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Variogram investigation of covariance shape 
within longitudinal data with possible use of 
a krigeage technique as an interpolation tool: 

Sheep growth data as an example
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Most quantitative traits considered in livestock evolve over time and several continuous 
functions have been proposed to model this change. For individual records (longitudi-
nal data), it is evident that measures taken at close dates are generally more related 
than these further apart in time. Since milk production involves several parities, the 
covariance structure within this trait has been analysed by time series methodology. 
However, the covariance structure within traits that are not repeated during life, such 
as those linked to growth, has not yet been formally modelled by considering time lags 
as is done in time series analysis. We propose an adaptation of the variogram concept to 
shape this structure; which gives the possibility of kriging missing data at any particu-
lar time. A new parameter, the halftime variogram, has been proposed to characterise 
the growing potential of a given population. The weight records of a Barbarine male 
lamb population were used to illustrate the methodology. The variogram covering the 
whole growth process in this population could be modelled by a logistic equation. To 
estimate the missing data from birth to 105 days of age, a simple linear interpolation 
was sufficient since kriging on a linear model basis gives a relatively more accurate esti-
mation than kriging on a logistic model basis. Nevertheless, when both known records 
around the missing data are distant, a krigeage on the basis of the logistic model pro-
vides a more accurate estimation.
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Introduction 
When repeated measurements of a trait 
are made, a data structure that is common-
ly called longitudinal data is generated. In 
livestock, most traits of economic impor-
tance have this property, such as milk and 
body weight. To estimate missing data, an 
improvement in accuracy may be achieved 
by accounting for covariances between 
records. 

For example, to model the lactation 
curve in dairy livestock, the most wide-
ly used function is the Wood’s function 
(Wood 1967; Pollot and Gootwine 2000; 
Chang et al. 2001). The Wilmink func-
tion (Wilmink 1987) is also in common 
use (Flores, Kinghorn and van der Werf 
2013). Further mathematical models were 
proposed to overcome some specific prob-
lems like absence of a lactation peak 
(Morant and Gnanasakthy 1989; Cappio-
Borlino, Pulina and Rossi 1995). However, 
some limitations of this approach have 
been surmounted by applying the mixed 
linear modelling concept directly on test 
day records to adjust curve parameters 
for environmental factors influencing 
individual lactation (Fernández, Sánchez 
and Garcés 2002; Macciotta et al. 2005; 
Leclerc et al. 2008). 

Mixed linear model methodology was 
used to model directly the covariance 
structure among repeated measures 
(Littell, Pendergast and Natarajan 2000). 
It is known that measures closer in time 
are generally more correlated than meas-
ures further apart in time (Wang and 
Goonewardene 2004). This time-depend-
ent relationship is usually modelled by 
a lag-dependant covariance function in 
the form of a first order autoregressive 
procedure. Since each animal may have 
production records during several pari-
ties, the variances and covariances among 
milk production data have been account-
ed for by time series analysis models 

(Macciotta, Cappio-Borlino and Pulina 
2000) which were initially developed 
for econometric problems (Chatfield 
1996). Nevertheless, to be able to fit such 
models, a sufficiently large data set is 
required. This condition seems to exclude 
the use of time series methodology for 
the analysis of data derived from dairy 
livestock recording schemes (five or six 
records). Fortunately, repeated parities 
have enabled the construction of series 
with an index variable that does not have 
an immediate reference to time. Records 
are ordered by lactation and, within lac-
tation, by distance from birth (Macciotta 
et al. 2000). The autocorrelation function 
represented in a lag-plot form highlight-
ed a periodic component of the vari-
ability and an autoregressive component 
of the first order that allowed modelling 
of variability by an autoregressive mov-
ing average model (Littell, Henry and 
Ammermann 1998). 

Similar to milk production, the sim-
plest mathematical method to analyse 
weight records is to fit a continuous 
time function which is differentiable in 
the whole interval of time covering the 
growth period. It is biologically known 
that an animal follows a predefined 
process as it grows towards its matu-
rity weight (Owens, Dubeski and Hanson 
1993). Therefore, a family of non-linear 
growth equations, like Brody, Richards, 
Von Bertalanffy, Gompertz, Exponential 
and Logistic, has been proposed in order 
to model the shape of the growth curve 
in livestock (Gous et al. 1999; Lambe et 
al. 2006; Abegaz, Van Wyk and Olivier 
2010; da Silva et al. 2012). In developing 
these equations, it is taken into account 
that weight tends to an asymptotic value 
with time (maturity weight), that growth 
rate has a maximum at an intermedi-
ate time (a null second derivative), and 
that the relative growth rate decreases as 
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weight increases towards maturity (Lewis 
and Brotherstone 2002). The Gompertz 
model is an easy function that meets these 
requirements with only three parame-
ters, each one having a biological sense. 
It is the most common function in use 
for different species (Kratochvilovà et 
al. 2002; Lewis and Brotherstone 2002; 
Akbas et al. 2006; Lambe et al. 2006). 
Recently, da Silva et al. (2012) fitted five 
models to the growth curve of Santa Inês 
breed of sheep. They reported that the 
Richards model presented some prob-
lems to achieve convergence. Regarding 
their results, the Logistic fit seems to be 
the best in describing the growth pat-
tern of the breed studied. Furthermore, 
Pittroff et al. (2008) identified the Logistic 
function as the best model to fit to the 
growth curve of two sheep breeds. For 
Lambe et al. (2006), both Gompertz and 
Richards models produced the best fit 
and were not significantly different from 
each other. 

