15 
September. On each occasion, eight experimental sub-plots 
of 1 m2 were used, which were selected at random across the 
plot. Forty plants were collected throughout the plot on each 
sampling occasion. A total of 1146 leaves were measured 
across all the sampling occasions.
On each sampling occasion, the leaf area of individual leaves 
was computed using two indirect methods. The first method 
was based on the use of an automated infrared imaging 
system, LI-COR-3100C (LI-COR Inc., Lincoln, Nebraska, 
USA). The second method used a digital scanner EPSON GT-
8000 (Seiko Epson Corporation, Nagano, Japan), producing 
images that were processed using Image J v 1.43 software.
Before measuring leaf area by the two indirect methods, 25 
parameters were determined for each leaf (Table 1). Some 
of these parameters were previously used to determine the 
leaf area in onion crops (Hoffman 1971; Gamiely et al. 1991) 
and grapes (Legorburo 2005). Five of the parameters, defined 
as the main parameters, were measured directly with a tape 
measure (± 1 mm accuracy): total leaf length (L), leaf width at 
base (A), leaf width from a distance of 25% (A25), 50% (A50) 
and 75% (A75) from leaf base. The remaining parameters (a 
total of 20) were computed using mathematical relationships 
of the main parameters. The computed parameters were 
associated with leaf size (L×A, L×A25, L×A50, L×A75, A×A25, 
A×A50, A×A75, A25×A50, A25×A75, A50×A75) and leaf 
shape (L/A, L/A25, L/A50, L/A75, A/A25, A/A50, A/A75, A25/
A50, A25/A75, A50/A75).

Statistical analysis
Statistical analyses were performed using SPSS software 
(SPSS, 2008). Descriptive statistics were calculated [average, 
standard deviation, minimum and maximum value, and 
coefficient of variation (CV)] to determine the variability of the 
measured and computed parameters. 
Principal components analysis (PCA) was used to represent 
most of the variance among a large number of variables (in this 
case the parameters of each leaf) by a much smaller number 
of variables, termed factors (Pearson, 1902; Hotelling, 1933; 
Haan, 2002), which are linear combinations that maximize 
the shared portion of the variance. The objective of PCA is 
to obtain linear combinations of representative variables 
that exhibit maximum variance for a multidimensional 
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phenomenon and are also uncorrelated. Hence, it is possible 
to determine which parameters are more useful in explaining 
the leaf characteristics. The following steps were followed:
• Computation of the correlation matrix, to identify the most 
important correlation structures between leaf parameters and 
correlation coefficients. The correlation matrix was useful to 
explain the groups obtained in the next step, cluster analysis 
(CA) of the parameters.
• Computation of the percentage of variance explained. Thus, 
the selected factors were those representing a cumulative 
variance higher than 90%.
• Computation of the rotated component matrix. Rotated 
loadings were determined for each factor using loading 
coefficients (Malinowski and Howery, 1980). Loading 

coefficients of the rotated matrix showed the participation of 
each leaf parameter in the formation of each factor.
A CA was then applied to the original group of variables 
to group parameters with similar characteristics thereby 
further reducing the number of parameters (Peña, 2000). 
An agglomerative hierarchical CA was applied to group 
parameters, and the similarity–dissimilarity measure was 
used for the correlation coefficient (Alhamed et al., 2002; Unal 
et al., 2003). Single linkage was used to link clusters, which is 
based on the shortest distance between objects.
The parameters selected using PCA and CA were used to 
obtain regression models between those parameters and leaf 
area. A general linear regression model (GLM) and several 
simple linear regression models were utilized (models 1 to 4). 

