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Abstract 

 

Short peptides in food protein hydrolysates are of significant interest as they may be 

highly bioactive whilst also being bioavailable. A dipeptidyl peptidase IV (DPP-IV) 

inhibitory whey protein hydrolysate (WPH) was fractionated using nanofiltration (NF) with a 

200 Da MWCO membrane. The DPP-IV half maximal inhibitory concentration of the NF 

permeate (IC50 = 0.66 ± 0.08 mg protein equivalent mL
-1

) was significantly more potent (P > 

0.05) than that of the starting WPH (IC50 = 0.94 ± 0.24 mg protein equivalent mL
-1

) and 

associated retentate (IC50 = 0.82 ± 0.13 mg protein equivalent mL
-1

). This confirmed the 

contribution of short peptides within the NF permeate to the overall DPP-IV inhibitory 

activity. An hydrophilic interaction liquid chromatography (HILIC-) and reverse-phase (RP-) 

liquid chromatography tandem mass spectrometry (LC-MS/MS) strategy, based on two 

retention time models, allowed detection of eight free amino acids and eight di- to 

tetrapeptides in the NF permeate. The potential sequences of the peptides within the NF 

permeate were then ranked on the basis of their highest probability of occurrence. A 

confirmatory study with synthetic peptides showed that valine-alanine (VA), valine-leucine 

(VL), tryptophan-leucine (WL) and tryptophan-isoleucine (WI), displayed DPP-IV IC50 

values < 170 µM. The NF and LC-MS strategy employed herein represents a new approach 

for the targeted identification of short peptides within bioactive food protein hydrolysates. 

 

 

Key words: bioactive peptides, mass spectrometry, short peptides, retention time, dipeptidyl 

peptidase IV inhibition 
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1. Introduction 

There is a growing interest in the utilisation of naturally-derived food products with 

health benefits such as antioxidant, antidiabetic and antihypertensive properties (Korhonen & 

Pilhanto, 2006; Li-Chan, 2015). Short peptide sequences are of particular interest as they 

have been associated, in certain instances, with both high bioactive potency and 

bioavailability (Segura-Campos, Chel-Guerrero, Betancur-Ancona, & Hernandez-Escalante, 

2011). This may be due to the fact that specific short peptides may be stable to 

gastrointestinal digestion and be absorbed intact in the intestinal epithelium (Foltz et al., 

2007). 

Enzymatic hydrolysis of milk proteins is a strategy frequently used for the generation 

of bioactive peptides. However, milk protein hydrolysates can contain a complex mixture of 

peptides. Therefore, fractionation of milk protein hydrolysates is employed to: (i) generate 

fractions enriched in bioactive peptides and (ii) reduce their compositional complexity, which 

may help in subsequent peptide identification. 

To date, the most frequently used techniques to separate peptides have been based on 

membrane processing and/or chromatographic separation (Bazinet & Firdaous, 2013; 

Poliwoda & Wieczorek, 2009). Nanofiltration (NF) has been utilised to enrich milk protein 

hydrolysates in bioactive peptides. It has been shown that both the molecular mass and 

peptide charge affect peptide transmission through NF membranes (Pouliot, 2008; Pouliot, 

Gauthier, & L'Heureux, 2000). 

Food protein-derived bioactive peptides can differ in length (generally < 6 amino 

acids) and physicochemical properties (Panchaud, Affolter, & Kussmann, 2012). For 

example, in the case of dietary antidiabetic peptides, several di- and tripeptides have been 

shown to be relatively potent in vitro (Lacroix & Li-Chan, 2012; Nongonierma & FitzGerald, 

2014). Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is a strategy 
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commonly used to identify specific peptide sequences within food protein hydrolysates. 

However, LC-MS/MS detection of short peptides within food protein hydrolysates still 

presents several technical challenges. This is linked to the fact that a number of different 

peptide sequences can correspond to the same molecular mass. Therefore, the application of 

different separation strategies prior to MS detection can provide additional information to 

allow for short peptide identification. This is the case for chromatographic separation as 

peptide retention on a chromatographic matrix depends both on the sequence and the 

chromatographic conditions (Zou, Zhang, Hong, & Lu, 1992). The retention time of short 

peptides can be predicted using algorithm models based on properties such as peptide size 

and amino acid position within the peptide sequence (i.e., at the N-, the C-terminus or within 

the peptide sequence) (Krokhin, 2006; Le Maux, Nongonierma, & FitzGerald, 2015; Meek, 

1980; Tripet et al., 2007). Furthermore, the combination of different separation modes such 

as hydrophilic interaction liquid chromatography (HILIC) and reverse-phase (RP) 

chromatography has been shown to further enhance the accuracy of short peptide 

identification (Harscoat-Schiavo et al., 2012). 

