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Σύντομη Περίληψη

Τα τελευταία χρόνια, ο σχεδιασμός επιταχυντών υλικού έχει καθιερωθεί σαν δεδομένο όταν 
στοχεύουμε  σε  βελτιστοποιήσεις  αλγοριθμικών υλοποιήσεων.  Συγκεκριμένα,  οι  επιταχυντές 
βασισμένοι  σε FPGA έχουν κερδίσει  το ενδιαφέρον των σχεδιαστών και  του επιστημονικού 
κόσμου καθώς οι συσκευές FPGA προσφέρουν ταχύτατη ανάπτυξη του υλικού και δυνατότητες 
επαναδιαμόρφωσής  του.  Σε  συνδυασμό  με  το  επίπεδο  του  αφαιρετικού  σχεδιασμού  που 
προσφέρει η Σύνθεση Υψηλού Επιπέδου (High-Level Synthesis – HLS) σχηματίζουν μία σαφή 
λύση  όταν  επιθυμείται  η  γρήγορη  σχεδίαση  πρωτοτύπων  για  συστήματα.  Προσφάτως,  η 
κυρίαρχη  τάση  για  μία  συσκευή  FPGA  είναι  να  περιλαμβάνει  τα  πλεονεκτήματα  που 
προσφέρουν  οι  ενσωματωμένοι  επεξεργαστές  σχηματίζοντας  με  αυτόν  τον  τρόπο  ένα 
ολοκληρωμένο  Σύστημα-σε-Ψηφίδα  (System-on-a-Chip  –  SoC).  Η  συνύπαρξη  επιταχυντών 
υλικού  και  ενσωματωμένων  επεξεργαστών  σε  μία  συσκευή  έχει  φέρει  στο  προσκήνιο  τη 
διασύνδεσή  τους  σαν  ένα  στοιχείο  ζωτικής  σημασίας  για  την  επίδοση  ολόκληρου  του 
συστήματος.  Για  ευκολία  στη  διασύνδεση  ενός  επιταχυντή  και  ενός  επεξεργαστικού 
συστήματος  έχει  υιοθετηθεί  σαν  πρακτική  η  σχεδίαση  σε  μορφή  Πνευματικής  Ιδιοκτησίας 
(Intellectual  Property  –  IP).  Συνήθως  ένα  IP  είναι  εξοπλισμένο  με  διεπαφές  ελέγχου  και 
επικοινωνίας έτσι ώστε να είναι εύκολος ο συνδυασμός του με άλλα στοιχεία, τις περισσότερες 
φορές χωρίς να απαιτείται η προσθήκη πρόσθετου υλικού. Μια ευρέως διαδεδομένη διεπαφή 
επικοινωνίας  είναι  το  πρωτόκολλο  ARM  AMBA  Advanced  eXtensible  Interface  (AXI).  Οι 
σχεδιαστικές εναλλακτικές που παρέχονται από το πρωτόκολλο AXI μπορεί να κυμαίνονται από 
απλή,  χαμηλού  εύρους  ζώνης  επικοινωνία  και  μεταφορά  δεδομένων  μέχρι  υψηλές  τιμές 
εύρους ζώνης χρησιμοποιώντας διαθέσιμα χαρακτηριστικά όπως η Άμεση Πρόσβαση Μνήμης. 
Σε αυτή την εργασία επικεντρωνόμαστε στη ροή υλοποίησης ενός συστήματος για τη συσκευή 
Zynq-7000  AP  SoC.  Ξεκινώντας  με  την  προσθήκη  διαφορετικών  διεπαφών  επικοινωνίας 
δημιουργούμε  επιταχυντές  σε  μορφή  IP  μέσω  του  HLS.  Στη  συνέχεια  προχωρούμε  στη 
διασύνδεση των IP με ένα επεξεργαστικό σύστημα βασισμένο στον ARM και δημιουργούμε το  
συνολικό σύστημα. Τέλος,  ακολουθεί  η δημιουργία ενσωματωμένων Linux διανομών για το 
σύστημά  μας  και  η  ανάπτυξη  μιας  εφαρμογής  που  θα  εκτελεστεί  στο  επεξεργαστή.  Οι 
επιταχυντές υλικού που χρησιμοποιήθηκαν για την αξιολόγηση και ανάλυση των εναλλακτικών 
σχεδίων  ανήκουν  σε  διαφορετικά  επιστημονικά  πεδία.  Ο  πρώτος  είναι  μία  υλοποίση  του 
αλγορίθμου  ανίχνευσης  γωνιών  Harris  &  Stephens.  Ο  δεύτερος  είναι  ένας  ταξινομητής 
Μηχανών  Διανυσμάτων  Υποστήριξης  (Support  Vector  Machines  –  SVM)  για  την  καρδιακή 
αρρυθμία  που  χρησιμοποιεί  τη  βάση  δεδομένων  ΗΚΓ  MIT-BIH.  Διαφέρουν  όχι  μόνο  στα 
επιστημονικά  τους  πεδία  αλλά  επίσης  στο  μέγεθος  των  δεδομένων  εισόδου,  στην 
πολυπλοκότητα του κώδικα και στη χρησιμοποίηση πόρων. Η ανάλυση μας παρουσιάζει την 
επίδραση των διαφορετικών διεπαφών επικοινωνίας στo χρόνο εκτέλεσης, στο εύρος ζώνης, 
στη χρησιμοποίηση πόρων του FPGA και στη συνολική επίδοση του συστήματος. Η διερεύνηση 
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των εναλλακτικών διεπαφών και διασυνδέσεων για μία συγκεκριμένη έκδοση ενός επιταχυντή 
κατέληξε σε κέρδος μέχρι και 20% στο χρόνο εκτέλεσης και σημαντικό κέρδος στο εύρος ζώνης.

Λέξεις-Κλειδιά: Σύνθεση Υψηλού Επιπέδου, AMBA AXI,  AXI4-Lite,  AXI4-Stream, Αναπτυξιακή 
Πλακέτα  Zynq  Evaluation  and  Development  Board,  Άμεση  Πρόσβαση  Μνήμης,  Αλγόριθμος 
Ανίχνευσης Γωνιών Harris & Stephens, Μηχανές Διανυσμάτων Υποστήριξης, Ανάλυση ΗΚΓ
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Abstract

In recent years,  the design of hardware accelerators has been established as a standard 
practice  when  targeting  to  optimizations  of  algorithmic  implementations.  FPGA-based 
accelerators, in particular, have gained the interest of system architects and the scientific  
world due to the innate fast hardware development and reconfiguration capabilities that 
are  offered  by  an  FPGA  device.  Τhese  features,  combined  with  the  level  of  design 
abstractions of High-Level Synthesis (HLS) frame a definite solution when it comes to fast  
prototyping of system designs. Lately, the tendency for an FPGA device is to comprise the 
benefits  of  embedded  processors,  thus  forming  a  whole  system-on-a-chip  (SoC).  The 
coexistence of  hardware accelerators and embedded processors on a single device have 
brought the interconnection of these components to the proscenium as an element of vital 
significance for the performance of the whole system. In order for the custom hardware to  
be readily interconnected to a processing system, the Intellectual Property (IP) design style 
has been adopted. Typically, an IP is equipped with control and communication interfaces 
so  that  it  can  be  easily  combined  with  other  components,  in  most  cases,  without  the 
utilization of additional hardware. A widely used communication interface for IP generation 
is the ARM AMBA Advanced eXtensible Interface (AXI) protocol. Design alternatives offered 
by the AXI might range from simple low-bandwidth communication and data transfers to 
higher values of bandwidth by employing the available Direct Memory Access features. Ιn 
this work, we focus on the system implementation flow targeting to a Zynq-7000 AP SoC 
device.  Beginning  with  the  addition  of  different  communication  interfaces  we  generate 
custom accelerator IPs through HLS. Then we proceed to the interconnection of those IPs 
with an ARM-based  processing  system and  generate  the  system design.  The final  steps 
include the generation of Embedded Linux distributions for our custom hardware and the 
development of a userspace application to be executed on the processing system of our  
design. The hardware accelerators that are employed for evaluation and analysis of design 
alternatives appertain to two distinct scientific fields. The first one is an implementation of 
the Harris & Stephens Corner Detection Algorithm. The second is a Support Vector Machine 
classifier  for  arrhythmia  detection  using  MIT-BIH  ECG  signal  database.  The  employed 
accelerators  differ  not  only  in  their  respective  fields  but  also  in  the  input  data  sizes,  
complexity of the code and resource needs. Our combined analysis shows the impact of  
different  communication  interfaces  in  latency,  bandwidth,  utilized  FPGA  resources  and 
overall  system  performance.  The  exploration  of  different  interface  and  interconnection 
configurations for a default accelerator lead to latency gains of up to 20% and significant  
bandwidth gains.

Keywords: High-Level Synthesis, AMBA AXI, AXI4-Lite, AXI4-Stream, ARM, Zynq Evaluation 
and Development Board, Direct Memory Access, Embedded Linux, HW/SW codesign, Harris 
and Stephens Corner Detection Algorithm, Support Vector Machines, ECG Analysis
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Θεωρητικό Υπόβαθρο

Αλγόριθμος Ανίχνευσης Γωνιών Harris & Stephens

O  Αλγόριθμος Ανίχνευσης γωνιών  Harris  &  Stephens  είναι  ένας αλγόριθμος ο οποίος όπως 
υποδηλώνει το όνομά του, έχει στόχο την ανίχνευση γωνιών σε εικόνες. Τα βασικά στοιχεία του 
αλγορίθμου αυτού όπως υλοποιήθηκε στη συνέχεια της διπλωματικής εργασίας είναι τα εξής:

• Ο αλγόριθμος παίρνει  επικαλυπτόμενα παράθυρα της εικόνας και  τα μετακινεί  προς 
όλες  της  κατευθύνσεις  ώστε  να  εντοπίσει  τις  μεταβολές  στην  ένταση  της  εικόνας.  
Αρχικά η συνάρτηση που δίνει την ένταση της εικόνας σε κάθε σημείο δίνεται από την 
εξής σχέση:

I ( x+u , y+v )≈ I(u , v) + x I x (u , v ) + y I y (u , v )

Στη συνέχεια υπολογίζεται το άθροισμα των τετραγώνων των διαφορών ως εξής

E(x , y)=∑
u, v

w(u ,v )(I (u , v)+x I x(u , v)+ y I y(u , v))
2 ή E(x , y)=[ x y ] A[ xy]

όπου

A =∑
u , v

w(u , v )[ I x
2 I x I y

I x I y I y
2 ]= [ ⟨ I x

2
⟩ ⟨ I x I y ⟩

⟨I x I y ⟩ ⟨ I y
2
⟩ ]

.

• Ένα σημαντικό στοιχείο του αλγορίθμου Harris είναι η χρήση γκαουσιανού παραθύρου 
για την ομαλοποίηση της εικόνας που εξασφαλίζει μία μία θορυβώδη απόκριση.

• Στον  αλγόριθμο  του  Harris  οι  γωνίες  θεωρούνται  πως  παρουσιάζουν  μεγάλη 
διακύμανση του αθροίσματος των τετραγώνων των διαφορών σε κάθε κατεύθυνση. Αν 
ένα  σημείο  ενδιαφέροντος/γωνία  εξετάζεται  τότε  ο  πίνακας  Α  πρέπει  να  έχει  δύο 
ιδιοτιμές με μεγάλη τιμή. Αν  λ1≈0,  λ2≈0 τότε το σημείο που εξετάζεται δεν είναι 
σημείο ενδιαφέροντος. Αν λ1≈0 και λ2 τότε έχουμε ανίχνευση μιας ακμής. Τέλος 
αν και οι δύο ιδιοτιμές είναι μεγάλες θετικές τιμές τότε έχουμε εντοπίσει μία γωνία.
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Θεωρία Μηχανών Διανυσμάτων Υποστήριξης

Οι  Μηχανές  Διανυσμάτων  Υποστήριξης  (Support  Vector  Machines  –  SVM)  είναι  μοντέλα 
επιβλεπόμενης  μάθησης  που  εκπαιδεύονται  με  ένα  μεγάλο  σύνολο  δεδομένων  και  είναι 
κατάλληλα  για  την  ταξινόμηση  των  νέων  εισόδων  σε  δύο  υποψήφιες  κλάσεις 
συμππληρωματικές  μεταξύ  τους.  Το  σύνολο  εκπαίδευσης  αποτελείται  από  διανύσματα  με 
συγκεκριμένα χαρακτηριστικά και μία ετικέτα της κλάσης στην οποία ανήκει το κάθε διάνυσμα.

Τα SVM εφαρμόζουν αρχικά μία συνάρτηση πυρήνα που ανάγει τα διανύσματα σε έναν χώρο 
με περισσότερες διαστάσεις όπου ο διαχωρισμός είναι πιο εύκολος. Στο χώρο αυτό εντοπίζεται 
ένα υπερεπίπεδο που αποτελείται από διανύσματα που απέχουν μέγιστα από αυτά της κάθε 
κλάσης. Κάθε νέο διάνυσμα ανάγεται σε αυτόν το χώρο, υπολογίζεται η απόστασή του από το 
υπερεπίπεδο και αναλόγως ταξινομείται σε κάποια κλάση. Η συνάρτηση πυρήνα παίζει έναν 
πρωταγωνιστικό ρόλο στη ακρίβεια και την πολυπλοκότητα του μοντέλου. Στο πρόβλημα που 
θα  εξετάσουμε  προτιμούμε  μη  γραμμική  συνάρτηση  πυρήνα  και  συγκεκριμένα  εκθετικής 
φύσης για τον διαχωρισμό των παλμών της καρδιάς.

Η  μαθηματική  εξίσωση  που  περιγράφει  τον  υπολογιστικό  πυρήνα  του  ταξινομητή  είναι  η 
παρακάτω:

Class=sgn (∑
i=1

N sv

( y i∗ai∗exp(−γ‖x−sup_vector i‖
2
))−b)

όπου x είναι το διάνυσμα του παλμού προς ταξινόμηση, sup_vector(i) είναι το I-οστό διάνυσμα 
υποστήριξης  και  y i ,  ai  είναι  τιμές  διαφορετικές  για κάθε διάνυσμα υποστήριξης και 
προέκυψαν κατά την εκπαίδευση του SVM.
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Ροή Εργασίας για Υλοποιήσεις στο ZedBoard

ZedBoard

Το  ZedBoard  είναι μία αναπτυξιακή πλακέτα χαμηλού κόστους. Είναι ένα σύστημα που έχει 
υλοποιηθεί σε ολοκληρωμένο κύκλωμα (SoC) που ανήκει στην οικογένεια  Zynq-7000 AP SoC 
της Xilinx. Συνδυάζει την ύπαρξη ενός υπολογιστικού συστήματος με δύο επεξεργαστές ARM με 
την ύπαρξη επαναπρογραμματιζόμενης λογικής. Υποστήζει υλοποίηση Linux, Android και RTOS 
εφαρμογών. Τα κύρια χαρακτηριστικά του ZedBoard είναι τα εξής:

• Μνήμη: δυναμική (DDR3) και στατική μνήμη (SPI Flash, Διεπαφή κάρτας SD)
• USB: USB-to-UART σύνδεση, λειτουργικότητα JTAG, προστασία κυκλωμάτων
• Οθόνη και Ήχος: HDMI πομπός, Analog Device Audio Codec, OLED dislpay
• Clock Sources: 33.3333 MHz  ρολόι για το υπολογιστικό σύστημα και παροχή έως και 

τεσσάρων ρολογιών για το επαναπρογραμματιζόμενο μέρος.
• Reset  Sources: εξωτερικοί  διακόπτες  για  επανεκκίνηση  της  πλακέτας  και 

επαναπρογραμματισμό
• User I/O: 7 user GPIO push buttons, 8 user dip switches, 8 LEDS
• 10/100/1000 Ethernet PHY
• PS και PL I/O επεκτάσεις

Στόχος της παρούσας εργασίας είναι η προσθήκη στο ZedBoard επιταχυντών υλικού που έχουν 
σχεδιαστεί  και  παραχθεί  με  τη  βοήθεια της  σύνθεσης  υψηλού επιπέδου και  η  μελέτη της  
επικοινωνίας τους με το διαθέσιμο επεξεργαστικό σύστημα.

Δημιουργία IP με Σύνθεση Υψηλού Επιπέδου

Το πρώτο  βήμα  για  μία  υλοποίηση ενός  αλγορίθμου  ή  ενός  επιταχυντή στην  αναπτυξιακή 
πλακέτα ZedBoard είναι το βήμα της σύνθεσης υψηλού επιπέδου (High-Level Synthesis – HLS). 
Κατά τη  διαδικασία της  σύνθεσης  υψηλού επιπέδου επιλέγουμε τις  απαραίτητες  διεπαφές 
επικοινωνίας και ελέγχου. Στην παρούσα εργασία, οι διεπαφές που χρησιμοποιήθηκαν ήταν τα 
πρωτόκολλα AXI4-Lite και AXI4-Stream. Και τα δύο μπορούν να προστεθούν πολύ εύκολα από 
την καρτέλα  Directives  του  Vivado HLS.  Στην περίπτωση του  AXI4-Lite  το εργαλείο προσθέτει 
αυτόματα εκτός από το AXI4-Lite πρωτόκολλο στη συνάρτηση και ένα πρωτόκολλο επιπέδου-
μπλοκ για τον έλεγχο του συγκεκριμένου επιταχυντή, δηλαδή την εκκίνηση των υπολογισμών, 
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τον έλεγχο ολοκλήρωσης των υπολογισμών και άλλα. Επιπλέον για  IP  με  AXI4-Lite  διεπαφές 
γίνοται  αυτόματη δημιουργία ενός οδηγού υλικού για τη συγκεκριμένη συσκευή μέσω του 
οποίου μπορούμε να έχουμε πρόσβαση στη μνήμη της. Αντιθέτως όταν προσθέτουμε  AXI4-
Stream  διεπαφές  επιλέγουμε  ο  έλεγχος  της  λειτουργίας  να  μην  γίνεται  με  πρωτόκολλα 
επιπέδου-μπλοκ.  Αντίθετα,  τοποθετούμε  τον  έλεγχο  εντός  του  επιταχυντή.  Στις  stream 
υλοποιήσεις  οι  επιταχυντές  μας  πρώτα  συλλέγουν  τις  τιμές  που  απαιτούνται  για  τον 
υπολογισμό και στη συνέχεια εκτελούν τον υπολογισμό ενώ επιπλέον δεδομένα που μπορεί να 
βρίσκονται  στην  είσοδο  δεν  διαβάζονται  μέχρι  να  συλλεχθούν  όλα  και  να  εκκινήσει  ο 
υπολογισμός.

Δημιουργία του Συνολικού Συστήματος

Μετά τη δημιουργία των επιταχυντών υλικού σε μορφή  IP  σειρά έχει διασύνδεση του με το 
επεξεργαστικό σύστημα (PS) του ZedBoard και η δημιουργία του συνολικού συστήματος. Στην 
περίπτωση των AXI4-Lite πρωτοκόλλων η διασύνδεση γίνεται κυριολεκτικά με το πάτημα ενός 
κουμπιού. Αντιθέτως στην περίπτωση των AXI4-Stream πρωτοκόλλων η διασύνδεση δε γίνεται 
αυτόματα.  Ο  χρήστης  πρέπει  να  προσθέσει  ένα  AXI  DMA  μπλοκ  για  τη  μεταφορά  των 
δεδομένων. Στη συνέχεια εκτελείται η σύνθεση και η υλοποίηση του συστήματος και εξάγεται 
το αρχείο bitstream που χρησιμοποιείται για τον προγραμματισμό του FPGA.

Δημιουργία Linux Διανομών

Έπειτα  από  την  υλοποίηση  του  συστήματος  το  επόμενο  βήμα  είναι  η  δημιουργία  μιας 
ενσωματωμένης  Linux  διανομής για το σύστημά μας. Για το σκοπό αυτό χρησιμοποιούμε τα 
Petalinux  Tools  της  Xilinx.  Με τα  Petalinux  δημιουργούμε  μία  νέα πλατφόρμα  Linux  για το 
ZedBoard  και  στη  συνέχεια  από  την  περιγραφή  υλικού  που  έχει  εξαχθεί  προηγουμένως 
χτίζουμε μία νέα διανομή για το δικό μας σύστημα. Φορτώνουμε την εικόνα της διανομής στην  
κάρτα  SD  και  στη  συνέχεια  μπορούμε  να  συνδεθούμε  μέσω  της  σειριακής  θύρας  και  του 
προγραμμάτος GtkTerm με τη συσκευή.

Ανάπτυξη Εφαρμογών στο ZedBoard

Αφού  έχουμε  δημιουργήσει  την  πλατφόρμα  που  τρέχει  στο  επεξεργαστικό  σύστημα  στη 
συνέχεια  πρέπει  να  αναπτύξουμε  μία  εφαρμογή  που  τρέχει  στο  χώρο  χρήστη,  αποκτά 
πρόσβαση  και  ελέγχει  τον  επιταχυντή.  Οι  συσκευές  που  διαθέτουν  AXI4-Lite  πρωτόκολλο 
μπορούν να απεικονιστούν στο χώρο χρήστη μέσω του  Linux UIO  οδηγού.  Αντίθετα για την 
ανάπτυξη  εφαρμογών  για  συσκευές  με  AXI4-Stream  πρωτόκολλα  η  διαδικασία  είναι 
διαφορετική  καθώς  απαιτείται  ένας  πιο  πολύπλοκος  οδηγός.  Η  ανάπτυξη  για  αυτή  την 
περίπτωση  έγινε  με  τη  βοήθεια  του  zynq-xdma  driver  [https://github.com/bmartini/zynq-
xdma].

https://github.com/bmartini/zynq-xdma
https://github.com/bmartini/zynq-xdma
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Αξιολόγηση Ροής Εργασίας για τον 
Αλγόριθμο Ανίχνευσης Γωνιών Harris & Stephens

Κατά την  εφαρμογή  της  προτεινόμενης  ροής  εργασίας  στον  αλγόριθμο ανίχνευσης  γωνιών 
Harris  προχωρήσαμε σε πέντε διαφορετικές υλοποιήσεις στο  ZedBoard. H  πρώτη υλοποίηση 
δεν  περιελάμβανε  καμία  βελτιστοποίηση,  οι  επόμενες  περιελάμβαναν  την  προσθήκη  της 
ντιρεκτίβας  UNROLL  και  ARRAY_MAP  με  ρολόι  50  MHz  και  75  MHz.  Προχωρήσαμε  σε 
υλοποιήσεις  χρησιμοποιώντας  τα  πρωτόκολλα  AXI4-Lite  και  AXI4-Stream.  Στις  υλοποιήσεις 
αυτές κατεφέραμε να πετύχουμε ένα εύρος ζώνης μέχρι και 154 ΜΒ/s .  Παρακάτω μπορούμε 
να δούμε συγκριτικά διαγράμματα για τον απαιτούμενο χρόνο επικοινωνίας και υπολογισμού 
σε κάθε υλοποίηση.