For growth data, the covariance func-
tion has been assessed implicitly by using 
random regression methodology imple-
mented with polynomial and/or nonlinear 
models (Lewis and Brotherstone 2002; 
Alvarez et al. 2008; Gbangboche et al. 
2008; Cai, Wu and Dekkers 2011). It has 
been shown that phenotypic and genet-
ic correlations between the estimated 
parameters of these models are high and 
generally negative (Kratochvilovà et al. 
2002; Lambe et al. 2006; Koivula et al. 
2008). 

Unfortunately, the covariance structure 
within longitudinal data, mainly those that 
are not repeated during the lifetime (like 
milk), is not yet formally described by the 
time series paradigm. However, a num-
ber of techniques exist which are applied 
in the linear geostatistics field that may 
be adapted to longitudinal data to pro-
vide a detailed analysis of the covariance 

behaviour in time. The variogram con-
cept, as well as the krigeage technique 
were formalised by Matheron (1971) in 
his theory of regionalised variables from 
previous studies of Krige (1951 and 1966). 
These techniques are widely applied in 
many fields like geology (Burgess and 
Webster 1980; Cressie 1986), hydrology 
(Kitandis 1983), petrology (Jaquet 1989), 
forestry (Uuttera et al. 1998), meteorology 
(Marzban and Sandgathe 2009), agronomy 
(Nansen 2012), epidemiology (Yates et al. 
1986; Carrat and Valleron 1992; Lai 2004) 
and also in molecular biology (Diaz et 
al. 1997). The main problem that will be 
encountered in trying to apply these tech-
niques to most longitudinal data remains 
the fact that both the mean and the variance 
should be considered as stationary. Taking 
weight data as an example, the more the 
average weight value increases over time 
more the variance value increases. In the 
present work, we propose an adaptation of 
the variogram concept to enable analysis of 
autocorrelation within longitudinal data. A 
new interpolation approach, in a krigeage 
form, is also proposed to estimate missing 
data at any desired time or at a standard 
age. An application to actual sheep growth 
data is used as an illustration. 

Materials and Methods

Statistical formulation
In geostatistics, it is generally considered 
that: “Everything is related to everything 
else, but near things are more related 
than distant things” (Tobler 1970). Using 
this law, let us consider Z(t) a continuous 
variable evolving in time, so that: Z(t+h) 
is greater than Z(t); h is a defined period 
(which is equivalent to a “lag” in the time 
series methodology). The classical form of 
the variogram g(h) (or semi-variogram) 
would be as follows:
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With N(h): the number of observations 
separated by h. 

Theoretically, the variogram is defined 
by:
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the first order moment stationarity hypoth-
esis that is always adopted in geostatistics, 
the equation (2) leads to:
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Let us assume a second order station-
arity, so that the variances depend only 
on h [i.e., + =var( ( )) var( ( ))Z t h Z t ]. The 
last equation can be rewritten as:

 ( ) ( )γ = −( ) var ( ) .h Z t C h  (3)

C(h) is called the covariogram of Z 
which is a measure of a process resulting 
from a regionalised variable that deploys 
in time. This variable is simply a function 
z(t,t+h). Hence, for a given random func-
tion, it can admit a covariance function 
only if it has a finite variance that corre-
sponds to the variogram’s sill (generally 
denoted C), which is the limit of the var-
iogram when h tends towards infinity [i.e.,  
 γ

→∞
= =lim ( ) var( ( ))

h
h Z t C ].

From the experimental data, one can 
represent an experimental variogram 

by using equation (1). This will allow 
the determination of: the sill (C), the 
range (denoted R) that corresponds to 
the extent of a period beyond which the 
measured weights become “unrelated” (R 
should correspond to the maturity age) 
and a nugget effect (denoted C0) if any, 
that represents a micro-scale variation  
 in measurement error [i.e., γ

→
= 00

lim ( )
h

h C ],  

and finally the theoretical model to be 
adopted for computing g(h). From equa-
tion (3) it is possible to easily compute 
C(h) for kriging. 

If the variable mean m is unknown, it 
can be estimated using the ordinary krige-
age, simultaneously with the unknown 
coefficients li of a Z(ti) set. Thus, let us 
consider k known values of Z measured 
around an unknown quantity at a point 
t. An estimated value of Z(t) may be 
obtained by:
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obtained by computing:
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The basic idea of the ordinary krigeage is 
to minimise the variance of estimation which 
should be unbiased since the mean must 
also be estimated. Therefore, a lagrangian 
L(l, m) is formed enabling a minimisation  
 
under the constraint λ

=

=∑
1

1
k

i
i

. Partial  
 
derivatives versus all li and m are put 
equal to zero. Thus, a linear system of 
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k+1 equations for k+1 unknown terms 
(k terms li and m) is built. In matrix form, 
this system is as follows:
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After solving the above system, an esti-
mation of Z at a time t is given by equation 
(4). 