The aim of this study was to validate a strategy involving NF, LC-MS/MS and 

retention time prediction for the selective enrichment and specific identification of short 

peptides in a bioactive protein hydrolysate. To support this approach, an antidiabetic in vitro 

bioassay measuring DPP-IV inhibition was employed. Dipeptidyl peptidase IV (DPP-IV) is a 

metabolic enzyme which has been identified in the degradation of incretins (glucose 

dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1)), resulting 

in a loss in their insulinotropic properties in vivo (Juillerat-Jeanneret, 2014). To date, di- and 

tripeptide sequences have mainly been identified using in silico digestion followed by 

confirmatory studies with synthetic peptides along with peptide library approaches (Hikida, 

Ito, Motoyama, Kato, & Kawarasaki, 2013; Lan et al., 2015; Nongonierma & FitzGerald, 
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2013a; Tulipano, Sibilia, Caroli, & Cocchi, 2011). However, to our knowledge, no di- and 

tripeptides with DPP-IV inhibitory properties have to date been directly identified within 

milk protein hydrolysates using LC-MS. 

This study was carried out using a whey protein hydrolysate (WPH) with DPP-IV 

inhibitory activity. NF of the WPH was used to enrich for short peptides in the permeate. 

Milk protein-derived short peptide sequences were detected in the NF permeate and their 

overall contribution to DPP-IV inhibitory properties was assessed using a synthetic peptide 

confirmatory study. 

 

 

2. Materials and methods 

 

2.1. Reagents 

Trifluoroacetic acid (TFA), tris(hydroxymethyl)aminomethane (TRIS), Gly-Pro-pNA, 

diprotin A (IPI), porcine DPP-IV (≥ 10 units mg
-1

 protein), high pressure liquid 

chromatography (HPLC) and MS grade water and acetonitrile (MeCN) were obtained from 

Sigma Aldrich (Dublin, Ireland). Hydrochloric acid (HCl) and sodium hydroxide (NaOH) 

were from VWR (Dublin, Ireland). The synthetic peptides cysteine-isoleucine-valine-leucine 

(CIVL) and leucine-cysteine-valine-leucine (LCVL) were from Genscript (Piscataway, NJ, 

USA) while glycine-isoleucine (GI), leucine-glycine (LG), serine-valine (SV), tyrosine-

isoleucine (YI), tyrosine-leucine (YL), isoleucine-tyrosine (IY) and isoleucine-glycine (IG) 

were from Bachem (Bubendorf, Germany). Standard peptides (purity ≥ 95% (w/w)) used for 

the retention time prediction models were purchased from Bachem, GenScript or Thermo 

Fisher Scientific (Waltham, MA, USA) as per Le Maux et al. (2015). The whey protein 

substrate (88.3% (w/w) protein) was obtained from Carbery Food Ingredients (Ballineen, 
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Ireland). All other chemicals were obtained from Sigma Aldrich and were of analytical grade 

unless otherwise stated. 

 

2.2. Enzymatic hydrolysis of whey proteins and NF fractionation of the hydrolysate 

The WPH was generated using a food-grade pancreatic proteinase preparation at 

semi-pilot scale (200 L) as described by Nongonierma and FitzGerald (2013b). After 4 h 

hydrolysis, heat inactivation of the enzyme preparation was achieved by continuous heating 

to 85°C with 25 s holding time in a Unison H17 plate heat exchanger (Unison Engineering 

Services Ltd., Limerick, Ireland). The hydrolysate was then nanofiltered using a membrane 

housing containing a 200 Da molecular weight cut off (MWCO) spiral wound Synder 

Filtration NF membranes, NFX-2A-3838 with 31 mil spacer, at 50°C and 22 bar inlet 

operating pressure. NF was conducted until 10.5% (w/v) solids were reached in the retentate. 

Different samples were collected throughout the process (hydrolysate, 200 Da permeate and 

200 Da retentate). These were freeze-dried (FreeZone 18L, Labconco, Kansas City, U.S.A.) 

and stored at -20°C until utilization. 

