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Abstract

Background

Early life stress is a risk factor for many psychiatric disorders ranging from depression to anxi-

ety. Stress, especially during early life, can induce dysbiosis in the gut microbiota, the key

modulators of the bidirectional signalling pathways in the gut-brain axis that underline several

neurodevelopmental and psychiatric disorders. Despite their critical role in the development

and function of the central nervous system, the effect of n-3 polyunsaturated fatty acids (n-3

PUFAs) on the regulation of gut-microbiota in early-life stress has not been explored.

Methods and Results

Here, we show that long-term supplementation of eicosapentaenoic acid (EPA)/docosahex-

aenoic acid (DHA) (80% EPA, 20% DHA) n-3 PUFAs mixture could restore the disturbed

gut-microbiota composition of maternally separated (MS) female rats. Sprague-Dawley

female rats were subjected to an early-life stress, maternal separation procedure from post-

natal days 2 to 12. Non-separated (NS) and MS rats were administered saline, EPA/DHA

0.4 g/kg/day or EPA/DHA 1 g/kg/day, respectively. Analysis of the gut microbiota in adult

rats revealed that EPA/DHA changes composition in the MS, and to a lesser extent the NS

rats, and was associated with attenuation of the corticosterone response to acute stress.

Conclusions

In conclusion, EPA/DHA intervention alters the gut microbiota composition of both neurode-

velopmentally normal and early-life stressed animals. This study offers insights into the

interaction between n-3 PUFAs and gut microbes, which may play an important role in

advancing our understanding of disorders of mood and cognitive functioning, such as anxi-

ety and depression.
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Introduction
Stress, especially in early life has been identified as a cause of the disruption of this develop-
mental pattern leading to a variety of disorders ranging from gastrointestinal disorders [1], to
anxiety and depression [2]. In rodents, the maternal separation (MS) model is a well-known
paradigm that induces brain-gut axis dysfunction [3]. The separated phenotype alters many
components of the brain-gut axis throughout the body including the hypothalamic–pituitary
adrenal (HPA) axis [3], the immune and neuroendocrine systems [4]. Growing evidence con-
siders these abnormalities comorbid with changes in the gut microbiota [5–7] as well as crucial
risk factors for the development of mental illnesses such as anxiety and depression [8, 9].

There is increasing evidence suggesting a bi-directional communication between the central
nervous system (CNS) and the gut-microbiota which is recognized as the microbiome–gut–
brain axis [10–12]. This communication is believed to influence the parallel development of
both CNS and gut microbiota which can remarkably influence health and disease [13]. Emerg-
ing evidence has shown the involvement of the gut microbiota in maternal stress and maternal
separation in brain and associated behaviour [14]. Prenatal stress has been shown to change
the composition of the microbiome in adult rat [15] neonatal mice [16] and infant humans
[17]. Changes in the gut microbiota composition were reported in monkeys subjected to mater-
nal separation between six and nine months of age with shedding of lactobacilli three days fol-
lowing separation, followed by the return of normal lactobacilli levels seven days later.
Moreover, we have previously shown, albeit using somewhat crude Denaturing Gradient Gel
Electrophoresis- based analysis, that adult rats that underwent maternal separation showed
altered faecal microbial composition compared with normally reared control animals [4].

It is well recognized that eating habits are of relevance to (mental) health [18]. Moreover,
there is a growing appreciation for the impact of dietary fatty acids on the intestinal microbiota
composition of the host [19–21]. Being critical in the development and function of the CNS, n-
3 polyunsaturated fatty acids (n-3 PUFAs) have been under the spotlight for decades [22]. The
possible underlying mechanisms by which n-3 PUFAs exert their beneficial effects on health
are diverse, involving for instance, HPA, neuroendocrine and immune regulations [23, 24].

In light of these observations, we reported recently the beneficial effects of n-3 PUFAs on
reduction of anxiety-like, depressive-like behaviours and improved cognition in female rats
[25]. Here we hypothesize that these beneficial effects of long-term intake of n-3 PUFAs would
have an impact on intestinal microbiota populations, which in turn, would contribute to the
reverse of gut-brain axis dysfunction associated with maternal separation. To the best of our
knowledge, this is the first study to describe the impact of n-3 PUFAs on the gut-microbiota of
female rats exposed to early-life stress.