Σχήμα 1: Χρόνου υπολογισμού για της υλοποιήσεις του Harris
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Σχήμα 2: Χρόνοι Επικοινωνίας για τις υλοποιήσεις του Harris
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Αξιολόγηση Ροής Εργασίας για τον Ταξινομητή SVM

Κατά την ενασχόλησή μας με τον ταξινομητή SVM προχωρήσαμε σε εξαγωγωγή μέσω του HLS 
έξι διαφορετικών εκδόσεων του κώδικα. Οι πρώτες έκδοσεις είναι ο γνήσιος κώδικας χωρίς  
βελτιστοποιήσεις με  AXI4-Lite  και  AXI4-Stream. H 3η και 4η έκδοση είναι ένας επιταχυμένος 
κώδικας  και  πάλι  με  AXI4-Lite  και  ΑΧΙ4-Stream  υλοποιήσεις.  Τέλος,  υλοποιούμε  και  δύο 
εκδόσεις της βέλτιστης εκδοχής του κώδικα. Συνολικά οι υλοποιήσεις για τον ταξινομητή ήταν 
πέντε για τον γνήσιο κώδικα, με χρήση και περισσοτέρων του ενός IP, τρεις για τον ενδιάμεσο 
κώδικα και δύο για τον βέλτιστο. Το εύρος ζώνης που καταφέραμε να πετύχουμε ήταν στα 444 
ΜΒ/s  ενώ για τη βέλτιστη έκδοση του επιταχυντή η ίδια ακριβώς υλοποίηση με  AXI4-Stream 
προσφέρει  ένα 20% κέρδος σε σχέση με την αντίστοιχη  AXI4-Lite.  Παρακάτω μπορούμε να 
δούμε σχετικά διαγράμματα.

Σχήμα 3: Επίδοση και Κέρδος για διαφορετικές SVM υλοποιήσεις
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Σχήμα 4: Εύρος Ζώνης για διαφορετικές SVM υλοποιήσεις

Σχήμα 5: Throughput για διαφορετικές SVM υλοποιήσεις
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Σχήμα 6: Εύρος Ζώνης και Throughput για διαφορετικές SVM υλοποιήσεις
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Chapter 1

Introduction

1.1 Introduction to FPGA

A  Field-Programmable  Gate  Array  (FPGA)  is  an  integrated  digital  circuit  (IC)  which  is 
constituted of a number of Configurable Logic Blocks interconnected with programmable 
connections. The term "field" denotes the fact that the FPGA is programmable on the spot in  
comparison  to  other  integrated  circuits  whose  functionalities  cannot  be  altered  after 
integration.

The reconfigurability that FPGAs offer is an element that enhances flexibility and makes 
them a very good platform for quick implementations and prototyping of system designs.  
The  correction  of  errors  is  made  easy  and  bears  a  very  low  cost  in  comparison  with 
Application-Specific  Integrated  Circuit  (ASIC)  implementations  which  require  a  large 
amount of time and bear a higher cost.

FPGAs can be configured for various applications. In addition, almost every computational  
algorithm can be implemented on an FPGA. Applications in which FPGAs are widely used 
include Digital  Communications,  Image Processing,  Digital  Signal  Processing and others.  
Moreover, an FPGA is capable of implementing a System on a Chip (SoC), a fact which gives  
the ability of a unified hardware-software approach to the design and implementation of 
applications.

1.1.1 History

Fixed logic devices, a name which implies devices that cannot be reprogrammed, were the 
first approach to system designs. Although they were widely used, the large amount of time 
requirements for the transition from a design to a prototype along with the fact that error  
correction would demand a new design and implementation led the way to fabrication of  
Programmable Logic Devices (PLDs).

One of the first attempts in the PLD field were Programmable Logic Arrays (PLAs). PLAs 
consisted  of  a  set  of  AND gates  and another  set  of  OR  gates  (Fig.  1.1)  which could  be 
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conditionally  complemented  to  produce  an  output.  PLAs  were  mainly  used  for 
implementing  combinatorial  logic  circuits  [1].  Programmable  Array Logic  (PAL)  was  an 
evolution  of  PLA.  PAL  devices  consisted  of  a  small  programmable  read-only  memory 
(PROM) core and additional output logic used to implement various logic functions with a 
few components [2].

The beginning of a new technology and market occurred in 1985 when Xilinx co-founders R. 
Freeman and B. Vonderschmitt introduced the first FPGA which was the first device which 
had programmable gates and interconnects. Since then, and especially during the 1990s, 
FPGA production grew explosively. Various vendors entered the market and the competition 
increased.  In  the  early  1990s  FPGAs  were  primarily  used  in  telecommunications  and 
networking,  however,  by  the  end  of  the  decade  and  lately  FPGA  usage  expanded  to 
consumer, automotive, and industrial applications [3].

Figure 1.1: A PLA schematic paradigm [1]

1.1.2 FPGA Attributes and Advantages

The appearance of FPGAs in the market was accompanied by low speeds and high power 
consumptions.  Additionally,  early  FPGAs  carried  a  finite  number  of  functionalities.  The 
above  mentioned  are  some  of  the  reasons  that  made  ASIC  implementations  preferable. 
Nowadays,  FPGAs have drastically evolved and are capable of providing solutions which 
overpower the equivalent ASIC ones. A list of reasons which led to the proliferation of FPGA 
production and use can be seen below:

• Increased Speeds. When the  origination  of  FPGAs  occurred  they  were  used  for 
lower speed designs, however, current FPGAs easily push the 500MHz performance 
barrier and readily support higher speed designs.

• Low Power Consumption. FPGA vendors are constantly pursuing the minimization 
of power consumptions. With approaches like a triple-oxide process technology for 
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transistors to reduce their  static power consumption or a shift  to coarse-grained 
logic architectures for more compact designs and minimization of dynamic power 
consumption,  FPGA  vendors  along  with  FPGA  programmers  have  managed  to 
decrease power consumption through time.

• Declining Cost per Unit.  The competition among various FPGA vendors has been 
proven beneficial  to  users.  Today,  customers  are  able  to  purchase  1  million-gate 
FPGAs for much less than $100 in low volumes and for tens of dollars in higher 
volumes.

• Reconfigurability. As already mentioned an FPGA's configuration is easily alterable 
offering high flexibility during the development of applications. On top of that, the  
latest trend is for an FPGA to partially alter its configuration while operating. More 
specifically,  some  regions  of  the  FPGA  can  be  reprogrammed  while  applications 
continue their executions in the remainder of the device.

• Short Time-to-Market.  The relatively fast transition from a design to a prototype 
allows an FPGA – based product or application to enter the market in a shorter time 
compared to ASIC implementations (Fig. 1.2).

• Low NRE Cost.  A consequence of  rapid prototyping is  the reduction of  the non-
recurring engineering (NRE) cost, which is defined as the one-time cost to research, 
develop, design and test a new product.

Figure 1.2: FPGA Vs. ASIC SOC design time [4]

The above mentioned are only a few of the features which have led to the prosperity of the 
FPGA  market.  Additionally,  the  short  time-to-market  combined  with  the  constantly 
declining NRE costs is a factor which drops the FPGA unit costs below the ASIC ones for 
high volumes [4].
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Figure 1.3: FPGA Vs. ASIC cost per unit

1.1.3 State of the Art

Since the dawn of the market in 1985, FPGAs have become increasingly important to the 
electronics  industry,  as  innovative  accomplishments  have  occurred  in  the  FPGA  field. 
Today's FPGAs are entire programmable systems on a chip (SoC) which are able to cover an 
extremely wide range of applications. Latest trends make FPGAs a highly flexible alternative 
to ASICs for a larger number of higher-volume applications, a fact which is mirrored in the 
growing number of FPGA design starts [5],[6].  For instance,  in 2005 FPGA design starts 
were estimated around 80.000, however, the number had increased to 90.000 by 2008. 

The  flourishment  of  the  FPGA  market  could  not  have  been  achieved,  if  a  tremendous 
increment in the number of logic gates had not transpired. Back in 1982 the number of logic 
gates  was  8.192  (Burroughs  Advances  System Group,  integrated  into  the  S-Type  24-bit 
processor for reprogrammable I/O) for it to rise up to 9.000 in 1987 by Xilinx. Since 1987, 
an  explosive  growth in  the  number  of  logic  gates  led  to  600.000  gates  in  1992 (Naval 
Surface Warfare Department) [3].  In early 2000s the number of logic gates had already 
increased to millions.

The latest tendency in the FPGA field is the combination of traditional logic blocks with 
embedded micro-processors and the essential peripherals to develop a SoC device. Such an 
innovation was introduced in 2010, when Xilinx presented Zynq®-7000 All Programmable 
SoC (AP SoC), the first SoC device that combined the features of a Dual-Core ARM® Cortex 
A9 Processing System (PS) with Programmable Logic (PL), or a dual-core processor with an 
FPGA core. The combination of the software programmability of an ARM®-based processor 
with the hardware programmability of an FPGA in a single device offers to developers the 
capability of applying a hardware-software unified approach to embedded system designs, 
with a conjunction of serial and parallel processing. On top of that, the Zynq®-7000 AP SoC 
is architected to deliver the lowest possible system power and system level performance 
through optimized architecture [7].  It  should be mentioned that Zynq®-7000 AP SoC is 
going to be the target device for the application development in the present diploma thesis.
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Figure 1.4: Zynq®-7000 All Programmable SoC

Lately,  Xilinx  launched new 16nm and 20nm  UltraScale™ families  based on the  first  all 
programmable  architecture  to  span  multiple  nodes  from  planar  through  FinFET 
technologies and beyond, while also scaling from monolithic though 3D ICs. At 20nm Xilinx 
pioneered  the  first  ASIC-class  All  Programmable  architecture  to  enable  multi-hundred 
gigabit-per-second levels of system performance with smart processing at full line rates, 
scaling to terabits and teraflops, while UltraScale+ families, at 16nm, combine new memory,  
3D-on-3D, and multiprocessing SoC (MPSoC) technologies [8]. 

The latest innovations in the FPGA field add to its reconfigurable nature and make it an 
obvious  choice  when  it  comes  to  rapid  prototyping  of  system  designs,  hardware 
accelerators,  or  even  embedded  system  designs,  as  it  offers  a  steadily  dropping  power 
consumption combined with a steadily increasing speed and data throughput.
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1.2 FPGA fabric

An  FPGA  consists  of  a  number  of  Configurable  Logic  Blocks  (CLBs),  I/O  blocks  and 
programmable routing. The CLB serves as the main functional unit of an FPGA. Each FPGA 
contains a large number of CLBs, which are organized in a two-dimensional array and are 
interconnected via horizontal and vertical routing channels (Fig. 1.5). A CLB consists of four  
slices and each slice is composed by two logic cells (Lcs) [9].

Figure 1.5: An array of CLBs composed by four slices and two logic cells per slice [9]

A logic cell consists of a Look Up Table (LUT) with 4 inputs, a multiplexer and a flip-flop. In  
addition,  FPGAs  contain  hardwired  memories,  multipliers  and  DSP  (Digital  Signal 
Processing) Blocks interconnected with the CLBs. Last but not least, a number of I/O blocks, 
organized in  banks,  enables  the  FPGA to  communicate  with a  variety  of  devices  in  the 
outside world, for instance, sensors and processors.

Figure 1.6: A simplified schematic of a logic cell
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1.2.1 Look Up Table

A N-LUT is a functional unit capable of computing any function of N inputs. The operation of  
a LUT resembles the process of finding the value of a logical function via its truth table.  
Given  the  truth  table  of  a  function,  the  LUT  is  programmed  accordingly.  Then  it  is 
responsible for matching a pattern of the N inputs with one of the 2 N rows of the table and 
generate  the  corresponding  output  value.  LUTs  can  be  combined  to  implement  more 
complex functionalities than a N-bit logical function. Specifically, a LUT is able to implement 
a  logical  function  of  N  inputs,  a  N-bit  shift  register  or,  alternatively  be  used  as  N-bit  
distributed memory.  A N-LUT is usually implemented as a column of 2N SRAM bits which 
serve as inputs to a 2N-to-1 multiplexer. The N inputs of the LUT are used as the select lines 
of the multiplexer. Additionally, there is a single-bit storage element in the basic logic block 
in the form of a D flip-flop. The output multiplexer selects either a result generated by the  
LUT or the bit stored in the D flip-flop.

Figure 1.7: A simple 4-bit look up table logic block [10]

Through  time,  the  LUT has  been chosen to  serve  as  the  smaller  computational  unit  in  
commercially available FPGAs. However, the size of the LUT in each logic block has been 
widely investigated.  On the one hand,  larger look up tables  would allow more complex 
operations to be performed per logic block, thus reducing the wiring delay between blocks 
along with the number of needed logic blocks. Yet, a large LUT would introduce additional 
delays due to the requirement of larger multiplexers. On top of that, a larger LUT yields an 
increased  probability  of  wasting  resources  if  the  implemented  functionality  has  lower 
demands. On the other hand, small look up tables might lead to an increment of logic blocks 
consumption,  thus  increasing  the  wiring  delay  between  blocks.  Empirical  studies  have 
shown that the 4-LUT structure makes the best trade-off between area and delay for a wide 
range of benchmark circuits [10].
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1.2.2 Hardwired Blocks

As already mentioned,  configurable logic blocks serve as the main functional  unit  of  an 
FPGA, with the look up tables playing an important role in their operation. However, it is 
currently the rule for an FPGA to have common functionalities embedded into the silicon, in 
order to reduce the required area and provide increased speed compared to building those 
functionalities from primitives. Examples of hardwired blocks include multipliers, generic 
DSP blocks, embedded processors, high-speed I/O logic and embedded memories. It should 
also be mentioned that, nowadays, it is more and more common for an FPGA to dispose 
high-speed transceivers, Ethernet MACs, PCI controllers and  external memory controllers.

To  begin  with,  FPGA  boards  are  equipped  with  various  memory  elements  that  can  be 
utilized as RAM, ROM or shift registers. One of these elements is the look up table which is  
discussed in the previous paragraph. Flip-flops also serve as a basic storage unit in an FPGA 
design. Another significant memory element is the BRAM (Block RAM). The BRAM is a dual-
port RAM component which is embedded into the FPGA board and can achieve storage of a 
large set of data. The capacity of block RAMs usually instantiated is is 18KB and 32KB. Of 
course, each and every board comes with a specific number of embedded BRAMs [3]. A key 
element in BRAMs is the dual-port operation which is introducing a parallel behavior as it is  
providing access to different locations in the same clock cycle.

One of the most important and complex computational unit embedded into the FPGA fabric 
is the DSP (Digital Signal Processing) Block. The usage of embedded DSP blocks has been 
established in order to support the increasing amount of computational load. A DSP block is  
a combination of adders, subtractors and multipliers put together to compose an arithmetic 
logic unit  (ALU).  The adder or subtractor unit  is  connected to a multiplier which has a 
cascading  connection  to  the  final  add/subtract/accumulator  engine.  Following,  we  can 
observe a schematic of a DSP block.

Figure 1.8: Structure of DSP Block
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Finally, the programmable high speed I/O blocks are another essential element of an FPGA 
board. The I/O blocks are usually organized in banks and every bank can use a specific IO 
mechanism  and  protocol  (e.g.  Time-to-Live/TTL).  By  programming  the  I/O  blocks  we 
usually define the direction of data (input, output or input & output), or whether tri-state 
logic will be used [9].

1.2.3 Interconnection

Contemporary popular FPGAs implement what is often called island-style architecture. This 
specific architecture has logic blocks tiled in a two-dimensional array. The logic blocks form 
the islands and float in a sea of interconnect. With this array architecture, computations are  
performed spatially in  the FPGA fabric  [10].  Large computations are broken into 4-LUT 
pieces  and  mapped  into  physical  logic  blocks  in  the  array.  The  interconnect  is  then 
configured to appropriately route the signals among the logic blocks.

Figure 1.9: An island-style architecture with connect blocks and switch boxes [10]

In Figure 1.9 an island-style architecture is shown. A random logic block accesses nearby 
communication resources through a connection block. The connection block connects logic 
block input and output to routing resources with programmable switches and multiplexers.  
It  allows  logic  block  I/Os  to  be  assigned  to  arbitrary  horizontal  and  vertical  tracks, 
increasing routing flexibility.

On  the  intersections  of  horizontal  and  vertical  routing  tracks  a  switch  box  makes  its  
appearance.  In general sense,  the switch box is an array of programmable switches that  
allow a signal on one track to connect to another track. Depending on the design of the  
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switch box, a signal might turn right or left when it meets a corner or continue straight until 
it reaches another switch box or connection block.

Figure 1.10: A switch box [10]

A key fact in this in this interconnect architecture is that the introduction of connect blocks 
and switch boxes separates the interconnect from the logic, allowing long-distance routing 
to be accomplished without consuming logic block resources.

1.2.4 Programming Technologies

Each configurable element in an FPGA requires 1 bit of storage to maintain a user-defined 
configuration.  For  a  common  LUT-based  FPGA  these  programmable  locations  generally 
include  the  contents  of  the  logic  block  and  the  connectivity  of  the  routing  fabric.  The 
configuration of an FPGA is accomplished through programming the storage bits connected 
to these programmable locations according to user definitions [9]. For the look up table this 
translates  into  filling  it  with  logic  ones  and  zeros.  For  the  routing  fabric,  programming 
enables  and  disables  switches  along  routing  tracks  and  channels.  The  most  popular 
programming  technologies  for  configuring  an  FPGA  include  SRAM,  anti-fuse  and  Flash 
memory.

The most widely used method for storing the configuration information in commercially 
available FPGAs is volatile static RAM or SRAM. This specific method has gained popularity 
among FPGAs as it provides fast and infinite reconfiguration in a well-known technology.  
The drawbacks of SRAM include power consumption and data volatility [3].   Firstly,  the 
SRAM cell size dissipates significant static power due to leakage current. Secondly, the FPGA 
is not configured at power-up and must be programmed using off-chip logic and storage. 
This  could  be  accomplished  with  an  additional  non-volatile  storage  unit  and  a  micro-
controller to configure the FPGA. However, it adds to the component count and complexity 
of a design and prevents SRAM-based FPGAs from being a true single-chip solution [10].

Another method for FPGA programming, yet not very popular, is the usage of Flash memory 
for the maintenance of configuration information. The key difference between SRAM and 
Flash memory is that the second is non-volatile and can only be written a finite number of  
times. Since Flash memory is non-volatile, it is able to retain the FPGA configuration when 
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power turns off.  In addition,  the flash memory cell  usually consists of fewer transistors 
compared  to  SRAM,  a  fact  which  reduces  static  power  consumption.  One  major 
disadvantage  of  flash  memory,  as  already  mentioned,  is  that  it  can  be  written  a  finite  
number of times so it does offer an infinite reconfigurability.

A third approach to FPGA configuration is anti-fuse technology. As its name suggests, anti-
fuse  is  a  metal-based link that  behaves  in  a  way opposite  to fuse.  The anti-fuse  link is  
normally open or unconnected. The programming in this case involves a laser or a high-
current programmer melting the link to form an electrical connection. Although anti-fuse 
technology yields zero static power consumption as it does not consist of transistors, the 
fact that an anti-fuse link cannot be reprogrammed removes the most significant element of  
an  FPGA  which  is  reconfigurability  and  does  not  allow  the  use  of  anti-fuse  FPGAs  for 
prototyping of system designs [10].

1.3 CAD Tools and FPGA programming

CAD (Computer-Aided Design) tools are one of the three main factors that determine the 
performance of an FPGA design. The other two are the quality and efficiency of a specific 
FPGA architecture and the transistor-level  design of  the FPGA.  Investigation of  different 
architectures and implementations of an FPGA could not have been possible without the 
assistance of CAD tools. It might be obvious, that the implementation of a design in modern 
FPGAs requires thousands or millions of programmable switches and configuration bits set 
to proper state. Instead of that, a specific circuit can be described by the user at a higher  
level of abstraction by using a hardware description language, for instance, VHDL or Verilog, 
in general an RTL (Register-Transfer Language) or alternatively a design generated through 
high-level synthesis, which will  be discussed in the next paragraph. Then the process of 
mapping  a  design  on  an  FPGA  is  broken  down  to  steps  including  Logic  Synthesis,  
Technology Mapping, Placement, Routing and finally the generation of the bitstream file, the 
file according to which the FPGA is configured. Following, the steps for mapping a design on 
an FPGA are listed [10].

Logic Synthesis

It  is  the  first  step  which  includes  the  conversion  of  the  circuit  description,  either  in  a 
hardware description language or a schematic form, into a netlist of basic gates. The next 
step is the conversion of the previously generated netlist to a netlist of FPGA logic blocks, 
such that the number of blocks is minimized while the speed of the circuit is maximized.  
Simplification and optimization of logic is made wherever possible.

Technology Mapping

In this step several LUTs and registers are packed into one logic block according to the 
limitations  of  the  specific  device  on  which the  design  is  going  to  be  implemented.  The 
number of resources varies among different FPGA devices.  The optimization goal in this 
phase is to pack LUTs so that the number of logic blocks and routed signals is minimized.
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Figure 1.11: A typical FPGA mapping flow [10]

Placement

The step of placement includes the application of algorithms to determine which FPGA logic 
block should implement each of the logic blocks required by the circuit. The target is to 
place  connected  logic  blocks  together  or  in  small  distances  in  order  to  minimize  the 
required wiring and delay, or in some cases, to balance the wiring density across the FPGA.

Routing

Once the locations for all logic blocks in a design have been chosen, a router determines 
which programmable switches should be turn on to connect all the logic block inputs and 
outputs throughout the circuit. Usually, the routing architecture is represented as a directed 
graph in  which the  nodes are  the  inputs  and outputs  of  the  logic  blocks  and potential 
connections are the edges of the graph. Of course, the target of this step is to interconnect  
the previously placed elements in the most efficient way, using short paths and fast routing 
connections. Since most of the delay in an FPGA design is due to programmable routing, 
most routers are timing-driven in the sense that an attempt to obtain good circuit speeds is  
made.
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1.4 High-Level Synthesis

High-Level Synthesis (HLS), sometimes referred to as behavioral synthesis, is an automated 
design process that interprets an algorithmic description of a desired behavior and creates 
digital hardware that implements this behavior. The first generation of high-level synthesis 
tools made its appearance in the 1990s. While logic synthesis uses an RTL description of a  
design,  high-level  synthesis  works  at  a  higher  level  of  abstraction,  starting  with  an 
algorithmic description in a high-level language (HLL) such as ANSI C/C++.