 

2.3. Determination of total nitrogen 

Total nitrogen content of the WPH, NF permeate and retentate was determined in 

triplicate (n=3) by Kjeldahl analysis as previously described by Connolly, Piggott, and 

FitzGerald (2013), with a KjelFlex K-360 (BUCHI Labortechnik AG, Flawil, Switzerland). A 

conversion factor of 6.38 was used to calculate the protein equivalent in the different samples 

(Cerbulis, Woychik, & Wondolowski, 1972). 
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2.4. DPP-IV inhibition assay 

The protein hydrolysates were dispersed in HPLC-grade water at concentrations 

ranging from 31.3 × 10
-3

 to 5.0 mg mL
-1

 (final concentration). The DPP-IV inhibition assay 

was carried out as described by Nongonierma and FitzGerald (2013a). Each sample was 

analysed in triplicate. The DPP-IV half maximal inhibitory concentration (IC50) values were 

determined by plotting the percentage inhibition as a function of the concentration of test 

compound. 

 

2.5. Reverse-phase ultra-performance liquid chromatography (RP-UPLC) of the 

hydrolysates and associated NF fractions 

The peptide profiles of the different samples were determined by RP-UPLC (Acquity 

- Waters, Dublin, Ireland) equipped with a 2.1  50 mm, 1.7 µm Acquity UPLC BEH C18 

column and an Acquity BEH C18 1.7 μm vanguard pre-column (Waters) as described by 

Nongonierma and FitzGerald (2012). For each sample, 50 µg (final concentration: 5 g L
-1

, 

injection volume: 10 µL) was injected onto the column. 

 

2.6. Peptide detection with liquid chromatography-mass spectrometry (LC-MS/MS) 

Samples were analysed by LC-MS/MS using a UPLC system (Waters) coupled to a 

quadrupole time-of-flight mass spectrometer (Impact HD™, Bruker Daltonics GmbH, 

Bremen, Germany). The MS was equipped with an electrospray ionisation (ESI) source used 

in positive ion mode. Instrument control and data acquisition were performed using Hystar™ 

software (Bruker Daltonics). 

Two complementary chromatographic modes were used for peptide separation prior 

to MS/MS analysis. RP and HILIC separations were used as compounds elute differently on 

these two matrices. RP-UPLC was performed using an Acquity BEH C18 column (2.1 x 150 
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mm, 1.7 µm) equipped with an Acquity BEH C18 1.7 μm vanguard pre-column (Waters). 

Mobile phase A was 0.1% (v/v) TFA in water whereas mobile phase B was 0.1% (v/v) TFA 

in MeCN. A linear gradient from 100 to 60% solvent A was applied for 120 min at a flow 

rate of 0.2 mL min
-1

. The column temperature was maintained at 40ºC. Samples were diluted 

in solvent A (final concentration of 5 g L
-1

) and filtered through 0.2 µM cellulose acetate 

filters before injection (2 µL). The UPLC system was equipped with a tunable UV detector 

set at 214 and 280 nm. The operating conditions were initially investigated to obtain the 

optimal separation of a complex milk protein hydrolysate sample. MS measurements were 

performed over a 70-700 m/z acquisition range. MS data were processed on Compass 

DataAnalysis 4.0 SP5 (Bruker Daltonics). 

HILIC chromatography was performed on an Acquity BEH amide column as 

previously described by Le Maux et al. (2015). The MS operating conditions were similar to 

those described above for RP-LC-MS/MS. 

 

2.7. Retention time prediction models and identification of short peptides by LC-MS  

Retention time prediction models were coupled to MS/MS data in order to improve 

peptide identification. The HILIC retention time model used was as described by Le Maux et 

al. (2015). Another model based on RP separation was developed herein using a similar 

strategy. Briefly, a training set of 153 standard peptides was used to determine the algorithm 

of the RP prediction model. These peptides were selected based on their range of 

hydrophilicity/hydrophobicity, peptide size (di- to tetrapeptides) and sequence. Matlab 

(version 2014b, The MathWorks Inc., Natick, MA, USA) was used to generate coefficients 

representing the impact of each amino acid on peptide apparent hydrophobicity. These 

hydrophobicity coefficients were determined depending on amino acid location (C-, N-

terminus or within the peptide sequence). The apparent hydrophobicity of a peptide (H) was 
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determined as the sum of each amino acid coefficient in the peptide chain (Meek, 1980). 