Model development
Several models were tested. After confirming that the data 
met the assumptions of parametric statistical approaches, 
an analysis of regression residuals, by means of normality, 
homoscedasticity and independence test, was carried out to 
validate each model proposed. In addition, to compare the 
model predictions and the measurements, for each model, 
the goodness of fit was determined using the regression 
coefficient (R2) (Astegiano et al., 2001; Cittadini and Peri, 
2006).  The models used were:
Model 1: y = a x; previously used to estimate leaf area in 
tomato (Lyon, 1948; Balakrishnan et al., 1992), cotton (Ashley 
et al., 1963), rice (Johnson, 1967; Palaniswamy and Gomez, 
1974) and maize (McKee, 1964; Giovanardi, 1972).
Model 2: y = a+cx; previously used to estimate the leaf area of 
grapes (Manivel and Weaver, 1973; Smith and Kliewer, 1983; 
Elsner and Jubb, 1988), cucumber (Liebig, 1978; Robbins 
and Pharr, 1987), pepper (Ray and Singh, 1989), tomato 
(Astegiano et al., 2001) and onion (Gamiely et al., 1991).
Model 3: log y = a+c logx; previously used in grapes (Sepúlveda 
and Kliewer, 1983; Elsner and Jubb, 1988; Silvestre and 
Eiras-Dias, 2001), maize (Tarbell and Reid, 1991), and onion 
(Hoffman, 1971).
Model 4: logy= a logx; previously used by Legorburo (2005) to 
determine leaf area in grapes.
Statgraphics Plus® software (Llovet et al., 2000) and MatLab® 

functions were used for the PCA, CA, and regression models.

Results

Climatic characteristics
During the irrigation season, the coldest period was between 
November and March, with the lowest average temperature in 
December (Table 2). The hottest period was between June and 

Table 1. Description of the measured and the computed 
parameters determined for each leaf.

Parameter Description

L (mm) Total leaf length

A (mm) Leaf base width

A25 (mm) Leaf width at a distance of 25% from the leaf base

A50 (mm) Leaf width  at a distance of 50% from the leaf base

A75 (mm) Leaf width at a distance of 100% from the leaf base

L×A L and A product

L×A25 L and A25 product

L×A50 L and A50 product

L×A75 L and A75 product

A×A25 A and A25 product

A×A50 A and A50 product

A×A75 A and A75 product

A25×A50 A25 and A50 product

A25×A75 A25 and A75 product

A50×A75 A50 and A75 product

L/A L and A ratio

L/A25 L and A25 ratio

L/A50 L and A50 ratio

L/A75 L and A75 ratio

A/A25 A and A25 ratio

A/A50 A and A50 ratio

A/A75 A and A75 ratio

A25/A50 A25 and A50 ratio

A25/A75 A25 and A75 ratio

A50/A75 A50 and A75 ratio
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August, with monthly average temperature close to 26ºC. The 
large difference between maximum and minimum temperature 
should be highlighted, with temperatures ranging from 37.6ºC 
(July) and −14.4ºC (November). The climatic characteristics 
during the 2010 irrigation season were very similar to the 10-
year average weather data (2000–2010) (Table 2).
The rainfall registered during the 2010 irrigation season was 
0.1 mm (July) to 61.3 mm (December). Drought during July 
and August is the most important characteristic of the area. 

Descriptive statistical analysis
The variability of the main parameters measured (L, A, 
A25, A50, and A75) on each sampling occasion is shown 
in Table 3. The variability of leaf area obtained using the 
automated infrared imaging system LI-COR-3100C, which 

showed similar results to the leaf area obtained using a digital 
scanner, is shown in Table 3.
For parameter L, the CV values ranged from 28.76% 
(sampling occasion 3) to 38.01% (sampling occasion 1). The 
variability of parameter A was very similar to parameter L 
(27.99% on sampling occasion 4, and 32.76% on sampling 
occasion 2). For the other parameters measured (A25, A50, 
and A75), the highest variability was seen in A75, with CV 
from 27.19% (sampling occasion 1) to 61.02% (sampling 
occasion 2). The greatest variation was shown for AF (except 
in sampling occasion 2), reaching CV values of 47.4% 
(sampling occasion 2) to 61.34% (sampling occasion 1).
The correlation between the measured parameters of leaf 
size (L, A, A25, A50, and A75) was not very strong. The 
strongest correlation occurred between L and A25 (r = 

Table 2. Climatic data of the area of this study for the 10-year average (from 2000–2010) and the 2010 irrigation season obtained from 
the agrometeorological station (Campbell Scientific Inc., Logan, USA).

