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Arnoyopeletar 1 avitypagr, amodrixeuon xan diovour| Tne Tapolcog epyaciog, €€ olo-
XAAEOL 1 TUNUUTOS AUTAS, Yio euTtopixd oxomo. Emtpéneton 1) avoatinwor), anodfxeuon
X0 BLAVOUY| YLoL OXOTO 1) XEPOOOXOTUXO, EXTIUOEUTIXAS 1) EQEUVNTIXTS PUOTGE, UTO TNV
TEOUTOUEST] Vor avapépeTon 1) TYY) TEOEAEUONC %ok VoL OLITNEEITAL TO TOROY UHVUUAL.
EpwtAuato mou a@opolv T ¥eron NS pYAolog Yo XEEO0OKOTUNO OXOTO TEETEL VOl
amevivVoVTOL TEOC TOV GUYYEUPE.

Ov améieic xon To GUUTEPACUAUTO TOL TEPIEYOVTOL OE AUTO TO €YYRAUPO EXPEALOUV TOV
oLYYPAPEN X OEV TEETEL VoL EpunveLdel 6Tl avTimpoomTeouy Ti¢ enionueg Véoelg Tou
Edvixol Metodfou [loauteyveiou.






HeptAngn

Avtixeipevo tng dimhwpatixrg epyaciog etvar 1 alloAdyNnoT xAmolov TauTOYEOVWY dOUMY Ot-
dopévwy o6to molutdpnvo cbotnua Single-chip Cloud Computer tng etaplag Intel.  Yu-
YHUEXPWIEVOL XATE T1) Bidpxela TNE SimAwUoTixg epyaciog uekethAtnxay xou a&tohoydnxay yio
OLdpopec TopopéTeoug ol dopés dedouévmy tne otoifag, e FIFO ovpdc mpotepondtntog xon
Tou BloVLPLX0) cwWEOL UeYloTou.

To obotnuo Single-chip Cloud Computer etvor évag utohoyioTAg YEVIXOU GXOTOU UE
48 muprvee, 1 dnuioupyia Tou omolou mEoopileTon Yiol ELEUVNTIXOUE GXOTOUE KoL HEAETY TWV
TOALTIUENVLY CUCTARATOY. O Yeydhog aprdudg TUEHVLDY Xot TO POVIBIXO oUTO GUC TN UaC
TUEOTPUVE VAl TO ETAEEOUUE YLl VO UEAETHCOUNE TIG ETUOWOELS XL TNV CUUTEQLPORA TOAU-
mopnvwy cuoTnudtwy. ‘Eva enlong evdiagpépov otolyeio mou yog odhynoe vo emhéEoude TNV
€PELVA TTEVW GE QUTOV TOV UTOAOYLOTY| EVOL 1) IBLUTEQOTNTA TOU UOVTEAOU UVAUNG, YEYOVOS
TOU paC ONULoVEYNOE TO EVOLUPEROY VO BOXIUACOUUE TO HOVTENO TEALTY EEUTNEETNTY YLt TNV
0PYBAVOOT X0l TV CUYYPOVIGUO TAUTOYEOVWY GOUMDY DEBOUEVLV.

Y1 Sudpxeiar TNG BIMAWUATIXNAG CUYXEIVIUE TNV CUUTERLPOEE XL TNV ETBOCT TwV DOUMY
0EDOUEVLY oL avapépaue. XpNoWonooaue Eva TARYOC BLUPORETIXMY CEVURIWY ALTNUETLY
xaL BIERYAOLOV amd TOUC TUPHVES Xl ASBoE UETPHOELS TOCO Ylot TNV Ypowxn emidoor, 6co
X0 YL TNV XATUVIAWOT| EVERYELNG amtd xdle dour. Axoun doxyddooue xatd t6co ennpedlel
TNV ETBOOT 1) XATAVOUT] TWV TUPHVEY XUTd TN BECUEVGY| Toug, av Va efvar cuveyels 1) Blaoxop-
mopévol. Erniong eldoue xotd méco 1 Véomn tou muprva efunneetnty| enneedlel Ty enidoon,
xaL O Yo CUUTERLPEPOVTOY Ol BOUES o TO GUCTNUA OTNV TEP(TTWON Tou YecohaBoloe
xdmolo xaduo TERNOT 1) 1) EVOCYOANOY) HE XATOLL GAAT, BOVAELS amtd Toug TUPTVES, UeTagd 6Lo

OLUBOYIXWDY UTNUATOV VLol AAAXYES GTN) DoY) DEBOUEVEV.

AgCeic KAeod

Toautdypovec Souéc BEBOUEVKV, TOAUTUENVO GUC TAHUATA, CUYYPOVICUOS, WOVTEAD TeAdTn e&u-

mneetnTy, SCC






Abstract

The purpose of this diploma thesis is to evaluate concurrent data structures with the
multicore system by Intel, the Single-chip Cloud Computer. Specifically during the work
for this thesis we examined and evaluated through different parameters the data structures
of stack, FIFO queue and binary max heap.

The Single-chip Cloud Computer system is a general purpose computer of 48 cores.
Its creation was meant for research purposes and further study of multicore systems. The
big number of cores and this unique system made us choose it to examine the performance
and the behaviour of multicore systems. Another interesting fact that led us choose to
do our research with this computer is the special memory model that the Single-chip
Cloud Computer has, which created the curiosity to test and evaluate the performance of
a client-server model for the synchronization and the organizing of the concurrent data
structures.

During this thesis we compared the behaviour and the performance of the data stru-
ctures we mentioned above. We used a set of different scenarios consisting of a different set
of requests and transactions from the cores. We gathered measurements both for the time
performance and also for the power consumption by every data structure. In addition to
this, we tested how the position of the allocated cores, if they are continuously allocated
or distributed, affects performance. Also we wanted to see how and if the position of the
server core in the client-server model affects performance and how the data structures and
the system will behave and perform in case there would be a delay or some time spent by
cores to handle another task, between two consecutive requests for transactions with the

data structure.

Keywords

Concurrent data structures, multicore systems, synchronization, client server model, SCC






Euyapiotieg

Ou fleha Vo EUYEIOTACK 0TO OTUElD aUTO Tov ETBAETOVTA iy Nt x. Anurteto Lolvien
TOU € EUTLOTEOTNXE o oL EBWaE TNV euxanpla vor aoyohnde ye to éua autd. Tov euya-
PO T ETONE Yo TNV TOAD XA HOG CUVERYOEO o ETIXOVWVIA xou Yo TNV TpoYuuio Tou va
pe Bondroet xou vo ue xordodnyHoEL GTIC OXABNUUIXES HOU ETLAOYECS.

Enlone euyopotod wuwitepa tov vnodhgio dddxtopa x. Adlapo Ilanabémouko yio tny
%xa0001YNoN xaL TNV dELOTY CUVERYIOTX UG XAUTA TNV OLEEXELN EXTOVNONG TNG DITAWUATIXS
authc epyaotag. H emxowmvia pog Aoy dplotn xon fitay mévta Slod€otuog OoTE VoL AUVOUUE To
VEUOTOL TTOU OVEXUTITAY X0 VOL TIPOY WEGHE GTNY TERATWON TNS epyaciag autrc. Na evyaplothon
eniong tov x. Ndpyo Xatlnuwvotavty ywtl Aoy meodupog xan diadéoiuog va cuuBdiel ye
v Bordetd Tou xan TNV EUTELRlO GTO XOPPATL TWV UETPHOEWY TNG XATAVIAWCTG EVEQYELXS.

Téhog Va Hdeha vor eLyaEIGTAGW TNV OXOYEVELS LOL, TNV UNTERA LOU XAl TIC AOERPES OV,
Yiot THY LTOGTARIEY TOUC, TNV aYdmy) TOUG XoL TNV UTOUOVY| Toug OAa auTd ta yeodvia. Hrav éva
ONUAVTIXG XOPUATL TNG TEOCTAUELSC HOU Xa Y welg auTéC TOAAG Tedryportar Yo HTory SUOXOAA.
Na euyopiotion enlong v Ahe€dvdpa oAAd xan 6Aoug Toug plhoug e Toug onoloug Nedaue
oe emaph Aoyw tou Edvixod Metodfiou Hohuteyvelou 1 yevixdtepa twv omoudmy. ‘Exovoy
TNV SLadpoun| U€YeL TNV AmOXTNOT) TOU TTUYIOU TO EUYBEIGTYN Xl TOAES QORES HTAY 1) APOpUN

vor Oudary 0 xon var udrdey TOANSG mEdypaToL.
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ITepiAndn oimAwuatixrg

‘Onee gatveton and tov titho, To Vépa Tng Bimhwpatinhic authg epyaociog etvar 1 uehétn, oyedia-
o1 1o 0ELOAOYNOT) EVOC UOVTEAOU GUYYPOVIOUOU TEASTN-EEUTNEETNTY), YLO THUTOYPOVES OOUES
0E0OUEVLY, VAOTOIWVTAS To Yia Tov utoloyioth) Single-chip Cloud Computer tng etouplog
Intel.

H emloy? tou edixol autol utohoyloty €yive yiotl elvar éva obotnua mou dlodétel 48
ene€epyaoTnolg Tuprveg. Lyedidotnxe and tnv Intel yio epeuvntixoic oxonolc xou datie-
Ta Yo EEEUVAL T8V OE BLAPOPOUE TOUELS TV TOAUTUENVWY GUCTNUATOY, 0TS AEITOVEYIXS
CUC TAUATOL Y10l TOAUTIOENVA GUC TAUATOL, TEOTOL ETUXOWOVING TV TURYVWY, BENTIOTEC TEOXTI-
%E€C Yo AMOBOTIXY ETUXOWVWVIA, YEHOT UVAUNG %ot EE0IXOVOUNOT) EVERYELNG OE TOAUTOPTVOUC
UTOAOYLOTEC YEVIXOU oxomol. O AdYog Tou ONuLoueYHUNXE TO EVOLUPEROV Yol T1 UEAETY TOU
povtélou meAdTn-eEumneeTnTy elvan 1 UToEEn ULog IUTEROTNTAS GTO GO TN UVNUWY TOU
Single-chip Cloud Computer. Apydtepa Yo oYOMAGOUYE EXTEVEGTERA TNV 0PYAVKOOT) Xol
NV tepopylon TwY UYNUOY, oAkd autd Tou TEoZevel eVOLUQEPOY xou elval apopUT| Yiol EpEUVA
xa UEAETY elvon 1) Umtapdn pog TOAD Yeriyoeng, uixenc Yev oTo uéyedog, uviung eviog xdie
Ynopidac Tou cuoTAUATOC.

H Siadtepn auth uviun Aoy 1 agopun yiot var SoXUACOUUE TS UTOREL EVaL HOVTENO GUY-
yeoviouol mou Yo Poactleton oTNV avTaAAoyY| UNVUUATODY %ot OEGOUEVLY Uxeo) UEYEVOUC
VO ATOOWOEL, OE GUYXELOT UE GANX LOVTEAN.  LUYEXQWEVA DOXLUAOCOUE XATOL HOVTENN UE
HAEWBOUATO X0 ToL CLYXEVOPE UE aUTO Tou TeAdTrn-eEumneetnth. To xlplo avtixeluevo tng di-
TAWPATIXNG QUTAS EpYaoiog etvar 1 0OYXELON TWV UOVTEAWY QUTWY GE SLAPOEOUS TOUEIC, OTKC
YEOoVXT ETLBOCT), XATAVAIAWOT| EVERYELIC, BIXAUMOGUVY GTNY OAOXAHEWOT) UTNUATEY XU XATOLES
dAheg xotnyopieg ouyxploswy mou Vo BoVUE TP ATw.

[N Tig Stepyaoieg xou TNV 0AOXA EwoT TNG SITAWPATIXTC aUTH Epyaciog yenotuortolinxay
xupleg epyadeior eledicpou hoylouixol émou autd Atay duvatod. Emiong yio n cuyypapn
xenowonouinxe 1 turoypapixt] couita INTEX.

Y10 xelyevo mou axohloudel Yo dolue pe oelpd xdmolo YewpenTixd otolyelor yior dpyég
CUYYPOVIOUOU, TOCO TUPAOOCIAXES OGO XAl XATOLEG TEOYWENUEVES APYES TOU EUPUVIC TNV
TEOC(ATI. 1TT) GLUVEYELN Vol TOPOUGIACOVUE UE TEPIGOOTERES AETTOUERELEG TO GUG TN Single-
chip Cloud Computer xoo¢ xon Tic VAOTOOELS TTOL YENCWOTOLACOUE Yiol TIC UETPNOELS LS.
‘Eneita v Bdon xou ) Soun Twv oevoplwy Tou YEeNCHOTOCOUE Yia Vo 0ELOAOYHOOUUE TIC
OLdpopeS BopES BEBOPEVLY xadde xan Yo oY OMAcoUUE Tolo UEYEDT xou LOLOTNTES UETEYOUE.

Téhog Yo oyohdooupe ta anoteréouata mou e€dyoue xat Yo TEOTEVOUUE XAToLEG UEANOVTIXES
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14 Kegdlawo 1. Iepidngm SimAwuatixnic

TREOEXTACELS TN DOLAELAS UAC Yo qUTH TN OLmAwuaTixy epyacia.

1.1 Meédodol cuyyeoviocuov

Mikdvtag yia Tic 0pyEC oLYYEOVIOUOD TMVY TAUTOYEOVMY BOUMY OEBOUEVMY, QUTEC EVOL AP
(TNTEC 0T TOALTVENVAL GUGC THUOTA Yo OTAY ULASUE YLoL TAUTOYPOVES 1) TUEAAANAES Dlepyaoies.
Autd mpoxinTel and To YeEYOVOS OTL ElTE UTdpYEL BUVATOTNTY TOMATAGY TEOCBACEWY Ta-
TOYPOVAL OTY UVAUT), E(TE TO VAXO OEV ETUTEEMEL XTI TETOLO XOU TOL UTAUATO TEOCPBUCNS 01N
UVAUT CELPLOTIOOVUVTOL, TEETEL VO UTIEEYEL EVAC UMY OVIGUOS TOU VoL EYYUATOL TNV AXEEOLOTTA
TWV UTNPATOY, ONAXDT| TNV oxspatdTNTa TwV dedouévey. Tlpénel enlong va elpacte olyoupot
OTL N xatdoTaon g UvAung Yo elvon cuvenrg émeita and xdmolo dipyaoio ue tor dedouéva
™™g, OTL T dedopéva mou Yo draPBdlovtan 1 Vo ypdpovton Vo efvan Tor emuunTtd xou Téhog OTL
0ev Vot TpoXOTTOUV ATEOGOLOPLOTES XUTAUC TAGELS.

‘Onwg €Youue Bl Ao TNV 0EYLTEXTOVIXT TV UTOAOYLOTOV 1| antd ToV TpoOT0 Acttoupyiag TKV
UETOYAOTTIOTWY, TOAES EVTIOAES Umopel vor avadlotaydoly, umopet yio e€oxovouncn yedvou
xan Bektiwon tng enldoong wa TedoPaon ot VAU va uny Yiver axpBog otay {ntelton oAAd
apyoTEpa 6Tay To choTnua xplvel OTL elvan 1 xatoAANAOTeERN oTiyur|. Enlong étav umdpyouv
TAUTOY POV ALTAHUOTA TRETEL VO TEOXUTTEL PE Caprivela Two aftnua Yo mporypotomoinlel ToTe xou
TEOYAVEE VoL UMV EYOVUE AAANAOXUAVPELS UTNUATEDY X0 EVIOAMY TOU UTOROUY VO 081y IC0UY
O€ ACLVETELN OEQOUEVWY 1) AVIUCUEVES OVOLY VITELS KO EYYQPOPES CTOLYEIWY.