Subsequently, a linear regression was performed to predict retention time using both peptide 

sequence and length. The RP retention time model was statistically validated as previously 

described (Le Maux et al., 2015). 

The approach to identify short peptides within the nanofiltrate was also as described 

by Le Maux et al. (2015). A list of potential peptides, which corresponded to the properties of 

the detected peptides, was generated using a mass tolerance set at 0.1 Da. An in-house bovine 

milk protein database was built in order to discard non relevant peptides using all the 

available genetic variants, given in PubMed, of the major bovine milk proteins (β-

lactoglobulin, α-lactalbumin, bovine serum albumin, lactoferrin, αs1-, αs2-, β- and κ-casein). 

As several peptide sequences could correspond to the retention time and molecular mass of 

one peptide signal, these potential peptides were ranked as a function of their retention time 

differences (observed minus predicted retention times). 

 

2.8. Statistical analysis 

Means comparison was carried out using a one way ANOVA. Post-hoc tests were 

conducted following a Student Newman-Keuls test using SPSS (version 22, SPSS Inc., 

Chicago, IL, USA) at a significance level P < 0.05. 

 

 

3. Results 

 

3.1. Peptide profile of the WPH and associated NF fractions 

The RP-UPLC profiles for the WPH and its associated NF retentate and permeate are 

depicted in Fig. 1. The WPH and its NF retentate had similar peptide profiles showing a large 
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number of peptide peaks eluting during the first 25 min of the MeCN gradient. In contrast, 

the NF permeate shows a less complex profile, with 3 main peaks eluting at 2.9, 4.8 and 7.7 

min. Similar peaks were also present in the WPH and the NF retentate, but at a lower 

intensity in the WPH than in the NF permeate. 

 

3.2. DPP-IV inhibitory activity of the WPH and associated NF fractions 

The DPP-IV IC50 values were 0.94 ± 0.24, 0.82 ± 0.13 and 0.66 ± 0.08 mg protein 

equivalent mL
-1

 for the WPH, NF retentate and permeate, respectively (Table 1). The DPP-IV 

IC50 for the NF permeate was significantly lower (P < 0.05) than that of the WPH and NF 

retentate. 

The NF permeate peptide profile showed a significantly reduced complexity (i.e., 

three main peptide peaks, Fig. 1). In addition, it displayed the highest DPP-IV inhibitory 

potency (Table 1). Therefore, LC-MS/MS analysis was applied to the NF permeate with a 

view to specifically identify short peptides contributing to the overall DPP-IV inhibitory 

properties of the WPH. 

 

3.3. Development of the reverse phase (RP) retention time prediction (RTpred) model 

The retention time prediction (RTpred) model was best described by the equation: 

          (Equation 1) 

The constants a and b were optimised through iterations of the amino acid 

hydrophobic coefficients and were defined in the operating conditions as - 1.384 ± 0.194 and 

0.9383 ± 0.006, respectively. The established amino acid hydrophobic coefficients that 

allowed equation 1 to have the highest R
2 

are described in Supplementary Table S1. The 

peptide apparent hydrophobicity (H) was calculated using these coefficients. Tryptophan (W) 
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had the highest hydrophobic coefficients, followed by phenylalanine (F) > leucine (L) and 

isoleucine (I) > tyrosine (Y), methionine (M) and valine (V). The basic and polar with 

uncharged side group amino acids exerted a very low influence on the retention time. 

However, depending on their position in the peptide sequence, some of these amino acids 

displayed a large difference between their hydrophobic coefficients. For instance, the 

hydrophobic coefficients for threonine (T) were low but displayed large variations (from -

5.387 to 5.563 in C- and N-terminus, respectively) compared to W coefficients which were 

high but varied within a narrow range (from 25.659 to 28.989 in N- and C-terminus, 

respectively). The position of some amino acids in the peptide sequence had an impact on the 

retention time. Indeed, twenty-five pairs of homologous peptides (peptides with the same 

amino acid composition but in a different sequence) were analysed, nineteen of these peptides 

had significantly (P < 0.05) different retention time (data not shown). For example, the 

dipeptides WD and DW had retention times of 22.076 ± 0.077 and 33.477 ± 0.019 min, 

respectively. There were no peptides eluting before 2.1 min, which represented the void 

volume of the column. 