When the variable mean m is known, 
one can use a simple krigeage to esti-
mate the adjustment coefficients li and 
the obtained system is similar to that 
above but by withdrawing the last equa-
tion (i.e., the equation relative to the 
constraint). If the variogram is without 
nugget this system is quite comparable to 
the Yule-Walker linear system (except for 
the right hand side vector) that is used in 
autoregression methodology in time series 
analysis. The estimation of Z at a time t is 
instead obtained as:
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1

( ) ( ) .
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i i
i
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= + −∑
 

Adaptation to longitudinal data
Consider for example the case of animal 
growth data and consider that we have a 
population of newborn individuals which 
will grow under some conditions and fix a 
time interval T for taking successive indi-
vidual weights as shown in Figure 1.

The main issue that prevents the appli-
cation of a variogram analysis and the 
krigeage technique to such data remains 
the stationarity hypothesis. Indeed, nei-
ther the first moment nor the second 
can be considered stationary. The mean 
should increase as a result of the growth 
process and the amount of variance should 
follow under a scale effect. However, one 
can transform all weights (i.e., W1, W2, 
W3 …etc) to standard scores (i.e., z1, 
z2, z3 …etc) so that all new variables will 
share zero as mean and one as variance. 
Therefore, equation (3) becomes:

 ( )( ) 1 .h C hγ = −  

One may notice that there are two vario-
gram senses. One, computed by consider-
ing successive weights separated by a fixed 
lag (i.e.: 1T or 2T, etc.) and defined as a 
translational variogram which is similar to 
1 minus the corresponding Pearson corre-
lations (or correlogram). However, when 
h takes all possible increments of T, the 
computed descriptive variogram allows 
the modelling of the structure of the 
covariance within the longitudinal data. 
Note that for h=1T, the corresponding 
covariogram value is simply the average of 
Pearson correlations between all records 
discarded by this interval. Following the 
shape of the experimental variogram a 

This sequential weighing process is 
widely used for controlling or measuring 
growth data in almost all livestock.
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theoretical model can be adopted to com-
pute a covariogram enabling the con-
struction of a set of krigeage equations. 
Note that, if a linear model was retained, 
the krigeage technique would lead to 
coefficients matching a linear interpola-
tion. Otherwise, it is preferable to fit an 
asymptotic model whose upper asymptote 
(i.e., the variance C) is ≤ 1. Whatever the 
chosen model, there is a range of time 
(a) that corresponds to the ordinate 0.5 
where both variogram and covariogram 
intersect. This will be called a halftime 
variogram. Regarding the simplicity of its 
calculation, this new parameter may be 
considered as a straightforward tool to 
estimate and/or to compare the growth 
potential of populations. Thus, for a given 
population, a small halftime variogram 
should indicate a great growing potential, 
and vice-versa. 

After solving the krigeage system, the 
coefficients obtained li are used to esti-
mate the missing data at the considered 
time. Unfortunately, the variance of the 
estimation (i.e., s ²), cannot be computed 
by using equation (5) since the adjustment 
coefficients are determined on the basis 

of standard scores not on the original 
data.  

Application to actual growth data of a 
 fat-tailed Barbarine lamb population
Growth data were recorded on 242 
Barbarine male lambs born in single litters 
during the fall of 2009 in the central region 
of Tunisia. A sequential weighing scheme 
(Figure 1) was used to collect six individual 
weights at six dates separated by twenty-one 
days (i.e., T = 21 days). Lambs were weighed 
in the morning at each time point. Data col-
lection started ten days after the first lamb-
ing and continued until six weights were 
recorded for lambs that were born late. 

Results
The descriptive parameters of the record-
ed growth data, as well as their standard 
scores are reported in Table 1. 

Experimental variogram
By applying equation (1) both experimen-
tal variograms are obtained: 

1.  A translational variogram (on one T) is 
shown in Figure 2. 

Starting date of births
     1T      2T      3T      4T      5T

   t 1                 t 2                  t 3                 t 4                  t 5                  t 6          Time

W1 W2 W3 W4 W5 W6 Weights

Figure 1. System of weight control.

Table 1. Distribution parameters of the six weights Wt and their standardised scores Zt

 Weights

 W1  W2  W3  W4  W5  W6

Mean (kg) 3.02 ± 0.05  6.73 ± 0.08  9.96 ± 0.09  13.40 ± 0.13  16.19 ± 0.18  19.78 ± 0.25
CV (in %) 25.70  19.24  19.69  20.85  20.99  19.86
Scores  z1  z2  z3  z4  z5  z6
Means  –4.98E-07  –3.20E-07  –2.55E-05  1.52E-06  3.39E-07  7.61E-08
Variances  0.99  1.00  1.00  1.00  1.00  0.99
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models retained for each situation cited 
above are reported in Table 3. The coef-
ficient of determination (R²) values were  
 computed as: − −∑ ∑ˆ( )² ( )²i iy y y y  and 

models were selected and classified by 
considering the c² test of goodness of fit. 