Moty amoguyry GAMY TOV TOEATEVE XVOUVKOY X0l TNV TEOCTACIo TV OE00UEVWLY, TNG
XATACTUACNC TNG UVAUNS XU TNG AELTOURYIOC TOV EPUOUOYMY XU TWV TEOYRUUUATOY g, E-
tvou amopadtnTol oL unyaviouol ouyypoviouol. O cuyypoviopog uropel va yivetal elte and To
UAO eite e Aoyopxd. Trdpyouv Be ahyopriuol xan Unyovicgol cuYYEOVIoUo) ToU ToEOTL
vAoToloUVToL UE AoYLoUXO YpeldlovTal UTOaTARIEN oo EWBXO 1) GUYXEXPUEVO UAXG, auTol oL
unyaviopol ovoudlovtar LBELOLx. Me Alya Adylo 0 GUYYEOVIOUOS Elval €Vag UNYAVICUOS TOU
ovohopBaver vou eYYLel| TNV GO TH Xol GUVETT AELTOURY(ol TEOYPAUUUAT®WY TOU EXTEAOUVTOL
TEAAANA X GAANAETLOEOLY Ye TNV uvAurn. Me didgpopoug TpdTous, UAXO0V, AoYlouixol 1
uPetdwole, avohauBdvel va dldétel Ty TeooPaon ot uVAUN o xdde TuEHva 1 VAUX TEO-
YOUUHUATOS PE TEOTO AGPOAT Yol Tol DEDOUEVAL.

Kdmoiec and tic mopadooiaxés pedodouc ouyyeoviodol eivon Tol XAEBOUATI, Ol ATOULXES
Aertovpyieg, puviun ouvakhayody (transactional memory) xou ot mopoxoloUINTES xou Ol Ye-
ToBAnTéc ouvinxoy (monitors and conditional variables). Zexwvdvtog omd tor xAeWBOUOTA,
elvon {o6¢ 0 o amAOC OF WA UNYAVIOUOC X TOAAES PORES UEXETY amhO¢ oTNY LAoToinoT. H
18€al TOU POVTEAOL aUTOU YLoL GLYYEOVIOUO elvon 1) UTaEE T EVOC 1) TEPLOCOTERWY XAELBOUATWY
Ta ool Yo TPocTATEVOUY TUAUNTA TNG douNg 1) ohoxAnen TN doun. o vor ahAnemidpdoet
€vog muphvag 1 Vo Ue TNy dour| Yo TeENEL vor amoxTHOEL ToV EAeY Y0 Tou xAsewwuatos. To
xheldopo umopet vor ebvon pior dour) Aoylouxo 1 omolo va utooTneileton and atouixés TEdelg
070 UAXO 1) dAAeC Aettovpyiec UAol. Kdde gopd mou xdmotlog €Al va amoxthioet tpdcoo
oTN UVAUY, OlEXdIXel To XAEIBWHN Xou UTHEYEL CUVAYWVIOUOS AVAUESH OTOUG TUPHVES 1 To

vipata.  ‘Omolog anoxtroel to xheldwyo umopel var mpoywehoel xal va €yel Tpocfacr o1



1.1 Médodor ouyypoviouot 15

OOUn EVE OL LTOAOLTOL TTOL OEV TO EAaBory xdvouv o GAAT epyaocia, avdioyo ye to TL Véle
0 TEOYPEOUUATIOTAC 1) UE To Tolog ebvar o oxondg Tou mpoyeduuoatoc. Iapadelyyatog yden,
oL TUPHVES oL BeV Vo XATAPEEOLY VoL ABOLY TO XAEDBWUA GTNY XATOYY| TOUC UTOPOUV Vo
emoTEEPOLY HAVOVTUC XATOoL GAAY EpYTia Xou VoL TO BLEXBIXACOUY 0RYOTERN, UTOPOLUY Vol
ouveyloouv va To {nTdve u€ypl Vo To AJBoUV 1) oxOUa XL VoL UTOUY OE XATAC TACT| AVOUOVIG
Yiot XMooV Ypovo xou v To dlexdxrcouy apyodtepa. Kde plo otpotnyu €xer detind xon
OEVNTIXG OTNUEl OTOTE ETMAEYETOL AVIAOYA TNV EQUPUOYT.

[Théov umdpyouv TOAEG WO€eC XL TEOTOL LAOTIOINGTC HAEWDWUATWY TOU OEV UTOPOUY VoL
eCovtAndolv oe autd To xeluevo. ‘Otay meénel var BIohEEOUUE AVAPET OTIC BLAPORES UAOTOL-
HOELC XAEWBWHUATOVY, YEEWCETAUL VO XAVOUPE Wial ETLAOYY xou Vo LUYICOUUE TopdyoVTES OTLC,
enidoon Tou UNYAVIOUOD X0l TNG CTEUTNYIXNAS TOU XAEWOWUATOS, EUXOMA OTN YENOT XL EU-
xohiot oty LAomoinom. Av xou mapoxdte Yo AHCOUUE TEQICGOTERO YOl TIC UAOTIOLAGELS TTOU
XENOWOTOW UMY Yior TO TELPAUATE UAS, OG AVUPEPOUUE EOW OTL YENOUIOTOLCUUE ATAES TPO-
oeyyloelg pe coarse grain xAewbwuato xou busy waiting.

H enduevn teyvix) cuyypoviouol Tou yenolponolelton eupéws xou a&ilel TV avopopd uag
elvon oL atopxég Aettoupyieg. H atouixdtntor eyyudton Ty anogovemor amd Olepyasiee mou
TEEYOUV TAUTOYEOVA X0 1) ATOMXT Y1) EYYUSATAUL OTL OL IAANAETUORAOELS UE TNV UVAUY Qaivo-
VTOL GOV VoL EYIVOLY GUEGO XAl GAY VOL UNV UTARYE YROVIXT] ETUXEALYN avauesa GE BLopOpETIXd
OUTHOLTAL

O atopxée Aertoupyleg umopoly va LAomoinoly pe 6V TEOTOUS, PHEGW LALXOU 1) AoYi-
ouxoV. H viomoinon yéow uhixol mepthouPdver eite mpwtdxorho cuVETELS PETAED XELUPEDY
UVNUGY 1) péow xotaywentoyv test&set. Ko otic Vo autéc mepimtmoeic npénel to dlodéat-
MO UAXO var €yl HOT) Hlol amO QUTES TIC OOUES, BNAadT var €xel oyedlacTel MOTE Vo TapEyEL
OTOUG YPHOTES XOU TROYEAUUUATICTEC auTY) TN duvatoTnTa. H dAAN nepintwon eivar vhomoinon
ATOUXOY AELTOURYLOV PEGE SOV hoyilouxoL. ['o auTég TIC TEQIMTHOOELS YENOUOTOLOUUE €-
{te €éheyyo oc YetofSANTéC elte eAéyyo otny yeovixn oppoyida plog Aettovpylog, dnhadr tnv
YEOVIXT) GTLYUY| TTOL XATola AELToupYiol ONUEIWUNXE OC EXTEAEOUEVT. AV UETH TOV EAEYYO TWV
XeoVev Teoxiel exdAudn 1} o0y xEoLsT AELTOLEYLWY oL UTtopel var 081y oel o€ havioouéva
1 of3éPBoua Sedouéval, oL eVIORES UTES oxLPAOVOVTAL Xou TEETEL Vo emavakn@doly ¥ EeyviolvTa,
OVEAOYOL UE TIC TROYPOUHATIO TIXES ETULAOYES TIOU €YOUUE XAVEL.

YTV CUVEYEW €YOUUE TNV UVIUY CUVOAAXY®Y, UL O TEOYWENUEVN UEVOB0 GUYYEOVI-
ouol. H uvAun cuvoddaydv elvor EUTVEUCUEVT amd TOUG UNYAVIGUOUS CUVORAAYOY Bdcewy
dedouévwy (database transactions mechanisms). Etvou pla pédodog ouyypoviopol udmidte-
eou ETTEBOL xau apotpel BApog amd TOV TEOYEAUUUTIOTY 0pol AUTOC UTAL CNUELDVEL OE oL
omnueior VEAEL GLYYEOVIGUO Xt TO GG TN avahapfBdver xou eyyudton 6Tt exel Tou {nThdnxe Yo
uTdipEet aTouXOTNTA Xou GLUVETEL BEBOPEVKLY. Me Tov TpdT0 autd YewdvovTon ol TiavotnTeg
Aord v, U1 AmOBOTIXWDY UAOTIOLAGEWY X0l YPHCEWY TOU GUYYPOVIGUOU 0o O TROYRUUUATIO THS
oev emPBaplveTtal Ye auTd, €youv acyohniel T and auTdY dAAOL (OOTE VO UNOTIOLRCOUY ol
VoL TUEEYOUV CUYYPOVIOUO UE UVAUT CUVORAAY Y, ETE PECw LAV €lte P€ow AoYLoUIX0U.

H tehevtata and tic amiéc yedddouc ouyypoviopod mou Yo oYOAMACOUUE Elvon oL Topo-

x0hoLUNTES xou ot UETABANTEC cuvinxdy. Ot mapaxohouintég eivon douéc mou cuvdudlouv



16 Kegdlawo 1. Iepidngm SimAwuatixnic

0E0OUEVY, UEDOBOUC Kol GUYYEOVIOUO OE VAL TUXETO, OIS OL XAJCE OTIC YAWOOES TPO-
Yeoupatiopol cuvdudlouy dedouéva xar pedodouc. H Umoapln mopoxorouintwy meénet va
OLYOOEVETAL A6 UTOCTHRIET UAIXOU, ElTE UECWL TOPOYAC ATOUIXMY AELTOURYLWY ElTE HECW TNG
BuVTOTNTOC VoL amEVERYOTOtoUVTOL Ot dlaxorég (interruprts). H 18éo yio toug mopaxoloudntée
TpoéxuE OOTE Vol avTWETWTIoEL TEOBA T TOU EUPAVILay Tol XAELDOUITL.

Telewhvovtog TNy avopopd Yac oTic LeVOBoUC xaL TIC dpyEC TOU GUYYEOVIOHOU Vo ovo-
(PEPOLUE BUO TPOYWENUEVES TEYVIXEC OUYYEOVIOUOU, OL OTOIEC BEV YENOHIOTOLOUVTAL EVPEWS
oTNV TEAEN oAAS UEAETOUVTOL EpELVNTIXG Xou Ttapouatdlouy evdiagépov. Ot pédodol autol eivou
1) EVOWUATOUEVT] UV cuvalhory v xou o C-xhewdopata. H evoouotwuévn pviun cuvaiio-
YOV oav WEa Tpoile amd TNV omhr UWVAUN CUVOARNXY®OY TOU aVAQEQOUE TO Tavw. Apyixd
TpooptlovTay Yl Yprion OE EVOWUATWUEVA GUC TAUATO AL TAEOV SOXUALETAL 1) XPHOT TNG Xl
o€ UTOAOYLOTES YEVIXOU oxomol. H Sapopd tng evowuatwuévng uviung etvan 0Tt ue Tpoypa-
HOTIOTIXEG ETUAOYES X0 PE TEWTOXOMAA TOU YENoUloTol0vIaL, TEooTadel Vo XoTavahGoEL
AYOTERN EVERYELX UELDVOVTAS TO TANDOC TwV UTOVETIXMOY EXTEAECEWY WOTE VO UNV YEveEToL
evépyela anod Tic amotuynuéveg utodéoelc. Enione ye Bdorn épeuveg umopel oxduo var tethyeL
xan Bertiwon otny anddoon. To C-xheidwpo topa, eivon yio pédodog cuyypoviopol tou Bo-
oiletar 070 UAXS xou ameLHOVETaL OE EVOWUATWUEVH CUC TAUNTA. SUVOUALEL Tol XAELOOUTA UE
TNV UVAUYN CUVOARY Y (OCTE VO TEOGPEREL EVAY UNYOVIOUO GUYYROVIOHOU Tou Ja TeocpEpeL
xaAUTeET enidoon. Me tnv utoo el eMTAE0V UAXOU, Ol TUPHVES OAANAETIOPOVY UE TNV
UVAUN Ue Bdom TIC apy€g TG UVAUNG CUVOAAXY®Y, aAAd av SlamoTwiel xdmota oUyxpoucT)
oTo 0edoUéva TOTE 0 TPOTOC CLYYEOVIOHOU OANALEL XaL Ol TUPHVES BLEXOIXOUV XAELBWHUTA
vt Vo €youv tpdcPocn oto dedopéva autd. Me Tov TpoTo awtd npoctatolue va TETOYOUUE
UXQEOTERT) XATAVIAWOT| EVEQYELIC X0 VO GUVOUACOUUE ToL TAEOVEXTHUTA TV XAEWDWUATWY UE

QUTA TNG UVAUNG CUVOARXYOV.

1.2 SCC xow vAomoloELg

Ac Bolpe tdpa TV dopn Tou urtohoyioTixol cuoTidatog SCC e TeplocdTepeg AenTOPERELES.
‘Onwg €yovue avapépet vwpltepa To SCC anoteieiton and 48 muprvec. O muprveg autol etvor
opyovwuévol ava (euydplo oe neldeg, dnAadh cuvokixd €youue 24 Pneidec e dVo muprveg
otnyv xde pio. Ou Pneidec autéc elvon drataryuéveg o Eva TAéyua 6 X 4 xan xdde Pneido Eyel
évay BloxouloTy (router) evioc tne, o omolog avohopBdver GAn TNy emxovmvio pe Soués extdg
e Ynepidog, dnhady) e Tig uTohoiteg YN@IBES, PE TNV XEVTEXH UVAUT 1) UE TOV UTOAOYLOTH
Tou Slayetplletan 6ho 1o cbotnua Tou SCC.

INo v Aettovpyrioet to cbotnuo SCC mpénet va elvor GUVBEGEUEVO GE €Vay UTOAOYIG T
yevixol oxonov, 64-bit o omolog unopel va tpéyet Aettovpyixé GNU\Linux 4 Windows xou
uéow autol yiveta 1 Sroyeipion Tou SCC. O tuprveg pumopolv eniong va Teé€ouV Lol Tpocap-
woouévn Savour) GNU\Linux ohhd ot Sev ebvon amapoitnto xou e&aptdtar omd Tig emAOYES
XL TOV OTOY0 TOU TEOYRUUUATIOTH.  Anladr ot muprveg umopolv va yenoiponoindoly xou
Y WplC £TOWO AELTOLEYIXO, oV O TEOYEUUUATIOTAC VEAEL v €xel Tpdoaor ot Yaunhoé eninedo

TEOYPOUUATIONOU TOV TURTHVOV.
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H apyitextovin| twv encgepyaotov etvar TA P54C xou eivon xataoxevacuévol o teyvo-
hoyia 45nm high K metal gate CMOS xo oe 6o to chip undpyouv 1,3 Sioexatouudpta
tpavliotop. To chip eniong diodéter téooepic eheyxtéc uvAune (memory controllers) ot o-
ToloL YENOWOTOLOUVTOL U6 TOUS TURPNVES YLAL VOl ETLXOVWVACOLY UE TNV XEVTEW| uvrun. Tov
molo eheyxTh) Yo ypnotwonooel xdlde muprvac e€aptdton and T V€on Tou TUEYVAL XaL TO TUX-
por Tng uviung mou Véel va ntpoomerdoet. H Siadpour| dnhadi mou Yo axohovdricet To altnua
%dmolou TuervaL e€aETdTOL oo To GUCTNUA Xou OEV TO xodopllel dUECH O TEOYEUUUATIO THC.
Enlong amd 1o clotnua emAéyeton n dladpour| mou Yo oxohoLUHCEL xdmolo ofTnuo 1 Uivupa
oo xdmolov muprval Teog xdmotov dhho. O mpoypauuaTioTig 8ev emAéyel xau dev xadopilel ue
Totov Teomo Yo xwvniel To uAvuua Yéoo otov dlavio tou chip yia va @Udoel 6ToV TEOOELOUO
TOU.

To SCC enlong €xet TNV LAXT UTOBOUT X0l LIS TEOCPEREL TEOYPAUUUATIOTIXG Epyakeia €ToL
OOTE VoL UTOROVUE Var EAEYEOUUE Xo Vo UETOBEANOUUE TNV CLUYVOTNTO UE TNV OTtolar SOLAEVOUV
OL TUPTVES OXOUA Xl TNV TdoT Teoodoctag Toug. o v cuyvoTnTa €youpe 24 dloupéteg,
OnAad”| xdde mepido umopel vor €xel TNV BixY) TNG CUYVOTNTA, EVE Yiot TNV Tdom €youpe 7 Tedio
TGV TOU UTOPOVUE Vo EMAEEOUPE X0 OL TUPHVES UTopoly Vo puiuloToly oE OuddeS TwV 4.
Omnodte €youpe 6 ohvola TLENVWY TOU UTOEOVY Vol €YOLV BLUPORETLXY| TAOT).