Beginning with a specification of  an application that  is  to be implemented as a  custom 
processor, dedicated coprocessor or any other custom hardware unit, the user must provide 
a high-level description capture of the desired functionality using an HLL. This capture is a  
functional specification, sometimes referred to as untimed description, in which a function 
consumes all  of  its  inputs simultaneously,  performs all  necessary computations  without  
delay  and  provides  its  output  data  simultaneously  [11].  In  other  words,  the  user  is 
responsible for writing a function performing a desired computation as if  it  were to be 
included in a software project.  At  this  level  of  abstraction variables  and data types  are  
related neither  to the hardware design domain,  nor  to the embedded software.  Thus,  a 
realistic hardware implementation definitely requires the floating-point, integer or other 
data  types  to  be  converted  to  bit-accurate  data  types  of  specific  length  and  acceptable  
computation accuracy. Then, an optimized hardware architecture should be generated.

At  this  point,  HLS  tools  make  their  appearance,  targeting  to  transformation  of  a  given 
untimed or partially timed high-level specification into a fully timed implementation. HLS 
tools  automatically  or  semi-automatically  generate  a  custom  architecture  to  efficiently 
implement the previously mentioned specification. In addition to the memory banks and 
communication interfaces, the generated architecture is described at the Register-Transfer 
Level and contains a data path and a controller as required by the given specifications and 
design constraints  [11].  Except for the  high-level  description of  the  application,  an RTL 
component library and specific design constraints are needed.  Below,  the  steps  from  the 
high-level specification to the generation of RTL architecture are listed.

Compilation and Modeling

In this first step, the input description is transformed into a formal representation or model. 
Code optimizations,  such as dead-code and false  data dependency elimination,  constant  
folding and loop transformations transpire. The formal model produced by the compilation 
exhibits  the  data  and control  dependencies  between operations.  Data  dependencies  are 
usually represented by a data flow graph (DFG) or a control and data flow graph (CDFG) 
which explicitly exhibit all the intrinsic parallelism of the specification. The main difference 
between DFGs and CDFGs is that CDFGs are more expensive in general because they take 
unbounded loops into account, a feature which DFGs miss.

Allocation

In this step, a definition of type and number of hardware resources needed to satisfy the  
design  constraints  transpires.  The  components  are  selected  from  the  specific  RTL 
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component library which is provided. At least one component for each operation in the 
specification model is selected. For example, if an addition is included in the specification 
then at least one adder will be selected from the RTL library. Depending on the HLS tool,  
some of the essential components might be added during later steps.

Figure 1.12: High-Level Synthesis design steps [11]

Scheduling

The  step following  allocation  is  scheduling.  All  operations  required  in  the  specification 
model must be scheduled into cycles. For each operation (e.g. +/-) variables must be read 
from their sources (i.e. storage or functional unit components), brought to the input of a 
functional  unit  which can perform the operation and the  result  must  be  brought  to  its 
destination storage or functional unit. Depending on the functional component to which the 
operation is mapped, it can be scheduled within one or several clock cycles. The operations 
can be chained and be scheduled to execute in parallel if there are no data dependencies 
between them and a sufficiency of available resources [11].

Binding

Each variable  that  carries  values  across  cycles  must  be  bound  to  a  storage  unit,  while  
variables with non-overlapping or mutually-exclusive lifetimes can be bound to the same 
storage units. Additionally, every operation in the specification model must be bound to one 
of the functional units capable of executing it and in the case of plurality of such units the 
binding algorithm optimizes its selection. Finally, connectivity binding requires that each 
transfer  from  component  to  component  be  bound  to  a  connection  unit.  Ideally,  HLS 
estimates the connectivity delay and area as early as possible for better optimization.



45

Generation

Once  decisions  have  been  made  in  the  preceding  tasks  of  compilation  and  modeling,  
allocation, scheduling and binding, the goal of the RTL generation step is to apply all the 
design decisions made and generate an RTL model of  the synthesized design.  Given the 
generated RTL description, the steps that follow up are the ones mentioned in the previous 
paragraph, starting with logic synthesis and ending with the generation of the bitstream 
file.

1.5 Aims, Objectives and Organization of Chapters

The aim of the present diploma thesis is the exploration and evaluation of communication 
potentials between a processing system and custom hardware accelerators in the form of IP 
(Intellectual Property) cores. An IP core or IP block is a reusable unit of logic, cell or chip  
layout  that  is  the  intellectual  property  of  one  party.  The  target  device  of  our 
implementations is  Zynq®-7000 APSoC, and more specifically, Zedboard (Zynq Evaluation 
and  Development  Board).  As  already  mentioned,  Zynq®-7000  APSoC  is  composed  of  a 
Dual-Core ARM® Cortex A9 Processing System and additional Programmable Logic. For the 
purposes of this thesis, two different IP cores generated through Vivado HLS 2014.4 are 
going to be employed. The first  one pertains to the field of Computer Vision,  and more 
specifically, is an implementation of the Harris & Stephens Corner Detection Algorithm. The 
second resides in the Biomedical field and it  is  an implementation of an SVM  (Support 
Vector Machine) classifier for arrhythmia detection. The natures of these IP cores differ not  
only in their corresponding applied fields but also,  and most significantly for our thesis 
aims,  in  the  size  of  their  input  and  output  data  requirements.  Both  algorithms  will  be  
discussed further later. The rest of this thesis is organized as follows:

• Chapter 2 gives the theoretical  background of the implemented algorithms along 
with information on the related work in Computer Vision and Bio-medicine.

• Chapter 3 focuses on more technical details of the implementation concerning the 
ARM Advanced Micro-controller Bus Architecture (AMBA), available interfaces and 
their characteristics, Direct Memory Access and the Linux UIO Driver.

• Chapter 4 presents the whole flow for ZedBoard implementations, beginning with 
the  initial  step  of  High-Level  Synthesis,  up  to  the  development  of  the  userspace 
application intended to control the hardware accelerators.

• Chapters 5 and 6 present all the implementations and corresponding results for the 
Harris  & Stephens Corner Detector and the Support  Vector Machine classifier for 
Arrhythmia Detection respectively.

• Finally, in Chapter 7 the conclusions of this thesis are recorded and proposals for 
further improvements and research are made.
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Chapter 2

Theoretical Background 

2.1 The Harris & Stephens Corner Detector

The role of this paragraph is to give us an overview of the field of Computer Vision and the 
implemented  algorithm.  The  process  of  feature  detection  and,  in  particular,  corner 
detection has, lately, gained a significant amount of interest from the scientific world. The 
theme of this paragraph is the study of evolution in Computer Vision and Feature Detection 
algorithms,  beginning  with  the  Canny  Edge  Detector  and  reaching  the  point  where  the 
Harris & Stephens Corner Detection algorithm was introduced.

2.1.1 Introduction to Computer Vision

Computer Vision (CV) is a term which denotes the scientific field which includes all the 
methods for acquiring, processing, analyzing and understanding data from the 3D world in 
order to generate numerical or symbolic information. Computer Vision emerged from the 
need to simulate human vision by electronically perceiving and understanding an image 
[12].  Since  the  analysis  of  the  3D  world  requires  an  interdisciplinary  approach,  it  is 
presumed that the aid of scientific fields such as geometry, physics, statistics and learning 
theory is of vital importance.

Computer Vision algorithms have evolved rapidly in recent years, covering a wide range of 
applications. They play a dominant role in navigation of robots and vehicles, either ground 
or aerial.  The applications in the automotive field might range from obstacle avoidance, 
autonomous  robot  navigation  to  space  exploration,  which  is  held  by  fully  autonomous 
ground-based  vehicles  like  the  ESA  ExoMars  rover.  Secondly,  industrial  CV  applications 
provide  vital  information  for  the  manufacturing  process,  such  as  the  search  for 
imperfections on a product or assisting robotic arms to perform pick-and-place operations 
in a manufacturing area. The contributions of CV in the medical field, and specifically in 
medical  imaging,  have  facilitated  the  diagnosis  for  diseases  or  organ  disorders  and 
dysplasias by employing representations like x-ray images or CT and MRI scans for the 
measurement of organ dimensions, blood flow or even the structure of the brain [13].
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Figure 2.1 Scientific fields correlating with Computer Vision [12]

2.1.2 Feature Detection

One of the main and most significant targets of Computer Vision is the extraction of features 
from  images  in  order  to  satisfy  the  requirements  of  a  variety  of  systems  concerning 
robotics,  motion  estimation  and  a  number  of  other  application  kinds.  In  the  field  of 
Computer  Vision,  feature  detection  refers  to  essential  methods  and  operations  for  the 
estimation, at every pixel of an image, of the presence or absence of a specific feature. In 
other  words,  feature  detection  is  the  process  of  estimating  geometrical  and  physical 
properties  of  the  surfaces  of  3D world  objects  by  using  their  image  representations  as 
inputs.  The result of the feature detection process is a subset of the initial image which 
might  contain  points,  continuous  lines  or  connected  regions  depending  on  the  kind  of 
features one might need to extract. Occasionally, the definition of a feature type might be 
hazy,  however,  it  is  important  to  understand  that  any  image  pixel  or  region  might  be 
considered a feature if it holds a certain property that increases its interest in comparison 
with other image pixels or regions.

Lately,  a  variety of  feature  detection algorithms have been developed depending on the 
desired feature extraction. Following, in order to clarify what a feature might refer to let us 
enumerate those principally used in Computer Vision applications and systems:
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• Edges :  The term “edge” is used to describe the boundary between two or more 
different regions or surfaces of an image. Obviously, there is no predefined shape for 
an  edge  as  it  is  the  border  between surfaces  of  any shape.  Most  edge  detection 
algorithms  rely  on  the  fact  that  edges  consist  of  pixels  with  a  high  gradient 
magnitude [14]. A well-known, yet not unique, edge detection algorithm is the Canny 
Edge Detector proposed by John F. Canny in 1983.

• Corners/Interest Points :  The term “corner”  describes  the point  of  intersection 
between two or more edges. Initially the corner detection algorithms firstly detected 
the edges and afterwards the corners of an image by determination of the points  
with strong changes in direction. Lately, the corner detection algorithms search for 
high values of curvature in the image gradient. It was claimed that many of those 
algorithms occasionally misinterpreted non-corner points as corners due to contrast 
[14]. For example, a white dot on a black canvas would be characterized as a corner.  
For such points the term “interest points” is used.

• Blobs/Regions of Interest or Interest points : By the term “blob” an image region 
that  differs  in  properties  such as brightness  or  colour,  compared to  surrounding 
regions  is  described.  Informally  a  “blob”  is  a  region of  an  image  in  which some 
properties are constant or approximately constant [14]. In other words, a blob is a 
collection of points that, based on some criteria, are similar to each other. Commonly 
used blob detectors are the Laplacian of Gaussian (LoG),  the Difference of Gaussians  
(DoG) and the Determinant of Hessian (DoH). As one might think, blob detection is a 
significant task especially in applications concerning Image Segmentation.

• Ridges : The “ridges” or “ridge set” of a smooth function of two variables are a set of  
curves  whose  points  are  local  maximum  points  of  the  function  in  at  least  one 
dimension. In other words, a ridge could be thought as a one-dimensional curve that 
represents an axis of  symmetry.  In addition its width depends on the local ridge 
point.  In  general,  the  calculation  of  ridge  points  is  much  more  computationally 
intense than the detection of edges, corners or blobs [13].

This  diploma  thesis  focuses  on  corner  detection  which is  commonly  used  in  tasks  like 
Motion  Detection,  Image  Segmentation,  Video  Tracking,  3D  Modeling  and  Object 
Recognition.

2.1.3 The Edge Tracking Problem

Edge detectors of some kind, particularly step edge detectors have been an essential part of 
many computer vision systems. The edge detection process serves as a simplification to the  
analysis of images by drastically reducing the amount of data to be processed, preserving 
useful structural information about about object boundaries inside an image [15]. 

One of the first attempts in edge detection was proposed by John F. Canny in 1983. The  
Canny operator was designed to be an optimal edge detector according to certain criteria:
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• Good Detection. The probabilities of failing to mark real edge points and falsely 
marking  non-edge  points  should  be  low.  Both  probabilities  are  monotonically 
decreasing  functions  of  the  output  Signal-to-Noise  Ratio  (SNR)  and  so  the  first 
criterion is fulfilled if SNR is maximized [15].

• Good Localization. The points marked as edge points should be as close as possible 
to the center of the real edge.

• Only one response to a single edge. This is implicitly captured in the first criterion 
since when there are two responses to an edge,  one of them must be considered 
false.

The mathematical background of the Canny operator will not be discussed in this diploma 
thesis. The role of this paragraph is the statement of the criteria that John F. Canny relied on 
during the design of the Canny operator as they are the criteria that were used, slightly 
different in some cases, for the design of later feature detection algorithms. 

2.1.4 The Moravec Corner Detector

One of the first successful attempts in corner detection was Moravec's corner detector. It  
operates by considering a local window in the image and determining the average changes 
of  image  intensity  that  occur  from  shifting  the  window  by  a  small  amount  in  various 
directions [16].  In other words,  the algorithm checks the similarity between a centered 
pixel with other local pixels. For this purpose, the sum of squared differences between the 
two sections is computed. There are three cases that need to be examined:

• The windowed image patch is flat. In this case all window shifts will result in small 
change, or in a low value of the sum of squared differences as the windowed image 
patch is approximately constant in intensity.

• The window includes an edge. In this case a shift in a parallel to the edge direction 
will result in a small change, however, a shift perpendicular to the edge will result in 
a large change, or a high value of the sum of squared differences.

• The window includes a corner or an isolated point.  In this case shifts to any 
direction will result in large changes. Thus, a corner or an interest point is detected 
when the minimum change produced by any of the shifts is large.

Thereafter,  we  give  a  mathematical  specification  of  the  above  statements.  Denoting  the 
image intensities by I, the change E produced by a shift (x, y) is given by

E(x , y)=∑
u, v

w(u , v)|I (x+u , y+v) – I (u , v )|2
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where w specifies the image window, which is unity within a specific rectangular region,  
and zero elsewhere. The directions (x, y) on which we compute the shifted intensity are {(1, 
0), (1, 1),  (0, 1), (-1, 1)}. Moravec's corner detector searches for local maxima in min{E}.

Figure 2.2 Binary Window Function

By consideration of the mathematical formula on which Moravec's corner detector depends,  
it is concluded that the specific detector suffers from a number of problems. Firstly, only a 
discrete set of shifts at every 45 degrees is considered. Secondly, the binary and rectangular 
window results in a noisy response [16]. Finally, only the minimum value of E is taken into  
account. The attempt to solve the above mentioned problems and the desire for a better  
performance in corner detection concluded in the Harris & Stephens corner detector.

2.1.5  The  Harris  & Stephens  /  Plessey  /  Shi–Tomasi  Corner  Detection 
Algorithm

Considering the drawbacks of Moravec's corner detector, Chris Harris and Mike Stephens 
proposed improvements by taking the differential value of a corner into account, regarding 
the direction directly and avoiding the usage of  shifted regions.  They applied corrective 
measures to overcome the above mentioned issues of Moravec's detector and defined the 
result as an “auto-correlation detector” [16].

One of the problems of Moravec's  operator is  that  it  generates an anisotropic response 
because  only  a  discrete  set  of  shifts  at  every  45  degrees  is  considered.  The  Harris  & 
Stephens algorithm covers all possible small shifts by performing an analytic, Taylor series 
expansion in order to compute an approximation of I(x+u, y+v). Denoting I x and Iy as the 
partial derivatives of the intensity of an image we write:

I ( x+u , y+v )≈ I (u , v) + x I x (u , v ) + y I y (u , v )  

Thus, the expression for the computation of the sum of squared differences E, given in the  
previous paragraph becomes:

E(x , y)=∑
u , v

w(u , v )( I (u , v)+x I x(u , v)+ y I y(u , v))
2 or E(x , y)=[ x y ] A[ xy ]
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where

A =∑
u , v

w(u , v )[ I x
2 I x I y

I x I y I y
2 ]= [ ⟨ I x

2
⟩ ⟨ I x I y ⟩

⟨ I x I y ⟩ ⟨I y
2
⟩ ]

is the structure tensor.

Another significant improvement in comparison with Moravec's corner detector is that a 
smooth window function is employed, guaranteeing a less noisy response, a feature missing 
from Moravec's corner detector due to the choice of a binary window function [13],[16].  
Instead, a Gaussian window can be used:

wu ,v=e
−
u2

+v2

2σ2

Figure 2.3 Gaussian Window Function

Finally, in Harris algorithm a corner is considered to have a large variation of the sum of 
squared differences in all directions of the vector (x,  y) [13]. In mathematical form, this 
statement can be expressed in terms of the eigenvalues of matrix A. If an interest point is 
examined, then matrix A should have two eigenvalues with high magnitude. Considering the 
magnitudes of the eigenvalues, the following cases are determined:

• If λ1≈0,  λ2≈0 then this point is of no interest.

• If λ1≈0 and λ2  has a high positive value then an edge has been detected.

• If both λ1  and λ2  have high positive values then a corner has been detected.

The  computation  of  eigenvalues  bears  a  heavy  workload,  hence,  Harris  and  Stephens 
proposed an alternative function which is

M c= λ1 λ2−κ (λ1+λ2)
2
=det(A)−κ⋅trace2

(A)

considering  that  det (M)= λ1 λ2  and  trace(M )=λ1+λ2 .  The  factor  κ  is  a  chosen 
parameter whose value depends on the desired sensitivity [16].



53

2.1.6 Related Work

The high complexities of Computer Vision algorithms combined with the fact that these 
algorithms are mainly fed with images and videos, in other words, with large amounts of  
data,  lead  to  greater  demands  of  computational  power,  followed  by  greater  power 
consumption  and  memory  demands.  General  purpose  CPUs  are  appropriate  for  low 
complexity applications, while GPUs perform a lot better. However, it is common with CV 
applications to demand non-linear optimizations for the sake of accuracy. The consequence 
is a computational load which might reach several millions of operations. Hence, another  
approach to design of CV applications should is recently considered.

The latest trend for a  CV application is  to be HW accelerated with an ASIC or an FPGA 
device. While ASICs are capable of meeting high performance expectations the high NRE 
costs,  the long time-to-market and the lack of  reconfigurability options lead the way to 
FPGA dominance. Recent improvements in FPGA technology manage to reach comparable 
to ASIC performances. The innate concurrent FPGA behavior proves as a great advantage for 
implementing CV applications. For instance, the convolution is a very common operation in 
CV and Image Processing systems, yet,  it is computationally intensive and might require 
several  millions  of  multiplications  and  additions.  A  convolution  would  be  quite  time 
consuming in a standard processor, however, it could be implemented simultaneously in an 
FPGA.  On the  other  hand,  FPGAs  might  introduce  a  major  drawback when it  comes  to 
implementing CV applications. Floating-point operations consume a large amount of FPGA 
resources. This situation is worse when a floating-point operation needs to be performed 
repeatedly. Luckily, Xilinx FPGAs include DSP blocks embedded in the FPGA fabric which 
allows an application to perform operations like multiplications and additions more quickly,  
partially solving the floating-point operation issue. 

In our work, a corner detection algorithm is accelerated and targeted to an FPGA device.  
The  hardware  accelerator  is  firstly  implemented  and  generated  through  High-Level 
Synthesis.  In  our  study  case  the  accelerator  is  data  intensive  in  both  execution  and 
communication time as it requires images as input data. Hence, not only should we add an 
interface for the accelerator to communicate with the processing system which feeds the 
input data, but also an effective way of communication should be considered by exploration 
of the available potential interfaces and interconnections. When we refer to the potential 
interfaces the available resources of the FPGA target device should be considered as some 
of them need to instantiate input ports, hence leading to even a 100% increase in resource  
utilization.

2.2 Support Vector Machine Classifier for Arrhythmia Detection

Electrocardiogram analysis has been established as a key factor for analyzing and assessing 
the health status of a person. The ECG Analysis flow is complex, relies on machine learning  
algorithms such as Support Vector Machine Classifiers and in an effort to be executed in 
real-time hardware acceleration is required [17]. In this paragraph an overview of the ECG 
analysis flow and Support Vector Machine classifiers is given.
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2.2.1 Electrocardiogram Analysis Flow

Electrocardiography  is  an  important  tool  in  diagnosing  the  condition  of  the  heart.  The 
electrocardiogram (ECG) is the record of variation of  bioelectric  voltage with respect  to 
time as the human heart beats. The state of cardiac health is generally reflected in the shape 
of ECG waveform and heart rate [18]. Due to its inherent relation to heart physiology the 
ECG  is  one  of  the  most  fundamental  and  crucial  biological  signals  for  monitoring  and 
assessing  the  health  status  of  a  person  [17].  Before  proceeding  to  ECG  Analysis  flow 
description, we consider essential to give background information about the heart.

The heart  is  a  four-chambered organ consisting of  right and left  valves.  The upper two 
chambers, or in other words, the left and right atria, are entry-points into the heart, while 
the lower two chambers, or left and right ventricles, are responsible for contractions that 
send the  blood  through the  circulation  [18].  The role  of  the  right  ventricle  is  to  pump 
deoxygenated blood to the lungs through the pulmonary trunk and pulmonary arteries, 
while the role of the left ventricle is to pump newly oxygenated blood to the body through 
the aorta.

The cardiac cycle refers to complete heartbeat from its generation to the beginning of the 
next beat. The first stage, defined as “diastole”, is when the semilunar valves (the pulmonary 
valve  and the  aortic  valve)  close,  the  atrioventricular  (AV)  valves  (the  mitral  valve  and 
tricuspid valve) open, and the whole heart is relaxed. The scond stage, defined as “atrial  
systole”,  is when the atrium contracts, and blood flows from atrium to the ventricle. The 
third stage, defined as “isovolumic contraction” is when the ventricles begin to contract, the 
AV  and  semilunar  valves  close,  and  there  is  no  change  in  volume.  The  fourth  stage, 
"ventricular  ejection",  is  when  the  ventricles  are  contracting  and  emptying,  and  the 
semilunar  valves  are  open.  Finally,  the  fifth stage,  “isovolumic  relaxation time”,  is  when 
pressure decreases, no blood enters the ventricles, the ventricles stop contracting and begin 
to relax, and the semilunar valves close due to the pressure of blood in the aorta [19].

Figure 2.4: ECG Waveform Typical Morphology [20]
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The cardiac cycle, which is described above is coordinated by a series of electrical impulses 
that are produced by specialized pacemaker cells. A typical ECG tracing is repeating cycle of 
three electrical entities: a P wave, a QRS complex that consists of three peaks, Q, R, and S,  
and  finally  a  T  wave.  These  waves  are  created  by  voltage  fluctuations  that  depict  the 
electrical activity of the heart and thus represent the cardiac cycle [18]. The phases of the 
cardiac cycle that each of the above signals are generated will not be discussed.

All the waves on the ECG and the intervals between them have a predictable duration, a 
range of acceptable amplitudes (voltages), and a typical morphology. This morphology is 
depicted in Figure 2.4. Any deviation from the normal tracing is potentially pathological and 
therefore of clinical significance. Arrhythmia is considered as one of the most commonly 
encountered heart malfunctions. Cardiac arrhythmia, also referred to as dysrhythmia,  or 
irregular heartbeat, is a group of conditions in which the heartbeat is irregular, too fast, or 
too  slow.  Some  arrhythmias  do  not  cause  symptoms,  hence  are  not  associated  with 
increased mortality but this is not the typical case.  Medical assessment of the abnormality 
using an electrocardiogram is a way to diagnose and assess the risk of any given arrhythmia 
[18].