2000-2010

Rainfall 
(mm)

Reference evapo-
transpiration (mm)

Maximum tempera-
ture (ºC)

Minimum tempera-
ture (ºC)

Average tempera-
ture (ºC)

Solar radiation (MJ m−2)

January 22.1 35.2 17.7 −9.5 4.2 8.4

February 24.0 49.0 18.8 −7.0 5.4 11.6

March 34.7 83.7 23.8 −5.5 8.5 16.0

April 49.7 107.3 26.5 −0.8 11.5 20.6

May 42.2 142.1 30.6 1.5 15.7 23.9

June 26.2 190.4 35.8 6.4 21.4 27.0

July 4.9 224.7 37.8 9.2 24.5 28.4

August 9.1 194.6 37.7 8.6 23.8 24.6

September 34.9 124.7 33.2 3.9 19.1 18.9

October 47.3 76.4 28.6 0.7 14.1 13.1

November 30.2 40.7 21.1 −5.1 7.9 8.8

December 26.2 29.4 16.4 −8.0 4.7 7.4

2010

Rainfall 
(mm)

Reference evapo-
transpiration (mm)

Maximum tempera-
ture (ºC)

Minimum tempera-
ture (ºC)

Average tempera-
ture (ºC)

Solar radiation (MJ m-2)

January 48.8 29.3 16.1 −11.0 4.7 6.7

February 57.5 41.9 18.4 −4.2 6.0 8.8

March 49.3 75.3 20.7 −6.0 7.7 14.7

April 47.1 99.7 27.1 −2.3 11.2 20.1

May 33.5 135.3 31.1 −0.9 13.6 24.2

June 26.5 167.8 33.8 2.7 18.7 24.7

July 0.5 240.2 37.6 12.1 25.7 28.4

August 11.0 190.4 37.3 3.8 23.3 23.4

September 28.2 123.3 32.8 2.8 18.0 19.3

October 35.1 78.2 27.3 −2.5 11.9 14.6

November 29.5 35.9 20.0 −14.4 4.6 9.0

December 61.3 24.6 16.3 −9.6 2.4 6.7
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0.71), A and A25 (r = 0.77) and A25 and A50 (r = 0.72). All 
of these correlations were highly significant (p < 0.001). The 
parameters L and A25 showed a strong correlation with leaf 
area, with coefficient values of 0.87 and 0.88, respectively. 
Thus, these two parameters can be considered the most 
adequate to explain leaf area variability (Table 4).

Principal component analysis
In the correlation matrix (data not presented in the results) of 
the 26 parameters (25 measured and computed parameters 
and leaf area using LI-COR-3100C) used for PCA, the 
parameter leaf area had strong, positive correlations (r values 

of 0.8–0.9) with the parameters L, A25, L×A, L×A25, L×A50, 
and A×A25. The parameters leaf area and L×A25 had the 
highest correlation coefficient values (r= 0.96). All of these 
correlations were highly significant (p < 0.001).
Strong correlations were also observed among the other 
parameters associated with leaf size (L×A, L×A25, L×A50, 
L×A75, A×A25, A×A50, A×A75, A25×A50, A25×A75, 
A50×A75). The most significant correlations were A25×A75 
and A50×A75 (r = 0.94), A×A75 and A25×A75 (r=0.93), and A 
and A×A25 (r = 0.93).
The parameters associated with leaf shape (L/A, L/A25, L/
A50, L/A75, A/A25, A/A50, A/A75, A25/A50, A25/A75, A50/

Table 3. Descriptive statistics of the main leaf parameters measured on each sampling occasion.
07/21/2010 L (mm) A (mm) A25 (mm) A 50 (mm) A75 (mm) AF (mm2)

Average 292.7 8.7 10.0 8.1 5.3 4195.0

Standard deviation 111.3 2.7 3.4 4.0 1.4 2573.0

Minimum 45.0 3.0 3.0 2.0 2.0 110.4

Maximum 530.0 17.0 19.0 70.0 11.0 11120.0

Coefficient of variation (%) 38.03 30.95 33.86 49.65 27.20 61.33
       
08/11/2010 L (mm) A (mm) A25 (mm) A 50 (mm) A75 (mm) AF (mm2)

Average 328.7 10.7 12.7 9.9 6.4 6323.0

Standard deviation 96.9 3.5 4.0 2.8 3.9 2997.0

Minimum 45.0 3.0 3.0 3.0 1.0 214.6

Maximum 500.0 25.0 22.0 18.0 70.0 13330.0

Coefficient of variation (%) 29.48 32.77 31.70 28.76 61.02 47.40
       
09/01/2010 L (mm) A (mm) A25 (mm) A 50 (mm) A75 (mm) AF (mm2)