Materials and Methods

Maternal separation
Animals were provided by Biological Services Unit (BSU), UCC, Cork, Ireland. All scientific pro-
cedures were carried out in line with Directive 2010/63/EU and were approved by the Animal
Experimentation Ethics Committee of University College Cork #2012/036. Maternal separation
was performed as previously described by our group [25, 26]. Briefly, male and female rats were
obtained from Harlan Laboratories UK (250–300 g) and mated in the local animal unit. Food
and water was available ad libitum and animals were maintained on a 12:12-h dark–light cycle
with temperature at 20 ± 1°C. MS animals were separated from their mothers from postnatal
day (PND) 2 to 12, for three hours a day. Separations were conducted between 0900h and 1200h
a.m. in plastic cages placed on top of heater pads (30–33°C) in a separate room to the main
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holding room. Non-separated (NS) animals were left undisturbed in their home cages with their
respective dams and were returned to the holding room. After postnatal day 12, rats were left
undisturbed except for routine cage cleaning every two days and a weekly body weight measure-
ment until they were 5 weeks old. Animals were group-housed 5 per cage in plastic cages with
sawdust bedding in an enriched environment with shredded paper and a cardboard roll.

Treatments
Oral administration of an eicosapentaenoic acid (EPA)/docosaexaenoic acid (DHA) (80%
EPA, 20% DHA) n-3 PUFAs mixture was administered by gavage when animals reached 5
weeks of age. In order to avoid any confounding litter effects, individual groups consisted of
rats from multiple litters. Treatments consisted of 1) saline water; 2) EPA/DHA 0.4 g/kg/day or
Low Dose (LD); 3) EPA/DHA 1 g/kg/day or High Dose (HD). The chosen EPA/DHA concen-
trations were based on the Food and Agriculture Organization of the United Nations (FAO)
recommendations. FAO recommends a minimum DHA intake of 10–12 mg/kg per body
weight for children 6–24 months old and EPA/DHA 100–250 mg/day for children aged 2–10
years. In our study, the maximum EPA/DHA intake was 100 and 250 mg for the low dose and
the high dose per body rat, respectively. Moreover, previous studies have used the same con-
centrations proposed in this study [27, 28]. Treatments were prepared freshly every day and
administered between 0900h and 1100h a.m. The experimental time line is shown in Fig 1A.

Sample collection
Faecal pellets were collected from 17 weeks old female rats. All samples were, then, frozen
at −80°C for microbiota analysis.

Microbiota analysis
DNAwas extracted using the DNA Fast Stool DNA extraction kit (Qiagen) using the protocol for
Gram positive bacteria and including an additional bead beating step at the beginning of the proce-
dure. DNA was quantified using the Qubit High Sensitivity Kit (Life Technologies), standardised
and then used as a template for PCR. PCR primers and conditions are essentially as outlined in the
Illumina 16S Metagenomic Sequencing Library preparation guide (Illumina) with the following
exceptions: For the initial 16S PCR, the PCR was performed in duplicate 50 ul reaction volumes,
and 40 cycles were used in the PCR. Products were then pooled, cleaned with an appropriate vol-
ume of Ampure beads and eluted in 30ul/sample. This was then used as the template for the index
PCRs as outlined in the protocol (Illumina). Library quantification, normalisation, and pooling
were as outlined in the protocol. After pooling, the sample was requantified using the Qubit High
Sensitivity Kit (Life Technologies) and run on an agilent high sensitivity chip (Agilent). Library
denaturation andMiSeq sample loading were then performed as described in the protocol. The
final concentration of the library was 4pM and PhiX was spiked in as a control at 5% v/v. A 2 x
300bpMiSeq reagent was used for sequencing. Diversity analyses were performed in QIIME and
correlations used the websites Calypso at http://bioinfo.qimr.edu.au/calypso.

Results and Discussion

Long-term supplementation of EPA/DHA restores the microbiota
composition in the MS rats
In this study, the microbial composition of the faecal samples collected fromMS and NS EPA/
DHA treated and saline rats revealed significant changes in the relative abundance of the main
dominant phyla; Bacteroidetes and Firmicutes between the MS-saline and NS-saline (Fig 1B).