Taking into account the critical condition of a person suffering from arrhythmia episodes, 
the field of depicting signs of arrhythmia in an ECG signal has been highly investigated.  
Arrhythmia  incidents  might  occur  at  random  in  time  scale  because  the  ECG  is  not  a 
stationary signal. Thus, the disease symptoms may not show up all the time, but manifest at  
certain irregular intervals during the day. Therefore, for an effective diagnosis, the study of 
the ECG pattern and heart rate variability signal may have to be carried out over several  
hours. This translates into an enormous data set that needs to be processed in order to 
reach  a  diagnosis.  As  a  result,  machine  learning  techniques  are  ideal  for  solving  the 
diagnosis problem. The data set is used as a training set, and by the time the training is  
completed the system is ready to deliver a diagnosis. The training set could be formed from 
a number of databases of ECG signals that are available. Our choice was a rather commonly 
used database, the MIT-BIH Arrhythmia Database, which is a combined effort of MIT and 
Beth Israel Deaconess Medical Center. The heart beats included in this database have been 
verified  by  cardiologists,  so  this  data  base  forms  an  ideal  starting  point  for  creating  a  
training data set for the detection problem.

The process of acquiring and processing an ECG signal in order to extract the individual 
beats  and  their  corresponding  features  is  composed  of  various  stages  with  distinct 
characteristics and requirements. It  consists of three main stages: a preprocessing stage 
(noise  removal),  a  processing  stage  (R  peak  detection,  feature  extraction),  and  a 
classification stage. A simplified overview of this processing flow can be seen in Figure 2.5. 
Our point of interest is the final step of diagnosis classification, or detecting whether the 
heart  beat  exhibits  arrhythmia  signs  or  not.  This  is  performed  using  a  classification 
algorithm, which detects the pattern of problematic beat. The classifier has been trained on 
the data set that  includes the feature vectors of the isolated beats.  Given a new feature  
vector  the  classifier  can  detect  whether  that  corresponding  beat  displays  signs  of 
arrhythmia.
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Figure 2.5: ECG Analysis Flow

2.2.2 SVM Classifier

In machine learning, Support Vector Machines (SVMs) are supervised learning models that 
are  used  for  data-driver  modeling  and  classification.  They  are  suitable  for  binary 
classification problems. The classification process requires that the data is separated into 
training and testing set. Each of the instances in the training set has the form of a feature 
vector consisting of the attributes that are being observed and a label indicating the class of  
each instance. The instances in the training set consist solely of the attributes. The goal of 
the SVM classification technique, is to train a model that can predict the class of an instance  
of the training set given only the attributes of the corresponding instance [21].

This goal is accomplished through the ability of the SVM to find a hyperplane that divides 
samples into two classes with the widest margin between them. A mapping function is used 
to project each feature vector of the training set to a feature space of higher dimension 
where  the  classification  of  data  will  be  easier.  The  SVM  is  used  to  find  the  optimal  
hyperplane for data classification according to their  attributes.  This  optimal  hyperplane 
maximizes the distance between itself and the feature vectors that belong to each class and 
are  closest  to  the  hyperplane.  These  feature  vectors  represent  the  decision  boundary 
between the classes and are called support vectors. A new feature vector is classified by its  
distance from the support vector. The function used for computing the distance between a 
new feature vector and a support vector by firstly projecting them to a higher dimensional 
feature space is called kernel function. The hyperplane decision function for classifying a 
test feature vector x is of the following form:

Class=sgn (∑
i=1

Nsv

( y i∗ai∗K (x , sup_vector i))−b)

where  K  is  the  kernel  function,  x  is  the  feature  vector,  sup_vector i  is  the  i-th 
support vector and y i , ai  are values related to it and result from the classifier training 
process. Coefficient b  is a bias value, also a result of the training process and is constant 
for  all  support  vectors.  The  kernel  function  is  of  great  significance  for  the  accurate 
prediction of testing data. Depending on the characteristics of a data set , different kernel  
functions are able to provide the desired classification accuracy.

In this work, we turn our attention to radial basis kernel function (RBF) since the complex 
correlations between the attributes of our feature vector and the physiological states of  
interest  typically  require  the  flexibility  afforded  by  non-linear  kernel  functions.  The 
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advantages  of  the  RBF kernel  over  the  other  non-linear  kernels  is  that  RBF  has  fewer 
parameters and fewer numerical difficulties [21]. Following are the equations in case of the 
RBF kernel. The second is the final decision function that is implemented in HW.

K (x ,sup_vector i)= exp(−γ‖x− sup_vectori‖
2
)

Class= sgn (∑
i=1

Nsv

( y i∗ai∗exp (−γ‖x − sup_vector i‖
2
))−b)

2.2.3 Related Work

Most  biomedical  devices  used  for  monitoring  chronic  patients  and  detection  of 
abnormalities in biomedical signals aim to provide accurate results in real-time. This comes 
with processing an enormous amount of signal data with extremely complex correlations.  
On this ground, proposed methodologies include an algorithmic-driven architectural design 
space  exploration  of  domain-specific  medical-sensor  processors.  Data-driven  modeling 
techniques are emerging as a powerful approach for overcoming the mentioned challenges. 
Additionally, most biomedical devices are wearable, hence application-specific architectures 
for low energy should be considered.

In  our  work  a  co-processor  is  build  through  High-Level  Synthesis  Design  tools  and  is 
intended for arrhythmia detection study case. It is thus optimized for this case only. For that  
reason the application is fixed concerning the implementation of the kernel function. The 
design space exploration for this particular study case has already been made as part of the  
work of a former diploma thesis. The Pareto Design space has been granted to us and we 
had to choose different versions of the HW. Finally, three different versions were chosen and 
integrated  in  the  target  device  in  IP  form.  Of  course,  before  integration  different 
communication  interfaces  were  added  during  the  High-Level  Synthesis  step.  Finally, 
implementations  with  one  or  more  classifier  IPs  were  made  for  those  versions  whose 
resource utilization allowed it.
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Chapter 3

Technical Background

3.1 The Advanced Microcontroller Bus Architecture (AMBA)

The ARM® Advanced Microcontroller Bus Architecture (AMBA) is an open-standard, on-
chip interconnect specification for the connection and management of functional blocks in 
SoC designs. It facilitates the development of multi-processor designs with large numbers of 
controllers and peripherals [22].  Since its  inception,  the scope of AMBA has,  despite its  
name, gone fay beyond microcontroller buses. Today, it is widely used on a range of ASIC  
and SoC parts [23]. AMBA was introduced by ARM in 1996. Since then, AMBA protocols  
have become the de facto standard for 32-bit embedded processors because they are well  
documented and can be used without royalties.

The design principles of AMBA originate from the fact that an important aspect of a SoC is  
not  only  which  components  or  blocks  it  utilizes  but  also  the  interconnection  of  these 
components. Hence, it is a clear solution for the blocks to interface with each other. The 
objectives  of  AMBA  vary  from  facilitating  right-first-time  development  of  embedded 
microcontroller products with one or more CPUs, GPUs or signal processors to technology 
independence by allowing the re-use of IP cores, peripheral and system macrocells across  
diverse IC processes. Moreover, another objective is to encourage modular system design to 
improve processor independence and the development of re-usable peripheral and system 
IP  libraries.  Finally,  the  minimization  of  silicon  infrastructure  while  supporting  high 
performance and low power on-chip communication is of great importance. The AMBA 4 
specifications define the following buses or interfaces [22]:

• AXI Coherency Extensions (ACE & ACE-Lite)
• Advanced eXtensible Interface (AXI4, AXI4-Lite & AXI4-Stream v1.0)
• Advanced Trace Bus (ATB v1.1)
• Advanced Peripheral Bus (APB4)

In this diploma thesis we focus on the characteristics and use of the Advanced eXtensible 
Interface (AXI) protocol.



60

3.2 The Advanced eXtensible Interface (AXI) Protocol

The AMBA AXI protocol supports high performance and frequency system designs. To begin 
with it  is  suitable for high-bandwidth and low latency designs providing high-frequency 
operation without using complex bridges. Secondly, it meets the interface requirements for 
a wide range of components. Additionally, it is suitable for memory controllers with high 
initial  access  latency.  It  provides  flexibility  in  the  implementation  of  interconnect 
architectures. Finally, it is backward-compatible with existing AHB and APB interfaces [24]. 
The key features of the AXI protocol are:

• Separate address/control and data phases
• Support for unaligned data transfers using data strobes
• Uses burst-based transactions with only the start address issued
• Separate read and write  data channels  that  can provide low-cost  Direct  Memory 

Access (DMA)
• Support for issuing multiple outstanding addresses
• Support for out-of-order transaction completion
• Permits easy addition of register stages to provide timing closure

The  above  key  features  along  with  the  fact  that  the  AXI  protocol  includes  optional 
extensions that cover signaling for low-power operation are what make AXI our first choice 
when it came to implementing the interconnection between the PS-side and the PL-side of  
the ZedBoard.  We should now proceed to a further  explanation of  the architecture  and 
operating principles of the AXI protocol. To begin with, it should be mentioned that the AXI 
protocol is burst-based and defines five independent transaction channels:

• read address
• read data
• write address
• write data
• write response

An address  channel  carries  control  information that  describes  the  nature  of  data  to be 
transferred. The data is transferred between the master and the slave using either a write 
data channel to transfer data from the master to the slave or a read data channel to transfer 
data from the slave to the master. It should be mentioned that in a write transaction, the  
slave uses write response channel to signal the completion of the transfer to the master. The 
AXI  protocol  permits  address  information  to  be  issued  before  the  actual  data  transfer,  
supports  multiple  outstanding  transactions  and  out-of-order  completion  of  transactions 
[24]. 

Each of the independent channels consists of a set of information signals and VALID and 
READY signals that provide a two-way handshake mechanism. The information source uses 
the VALID signal to show when valid address, data or control information is available on the 
channel. The destination uses the READY signal to show when it can accept the information. 
Both the read data channel and the write data channel also include a LAST signal to indicate 
the transfer of the final data item in a transaction. The read data channel carries both the 
read information and the read response from the slave to the master and includes the data 
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Figure 3.1: AXI Channel Architecture of Reads [24]

Figure 3.2: AXI Channel Architecture of Writes [24]
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bus, that can be 8, 16, 32, 64, 128, 256, 512, or 1024 bits wide, and a read response signal 
indicating the completion status of the read transaction. On the other hand, the write data 
channel carries the data from the master to the slave and includes a data bus of the same 
possible widths as the read channel's data bus, and a byte lane strobe signal for every data 
byte,  indicating which bytes of the data are valid.  A final notice is that a typical system 
consists of a number of master and slave devices connected together through some form of 
interconnect.

The AXI protocol provides a single interface definition for the interfaces between a master 
and the interconnect, between the slave and the interconnect and finally between a master 
and a slave. We now proceed to a further description and explanation of the AXI4-Lite and 
AXI4-Stream interface.

Figure 3.3: Interface and Interconnect [24]

3.2.1 The AXI4-Lite Interface

AXI4-Lite is an interface which is suitable for simple control register-style interfaces that do 
not require the full functionality of the AXI4 protocol. Of course, the potential transactions 
are compliant with general principles of the AXI protocol, however a subset of the signals 
offered by the AXI protocol are supported as AXI4-Lite refers to simpler transactions [24].

Lets now enumerate the key functionalities of AXI4-Lite interface. Firstly, all transactions 
are of burst length 1. This means that the maximal packet size that is transferred at once,  
can be either 32-bit or 64-bit depending on the data bus width. Secondly, all data accesses 
use the full width of the data bus. It should be mentioned that AXI4-Lite supports a data bus 
width of 32-bit of 64-bit. Thirdly, all accesses are non-modifiable and non-bufferable, and,  
finally exclusive accesses are not supported [24]. In Table 3.1 we might observe the signals 
that are supported by the AXI4-Lite interface for all kind of transactions. In this table we  
may notice some signals that were already mentioned before, like the VALID and READY 
signals. Other essential signals include the ADDR and DATA signals, which obviously refer to 
the address that we wish to read from or write to and the actual data transfer that is to be 
made.  The PROT signal  refers to  protection type.  The signal  indicates the  privilege and 
security level of the transaction and whether it is a data access or instruction access. The 
RESP signal refers to the response of either the write response or read data channel. Finally 
the STRB signal refers to the write strobes and indicates which byte lanes hold valid data.  
There is one write strobe bit for each byte of the write data bus.
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Global Write Address 
channel

Write Data 
Channel

Write Response 
Channel

Read Address 
Channel

Read Data 
Channel

ACLK AWVALID WVALID BVALID ARVALID RVALID

ARESETn AWREADY WREADY BREADY ARREADY RREADY

- AWADDR WDATA BRESP ARADDR RDATA

- AWPROT WSTRB - ARPROT RRESP

Table 3.1: AXI4-Lite Interface Signals [24]

The most important piece of information that should be kept in mind is that AXI4-Lite has a  
fixed data bus width and all transactions are the same width as the data bus which might be  
either 32-bit or 64-bit wide. On the one hand, this is a fact that combined with the burst  
length of 1, might limit bandwidth. On the other hand, if a data transfer requires less than 
32 bits, the utilization of the data bus will be the same as if the data transfer requires 32 
bits. Thus, power and data bus consumptions will be the same, independently of the actual 
needed data bus width. At this point, a basic explanation of the AXI4-Lite interface has been 
made and we now proceed to an overview of the AXI4-Stream interface.

3.2.2 The AXI4-Stream Interface

The AXI4-Stream Interface is used as a standard interface to connect components that wish 
to exchange data. The interface can be used to connect a single master that, that generates 
data, to a single slave, that receives data. The protocol can also be used when connecting  
larger  numbers  of  master  and  slave  components.  The  protocol  supports  multiple  data 
streams  using  the  same  set  of  shared  wires,  allowing  a  generic  interconnect  to  be 
constructed  that  can  perform  upsizing,  downsizing  and  routing  operations.  The  AXI4-
Stream interface also supports a wide variety of different stream types [25]. 

Types of streams include byte streams, continuous aligned streams, continuous unaligned 
streams and sparse streams. For the purposes of this paragraph, the types of streams will  
not  be discussed further.  Additionally,  AXI4-Stream interface applies a distinction of the 
data bytes that a data stream might consist of. A byte might be data byte, position byte or 
null  byte.  Data  byte  refers  to  a  byte  of  data  that  contains  valid  information  that  is  
transmitted between the source and destination. The term position byte refers to a byte that 
indicates  the  relative  positions  of  data  bytes  within  the  stream  and  performs  as  a  
placeholder that does not contain any relevant data values that are transmitted between the 
sourceand  destination.  Finally,  a  null  byte  is  a  byte  that  does  not  contain  any  data  
information or any information about the relative position of data bytes within a stream. In  
Table 3.2 a list of signals used in transactions with devices disposing AXI4-Stream interfaces 
is given.



64

Signal Source Description

ACLK Clock Source The global clock signal. All signals are sampled on the rising 
edge of ACLK.

ARESETn Reset Source The global reset signal. It is active-LOW

TVALID Master Indicates that the master is driving a valid master. 

TREADY Slave Indicates the slave can accept a transfer in the current cycle.

TDATA [(8n-1):0] Master It is the primary payload that is used to transfer the data. The 
width of the data payload is an integer number of bytes.

TSTRB [(n-1):0] Master It is the byte qualifier that indicates whether the content of the 
associated type of TDATA is processed as a data byte of 

position byte.

TKEEP [(n-1):0] Master It is a byte qualifier that indicates whether the content of the 
associated byte of TDATA is processed as part of the data 

stream. Associated Bytes that have the TKEEP byte qualifier 
deasserted are null bytes and can be removed from the stream.

TLAST Master It indicates the boundary of the packet.

TID [(i-1):0] Master Data stream identifier that indicates different streams of data.

TDEST [(d-1):0] Master It provides routing information about the data stream.

TUSER[(u-1):0] Master User-defined sideband information that can be transmitted 
along the data stream.

Table 3.2: AXI4-Stream Interface Signals list [25]

3.3 The Linux UIO Driver

Userspace I/O (UIO) drivers are designed to handle devices like FPGAs found on embedded 
boards and are frequently used in embedded systems. The Linux UIO driver was introduced 
in Linux 2.6.23 and is suitable for devices that cannot fit into other kernel subsystems. It  
allows the programmer to develop a device driver almost entirely in userspace, using all  
standard  application  development  tools  and  libraries.  This  is  a  feature  that  simplifies 
development, maintenance and distribution of device drivers [26].

Non-standard devices, for instance accelerators implemented on an FPGA, are commonly 
treated as character devices. A simple device might be easily handled by the  read() and 
write() system calls, however, this is not the typical case. Such devices are usually more 
complex and the additional necessary functionalities are commonly implemented using the 
ioctl() system call. An important note for a conventional driver is that it is obliged to use 
many internal kernel functions and macros. For several reasons, kernel developers refuse to 
keep the internal API stable, causing a driver which might perfectly work with the current 
kernel to neither work nor compile anymore in a small amount of time. Although drivers 
designed for widely used devices will be updated by the Linux community, a non-standard 
device will  require the programmer to maintain it  throughout the whole lifetime of the 
product [26]. Therefore, to address this situation, the UIO framework was introduced.
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Figure 3.4: A Conventional Device Driver [26]

It is well-known that a device driver basically has two tasks to accomplish. The first one is  
to access the device memory. The second and more difficult task is to handle interrupts  
generated  by  the  device.  The  first  demand  is  easily  fulfilled  since  Linux  is  capable  of  
mapping physical device memory to an address accessible from userspace. This had already 
been possible by using  /dev/mem and it is  a fact that a lot of people used it  for similar 
purposes leading to occurrences of security leaks and stability issues. The UIO framework 
prevents userspace from mapping memory that does not belong to the device, thus coping 
with the  previously mentioned issues.  Moreover,  the  framework itself  offers  an  mmap() 
implementation able to perform the previous task for physical, logic and virtual memories.

Figure 3.5: A UIO driver paradigm [26]
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As mentioned above, a more difficult task concerning a device driver is interrupt handling. 
Interrupts need to be handled in kernel space. Current interrupts are level-triggered and 
the machine might hang if  an interrupt is still  active at the end of the interrupt service 
routine  (ISR).  Hence,  the  UIO  framework  will  need  to  include  a  small  kernel  module 
containing  a  minimal  ISR  that  only  needs  to  acknowledge  or  disable  the  interrupt. 
Additionally, if the userspace part of the driver wills to wait for an interrupt, it simply does a 
blocking  read() from  /dev/uioX.  The call returns immediately as soon as an interrupt 
occurs [26]. The following figure shows a small kernel driver that calls only a few kernel  
functions. The majority of the essential functionalities is handled in a generic way by the 
UIO framework,  effectively protecting the author of  a  driver from the dirty sides of  the 
kernel. A quick reference guide for development of userspace applications using the UIO 
driver is presented in Chapter 4.

As a final comment on the Linux UIO driver lets consider its performance. In real world 
drivers, ioctl() is commonly used to write a single value to a hardware register. As shown in 
Figure 3.6, this is not always as straightforward as one might think. In that system call, the 
Virtual File System needs to find the ioctl() implementation for the specific device and call  
it.  Then,  the ioctl()  function will  copy the value from userspace to kernel  space.  On the 
contrary,  in  a  UIO driver  the  device  memory is  directly  mapped into userspace.  Hence,  
writing to  a  register  might  be  as  simple  as an access  to  a  regular  array of  integers.  In 
addition, reading a result from the hardware is equally simple. This features are what make 
a UIO userspace driver code faster and easier to read [26]. Last but not least, the Linux UIO  
driver is employed in our AXI4-Lite implementations of our custom accelerators to map the 
device memory to userspace. This will be discussed further later. 

Figure 3.6: Ioctl() vs. Memory Access through UIO [26]
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3.4 Direct Memory Access

Direct Memory Access (DMA) is a feature of computer systems that allows certain hardware 
subsystems  to  access  the  main  memory  (usually  RAM),  independently  of  the  Central  
Processing  Unit  (CPU).  In  a  system  without  DMA,  the  CPU  is  using  programmed 
input/output  and  is  typically  fully  occupied  for  the  entire  duration  of  read  and  write  
operations, thus it cannot perform any other tasks. However, this is not the case in a system  
disposing the DMA feature. In a system with DMA capabilities, a DMA controller is notified 
by the CPU that  a  data transfer should be made.  The CPU initiates  the  transfer,  then it  
performs other operations until  it  finally receives an interrupt from the DMA controller 
when the  requested  operation  has  finished.  This  feature  is  useful  at  any time  the  CPU 
cannot keep up with the rates of data transfer, or when it needs to perform useful tasks  
while waiting for a  relatively slow I/O data transfer.  We should now proceed to a basic 
explanation of the operation principles of DMA and DMA controllers.

A DMA controller is a device, usually a peripheral to a CPU, that is programmed to perform a 
sequence of data transfers on its behalf. The DMA controller can directly access the memory 
and make a transfer from a memory location to another, or from an I/O device to memory 
and vice versa [27]. A DMA controller manages several DMA channels each of which can be  
programmed to perform a sequence of data transfers. A DMA controller typically shares the 
system memory and I/O bus with the CPU and is able to perform as both master and slave. 
Depending  on  the  manner  that  a  DMA  transfer  is  made  there  are  different  modes  of 
operation that are presented below.

Burst Mode

In  burst  mode  of  operation  an  entire  block  of  data  is  transferred  in  one  contiguous  
sequence.  Once  the  DMA controller  is  granted  access  to  the  system bus  by the  CPU,  it  
transfers  all  bytes  of  data  in  the  data  block,  also  referred  to  as  burst,  before  releasing 
control of the system buses back to the CPU, hence, the CPU might be inactive for relatively 
long periods of time depending on the burst size. It should be noted that the size of a data  
block depends not only on the burst size but also on the data bus width. If the width of a  
data bus is 32-bit then the size of a data block is 32-bit times the burst size. However, in a  
64-bit data bus the block size would be 64-bit times the burst size.

Cycle Stealing Mode

The cycle stealing mode is used in systems in which the CPU should not be inactive for the 
length of time needed for a burst mode transfer to be completed. In this mode, the DMA 
controller gains access to the bus in the same way as before.  However,  in cycle stealing 
mode, after transferring one byte of data, the control of the buses returns to the CPU. If the 
transfer of the desired number of bytes has not been completed then the DMA controller  
requests the bus again to send another byte of data. This is repeated until the transfers are 
completed. On the one hand, in this mode of operation a data block is not transferred as  
quickly as in burst mode transfers. On the other hand, the CPU does not remain idle for long 
periods of  time and can perform other operations even though the DMA transfer is  not 
completed.
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Transparent Mode

In the transparent mode of operation the transfer of a data block takes the longest time 
interval when compared to burst and cycle stealing mode, yet it is the most efficient mode 
in terms of overall system performance. In this mode, the DMA controller only transfers  
data when the CPU performs operations that do not utilize the system buses. The CPU never 
stops executing its programs and the DMA transfer is free in terms of time. A drawback of  
the  transparent  mode  of  operation  is  that  the  hardware  needs  to  determine  when the 
system buses are not utilized by the CPU.