Two models were retained from this 
analysis: a linear fit to consider the 
conventional practice of determining 
weights at standard ages and the Logistic 
model because its upper asymptote (i.e., 
C=0.968) is lower than 1 and therefore 
it may be adopted as the variogram sill 
to compute the covariogram. As stan-
dardised records should have 1 as vari-
ance whatever the considered time, for 
the linear model, which is not asymptotic, 
the covariogram is computed as 1 minus 
the variogram. The observed variogram, 
as well as the fitted curves are represented 
in Figures 3 and 4. The nugget value 
indicated on the last figure is computed 
by considering t=0 in the expression of 
the Logistic model of the variogram [i.e., 
C0=0.968/(1+9.91)=0.089].

The halftime variograms (a) for both 
models are obtained as follows:

Note that as the age progresses, the cor-
relations between closer weight records 
increase as shown by the correlogram (i.e., 
1 minus variogram).
2.  A descriptive variogram is reported in 

Table 2.

Variogram modelling
When h=0, two situations were distin-
guished in the model elaboration. The 
first is to consider that g(h) is equal to 
zero so no nugget effect is imposed on 
the model. The second is to consider 
that there exists a non-zero nugget effect 
(i.e., C0≠0) in the variogram model. To fit 
both model types, CurveExpert Software 
(Hyams 2010) was used by specifying the 
curve finder application. The first two 

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
t1 --- t2 t2 --- t3 t3 --- t4

Correlogram

Translational variogram

t4 --- t5 t5 --- t6

Intervals ([ti---ti+1] = 21 days)

Figure 2. Translational variogram (g) of Z scores on a period T = 21 days and the 
 corresponding correlogam (i.e., 1 – g).

Table 2. Experimental variogram g for different 
time lags h (T=21 days)

h g(h)

1T 0.16
2T 0.30
3T 0.44
4T 0.63
5T 0.76
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For a linear fit (y=a  x+b), a is calcu-
lated as : (1–2b)/2a.

For a logistic fit ( y=a/[1+bExp(–n x)]), 
a is calculated as: [ln(b) – ln(a)]/n.

These two values appear on their corre-
sponding figures.

Kriging data
By way of illustration, W3 was removed 
and was estimated by ordinary krigeage 

Table 3. Variogram models retained on the basis of their goodness of fit criterion (R²); two best models 
were retained by type of fit (with and without nugget effect)

Type of fit  Model name  Equation modelling variogram g(h)  R²

Without nugget (C0 = 0) 
[i.e., at: h=0, g(h) = 0]

 Polynomial  –1.88E-08 t4 + 3.71E-06 t3 – 2.22E-04 t2 

+ 1.15E-02 t – 8.19E-04
 0.9999

 Linear  7.60E-03 t + 3.94E-04  0.9994

With nugget (C0 ≠ 0)
(i.e., at: h=0, g(h) ≠ 0)

 Logistic  

+ −
0.968

1 9.91 Exp( 0.036 )t

 0.9995

 Gompertz  [ ]− −1.297Exp Exp(1.08 0.0172 )t  0.9994

Nugget represents a micro-scale variation in measurement error ( γ
→

= 00
lim ( )
h

h C ).

following three plan types as shown in 
Table 4. Plans A and B assume that W3 
is missing within an equivalent interval 
of 2T, plan C assumes that this record 
is missing within an equivalent interval 
of 3T while plans D, E and F assume 
that W3 is missing within an equivalent 
interval of 4T. To estimate W3 follow-
ing plan A, the adjustment coefficients 
are obtained by solving the following 
systems:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Periods (T= 21 days)

Variogram

Covariogram

a = 65,53
5T4T2T1T0 3T

Linear Fit (R2 = 0.9994) 

Figure 3. Descriptive variogram g(h) of Z scores modelled following a linear fit and 
its corresponding covariogram (i.e.: 1 – g(h)). (a) reported on the figure corresponds to the 
halftime variogram.
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From a linear fit (without nugget effect)

λ

λ

λ

λ

λ

µ

     
     
     
     
     =
     
     
     
          

1

2

4

5

6

1 0.85 0.54 0.39 0.24 1 0.69
1 0.69 0.54 0.39 1 0.85

1 0.85 0.69 1 0.85
1 0.85 1 0.69

1 1 0.54
0 1

Symmetric

The solutions obtained are:

 − − − 
T0.0013 0.4987 0.4987 0.0013 3.4E 6 5.2E 7

and individual weights can be estimated by:
Ŵ3 = 0.0013 W1 + 0.4987 W2 + 0.4987 
W4 + 0.0013 W5 + 3.4E-6 W6.

From a Logistic fit (with nugget effect)

λ

λ

λ

λ

λ

µ

     
     
     
     

=     
     
     
     
          

1

2

4

5

6

0.97 0.71 0.43 0.26 0.12 1 0.59
0.97 0.59 0.43 0.26 1 0.71

0.97 0.71 0.59 1 0.71
0.97 0.71 1 0.59

0.97 1 0.43
0 1

Symmetric

The solutions obtained are:

[ ] T0.171 0.329 0.328 0.169 0.003 0.0005

and individual weights can be estimated 
by:

Ŵ3 = 0.171 W1+0.329 W2+0.328 W4+ 
0.169 W5 + 0.003 W6.