PUFAs, Early-Life Stress and Gut Microbiota

PLOS ONE | DOI:10.1371/journal.pone.0139721 October 1, 2015 3 / 13

http://bioinfo.qimr.edu.au/calypso


These data suggest a state of microbial dysbiosis in MS-saline group. The results coincide with
our recent findings that early life stress was associated with induced inflammatory cytokines in
plasma [25]. Indeed, a recent study using bacterial tag encoded FLX amplicon pyrosequencing

Fig 1. Schematic representation of the time course of the maternal separation procedure and EPA/DHA treatment. (B) Global average microbial
composition of faecal 17 weeks old rats samples (n = 10 per group) at phylum-level. * Indicate bacterial group significantly different between MS and NS
groups.

doi:10.1371/journal.pone.0139721.g001
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demonstrated that repeated social stress, associated with elevated levels of inflammatory cyto-
kines decreased the relative abundance in cecal bacteria of the genus Bacteroidetes, while
increasing the relative abundance of bacteria in the genus Firmicutes [29]. Moreover, reduced
Bacteroidetes: Firmicutes ratio in human stool specimen has also been shown in depressed
individuals as well as in irritable bowel syndrome (IBS) patients, which is often accompanied
by depressive symptoms [30, 31]. Interestingly, long-term administration of EPA/DHA
reversed the early-life stress-induced Bacteroidetes: Firmicutes shift in MS adult rats (Fig 1B).
Presumably, this shift suggests an anti-inflammatory effect [32] of EPA/DHA supplementa-
tion, as we previously reported [25].

Long-term EPA/DHA supplementation shifts the microbiota composition
in MS rats towards a profile similar to that in NS rats regardless of the
dose
The difference of the global microbiota composition from the 16S rDNA data of the six groups
was assessed by ordination (Fig 2A). Statistics based on random permutations of the redun-
dancy analysis (RDA) showed that the MS-saline group can significantly be separated at genus
level (p<0.001) from the MS EPA/DHA treated groups and the NS-saline and EPA/DHA
treated groups. The centroids of the MS-saline and NS groups were clearly separated; whereas
the MS EPA/DHA treated groups were in an intermediate position between the MS-saline and
NS groups. Long-term supplementation of low dose of EPA/DHA in NS rats appears to have a
different impact on the microbiota composition when compared to the NS-saline and NS-HD
groups. Together, the results point to possible interactions between EPA/DHA and members
of the gut microbiota, which may eventually influence their biological roles. In fact, in vitro
interactions of PUFAs with some probiotics have been shown to affect the growth and adhe-
sion of different Lactobacillus strains [33].

Statistical analyses of the differences of microbiota composition among the six groups at
genus level identified several taxa differentially present between the MS, NS EPA/DHA treated
and saline rats (Table 1). The significance of the taxa Akkermansia, Rikenella, Prevotella, and
Flexibacter are among the main discriminants between MS-saline, MS EPA/DHA treated and
NS groups (Fig 2B). The relative abundance of Akkermansia was induced by maternal separa-
tion suggesting elevated inflammatory response, as we recently reported [25]. In an inflamma-
tory milieu, Akkermansia, the mucus degrader, facilitates the microbial translocation to come
in direct contact with the intestinal epithelium, therefore exacerbating gut inflammation [34,
35]. The reduced abundance of Akkermansia in EPA/DHA treated groups coincide with the
findings reporting that high concentrations of PUFAs inhibited growth and adhesion to mucus
of several bacterial strains [33]. Similarly, Flexibacter, a member of Bacteroidetes, was elevated
in the microbiota isolated from tissue specimens of a subset of patient with Crohn’s disease
and ulcerative colitis [36]. Prevotella was shown to increase the sensitivity to chemically
induced colitis in experimental mice [37]. Collectively, the data reveals that taxa, previously
reported to be associated with a state of inflammation, are significantly more abundant in the
gut of MS rats. Long-term n-3 PUFAs supplementation appears to restore the microbial bal-
ance to a state similar to that in NS rats. Therefore, it is tempting to speculate a possible EPA/
DHA anti-inflammatory effect through the regulation of the gut microbiota composition.

Low corticosterone levels in MS rats is correlated with Akkermansia and
Rikenella
Recently, we showed that stress-induced corticosterone levels were reduced in MS group com-
pared to the respective controls when exposed to acute stress [25]. In order to investigate a
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possible correlation between the altered microbiota in the gut of MS-saline group and the
HPA, regression analysis was performed between corticosterone levels and the gut microbiota
of MS and NS groups. Interestingly, a negative correlation with Akkermansia (R = 0.4097,
P = 0.0019) and positive correlation with Rikenella (R = 0.4481, P = 6e-04) was observed (Fig
3). While Rikenella was reported to be associated with reduced risk of colitis [38](Couturier-
Maillard, J Clin Invest. 2013 Feb 1; 123(2): 700–711), Akkermansia has been previously shown
to exacerbate gut inflammation in mice [34, 35]. Thus, we consider that the observed high
Akkermansia abundance in MS rats may contribute to elevated levels of inflammation, which
in turn may activate the HPA as recently shown [25]. In view of that, persistent activation of
HPA may eventually lead to end organ burnout and consequent lower CORT release. Accord-
ingly, HPA hypoactivity has been previously reported in other animal models of stress [39–41].