Average 360.4 10.9 13.8 11.3 6.9 6697.0

Standard deviation 103.7 3.4 4.1 3.6 2.7 3215.0

Minimum 70.0 3.0 3.0 2.0 1.0 527.0

Maximum 650.0 26.0 25.0 22.0 17.0 15070.0

Coefficient of variation (%) 28.77 31.76 29.96 31.46 39.03 48.01
       
09/15/2010 L (mm) A (mm) A25 (mm) A 50 (mm) A75 (mm) AF (mm2)

Average 298.4 9.5 11.2 9.3 5.8 4310.0

Standard deviation 111.8 2.7 3.4 2.9 1.9 2420.0

Minimum 70.0 3.0 5.0 4.0 3.0 347.7

Maximum 630.0 17.0 20.0 18.0 13.0 12220.0

Coefficient of variation (%) 37.47 27.99 30.04 31.33 32.52 56.15
       
All data sampling L (mm) A (mm) A25 (mm) A 50 (mm) A75 (mm) AF (mm2)

Average 321.6 9.9 11.9 9.6 6.1 5488.0

Standard deviation 108.7 3.3 4.1 3.7 2.8 3077.0

Minimum 45.0 3.0 3.0 2.0 1.0 110.4

Maximum 650.0 26.0 25.0 70.0 70.0 15070.0

Coefficient of variation (%) 33.80 33.03 34.08 38.06 45.83 56.07
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A75), had weaker correlations than the leaf size parameters 
(L, A, A25, A50, A75, L×A, L×A25, L×A50, L×A75, A×A25, 
A×A50, A×A75, A25×A50, A25×A75, A50×A75, leaf area) 
with correlation coefficients lower than 0.8.
According to the PCA (Table 5), six factors were selected, 
because they represented a total cumulative variance of 
96.17% and they had total eigenvalues greater than 1 
(Legorburo, 2005). Factor 1 explained nearly half of the 
variance (close to 45.71%) and the percentage of variance 
explained by factors 2, 3, 4, 5 and 6 was less important. The 
total cumulative variance explained by factors 1, 2 and 3 was 
77.42%. 
In Table 6, the loading coefficient of the rotated matrix for 
each one of the 26 parameters (25 measured and computed 
parameter and leaf area) utilized is shown. In factor 1, the 
most relevant parameters were L×A, L×A25 and A×A25; 
A75 was most relevant in factor 2. In factors 3–6, the loading 
coefficient showed that L/A25, A/A25 and A25/A50 were most 
relevant.

Cluster analysis
Two clusters were formed, considering a similarity value 
close to 0.45 (Fig. 1). Cluster 1 was composed of parameters 
related to leaf size, which included measured (L, A, A25, A50, 
A75) and computed parameters (the products of L×A, L×A25, 
L×A50, L×A75, A×A25, A×A50, A×A75, A25×A50, A25×A75, 
A50×A75). Inside cluster 1, two groupings have a similarity 
value close to 0.15. The first grouping was composed 
of parameters L×A25, leaf area, A25, A, A×A25, A×A50, 
A25×A50, L×A, A50, L×A50, and L. All of these parameters 
had a loading coefficient of the rotated matrix obtained in PCA 
higher than 0.6 in Factor 1 (Table 6). In the second grouping in 
Cluster 1, parameters A75, A×A75, A25×A75, A50×A75 and 
L×A75 were included, all of which had a loading coefficient of 
the rotated matrix higher than 0.7 in Factor 2 (Table 6).
Cluster 2 was formed by the parameters related to leaf shape 
(L/A, L/A25, L/A50, L/A75, A25/A75, A/A75, A/A25, A/A50, 
A50/A75, A25/A50). The level of similarity was lower than the 
similarity of parameters in cluster 1. These parameters did 
not show high similarity with leaf area.
From the results of PCA and CA, the number of parameters 

was reduced, considering the groupings obtained between 
parameters and the loading coefficients of the rotated matrix. 
Therefore, the initial number of parameters was reduced to 
13, which included leaf area and the parameters related to 
leaf size (L, A, A25, A50, A75, L×A, L×A25, L×A50, L×A75, 
A×A50, A×A75, A25×A75).