Ac¢ mepdooupe Twpa vor 50UUE Alyo TNV 0pYdvemon Tne uviung oto cbotnue pag. I'evixd n
UVAUT TOU 0L TAUATOC YWEILETOL GE XEUPY| UVAUN EVTOS TV PNpldwy, xotoywenTéc avTahha-
g unvupdtwy (message passing buffers) o awtol evidg wwv Pnpidomv xou oty xOpto pviun
1 omolo Bploxetan extdg Tou chip.

Lyeuxd pe Ty xpu@n UVAUTN, UTEEYEL xpupn Uviun 0o emimédwy. Kdde muprvog €yel
ouvolixd 32 KB xpuen puviun npdtou emnédou, L1, and auty, ta 16 KB elvon xpupr| uviun
eVIoA®V xan Tar dhha 16 KB xpugy| uvAun dedopévwy. Ernione xdde nuprvag €yec tn O
28 TOU LYY PVAN dsuTépou emmédou, L2, 1 onola elvon evvomoinuévn xon €xel cUVORXT
ywenuxotnta 256 KB.

Ye xdde meida emlong undpyouv 16 KB uvAung xomoyoment®dy avTodlhoryhig UnvupsTey.
Avutd onuaiver 6tL cuvolixd oto chip €youue 382 KB tétoloc pviung, agol undpyouv 24
dnopideg. H pviun auth etvon tomou SRAM ondrte elvon apxetd yeryoen. Kdde muprivag éxel
Ouxadopa var yeduer xon vo Sla3doeL G OTOLOVOHTOTE XaTayweNTh, aveldoTnta ot ol (meida
Beloxeton. Emouéveg etvan pior popalduevr), xataveunuévn uviun evtog tou chip.

H xOptoc uviun extdc tou chip pnopet vo xupovdet uetald 16 GB xou 64 GB. Kdde eheyntric
pviung, amd toug 4 mou umdpyouy, utopel vo Stevduvotlodotrioet amd 4 éwg 16 GB xou xdie
mupnvag propel va Bel éwg 4 GB wOptag puviAune. H xdpio auty| pviun eivon tonou DRAM
X0 UToEEl var AelToupYNoeL TO60 We WL TN 600 xau we polpalouevn. Ta dedopéva and tnv
UV QUTY) AVTLYRAPOVTAL GTIC XPUPES UVAUES TWV BLO ETUTEDMY XATL OUKE Tou Bev cupPBaivel
uE To OedopEva TOL TEOEEYOVTAL AT XATOUYWENTES AvToAAaY i Unvupdtoy. To dedouyéva mou
TEOEEYOVTOL OO AUTOUS TOUC XATUYWENTES VUL XUTIAANACL CTUELWUEVO XU OEV TAURAUUEVOUY
oY XpUPT iU

‘Eval TEAeUTALO Yopax TNELOTIXO TWV UVNU®Y Tou Yo @avel onuavtixd otny enedRynor twv

OMOTEAECUATWY 0EYOTERX EVAL TO OTL BEV UTGRYEL TEWTOXOMAO GUVAPELIS HETOED TOV XEUPEDY
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UVNUOY TV Blapopey TUphivwy. Autd €Yel k¢ CUVETELN, OTAY YENOWOTOLOVUE TNV XVELo Wviun
¢ LOLRAlOUEVT), VO EIUAOTE ovoryxaoUEVY xdde @opd Tou UETUBIANOVUE XATOLO UOLpalOUEVO
0EBOUEVO, YLl VoL EIVOL OUTO EUPAVES OE OAOUC TOUG TUPNVEC Vol TTRETEL VoL YRAPTEL auécmS
oty xOptar uviun. Axoua, av 9éhouue va Sofdooupe éva uotpalduevo dedouévo, To onolo
70 €YOUUE OLPBACEL X VORITERA, DEV TEETEL VO XOLTAUE GTNY XEUGT UVIUT AAAS TEETEL VoL TO
(PERPVOUUE €X VEOU amd TNV xVpLol UVAUT, YLoTl UTOREl xdmolog dAAog Tuprvag oTo YeToky, va
70 €yel yetafdhel. TN va Aocouue 6ho autd To TEOPANUA, TO TEOYEUUUATIOTIXG LOVTEAOD TOU
SCC pog mapéyet wa evioly) xadaplopol e xpuenc Uviung and to potpalduevo dedouéval.
Auto onuoaiver 6T ey SoBdoouue éva dedopévo TNe potpalduevng Uviung 1 agol yeddaue oe
oUTO, TEETEL VAL EXTEAECOUUE TNV EVTONY EXXEVWOTNG TNG XEUPHS UVAUNG omd Tar hotpal OUeva
OedouEvaL.

Telewdvovtog TNV avopopd XL TNy ToEoLCiacT) TOU CUCTAULATOS, TEETEL Vo avapepolue
OTO TEOYEAUUMATIOTIXG LOVTEAX TTou elvan Bladéotua Xl GE AUTO TOU YENOLLOTOLACOUE YLl TNV
OVETTUET TWVY EQUPUOYWY TIOL YEELAOTNXAY YLl TIC EQYACIES TNG OLTAWUATIXNG AUTHC.

Apywd va modue 6Tl av xdmolog dev €xel mpdoaot oe xdmowo @uoixd unydvnua SCC,
TOTE LUTAPYEL XA EVOC TPOCOUOWTAS Tou TE3dhhovToc. Autdg Aettoupyel o€ UTOAOYLIOTES UE
Aertoupyixd ouothgoto GNU\Linux 4 Windows xou Baciletoar otny yAwooa OpenMp yio va
ulomolioel Tic Topahhniiec. (261600, 6G0L YENOWOTOOLY TOV TROCOUOLWTT UTOV Vol TEETEL
VoL lvon EVUEEOL OTL BEV Elvol AoPUAES Var EEAYOVTOL CUUTERIOUOTA WS TEOS UETENOELS Yot
oL yebdvol xaL dAAo oToyelo, OTWS 1 xaTovAAwoT efvar TOAD ooy vor Slapépouy and To
TEAYUUTIXG GOOTNHA.

Y10 mpaypaTind OO TNUO TR, OTWS EIMOUE Xl TRV UTHPYEL 1) ETAOYY| VAl (PORTWCOU-
e xdmoua edixr droavoury GNU\Linux yia toug muphves 1 var Toug yenoylomoticoupe ywpelc
Aertoupyixd obotnua, otny Baremetal exboyn, onwe Aéyeton. Ilpogavig av emhé€ouye vo
(POPTWOOVUE AELTOLEYIXO GUCTNUN OTOUG TUEHVES Yol EYOUNE TNV BUVATOTNTA VA YEYCLULOTOL-
AoOLUE xat Vo ETwPeANYolUE omd TOAAG €Towa epyoleior hoylouixol mou elvar cupfBatd ue
70 Aertoupywod. Ou egapuoyéc mou Ypdpouue Yoo Toug Tupriveg Tou SCC umopolv va etvor
eite oe yAoooo C elte oe yhwooo Fortran, yiatl yio autée tic 800 yA®ooeg mopéyovTon
HETHYAWOTTIOTEC amod Tnv Intel.

[o v tepantépe Bordeiar xou oA TS TEOYPoUUATIo TS XowotnToag Tou SCC, mo-
PEYETAL I EMTAEOV TTPOYPOUUATIO TIXY) BIETOUPT, UE TNV Uop®T] Wiag BBV NG Tou eumhou-
tiler ™ YAwooa C. H mpoypaupatio i auth| dienogh Aéyeton RCCE xan mopéyel €vay aprduod
€TOWOY GUVIPTHOEWY ToL Bonidve oNuavTIXd Xt ATAOTOL0Y TO TEOYEUUUATIO TIXO €pvo. [
TNV AVAmTUEY TWV EQAPUOYOV YLa TIC UETEHOELS AUTNS TNS OITAWUATIXNAS, YPNOULOTONCUUE TNV
BBaodxn RCCE xou Tic cuVapTACELS TOU TROCYEREL YLl ETUXOVGVIX TWV TURTIVKY, YLl UAO-
To{NoT ONUNLWY TOL EVOL YEYOWES TEOYEAUUUATIO TIXES DOUES VLol GUYYPOVIOHO %O ETUIXOWVO VI
ARG xou dAAES cuvapTHoE Tou Borinoay onuavTIXd.

Ac Solye thHpa UE TEQLOCOTERES AETMTOUEQELES TIC VAOTOLAGELS TIOU Y ENOLLOTIOLCOUE Yot
Ta SLdpopar povtEha xde doung dedouévmy tou altohoyroope. T'a v otolBo uhonooaue
Telor povtéha, évo meRdTn-eEunneeTnTY, évol HoVTéAO TEAATNEEUTNEETNTH e eEdhewpr), Yo

eZNYNOOLUE TOEOXATE Tt ONUOEVEL AUTO, X0t Vel UOVTENO UE €val XAelBwua Yo OAn Tn Sour).
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INo v FIFO oupd vhonowjooue eniong telo wovtéha, €va teAdtn-eEunneetnty, éva yoviého
HE éva xAElBwua xat €vo HovTELO e 800 xAewwuata. Télog Yo Tov owped ulonoloaue dVO
HOVTERQ, €val TENATY) ECUTNEETNTH %o €VOL UE EVOL XAEDWUAL.

ZeXvOVTAS 0¢ WAHCOUUE TEOTA Yo TNV 00U Twv Lhomolfoewy tne otolBac. ‘Oneg
OVAPEQUUE XOU TIO TIEVE, YLl TNV AVATTUET TWY EQUOUOYMY UOC YENOWOTONCOUE TNV BlETap
RCCE xa npoypopyaticaye o yhwooo C. Xtnv mpdtn LAOTONGCT, 0TO YOVTENO TEALTN-
eumneetnTy, amd Toug N mupHveg Tou decpeoupe, ot N — 1 elvon TEAGTES xou EVag TUEHVAC
elvon 0 eunnpetntic. O pdhog tou eEunnee Nty elvon var AoBdvel ouTHUaTo amd TOUG TEAATES
xou vor Toe vhorotel. H Sour) dedouévwy Beloxeton otny BlwTixy) wviun tou eEUTNEETNTH XoL
Hovo autodg €yel TpooPaon oe auTHY. Ol TeAdTEC GTEAVOUY Tol ATHUTA TOUC GTOV ECUTNEETNTH
xa TEPWEVOLY UYL var AotV Yo Vo Teoyweoouv oto enduevo. H avtaiioyy| auth
yiveTon PECW TNG UVAUNG TWV XATOYWENTOY AVTUAAXYAC UNYUUATWY. SUYXEXQWEVA Ol douT
0eDOUEVLY BEyeToL axepatoug Twv 32 bit we otowyela. Emouéveg ol meddteg ypdgpouv otov
TOTUXO TOUC XATAYWENTYH Twv oaptdud mou YEhouy vo tpocdécouy ot dout, EBoToloLY PEcw
ONUOL®Y TOV EEUTNEETNTY Yol TO AUTNUA TOUS, O ECUTNEETNTAC OTay AnUel va LAOTOLACEL
auT6 To aftnua SlBdlel amd TOV XATOYWENTY TOU TEALTY TOV 0XEPULO KoL TOV TROGUETEL OTNY
dour). ‘Eneita evuep®vel xatdhhnha Tov TEAATN OTL To aftnua €yel ohoxinpwiel. AvticTolya
otay xdmolog meAdTng {ntder va aganpedel xdmolo ctolyelo and T dour| MEPUUEVEL PEYpPL O
eUTNEETNTAC VoL YRAPEL TOV aXEQONO GTOV XATAYWENTY| TOU TEALTT), and OTOU O BEUTEPOC TOV
oLofalel xou cuveyiler Tnv Aettovpyia Tou.

H Sopn v mpoypouudtony etvor 1 €€NG, apytxd XAVOUUE TIC XATIAANAES BECUEVTELS UVAUNG
yioe TNV ot Yol TS oNUleS Tou Yo YENOHLOTIOLCOUUE YO Y10t TOUG XOTAUYWENTES AVTUAAXYHS
UNVUUATOV. 3TN CUVEYELXL ORYIXOTIOLOVUE TNV BOUT| Lo WOTE VoL UTEEYOUV XATotd SEG0UEVA
péoo and v opyn. ‘Enerta o tupriveg ywetlovta oe 800 uéen xar 1o xardéva extelel dapo-
EETO XOPUATL XWOa. O TehdTeg eloépyovTan oe Evay Bpoyo, o omolog Teéyel xooplouéveg
omo EUAC QOpES, avdAoYo UE TO Tooo authuota Béhouue va utoBdihouue. Aol extehécouv
Ohot ToL UTAHUATA TOLS, Byaivouy and to Bpodyo xou umopoly va TEQUATIGOUV.

Ané tny dAAn o e€unneeTnTAC eloépyeTon o€ Evay Bpdy 0 0 0Tolog ETAVUNUUBAVETOL GUVEY KOS
ehéyyovtag uovo ua ouviixn. H ocuvirinn aut| wavoroteitan 6tav 6hot oL TehdTeg €youv
ONOXANPOCEL TOL UTHUATE TOUS, TOTE 0 ECUTNRETNTAC CToUATdEL Vo enavahaufBdver tov Bedyo,
TEOYWEJEL OE EMOUEVO XOUMATL OTIOU TUTICVEL T AMOTEAECUATA, TOV YPOVO ONAadY| oL ETpESE
TO TPOY PP Xat UETA TeppaTiCEL.

Méoa otov Bedyo thea, Udeyouy 50V0 EUPLAEUUEVOL BpoyotL. 2XTovV TeMTOo 0 eEUTNEETNTAS
eAEYYEL YE TN oelpd 800 Tivaxeg mou mepiéyouv onuaieg. Ou onualeg elvon plot TpoYEUUUATIOTIXY
dopn mou pag topéyel N dietopry RCCE. O urnopotooue vo todue 6Tt woldlet pe pio yetoBAnTh
TUmou boolean ool umopel va mdpel uévo 600 Twég. H Sour) autrh ulomolelton e YVAUN
HATAY WENTOV AVTAAAXY NS UVAUNG, OTOTE UE TIG CLUVAPTACELS Tou entlong TapéyovTon and TNy
oenapry RCCE évag muprvag unogel va Swdoet omoldrnote onuaio dhhou muprva. ‘Etol
€Y OLUE YOl TIC EQPUPUOYES oG EVOY EUXOAO TEOTO GUYYPOVIOUOU oL oVTUAAXY NS UNVUUSTWY.
Yuyxexpéva xdlde teAdtng €xel 600 onuaies, po i xdde eldog aTHUOToC Tou unopel va

xaveL, eloaynyn 1 eaywyr ototyelou. Avdloya pe to Tt €Al va xdvel o tehdtng VéTel TNV
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HATIAANAT, onuaior xou TNy GUVEYELL 0 EEUTNEETNTAS EAEYYOVTUC CUVEYWS OAES TIC OMUIlEg
umopel vo BeL auTh TN VEom TNg onpaiog xot £Tol Vo evuepwUel Yio TO T Xot VoL TEOY WweToEL
otny e€unneétnot| Tou. Agol oe xdie emavdindn tou e€wtepeol Ppdyou eAEYEelL OheC TIC
ONUAlES, OAWY TWV TEAATWY XL Yot TOUS 0VO TOTOUG AUTNUATWY, TEOYWEJEL OTOV ENOUEVO
Beodyo, otov omolo eAéyyel Ti¢ onuulee Tepuationol. Me Tic onpadeg autég xde meEAdTNG
EVNUEPWVEL TOTE €YEL ONOXANEOCEL ToL outhpato Tou. 'Etol unopel xou o efunneetntnic vor E€pel
TOTE OEV UTAEYOUV GAAAL UTAUATO TEOG ECUTNEETNON XAl UTOPEL VoI CTUUATHOEL VoL EAEYYEL
Tic onuadeg artnudtey. O edunneetnthc hotmdy eréyyel xdie Qopd pe T oelpd TI¢ onuaieg
TEQUOTIOUOV WOTOL Vot Bpel xdmota tou dev eivon oe Véor. Autd onuaivel 6Tt ToukdyioTov évag
TEAGTNG €YEL UTAHUATO TOU TEQULEVOLY, dpa eTavaAoufdvel Tov eEwTepxd Bpdyo. Av duwe Oheg
oL onuaieg Teppatiopol etvan o Yéor, ToTe Umopel xou o eEUTNEETNTAS VoL TepUaTiOEL.