DMA can lead to cache coherency problems. Lets imagine a CPU equipped with a cache and 
an external memory that can be accessed directly by devices using DMA. When a CPU access 
a location X in the memory, the location's value will be stored in the cache. Then the CPU 
performs  subsequent  operations  on  X,  which  will  update  the  cached  copy  but  not  the 
external  memory  version of  X,  assuming  a  write-back  cache.  If  cache  is  not  flushed  to 
memory before the next access of X by a DMA-based device, then the device will receive a 
stale value of X. This issue has been addressed either in a hardware method or in a software 
method [27]. ARM offers the Acceleration Coherency Port (ACP) on which a DMA controller 
can connect to, in order to deal with previously mentioned issue.

The AXI4-Stream versions of our implementations which are discussed further later take 
advantage of Direct Memory Access. Specifically, an AXI DMA block is used in order to make 
transfers  from the memory to  custom accelerators.  The DMA block performs as both a 
master and a slave to the PS-side of the ZedBoard. A specific transaction is commanded by 
the Processing System, thus the AXI DMA block performs as a slave. When the transfer is to  
be done, the AXI DMA block accesses the memory through the High Performance (HP) slave 
ports of the PS,  thus performing a master.  The AXI DMA block and its operation will  be 
discussed further in following chapters. At this point, a general description and explanation 
of the principles of DMA has been made and we are ready to proceed to the next chapter.
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Chapter 4

Employed Work Flow for HW IP
Integration on ZedBoard

4.1 Zynq Evaluation and Development Board Specifications

The purpose of this chapter is to capture a proposed framework and be an overall guide for  
implementations  of  various  applications  on  ZedBoard.  The  whole  flow  of  design  tools 
utilized  to  produce  and  implement  a  system  is  described,  starting  with  Vivado  HLS,  
proceeding to Vivado Design Suite, Petalinux Tools and finally Xilinx SDK. To begin with, a  
description and listing of ZedBoard Zynq Evaluation and Development Board specifications 
is presented.

The ZedBoard [28] is a low-cost evaluation and development board based on the Xilinx 
Zynq®-7000  All  Programmable  SoC  (AP  SoC).  ZedBoard  combines  a  Dual-Core  ARM® 
Cortex A9 Processing System (PS) with 85,000 Series-7 Programmable Logic (PL) cells and 
it can be targeted for a wide range of applications. The board includes everything necessary 
for Linux, Android, RTOS and other OS based designs. In addition, the processing system 
and programmable logic I/Os are exposed through several expansion connectors for easy 
user access. The features provided by ZedBoard [29] consist of the following:

• Memory:  Zynq  contains  a  hardened  PS  memory  interface  unit.  The  memory 
interface  unit  includes  a  dynamic  memory controller  (DDR3) and static  memory 
interface modules (SPI Flash, SD card interface).

• USB: ZedBoard  implements  one  of  the  two  available  PS  USB  OTG  interfaces. 
Additionally a USB-to-UART bridge is connected to a PS UART peripheral providing 
JTAG functionalities and USB circuit protection.

• Display  and  Audio: An  Analog  Devices  ADV7511  HDMI  Transmitter  provides  a 
digital video interface to the ZedBoard. On top of that, the ZedBoard allows 12-bit 
video output through a through-hole VGA connector. An Analog Devices ADAU1761 
Audio  Codec  provides  integrated  digital  audio  processing.  Finally,  An 
Inteltronic/Wisechip UG-2832HSWEG04 OLED Display is used on the ZedBoard.
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• Clock Sources: The PS subsystem uses a dedicated 33.3333 MHz clock source, IC18, 
Fox 767-33.333333-12, with series termination. The PS infrastructure can generate 
up to foul PLL-based clocks for the PL system. An on-board 100 MHz oscillator, IC17, 
Fox 767-100-136, supplies the PL subsystem clock input.

• Reset Sources:  The Zynq PS supports external power-on reset signals. The power-
on  reset  is  the  master  reset  of  the  entire  chip.  A  push  button  switch  initiates 
reconfiguring the PL-subsection by the processor. Power-on reset erases all debug 
configurations.

• User I/O: The ZedBoard provides 7 user GPIO push buttons; five on the PL-side and 
two on PS-side. It has eight user dip switches, providing user input accompanied by 
eight user LEDs.

• 10/100/1000 Ethernet PHY: The ZedBoard implements a 10/100/1000 Ethernet 
port for network connection using a Marvell 88E1518 PHY.

• PS and PL I/O Expansion: A single low-pin count (LPC) FMC slot is provided on the 
ZedBoard to support a large ecosystem of plug-in modules. The Zedboard has five 
Pmod compatible headers (2x6). The XADC header provides analog connectivity for 
analog reference designs, including AMS daughter cards.

• Configuration Modes:  Zynq-7000 AP SoC devices use a multi-stage boot process 
that supports both non-secure and secure boot. The PS is the master of the boot and 
configuration process. Upon reset, the device mode pins are read to determine the 
primary boot device to be used: NOR, NAND, Quad-SPI, SD card or JTAG.

As already mentioned, the ZedBoard can be used for a wide range of applications varying 
from  video  processing,  motor  control,  software  acceleration,  Linux/Android/RTOS 
development to Embedded ARM Processing and general Zynq-7000 AP SoC prototyping. 
The area of interest in this thesis is software acceleration by building an HLS-based IP on 
the PL-side  of  the device.  To be more precise,  our field  of  study is  the  exploration and 
evaluation of communication potentials between the PS and PL sides of the device. Hence,  
our interest focuses on the features of the PS and PL sides of the ZedBoard but mostly on 
their interconnection which is accomplished through High Performance ARM AXI interfaces 
(High  Bandwidth  AMBA  interconnect),  a  solution  providing  scalable  and  effective 
communication. Table 4.1 contains essential information about the available resources of 
the ZedBoard.

Name BRAM_18K DSP48E FF LUT

Available 280 220 106400 53200

Table 4.1: ZedBoard Available Resources
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Figure 4.1: Implementation Work Flow [18]
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4.2 IP Generation with High-Level Synthesis

Advanced  algorithms  used  nowadays  in  wireless,  medical,  defense  and  consumer 
applications  are  more  sophisticated  than  ever  before.  Vivado® High-Level  Synthesis,  a 
design tool launched by Xilinx,  accelerates IP creation by enabling C,  C++ and System C 
specifications to be directly targeted into Xilinx All Programmable devices without the need 
to manually create RTL. Vivado HLS shows a fast path to IP creation. The abstraction of 
algorithmic  description,  data  type specification and available  interfaces  (AXI4,  AX4-Lite, 
AXI4-Stream) are a key element in what Vivado HLS offers. In addition, there are extensive 
libraries for arbitrary precision data types, video, DSP and more available. On top of that, 
the  directives  driven  architecture-aware  synthesis  delivers  the  best  possible  quality  of 
designs.  Moreover,  Vivado HLS offers an accelerated verification using C/C++ test bench 
simulation, automatic VHDL or Verilog simulation and test bench generation. It should be 
noted that for all IP generations that were demanded through the duration of this diploma 
thesis, Vivado HLS 2014.4 was employed.

A  general  capture  of  the  steps  of  High-Level  Synthesis  given  an  abstract  algorithmic 
description has already been presented in Chapter 1.  As already mentioned, our field of 
interest is the evaluation of  the available communication interfaces between the PS and PL 
sides of the ZedBoard, and not particularly in directives and optimizations during the High-
Level Synthesis stage of the design flow. Lets consider a code file that is available in which a 
functionality has already been optimized, the directives to Vivado HLS which produce the 
optimal hardware are given in the code and the functionality is described in C programming 
language. For purposes of completion lets us enumerate and describe some of the basic HLS 
directives.

Directive Description

PIPELINE Reduces the initiation interval by allowing the concurrent execution of 
operations within a loop of function.

DATAFLOW Enables task-level pipelining, allowing functions and loops to execute 
concurrently. Used to minimize interval.

INLINE Inlines a function, removing all function hierarchy. Used to enable logic 
optimization across function boundaries and improve latency/interval by 

reducing function call overhead.

UNROLL Unroll for-loops to create multiple independent operations rather than a single 
collection of operations.

ARRAY_PARTITION Partitions large arrays into multiple smaller arrays or into individual registers, 
to improve access to data and remove block RAM bottlenecks.

ARRAY_MAP Combines multiple smaller arrays into a single large array to help reduce block 
RAM resources

ARRAY_RESHAPE Reshape an array from one with many elements to one with greater word-width. 
Useful for improving block RAM accesses without using more block RAM.

INTERFACE Specifies how RTL ports are created from the function description.

Table 4.2: HLS Directives [18]



73

The given code might contain some of the above directives. Lets assume it may not contain 
the INTERFACE directive. This is where our job begins. Assuming the C code comes with no 
documentation whatsoever, there must be a clarification of the input and output data. Since 
this  clarification transpires  the  INTERFACE directive  should be  used on the  input  data,  
output data and top function of the code. It is obvious that the input and output data have to  
be arguments of the top function. The interface refers to the type of I/O protocol that is  
used. Our solution of choice for specifying the type of I/O protocol is Interface Synthesis, 
where  the  port  interface  is  created  based  on  efficient  industry  standard  interfaces.  An 
alternative  to  Interface  Synthesis  would  be  a  manual  interface  specification  where  the 
interface behavior is explicitly described in the input source code, a fact which allows any 
arbitrary I/O protocol to be used. The term Interface Synthesis refers to the process of the  
arguments of the top-level function being synthesized into RTL ports when the top-level  
function is  synthesized.  In general,  Vivado HLS creates three types of  ports  on the RTL 
design: clock and reset ports, block-level interface protocols, port-level interface protocols.

Clock and Reset Ports

The ap_clk and ap_rst ports are automatically created in every synthesized design. The 
clock ports are created if a design requires more than one clock cycle of its completion. The 
input of the ap_clk port is applied to all existing functions of the design and it should be 
mentioned that only one clock can be applied to C or C++ designs. The operation of the reset 
is controlled by the config_rtl configuration.

Block-Level Interface Protocols

The block-level interface protocols are ap_ctrl_none,  ap_ctrl_hs and ap_ctrl_chain. 
For  the  purposes  of  this  diploma thesis  only  ap_ctrl_none  and  ap_ctrl_hs  will  be 
examined. The block-level interface protocols can only be specified on the function or the 
function return. Even if the function is of void type a block-level protocol may be specified 
on the function return.

The  ap_ctrl_hs is  the  default  protocol  and  generates  ports  that  control  the  block 
independently of  any port-level  I/O protocols.  The PS of  the ZedBoard is  later going to 
control an IP block through these ports. The generated ports control when the block can 
start  processing  data  (ap_start),  indicate  when  it  is  ready  to  accept  new  inputs 
(ap_ready), indicate if the design is idle (ap_idle) or has completed operation (ap_done). 
When using the AXI4-Lite interface,  the previously mentioned ports are grouped in one 
bundle. The ap_ctrl_none mode implements the design without block-level I/O protocol 
and will be useful when implementing the AXI4-Stream versions of our accelerators.

Port-Level Interface Protocols

After the block-level protocol has been used to start the operation of the block, the port-
level I/O protocols are used to sequence data into and out of the block. The AXI4 Interfaces 
come under this category of protocols. Those supported by Vivado HLS are the AXI4-Stream 
(axis),  AXI4-Lite  (s_axilite),  and  AXI4  Master  (m_axi)  interfaces  which  will  be 
discussed further. Another important mode is ap_vld which is set to 1 when an output port 
has a valid value and ap_none for input ports.
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4.2.1 Setting AXI4-Lite Interfaces

Lets now assume that we are given a simple code and we are asked to add the necessary  
communication interfaces so that the produced IP could be added and interconnected in an 
AXI4-compliant system. In Listing 4.1 we may see a simple sample code. The specific code 
takes  as inputs an array a of  twenty integers  and an integer  number b and counts the 
occurrences of b in array a.

1 void count (int a[20], int b, int *c) {
2
3 int i = 0, temp_c = 0;
4
5 for (i = 0; i < 20; i++) {
6 if (a[i] == b) temp_c++;
7 }
8 *c = temp_c;
9 }

Listing 4.1: A simple C-code paradigm

Although  AXI4-Lite  is  not  supposed  to  be  used  on  arrays,  it  was  in  fact  used  in  our 
implementations described in next chapters without occurring issues so we are going to 
employ it in this paradigm. We would like to group all interface ports in a bundle called 
"COUNT_IO". AXI4-Lite interfaces will be set to a and b, the return value c and the return 
port of the function. In Listing 4.2 we may notice the altered code using  the INTERFACE 
directive.

1 void count (int a[20], int b, int *c) {
2
3 #pragma HLS INTERFACE s_axilite port=a bundle=COUNT_IO
4 #pragma HLS INTERFACE s_axilite port=b bundle=COUNT_IO
5 #pragma HLS INTERFACE s_axilite port=c bundle=COUNT_IO
6 #pragma HLS INTERFACE s_axilite port=return bundle=COUNT_IO
7
8 int i = 0; temp_c = 0;
9
10 for (i = 0; i < 20; i++) {
11 if (a[i] == b) temp_c++;
12 }
13 *c = temp_c;
14 }

Listing 4.2: A simple C-code with AXI4-Lite Interfaces
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It should be mentioned that Vivado HLS automatically sets the top-level function's interface 
to ap_ctrl_hs, unless it is set manually by the user to another mode. The ports generated 
by this particular mode are bundled with the return port of the function. The input ports 
are also set to ap_none, and more important, the output ports are set to ap_vld. This will be 
useful when the hardware will be controlled by the PS-side of the ZedBoard, since ap_vld 
mode offers the ability to check if the output is valid, or, in other words, if the computation  
is completed and the output value is written and up-to-date. After the C-synthesizing the 
HW, the next step is the extraction of RTL in IP-XACT form. For IPs with AXI4-Lite interface 
ports a C driver is generated automatically so that the AXI4-Lite ports can be controlled 
through a Linux application. The generated device is memory-mapped. More details about 
the generated driver will be discussed further later, although an overview of the Linux UIO 
driver has already been presented in the previous chapter. In Figure 4.1 the classify IP with 
AXI4-Lite Slave that we generated for our implementations is presented.

Figure 4.2: Classify IP with AXI4-Lite Interfaces
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4.2.2 Setting AXI4-Stream Interfaces

Our next assumption is that  we are given a simple code and our target is to add AXI4-
Stream interfaces. A detail that should be paid attention to is the fact that if an AXI4-Stream  
interface  is  set  on  an  array,  then  the  accesses  to  the  specific  array have  to  made  in  a 
sequential  order  and  no  input  values  may be  reused.  In  the  Harris  & Stephens  Corner 
Detector, as much as in the Support Vector Machine Classifier code, accesses to input arrays  
are not made in a sequential order. Hence, if one wishes to take advantage of the speed that 
AXI4-Stream interfaces offer, then another approach should be considered, otherwise the 
AXI4-Stream interfaces cannot be set. Lets assume a kind of code like the one presented in  
Listing 4.3 is given and AXI4-Stream Interfaces should be added. The code is of no particular 
use but is employed in order to clarify the manner in which AXI4-Stream interfaces were 
used in our implementations during this thesis.

1 void dummy (int a[20], int *y) {
2
3 int sum = 0, i = 0, j = 0;
4
5 for (i = 0; i < 100; i++)
6 for (j = 0; j < 20; j++)
7 sum += a[j] – 1;
8 *y = sum;
9 }

Listing 4.3: Dummy C-code Paradigm Intended for addition of AXI4-Stream Interfaces

In the above listing, an array of twenty integer numbers is given as input to the top-level  
function. As we may notice, the accesses to each element of the array is reused a hundred 
times and a sum is computed. The final value of the sum is the output value of the function.  
Our implementations on Harris and SVM classifier might not be exactly like the above code,  
however, this code is adequate for the point that we need to address. In the next listing we 
may observe the transformed code with the AXI4-Stream interfaces added.

1 int dummy (int a[20]) {
2
3 int sum = 0, i = 0, j = 0;
4
5 for (i = 0; i < 100; i++)
6 for (j = 0; j < 20; j++)
7 sum += a[j] – 1;
8
9 return sum;
10 }
11
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12 void top_dummy (int a[20], int *y) {
13
13 #pragma HLS INTERFACE axis port=a
15 #pragma HLS INTERFACE axis port=y
16 #pragma HLS INTERFACE ap_ctrl_none port=return
17
18 int i = 0, temp_a[20];
19
20 for (i = 0; i < 20; i++)
21 temp_a[i] = a[i];
22 *y = dummy(temp_a);
23 }

Listing 4.4 Transformed Dummy C-code with AXI4-Stream interfaces

The previous code was transformed in way so that the accesses to the input array seem to 
be sequential. In fact, the accesses to array a in top_dummy function are sequential. When 
all the values of input array a are collected to array temp_a then the array is passed as an 
argument to dummy function which is the one that performs the needed computations. The 
dummy function's type is changed to int and the sum is returned to the output value y of the 
top_dummy function. The block-level protocol of the top-level function is set to ap_ctrl_none 
because the necessary control is now transposed to the hardware.  When twenty integer 
numbers are collected, the computation begins. Thus, when the PS-side of the ZedBoard 
needs to make a transfer to the hardware and get a result, it commands the AXI DMA block 
to  perform  the  transfer.  The  values  are  streamed  to  the  accelerator  and  the  result  is 
streamed back to the AXI DMA block which then forwards it to the PS. So, the PS controls 
the AXI DMA block and not the accelerator. If no data are sent to the hardware, then no 
computation  is  performed.  Though  this  method  for  addition  of  AXI4-Stream  interfaces 
might introduce additional latency, the function level handshakes are avoided, there is no 
need to initiate the computation and, finally, there is no need to check if the output signal is  
valid or not. These features combined with the extremely fast transfers that are achieved 
through the employment of DMA blocks, eventually end up with satisfactory latency gains 
as we have recorded in following Ch. 5 & 6.

Figure 4.3: Classify IP with AXI4-Stream Interfaces
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4.3 System Generation

At this point the IP, whether it contains AXI4-Lite interfaces or AXI4-Stream interfaces, has 
been generated. The next step is the creation and generation of the system architecture as a 
whole in Vivado Design Suite. It offers a new approach for ultra high productivity with next 
generation C/C++ and IP-based design. The RTL has already been produced during the C-
synthesis of the HLS step.  In Vivado Design Suite,  a block design will  be created by the 
addition  of  the  ZYNQ7  Processing  System  and  the  previously  generated  IP.  After  the 
interconnection  and  validation  of  the  design  we  proceed  to  the  synthesis  and 
implementation, and finally to bitstream file generation. In our work Vivado Design Suite 
2014.4 was used.

To begin with, the first step is the creation of a block design and the addition of the ZYNQ7 
Processing System IP. The IP should be re-customized to fit our needs. In clock configuration 
at least one PL Fabric Clock should be chosen. Up to four PL Fabric Clocks can be included  
with  frequencies  theoretically  ranging  from 0  to  250 MHz.  The  PL-PS  fabric  interrupts 
should  be  enabled  creating  an  IRQ_F2P  port  on  ZYNQ7  Processing  System IP.  The  USB 
interface  is  not  needed  in  our  designs  and  should  be  disabled.  After  the  necessary 
customizations the block design of ZYNQ7 Processing System looks like the one shown in 
Figure 4.3 where the DDR and FIXED_IO ports are made external when block automation is 
run. After the addition of the PS part in the block design, our generated IP should be added.  
The repositories should be edited so that our custom IP is included. A slightly different 
design process is then followed depending on the kind of interfaces of our IP ports. The 
cases of AXI4-Lite and AXI4-Stream interfaces are examined.

Figure 4.4: Re-customized ZYNQ7 Processing System



79

4.3.1 System Design with AXI4-Lite Interfaces

When a custom IP is equipped solely with AXI4-Lite interfaces the design of the system 
requires no effort whatsoever. On the IP addition the option “Run Connection Automation” 
is enabled and interconnects the AXI4-Lite custom IP with ZYNQ7 Processing System with 
addition of an AXI Interconnect Block and a Processor System Reset. The interrupt port of 
the Classify IP is connected to the IRQ_F2P port of the PS.

AXI Interconnect IP

The AXI Interconnect IP block connects one or more AXI memory-mapped Master devices 
to  one  or  more  memory-mapped  Slave  devices.  The  Interconnect  IP  is  intended  for 
memory-mapped transfers only and AXI4-Stream transfers are not applicable.  It  has the 
potential to connect 1 to 16 Master devices and 1 to 16 Slave devices. This means that if  
more  than  one  Slave  IPs  are  included  in  the  same  system  design  then  only  one  AXI 
Interconnect IP will be utilized if the number of Slave devices is less than 16. The Slave port 
of the Interconnect IP is connected to the Master AXI General Purpose (M_AXI_GP) port of  
the ZYNQ7 Processing System, while one of the M_AXI Interconnect ports is connected to 
the AXI4-Lite Slave port of our custom accelerator. Obviously, the Interconnect IP and the 
custom IP have the same clock and reset port sources. No re-customization is needed for the 
nature of design we wish to implement.

Figure 4.5: An AXI Interconnect IP Block

Processor System Reset

The  Processor  System  Reset  is  another  necessary  component  of  our  custom  system 
architecture. It generally allows the users to tailor the design to suit their application by 
setting certain parameters to enable or disable features. It should be mentioned that the 



80

asynchronous  external  and  auxiliary  external  reset  inputs  are  synchronized  with  clock. 
Needless to say that the application of proper reset signals is essential for an FPGA design to 
perform appropriately.  The Processor System Reset is intended to implement a Power-on 
Reset (PoR) which detects the power applied to a the chip and generates a reset impulse 
that travels through the entire circuit placing it into a known state. No re-customization is  
needed for the Processing System Reset in our case.

Figure 4.6: A Processor System Reset block

It  should be  mentioned that  no  specific  block  designs  are  presented in  this  chapter  as 
various  implementations  along  with  their  respective  block  designs  are  presented 
extensively in Ch. 5 & 6 of the present diploma thesis.

4.3.2 System Design with AXI4-Stream Interfaces

The work flow for the generation of  our system architecture is  not quite the same and 
straightforward  when  AXI4-Stream  interfaces  are  added  to  our  custom  accelerators.  In 
contrary to AXI4-Lite versions, in this case the IP is not automatically interconnected with 
the PS with the push of a button. In case of AXI4-Stream custom IPs the first step for system 
generation is the addition of an AXI DMA IP core. The existence of AXI Interconnect IP is  
essential once again for the AXI DMA block to be connected through its AXI4-Lite Slave port  
with  the  M_AXI_GP  port  of  the  processing  system.  An  element  absent  in  the  AXI4-Lite 
version of the design is the Slave High Performance Ports of the ZYNQ7 Processing System. 
We proceed to an overview of the IP blocks and ports that were not present in the AXI4-Lite 
versions of the system and specifically AXI DMA.