Regression models
Regression models were determined using the 13 parameters 
selected from the PCA and CA. To use parameters collected 
using the non-destructive method, the leaf area was 
considered the dependent variable and the remaining 12 
parameters as independent variables. To test the models, 
the measured leaf area of several plants on each sampling 
occasion was compared to the leaf area values obtained 
using the proposed models.
The first model used was a GLM using the 12 parameters 
(Table 7). A model using six independent variables was 
significant (L×A, L×A25, L×A50, A×A50, A×A75, A25×A75) 

Table 4. Correlation matrix between the main measured parameters of leaf size.
 Parameter L A A25 A50 A75 AF

L 1***  - - - - - 

A 0.64*** 1*** - - - - 

A25 0.71*** 0.77*** 1*** - - - 

A50 0.48*** 0.53*** 0.72*** 1*** - - 

A75 0.26*** 0.32*** 0.45*** 0.49*** 1*** - 

AF 0.87*** 0.72*** 0.88*** 0.63*** 0.40*** 1***

*** p< 0.001

Table 5. Factors that maximize the shared portion of the variance 
obtained using the principal component analysis technique. 
Total and cumulative variance explained by each factor.

Initial eigenvalues

Factor Total variance % Cumulative variance 

1 11.88 45.71

2 5.60 67.26

3 2.64 77.42

4 2.33 86.40

5 1.50 92.16

6 1.04 96.17

7 0.33 97.43

8
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.
.
.
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.
.
.
.
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Figure 1. Dendrogram for agglomerative hierarchical cluster analysis using single linkage to group variables used.

Table 6. Loading coefficients of the rotated matrix obtained using the principal component analysis technique, which represent the 
participation of each leaf parameter in the formation of each factor.

Factor

Parameter 1 2 3 4 5 6

L 0.787 0.119 0.562 0.103 −0.075 0.111

A 0.862 0.177 −0.114 0.082 0.391 0.107

A25 0.886 0.280 −0.116 0.117 −0.220 0.173

A50 0.682 0.356 −0.136 0.206 −0.235 −0.466

A75 0.236 0.923 −0.038 −0.234 −0.098 −0.069

L×A 0.913 0.122 0.206 0.089 0.229 0.137

L/A 0.038 0.003 0.824 0.100 −0.512 0.021

L×A25 0.917 0.185 0.184 0.097 −0.164 0.175

L/A25 -0.065 −0.107 0.917 0.055 0.322 −0.104

L×A50 0.869 0.268 0.186 0.143 −0.203 −0.219

L/A50 0.031 −0.107 0.748 0.219 0.322 0.475

L×A75 0.574 0.732 0.241 −0.168 −0.126 0.009

L/A75 0.078 −0.129 0.494 0.763 0.161 0.300

A×A25 0.916 0.220 −0.200 0.096 0.104 0.158

A/A25 −0.153 −0.125 0.078 −0.022 0.954 −0.130

A×A50 0.868 0.312 −0.220 0.145 0.076 −0.206

A/A50 0.008 −0.131 0.117 0.134 0.818 0.477

A×A75 0.622 0.722 −0.153 −0.147 0.126 −0.005

A/A75 0.138 −0.166 0.118 0.726 0.535 0.297

A25×A50 0.827 0.361 −0.192 0.151 −0.218 −0.161

A25/A50 0.181 −0.090 0.054 0.226 0.051 0.909

A25×A75 0.580 0.771 −0.120 −0.118 −0.152 0.026

A25/A75 0.202 −0.142 0.048 0.848 −0.060 0.415

A50×A75 0.427 0.846 −0.117 −0.035 −0.144 −0.229

A50/A75 0.210 −0.144 −0.004 0.878 −0.109 −0.316

AF 0.894 0.219 0.204 0.058 −0.159 0.120
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and the other six parameters with significance levels greater 
than 5% were eliminated. The GLM explained 93.43% of 
leaf area variability (regression coefficient (R2)), with a high 
level of significance (p < 0.01) and a standard error close to 
7.888. The residuals fitted a normal distribution and showed 
homoscedastic behaviour. With regard to the GLM, the model 
overestimated the leaf area on all the sampling occasions 
analysed, with predicted leaf area values ranging from 10% 
(sampling occasion 2) to 20% (sampling occasion 4) higher 
than measured. Although the GLM explained a very high 
percentage of variance in the leaf area, the model included 
a lot of independent variables, which could make it difficult to 
use from a practical point of view. 
In order to simplify the results, four simple regression models 
were examined. In each, one leaf area was considered the 
dependent variable, while the remaining parameters were 