Me Ayo Adyla auth elvon 1 Acttoupylor Tou povtélou mehdtn eCunneetntr. Autéd mou
xavape oty vhomolnom pe TNy e€dhewdrn elvor OTL xpaTACOUE OAO TO TEONYOUUEVO TEOYEAUUUNL
Blo ol mpooBéoaue évay emmiéov éleyyo. Autd mou yivetow pe Ty egdhewdn ebvon 6T
otav o egumnpetntig yeretletan éva aftnuo tpoc¥rung otolyelou ot Sour|, EAEYYEL TO AUECWLG
EMOUEVO alTnuo oV elvan yior apadpeon otolyeiou amd Tn dopn. Av autd cuuPel toTE BEV
uTdpyel AOYog Vo TELpdEel TNy oTolfa, avTiypdgel anAd To oTtotyelo mou Yo mpocédete oTOV
HATOYWENTT TOU TEALTY) oL €xave afTnuo agalpeons ototyelou. 'Etol yAitdvouue Ttpoofdoeic
TNV xOELL UVIUY), UE TO XOOGTOS UK EVOC ETUTAEOV EAEYYOL. ApYoTepa oTa amoTEAEGUTA Vo
0oUUE WG ATEBWOE aUTA N TEYVIXY. Anlady| 1 oAloyr) o€ OY€oT) UE TO TEONYOUUEVO LOVTEND
elvol 0 eMTAEOY EAEYYOC TOU EMOUEVOL OUTHUATOC OTNV TERIMTMWON TEOGUHXNG GToLYElOL Xou 1|
XATEAANAY peToxivnon Tou cTolyelou auToU.

Ac¢ wihoouye topa yiot To HoVTELO UE TO xAeldwua. To povtého autd dragpépet onuovTind
UE TO TEONYOUUEVO, 1 Bour| dedopévwy Peloxeton o€ HolpalOUeVT UVAEN EXTOC Tou chip xou
€y 0LV TEOGSucT G AUTY OAOL OL TUPHVES. € AUTO TO UOVTEAO BEV UTARYEL XATOLOS OLOUECO-
hP3nTrg 1) xdmolog mou avohauPBdvel va yetplotel authuata. Kde muprivag diexdxel mpdofaon
otn dour) xou extehel v gpyaoio tou. H mpdofBacn otny dour| yiveton péow evog xevipl-
%00 xAewbouotoc. o vor UAOTOGOUUE auTod TO XAEBOUO YENOULOTONCOUE TOV XATOYWENTN
testédset mou uTdpPyEL 0TO LAXO *GDE TUPHVA. LUYUEXPULEVIL YPNOULOTIOLACUUE TEVTAL TOV XO0-
TaywenT Tou Tuehva Ue To voluepo #0. Ondte xdlde muprivag mou VEREL var ahANAETLORACEL
ue v otolBa, diexdixel To ¥AeWi Tou Llomoleiton and Tov xaToywWeNTY Tou avapépous. To
xAeldl ouTo etvon busy waiting xou Yo Solye apydTepa TS 0LTO EMNEEGLEL TNV ENidooT TWV
TEOY PUUUATOV.

YTIC e@apuoYég auTol TOL UOVTEAOU opyLxd Yivovton oL SEouEUoEC UVAUNG amd TOoug
TUPNVEC XL OTY) GUVEYELD OOYLXOTIOLE(TOL 1) UVAUY], OTWE XAVOUE %O OTO UOVTEAO TEALTT-
eCunneetntn. ‘Eneita o1 tuphveg umatvouv ot éva Bedyo tou onolou ol emavolfdels e€aptdvTo
an6d To Moo anthdoTa Y€Aouue Vo uhomolfoel xdie mupvas. Méoa oe autd Tov Bpdyo, o-
VOAOYQ UE TO OEVAPLO ToU YEAOUUE Vo EXTEAECOUV Ol TUPNVES, xdvouy eite TpooUnxeg eite
apoUEETEL; OTOLYElwY antd TNy cTolBo. Aol xdmol0¢ TUEHVIC TEAELWOEL UE TA AWTHUUTA TOU
61 PByaiver and 1o Bpdyo xou umhoxdpeet oe éva @edypa (barrier) @omou 6hol ol Tupriveg

va Tedetdoouy.  Tote, agod dnhadr OAoL ol TUEHVES QUACOUY GTO QEAYUN, EVIS TURHVIS
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oVOAUBAVEL VoU TUTWGEL ToL GEGOUEVOL TTOL UETEHOAUE Xa ETELTaL OAOL TEQUATICOUV.

‘Onwe €youde avagépel xaL T AV, PE TNV YeNoT Tng HolealOUeEvNnS UVAUNG TEETEL Vo
(pEOVTILOUUE Yiol TNV OWGTH EXOOY T TwV BEBOUEVLV OTIC XPUPES UVAUES TV Tupvwy. Ondte
og aUTd TO YoVTELO, Ue xdde mpooUiun 1N agaipeon otolyelov amd xdmolov TUEHVA avaryXa-
COUAOTE VAL XAVOUUE GUY VA EXXAIBEELOT) TNG XEUPHC UVANG amtd ToL LoLpalOUEVA BEBOUEVA OTE
va efvan 1) TeheuTador ExB0Y Y| TOUC EUPavic OE OGAOUS TOUG TUPYVEC.

[poywenhvtoac topa oTic vAorotfoec g FIFO oupde, to povtéha mehdtn-eunneetnth
X0l €VOS UAEBOUATOC BeV Blapépouy iaitepa and Tic vhomolfoelg tng otolfag. To yovtélo
TEAATNEEUTNEETNTH Oev oAAALel onuovTid oy e€oupéoel Xavele OTL oL CUVUPTAHOEIS YLl TIG
TEAEELS UE TNV Bour| BEdOUEVLV elvan Tpogave BlapopeTnég and autég yio Tnv otolBa. To
HOVTENO UE TO AEDLUA EYEL xou €D Eva XAEWBL TOU LAOTIOLE(TOL PE TOV XotaywenTY| testédset
Tou uprvar #0 xan xAeWBwVeL OAT TN dour|, xan To 500 AxpEa.

And v GAAN peptd To povTERo PE To U0 xAeWwuato eggavileton ooy uhomolnomn uovo
oTny dopn e ovpds. Ed® yenowonoooue V0 xhewdid, éva otov mupriva #0 xan €va oTov
muprva #1. To éva yenowonotelton yia TNy mpécact oto dxpo Tou tpoc¥éToval oTolyel
%0l TO GANO YLl TO dXPO TOU APotEOLYTOL GTOLYEld. XTo TEOYEUUUATH UG PUOLXA XAVOUUE
TOUC XATIAANAOUC EAEYYOUC (OGTE oV AOELAOEL XAmotor OTLYY) 1) BOUT| VoL UnV UTopel 0 BelXTNG
TOU £VOC dxpou va Eemepdoel Tov dAlo. Ot TuphHves Blexdxoly To avtioTolyo xAeldl avdhoya
ME TNV BOLAELS TTOU YEAOLY VoL XEVOUV.

Téhog yiow TV oy} Tou cwEoy, elyoue 600 UAOTOWACEL; Ol oToleg eniong Bev Blapépouy
Woktepa amd autég ag movue TN oTolfog. H Siapopd oTic UAOTIOAGELS TOU GKEOY, EXTOS antd
TIC OLUPOPETIXEC GUVIPTATELS Yl TNV aalpeon Yeylotou xou mpoorixn cTolyelou Gty dou,
elvor OTL xaTd TNV apywomoinom g doung, xow oo 500 YOVTEAA, ELGEYOUUE To Uod oTolyela
omo aUTA Tou YEAOUPE YLOL TNV 0EYLXOTIOMNOT), UETE XAAOUUE TNV GUVEETNOT TOU OTUtovpYEl
TOV OWEO XAl TOL UTOAOLTA ELGAYOVTOL TNEMVTAS TIS WOLOTNTES TOU 0wpeol. AuTd YlveTon Yio Vo

e€owovounoouye Ayo yedvo oTny apyixotoino.

1.3 AZwoAoYMoT Sopmy BEBOUEVHLY

Ye auto T0 onuelo o avagepoUUE UE TEQIOCOTERES AETTOUEQELEC OTNV BOUY| TWV GEVIRIWY
TOL eXTENOVUCAY TOL TROYEAUUATO Xt oTa UeYEDT Tar ontola YeTprioope xou olohoyHooue. Su-
VOAMXE YENOWOTOCOUE TECOERA OLOPOPETIXG GEVAPLOL Yiol Vo AELOAOYOOUUE TIC BOUES UoC.
Telo and autd etyav (0o apLiud agauipéocwy xaL TEOGUNUOY GTOLYEIWY OTN dour| EVE Yenol-
UOTIOLACOUE oL €VOL GEVAELO PE Tuyado apriud amd T eldn TV ATNUdTWY, 0 TUYAOC AUTOS
aprduog dnurovpyinxe pe Ty cuvdetnon rand tng yhwooog C.

To mpwTo and o cevdpia Pe (60 aptiud TEOCUNUDY KoL APUEECEWY ELYE TUY LN XATOVEUT)-
HEVO TOV TUTIO TWV BLepYaoLY Ue TNV doun. Aniody| xataoxeudooue évay ivaxo 200 Héoewy,
mou Teplelye Toug apiuoie 0 xan 1. Kdlde muprvog Eexivorye vo Slodalel tov mivaxo amd tnv
Y€on mou avtiototyoloe oto ID tou. Kdie gopd xvolvtav xatd uio 9éon yéoo otov mivoxa,
av Tor anTorTer oy vy amd 200 1) €gTave 0to TENOC Tou Tivaxor amhd Eexivarye TAAL amd

™ ¥€on 0. Avdhoya pe tov oprdud mou Yo ddale exteloloe Ty avtioTtolyn epyaocio, eite
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npoc¥nun elte agaipeon.

To 8eltepo oevdplo ou elye GUVOAXE (00 apLiUd TEOCUNXUWY oL APUEECEWY CTOLYEIWY
Baoilovtav otnyv topadoyh 6Tt To TEOTO UO6 TV TUEHVeY Yo Exavay Lovo TeocOnixes xaL
70 0e0TEPO Wob Yovo agaipéotlc otolyelwy. o mopdderypa o éva wovtélo omolacdhToTe
dopng e €vo xheldwpa, ov TEEYOUE TNV EQUpUOYN Yac pe 12 muprveg, ol 6 ue To pxpdTepa
avayvepetotxd (0, 1, 2, 3, 4, 5) a éxava cuvéyela Tpoodfixec , eved ot undhotmol 6 Tuprveg
UOVO apotpEaelg oTolyElwy amd TN dour|. Yuvohixd ouws Yo yivovtav (oo TAfdog agpaipéoewy
X0l TEOGUNUOY.

To tpito xou TEAELTALO GEVIPLO TIOU ElYE UOLPACUEVDL UTAUATO TROCUNHWY 0L APULPETEWY
otoyeiwy BacllovTay ot SLPORETINT XATAVOUT] TWV ATNUATWY OE OYECT UE Ta 000 TEOTYOo-
Opeva. Ko €66 ol ool mupriveg éxavay povo mpocVixeg Xal oL UTOAOLTOL UOVO OPOUEECELS
oANG T TN Qopd dhhale 1 xatovour| Toug oto chip. O muprveg Pe TEPLTTO avary VORLO TiXO
(ID) Yo xdvouv pévo mpocdnixes, eved oL TUPAVES UE dPTIO avary Vmpto Tixd Vo agatpoly o Tol-
yela.  Anhady| av teéyoupe éva mpdypauuo ue 10 muprveg xan vhomoinom ue éva xheldwua,
oL TUPNHVES e avayvoploTxd 1, 3, 5, 7, 9 Yo éxavay pévo npocinixec otolyelwy otny dour,
eved oL umdroinn Go agonpovoay ctotyela. Ertol oe xdde Pnpida Yo elyope Evay muprva va
Tpoc¥€TeL oToLyEla XL EVay TUPTIVOL UOVO VoL oponpet.

Téhog mhpoue UETENOELC Xou UE VoL GEVIPLO TIoL Elye Tuyaio TANYOC apapécewy G ToLyElWY
xau TpocUnx@y. Amoteholvtay xou auTté amd évay mivoxa 200 d€oewy ue 0 xou 1 Tov onolo ena-
vohduPBave xdde TupHvac PEYPL Vo OAOXANEMOEL OAAL TOU ToL ULTAATA. Zexivaye Tnv vy vmaon
Tou Tivoxa o €8¢y avdhoya e To avoryvoploTxd tou (ID) xou xdde @opd mpoydpaye wa
véon.

‘Eva dhho yopaxtnelo Tixd g TASLoPN@log TwV TEWROUATWY TOU TEXYUATOTOOUUE Vol
OTL OeoUelUUE TOUC TUPNVEC UE TN OELpd Xl Oyl dloaoxopTiopévous. Anhadn av Véloue vo
TeECoupe éva oYU Yenowonownvioag 20 TUEHVES TOTE Beouclope Toug Tuprveg and #0
€wg #19. Yta TEQICCOTEQN TELRQUATA OXONOVUHACUUE AUTH TNV ToUXTXY, dAAd TEOYUOTOTOL-
HOOE %o UEQLXS TIELRAUATOL Yiot Vor BOUUE THo0 emneedlel 1 VEom TwV TUpHvwY TV enidoon.

Ac p\hooupe toHpa yior Tal PEYEDT) TOU UETENOOUE Xt 0LONOYTICOUE, OL UETPHOELS Qaivo-
VToL 070 %Uplo PEpOg TG cpyaoiog. Apynd UETEOUUE TIC YPOVIXES ETUOOCELS TWV OOUMY.
Yuyxrplvope yio xde dour) 0EB0UEVHV TS CUUTERLPELOVTUL YEOVIXA OL DLUPORETIXEC UAOTIOL-
HOEIC o ToL BlopopeTind wovTéla ouyypoviopol. Enlong @rid€aue xon Sorypdupoto yior Thy
anddoon (throughput) twv Soumv dedopévwv. T Tic petprioelc aUTES YENOLOTOLAOUUE Ta
GEVAPLOL IOV TUPOUGCLAGOUE TOQOTAVE).

‘Emeita yetprioope TV xatavaAwoT eVERYELIS TV Tpoypapudteny. To chotnua SCC mo-
PEYEL TNV BUVTOTNTA VO TAlEVOUNUE PETENOELC NS TAOTC XU TOU PEVUTOS AVAL TAXTA YPOVIXE
oo Tuata. ‘Etol ye tny enedepyacio autdy TwV UETPHOEWY UTOPOUKE VO UTOAOYIGOUUE TNV
EVEQYELX TOU XUTAVAAWMVETOL ot T0 GO TN 6Tay exteheiton yio eqoppoyt. Kau €d¢) mhpaue
UETENOELS Yol TaL GEVAQLAL TTOU oVUPEPUUE VeplTEQL.