AXI Direct Memory Access

The AXI DMA is utilized to provide high-speed data movement between system memory 
and  an  AXI4-Stream-based  target  IP,  like  the  AXI4-Stream  versions  of  our 
Harris_FindCorners and Classify IPs. The implementations will be discussed further in Ch. 5 
& 6. The AXI DMA block is re-customized to fit to our specific needs. The Status/Control 
Stream  and  Scatter/Gather  Engine  are  disabled  because  they  are  not  needed  in  our 
applications. If we re-customize the AXI DMA block we will notice a number of parameters 
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that  can  be  altered  and  may  or  may  not  affect  the  performance  of  the  block  and,  
consequently the speed of data transfers. Lets now have an overview of the parameters that 
an AXI DMA block is using:

• Width of Buffer Length Register: It refers to the length of the internal counter or 
register in the DMA which stores the length of DMA operation data. Its main impact 
is on maximal achievable frequency and has slight or no impact in the FPGA utilized 
resources. This parameter is set to 23 bits which is the largest possible value and is 
recommended by the utilized DMA driver.

• Memory-Map Data Width: It specifies the data width of AXI4 Interface. Data widths 
of 64 bits can significantly improve throughput when connected to the HP or ACP 
port of the ZYNQ7 Processing System. However, Vivado Design Suite does not leave 
us option for altering this value. This parameter should not be misinterpreted with 
AXI4 Stream data width.

• Stream Data Width: It represents the width of AXI4-Stream Interface. For instance, 
if  an accelerator takes  an input array of  integers or floats  then the width of  the  
stream should be 32 bits. In our implementations, the Harris Corner Detector has an 
input image in the form of an array of unsigned chars (8-bit) so the stream width is  
set to 8 bits. On the other hand, the SVM Classifier receives an input array of floats so  
the stream width is set to 32 bits.

• Max Burst Size: Data on an AXI Interface can be transferred in bursts. Considering 
that the bus is 32-bits wide, if a burst size value of 8 is used then the size of a block  
to be transferred to a device would be 8*32 bits. Higher burst size leads to better  
throughput. This parameter should be set to at least 16. If the parameter is set to 256 
the speedup in comparison with a burst size of 16 will be imperceptible. The PS AXI  
interfaces  are  AXI3-compliant  so  the  burst  size  is  limited  to  16.  Thus,  the  AXI 
Interconnect must split  the AXI4 bursts to several AXI3 bursts.  In our designs all  
possible burst sizes were used with almost no difference whatsoever in throughput.

Figure 4.7: An AXI DMA Block
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The AXI DMA block has several ports as we may notice in Figure 4.6. The S_AXI_LITE port is 
for the block to be interconnected to the PS. The M_AXI_MM2S and M_AXI_S2MM as their 
names might imply,  are the memory-mapped to stream and stream to memory-mapped 
channels, in other words the channels that are used for reads from memory and writes to 
memory. This channels are connected to the Slave HP Ports of the PS-side through an AXI 
Memory Interconnect intended for use with non memory-mapped HW. The M_AXIS_MM2S 
port is connected directly to the input port of our accelerator and the accelerator's output is  
connected back to the S_AXIS_S2MM port of the block. It should be noted that Zynq Slave HP 
Ports are 64-bit wide and support the connection of both MM2S and S2MM channels to a 
single HP Port. In fact, different configurations were tested including the two channels being 
connected to one HP Port and the two channels being connected to two separate HP Ports 
with no occurring differences in  execution times and data rates.  Finally,  the  MM2S and 
S2MM interrupt ports are connected to a Concat IP which has a cascading connection to 
IRQ_F2P port of the ZYNQ7 Processing System. Afterwards, the design is ready for synthesis, 
implementation and generation of the bitstream file.

4.4 Generation of Embedded Linux Distributions

The next step of our design flow after the generation of the system's bitstream file and the 
hardware's exportation is the creation of an operating system that is executed on the PS-
side of the ZedBoard, for a system which includes the hardware generated through Vivado 
Design Suite. The creation of an Embedded Linux distribution for our custom hardware is 
accomplished with the aid of Xilinx PetaLinux Tools which offer everything necessary to 
customize, build and deploy Embedded Linux solutions on Xilinx processing systems and 
especially on Zynq®-7000 All Programmable SoC. In our work PetaLinux Tools 2014.4 were 
used. The first  step is  the creation of  a Linux platform in the form of an empty project 
template. The Linux platform is customized to precisely match the hardware system built in 
Vivado  Design  Suite.  This  is  accomplished  by  copying  and  merging  the  platform 
configuration files generated through the hardware building phase into the newly created 
software platform. The tool configures the system by parsing the hardware description file 
(.hdf) to obtain the hardware information in order for the device-tree to be updated, as 
much  as  PetaLinux  U-boot  configuration  files  and  kernel  config  files.  During  the 
configuration we set the SD card as the primary boot device.  Then we confirm that the 
Userspace  I/O drivers  are  included  as  built-in  and,  in  case  of  a  system including  DMA 
transfers, that the Contiguous Memory Allocator is enabled under Generic Driver Options. If 
we take a look at the generated device-tree we will notice every block that is included in our 
design.  In  a  design  where  a  Dummy  IP  use  AXI4-Lite  interfaces,  the  device  should  be 
compatible with the UIO driver. For this reason the addition of Listing 4.5 in the device-tree  
is essential for every distinct IP and every instance of the same IP. It should be also noted 
that  occasionally  when  building  a  new  Linux  platform,  errors  concerning  the  Ethernet 
device occurred. These errors were overcome by editing the device-tree once again and 
adding the code of Listing 4.5 concerning the ethernet device. The proposed alterations of 
the device-tree should be made in the  system-top.dts file.  When the configuration is 
finally completed we build the system image.
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1 &ps7_ethernet_0_mdio {
2 phy-handle = <&phy0>;
3 mdio {
4 #address-cells = <1>;
5 #size-cells = <0>;
6 phy0: phy@0 {
7 compatible = “marvell,88e1510”;
8 device-type = “ethernet-phy”;
9 reg = <0>;
10 };
11 };
12 };
13
14 &dummy_0 {
15 compatible = “generic-uio”;
16 };

Listing 4.5: Linux device-tree necessary updates

Having built the system image, the next step is the creation of a boot image file that includes  
the Zynq FSBL (First Stage Boot Loader), the .BIT file for the configuration of the PL-side of 
the ZedBoard, U-boot and the Linux image for the SD card boot. The BOOT.BIN and image.ub 
files generated are copied to the SD card and Linux boots on ZedBoard. In this phase the PL 
has  been configured and a USB-to-UART connection is  made to our PC.  Then,  GtkTerm, 
which  is  a  simple  terminal  used  for  communication  with  serial  ports,  is  used.  For  our 
following implementations,  the userspace application is  cross-compiled on our  machine 
and transferred to the ZedBoard through FTP.

At this point the PL-side of the ZedBoard has been configured with the hardware that was  
designed during the previous steps while a fully customized for our hardware Linux OS is 
running on  the  PS-side.  If  a  device  disposes  AXI4-Lite  interfaces  then an  entry  will  be 
created  under  the  /sys/class/uio.  In  a  system with  more  than one UIO devices,  the 
developer  is  able  to  notice  the  name  of  a  uio0 device  by  executing  cat 
/sys/class/uio/name.  Normally, UIO devices should also have been created under the 
/dev directory. For instance, if there are three UIO compatible devices then uio0, uio1, and 
uio2 will be created. If the devices have not been added automatically then the mdev -s call 
should be executed and the UIO devices will be added. The previous comments refer to  
hardware with AXI4-Slave Lite interfaces. On the other hand, AXI4-Stream interfaces are not 
memory-mapped and no device is generated in the /dev directory.

For  AXI4-Stream  devices  except  for  the  Xilinx  DMA  driver,  a  complementary  driver  is  
utilized and performs as a wrapper for communication with the lower-level Xilinx DMA 
driver.  The zynq-xdma [https://github.com/bmartini/zynq-xdma] has been developed by 
Berin  Martini  [https://github.com/bmartini]  and  generates  a  module  that  should  be 
inserted  in  the  system  along  with  a  library  offering  an  API  intended  for  use  with  the 
generated xdma module. The driver code should be built against the Linux Kernel that is 
intended to be used with. Minor adjustments were made for it to fit in our systems. 

https://github.com/bmartini
https://github.com/bmartini/zynq-xdma
mailto:phy@0
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4.5 Userspace Application Development

At  this  point  our  system is  up  and  running  on the  ZedBoard  and  our  final  task  is  the 
development  of  a  userspace  application.  Xilinx  SDK  could  be  used  but  we  preferred  to 
develop our applications without it, cross-compile them in our machine and transfer the 
executable  files  to  the  implemented  system  through  FTP  (File  Transfer  Protocol). 
Applications targeted to AXI4-Lite implementations are not alike with applications targeted 
to AXI4-Stream implementations, so we will examine them separately.

4.5.1 Development of AXI4-Lite Targeted Application

The development of an application which controls an AXI4-Lite-based accelerator is based 
entirely on the Linux UIO driver which has already been presented in the previous chapter. 
Before  proceeding  to  the  development  of  the  application  one  should  first  examine  the 
automatically generated driver. As mentioned before, for AXI4-Lite-based devices a driver is 
automatically generated.  Among the driver files  we can find a header file  where all  the 
addresses for all signals of our accelerator are given. We keep this header file in mind. In 
Listing 4.6 a template for accessing an AXI4-Lite device is presented.

1 char *uiobf = “/dev/uio0”;
2 int *fd;
3 void *ptr;
4
5 fd = open(uiobf, O_RDWR);
6 if (fd < 1) {
7 printf(“UIO device error: %s.\n”, uiobf);
8 exit(EXIT_FAILURE);
9 }
10 ptr = mmap(NULL, MAP_SIZE, PROT_READ|PROT_WRITE, 
11 MAP_SHARED, fd, 0);
12
11 /* Do Something */
12
13 munmap(ptr, MAP_SIZE);

Listing 4.6: Template code for accessing an AXI4-Lite device from userspace

In the above template code we may notice that the device is opened for reads and writes as 
a  regular file,  using the  open() system call.  Then,  mmap() maps the device memory to 
userspace  where  it  can  be  accessed  regularly  using  the  offsets  from  the  previously 
mentioned header file. Specifically,  ptr represents the beginning of the mapped memory 
and the offsets are used to read or write to specific addresses of the device memory. For 
instance, the  ap_start port which is generated from the use of  ap_ctrl_hs block-level 
protocol is usually the beginning of the device memory. After copying the necessary input 
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data to their corresponding addresses the initiation of the computation is accomplished by 
setting the ap_start signal to 1 for a brief moment and then again to 0. An ap_vld signal is 
set when the computation is completed, at which point we are ready to read the output  
values. If another computation is needed then the process is repeated. The device is finally 
unmapped from userspace when it is no longer needed. It is obvious that the UIO driver 
simplifies the process of  accessing the device memory, consequently making application 
development faster when targeting AXI4-Lite devices.

4.5.2 Development of AXI4-Stream Targeted Application

In case of AXI4-Stream-based accelerators the device we wish to access is not memory-
mapped. The task of the userspace application is to fill a buffer with input values, then call  
one of the high-level functions that are offered by the zynq-xdma API to send the data to the 
lower-level  Xilinx DMA driver  and perform the transfer.  The essential  function calls  for 
making a DMA transfer and receiving a result are presented in the following table.

Function Operation

xdma_init() A function intending to initialize the AXI DMA blocks 
that are included in a design. Up to four devices are 

supported.

xdma_alloc() Allocates the necessary input and output buffers for the 
transactions that are going to be performed. Returns a 

pointer to the address of the first element.

xdma_num_of_devices() Returns the number of the active DMA devices. It 
should be called before a transaction to ensure the 

existence of at least an active DMA device.

xdma_perform_transaction() It is responsible for sending the input buffer and 
receiving the output buffer. Arguments include the 

input and output buffers' addresses and sizes, the ID of 
the DMA device that we wish to perform the transfer 

and a flag (XDMA_WAIT_NONE, XDMA_WAIT_SRC, 
XDMA_WAIT_DST, XDMA_WAIT_BOTH) concerning the 

waiting or no-waiting of transfers.

xdma_exit() It finalizes the DMA devices.

Table 4.3: Basic API of zynq-xdma driver library

The above functions are usually called in series of appearance in the table. The initialization 
of AXI DMA devices and the DMA engine is made through the xdma_init() call. After the 
initialization  the  DMA  buffers  should  be  allocated  by  the  xdma_alloc()  call.  We  usually 
allocate two buffers, one intended for input to the hardware and one intended for output of  
hardware. Before attempting to perform a transaction the number of DMA devices should 
be  checked  by  the  xdma_num_of_devices()  call.  The  most  critical  part  of  the  userspace 
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application is the transaction itself. The xdma_perform_transaction() call is used. It should 
be noted that we should be careful with the usage of available flags for this function call.  
Particularly,  the  flags refer to whether  the application should wait  for a  transfer,  either 
inward or outward, or not wait at all. In our view, the flag that made most sense to use was 
XDMA_WAIT_DST,  which  as  its  name  implies,  commands  the  driver  to  wait  for  the 
destination buffer, or output. So, after the issue for transfer of the source buffer, or input,  
there is no waiting for inward but only for outward transfers. Hence, the total time that is 
measured  takes  into  account  both  communication  and  computation  times.  Finally 
xdma_exit() is called. At this point the application development for an AXI4-Stream device is 
finished.
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Chapter 5

Evaluation of Work Flow on 
Harris & Stephens Corner Detector

5.1 General Description of HW Implementations

In this chapter the results of our implementations on Harris & Stephens Corner Detector are 
presented.  This  particular  algorithm  was  our  first  attempt  to  explore  and  evaluate  the 
communication potentials between the PS-side and the PL-side of the ZedBoard. The source 
code that was used for the High-Level Synthesis step of the implementation was provided 
by  Ioannis  P.  Galanis,  Graduate  Student  of  the  School  of  Electrical  and  Computer 
Engineering,  NTUA,  whose  work during  his  diploma  thesis[]  led  to  the  optimized  code 
version that was implemented on the ZedBoard. However, it should be mentioned that the 
specific  version had great  possibilities  at  over-utilizing the  ZedBoard.  The target  device 
during  the  development  of  this  accelerator  was  Kintex-7  (xc7k325tffg900-2)  which,  in 
general,  is  a  device  with  significantly  more  available  resources  than  the  ZedBoard 
(xc7z020clg484-1).  Thus,  the  code  should  be  transformed  in  order  to  give  a  realistic 
implementation for our target device. A comparison between the available resources of the 
above mentioned devices is shown in Table 5.1. 

Device BRAM_18K DSP48E FF LUT

ZedBoard (xc7z020clg484-1) 280 220 106400 53200

Kintex-7 (xc7k325tffg900-2) 890 840 407600 203800

Table 5.1: Comparison of Available Resources between ZedBoard and Kintex-7

During development for a target device with more available resources one might think that 
a design is economical in the utilization of resources even though it consumes many of the  
available ones. In many cases percentages might be misleading. For instance if two-thousant  
BRAM_18K are available and their  utilization is 40% it  does not mean that  not a lot of  
BRAMs are used. Since our target devices were different, in this chapter there is a paragraph 
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referring to the process of altering the code in order to fit to our target device, in terms of  
resources  and utility.  Then,  after generating the HW we proceed to implementations of 
AXI4-Stream and AXI4-Lite versions.  Harris & Stephens Corner Detector is an algorithm 
which consumes images as input data, hence, the communication between the PS and PL 
sides of the ZedBoard might be intense in terms of number of bytes that we need to transfer  
for a single execution of the algorithm. The communication and computation times of each 
implementation and image size have been measured.  Communication time refers to the 
time that is needed for the input data to be transferred from the PS-side to the accelerator 
which lies on the PL-side of the ZedBoard, while computation time refers to the time that is 
needed for the necessary output data to be computed and written. In our case, the input  
data include the image in the form of a one-dimensional array and a struct of characteristics 
of the input image like height and width. The output data include the number of corners 
that were detected along with an array containing the coordinates of those corners.  For 
purposes of comparison a software only version of the Harris & Stephens Corner Detector  
provided by Dr. Manolis Lourakis [http://users.ics.forth.gr/~lourakis] was executed on the 
PS-side of the ZedBoard.

Image Size (Pixels) Communication Time (s) Computation Time (s)

128 x 128 - 0.03313

256 x 256 - 0.13055

512 x 512 - 0.57567

1024 x1024 - 2.55367

Table 6.2: Time measurements for Harris SW version executed on ARM®

5.2  Code  Transformations  Targeting  to  a  ZedBoard 
Implementation

As  already  mentioned,  the  optimized  HW  version  of  the  Harris  and  Stephens  corner 
detector was developed for a different target device with more available resources than the 
ZedBoard.  In  this  paragraph the  necessary  code transformations  leading to a  ZedBoard 
implementation  will  be  presented.  Except  for  the  addition  of  different  communication 
interfaces, the input image's size was altered. In addition, we experimented with different 
memory  cores,  offered  through  Vivado  HLS,  that  are  essential  for  some  parts  of  the 
algorithm's  implementation.  The  final  version  that  was  implemented  on  the  ZedBoard 
supports an input image size of 128 x 128 pixels. Of course, larger images were broken into  
pieces  of  128  x  128  pixels  through  the  userspace  application  that  was  developed  and 
executed on the PS-side. The small input image size is a consequence of versions with larger  
input images over-utilizing the device. In fact, a version of 256 x 256 input image size would 
be a possibility if  no additional resources were utilized by the essential  communication 
interfaces. To begin with, we present the utilization for different 1024 x 1024 input image 
size versions. It should be mentioned that the initial version uses the memluv library for 
dynamic memory allocation which was not synthesizable, not only for our Vivado Design 

http://users.ics.forth.gr/~lourakis
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Suite version but also for our target device, as many different versions of Vivado Design 
Suite were tried. The lack of this library might or might not create additional utilization of 
available resources.

To begin with, we employ a version of Harris and Stephens Corner Detector. The initial code 
processes an input image of 1024 x 1024 pixels and no synthesis directives are used except  
for the use of an asynchronous dual port RAM block to store some intermediate results 
needed through the computation of the image derivatives. The UNROLL and ARRAY_MAP 
optimizations are applied. In table 5.1 a comparison of the resource utilization is made in 
form of percentages.

BRAM_18K DSP48E FF LUT

None 
Utilization (%)

76 29 13 50

UNROLL 
Utilization(%)

76 42 19 80

ARRAY_MAP 
Utilization(%)

76 29 13 50

UNROLL & 
ARRAY_MAP 
Utilization(%)

76 42 19 80

 Table 5.1: Utilized Resources for an Image Size of 1024 x 1024 for different directives

Figure 5.1: Utilization of Device for 1024 x 1024 Input Image Size
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The  above  table,  as  mentioned,  refers  to  a  version  of  the  algorithm  using  a  dual  port 
asynchronous RAM in one of its components and for an image size of 1024 x 1024. From 
aspect of estimated latency the version using the UNROLL directive on most loops with a 
factor of  4 has the  lowest estimated latency,  slightly below the UNROLL & ARRAY_MAP 
implementation. However, the later is used. We now assume that a basic default version of 
the code is acquired and we would now like to integrate a HW IP of this version in our 
target device. So, we decide to add the simplest interface possible, AXI4-Lite for an initial 
implementation and generate the HW. Nevertheless, an extremely high over-utilization of 
BRAM blocks is depicted. Then we decide to reduce the image size and see if it now fits in 
our device, and so we do, by reducing the image size to 512 x 512 pixels. Nonetheless the 
over-utilization of BRAM blocks still remains, yet with a lower value. The only option that is 
seen then is to reduce the image size even more and changing it to 256 x 256. Finally, the  
Harris_FindCorners IP fits in the device but with an extremely high utilization. So we then 
proceed  to  Vivado  Design  Suite  for  generation  of  our  system.  The  IP  is  automatically 
interconnected through its AXI4-Lite ports. The synthesis is run, however an error occurs 
repeatedly, explaining that the dual port asynchronous RAM cannot be inferred. From the 
specifications of the product we find out that an asynchronous dual port RAM is not an  
option  even  though  it  is  supported  by  the  exactly  same  version  of  Vivado  HLS.  Our 
alternative option is to use a true dual port RAM either implemented as distributed memory 
or with BRAM blocks and of course single port RAMs. However, for every combination of 
memory cores there is an over-utilization of either the BRAM blocks or the LUTs. Hence, we 
decide to further reduce the input image size to 128 x 128 which is considered the smallest  
size that this computation makes sense because in smaller sizes it  might be considered 
trivial,  not define any memory core for this specific computation and let the tool decide 
which  would  be  the  best  configuration.  Lets  now make  another  comparison of  utilized 
resources up to this point. We have a 1024 x 1024 version with AXI4-Lite Interfaces and  
Dual Port asynchronous RAM, a 512 x 512 and 256 x 256 version of the same characteristics 
and finally a 128 x 128 version without the dual port asynchronous RAM core. In table 5.2 
another comparison between the utilization is made.

Dual Port 
RAM

BRAM_18K DSP48E FF LUT

1024 x 1024
Utilization (%)

X 810 42 20 81

512 x 512
Utilization (%)

X 212 42 19 80

256 x 256
Utilization (%)

X 96 76 27 96

128 x 128
Utilization (%)

- 67 72 24 86

Table 5.2: Utilization of AXI4-Lite Version for Different Image Sizes
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Figure 5.2: Utilization of Device for AXI4-Lite versions and different input image size

Finally, we proceeded to an AXI4-Stream Implementation of the 128 x 128, no dual port  
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resources of our implementations.

Lite Stream BRAM_18K DSP48E FF LUT

128 x 128
Utilization (%)

X - 67 72 24 86

128 x 128
Utilization (%)

- X 57 82 24 85

256 x 256
Utilization (%)

- X 173 72 24 86

Table 5.3: Utilization of Device for Different Interfaces
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5.3 Implementation of AXI4-Lite Version

After  reaching  a  viable  solution  for  implementing  the  Harris  &  Stephens  Corner 
Detector on the ZedBoard, it is now time that we present the results of the AXI4-Lite version 
of the HW. The AXI4-Lite version includes a bundle where all input and output values along 
with the block-level protocol ports are grouped together. The values of the struct harrisData 
are given through the device memory addresses mapped to userspace through the Linux 
UIO driver and the memcpy() function is used for the transfer of the image. Different AXI4-
Lite versions were implemented. Beginning with the original unoptimized version and a 
clock of 50 MHz frequency, proceeding to the optimized version with 50 MHz and 75 MHz 
clocks. In the following tables we may notice the communication and computation times 
that  were measured for  different  implementations.  To begin with,  in  table  5.4 the  time 
measurements for the not optimized version are presented. Of course, an important notice 
is that although the accelerator can process an image of only 128 x 128 pixels size per  
execution, larger images are broken into 128 x 128 pieces and are sent one after the other 
to the accelerator for processing. Hence, in the following time measurements we include the 
communication and computation times for all sizes of images.