The RP retention time model was statistically validated, having an R
2
 of 0.978, a F-

statistic of 2.23 × 10
4
 with an extremely low P-value (P < 5 × 10

-324
) and a Durbin–Watson 

statistic value of 1.762. The Cook’s distance and the residual plots of this prediction model 

were considered acceptable as no outliers could be determined (data not shown). The root 

mean squared error of the model, as well as the root mean squared errors of two cross-

validations, leave-one-out and tenfold cross-validations, revealed the robustness of the model 

as the values were of 2.724, 2.992 and 2.995, respectively. The predicted retention time had 

intervals of 6.8 and 8.4 min for confidence levels of 95 and 99%, respectively (Fig. 2). 

Therefore, a 10 min difference interval between the observed and predicted retention times 

was used as a cut off to select the possible peptide candidates. 
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3.4. Identification of peptides within the NF permeate of the WPH 

A relatively low number (16) of compounds could be detected by LC-MS/MS within 

the NF permeate (Table 2). For the first time, the peptides of this NF permeate sample were 

subsequently identified. These compounds were analysed by correlating their molecular 

mass, retention time and MS/MS spectrum. As several sequences could match the properties 

of one compound, these sequences were defined as potential peptides within the NF 

permeate. The presence of potential peptide sequences was searched against an in-house 

bovine milk protein database in order to reject non-relevant peptides. Eight amino acids, 

seven dipeptides and one tetrapeptide were detected within the NF permeate. The potential 

peptide sequences were ranked based on their highest probability of occurrence (Table 2). 

This was achieved by using the two retention time models (RP and HILIC) to allow for a 

more accurate ranking of homologous peptides. For instance, the molecular mass of peptide 

No. 10 in Table 2 corresponded to 6 (GI, GL, IG, LG, AV and VA) potential peptide 

sequences, but only 5 (GI, GL, IG, LG and AV) of these had predicted retention times that 

were within 10 min of the observed peptide retention time. Moreover, these potential peptides 

were ranked based on their retention time differences (predicted versus observed retention 

times), with GI and GL having the highest probability, followed by IG and LG, and then AV. 

VA was excluded as a potential peptide candidate for compound No. 10 as the difference 

between its predicted and observed retention time in RP conditions was > 10 min. Y, F and 

W showed the highest intensities by UV detection at 214 nm in HILIC-MS/MS and RP-

MS/MS, which is in accordance with the peptide profile in Fig. 1 where these aromatic amino 

acids eluted at 2.9, 4.8 and 7.7 min, respectively. 
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3.5. Confirmatory study of DPP-IV inhibitory activity with synthetic peptides 

Several of the peptide sequences identified within the NF permeate have previously 

been identified in the literature (Table 2). Therefore, only the peptide sequences which had 

not previously been reported for their DPP-IV inhibitory properties were synthesised for 

further confirmatory study. It was conducted to determine which compounds within the NF 

permeate were bioactive. Previously published DPP-IV IC50 values for the amino acids which 

were found within the NF permeate are shown in Table 3 (Nongonierma, Mooney, Shields, & 

FitzGerald, 2013). In addition, IW, LW, WL, WI VA, GL, FW, WF and VL have also been 

previously evaluated for their DPP-IV inhibitory potential (Lan, Ito, Ito, & Kawarasaki, 2014; 

Lan et al., 2015; Nongonierma & FitzGerald, 2013a, 2013d; Tulipano et al., 2011). Three 

peptides reported for the first time (CIVL, LCVL and GI) were evaluated for their in vitro 

DPP-IV inhibitory properties in this study (Table 2). Their DPP-IV IC50 values are reported 

in Table 3. WL was the most potent DPP-IV inhibitory peptide identified within the NF 

permeate, with an IC50 value of 43.6 µM. The NF permeate contained four potential DPP-IV 

inhibitory peptides, VL, VA, WL and WI with IC50 values < 170 µM. 

 

 

4. Discussion 

 

The fractionation of complex peptide mixtures followed by the identification of 

bioactive peptides is of major interest as it allows further optimisation of the protein 

hydrolysis processes, with the view of increasing the potency of bioactive ingredients. The 

NF and LC-MS/MS approach describe herein allowed for the development of an integrated 

strategy aimed at the identification of potent short DPP-IV inhibitory peptides within a WPH. 

Previous studies have identified short milk protein-derived peptides within milk protein 
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hydrolysate fractions (Lacroix & Li-Chan, 2014; Silveira, Martínez-Maqueda, Recio, & 

Hernández-Ledesma, 2013). However, the peptides reported were  4 amino acid residues in 

length. To our knowledge, it is the first time that di and tripeptides are identified using LC-

MS/MS within a milk protein hydrolysate fraction. 