taken individually as independent variables. 
For model 1, the highest regression coefficient (R2) value 
(close to 92.43%) and minimum model standard error (8.46) 
were obtained using parameter L×A25 as the independent 
variable (Table 8). The dispersion pattern of residuals did 
not follow a normal distribution and showed heteroscedastic 
behaviour. Model 1 results were different depending on 
sampling occasion. Hence, on sampling occasion 1 (21/7) and 
3 (9/1), the model tended to overestimate the leaf area, giving 
predicted leaf area values 15% higher than those measured. 
In the case of sampling 2 (8/11), this model underestimated 
leaf area, with predicted values 10% less than measured. For 
the last sampling occasion (9/15), the leaf area obtained with 
model 1 showed high divergence, with predicted leaf area 
values obtained approximately 25% higher than measured.
Model 2 was a logarithmic transformation for the dependent 
and independent variables (Table 9). Considering parameters 
L×A or L×A50, the regression coefficient (R2) reached values 
close to 90% and higher, for example with the parameter 
L×A25 (93.08%). The dispersion pattern of residuals did 
not follow a normal distribution and showed heteroscedastic 
behaviour. For model 2, the results obtained were slightly 
different compared with model.1 In most cases analysed 
(sampling occasion 1, 2 and 3), this model underestimated 
the leaf area, with predicted leaf area AF values 30% less 
than measured. On sampling occasion 4 (9/15), predicted 
leaf areas were approximately 40% less than measured.
In comparison to the other models, model 3 gave the best 
results for estimating leaf area (Fig. 2), with regression 
coefficient (R2) values that were greater for most of the 

Table 7. Coefficients and standard error of the proposed 
general linear regression model using the six most significant 
independent variables

Independent variable Coefficients Standard error 

−5.96 10−5 0.525

L×A −0.189 0.059

L×A25 1.234 0.053

L×A50 0.384 0.040

A×A50 −7.486 1.057

A×A75 28.126 3.805

A25×A75 −15.464 2.828

Table 8. Goodness of fit of the simple regression model 1 (y = a x) proposed to estimate the leaf area (y) depending on the independent 
variable utilized (x). Analysis of regression residuals (normality, homoscedasticity and independence test).

Independent 
variable

R2 Standard error a Independence Normal distribution Homoscedastic

L 69.73 0.001690 0.0178  NO NO NO 

A 50.82 0.002157 0.5658  NO NO NO 

A25 70.67 0.001666 0.4826  NO NO NO 

A50 39.96 0.002384 0.5659  NO NO NO 

A75 2.28 0.003041 0.8181  NO NO NO 

L×A 75.04 0.001537 1.5604  NO NO NO 

L×A25 92.43 0.000846 1.3141  YES NO  NO

L×A50 79.17 0.001404 1.6419  YES NO YES 

L×A75 49.35 0.002189 2.4805    YES NO YES 

A×A50 50.09 0.002173 50.019    YES NO NO 

A×A75 28.59 0.002600 77.030  YES NO YES 

A25×A75 30.56 0.002564 61.698    YES NO YES 
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parameters considered (Table 10). The best result was 
obtained using parameter L×A25, although the variability 
explained by the model did not improve more than in models 
1 and 2. The model selected, leaf area = 0.000199 + 1.277 
L×A25, explained 92.53% of the variability of leaf area, and 
the dispersion pattern of the residuals followed a normal 
distribution and showed homoscedastic behaviour. Moreover, 
the model showed good results when used on each sampling 
occasion. On sampling occasion 1 and 3, predicted leaf area 
using this model was 8% higher than measured. For sampling 
occasion 2 and 4, the model underestimated the leaf area, 
with predicted values approximately 6% less than measured.
The variability explained for some parameters by model 
4 (Table 11) was slightly higher than in the other models 
considered. The highest regression coefficient (R2) value 

reached was for parameter L×A25 (93.45%), although 
the dispersion pattern of residuals did not follow a normal 
distribution and showed heteroscedastic behaviour. Model 
4 tended to overestimate leaf area values in all the sampling 
occasions. Hence, predicted values were close to 28% 
(sampling occasion 1 and 3), 12% (sampling occasion 3) 
and 14% (sampling occasion 4) higher than measured.   