Image Size (Pixels) Communication Time (s) Computation Time (s)

128 x 128 0.000825 0.032617

256 x 256 0.00297 0.129410

512 x 512 0.013271 0.522747

1024 x 1024 0.053690 2.121970

Table 5.4: Time measurements for Unoptimized HW Implementation (50 MHz Clock)

We may notice that  the achieved bandwidth for  this  AXI4-Lite  implementation is  about 
18.62 MB/s for the largest image size. We must notice that in the worst case we need to 
transfer  1  MB of  data  to  the  hardware  accelerator.  Lets  now proceed  to  the  optimized 
versions  with  different  clocks  of  50  MHz  and  75 MHz.  The  results  are  depicted  in  the 
following table. The achieved bandwidth for the 75 MHz Clock was about 24.87 MB/s.

Unroll & Array_Map (50 MHz) Unroll & Array_Map (75 MHz)

Image Size 
(Pixels)

Communication 
Time (s)

Computation 
Time (s)

Communication 
Time (s)

Computation 
Time (s)

128 x 128 0.000827 0.021395 0.000622 0.014588

256 x 256 0.003289 0.085210 0.002455 0.058099

512 x 512 0.013240 0.344918 0.009902 0.235177

1024 x 1024 0.053610 1.404327 0.040198 0.957514

Table 5.5: Time Measurements for Optimized HW Implementation with different clocks
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Though expected, it should be noticed that the change of the clock in the optimized version 
from 50  Μhz  το  75 MHz improves  communication times to  some  extent  and  definitely 
improves the total latency of the algorithm as the computation time is decreased. Lets now 
make a  comparison between computation times and communication times for all  these 
implementations, including the software only implementation in the form of diagrams.

Figure 5.3: Computation Time for Different AXI4-Lite Implementations

Figure 5.4: Communication Time for Different AXI4-Lite Implementations
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5.4 Implementation of AXI4-Stream Version

We now proceed to an AXI4-Stream Implementation of the optimized unrolled and array 
mapped  version  of  Harris_FindCorners  IP.  Considering  that  the  elements  of  the  input 
harrisData struct remain unaltered for all implementations, we proceeded to the integration 
of these data in the IP. Then, the only thing to have as an input would be the image which is  
streamed into the IP using the AXI4-Stream Protocol. Lets now proceed to the evaluation of 
the time measurements that were made during these implementations.

Image Size (Pixels) Communication Time (s) Computation Time (s)

128 x 128 0.0001018 0.012588

256 x 256 0.0004075 0.056099

512 x 512 0.001630 0.211797

1024 x 1024 0.006523 0.937865

Table 5.6: Time Measurements for AXI4-Stream Version

In the above measurements we clearly notice an incredible increment in bandwidth which 
now reaches values of up to 154.7 MB/s which is an incredible gain when compared to the 
previous implementations. In addition, the lack of a block-level protocol proves beneficial 
for  the computation time as  well  as  we may notice  a slight  decrement even though no 
additional optimizations where made to the algorithm.

5.5 Overall Comparison of HW Implementations

In  this  paragraph  the  HW  Implementations  of  Harris  &  Stephens  Corner  Detection 
algorithm  where  examined.  The  different  target  device  for  which  the  specific 
implementation where developed introduced issues when moving the IP in another and, 
most  significantly,  smaller  from  the  aspect  of  the  device's  available  resources.  In  the 
following diagrams a comparison between communication and computation times is made. 
In  addition  the  gain  of  bandwidth  compared  to  the  original,  unoptized-50-MHz-clock 
implementation is made.

In the following charts it is made clear that the AXI4-Stream protocol is the best choice,  
offering not only the lowest communication times, and consequently highest bandwidth but 
also even a slight decrease in computation time, a fact which may have not been expected  
due  to  the  lack  of  block-level  protocols  for  the  control  of  the  device.  The  achieved 
bandwidth reached a climax of 154.7 MB/s when the AXI4-Stream Version was employed.
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Figure 5.5: Computation Times for Different HW Implementations and ARM
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Chapter 6

Evaluation of Work Flow on SVM Classifier

6.1 General Description of HW Implementations

The purpose of this chapter is to present and compare various hardware implementations 
of the Support Vector Machine classifier, mainly, from the aspect of communication between 
the  PS  and  PL  part  of  ZedBoard  Zynq  Evaluation  and  Development  Board.  High-Level 
Synthesis  enabled  us  to  produce  Classify  IPs  with  different  communication  interfaces.  
Particularly,  AXI4  Slave  Lite  and  AXI4  Stream  Interfaces  were  utilized  for  the 
communication of the classify accelerator with the processing system. It should therefore be 
mentioned that the simplicity of the classifier code combined with the low utilization of 
device resources for each IP allowed us to experiment with the addition of more than one 
instance of the classifier accelerator and explore the multi-processing potentials that our 
target device offers. We implemented and explored three different hardware versions from 
the  Pareto  design  space.  The  first  is  a  HW  original  version  of  the  algorithm.  It  has  a 
relatively  high  execution  latency  combined  with  low  demands  of  resources  due  to  its 
simplicity. The second is a HW accelerated version with lower latency and higher resource  
demands, yet still low. The final HW version is the optimal one and has an extremely low  
latency,  consequently combined with high utilization of  the  device.  Of  course,  each HW 
version, based on its utilized resources, limits the possible alternative implementations. For 
example, if a specific HW configuration utilizes over 50% of the available resources, then it 
is impossible to add two instances of the specific HW in a system design.

The testing set for each of the implementations included 52291 test vectors which were 
read from a file. Time measurements were taken for the computation time per beat and for  
the  time  necessary  for  the  test  vectors  to  be  transferred  from  the  PS  to  the  PL  side.  
Additionally, the total transfer and total computation time were taken. The execution was 
repeated 10 times and the mean values were computed to eliminate potential mistakes. For 
comparison  purposes,  a  software  only  implementation  of  the  original  classifier  code,  
without any structural alterations was built and executed on the ARM® processing system 
of our target device. In the following table, the execution times of this implementation are 
presented. Obviously, for the software version of the classifier no communication time is 
measured.
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Communication Time (s) Computation Time (s)

Per beat - 0.002223635

Total - 116.2761016

Table 6.1: Time measurements for SW version executed on ARM®

6.2 HW Original Version Implementations and Results

In the first approach to implementing the Classify IP, we employed a simple, not-accelerated 
version of the algorithm. No optimizations were made during the high-level synthesis of the 
hardware. We produced two different versions of the Classify IP. The first version includes 
an AXI4 Slave Lite Interface and the input, output and return values of the classify function 
are grouped in one bundle. In the second version of the Classify IP, AXI4 Stream Interfaces 
were used for transferring the input and output values. In the following table a comparison 
between the percentage of utilized resources is presented.

BRAM_18K DSP48E FF LUT

AXI4 Lite Util. (%) 25 20 3 11

AXI4 Stream Util. (%) 24 20 3 11

Table 6.2: Resource Utilization for the original HW implementation of the SVM classifier

As shown in the above table, the utilization of the device is almost identical for both AXI4 
Slave Lite and AXI4 Stream Interfaces.  However,  a difference occurs in the utilization of 
BRAMs which derives from the fact that AXI4 Slave Lite Interface suffers from the need to 
instantiate the input and output ports  of  the classify  IP,  leading to an additional  1% in 
BRAM utilization. Given the above table, we proceeded to five different implementations of 
the SVM classifier on Zedboard by employing one or more instances of the classifier.  The 
implementations  are  defined  as  1-Lite,  2-Lite,  4-Lite,  1-Stream  and  2-Stream.  The  Lite 
implementations include 1, 2 or 4 instances of the AXI4 Slave Lite version of  while the 
Stream versions include 1 or 2 instances of the AXI4 Stream version of the classifier. Before 
proceeding to analysis of each version we present their final utilized ZedBoard resources.

FF LUT Memory LUT BRAM DSP48 BUFG

1-Lite Ut.(%) 3 7 1 25 20 3

2-Lite Ut.(%) 5 14 2 50 41 3

4-Lite Ut.(%) 10 28 3 100 82 3

1-Stream Ut(%) 5 11 2 26 20 3

2-Stream Ut(%) 11 22 4 51 41 3

Table 6.3: Final Utilized Resources for HW Original ZedBoard Implementations
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6.2.1 Original AXI4 Slave Lite Version with 1 Classify IP

The first approach to implementing the SVM classifier in ZedBoard Zynq Evaluation and 
Development Board was to employ one instance of the Classify IP and use the AXI4 Slave 
Lite interface for the communication of the processing system and the hardware (1-Lite 
Version). The userspace application is responsible for the initialization, input data transfer, 
output data collection and finalization of the device, to which the access is made through 
the  Linux  UIO driver  that  was discussed in  a  previous  chapter.  It  should be  noted that 
Vivado performs optimizations during the implementation phase of the design, leading to 
elimination  of  unused  nets.  Hence,  the  final  resource  utilization  after  synthesizing  and 
implementing the design might be lower than the estimated during the high-level synthesis 
step of the implementation, a fact which is denoted in Table 6.2.

Figure 6.1: HW Original 1-Lite IP System Architecture

The  above  schematic  of  the  implemented  system  architecture  is  constituted  by  four 
components. The ZYNQ7 Processing System, the Classify IP, an AXI Interconnect IP core and 
a Processor System Reset. The AXI Interconnect allows the ZYNQ7 Processing System to 
communicate through its AXI Master General Purpose port with the AXI Slave port of the 
Classify IP. It should be noted that only memory-mapped devices use the AXI Interconnect  
for communication and control purposes. The Processor System Reset is necessary for the  
operation of the whole system because the PS and PL parts of the device operate in different 
frequencies. Specifically, for this particular implementation a clock of 100MHz is used for 
the Classify IP core. In the following table the time measurements for this implementation 
are compared with the software version of the classifier. It can be observed that the not-
optimized,  original  HW  version  of  the  SVM  classifier  presents  a  decelaration  of  82% 
compared to the software only version. For our following implementations this HW version 
will be considered as a baseline as it is the simplest HW that can be created combined with  
the simplest interface, which is AXI4 Slave Lite.



100

SW Version HW Original Version

Communication 
Time (s)

Computation 
Time (s)

Communication 
Time (s)

Computation 
Time (s)

Per beat - 0.002223635 0.00000449943 0.004047181 

Total - 116.2761016 0.2352798 211.6311248 

Table 6.4: Time Measurements for SW version and HW original 1-Lite version

6.2.2 Original AXI4 Slave Lite Version with 2 Classify IPs

The next approach to implementing the SVM classifier was to employ two instances of the 
Classify IP with AXI4 Slave Lite interfaces. The objective of this particular implementation 
was to take advantage of the multi-processing potentials that Zynq®-7000 offers. In the 
userspace application of this implementation two child processes are spawned Each of the 
child processes is granted the half beats of the testing set and controls its own Classify IP.  
Each child process is responsible for essential device initializations, input data transfers, 
output  data  collections and finalization of  its  corresponding HW accelerator.  As already 
shown in Table 6.2, the final resource utilization of our target device is almost doubled in 
most  cases,  which,  of  course,  is  an  expected  outcome  considering  that  the  number  of 
instantiated classifiers is doubled. The implemented system architecture is shown in Figure 
6.2. We may notice two instances of the Classify IP connected with the ZYNQ7 Processing 
System through the same AXI Interconnect block. A Concat IP is an additional component 
which  is  utilized  in  order  to  connect  the  interrupt  ports  of  the  Classify  IPs  to  ZYNQ7 
Processing System which is able to support up to 16 interrupts.

Figure 6.2: HW Original 2-Lite System Architecture
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In  the  following  table,  the  measurements  for  the  necessary  communication  and 
computation time are compared with the HW original 1-Lite implementation.

HW Original 1-Lite HW Original 2-Lite

Communication 
Time (s)

Computation 
Time (s)

Communication 
Time (s)

Computation 
Time (s)

Per beat 0.00000449943 0.004047181 0.0000034617 0.00388686 

Total 0.2352798 211.6311248 0.090508 101.624144 

Table 6.5: Time Measurements for HW Original 1-Lite and 2-Lite versions

We  notice  that  the  total  computation  and  communication  times  measured  for  the 
classification of all 52291 beats are significantly lower than the ones measured for the HW 
original version. Actually, an over 50% decrease of the initial times is observed, leading to 
lower communication and computation times per beat. However, the new values are really 
close to the previous ones because it is not the processing time per beat that changes but  
the fact that the system is capable of processing two different beats simultaneously.

6.2.3 Original AXI4 Slave Lite Version with 4 Classify IPs

The third implementation on the SVM classifier follows a similar approach to the preceding 
one.  In  this  implementation  we  employed  four  instances  of  the  Classify  IP.  Four  child 
processes are spawned and the operation is identical to preceding versions. The utilization 
of the device in this configuration is high as we may notice in Table 6.2 with the BRAMs and  
DSPs reaching utilizations of 100% and 82% correspondingly. The system architecture is 
presented below and is similar with previous ones.

Figure 6.3: HW Original 4-Lite System Architecture
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In the following table the the time results for the HW Original 4-Classify IP version are 
compared with the HW Original previously implemented versions.

HW Original 1-Classify IP HW Original 2-Classify IP HW Original 4-Classify IP

Comm. Time 
(s)

Comp. Time 
(s)

Comm. Time 
(s)

Comp. Time 
(s)

Comm. Time 
(s)

Comp. Time 
(s)

Per Beat 0.000004499 0.00404718 0.000003461 0.00388686 0.000003609 0.00658754

Total 0.2352798 211.6311248 0.090508 101.624144 0.047185 86.117293

Table 6.6: Time Measurements for HW Original AXI4 Slave Lite Versions

As noticed, the total measured communication and computation times for the 4-Lite version 
are lower than both preceding ones. The 2-Lite and 4-Lite versions present latency gains of 
52% and 62% correspondingly, while the latter utilizes an extremely high percentage of the 
available resources. A comparison between AXI4 Slave Lite implementations is shown in 
Figure  6.4.  It  should  be  noted  that  the  computation  time  for  the  4-Lite  is  increased 
compared  to  the  1-Lite  version.  The  reason  could  be  located  in  the  PS  part  of  our 
implemented system which includes a Dual-Core ARM® processor. In case of two processes 
handling their corresponding accelerators, each process can be executed solely on one of  
the processors. However, in case of four accelerators, a process might be stopped by the 
scheduler in a periodic or other manner for another one to be executed. Meanwhile, the 
output value of the accelerator might be ready, yet, it cannot be read because the process is  
stopped, leading to an increment in computation time per beat.

Figure 6.4: Performance and Gain of HW Original AXI4 Slave Lite Versions
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The optimal choice out of the three HW Original AXI4 Slave Lite implementations from the 
aspect of latency gain and utilization of resources, as presented in the previous chart, would 
be the 2-Lite version as the gemination of utilized resources is accompanied by an over 50% 
latency gain in contrary to 4-Lite version in which the quadruplication of utilized resources 
does not induce analogous results. However, another area of interest beyond the latency 
gain is the bandwidth that can be reached in each of the versions. Hence, the following chart  
is presented.

Figure 6.5: Bandwidth of HW Original AXI4 Slave Lite versions

As  observed,  the  AXI4  Slave  Lite  implementations  of  the  HW  Original  version  reach  a 
bandwidth of almost 80 MB/s. There is a clear increment in bandwidth that follows the 
addition of Classify IPs in contrary to total latency gain for which a similar observation  
cannot be made. Specifically, bandwidth is increased by 2.6 times for the 2-Lite version and  
by 5.2 times for the 4-Lite version. Yet, this increment is imperceptible as the total time 
needed for communication is less than 0.5% percent of the total execution time.

6.2.4 Original AXI4 Stream Version with 1 Classify IP

After implementing various AXI4 Slave Lite versions of the original HW we proceeded to 
implementations of AXI4 Stream versions. To begin with, we employed one instance of the 
HW Original AXI4 Stream Version. In this implementation the Classify IP is not memory-
mapped and the data transfers are not performed by the PS part of the device. Instead an 
AXI  Direct  Memory  Access  (DMA)  IP  core  is  utilized  and  is  responsible  for  input  data 
transfers and output data collections. In order for the AXI DMA core to be controlled from 
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the userspace application, the original Xilinx DMA Linux driver was complemented by the 
zynq-xdma driver [https://github.com/bmartini/zynq-xdma], developed by Berin Martini 
[https://github.com/bmartini].  Minor  alterations  were  made  to  the  source  code  for  the 
driver to fit in our situation. The userspace application is responsible for initializing the AXI 
DMA core and allocating the essential buffers for sending and receiving data. Then, it fills 
the buffer with the input data values and commands the AXI DMA to perform the transfer  
from memory to our accelerator. When the buffer is transferred, the AXI DMA waits for the 
computation to finish, so that the output buffer is written and transferred back to memory. 
In this particular implementation, the accelerator is responsible for collecting the necessary 
number of input values from the buffer. For instance, if a buffer of 180 float numbers is sent 
to the accelerator then it would extract the first 18 numbers, perform the computation and 
write  the return value to  the output  buffer.  Afterwards,  it  will  extract  the next 18 float 
numbers from the buffer and the process will repeat until the buffer is empty. If a buffer of 
length 18*N is sent, the length of the output buffer will be N. 

In  the  following  schematic  we  may  notice  the  system  architecture  for  the  1-Stream 
implementation. Firstly, as expected, we may notice the existence of an AXI DMA IP core. 
The ZYNQ7 Processing System and the AXI DMA communicate through an AXI Interconnect. 
The input values are fed to the Classify IP from the Master AXI Stream Port of the AXI DMA 
and the output values are fed back through the Slave AXI Stream Port of the AXI DMA. The  
Memory-Mapped to Stream (MM2S) and Stream to Memory-Mapped (S2MM) channels are 
connected  to  the  Slave  High  Performance  Ports  of  the  PS  through  an  AXI  Memory 
Interconnect.  A time comparison between this implementation and the HW Original 1-Lite 
version, which is considered as a baseline,  is presented in Table 6.6

Figure 6.6: HW Original 1-Stream System Architecture

HW Original 1-Lite HW Original 1-Stream

Communication 
Time (s)

Computation 
Time (s)

Communication 
Time (s)

Computation 
Time (s)

Per beat 0.00000449943 0.004047181 0.000000309078 0.00388195 

Total 0.2352798 211.6311248 0.016162 202.995416

Table 6.7: Time Measurements for HW Original 1-Lite and 1-Stream Versions

https://github.com/bmartini
https://github.com/bmartini/zynq-xdma
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In this implementation the execution was repeated for a variety of input and, consequently,  
output buffer sizes. Buffers of small sizes translated into a need for more transfers from the 
memory  to  the  accelerator,  thus,  concluding  to  high  communication  times  and  low 
bandwidths. On the other hand, buffers of large sizes require a lower number of transfers, 
thus  significantly  reducing  the  communication  times  and  increasing  bandwidth.  The 
following diagram presents the increment of bandwidth as a function of  beats per transfer.  
It  is  noted  that  a  beat  is  composed  by  18  floating  point  numbers.  This  version's  high  
computation latency combined with the operation of the Xilinx DMA driver did not allow us 
to try and send a buffer containing more than 768 beats or in other words 54 KB. As we may 
notice, the bandwidth varies from 1.24 MB/s up to 234.5 MB/s and increases as much as 
100% when the buffer size is doubled.

Figure 6.7: Bandwidth of HW Original 1-Stream Version for different buffer sizes
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Figure 6.8: HW Original 2-Stream System Architecture

In  Figure  6.8  a  block  design  of  the  implemented  system  architecture  is  presented.  It 
includes  2  instances  of  the  AXI  DMA  IP  core  and  4  instances  of  the  AXI  Memory 
Interconnect IP. In this architecture we employed all available slave High Performance ports. 
The width of the High Performance ports is 64-bit, out of which, the 32 bits are destined for  
reads from memory and the other 32 bits are destined for writes. We implemented an extra 
version with the same number of Classify IP instances and the same number of AXI DMA 
blocks.  Only 2 out of 4 High Performance ports were utilized.  Both communication and 
computation times were identical in these implementations.

HW Original 1-Stream HW Original 2-Stream

Communication 
Time (s)

Computation 
Time (s)

Communication 
Time (s)

Computation 
Time (s)

Per beat 0.000000309078 0.00388195 0.000000315733 0.00387699

Total 0.016162 202.995416 0.008255 101.36596

Table 6.8: Time Measurements for HW Original 1-Stream and 2-Stream Versions

The time measurements show a slight increment in communication time per beat and a 
slight  decrement  in  computation  time  per  beat.  No  significant  changes  are  noticed  in 
communication and computation times per beat,  however,  the system is able to process 
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twice  as  many  beats  in  the  same  time,  as  does  the  2-Lite  implemented  system.  The 
execution was repeated for a variety of buffer sizes. The bandwidth varied from 2.9 MB/s 
and reached a value of 444.7 MB/s with approximately 222 MB/s per process and AXI DMA  
block. The bandwidth achieved for different number of beats per transfer is shown below.

Figure 6.9: Bandwidth of HW Original 2-Stream Version for different buffer sizes

Figure 6.10: Performance and Gain for HW Original AXI4 Stream versions
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As we may notice in Figure 6.10 a latency gain of 4.08% and 52.1% is measured for 1-
Stream and 2-Stream versions respectively. It should be noticed that the gain of 1-Stream 
version might not be anticipated as the accelerators are almost identical. It is a fact that 
communication  times  are  extremely  lower  compared  to  1-Lite  version.  However,  the 
communication  times  are  not  the  principal  components  of  latency.  The  measured 
improvements  in  computation  times  are  due  to  our  choice  of  different  communication 
interfaces.  Regarding  the  AXI4  Slave  Lite  interface,  Vivado  HLS  automatically  sets  the 
interface to ap_ctrl_hs. This is a protocol which adds necessary signals to Classify IP so 
that  it  can be  controlled from a processor.  Among them are  the ap_start  and ap_return 
signals. It should be noted that the generated signals are exposed to memory and can be 
accessed and set by the processor through the Linux UIO Driver. In the AXI4 Lite versions of 
the original HW, the accelerator is memory-mapped and after using the  memcpy() call to 
copy the input data to the intended device memory address, the userspace application sets 
the  ap_start  signal  to  1  for  a  brief  moment  and  then  again  to  0  in  order  to  start  the 
computation. The computation begins and when it is completed an ap_vld signal attached to 
the output of the accelerator is set to 1 and the output is read from its respective memory 
address. The ap_ctrl_hs protocol includes a function call handshake. On top of that, every 
time the userspace application triggers a computation,  a very short initiation interval is 
required combined with an interval needed for the output of the accelerator to be valid and 
ready for reading.  On the other hand,  the AXI4 Stream versions of  the classifier  do not  
operate in the same manner. An ap_ctrl_none interface is manually set to the function so 
that ap_start and the rest of the signals are eliminated leading to elimination of the function 
call handshakes as well. The ap_ctrl_hs interface is not needed for the control of the device 
because the AXI4 Stream versions are designed in a manner that allows the Classify IP itself  
to control the incoming streams. No matter the size of input buffers, the accelerator counts 
and devides the input streams at every 18 values, which is the number of input values for a 
computation. This means that if more than 18 values are sent to the hardware, then only the 
first 18 will be used for the computation. If the remaining ones count to 18, then another 
computation is executed an another output value is written to the output buffer, otherwise, 
the accelerator does not perform another computation until the necessary number of input 
values is collected. This is a key element as the userspace application does not need to make 
any initializations or wait for a result. The only thing that it should do is fill the input buffer 
and read the results of the output buffer. Hence, a latency gain in computation time makes 
its appearance. 