Axoun ofohoyfiooue xotd t6co mailel pOAO 1) xaTovour| TV TUE VWY 6To chip xou ou-
YHEWVOPE TIC YEOVIXEC ETUOOCELS ULAC OLUCXOPTIOUEVNG XUTAVOUNC OE OYEOY UE TNV OUVEYT

0éoueuot v tupvey. Edoue enlong av malle pdro n Véorn tou muprva eumneetnTty| ota
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povTéla TEAATN-EEUTNEETNTH xdde Souric dedouévwy. Luyxpivaue dVo Taxtnég, plo o e€u-
TNEETNTAC var efval TavVTa 0 TEMOTOS TUEHVIC, ONAASY aUTOC UE avaryVwploTixd #0, xat g o
eumneetnTig var lvon xdde Qopd o Yecalog oe GYEoT) UE aUTONE TOU €YOUNE BECUEVUCEL.
Keivovtag, petprioope xoatd ndco eivan dixateg ol pédodol ouyypoviouol. Anhady) ndéco
olxano elvon T0 LOVTEAO TEAATN-EEUTNEETNTY XU TOCO Oixona etvon Tor xhewdoporta. Kou eldoue
oxOUT TS Vot CUUTERLPEROVTAY TO GUC TN Xl OL DOUES OEBOUEVWY oy UEGOAABOUGH Aol
xoduotépnom peTol TwV aTnudTey xdde muprva.  Aoxyudooue ue didpopa peyedn xodu-
otépnong xau Eextvhoaue and wxer| xaduotéenor auidvovtde Ty otadlaxd. H xaduotéonon
ot Yot UTOPOUGE VAL TPOCOUOLOCEL VAL TTROY HATIXO GUC TN GTO OTOL0 PETAED TWYV ALTNUATWY
Yo yecorafolcay xdmolol uTohoylouol amd xdie Tuprva 1 Yo aoy0A0UVTAY Ol TURHVES KoL UE

dhhec epyaotieg.

1.4 Xuuncpdouota Xol TEOEXTACELS

Kotahfiyovtog ota cupnepdopata autig Tng epyaciog, ta omola mpoéxuday and Tic UETPNoES
ToL THPAUE TOEAIETOVUE To TURUXATL YO

‘Ocov agopd v ypovixy enidoon, yia T dopég Tng otolBac xou Tng ovpds, BAEémouue
OTL PETE amb €vay apliud TUEY VWY, To UOVTEND TeEAdTn-eEumneetnTy €yel xahlTepn enidoon
om6 Ut PE To éva XAeldwpa. 26T600 Yl Alyoug Tuprveg €youv (Bla 1) HEPLXESC PORES TO
HOVTENO EVOC HAEWBWUTOC ExEl xohUTepn enidoor. H vhomoinom ue 600 xhetddpato yior Ty
ovpd BAémouye 6T Tapouctdlel TNV xaAbTepn enldoon xau etvan TavTa xahOTepn and To YoVTEAD
TeAdT-e€unneeTNTH. And TV dhAn 1 vAomolnon g otolfBag ue eEdheudn TapatneoduE 6TL Bev
TETUYE XANVTERES EMBOTELC and TI¢ dAAeS 800 LhoTolroelc. ['ia Tov cwped BELona Brénouye TNy
ONUOVTIXA XohOTERT ENBOCT) TOU LOVTEAOU TEAATN-EEUTNEETNTH ol UTO UE TO XAEDWUA Ko
aUTO %Vl oPelleTon aTNY XaxT| A€LOTONOT TN XEUPHC UVANG OTO LOVTERD UE TO XAEIBLULL,
AOY® UOLalOUEVNG UVAUNG.

‘Ocov agopd TNV xatavdhwon evépyelog, BAénoupue 6Tl eCopTdToL UPXETA amd TOV YpOVO
oL ypeetdleTal x&e TEOYEAUUUN, OTOTE TPOXVTTOLY OVIAOY O ATOTEAEGUATA UE AUTA TTOU E(SoE
YLt TOV YPOVO.

H 9¢on twv muphvey xou 1 Slooropd Toug BAémouue OTL emnpedlel TNy yeovixn enidoon o
XATOLoL TEQLOYT TV TUEHVKY, UETOEY 28 xan 47 mupvwy. And tnv dAAn dev Prénouue onua-
VT Btapopdt oAAdlovTag TNy VE€on Tou Tuphva eEUTNEETNTY, TOAAES POREC EYOUNE ENAYLOTA
xahOtepn enidoon ue tov e€unneetnty otny Yon “0.

Téhog T0 yovtého meAdTn-eEunneeTNTY elvan €var capdS o BIxoto YOVTENO amd To XAEL-
OWUOTH ToL OTtolar EYOLY UEXETES OLUXUUAVOELS 0T0 OGO dixana divouv mpdcBucy ot dout|
oToug Oudpopoug Tuprveg.  Axdur, HE TNV EloaywYT XouoTEENONG €YOUNE EVOLUPECOVTAL
amotehéopota mou Belyvouv 6Tl Yo unopolooue va €youde Bedtiworn otny anddoon Twv Tpo-
YEUUUATWY av Elodyoue xoduo TERNOT UETAE) TWV AUTNUATLY XA TuEY|vaL.

Q¢ mpoextdoelc aUTAC TNS epyaotag N ueAOVTIXY €peuva Yo unopolooue Vo TeoTeVOUUE
TNV €&€Taom xou GAAGY Sounv dedouévwy. ‘Eva otowyeio eniong mou dev e€etdoopue etvon av

oL muphveg 660 mepluevay Yo umopolcay v uraitvouy oe plor xotdoTaoy avouovig avtl va
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OLEXOOUV EVEQYNTINS To XAELDWOUATA GUVEY WS, MEYPL VoL To AdBoUVeE.

Mo gk Suvatdtntor Tou Yog divel To abotnua SCC oAl Bev yenoiponotooue etvar 1)
eLduwon TnNg ouyvoTNTag xan TG Tdone xde muprva. Puduilovtag tic mapapétpoug autég
6Ty oL Tupnveg elvon oe avoovy Yo urtopodoope Vo TETUYOUUE EE0IXOVOUNOT) EVERYELIC Xol
mdaveg vo etaBdAlovTay xou dAAaL YopaxTNEloTiXd TNg eTldoomg.

Keivovtag, éva povtéro mou Yo unopodooue vor SOXUACOUUE YLol VoL SOUUE TS amodidel Yo
fTay €val UBELOXO OVIUETH OTO OVTEAD UE XAELBWUATO XAl OTO HOVTENO TEAATN-EEUTNEETNTH.
Anhadh Yo umopotoay ovd OUddES oL TUENVES VoL €y ouv €val EEUTNEETNTY, SNAAdT| VoL UTEEYOLY
TEPLOGOTERY) TOL EVOC eEUTNEETNTES OL omtofol OUnS Vo eEuTneeToUoaY Ay OTEPOUS TURYVES Amd
ot doxudoope otny gpyocia pog. Autol ol efunneetntés Yo €xouy Uxpeéc Bouéc o WL TIXT
Toug uvAun. ‘Otav autéc ot Souég yeploouy ToTe Yo umopoloe va UTdEYEL 1) xUpta Sour| o€
wolealOUEVT, UvAUn Xt oL eEUTNEETNTES Vo oYY EoviCovTon UETHEY TOUC UECE XAEBWUSTWY
YO VoL AVTLYRAPOUY TIC TOTUXEG TOUG DOUES GTNY xUPLKL DOUT| X UETE VoL EAEVVEQHOVOUY TNV

BT TOUC UVAUT ot Vo cuVEYILoLY VoL BEYOVTaL AUTHUNTA OTO TOUC TEAYTES TOUC.
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Chapter 1

Introduction

1.1 Objective

The objective of this thesis is to evaluate concurrent data structures on
the Intel Single-chip Cloud Computer and compare different mechanisms of
synchronization methods for those data structures. As multicore systems
occupy more and more space in the computing machines domain and the
software must adapt and utilize multicore systems and parallelism as effec-
tively as possible, there is an open space to research and examine the power
and the abilities that these systems can offer. Also there is need to evaluate
the existing programming techniques for multicore architectures and if pos-
sible design new techniques or primitives that could make a breakthrough

in the the multicore and parallel computing society.

The Single-chip Cloud Computer is an experimental platform by Intel to
help and encourage the computer science society to research further many-
core systems. As a 48 core system it poses a new challenge for researchers
to evaluate and understand how easy and effective it is to program for a
platform like this. Also how one can effectively utilize this computer. The
demand for concurrent data structures and the further understanding of
their efficiency in manycore systems like the SCC was a major objective
for us to experiment with the SCC and try to offer and add some more

knowledge on the usage and the aspects of this computer system.

Based on the already existing research and material on the Single-chip
Cloud Computer ([10], [11] and [15]), our goal was to further investigate

the concurrent data structures on this machine and add some knowledge on
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the SCC and multicore community. The interesting part about the Single-
chip Cloud Computer is the special memory architecture that exists and this
gave us an incentive to research how using different kinds of this memory can
affect performance, power consumption and other aspects of the concurrent
data structures. In our experiments we tried to make clear if a trade-off
between faster memory but not so popular synchronization methods and

slower memory with easier and at times more effective methods is worth.

To add to the mentioned above, another objective was to have some
data about the performance and the consumption of concurrent data struc-
tures on a manycore general purpose computer, like the Single-chip Cloud
Computer, that someone can use to compare with multicore or manycore

embedded systems.

1.2 Tools and programs

In this section we are going to mention the tools and programming suites
that helped during the work for this thesis, the development of programs
and the editing of this text. We tried to base our work on free software when
that was possible but of course to complete this thesis proprietary software

was also used.

To begin with, the editors used for the development of the data struc-
tures libraries, the programs simulating and running the concurrent data
structures on the Single-chip Cloud Computer and the scripts that helped
automate the running of the programmes, the gathering of the results and
the manipulation and usage of these results were Vim and gedit. Vim is a
cross-platform editor which is free and open source software. It was origi-
nally written by Bram Moolenaar and released publicly in 1991. It supports
both a command-line interface and a graphical user interface application.
On the other hand, gedit was released in 1999 and was the work of 7 devel-
opers. It is also a cross-platform editor, based on a simple graphical user

interface and released as free and open-source software.

For the designing of all the graphs present in this thesis, the gnuplot
application was used. Gnuplot was released in 1986 and is a cross-platform
command-line program that is used to plot functions and draw diagrams.
It is a piece of free software and nowadays there are third-party programs

available that use gnuplot as an engine but offer a graphical user interface.
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Another piece of software that proved really useful for the work needed
to be done during this thesis was GNU Octave. 1t is designed by John Eaton
and others and released in 1988 but not in the nowadays form. GNU Octave
is a free software high-level programming language originally developed to
support and ease numerical computations. It provides a command-line in-
terface but also a graphical user interface and it shows compatibility with
MATLAB, an non-free equivalent software, maybe the most popular for this
kind of use. GNU Octave can be used to solve equations, plot figures and

also programming algorithms.

Finally, for the developing of the text of this thesis and the typesetting,
ETEXwas used. I8 TEXwas released initially in 1985 from Leslie Lamport and
it is based on Donald Knuth’s TEX. It is a word processor and a document
mark-up language that differs from famous word processors as the result is
not displayed immediately but the user writes in plain text and the input has
to be compiled to see the output. XTEXis a free software and is considered

a good option for high quality typing products.

1.3 Thesis structure

At this point we are going to present the structure of the thesis and talk
about the chapters that are going to follow. This thesis consists of 6 chapters

and we are going to describe the content of each one, except of the first.

To begin with, the next chapter,chapter number 2, has the title “Concur-
rent data structures”. In that chapter we are going to present synchroniza-
tion primitives, both basic ones and some more advanced. We are going to
have an idea of the widely used primitives for synchronization on concurrent
data structures but also present new ideas that exist in research in the last

years.

Next in chapter number 3, with the title “Single-chip Cloud Computer”,
we are going to present the main computer that we worked on and tested our
concurrent data structures, Intel’s SCC. We are going to talk about hard-
ware aspects of this system, as well as programming interface. In addition
we are also going to present with details our implementations for the data

structures.
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In chapter number 4 we are going to explain the method that we followed
when conducting our measures and the properties we evaluated and mea-
sured. The title of this chapter is “Evaluation of concurrent data structures
in SCC”.

The 5th chapter, “Experimental Results”, is where all our measurements
and outcomes are presented. We provide the graphs from all the different
scenarios we examined and simulated. In this chapter someone can find all

the material that is the result of our experiments.

Finally, in chapter number 6, “Conclusion”, we summarize the remarks
we made throughout this work and these experiments. We give some conclu-
sions that resulted from the simulations and the evaluation of the concurrent
data structures on the Single-chip Cloud Computer. Also we propose some

future work and other aspects that can be researched.



Chapter 2

Concurrent data structures

2.1 Introduction

With multi-core systems being present more and more in the domain of
computer systems and parallelism being the solution to overcome practi-
cal computer science problems and the path that will lead beyond present
efficiency thresholds, concurrent data structures is one of the key factors
that need to be examined and researched to establish good performance

and reliability of parallel systems.

As concurrent data structures, we define the data structures that give us
the ability to store and handle data by multiple threads or processing cores.
In many occasions a concurrent data structure is nothing more than a usual
data structure, e.g. a stack, a queue, a heap, enriched with protocols of usage
or mechanisms to ensure that important properties of the structure and its
function are secured and guaranteed. Nevertheless there is a lot of research
interest and work done towards more complex and advanced structures, to
optimize transactions with the data structures with many threads or cores
taking part. Those advanced structures are not useful for single core — one

thread systems.

A concurrent data structure faces many risks and dangers if certain steps
and measures are not taken. One must ensure that memory transactions are
made with the same order that the requests are placed, memory state and the
data saved need to be in a consistent state and the values of the variables and
generally the memory locations need to be the expected ones. Problems for

example could occur if access is given to more than one thread, to the same
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memory address simultaneously, the compiler rearranges instructions so the
executed code is not what we were expecting or the compiler or memory
drivers rearrange the sequence of two or more memory accesses of different
cores, so the data read or written are not the expected one. These situations
could lead in problems such as unexpected behaviour, if data other than the
expected is read or written, program, thread or core crush, or even security
holes. These situations are more than common and as an example we have
the first versions of Intel processors Haswell and Broadwell that had a buggy
implementation of their transactional memory implementation, TSX, that
could lead to unpredictable system behaviour. We are going to present the
transactional memory technique in the following paragraphs.

Having said that, one of the key principals that secure the correct and
accurate function of concurrent data structures is synchronization. Synchro-
nization guarantees that memory accesses will be secure, they will happen
in the same order that it was requested, if that is needed, and the cores or
threads will interact with the data structure in a way that ensures consis-
tency and expected results. There are many ways and ideas to implement
synchronization, from naive ones to much more complex. Before imple-
menting or choosing to use a synchronization method, one should weight
the implementation difficulty, the efficiency that the method provides, the
software and the hardware available and the functions that both support.

Following, we are going to analyse synchronization primitives, starting

from simple concepts and moving on to more complex ones.

2.2 Synchronization primitives

2.2.1 Locks

Locks are maybe the simplest way to achieve synchronization and many
times, the first that comes to mind as a concept. The principle is that
a thread or a core has to acquire the lock to access the memory. Only
the holder of the lock can access the memory at that moment and no one
else. The lock is an abstract entity, it could be a variable declared by
the programmer, a structure provided by the language implementation or
provided by a library.

A lock refers to a memory location, thus a naive approach is to lock with

one lock the whole data structure. Later we will see that this is called a
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coarse-grain lock. This approach is simple to implement but as we can imag-
ine limits concurrency, as at any given time, only one thread can interact
with the memory. Of course there is a lot of research around locks so there
are many more lock patterns and even, as we will see later, lock-less concur-
rent data structures. The thread or core that has acquired the lock can do
any transaction with the memory, whereas, any other thread or core that
wanted to access memory should wait, either postpone its job if possible, or

continue asking for the lock until it is released and available.

Before someone uses locks there are some aspects that we need to have
clear. An important issue with locks is efficiency. Efficiency depends on
many factors, such as the implementation of the lock, the hardware available
on a system, the number of locks that we use for our data structure and the
synchronization tactic of the lock. Depending on the problem we want to
solve or what we implement with our program a use of a lock could give
acceptable efficiency or could be totally inefficient. We also need to keep in
mind, that many lock implementations that are based on reading and writing
to a memory location, to update or check the condition of the lock, e.g. if
it is available, are bus based implementation. Which has serious impact on
bus usage and contention, thus consuming more power and creating delay.
Also we need to consider what tactic we follow when a thread or core finds a
lock unavailable. There are techniques such as polling or sleeping and again
weight decisions such as implementation simplicity and energy consumption

or delay.

The naive implementation of locks lead to a blocking synchronization
method. This is also a parameter we need to consider when we decide about
the synchronization method we are going to use. Although research has
provided non-blocking techniques. Locks are also a mechanism that enters
competition among the threads or cores. So depending on many factors,
such as the place of the lock and the kind of the memory, e.g. if it is NUMA
memory, some threads can have easier or faster access to the locks thus
creating inequalities in the lock possession, a situation that is measured by

fairness of the lock.