As indicated before, the solutions obtained 
by kriging on a linear model are equiva-
lent to a simple linear interpolation (i.e., 
Ŵ3=0.5W2+0.5 W4). Nevertheless, with 
a logistic model, W1 and W5 are also 
involved in the adjustment of the estimated 
weight (i.e., Ŵ3) in the plan A framework. 

Linear model vs. Logistic model kriging
To assess the goodness of fit by kriging on 
both variogram models under the differ-
ent plans of missing records around W3 
(Table 4), the n observed weights at time t3 
(W3) were compared to their correspond-
ing estimated weights ( Ŵ3 ) by using the 
following criteria: 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T 2T 3T 4T 5T 6T 7T 8T 9T 10T 11T 12T 13T 14T 15T

Periods (T =21 days)

Variogram

Covariogram

Experimental variogram 

 Nugget  (C0=0.089)

Logistic Model Fit (R² = 0.9995)

Sill (C=0.968)

a=64,52

Figure 4. Descriptive variogram g(h) of Z scores modelled following a Logistic equa-
tion and its corresponding covariogram (i.e.: 0.968 – g(h)). (a) Reported on the figure cor-
responds to the halftime variogram.
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The mean absolute percent error 
(MAPE):

 MAPE = 
n

1

ˆW3 W31
*100.

n W3
i i

i i=

 −
 
  

∑

The mean absolute deviation (MAD):

 MAD = 
n

1
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The residual mean square (RMS):
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The root mean squared error (RMSE): 
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The percentage of squared bias (PSB) 
proposed by Ali and Schaeffer (1987):
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The coefficient of determination cal-
culated as the squared linear correlation 
between the observed and the estimated 
weights. 

These statistics for the different sce-
narios of missing records around W3 

are reported in Table 5. It can be seen 
that both interpolation approaches were 
quite comparable with a slight superi-
ority in the accuracy term for a linear 
interpolation. As the data were collected 
during the first months of lamb life, 
which match a linear phase of growth, 
the results suggest that a simple linear 
interpolation can be used to estimate 
the missing weights at any desired time 
within this period. This technique is 
actually in common use for determining 
the weight at standard ages. However, 
when both known data points around 
the missing data are distant in the time-
series data, a krigeage on the basis of the 
logistic model provided a more accurate 
estimation (i.e., plan F). 

Discussion
Almost all studies of growth traits in live-
stock have observed that data recorded 
closer in time are usually more corre-
lated than those recorded further apart 
in time (Portolano et al. 2002; Gowane 
et al. 2011). The descriptive variogram 
investigation as presented in this work 
clearly confirms those results, mainly from 
a phenotypic viewpoint. Furthermore, it 
has been shown, by the means of a trans-
lational variogram, that during the period 
of lamb growth studied, the correlation 
between weights recorded close together 
is higher at the end of this period than at 
the beginning. This is probably due to an 
enhanced maternal effect (i.e., suckling) 
characterising the earlier phase of lamb 
growth (María, Boldman and van Vleck 
1993). Initially the weight gain depends on 
the milk production of the dam and the 
lamb potential for growth; thereafter it 
becomes progressively dependent on the 
potential of growth under a specific envi-
ronment (herd management) as the lamb 
becomes independent of its dam. 

Table 4. Sampling scheme for missing records 
around W3

Plans

 

Weight records

W1  W2  W4  W5  W6

A  +  +  +  +  +
B   +  +   
C  +  +   +  +
D  +    +  
E  +  +    +
F  +    +  +

+ = Indicates that the corresponding record is 
known.
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Unlike previous studies which have 
attempted to model growth by continu-
ous time functions (Gous et al. 1999; 
Kratochvilovà et al. 2002; Lewis and 
Brotherstone 2002; Lambe et al. 2006; 
Abegaz et al. 2010; da Silva et al. 2012), 
in the present work the standardised 
weight variogram trend over time gaps was 
assessed. This has generated a clear vision 
of the covariance structure within the 
growth data. The Logistic model seems 
to be more suitable to fit a variogram of 
this function in the Barbarine breed of 
sheep throughout its weight gain period 
examined. This result agrees with Pittroff 
et al. (2008) and da Silva et al. (2012) 
who confirmed that the Logistic equa-
tion is the most appropriate model of the 
growth curve in sheep. The Gompertz 
fit proposed by other authors like Lewis 
and Brotherstone (2002) and Lambe et al. 
(2006) was not retained here for model-
ling the variogram since its upper asymp-
totic value exceeded 1 (the variance of a 
standard Gaussian distribution). 

Through the deduced covariogram, it 
has been possible to elaborate the krige-
age equations system. This allowed the 
possible estimation of any missing record. 
In the example presented in this work, only 
six weights for each animal covering only 
the first part of the growth process were 

used. During this phase, growth over time 
is essentially linear in sheep (Bush and 
Lewis 1977) and the estimation of missing 
data may be based only on a simple linear 
interpolation since both variogram models 
give comparable results. Nevertheless, it 
is possible to obtain more accurate esti-
mation with the krigeage on the Logistic 
model basis if the known records are very 
distant from the missing record.