Effects of long-term EPA/DHA supplementation on the composition of
the gut microbiota is more pronounced in MS rats
Long-term EPA/DHA supplementation has a strong impact on the composition of the gut
microbiota in MS rats (Fig 4A). In particular, high dose administration of EPA/DHA was asso-
ciated with higher levels of the butyrate producing bacteria; Butyrivibrio. Moreover, high dose
supplementation of EPA/DHA elevated the levels of several members Actinobacteria (such as
Aerococcus), with a concomitant reduction of the abundance of members of Proteobacteria

Fig 2. (A) Redundancy analysis (RDA) based on the genus level showing a significant separation between the EPA/DHA treated and saline MS
groups (P = 0.007). The hulls identify the centroids of each dataset. (B) Relative abundance of selected genera in the MS and NS saline and EPA/DHA
treated groups.

doi:10.1371/journal.pone.0139721.g002
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(such as Undibacterium). The results are in agreement with a recent study on maternal prenatal
stress, which reported lower quantities of lactic acid bacteria such as Lactobacillus, Lactococ-
cus, Aerococcus and Bifidobacteria and significantly higher relative abundance of Proteobac-
terial members [17]. Altogether, this pattern of altered gut microbiota in MS rats support the
existence of a potentially increased level of inflammation, which could be reversed by long-
term supplementation of high dose of n-3 PUFAs. In fact, diets rich in PUFAs have been
shown to positively influence immune function [42]. The possible underlying mechanisms by
which PUFAs exert their beneficial effects on health were shown to involve the inhibition of
pro-inflammatory cytokine synthesis (tumor necrosis factor alpha and interleukin-1), modula-
tion of the hypothalamic-pituitary-adrenal anti-inflammatory responses, and induction of the
release of acetylcholine [43].

Long-term EPA/DHA supplementation in NS rats had less significant impact on their gut
microbiota in comparison to their effect observed in MS rats (Fig 4B). In NS rats, long-term
administration of EPA/DHA was associated with changes in the abundance of three taxa;
Enterorhabdus, Sutterella, and Prevotella (Fig 3B). Sutterella was shown to be associated with

Table 1. Significant differentially abundant taxa betweenMS and NS EPA/DHA treated and saline groups as calculated byWilcoxon rank test at
genus level, indicated by the p-value.

Taxa P FDR
qValue

Median NS
S

Median NS
LD

Median NS
HD

Median MS
S

Median MS
LD

Median MS
HD

Planctomycetes-Phycisphaerae-
WD2101

0.00045 0.0319 0 0 0 0.00484 0.00325 0.011374

Rikenellaceae-Rikenella 0.00052 0.0319 0.175714 0.058656 0.124997 0.012741 0.014224 0.032709

Acidobacteria-
Acidobacteria_bacterium

0.00066 0.0319 0 0 0 0.002806 0.002105 0.001315

Aerococcaceae-Aerococcus 0.0013 0.047125 0 0 0 0 0 0.001569

Cytophagaceae-Flexibacte 0.0018 0.0522 0 0 0 0.001165 0 0

Burkholderiaceae-Cupriavidus 0.0025 0.059813 0 0 0 0.002325 0 0

Oxalobacteraceae-Massilia 0.0029 0.059813 0 0 0 0.000695 0 0

Xanthomonadaceae-Rhodanobacter 0.0033 0.059813 0 0 0 0 0 0.00215

Planctomycetaceae-Planctomyces 0.0053 0.076962 0 0 0 0.001545 0 0.00052

Chitinophagaceae-uncultured 0.0057 0.076962 0 0 0 0 0 0.00131

Acidobacteria-DA023-
uncultured_bacterium

0.0059 0.076962 0 0 0 0.001602 0 0.000259

Acidobacteria-DA023-
uncultured_bacterium

0.0067 0.076962 0 0 0.000315 0.001149 0 0.00271

Verrucomicrobiaceae-Akkermansia 0.0069 0.076962 0.034586 0.017324 0.048543 0.41013 0.330376 0.336236

Mollicutes-RF9-uncultured 0.0082 0.080233 0.257038 0.334292 0.392858 0.249543 0.21356 0.114447