If this competition is not well thought and during the implementation
we do not design well our lock protocol, problems such as deadlocks or
starvation can arise. Deadlock is a situation that more than one thread

claim the lock, the lock is available but due to erroneous design, there is
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no progress as no one can acquire the lock. On the other hand, starvation
is happening when a lock is not fair and we encounter the situation where
some threads or cores progress excessively whereas other threads or core

have little or no job done.

Following we are going to mention some synchronization techniques for

locks.

Coarse-grain synchronization

Coarse-grain synchronization for concurrent data structures means that there
will be one lock for the whole data structure. To interact with the structure
one must acquire access and during his transactions with the memory, no
one else (core or thread) is allowed to have access to the memory. It is a
simple concept that has the advantage of a really simple implementation for
most data structures but many times, limits parallelism. Simply because
only one core or thread at a time can have access to the data structure, so
others that may want to access memory must stall or generally wait, thus

losing potential computing time.

Fine-grain synchronization

On the other hand, a fine-grain synchronization tactic means that there will
be more than one locks for our structure. Depending on the memory area
that a core or thread wants to access, it tries to acquire the appropriate lock.
With fine-grain synchronization we achieve better parallelism, as more than
one threads or cores can interact with the data structure simultaneously, if
they want to access different parts of the structure. The drawbacks of this
approach are that it is generally more difficult to implement and we need
caution to avoid problems such as deadlocks while threads are competing
for the locks.

Optimistic Synchronization

With this technique, we make a basic assumption that the majority of the
times, nothing bad or unwanted will happen. As a consequence, when we
want to insert or delete an element in our data structure, we first search if it

exists, without acquiring a lock. After the search if we need to proceed with
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the insertion or the removal, we acquire a lock, we look again if the element
is present or not, and do the function we want. This technique also has a
bigger implementation difficulty and depending on the situation we use it,

it does not guarantee more efficiency.

Lazy synchronization

The lazy synchronization tactic is a tactic divided into two parts, a light one
and a heavy one. The light one is done with synchronization and immedi-
ately, for example removing logically a node by updating a tag value. Later
follows the heavy part during which there is no need for synchronization and
for example the logically removed node is removed permanently by freeing
the memory it occupied. Again, when using this tactic we need to consider
the implementation cost and the the efficiency depending on the exact data

structure that we will use.

2.2.2 Atomic operations

Moving beyond locks, we have to discuss the primitive of atomic operations
or atomic transactions. Atomicity guarantees isolation from other processes
that run concurrently and the atomic primitive makes transactions appear as
they were made instantaneously, with small pauses between each other and
there was no overlapping. Atomic operations have an other characteristic,
they either succeed in changing the machine’s state or make no change in

the state or the memory if they fail.

Atomic operations show a lot of interest because they can offer waiting-
free and block-free implementations of concurrent data structures. That is
because when using atomic primitives, either hardware or software imple-
mented, we can omit mutual exclusion primitives such as locks. A property
that may not come to mind but is present when using atomic operations,
is retrying. With that, we want to say that if an atomic operation fails,
which is not uncommon, we have to retry, maybe more than once until this

operation succeeds.

Atomic operations are based on two implementations, hardware ones,
with cache coherency protocols provided by the hardware designers or with
special testédset registers. But also atomicity can be achieved with software

implementations such as checking the state of variables or checking time
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stamps of operations by cores or threads. The main principle of atomicity
in many-core - multi-thread systems is that every operation is made inde-
pendently without thinking about the other cores or threads, but before the
results are accepted-saved, the thread or core checks a value. If that value
has changed, which means somebody else has already changed the data be-
fore this core - thread, then it cannot save the changes, the operation fails
and it has to retry or move on, depending on our program’s functionality
and design. If during the check the value does not appear changed then all

is good and the operation is successful.

The main mechanisms of atomicity are cache coherency protocols, testéset

registers and compareéIswap registers.

Atomic operations, as we mentioned before, can help construct block-
less and wait-free concurrent data structures but one should be careful and
examine well their usage as atomic primitives do not always guarantee a

more efficient program or data structure.

2.2.3 Transactional memory

Moving beyond locks and atomic operations, we need to examine transac-
tional memory. The primitives mentioned above have certain limits and

when using them we face certain problems.

To be more precise, coarse-grain locks, although they are easy to imple-
ment and use, have poor efficiency as they take little advantage of parallelism
and concurrency. On the other hand, fine-grain locks have much better ef-
ficiency but are difficult to implement, need a lot of attention when using
them to avoid dead locks and are hard to manage if the number of the locks
is big. In addition to these, locks can reveal a convoying effect. In a pre-
emptive processor or operating system, a thread that has acquired the lock
but takes a lot of time, may be forced to leave the execution unit, while
holding the lock, thus leading to great time loses as other threads that want
the lock have to keep waiting although no one is working in a critical part.
Also locks have the problem of uncertain behaviour and very possible crash,

if a core holding the lock crashes.

Atomic primitives, the other choice for synchronization, face the problem
that work on only a single word which leads to complex algorithms, hard to

implement and with high overhead sometimes.



2.2. SYNCHRONIZATION PRIMITIVES 41

With these limitations, concurrent programs being more and more used
and the solution of hiring high skilled programmers every time someone
needed to overcome a concurrency developing obstacle being expensive and
not practical, research has offered a solution. That is transactional memory,
inspired by database transactions mechanisms. The motivation for transac-
tional memory is giving the ease to the programmer, without interfering with
locks or atomic operations and facing the danger of erroneous implementa-
tions, with a declarative style, to let him define the transactional parts. So
transactional memory is a higher level implementation of synchronization,
where the weight of synchronization is moved from the developer of the ap-
plication to the hardware designer or the developer of the run time system

or language system.

Within this transactional parts, the transactional memory system must
guarantee atomicity, consistency and isolation. Atomicity means that either
all the commands in the transactional part will be successful and committed
or none. Consistency means that all data changes should be made by allowed
ways and isolation means that no other than the transactional part can see

the changes made until they are committed.

There are two approaches for transactional memory, the hardware im-
plemented and the software one. Although there are also some hybrid ap-
proaches that combine elements of the previous two implementation meth-
ods. The hardware implementations are based on cache coherency protocols.
In many-core systems it is common that every core has his own cache but
data is shared among cores. To achieve transactional memory a bit can be
added to every cache line. So if a line is marked as transactional it cannot
be evicted or shared until the transactional operation is finished. This limits
transactional operations to the size of a cache. Although this is a limitation,
it is a progress when we compare with atomic operations that are generally
limited to a word. The software approach is based on data versioning and
spotting conflicts and solving them. Usually a data conflict will lead to a
transaction abort and retry for some core or cores. When comparing soft-
ware implementations with the hardware ones, it is common that software

implementations come with a performance penalty.

Although transactional memory is a very promising and convenient syn-
chronization primitive, we need to keep in mind that there must be more re-

search in that direction and overcome certain problems. The example of the
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problematic IBM Blue Gene/Q processor that TSX transactional mechanism
led to unexpected behaviour should remind us that transactional memory

must be well designed before used excessively.

2.2.4 Monitors and conditional variables

Finally, to conclude our reference to some of the simple synchronization
primitives we will present monitors. Of course the list of synchronization
primitives and mechanisms is not exhausted by our references and readers
that want to have a complete view of the subject are urged to study the

relevant bibliography.

For concurrent data structures, a monitor is a synchronization construct
that combines data, methods and synchronization in a single modular pack-
age like classes combine data and methods. Monitors offer mutual exclusion
together with the ability to block until a certain condition is met. The ex-
istence of monitors is based on the support from hardware, for example the
existence of hardware that offers atomic operations or disabling interrupts

during critical paths.

Monitors are a construction that was aimed to address several problems
that locks had. With the monitor construction, threads and cores are guar-
anteed safe execution of critical parts and the problem of deadlocks or the
problem with threads holding the lock when they are not progressing is sur-
passed. The problem that is addressed, is that a thread could acquire the
lock but a certain needed condition is not met, for example a thread wants
to read from an empty queue. This thread is going to keep the lock forever,
if the synchronization design says that it should block, thus depriving other
threads, of the lock, that may want to write to the queue. As a result this
program will not progress, although there are threads that want to write to

the empty queue.

This problem is solved with monitors as they come with conditional
variables. This means that we could implement synchronization without
spinning, so when a condition is met, the threads that are interested in
getting the lock are signalled and start to compete for the lock. With this
protocol no thread holds the lock without progressing. This signalling can be
implemented with semaphores and the threads that have pending conditions

could sleep or generally not being busy waiting.
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Nevertheless there are also potential problems when using monitors, such
as the lost wakeup problem. In this situation a thread may miss the signal
that a condition has changed which may lead to this thread never waking up.
Fortunately there are ways to overcome this problem that may arise, either
by setting a waiting time-out or always signalling all threads on a condition,
not just one. Other potential drawback of monitors and semaphores is the
fairness again, among the threads that compete when there is only one lock
available. So we need to evaluate again the implementation of the monitors
on the system and the language we are using and estimate the performance

we can get and if it is acceptable.

2.3 More complex mechanisms

Moving on, we are going to see some more complex synchronization mech-
anisms that are recent to the computer science society and present some

research and practical interest.

2.3.1 Embedded Transactional Memory

Having presented the transactional memory primitive, we want to mention
here the embedded transactional memory, a hardware implementation of
transactional memory that was firstly designed for embedded systems but
now with works like Sutirtha Sanyal et al [12] we try to introduce it to large

scale multi-processor systems.

Embedded transactional memory is oriented to consume less energy and,
by the resent research, even to provide a speed-up. The idea is to spare
energy from speculative executions that would be aborted. As we have seen
from the classic transactional memory, there are transactions that due to
conflicts are going to be aborted and retried. Thus researchers try with a
protocol and hardware support, to minimize the loss of energy by improving
speculation and stopping paths that are going to be aborted, as soon as

possible.

The idea is to introduce gated clocks to the processing cores. When the
system finds out that a conflict has arisen and thus a roll back in a check
point is needed by one or more cores, then those cores should be cut off by

the gated clock. This will lead to eliminate dynamic power consumption.
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With the gated clocks we will save power from operations that would be
dumped due to conflicts but also we could get a speed-up, as by cutting
off cores until they begin again from the last check point, we can minimize
competition for the commit. Minimizing competition means minimizing
contention on the bus and fewer memory accesses. This leads to a better

contention management thus an overall speed-up

Although this mechanism is new and not used extensively in practise, it
is a promising technique not only for embedded systems but also for large-

scale systems that could lead to more efficient execution.

2.3.2 C-Lock

The C-Lock mechanism is a hardware based synchronization mechanism,
designed for embedded multicore systems by Seung Hun Kim et al [5]. Em-
bedded systems have specific constrains and demand different attention than
large scale computing systems. This constrains are many times conflicting,
for example we demand very good energy efficiency by embedded systems
but sometimes throughput and responsiveness are also as important as en-

ergy consumption, thus having conflicting demands.

C-Lock combines lock based ideas with transactional memory ideas to
provide a hybrid approach. It is an idea that by mixing strong points of
each approach presents a mechanism that achieves less energy consumption
and better efficiency from the other two mechanisms. The implementation

is based on an added hardware piece called C-Lock Manager.

The circuit of the C-Lock manager is the intermediate between cores
and memory accesses. Before a core accesses the memory, the operations
pass from the C-Lock manager and the memory addresses are checked. The
mechanism provides transactional memory function, meaning that it allows
maximum parallelism and there are no locks for the shared memory but with
the help of C-Lock manager minimizes the cost of speculative executions.
When the manager finds out that a conflict will occur with the memory
interactions, it alters the way the cores access memory, and the cores that
want to access conflicting parts of the memory begin to synchronize on a

lock based scheme.

Thus when memory conflicts are found the cores do not waste energy and

time on operations that will be aborted later. Also, the C-Lock mechanism
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achieves better power efficiency by adding gated clocks. The cores that want
to access conflicting memory parts and need to wait, are cut off with the

gated clock and so consume less energy.

This mechanism is very promising for embedded multicore systems as it
brings together advantages of two synchronization techniques and achieves
interesting results. Furthermore it is not hard to implement but needs a
hardware addition. It also offers advantages such as easier programming as
the weight of the synchronization is moved to the hardware design and the
system implementation. The programmer just needs to mention which part

of the program should be considered as synchronization dependant.
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Chapter 3
Single-chip Cloud Computer

In this chapter we are going to describe the Single-chip Cloud Computer
made by Intel, see it’s characteristics and architecture and have a closer look
on the implementations that were used during the experiment. If the reader
is not covered with the characteristics described in the following sections or

wants more details, we propose the study of [13], [1] and [7].

3.1 SCC description

In an era when multicore computer systems are the mainstream choice to
achieve high performance and single core systems are facing certain limits
thus being questioned if they can continue providing solutions for computer
systems, processor manufacturers are always trying and experimenting with
new approaches towards multicore systems. One of these initiatives is the
Intel Single-chip Cloud Computer a many core system consisting of 24 tiles

with two cores per tile.

The SCC was released in the middle of 2010 by Intel, following a previous
processor, the Teraflop Research Chip, that had 80 non-TA cores. The SCC
has full IA P54C cores which means it can support compilers and operating
systems which is a step from Intel to provide a system that can be easier
programmed and used for broader applications by more people that it would
if it required programming in specific languages or using limited software
tools. In the figure 3.1 we can see the top level architecture of an SCC

system.
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Figure 3.1: SCC Top-Level Architecture (Source: [11])

3.1.1 Tile overview

We are going to describe now the SCC tiles with more detail. As we have
mentioned the SCC consists of 24 tiles with two cores on each tile. The tiles
are organized in a 6 x 4 mesh. Each tile has a router and there are four
memory controllers to provide access to off die but on board DDR3 memory.

We are going to refer to the memory with details in the next section.

The SCC is connected and communicates with the management console
PC, which is generally a 64-bit PC running a GNU/Linux distribution or
Windows operating system. As we mentioned before, the cores can also
boot a GNU /Linux distribution but it is up to the user or the research that
someone is conduction if a general purpose operating system is going to be

used or an experimental operating system designed for multicore systems.

Providing some more information on the die and the cores, the tile area
is around 18mm? and the SCC die area is around 567mm?. The core is
made with the technology of 45nm high K metal gate CMOS and on the
chip there are 1.3 billion transistors, 48 million on every tile. In the figure

3.2 we can see the SCC die with more detail and all of its components.

Analysing now the router that allows the cores on each tile to commu-

nicate with other cores outside the tile and the off chip memory, the router
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Figure 3.2: SCC die and tile overview (Source: [7])

supports a 2D network with fixed and pre-computed X-Y routes. The bisec-
tion bandwidth is 2T'B/s at 2GHz and 1.1V. It has a latency of 4 cycles,
link width 16 Bytes and bandwidth 64GB/s per link. Furthermore it has 2
message classes, 8 virtual channels and consumes 500mW at a temperature
of 50°C

The SCC board also gives us some more tools so we can experiment
and research more aspects of the multicore platform. We can control and
alter the voltage level and the frequency that the cores function. To be
more specific it provides 7 voltage domains and the tiles can be controlled
in groups of 4, so we have 6 groups that can have different voltage plus one
domain for the on-die network. Also we have 24 frequency dividers so each
tile can have a specific frequency chosen by the programmer. The power

consumption for the full chip ranges between 25 and 125 watts.

3.1.2 Memory overview

Moving on now to see the memory overview of the SCC and learn more
details about the structure and the kinds of memory that the SCC has.

To begin with, as we have already seen in figure 3.2, each tile has L1
cache, L2 cache and the message passing buffer. There is a total 32 KB L1
cache in each core, 16 KB for data cache and 16 KB for instruction cache.
The L2 cache which is 256 KB in total for every core, is off the core but on
the tile and it is a unified cache. In addition to the caches, on every tile

there is 16 KB of message passing buffer memory, with 24 tiles total that
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makes 384 KB SRAM of message passing buffer memory totally in the SCC

platform.