For further investigations of the entire 
variogram shape, there should be more 
records covering the whole growth period. 
For example, twenty records on average 
were used by Lewis and Brotherstone 
(2002). It is expected that an interpolation 
based on a Logistic model would be more 
appropriate for estimating data between 
the earlier phase of growth and mature 
weight since the nonlinearity of the growth 
curve within this inter-phase period is 
most pronounced (i.e., the growth rate is 
more variable). 

It is possible to apply the methodol-
ogy developed in this work to study the 
covariance structure within other longitu-
dinal data like milk production. For this 
particular trait, it would be interesting 
to know if the covariance within a lacta-
tion can be also modelled by a known 
equation (Wood, Wilmink, etc.) and how 
much it can be affected by environmental 

Table 5. Goodness of fit criteria for estimation of W3 data by considering different plans of missing records 
around them. [Mean absolute percent error (MAPE), mean absolute deviation (MAD), residual mean 
square (RMS), root mean squared error (RMSE), percentage of squared bias (PSB) and coefficient of 

determination (R²)]

Plans (1)  A  B  C  D  E  F

MAPE  5.55 (2)  6.07 (2)  5.55  5.55  6.39  6.72  8.93  8.93  6.34  6.83  8.91  8.28
MAD  5.11  5.84  5.11  5.11  6.14  6.51  8.67  8.67  5.96  6.68  8.67  8.02
RMS  55.01  61.31  55.01  55.01  68.95  75.03  125.6  125.6  68.11  78.18  125.2  111.3
RMSE  7.42  7.83  7.42  7.42  8.30  8.66  11.21  11.21  8.25  8.84  11.20  10.55
PSB  0.54  0.60  0.54  0.54  0.67  0.73  1.22  1.22  0.66  0.76  1.22  1.08
R²  0.93  0.88  0.93  0.93  0.83  0.81  0.90  0.90  0.79  0.75  0.90  0.92
1Plans are A: all other records are known, B: W1, W5 and W6 are missing, C: only W4 is missing, D: W2 
and W4 are missing, E: W4 and W5 are missing and F: W2 and W4 are missing.
2Values in underlined italic style correspond to the Krigeage on a logistic model and those in normal style 
correspond to the Krigeage on a linear model.
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components. A comparison between the 
covariance structures of different parities 
should likewise be of great interest. 

The inflection point for a Logistic 
model of the form: y(t)=[a/(1+be–ct)] is 
given by: ln(b)/c (Winsor 1932). From our 
variogram function, this value is 63.71 days 
which is similar to 64.52 or 65.53 days that 
we determined in this work as halftime 
variograms. Therefore, this new param-
eter may be used as a straightforward 
tool to characterise the population growth 
potential. Pittroff et al. (2008) discussed 
the coincidence of the inflexion point 
and the onset of puberty in ewes which is 
coupled with an increase in proportion of 
fat gain (i.e., the Brody law). Since male 
and female lambs have different inflec-
tion points (Goliomytis et al. 2006; Ulutas 
et al. 2010), female Barbarine lambs are 
expected to have a different value of half-
time variogram. A comparison between 
local breeds on the basis of this param-
eter could also be envisaged since age at 
inflection point may vary between breeds 
(Akbas et al. 2006). 

If the first three weights W1, W2 and 
W3 are known, the estimation of other 
missing data (i.e., W4, W5 or W6) may be 

achieved only if we consider that 
1

1.
k

i
i

λ
=

>∑
  

If the average weight at t4, t5 or t6 is 
known, one can iterate computations by 
incrementing the value assigned to this 
constraint in the right hand side of the 
system until reaching the defined mean in 
the estimated data vector. It would also 
be possible to make estimations of the 
missing data through a multiple regression 
performed on the independent variables: 
W1, W2 and W3. 

Conclusion
The variogram methodology has been 
adapted to perform a detailed description 

of the (co)variance structure within longi-
tudinal data. The modelling of this struc-
ture has allowed the use of the krigeage 
technique as a means of estimating miss-
ing data. With this method all known 
records are involved in order to give a 
more accurate estimation. 

Acknowledgements
We are grateful to Professor Mohamed Ben 
Hamouda the head of the “Institut de la Recherche 
et de l’Enseignement Supérieur Agricoles” (IRESA) 
for providing us with the weight records.

References 
Abegaz, S., Van Wyk, J.B. and Olivier, J.J. 2010. 

Estimation of genetic and phenotypic parameters 
of growth curve and their relationship with early 
growth and productivity in Horro sheep. Archiv 
Tierzucht 53: 85–94. 

Akbas, Y., Alçiçek, A., Önenç, A. and Güngör, M. 
2006. Growth curve analysis for body weight and 
dry matter intake in Friesian, Limousin x Friesian 
and Piemontese x Friesian cattle. Archiv Tierzucht 
49: 329–339.

Ali, T.E. and Schaeffer, R. 1987. Accounting for 
covariances among test day milk yields in dairy 
cows. Canadian Journal of Animal Science 67: 
637–644.

Alvarez, R.J., Joy, M., Villalba, D. and Sanz, A. 
2008. Growth analysis in light lambs raised under 
different management systems. Small Ruminant 
Research 79: 188–191.

Burgess, T.M. and Webster, R. 1980. Optimal inter-
polation and isarithmic mapping of soil proper-
ties. 1. The semi-variogram and punctual kriging. 
Journal of Soil Science 31: 315–331.