Discussion

All measured parameters showed high variability on each 
sampling occasion. This is explained by the intrinsic 
heterogeneous size of leaves on each onion plant and also 
by the variability of plant size between the different sampling 

Table 9. Goodness of fit of the simple regression model 2 (log y = a logx) proposed to estimate the leaf area (y) depending on the 
independent variable utilized (x). Analysis of regression residuals (normality, homoscedasticity and independence test).

Independent 
variable

R2 Standard error a Independence Normal distribution Homoscedastic

L 10.80 0.517 4.162 NO NO NO

A 51.71 0.248 1.169 NO NO NO

A25 69.66 0.196 1.215 NO NO NO

A50 55.63 0.238 1.159 NO NO NO

A75 31.43 0.295 1.054 NO NO NO

L×A 85.26 0.137 0.927 NO NO NO

L×A25 93.08 0.093 0.954 YES NO NO

L×A50 88.73 0.119 0.921 NO NO NO

L×A75 77.91 0.167 0.855 NO NO NO

A×A50 57.80 0.232 0.582 NO NO NO

A×A75 46.95 0.260 0.555 NO NO NO

A25×A75 54.59 0.240 0.565 NO NO NO

Figure 2. Relationship between the measured leaf area and the estimated leaf area using the linear model selected (leaf area = 
0.000199 + 1.277 L×A25).
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dates as plants got older as the year progressed. 
During the irrigation season, it should be highlighted that the 
growing conditions were not influenced by external factors, 
such as extreme climatic conditions or water stress, among 
others. In fact, the farm work and crop operations followed 
the traditions of the farmers in the area (De Juan et al., 2003), 
and the crop was maintained free of diseases and weeds. 

The crop growing stages, which were monitored using the 
phenological scale proposed by Feller et al. (1995), showed 
that plants were growing as expected at each stage. In this 
experimental study, the onset of bulbing occurred at 75 
days after emergence (DAE). Leaves continued to expand 
thereafter until 110 DAE (bulbing stage), when the maximum 
LAI was reached. The highest LAI values were close to 1.72 

Table 10. Goodness of fit of the simple regression model 3 (y = a +c x) proposed to estimate the leaf area (y) depending on the 
independent variable utilized (x). Analysis of regression residuals (normality, homoscedasticity and independence test).

Independent variable R2 Standard error a c Independence Normal distribution Homoscedastic

L 76.28 0.001498 −0.002464 0.024730 NO NO NO 

A 52.46 0.002122 −0.001259 0.680298 NO NO NO 

A25 77.24 0.001468 −0.00244 0.666715  YES NO NO 

A50 40.14 0.002381 0.000366 0.532653 NO NO NO 

A75 16.29 0.002815 0.002771 0.443820 NO NO NO 

L×A 76.12 0.001503 0.001503 1.41210  YES NO YES 

L×A25 92.53 0.000840 0.000199 1.27743 YES YES YES

L×A50 79.59 0.001390 0.000427 1.54129  YES  NO YES 

L×A75 56.10 0.002038 0.001578 1.90872 NO NO NO 

A×A50 56.58 0.002027 0.002027 38.6951 NO NO NO 

A×A75 42.71 0.002342 0.002342 51.8716 NO NO NO 

A25×A75 46.70 0.002246 0.002246 41.3314 NO NO NO 

Table 11. Goodness of fit of the simple regression model 4 (log y = a +c logx) proposed to estimate the leaf area (y) depending on the 
independent variable utilized (x). Analysis of regression residuals (normality, homoscedasticity and independence test).