The off chip memory is DRAM and can be from 16 GB up to 64 GB.
Everyone of the 4 memory controllers can address from 4 GB up to 16
GB and depending on the part of the memory that a core wants to access,
it communicates with the appropriate memory controller. This off chip
memory can be private or shared among the cores. The default behaviour
of the system is to give evenly as much memory as possible among the booted
cores, by the user, as private and keep the rest as shared. But the user can
alter this ratio of private versus shared memory either when booting the
cores or by using certain commands in the program that is running on the

cores.

Now that we have an image of the amount and the types of memories
that exist on the SCC, we can see some details on how the memories interact.
Starting from the caches, there is no cache coherency protocol between the
cores’ caches so the system does not provide snooping, snarfing or other
cache coherency protocols. The programmer is responsible for the data
exchanged between cores. The good news is that if the programmer is using
the RCCE interface, which we will present later, he does not need to worry

about data exchanges.

The data from the off chip memory are cashed among L1 and L2 caches
according to the rules of the P54C processor. On the other hand, the data
from message passing buffers which are shared, are not safe to be read from
cache so SCC provides instructions and tags to mark data coming from the
message passing buffers inside L1 cache as invalid. This reassures that the
cores will read the data from the buffers and thus they will be sure that they
read the correct shared data, as some other core might have changed them

since the last time.

As it may be revealed from the previous paragraph, the message passing
buffer memory is a shared memory. To be more specific it is an on-chip
shared memory, distributed in every tile. Every message passing buffer,
despite the tile it is on, is accessible by every core. That means every core can
read or write on any message passing buffer. It is this memory that inspired
us to work with the SCC platform and base our principle idea, the idea that
we wanted to examine. This on-chip, very fast but also small shared memory

is a foundation to research different models of communication between cores
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Figure 3.3: Programmer’s view of the SCC memory (Source: [13])

and the exchange of data. Message passing buffer memory is the reason we
implemented a server-client model of communication, something that we are
going to explain later in this chapter.

Examining again the off-chip memory, we have not mentioned before that
every core can see up to 4 GB of off-chip memory. This is due to the size that
the look up table has. As we have mentioned before, the off-chip memory
can either been seen as private parts of every core or shared memory. We
also need to mention that in every core there is a test and set register that
can lock the core and help us implement atomic operations. This register
will also prove a key part of our implementations as it helps us implement
locks.

Following we provide a picture, 3.3, of the whole memory of the SCC to
help the reader visualize the organization of all the parts we have described

in this section.

3.1.3 Programming interfaces

The programmer of the SCC has two main options, either to load a GNU/Linux
operating system on the cores, a special distribution modified for the SCC
platform, or use the baremetal option which means programming without
any operating system loaded on the cores. Of course the option with the
operating system simplifies many things and allows the programmer to focus
on the application that he is designing but the baremetal option can also
be useful if someone wants to have access to the lowest possible program-
ming level or research the design of an operating system for the multicore
platform of the SCC. The I/O system calls are routed to the FPGA.

The SCC community has offered the RCCE library, which is an appli-

cation programming interface to develop programs on the SCC, based on a
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message passing multicore programming style. RCCE offers many features
that ease the work of the programmer and allow him to manage things on
a higher level. Of course this is not always needed, when the developer
wants to have low level interaction with the system, and for this occasion

the developer can program without using the RCCE library.

An emulator is also available that is based on OpenMP. This emulator
can work on any computer with Windows or a GNU/Linux operating sys-
tem. We can develop and run SCC programs on the emulator and then
just transfer them to a real SCC platform and take measurements there.
This can prove useful if we have limited access to a real SCC system. The
fact that needs attention is that the emulator does not provide accurate

measurements both for time and power consumption.

The compilers used in the SCC platform are for the C programming
language icc-8.1.038 and for the Fortran language ifort-8.1.034. Both are
designed by Intel. Someone can also use the Intel’s Math Kernel Library
which can improve the performance of RCCE math applications. The MKL
available for the SCC is mkl-8.1.1.004.

For our implementations we always used the RCCE API because we
wanted to focus on a higher level of programming. But within the RCCE
API there are three interfaces, the basic interface which is higher level and
suitable for typical applications, the gory interface which is lower level and
mostly addressed toward expert programmers and a power management
API to support SCC research on power-aware applications. We used for our
applications the gory interface of RCCE because we wanted to have control
and define some details over the communication of the cores via the message

passing buffers and also implement locks with the test&set register.

Finally we provide an image, 3.4, to visualize all the layers of software

that we described above.

3.2 SCC implementations

Now that we have seen the hardware structure, the different kinds of memory
that exist and information over the programming interface, we can move on
to describe our implementations that were used in the various scenarios to

take measurements.
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Figure 3.4: The SCC platform overview (Source: [0])

We implemented and took measurements for three data structures, a
stack, a first-in first-out queue and a binary max heap. As the SCC platform
is a multicore system those structures were concurrent so we needed to use
synchronization methods. For the stack we had three implementations, a
simple client-server model of communication that assured synchronization, a
client-server model with elimination, we are going to explain that later and
a coarse grain implementation with one lock for the whole structure. For
the FIFO queue we also had three implementations, a simple client-server
model, a coarse grain lock, one lock for the whole structure and a more fine
grain lock, an implementation with two locks for the structure, one lock for
every end. Finally for the binary heap we had two implementations, one
with the simple client-server model and a coarse grain lock, one lock for the

whole structure.

Following we are going to explain and present with more details each
implementation. The reader can see an example of the actual code used for

our experiments in the code appendix A

3.2.1 Stack

The stack that we implemented supports two functions, insert and extract.
As expected the extract and the insert is done from the same end of the
data structure, so it is a last-in—first-out structure, the known function of a

stack.
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Client-server model

With this implementation our goal was to take advantage of the small but
fast on-die memory, the message passing buffers. In this implementation we
allocate N cores from which N — 1 are clients and there is one server. The
server’s job is to receive requests from the clients and grant them, only the
server has access to the data structure which exists in the server’s private
memory. The clients send request, for insertions or extractions and wait
until the server processes the request and insert the element that the client
sent or returns the element that was extracted. So the server does not
interact with the structure for his requests. He just handles the requests of

the clients and implements them.

As we have mentioned before, for our implementation we use the gory
interface of the RCCE API which gives as the ability to program at a lower
level and have more control over the message passing buffers. With the flags
that the gory interface provides we can implement non blocking communi-
cation among the cores, something that would not be possible if we didn’t

had this low level access.

Continuing, now let’s see more details about the program. With the
execution command we give as an input the number of the cores that we want
to allocate and the number of requests that we want every client to make.
After we allocate the needed memory for our structure, for the message
buffers and we allocate and initialize the flags that we are going to use, we
initialize the data structure. We decided to allocate for the structure space
equal to 1.5 times the number of the total requests and initialize half of the
requests’ total number so the cores will never encounter an empty stack,
unless more than half of the total requests are extract requests, a scenario
that we will not simulate. Despite that, our implementations are designed to
handle the situation of an empty stack by returning an appropriate number
that indicates that situation.

To clarify what may not be clear until now, the stack works with 32-bit
integers as data. So for the initialization we produce random integers with
the int rand(void) function of the C language. Although we are interested
in 32-bit integers as our data, every position of the stack is an array of 8 32-
bit integers. This is because the provided functions that manipulate data to
and from the message passing buffers and the memory allocation functions

for the message passing buffers work with products of 32 B. That is the
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reason we need to work with arrays of 8 positions, although we are only

interested in a 32-bit integer every time-

Once the data structure is initialized the cores are divided in two groups,
according to their ID and follow a different code path. Their ID is given by
the system. One path is executed by only one core, the server. The other

path is where all the other cores, the clients, enter.

The server enters a loop from which never leaves until either all the
requests are granted or the server crushes or the system crushes. Inside this
loop there is another nested loop, inside which the server checks the flags of
every client. We explain here that if we have N clients then there are 2- N
flags for the requests. Every client core has one flag for insert requests and
one for extract requests. So in every iteration of the nested loop, the server
checks both flags of every client and if he finds one of them set, he calls the

appropriate function to handle this request.

After the end of this nested loop the server enters another nested loop
where he checks another set of N flags. Those flags are used to notify the
server when a core has fulfilled his requests. If all this flags are set then
the server stops checking for new requests but if at least one of these flags
is unset the server exits this nested loop and continues the iterations of the

main loop.

On the other hand, the clients enter a part of the code where they submit
their requests. The kind of the requests and their total number is determined
by the user, depending on what scenario we want the clients to execute. We
are going to present the scenarios we executed on the next chapter. Continu-
ing with the code that the clients execute, every client blocks after he submits
his request and until the server implements it. The blocking is implemented
with the use of flags, the ones we mentioned in the previous paragraphs.
The clients submit their request and set their flag (status RCCE_FLAG_SET )
and wait until the flag is unset (status RCCE_FLAG_UNSET ), which happens

when the server finishes with the processing of the request.

When all the requests of a client are granted, the client sets his flag that
marks that he has finished, so the server can later know when he can also
finish. When a client has set his flag, his work has finished and can terminate.
When every client has finished with his requests, the server exits from his
main loop and prints the total time and the time that the communication

took. After that the program terminates.
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Figure 3.5: Client-server model visualization

At this point we need to explain more the use of the message passing
buffers and how the flags function. Beginning with the flags, we use the
provided gory interface functions to work with them. These flags are imple-
mented within message passing buffer memory. So every client writes and
checks, when needed, his local buffer for the flags. The server, when check-
ing or writing to these flags, interacts with remote buffers of other cores and
tiles. With this design, as it will also be shown later by the measurements,
we achieve very good efficiency because the bus is not congested with a lot
of memory access requests. Actually only the server goes to the bus to read
remote buffers as all the clients write and read only their buffer which is
within their tile.

Finally to clarify an information that might not be stated above, the
data structure as an entity is saved on private, off-chip memory, belonging

to the server. That means that only the server can access the data structure.

Client-server model with elimination

This model is slightly different to the simple client-server model explained
above. The main idea is that if the server receives a removing request after
an inserting request, there is no need to access the off-chip memory, which
means higher time cost, but can simply copy the data needed to be inserted
from the one client’s memory to the memory of the client that had submitted
a removing request.

To be more precise on how we implemented this model, the client part

is exactly the same with the above simple client-server model. Nothing
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changes, concerning the clients, as only the work that the server does is

modified to implement the model we want.

In the server part, an extra flag check is added, within the first nested
loop. At the time that the server checks the flags of the clients, if he finds
a flag set for an input request, before moving towards reading that element
and storing to the data structure, the server checks only the removing flag of
the next client. If he finds that flag set, he copies the element from the one
message buffer to the other, without accessing the main memory to insert

an element and then remove it.

This is a technique that could possibly lead to saving time as we gain time
from avoiding main memory accesses. On the other hand we lose time as we
do an extra check after every insert request instead of handling immediately
the request. We evaluated this method for the stack on the SCC and we are

going to see the results on the next chapter.

Lock model

Moving now to the model with the different approach, the one that uses
a lock. In this model every core executes requests unlike the client-server
model where there was one core responsible to execute the requests that he
received, but did not had request on his own. The data structure in this
model exists in shared, off-chip memory so all the cores have access to it.
That is our goal as in this model we do not want a core acting as a link
between the cores and the memory, instead all the cores should be able to

implement their requests on their own.

To guarantee the correct function of the stack and the completion of the
requests of every core, which means avoiding undefined conditions that can
occur from concurrent accesses to the data structure, we use a lock for the
whole structure. This coarse grain approach limits parallelism but is very
easy to implement due to the functions that the RCCE interface offers to

handle the test&set register on every core.

Every time that a core wants to add or extract an element he claims the
lock. If he receives it, he completes his job and frees it. This model combined
with the functions that claim the lock, provided by the RCCE interface, and
the atomicity that the test&set registers provide, ensures that there will be

no deadlocks. Unless of course a core that holds the lock crushes, in which
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case we will have a general problem with the execution. In our program we
chose that as a lock we will use the test&set register of the core with ID #0.

In this model to achieve similarity that will allow us to compare the three
models, we chose to allocate the same amount of memory as in the client-
server model and do the same initialization. So we allocate memory equal to
1.5 times the total number of the requests and we initialize the struct with
elements equal to half of the number of the total requests. So either if all
the requests are for insertion or for removal we will not encounter a problem
with a full or empty struct. Although, as mentioned before, we have specific
messages when such situations arise and the program can handle them.

A very important fact about the lock model is the issue with cache
coherency in the SCC system. SCC does not support cache coherency so
it is the programmers responsibility to ensure the correct version of the
data among the different cores’ caches. As in the lock model we use the
shared memory for our data structure, whenever a core makes a change to
an element, either adding one or removing one from the structure, we must
be sure that all the other cores can see this change. For that to happen
the updated data should always be written back to the shared memory as
soon as possible. To achieve this we need to flush the cache of every core
after he makes a change to the data structure. This can be accomplished by
the RCCE function RCCE_shflush() which does exactly that, evicts shared
data from a cache and it forces the data to be saved in the shared memory.
By this way we can be sure that every change that is made in the stack can
be seen by every core. If we think about it we will see that this causes a
time penalty but we are going to see in the next chapters how that cache
flush affects performance.

So the cores after we initialize our stack implement their requests com-
peting every time for the lock. When all cores have finished their requests,
with a barrier that the RCCE interface provides us, all the cores synchro-
nize. Core with ID #0 is responsible to print the total time and the time

that communication took. After that the program terminates.

3.2.2 FIFO queue

The basic idea of this data structure might be clear to most people with
a background on computer science but we need to mention some more in-

formation to make clear what exactly we implemented. This data structure
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supports two functions, insertion and removal of elements. These two opera-
tions happen in different edges of the structure, as we want the first element
being inserted to be the first that that will be removed.

Client-server model

In this model we follow the basic principles and structure with the stack sim-
ple client-server model. One core is the server and implements the requests
that the clients submit. The server does not make requests of his own. The
communication and notification between the clients and the server is again
based on the flags provided by the RCCE interface and use message passing
buffer memory.

The elements to be added and the extracted elements from the structure
are exchanged between the clients and the server again via message passing
buffers. Also the data structure is saved in private off-chip memory of the
server. We keep the same code structure with the stack client-server model,
the server loops and has nested loops where he checks the flags for requests
and the flags for finished cores. The clients execute another branch of code
where they have a loop and submit their requests.

For this data structure too, we initialize the queue with some elements
and allocate space enough so we never run out of space. We have to keep in
mind that with the FIFO queue, unlike the stack, the two functions occur on
different edges so when removing an element the structure does not get back
a used place for a new element as the insertions are made from the other

edge of the queue. The queue is implemented as an array in C language.

Lock model

Again, for the lock model of the FIFO queue we followed the same princi-
ples and design with the stack lock model. We use one lock for the whole
structure and this is implemented by using the test&set register of the core
with ID #0. The data structure is saved in off-chip shared memory and the
cores compete for the lock to have access to the queue.

We allocate the same memory as we did with the stack and initialize
the same amount of elements. Combining with the scenarios we run to take
our measurements, we have distributed and mixed types of requests so that
we do not run out of space in our queue. In this model the queue is also

implemented as an array.
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Two locks model

With the FIFO queue data structure we had the ability to check the perfor-
mance on the SCC system of a more fine grain lock model, a FIFO queue
with two locks. We took advantage of the fact that the operations on the

structure are done in different edges, so we can have one lock for every edge.

We kept the structure and the code exactly the same with the imple-
mentation of the one lock model but we used one lock for insertion and a
different lock for element removals. When a core wanted to insert an element
to the queue it competed for the lock implemented with the core’s test&set
register with ID #0 whereas to remove an element a core competed for for
the lock implemented in the core with ID #1.

Of course we had taken into account and prepared for conditions that
could make the two ends of the queue meet or even the one end pass the other
end, a fact that would have as an effect an erroneous function of our data
structure. We have avoided this situations from happening by controlling
the total number of requests and the distribution of their type, enqueue or

dequeue. Also by making checks on the position of each edge.

3.2.3 Binary max heap

The last data structure we implemented is the binary max heap. This is
a structure with partial ordering, which means there is some ordering of
elements in the structure but it is not so deterministic where an element will
always be in a specific position given same elements in the data structure,

as in totally ordered arrays or trees.

The maximum element is in the top of the structure and as we move
further down the elements start to decrease in value, decrease as integers.
No element has a predecessor with lower value. We implemented the heap
as an array and the functions that our data structure supports are extract

the maximum element and insert an element.