Bush, L.F. and Lewis, J.K. 1977. Growth patterns 
of range-grazed Rambouillet lambs. Journal of 
Animal Science 45: 953–960.

Cai, W., Wu, H. and Dekkers, J.C.M. 2011. 
Longitudinal analysis of body weight and feed 
intake in selection lines for residual feed intake in 
pigs. Asian-Australian Journal of Animal Science 
24: 17–27.

Cappio-Borlino, A., Pulina, G. and Rossi, G. 1995. A 
non-linear modification of Wood’s equation fitted 
to lactation curves of Sardinian dairy ewes. Small 
Ruminant Research 18: 75–79.

Carrat, F. and Valleron, A.J. 1992. Epidemiologic map-
ping using the “kriging” method: application to an 



 CHALH AND EL GAzzAH: VARIOGRAM MODELLING OF LONGITUDINAL DATA 63

influenza-like illness epidemic in France. American 
Journal of Epidemiology 135: 1293–1300.

Chang, Y., Rekaya, R., Gianola, D. and Thomas, 
D.L. 2001. Genetic variation of lactation curves in 
dairy sheep. A Bayesian analysis of Wood’s func-
tion. Livestock Production Science 71: 241–251.

Chatfield, C. 1996. The Analysis of Time Series: 
An Introduction. 5th edition, Chapman & Hall, 
London, UK, 283 pages.

Cressie, N. 1986. Kriging nonstationary data. Journal 
of the American Statistical Association 395: 625–
634.

Da Silva, L.S.A., Fraga, B.A., de Lima da Silva, F., 
Beelen, P.M.G., de Oliveira Silva, F.M., Tonhati, 
H. and da Costa Barros, C. 2012. Growth curve 
in Santa Inês sheep. Small Ruminant Research 
105: 182–185. 

Diaz, G., zucca, A., Setzu, M.D. and Cappai, C. 
1997. Chromatin pattern by variogram analysis. 
Microscopy Research and Technique 39: 305–311.

Fernández, C., Sánchez, A. and Garcés, C. 2002. 
Modeling the lactation curve for test-day milk 
yield in Murciano-Granadina goats. Small 
Ruminant Research 46: 29–41.

Flores, E.B., Kinghorn, B.P. and van der Werf, J. 
2013. Predicting lactation yields in dairy buffaloes 
by interpolation and multiple trait prediction. 
Livestock Science 151: 97–107.

Gbangboche, A.B., Glele-Kakai, R., Salifou, 
S., Albuquerque, L.G. and Leroy, P.L. 2008. 
Comparison of non-linear growth models to 
describe the growth curve in West African Dwarf 
sheep. Animal 2: 1003–1012.

Goliomytis, M., Orfanos, S., Panopoulou, E. and 
Rogdakis, E. 2006. Growth curves for body weight 
and carcass components, and carcass composition 
of the Karagouniko sheep, from birth to 720 days 
of age. Small Ruminant Research 66: 222–229.

Gous, R.M., Moran E.T.J.R., Stilborn, H.R., 
Bradford, G.D. and Emmans, G.C. 1999. 
Evaluation of the parameters needed to describe 
the overall growth, the chemical growth, and the 
growth of feathers and breast muscles of broilers. 
Poultry Science 78: 812–821.

Gowane, G.R., Chopra, A., Prakash, V., and Arora, 
A.L. 2011. Estimates of (co)variance components 
and genetic parameters for growth traits in Sirohi 
goat. Tropical Animal Health and Production 43: 
189–198.

Hyams, D.G. 2010. CurveExpert Software (Basic 
Version 1.40). The University of Tennessee, 
Chattanooga, TN, USA Available online: http://
www.curveexpert.net/ [Accessed 19 August 2014].

Jaquet, O. 1989. Factorial kriging analysis applied 
to geological data from petroleum exploration. 
Mathematical Geosciences 21: 683–691.

Kitandis, P.K. 1983. Statistical estimation of polynomial 
generalized covariance functions and hydrologic 
applications. Water Resources Research 19: 909–921.

Koivula, M., Sevon-Aimonen, M.L., Strandén, I., 
Matilainen, K., Serenius, T., Stalder, K.J. and 
Mäntysaari, E.A. 2008. Genetic (co)variances and 
breeding value estimation of Gompertz growth 
curve parameters in Finnish Yorkshire boars 
gilts and barrows. Journal of Animal Breeding and 
Genetics 125: 168–175.

Kratochvilovà, M., Hyànkoà, L., Knizetovà, H., 
Fiedler, J. and Urban, F. 2002. Growth curve 
analysis in cattle from early maturity and mature 
body size viewpoints. Czech Journal of Animal 
Science 47: 125–132.

Krige, D.G. 1951. A statistical approach to some basic 
mine valuation problems on the Witwatersrand. 
Journal of the Chemical, Metallurgical and Mining 
Society of South Africa 52: 119–139.

Krige, D.G. 1966. Two-dimensional weighted mov-
ing average trend surfaces for ore-evaluation. 
Journal of Southern African Institute of Mining and 
Metallurgy 66: 13–38.

Lai, D. 2004. Geostatistical analysis of Chinese 
cancer mortality: Variogram, kriging and beyond. 
Journal of Data Science 2: 177–193.