Independent variable R2 Standard error a c Independence Normal distribution Homoscedastic

L 85.66 0.135 -1.457 1.720 YES NO NO

A 60.16 0.225 1.427 1.869 NO NO NO

A25 80.55 0.157 1.384 1.919 YES NO NO

A50 62.41 0.219 1.168 1.726 NO NO NO

A75 32.04 0.294 0.400 1.232 NO NO NO

L×A 86.55 0.131 0.333 1.055 YES NO NO

L×A25 93.45 0.091 0.161 1.018 YES NO NO

L×A50 90.07 0.112 0.332 1.048 YES NO NO

L×A75 81.21 0.154 0.603 1.071 YES NO NO

A×A50 72.82 0.186 1.978 1.065 NO NO NO

A×A75 59.10 0.228 1.972 1.015 NO NO NO

A25×A75 66.39 0.207 1.733 0.976 NO NO NO
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m2 leaf m−2 soil. After the maximum LAI was reached, the 
following stage lasted around 20 days (until 130 DAE) as 
the LAI values decreased rapidly in the last stage, when the 
leaves started to die. At the end, LAI values were close to 
0.50 m−2 leaf m−2 soil. These LAI values were very similar to 
the values obtained by Tei et al (1996), who explained that 
the cessation of appearance of new leaf blades occurs with 
the onset of bulbing.
Model 3 was very similar to the model obtained for an onion 
crop by Gamiely et al. (1991), and the authors selected a 
model “y = a+cx”, considering total leaf length (L) as the 
independent variable. Other authors such as Hoffman (1971), 
developed a model “log y = a + c logx” also using L as the 
independent variable. 
In all the proposed models, sampling occasion 4 showed the 
highest differences between predicted and measured leaf 
area, which can be explained by most of plants being at the 
leaf senescence stage.
It is expected that the models proposed in this paper can be 
used in other areas where growing conditions are normal. In 
situations with restriction of water or fertilizer application, or 
crops with diseases and weeds, the use of these models is 
not recommended.
Linear regression models that use leaf length and width 
are the most commonly used models and parameters for 
determining leaf area in several crops. Cittadini and Peri 
(2006) estimated leaf area using leaf length and width for 
sweet cherry. In this case, linear regression equations were 
fit using the length, width and their product as independent 
variables. Olfati et al. (2009) obtained leaf area estimates 
of red cabbage based on predictive equations derived from 
linear measurements of leaf length and width and their 
combination. A linear equation with width as the independent 
variable provided the most accurate estimate of leaf area in 
this study. In different Pecan cultivars, Torri et al. (2009) used 
regression linear models to determine leaf area, using the 
length and width as independent variables.
The use of non-linear regression models is less extensive 
for estimating leaf area. Thus, Antunes et al. (2008) used 
non-destructive measurements of leaf length and width for 
estimating the area of leaves of eight field-grown coffee 
cultivars. In this case, they obtained better results using 
power models than linear models.
Using mathematical models for estimating the leaf area 
would be an easy and time efficient non-destructive method 
for users. This approach could be useful for managers 
in agriculture and can be regarded as a decision support 
system tool since it can help in monitoring crop growth, 
while providing information for farmers on crop growth and 

development, water demand or biomass production. Such 
a mathematical model for estimating the leaf area reduces 
sampling effort and cost, and may increase precision where 
samples of leaf size are difficult to handle.
The use of these models is difficult to introduce in agriculture, 
due to the low technical knowledge of some producers. In 
spite of this, most of water users associations are advised by 
technicians, who would make the introduction of these tools 
easier. Moreover, several decision support system tools, such 
as irrigation advisory services, are now working in irrigable 
areas, so the use of these models might be included as a 
complementary activity of the irrigation advisory services, 
helping producers to use them.

Conclusions

The combined application of multivariate techniques such 
as PCA and CA for grouping leaf parameters was useful 
in reducing the number of variables from 25 to 12. Among 
the mathematical models proposed in this paper, the GLM 
explained a high proportion of high leaf area variability and 
fulfilled the model assumptions of normal distribution and 
homoscedasticity. The simple linear regression model “y 
= a+cx” yielded very similar results to those obtained with 
the GLM. Thus, both models were useful non-destructive 
methods for estimating leaf area. Model 3 (“leaf area = 
0.000199 + 1.277 L×A25”) was the best predictor of the leaf 
area. The use of mathematical models to estimate the leaf 
area is a non-destructive, easy and time efficient method for 
calculating the leaf area. It may be useful for farm managers 
and farmers, and can be regarded as a decision support 
system tool since it could be used to monitor crop growth 
and provide information to farmers on crop growth and 
development, water demand, weed control, and biomass 
production, among others.
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