Identification of short peptide sequences in complex food protein hydrolysates is 

challenging. Therefore, a new RP retention time prediction model focused on short peptide 

(up to four amino acids in length) separation was developed. It was based on the amino acid 

location within a peptide and its impact on peptide apparent hydrophobicity. Previous studies 

have also highlighted the impact of N- and C-terminal amino acids on the retention time of 

peptides in RP conditions (Krokhin, 2006; Tripet et al., 2007). These studies showed a similar 

trend to the model herein concerning the influence of each residue on peptide hydrophobicity 

with W, F, L and I having the highest impact. Interestingly, the elution order of peptides 

under RP and HILIC conditions were not the mirror image of each other as the contribution 

of each amino acid to the RP retention time was not the exact opposite of their contribution in 

HILIC conditions (Le Maux et al., 2015). Therefore, the differences between the two 

separation modes showed that HILIC- and RP-LC were complementary peptide separation 

methods. The use of complementary separation methods has previously been shown to 

significantly enhance peptide identification (Harscoat-Schiavo et al., 2012). Peptide 

identification was improved herein by focusing on di- to tetrapeptides and discriminating on 

the basis of the amino acid position within the peptide chain. This peptide identification 

strategy permitted the compilation of a short ranked list of potential sequences for the 

unknown peptides detected in the NF permeate (Table 2). 

Previous fractionation studies were performed on the WPH fractionation using a 2 

kDa ultrafiltration membrane and an hydrophobic solid-phase extraction (SPE) resin 

(Nongonierma & FitzGerald, 2013b). When the SPE fraction was analysed by LC-MS/MS in 
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the previous study, 45 potential peptides were identified. However, this number of potential 

peptide candidates was too high to distinguish which peptide sequence(s) may be responsible 

for the DPP-IV inhibitory properties (Le Maux et al., 2015). The NF fractionation approach 

described herein allowed the generation of a fraction with a reduced complexity (16 

compounds) and a significant higher DPP-IV inhibitory activity than the WPH. While the 

IC50’s of the different samples were of the same order, this approach demonstrated that short 

peptides were responsible in part for the bioactivity of the WPH. This NF permeate fraction 

was characterised in the present study for the first time. The masses of the compounds 

detected in the NF permeate were compatible with the nominal MWCO of the membrane as it 

contained free amino acids and short peptides (2-4 amino acid in length). As the permeation 

of compounds through the membrane is dependant of the NF conditions (i.e., pressure, 

temperature, etc.) as well as the peptide conformation, it may explain the detection of a 

447.295 Da peptide in the permeate. As this study focused on short peptides, the NF permeate 

was the only sample which was further characterised by LC-MS/MS. Moreover, the NF 

permeate was the most potent fraction and displayed a reduced peptide profile complexity.  

The DPP-IV inhibitory properties of three amino acids found within the NF permeate 

(L, M and W) had previously been demonstrated. However, their DPP-IV inhibitory potency 

was quite low (IC50 > 2300 µM (Nongonierma et al., 2013)). The most potent peptides (IC50 

< 170 µM) found within the NF permeate of WPH were WI, WL, VA and VL. This result 

was in agreement with a previous in silico study using a peptide alignment strategy, which 

showed that peptides possessing a W at the N-terminus and/or a P at position 2 generally had 

DPP-IV IC50’s < 200 µM (Nongonierma & FitzGerald, 2014). Interestingly, WL (IC50 = 43.6 

µM), the most potent peptide within the NF permeate sample was of the same order of DPP-

IV inhibitory potency as LKPTPEGDL (IC50 = 45 µM) and IPAVF (IC50 = 44.7 µM), which 

had previously been identified within whey protein hydrolysates (Lacroix & Li-Chan, 2014; 
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Silveira et al., 2013). It was shown in previous studies that specific milk protein-derived 

peptides with a DPP-IV IC50 value of the same order as the most potent peptides identified 

within the NF permeate displayed an antidiabetic activity in vivo. This was the case with the 

DPP-IV inhibitory peptides VAGTWY (β-lactoglobulin f15-20; IC50 = 174 µM) and 

LPQDIPPL (β-casein f70–77; IC50 = 46 µM) which mediated insulinotropic and serum 

glucose lowering activities in small animals (Uchida, Ohshiba, & Mogami, 2011; Uenishi, 

Kabuki, Seto, Serizawa, & Nakajima, 2012). The results presented herein need to be assessed 

in vivo in order to understand how they may affect serum glucose regulation. 