Lambe, N.R., Navajas, E.A., Simm, G. and Bünger, 
L. 2006. A genetic investigation of various growth 
models to describe growth of lambs of two con-
trasting breeds. Journal of Animal Science 84: 
2642–2654.

Leclerc, H., Duclos, D., Barbat, A., Druet, T. and 
Ducrocq, V. 2008. Environmental effects on lacta-
tion curves included in a test-day model genetic 
evaluation. Animal 2: 344–353.

Lewis, R.M. and Brotherstone, S. 2002. A genetic 
evaluation of growth in sheep using random 
regression techniques. Animal Science 74: 63–70.

Littell, R.C., Henry P.R. and Ammermann, C. 1998. 
Statistical analysis of repeated measures data 
using SAS procedures. Journal of Animal Science 
76: 1216–1231.

Littell, R.C., Pendergast, J. and Natarajan, R. 2000. 
Modelling covariance structure in the analysis of 
repeated measures data. Statistics in Medicine 19: 
1793–1819.

Macciotta, N.P.P., Cappio-Borlino, A. and Pulina, G. 
2000. Time series autoregressive integrated mov-
ing average modelling of test-day milk yields of 
dairy ewes. Journal of Dairy Science 83: 1094–1103.

Macciotta, N.P.P., Fresi, P., Usai, G. and Cappio-
Borlino, A. 2005. Lactation curves of Sarda breed 
goats estimated with test-day models. Journal of 
Dairy Research 72: 470–475.

María, G.A., Boldman, K.G. and van Vleck, L.D. 
1993. Estimates of variances due to direct and 

http://www.curveexpert.net/
http://www.curveexpert.net/


64     IRISH JOURNAL OF AGRICULTURAL AND FOOD RESEARCH, VOL. 53, NO. 1, 2014

maternal effects for growth traits of Romanov 
sheep. Journal of Animal Science 71: 845–849.

Marzban, C. and Sandgathe, S. 2009. Verification 
with variograms. Weather and Forecasting 24: 
1102–1120.

Matheron, G. 1971. “The Theory of Regionalised 
Variables and its Applications”. (Translated 
from: La Théorie des Variables Régionalisées 
et ses Applications, Note Geostatistique No 
117). Les Cahiers du Centre de Morphologie 
Mathématique de Fontainebleau, Fascicule 5, 
Ecole des Mines de Paris, Paris, 212 pages. 

Morant, S.V. and Gnanasakthy, A. 1989. A new 
approach to the mathematical formulation of 
lactation curves. Animal Production 49: 151–162.

Nansen, C. 2012. Use of variogram parameters in 
analysis of hyperspectral imaging data acquired 
from dual-stressed crop leaves. Remote Sensing 
4: 180–193.

Owens, F.N., Dubeski, P. and Hanson, C.F. 1993. 
Factors that alter the growth and development of 
ruminants. Journal of Animal Science 71: 3138–
3150.

Pollot, G.E. and Gootwine, E. 2000. Appropriate 
mathematical models for describing the com-
plete lactation of dairy sheep. Animal Science 71: 
197–207.

Pittroff, W., Dahm, F., Blanc, F., Keisler, D. and 
Cartwright, T.C. 2008. Onset of puberty and 
the inflection point of the growth curve in 
sheep – Brody’s Law revisited. The Journal of 
Agricultural Science 146: 239–250.

Portolano, B., Todaro, M., Finocchiaro, R. and van 
Kaam, J.H.B.C.M. 2002. Estimation of the genet-
ic and phenotypic variance of several growth traits 

of the Sicilian Girgentana goat. Small Ruminant 
Research 45: 247–253.

Tobler, W. 1970. A computer movie simulating 
urban growth in the Detroit region. Economic 
Geography 46: 234–240.

Uuttera, J., Maltamo, M., Kurki, S. and Mykrä, S. 
1998. Differences in forest structure and land-
scape patterns between ownership groups in 
central Finland. Boreal Environment Research 3: 
191–200.

Ulutas, z., Sezer, M., Aksoy, Y., Sirin, E., Sen, U., 
Kuran, M. and Akbas, Y. 2010. The effect of birth 
types on growth curve parameters of Karayaka 
lamb. Journal of Animal and Veterinary Advances 
9: 1384–1388.

Wang, z. and Goonewardene, L.A. 2004. The use of 
MIXED models in the analysis of animal experi-
ments with repeated measures data. Canadian 
Journal of Animal Science 84: 1–11.

Wilmink, J. 1987. Comparison of different methods 
of predicting 305-day milk yield using means 
calculated from within-herd lactation curves. 
Livestock Production Science 17: 1–17.

Winsor, C.P. 1932. The Gombertz curve as a growth 
curve. Proceedings of the National Academy of 
Sciences 18: 1–8.

Wood, P.D.P. 1967. Algebraic model of the lactation 
curve in cattle. Nature 216: 164–165.

Yates, M.V., Yates, S.R., Warrick, A.W. and Gerba, 
C.P. 1986. Use of geostatistics to predict virus 
decay for determination of septic tank setback 
distances. Applied Environmental Microbiology 
52: 479–483.

Received 9 April 2013