6.2.6 Comparison of HW Original Implementations

In this paragraph an overall comparison between HW Original implementations is made. To 
begin with, in Figure 6.11 we may notice the latency gain and utilization of the available 
target device resources for all implemented versions of the original HW. The 2-Lite and 2-
Stream versions present significant latency gains without excessive utilization of the device. 
On the  contrary,  although the  4-Lite  version presents  slightly greater  latency gains,  the 
100% and 82% utilization of BRAM and DSP blocks is prohibitive. It should be mentioned 
that  though an attempt for a  4-Stream implementation was made,  the BRAM utilization 
proved  to  be  slightly  above  the  available  resources.  Except  for  the  latency  gains  and  a 
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utilization comparison between the different implementations, we are also interested in the 
bandwidth that each implementation version achieves. It is noticed that the AXI4 Stream 
implementations  which  employ  the  DMA  engine  are  able  to  achieve  higher  values  of 
bandwidth (Figure 6.12).

Figure 6.11: Performance and Gain for different HW Original Implementations

Figure 6.12: Bandwidth Gain for HW Original Implementations
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6.3 HW Accelerated Implementations and Results

After  implementing  five  different  versions  of  original  HW  we  proceed  to  various 
implementations of a HW Accelerated version picked from the Pareto design space.  The 
chosen solution includes  LOOP UNROLL,  PIPELINE and ARRAY PARTITION directives to 
Vivado HLS.  The estimated utilization of Vivado HLS, as seen in the table below, is slightly 
higher than the utilization of the original HW implementation while the estimated latency is  
21416 cycles and the clock frequency is set to 25 MHz. The possible implementations on 
this accelerated HW, based on the utilized resources included 1-Lite, 2-Lite, 1-Stream and 2-
Stream Version. However, Vivado Design Suite could not synthesize the 2-Lite version and 
the error stated that there are not enough RAMB blocks while the 2-Stream versions which 
also included two Classify IP Instances where synthesized and implemented regularly.

BRAM_18K DSP48E FF LUT

AXI4 Lite Util. (%) 27 26 3 16

AXI4 Stream Util. (%) 27 26 3 16

Table 6.9: Resource Utilization for the HW Accelerated Version of the SVM Classifier

The estimated through Vivado HLS utilized resources  present  no difference whatsoever 
between the  AXI4 Slave Lite  and  AXI4 Stream versions  in  contrary  to  the  HW  Original  
version.  We  continue  our  analysis  with  a  table  of  final  utilized  resources  for  all 
implementations of the HW Accelerated ZedBoard implementations.

FF LUT Memory LUT BRAM DSP48 BUFG

1-Lite Ut. (%) 3 13 1 28 26 3

1-Stream Ut(%) 6 18 2 29 26 3

2-Stream Ut(%) 11 34 2 57 53 3

Table 6.10: Final Utilized Resources for HW Accelerated ZedBoard Implementation

6.3.1 Accelerated AXI4 Slave Lite Version

We proceeded to  AXI4 Slave Lite  implementation  of  the  HW  accelerated  version of  the 
classifier.  The  block  design  of  the  implementation  is  not  presented  as  the  system 
architecture of 1-Lite HW Accelerated version is identical to 1-Lite HW Original Version. 
Alterations  are  only  made  internally  during  the  HLS  process  in  the  Classify  IP.  The 
utilization of the device (Table 6.9) is very close to HW Original 1-Lite version. In Table 6.13 
the  time  measurements  for  the  HW  Accelerated  Lite  version  are  compared  with  our 
baseline. The HW Accelerated version offers a significant latency gain, which might not have 
been anticipated by the  utilized resources.  The communication time has  increased as a 
consequence of the 25 MHz clock. The computation time per beat has dropped incredibly.
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HW Original 1-Lite HW Accelerated Lite

Communication 
Time (s)

Computation 
Time (s)

Communication 
Time (s)

Computation 
Time (s)

Per beat 0.00000449943 0.004047181 0.000007194272 0.0008590309

Total 0.2352798 211.6311248 0.376197 44.91959

Table 6.11: Time Measurements of HW Original 1-Lite and Accelerated Lite Version

Figure 6.13: Performance and Gain for HW Original 1-Lite and Accelerated Lite

6.3.2 Accelerated AXI4 Stream Version with 1 Classify IP

In  this  version  we  employ  an  AXI4  Stream  instance  of  the  HW  Accelerated  version 
accompanied by an instance of the AXI DMA IP core. The system architecture is identical to 
this of the HW Original 1-Stream Version and it can be referred to in Figure 6.6. The final  
utilization  of  resources  after  design  synthesis  and  implementation  can  be  seen  in  the 
following table.
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Communication 
Time (s)

Computation 
Time (s)

Communication 
Time (s)

Computation 
Time (s)

Per beat 0.00000449943 0.004047181 0.000000832648 0.0008590744

Total 0.2352798 211.6311248 0.04354 44.921861

Table 6.12: Time Measurements for HW Original 1-Lite and Accelerated 1-Stream Versions
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It can be observed that, similarly with the HW Accelerated Lite version of the classifier the  
total  computation time has  experienced an incredible  decrease,  hence,  the  computation 
time per  beat has also  declined.  Furthermore,  the  communication time followed by the 
communication time per beat has decreased resulting in an increment,  yet not sharp in 
bandwidth  which  now  reaches  78.1  MB/s  as  it  can  be  seen  in  the  following  diagram 
presenting the achieved bandwidth for the specific  implementation as a function of  the 
beats sent per transfer.

Figure 6.14: Bandwidth for HW Accelerated 1-Stream Version

6.3.3 Accelerated AXI4 Stream Version with 2 Classify IPs

The next implementation employs two instances of the HW Accelerated AXI4 Stream IP 
accompanied by two AXI DMA blocks. The system architecture is identical to HW Original 2-
Stream implementation so it is not further discussed in this paragraph. The throughput of  
this implementation is doubled when compared to the preceding one, while computation 
time per beats remains the same with only a slight decrement. Following, we compare the 1 
and  2-Stream  implementations.  The  bandwidth  is  also  presented  as  a  function  of  the 
number of beats per transfer, or input buffer size. The achieved bandwidth was 157.4 MB/s.
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Communication 
Time (s)

Computation 
Time (s)

Communication 
Time (s)

Computation 
Time (s)

Per beat 0.000000832648 0.0008590744 0.000000436403 0.0008410912

Total 0.04354 44.921861 0.02282 21.99075

Table 6.13: Time Measurements for HW Accelerated 1-Stream and 2-Stream Versions
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Figure 6.15: Bandwidth for HW Accelerated 2-Stream Version
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achieved bandwidth for the HW Original 2-Stream version. A detail that should be observed 
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6.3.4 Comparison of HW Accelerated Implementations

An overall comparison of different HW Accelerated implementations is following. With Lite 
and 1-Stream versions it is possible to achieve a high latency gain up to 80% accompanied 
by a very small increment in utilization of the device or 90% latency gain with 2-Stream 
Version and a double utilization of resources.

Figure 6.16: Performance and Gain for Different HW Accelerated Versions

Figure 6.17: Bandwidth Gain for HW Accelerated Versions
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6.4 HW Optimal Implementations and Results

The  final  choice  for  our  Support  Vector  Machine  classifier  implementation  is  the  HW 
Optimal from the Pareto design space. This specific implementation involves a full manual 
unroll  of  the  inner  loop of  the  original  code  and the  addition of  PIPELINE and  ARRAY 
RESHAPE directives to Vivado HLS. It is expected to present the higher latency gain of all  
alternative HW versions. It should be noted that the clock for this implementations is set to 
25 MHz. In the following table, the estimated HLS utilization is depicted.

BRAM_18K DSP48E FF LUT

AXI4 Lite Util. (%) 24 75 12 48

AXI4 Stream Util. (%) 24 75 12 46

Table 6.14: Resource Utilization for the Optimal HW implementation of the SVM classifier

We may notice that most components of the device are utilized with a percentage less than 
50%  except  for  DSP  blocks  where  a  75%  utilization  makes  its  appearance.  As  already 
mentioned the accelerator in this version is pipelined which leads to the utilization of extra 
components  and  especially  DSP  blocks  and  LUTs  for  the  creation  of  the  hardware.  
Concerning different communication interfaces the utilization is almost identical with only 
a 2% difference in LUTs. Lets now proceed to the implemented versions. Obviously, the 75% 
utilization of  DSP blocks  is  a  constraint  for  different  implementations,  an option which 
existed in previous versions of the HW. So, the HW optimal implementation alternatives are  
an 1-Lite and 1-Stream where only an instance of the Classify IP is employed.

FF LUT Memory LUT BRAM DSP48 BUFG

Lite Util. (%) 4 28 1 23 76 3

Stream Util. (%) 7 30 1 24 76 3

Table 6.15: Resource Utilization for HW Optimal Lite ZedBoard Implementation

6.4.1 Optimal AXI4 Slave Lite Version

The  AXI4  Slave  Lite  system  implementations  are  discussed  extensively  in  the  previous 
paragraphs.  In  this  version  we  employ  a  single  Classify  IP  and  implement  the  system 
architecture of Figure 6.1. As we may notice in Table 6.15 there is an incredible decrease in 
total and per beat computation time. On the other hand, the 25 MHz clock that is used has 
increased total and per beat communication time. In fact, communication time presents an  
increase  of  145% while  computation  time  presents  a  decrease  of  98.7%.  Even with  an 
increase in communication time, this particular implementation offers a total latency gain 
of 98.4%.
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HW Original 1-Lite HW Optimal Lite

Communication 
Time (s)

Computation 
Time (s)

Communication 
Time (s)

Computation 
Time (s)

Per beat 0.00000449943 0.004047181 0.000011064301 0.0000521259

Total 0.2352798 211.6311248 0.5785634 2.7257132

Table 6.15: Time Measurements for HW Original 1-Lite and Optimal Lite Version

6.4.2 Optimal AXI4 Stream Version

We now proceed to the final implementation of the Support Vector Machine classifier. This 
includes  an  AXI4  Stream  implementation  of  the  HW  Optimal  version  of  the  code.  An 
instance of the Classify IP is accompanied by an instance of the AXI DMA IP core. As we 
mentioned before,  in  the  Lite  implementation of  Optimal  HW,  communication time is  a 
principal  component  of  total  latency  compared  to  former  implementations.  The  HW 
Optimal Stream version not only copes with this issue but also slightly reduces computation 
time due the differences in the employed interfaces, as mentioned in paragraph 6.2.5.

HW Original 1-Lite HW Optimal Stream

Communication 
Time (s)

Computation 
Time (s)

Communication 
Time (s)

Computation 
Time (s)

Per beat 0.00000449943 0.004047181 0.000000808647 0.0000502549

Total 0.2352798 211.6311248 0.042285 2.627881

Table 6.16: Time Measurements for HW Original 1-Lite and Optimal Stream Version

Figure 6.18: Bandwidth for HW Optimal Stream Version
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6.4.3 Comparison of HW Optimal Implementations

In this paragraph a comparison and evaluation of HW Optimal versions is made. We notice  
that both Lite and Stream versions offer an extremely high latency gain compared to the HW 
Original version,  reaching a value of almost 99%. The utilization of the device is low in 
general except for DSP blocks where a percentage of 75% is reached. Another instance of 
the Classify IP cannot be added to the system architecture, thus, leading to solely single-
accelerator solutions. This translates to the fact that two heart beats cannot be processed at  
the same time in contrary to former 2-Lite, 4-Lite and 2-Stream implementations. However 
the computation time per beat is extremely low making it possible for a large number of  
beats  be  processed  in  a  unit  of  time.  For  a  real  system  this  would  translate  to  many 
processes being able to connect to the implemented system and send beats for classification 
with  the  accelerator  being  a  critical  part  of  the  system  which  get  locked  during  a 
computation and then unlocked and assigned to a different, thus implementing a resource 
sharing between different users.

HW Optimal Lite HW Optimal Stream

Communication 
Time (s)

Computation 
Time (s)

Communication 
Time (s)

Computation 
Time (s)

Per beat 0.000011064301 0.0000521259 0.000000808647 0.0000502549

Total 0.5785634 2.7257132 0.042285 2.627881

Table 6.17: Time Measurements for HW Optimal Versions

Figure 6.19: Performance and Gain for different HW Optimal Versions
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Figure 6.20: Performance and Gain of HW Optimal Stream vs. Optimal Lite version

Concerning the bandwidth of the HW Optimal implementations, an observation of loss of 
bandwidth was made in the Lite version, which is definitely due to the clock frequency of 25 
MHz. An additional reason might be the use of ARRAY_RESHAPE directive for the input test 
vector. The directive technically breaks the input test vector in 18 parts, as many as the 
input values. This is a strategy which reduces latency because not the whole test vector 
must be loaded for the execution of a computation which needs only one of the values.  
However, the test vector is not necessarily stored in successive memory addresses and this  
might introduce an increment in communication time when copying the input values to the 
device memory. Given the above facts, the Lite implementation offered us a bandwidth of 
0.4 times the HW Original 1-Lite bandwidth. Meanwhile, the Stream version increased the 
previous value to 5.6 times the original bandwidth.

6.5 Overall Comparison of HW Implementations

In this paragraph an overall comparison of all HW implementations is made. We present 
diagrams concerning latency gains of different versions, bandwidth gain and throughput. 
Moreover,  a  comparison  between  the  impact  of  communication  times  in  different 
implementations is made. To begin with,  in Figure 6.20 a comparison of utilization and 
latency gain between all HW implementations is shown. 

The HW Original  Versions clearly offer the lowest possible utilization,  at least  when we 
refer to the 1-Stream and 1-Lite versions and are accompanied by high latency. When we 
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implemented which lead to a 100% utilization of BRAMs and also high utilizations of the 
rest available components and resources. Theoretically, this implementation should have 
offered as a 75% latency gain, however this was not the fact. A latency gain of 60% occurred 
which was irregular but seems valid if we take the scheduling of the Linux operating system 
into  account.  The  device  disposes  a  dual-core  processing  system and  scheduling  issues 
occurred,  thus  leading to a low latency gain when compared to  the  HW Original  2-Lite 
version. A 4-Stream implementation was impossible as it required slightly more than the 
available BRAM blocks.

After the HW Original implementations, an optimized accelerated, yet not optimal, version 
of the classifier was employed. The utilization of the device obtained remained pretty low 
with a very satisfactory latency gain which reached 80% for the Lite and 1-Stream versions 
and 90% for 2-Stream version. The low utilization of all components combined with the 
high latency gains were compensatory. The only issue that occurred emerged during the 
synthesis  phase  of  2-Lite  version in  Vivado Design  Suite  where an error  explaining  the 
scarcity of RAMB blocks made its appearance, even though the respective 2-Stream version 
was successfully synthesized and implemented. We proceeded without implementing the 2-
Lite version and recorded the error that occurred.

The HW Optimal versions clearly offer the highest latency gains while utilizing the 75% of 
DSP blocks. The utilization of the rest available components are definitely much lower. From 
the  aspect  of  latency  gain  the  two  implementations  are  almost  identical,  however,  if  a 
comparison between them is made we will notice that the total computation times differ as  
much as 0.63 seconds or in terms of latency, the Stream version offers a 19% gain when  
compared to the Optimal Lite one, a result which emerges from the incredibly high gain in 
computation time. 

Figure 6.21: Performance and Gain for different HW versions
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After latency gains, an evaluation of the achieved bandwidth of each implementation will be 
made  but  this  time  we  are  going  to  compare  both  bandwidth  and  throughput  of  our 
implementations. It is a fact that the achieved values of bandwidth were quite satisfactory 
and if the achieved throughput was even a little close to them we would be taking about an 
extremely fast system as a whole.  However this is not the case as we will  notice in the  
following diagrams which visualize the huge gap between bandwidth and throughput.

Figure 6.22: Bandwidth for different HW versions

Figure 6.23: Throughput for different HW Versions
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Figure 6.24: Bandwidth and Throughput for different HW Implementations

An additional comment on the impact of communication time in total execution time should  
be  made.  In  most  versions  of  the  implemented SVM classifier  the  communication is  an 
imperceptible  component.  The  only  version  in  which  communication  time  plays  an 
important role is the HW Optimal Lite version. For reference purposes two pie charts are 
presented to show the average and worst version from the aspect of communication.

Figure 6.25: Communication and Computation Times for HW Original 1-Lite Version
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Figure 6.26: Communication and Computation Times for HW Optimal Lite Version

As one may notice, the impact of communication time in the average case is close to zero 
and its percentage in the pie chart is barely visible. On the other hand, in the HW Optimal  
Lite  implementation  communication  time  plays  a  more  dominant  role.  Hence,  the 
improvement through the employment of an AXI4 Stream version is more visible that in 
previous implementations.

At this point we have completed the exploration and evaluation of different Support Vector 
Machine classifiers. Three different versions of the Pareto design space were employed and 
tested. We proceeded to various different implementations using the previously mentioned 
versions.  AXI4 Slave Lite and AXI4 Stream interfaces were used for the communication, 
control and data transfers between the PS and PL parts of the device. Additionally, versions 
of system architectures with more than one classifiers were implemented leading to higher 
bandwidth  and  throughput  values.  A  conclusion  of  this  exploration  was  that  better 
communication  times  can  be  achieved  by  adding  AXI4  Stream  interfaces  to  custom 
accelerators  and  employing  AXI  DMA  blocks  for  data  transfers.  Finally,  talking  about 
numbers, the latency gain of our final implementations was up to 99% and the achieved 
bandwidth reached values of as much as 445 MB/s.
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Chapter 7

Conclusion

7.1 Summary

At this point the work for our diploma thesis has reached the end. Many things have been 
studied and implemented and so this text consisted of a lot of diagrams and results. The  
field of this thesis was the integration of custom hardware accelerators generated through 
High-Level  Synthesis  on  an  FPGA-based  SoC  device  which  is  Zynq-7000  AP  SoC.  The 
algorithms  that  were  studied  and  implemented  are  of  vital  significance  for  their 
corresponding fields as corner detection is the basis of most algorithms in Computer Vision 
and, on the other side, ECG is considered to be one of the most important biological signals.

For  the  integration  of  those  custom  hardware  accelerators  the  widely  used  AMBA  AXI 
protocol was utilized. Specifically, the its simplest form, AXI4-Lite and a more complex form, 
AXI4-Stream. The usage of AXI4-Lite was based on the Linux UIO driver which is usually  
built  in  distributions  generated  through Petalinux  Tools.  On the  other,  the  AXI4-Stream 
protocol  required the  theoretical  and technical  background  of  Direct  Memory Access,  a 
method  of  accessing  memory  that  does  not  utilizes  the  CPU  and  assists  the  fast  data  
transfers that are needed.

After  choosing  the  interfaces  for  our  custom  accelerators  we  proceeded  to  the  system 
generations through Vivado Design Suite. Various AXI components were introduced, some 
of which were automatically interconnected by the tool while others needed our assistance. 
The most important of those components were the AXI Interconnect, which is used on every 
single design for interconnection with the PS-side of the ZedBoard, and the AXI DMA block 
which was utilized for fast transfers to AXI4-Stream-based accelerators.

The two distinct accelerators that we examined offered us different design alternatives. For 
starters, the Harris_FindCorners IP offered us design alternatives limited to the choice of 
AXI4-Lite or AXI4-Stream protocols because its utilization of resources accompanied with 
the fact that is was originally developed for another FPGA device restricted our options for  
diversity. On the other hand, the simplicity of the Classify IP, the low resource demands,  
combined with the fact that it was originally designed for the same target device offered a  
wide  range  of  design  alternatives,  not  limited  to  solely  a  choice  of  interfaces  but  also 
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expanded to the addition of multiple IPs controlled by different processors in both AXI4-
Lite and AXI4-Stream Versions.

The tools that we used were in some cases a bit restrictive as the design options that were 
offered were usually not implemented. For instance, the AXI4 DMA block is supposed to 
support Burst Lengths of up to 256, however the AXI3-compliance restricts it to only 16, 
and setting it to higher values technically makes no difference.

Through our various implementations on both hardware accelerators we concluded that an 
addition of multiple IPs increases bandwidth and throughput only to a point because the 
PS-side of the ZedBoard includes a processor with only two cores, thus scheduling issues 
occurred slowing down the execution of four processes with no scaling in performance.  
AXI4-Stream has been evaluated as the fastest of the protocols that where used as the AXI 
DMA block can make transfers with speeds up to 300 MB/s per DMA channel. AXI4-Stream 
proved the best also in case of computation latency gains as its lack of block-level protocols  
lead to a total gain of as much as 20% compared to the equivalent AXI4-Lite solution for a 
default hardware accelerator. Simultaneously, a bandwidth of 444 MB/s was achieved.

7.2 Future Work

Devices combining a Processing System and Programmable Logic gain an increased interest 
as  the  next  generation  of  FPGA-based  devices.  The  innate  nature  of  FPGA  is  fast 
development of system designs and reconfigurability. FPGAs have reached a point where a 
lot  of  research  have  proven  them  as  top  choices  when  it  comes  to  implementing  HW 
accelerators. On the other hand, the embedded processors that are added to Programmable 
Logic,  due  to  their  scarcity  of  time  in  the  device  might  introduce  scheduling  issues  as 
proven by our implementations. A nice idea for future work might be the study of the PS not  
in general but as part of an FPGA device for coping with issues concerning, for instance, 
scheduling.

Another idea would be the study and development of more possible design alternatives for 
a hardware accelerator when it is integrated in a SoC. Design tools offer many opportunities  
for development but the human factor has always proven beneficial. Even though, most of 
the design work is made by the tool,  useful  hints and directives from humans could be 
integrated to enhance automated design, not only to the extent of HLS but even more.

Finally another idea would be the exploration of the parameters of the AXI DMA blocks that  
are offered in Vivado Design Suite of other tools. Many of the parameters can be altered,  
such as burst size, but many of the theoretical utilities have no impact whatsoever due to 
compliance and other issues. If  greater burst sizes could be supported along with wider 
DMA channels the AXI DMA block would be the must choice when it came to data transfers.
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