The interest in focusing on short (di- tri and tetra-) peptides was related to the fact that 

these sequences may be bioavailable as they may be able to survive gastrointestinal digestion 

and also display an increased intestinal permeability compared to larger peptides or free 

amino acids. Permeation of short peptides (di- and tripeptides) through Caco-2 cell 

monolayers has been reported in in vitro studies (Shimizu, Tsunogai, & Arai, 1997). Human 

studies have also shown that short peptides have the ability to cross the gut barrier as they 

were identified in the serum following the ingestion of a yoghurt enriched in the 

lactotripeptides, LPP and VPP (Foltz et al., 2007), or milk protein hydrolysates (Morifuji et 

al., 2010). In silico digestion of the most potent peptides (VL, VA, WL and WI) indicated 

that VA and VL may be stable to digestion with gastrointestinal enzymes as described in 

Nongonierma and FitzGerald (2013c) (data not shown). However, confirmatory in vitro and 

in vivo studies are required to support these results. 

 

 

5. Conclusion 
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A new strategy to identify short peptides was developed, being innovative in the 

utilisation of a RP and HILIC approach designed for di- to tetrapeptides. This new approach 

allowed the differentiation between homologous peptides. This method was optimised to 

identify short peptides which cannot usually be identified by MS/MS and de novo searches. 

The use of further separation methods prior to MS, such as ion-exchange or capillary 

electrophoresis, may lead to the determination of a unique peptide sequence for each 

compound detected. 

To our knowledge, NF has not been previously employed during the fractionation and 

further identification of DPP-IV inhibitory peptides from complex food protein hydrolysate 

samples. Specific short peptide sequences found within the NF permeate of the WPH were 

shown to be relatively potent DPP-IV inhibitory peptides (IC50 < 170 µM). This 

demonstrated that short peptides were also responsible for the overall DPP-IV inhibitory 

potential of the WPH. Furthermore, these peptides were predicted in silico to be relatively 

stable to gastrointestinal digestion. However, these results need to be confirmed following in 

vitro and in vivo digestion of the fraction.  

The results reported in this study demonstrated that, with the strategy employed, it 

was possible to improve the fractionation and subsequently the detection of short DPP-IV 

inhibitory peptides in a milk protein hydrolysate. The strategy described herein is highly 

relevant to the discovery of short bioactive peptide sequences.
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Figure captions 

 

Fig. 1. Reverse-phase ultra-performance liquid chromatographic (RP-UPLC) profile 

of (A) the whey protein hydrolysate (WPH), (B) its associated 200 Da retentate and (C) 

permeate. MeCN: acetonitrile. The amino acids Y, F and W elute at 2.9, 4.8 and 7.7 min, 

respectively. 

 

Fig. 2. Plot of predicted versus observed retention times of the set of 153 training 

peptides. The observed retention times (RTobs) corresponds to the mean of three replicates (n 

= 3). Peptide trendline, black solid line; confidence limits of the prediction at 95%, black 

dashed line; confidence limits of the prediction at 99%, grey solid line. 
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Table captions 

 

Table 1 Dipeptidyl peptidase IV (DPP-IV) inhibitory potency (concentration of 

sample inducing 50% DPP-IV inhibition - IC50) of the whey protein hydrolysate (WPH) and 

its associated nanofiltration (NF) retentate and permeate. 

 

Table 2 Peptide and free amino acid identification in the nanofiltration (NF) whey 

protein hydrolysate (WPH) permeate using the in-house milk protein database and the reverse 

phase (RP) and hydrophilic interaction liquid chromatography (HILIC) retention time 

prediction models. The number of possible compounds was based on the Mw determined 

experimentally by LC-MS/MS with an error of 0.1 Da. 