Acidobacteriaceae-Candidatus 0.0083 0.080233 0 0 0 0.00291 0 0

Prevotellaceae-Prevotella 0.0092 0.083375 0.9102 2.68956 2.576339 3.190481 1.688466 3.033729

Spartobacteria-Chthoniobacterales 0.025 0.1885 0 0 0 0.00914 0.006015 0.00289

Caldicoprobacteraceae-
Caldicoprobacter

0.026 0.1885 0.019758 0.010302 0.012136 0.00734 0.00214 0.002545

Rikenellaceae-Alistipes 0.037 0.2262 0 0 0 0 0 0.000525

Clostridiaceae-Clostridium 0.039 0.2262 0.167448 0.154021 0.194113 0.13282 0.086339 0.103405

Ruminococcaceae-
uncultured_bacterium

0.039 0.2262 0.001072 0.00103 0.000944 0 0 0

Bacillaceae-Bacillus 0.043 0.239808 0 0 0 0.000396 0 0

Values for the six groups are medians of the relative abundance of the indicated genus. The FDR q-values are adjusted p-values that correct for multiple

testing at a defined false discovery rate (Benjamini et al., 1995).

doi:10.1371/journal.pone.0139721.t001
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some gastrointestinal infections in humans [44]. Moreover, Sutterella was shown to be of sig-
nificantly higher prevalence in biopsies taken from the gut of autistic children with gastrointes-
tinal disturbance compared to controls with GI disturbance [45]. Together, our data supports
the expected beneficial effects of n-3 PUFAs particularly in a state of microbial dysbiosis,
which is associated with inflammation.

Fig 3. Correlation between percentage abundance of Akkermansia and Rikenella and corticosterone
(CORT) plasma levels.Regression analysis revealed (A) negative correlation between low CORT levels in
MS-saline group and low abundance of Akkermansia and (B) positive correlation between low CORT levels in
MS-saline group and low abundance of Rikenella.

doi:10.1371/journal.pone.0139721.g003
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Fig 4. Effects of maternal separation (MS) and EPA/DHA administration on rat gut microbiota. Relative abundance of significantly altered microbial
genera in the MS-saline and EPA/DHA treated groups (A) and NS-saline and EPA/DHA treated groups (B). Median with interquartile ranges is depicted.
Significant difference indicated by *, p<0.05; **, p<0.01; ***, p<0.001.

doi:10.1371/journal.pone.0139721.g004
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Conclusion
We demonstrate what is to our knowledge the first time that EPA/DHA treatment normalized
early-life stress-induced disruption of female rat gut microbes. Analysis of the gut microbiota
of MS rats showed altered microbial composition with abundance of members previously
shown to be associated with inflammation. These results indicate that transient stress-induced
alteration during a crucial developmental time-window for neonatal rats has long-lasting
effects on the gut microbiota composition in adulthood. Supplementation with EPA/DHA
restored the composition of the gut microbiota in MS rats. Presumably, the EPA/DHA effect
on the gut microbiota is related to PUFAs anti-inflammatory activity. Recently, it has been
shown that omega-3 and omega-6 dramatically reduce the endotoximic and inflammatory sta-
tus in metabolic endotoxemia (Kaliannan, 2015). Intriguingly, the observed effects involved
changes in the gut microbiota, through the impact of omega-6, -3 on intestinal production and
secretion of intestinal alikaline phosphatase. The induced alterations in gut microbiota compo-
sition resulted in reduction in levels of lipopolysachharides and gut permeability, which in turn
reduces the onset of inflammation.

Overall, the healthy benefits at CNS level have ascertained the contribution made by n-3
PUFAs to stress-related disorders and put them under the spotlight for decades [46–48]. The
current study offers insight into a potential role of n-3 PUFAs through the modification of the
gut microbiota in an animal model of stress. Our data supports the previous reports showing
that the absence as well as the exacerbation of certain bacterial taxa in the gut of early-life
stressed rats may represent risk factors for the development of anxiety, depression and inflam-
matory diseases such as IBS. We postulate that EPA/DHA administration is beneficial for
restoring members of the microbiota with immunoregulatory functions in order to prevent an
overly robust stress-induced inflammatory response which may contribute to the onset of men-
tal illnesses.

Supporting Information
S1 File. Microbiota Data Set. NS.S, NS.LD, NS.HD stand for non-separated Saline, non-sepa-
rated Low Dose, non-separated High Dose, respectively. MS.S, MS.LD, MS.HD stand for
maternally separated Saline, maternally separated Low Dose, maternally separated High Dose,
respectively.
(ZIP)
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