 

Table 3 Concentration of peptides, identified within the nanofiltration (NF) whey 

protein hydrolysate (WPH) permeate, inducing 50% inhibition (IC50) of dipeptidyl peptidase 

IV (DPP-IV). 
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Table 1 

 

Test sample DPP IV IC50 

(mg protein equivalent mL
-1

)
*
 

WPH 0.94 ± 0.24
b
 

WPH NF retentate 0.82 ± 0.13
b
 

WPH NF permeate 0.66 ± 0.08
a
 

 

*Values represent mean IC50 values ± confidence interval (P = 0.05), n=3. Values 

with different superscript letters are significantly different (P < 0.05). The DPP-IV 

IC50 of IPI (diprotin A) was of 0.0013 ± 0.0002 mg mL
-1

. 
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Table 2 

 

Peptide 

No. 

Mw+H 

(Da) 

No. of 

peptides with 

the targeted 

Mw 

No. of potential 

sequences after the 

models and milk 

database 

Potential sequences 

(ranked in peptide 

order)* 

Sequences previously 

assessed for their DPP-

IV inhibition** 

1 118.086 1 1 V V 

2 132.101 2 2 I, L I, L 

3 132.101 2 2 I, L I, L 

4 150.058 1 1 M M 

5 166.086 1 1 F F 

6 175.118 3 1 R R 

7 182.080 1 1 Y Y 

8 189.122 6 4 AV, VA > IG, GI AV, VA 

9 189.122 6 4 AV, VA > IG, GI AV, VA 

10 189.122 
6 5 GI, GL > IG, LG > 

AV 

GL, LG, AV 

11 205.096 7 1 W W 

12 231.168 6 4 IV, VI, LV, VL IV, VI, LV, VL,  

13 295.165 6 4 IY, YI, LY, YL YI, LY, YL 

14 318.182 105 4 IW, WI, LW, WL IW, WI, LW, WL 

15 447.295 1082 2 CIVL > LCVL - 

 

* Sequences separated by a comma have the same probability of occurrence, whereas “>” showed the 

sequences with higher probability of occurrence. Novel peptides selected for the DPP-IV inhibitory 

confirmatory study are highlighted in bold. 

** Peptides previously identified for their DPP-IV inhibitory properties as described elsewhere (Lan et al., 

2015; Nongonierma & FitzGerald, 2014). 
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Table 3 

Peptide sequence /amino 

acid 

DPP IV IC50 

(M)* 

Reference 

V nm (Nongonierma et al., 2013) 

L 3419.25 (Nongonierma et al., 2013) 

I nm (Nongonierma et al., 2013) 

M 2381.51 (Nongonierma et al., 2013) 

F nm (Nongonierma et al., 2013) 

W 4280.40 (Nongonierma et al., 2013) 

R nm (Nongonierma et al., 2013) 

Y nm (Nongonierma et al., 2013) 

IPI 3.73 ± 0.67
a
 this study 

CIVL nm this study 

LCVL nm this study 

IW nm (Nongonierma et al., 2013) 

LW 993.4 (Nongonierma & FitzGerald, 2013c) 

WL 43.6 (Nongonierma & FitzGerald, 2013c) 

WI 138.7 (Nongonierma & FitzGerald, 2013c) 

VA 168.2 (Nongonierma & FitzGerald, 2013a) 

AV nm (Lan et al., 2015) 

IG nm this study 

GI nm this study, (Lan et al., 2015) 

GL 2615 (Nongonierma & FitzGerald, 2013a) 

LG nm this study, (Lan et al., 2015) 

YI 1488.50 ± 

229.79
c
 

this study 

 nm (Lan et al., 2015) 

YL 940.20 ± 279.00
b
 this study 

 nm (Lan et al., 2015) 

IV nm (Lan et al., 2015) 

VI nm (Lan et al., 2015) 

LV nm (Lan et al., 2015; Tulipano, Sibilia, Caroli, 

& Cocchi, 2011) 

VL 74 (Lan et al., 2014) 

IY nm this study 

LY nm (Lan et al., 2015) 
 

*Values represent mean IC50 values ± confidence interval (P = 0.05), n=3. Values with a 
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different superscript letters are significantly different (P < 0.05). nd: not determined; nm: not 

measureable, i.e.,% DPP-IV inhibition < 50% when tested at the highest concentration 

evaluated during the dose response experiment. 
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Highlights 

 Nanofiltration (NF) was used to fractionate a whey protein hydrolysate (WPH). 

 An HILIC and RP-UPLC peptide retention time model was developed. 

 This strategy allowed characterisation of short peptides within the NF permeate. 

 DPP-IV inhibitory activity was increased in the NF permeate compared to WPH. 

 VA, VL, WL and WI displayed DPP-IV IC50 values lower than 170 µM. 