For our heap to be functional and correct we also implemented a combine
function, that does the rearranging of the elements when an element is
inserted. Also we had into the code parts that made the initialization of
a heap, that means when we had an array of elements it rearranged the

elements to make the array have the heap properties.
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Client-server model

To begin with, the main structure of the client-server model of the heap
shares many things with the previous data structures. The roles of the cores,
the code structure and the memory used is the same with the previous data

structures. The thing that changes is the initialization process of the heap.

To be more specific, the part of the code that the clients and the server
execute is the same as with the previous data structures except that now we
use different functions to insert and remove data, the appropriate functions
for the heap structure. The difference lays in the initialization of the heap.
Because the heap is a partially ordered structure we need to apply some
functions when initializing it to get the heap properties. We used a method
of initialization that allows us to save some time. This method is to insert
the half of the elements first, without checking something about their value.
Because it is a binary max heap, half of the element are going to be leafs.
Then, for every element that is being inserted we use the combine function
to make sure that the inner parts of the heap are added by ensuring the

heap properties.

Lock model

The lock model for the heap, is also very similar to the lock model of the
other data structures but has the same difference that we mentioned above

in the client-server model.

Getting into more detail, the lock is again implemented with the test&set
register of the core with ID #0 and the data structure is saved in off-chip
shared memory. There is one lock for the whole data structure which may
seem inefficient, as when an element is inserted or extracted we need to pass
from many nodes to rearrange the elements to keep the heap property. Al-
though there are nowadays ways that can make a heap a more parallelizable
data structure and there are even non-blocking concurrent heaps. But we
wanted to focus on other aspects in this thesis so we opted for the simple
to implement choice. The reader can refer to [1] for more information on

concurrent heaps.

Focusing on the differences with the other data structures, as we men-

tioned above, the initialization procedure is different because a heap should
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have certain properties. Like the client-server model, half of the initializ-
ing elements are simply entered in the structure and after them, for every
element inserted we call the combine function to ensure the needed partial

order of the elements in the heap.



Chapter 4

Evaluation of concurrent

data structures in SCC

In this chapter we are going to explain the method that we followed to
evaluate the data structures we implemented, the scenarios that our mea-
surements were based on and which properties of the data structures we

measured.

4.1 Analysis of method and scenarios

With our measurements we wanted to evaluate the scalability and the ef-
ficiency of our concurrent data structures. We conducted measurements
with various methods to evaluate how the distribution and the nature of the

requests by the cores affected various aspects of the execution.

One of the decisions for the client server model we took was that the
server will be an extra core. By that we mean that comparing with the
lock models, when we chose to have for example 12 cores running on the
lock model, on the clients server we had 13 cores, 12 clients and the server.
Although this inserts an inequality in the tests of the two models, we made
sure that the total requests conducted are equal, so every core had the
same amount of requests to implement, both in the lock model and in the
clients server model. Of course as we have mentioned the server does not
do requests, only handles the requests of the clients. Summing up, on the

experiments we conducted, the cores running on the lock model match the
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number of the clients and not the total cores running on the client server

model.

For our measurements we had four scenarios, the three of them had
equal amounts of insert and remove requests and the other one had a num-
ber, generated randomly, of insert and remove requests. To analyse more
those scenarios, the first one had equal number of both requests but dis-
tributed randomly for every core. We generated once a sequence of 200
numbers, zeros and ones, each number indicated the kind of the request to
be submitted. We had this sequence coded and compiled with our program.
Every core started to read the sequence depending on his ID. So every core
started from the place of an array that was equal to his ID number. De-
pending on the number he read, he did the appropriate action. After the
request was completed the core read the next number. If the requests to be
done by a core were more than 200 then the core just started reading again
the numbers from the beginning of this 200-position array. Every core read
this array enough times to complete the amount of requests that we asked

to be done.

In the scenario we presented above, every core did mixed types of re-
quests. We also designed scenarios that had a more dedicated role for the
cores and we are going to present these scenarios in the following para-
graphs. The first of these scenarios that we are going to present was ”Half
insert Half delete A”. In this benchmark some cores did only insertions in
the data structure and the rest of the cores only removed elements. To be
more specific, the first half of the cores did only insertion requests and the
other half did only requests of removal. For example in a client-server model
of a data structure, running with total 13 cores, lets say that the core with
ID #0 was the server, then cores from #1 to #6 only did insertion requests
and cores from #7 to #12 did removal requests. If the total number of the
cores was even, then it depended on which core was the server to determine
what group of cores would have one more core than the other. Whereas
in the lock models, if we had an odd number of cores then the removing
group of cores would be bigger by one core, as the division of the cores is
done by the integer division with the number 2 and as first half of the cores
we consider the cores that have an ID smaller than the quotient. Thus the
group of cores with an ID greater or equal than the quotient is bigger by

one in case of an odd number.
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We named the other scenario that gave particular tasks to cores ”Half
insert half delete B”. The idea behind this benchmark is similar to the
previous one. Half of the cores do only insert requests and the rest of the
cores do removal requests. As we mentioned above there needs to be a small
disclaimer, some times it is not actually two equal groups of cores but one
of the groups might have a core more than the other. Furthermore, the
difference between A and B is that in B, unlike the rule that we had in A,
cores with an odd ID number will do insertions of elements and cores with
an even ID will do only removal petitions. Consequently in every tile we
will have one core always wanting to insert elements and one core always
wanting to remove. This rule has two exceptions, firstly if the total cores
are an odd number, so there will be a tile with only one core operating and
secondly in the client-server model, the tile that hosted the server had only
one client, thus depending on the servers position, his pair core might either
had been only adding elements or removing.

Finally we had another random scenario that we used for some mea-
surements, but this particular scenario, unlike the three mentioned above,
does not have equal amounts of insertions and removals of elements. In
the first random scenario presented, a core had a set of 200 requests that
even though the type of the request was randomly distributed in this set,
there were 100 insert codes and 100 removal codes. In both ”half insert half
delete” scenarios, approximately half of the cores did insertions and half
removals therefore we also had a balanced mixture of requests. However,
in the last random scenario we used, we produced again a sequence of 200
integers, zeros and ones, but this time we let the amount of both request
codes to be random. We did not designate that the two sets of codes should
be divided in half. The 200 integer sequence was produced with the help of
the C language function int rand(void). These zeros and ones were saved
in an array, coded in our programmes and the cores read from that array,
beginning on the position based on their ID, the type of request that they
should submit. This scenario shared many similarities with the first one,
this means that the cores read the various entries of the array to see what
request they should do and each time moved by one position. If the total
requests asked to a core were more than 200, then the core simply started
from the beginning of the array after reaching the end of it, until all the
requests asked to the core were submitted and implemented.

In all of the above scenarios we silently implied that we allocated contin-



66CHAPTER 4. EVALUATION OF CONCURRENT DATA STRUCTURES IN SCC

uously the cores. For example if we wanted to allocate 5 cores we allocated
cores with ID #0, #1, #2, #3 and #4. This is true for most of our measure-
ments, we followed a strategy of continuous allocation of cores. Nevertheless
we also conducted experiments with cores distributively allocated to com-
pare how that effects results. We are going to present all these data in the

next chapter of this thesis.

4.2 Properties measured

In this point we are going to present and discuss the properties that we mea-
sured with our experiments. The results of these experiments, the analysis

and the comments are part of the next chapters.

To begin with we measured the throughput of every model, client-server,
client-server with elimination, one lock and two locks, respectively in the
data structures that these models existed. We measured the throughput
for the scenarios we presented and analysed above. We used different num-
ber of cores to see how scalable each data structure was and how the type
and the distribution of the requests affected performance. The number of
the requests that we wanted the cores to implement was specified and that
number was given with the execution command. In reference to the time
measurements, many times we took two measurements, we called the first
communication time and the second total time. Total time referred, as the
name implies, to the total time that the program run and to be more pre-
cise was the time from the moment that the cores learnt their ID, through a
RCCE interface command, until all the cores finished their communication
and were ready to stop execution. The other measurement, communication
time, was the time interval from the point that the cores started commu-
nicating, which means after memory allocations and initialization of the
data structures, the point that the cores started submitting requests to the
server or competing for the lock, until again the cores have finished all their

requests and were ready to stop execution.

Secondly we measured the fairness of the different data structures and
the different synchronization methods. Fairness is many times an important
variable when somebody wants to choose a synchronization mechanism for a
concurrent data structure because in an application the similarity in progress

among the cores and how often they get the lock might affect performance
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or the response of the application. We measured how fair the locks were
and how fair the client-server model. To achieve the measurement we let
the program run for some seconds and then saw how many requests each

core had submitted and have been implemented.

In addition to the properties mentioned above, we measured power con-
sumption of our data structures. Power consumption is a very important
aspect and design constrain for data centres, hand-held devices, embedded
systems but even general use computers. We wanted to have an image on
how each data structure performed in means of power consumption and
also how the synchronization techniques affected consumption. The mea-
surement of power was made able by the system information that the SCC
system provided us. We could have a measure of voltage and current so by
combining these we could calculate the total power consumed in a period
of time. As we have mentioned in previous chapter, the SCC platform also
gives us the opportunity to control the voltage and the frequency of a tile,
nevertheless during this work we did not experimented on the result that

controlling and changing the voltage or the frequency could have.

Furthermore, we benchmarked different versions of our data structure
programs to evaluate the role of the server’s position. Of course we are
talking about the client server implementations because there was no server
in the lock versions. So we tried some different approaches for the server’s
position to see how that affected throughput. As well as this, we have men-
tioned in previous paragraphs of the chapter that we also tried and checked

how the position of the allocated cores in general affected performance.

Finally, we had another idea to measure and see how the SCC platform
will perform. The idea was to add a delay between consecutive requests and
see how this affected fairness and other aspects. This concept has a reality
base because in real systems it is common that cores will have to do some
calculations or other work before they submit a request or interact with
the data structure. By inserting this delay, that was implemented by a for
loop of variable number of iterations, we tried to simulate this behaviour. By
increasing the number of the loop iterations we increased the amount of time

that theoretically another task, that the core dealt with, would consume.

After explaining the methods we followed and the properties we mea-
sured and evaluated, we can now move on to see the results that we acquired

by our experiments. In the next chapter we are going to see the graphs with
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the data and the results. Also we are going to comment and explain what
the experiments show about each data structure and about the different

synchronization methods.



Chapter 5
Experimental Results

In this chapter we are going to present the results we got from our mea-
surements and provide comments to describe the performance of the SCC

system and the various concurrent data structures.

5.1 Throughput measurements

To begin with, we provide the throughput measurements. With figures 5.1,
5.3 and 5.5 we see the performance in time for the three data structures com-
paring three scenarios each time, viewing the communication time, which
is the time during which the cores implemented requests. With figures 5.2,
5.4 and 5.6 we see the performance in time but for the total time that each

program run.

Next with figures from 5.7 to 5.24 we can compare time performance
when we allocated continuously the cores and when the cores were allocated
distributed.
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scenario, comparing continuous and distributed cores

Finally in figures 5.25, 5.26 and 5.27 we provide our measurements for
the random scenario which had unequal amount of insertion and removal

functions.

5.2 Power measurements

In this section we are going to present the graphs that show our measure-
ments for the power consumption. We conducted experiments for the three
data structures, for all the implementations of every data structure and
for the four scenarios mentioned in the previous chapter. The power con-
sumption prices that are shown in the graph are an average price of three

measurements every time.
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The power was measured for the total time that the programs ran and
not just for the communication time. Cores were allocated continuously and
every core had to complete 28.000 transactions before it was able to exit.

In the graphs 5.28, 5.29 and 5.30 we can see the results for the three data
structures comparing the three scenarios with equal amounts of insertions
and removals. In these graphs we have to keep in mind that in the client-
server models the server core is considered an extra core, so for example
when we get the consumption of 40 running cores, in the client-server model
we have 40 clients and 1 core as the server.

Furthermore, in the graphs 5.31, 5.32 and 5.33 we present the power
measurements for the random scenario that has unequal amount of the two
kinds of operations. Here though, we had the same number of cores in the
various implementations, the server is not an extra core on the client-server

model.

5.3 Fairness measurements

In this section we present the results of the experiments concerning the
fairness of each implementation of every data structure in the graphs 5.34,
5.35 and 5.36. We measured how fair the lock and the client-server imple-
mentations were because this is also an important criteria when selecting a
synchronization method for a data structure.

In the graphs mentioned above, lower number in the results means more

fair mechanism and when the number raises the mechanism becomes more

0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
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Figure 5.33: Power consumption measurements for the binary max heap,

unequal insertions and removals random scenario
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Figure 5.35: Fairness measurements for the fifo queue, unequal insertions
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unfair. We calculated this number of fairness by finding the average amount
of requests that all the cores accomplished in a certain period of time. Then
we found the number with the biggest numerical distance from the average,
that was the core with the most or the fewest transactions. The result
that shows the property of fairness in a data structure is the fraction of the

greatest difference from the average price by the average price.

5.4 Server position evaluation

A further experiment we conducted was how the position of the server influ-
ences the performance of the client-server model of the data structures. We

had two cases, one where the server was always core with ID #0 and the

2 4 6 8 1012 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48
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Figure 5.36: Fairness measurements for the binary max heap, unequal in-
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other where the core was the median of the allocated cores. For example if

we had 16 cores operating and they were allocated continuously, the server

was the core with ID #7. We present the graphs that show the performance

of the client-server implementations of every data structure when we tried

out the two approaches. On graphs 5.37, 5.39 and 5.41 we can see the com-

parison for communication time for the three data structures respectively

and on graphs 5.38, 5.40 and 5.42 we can see the total time comparison for

the three data structures.

5.5 Evaluation with delay inserted

The last experiment we are going to present is this of the throughput in

combination with delay inserted between every request of a core. With this

experiment we wanted to evaluate the performance of the data structures

in a scenario where every core should do some work or other task between

every request. This task was simulated by a delay we implemented. The

delay was a for loop and we tested various numbers of delay, so the cores

began with a small delay and moved on to larger ones.

On the following graphs, 5.43, 5.44 and 5.45, the cycles of delay are

increased as we move on to the right of the xx’ axes. For these measures we

used 48 cores and the random scenario with unequal amount insertions and

removals.
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Figure 5.41: Evaluation of server’s position for the binary max heap, com-
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Chapter 6

Conclusion

In the last chapter of this thesis we are going to provide some remarks and
summarize some results gathered form the results presented in the previous
chapter. The aim is to provide feedback and suggestions to potential future
users of the Intel’s Single-chip Cloud Computer or people interested of get-
ting a quick opinion over this computer and the concurrent data structures

use.

We are going also to suggest some future work that could be done to
research further data structure performance or the use of different kinds
of memory types. Also we are going to propose other aspects of the con-
current data structures or the Single-chip Cloud Computer that could be

investigated.

6.1 General Remarks

After finishing the experiments and our research, we are in a position that we
can comment on some general remarks over the platform, the development

and the results we collected.

To begin with the development and the working environment that SCC
provides, we can say that there are no big hinders or obstacles. The fact
that there is the option to use the PC that the SCC board is connected gives
us the opportunity to have a GNU\Linux or Windows PC available, where
it is easy to develop programs and applications and have available tools
for these operating systems. So the development and testing procedure is

not very hard but we have to keep in mind that cores need some times
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rebooting or clearing the registers or porting again the Linux image on the
cores. This happens because it is common from time to time and especially
if an application does not terminate successfully that some cores may get
stuck or have saved values on their registers or be in an irregular state. So,
many times before we can run and try our applications we need to be sure
of the state of the cores and of course that all the cores we want to use are

reachable.

Furthermore we need to be careful when using the SCC platform because
it does not support multiple users. In case the platform is used by a group of
people we need to be cautious and maybe establish and follow a programme
of usage. Although many users can be connected simultaneously to the PC
server that supports the SCC board, only one application at a time can run
on the cores. So if two users try to execute an application at the same time
one might over through the other or there might be unexpected or incorrect

results.

About the cores, we need to comment that the fact that Intel gave the
opportunity to boot a Linux image on the cores gives programmers many
tools. We can use C and Fortran compilers, so programming applications
becomes easier. Also the Linux presence on the cores allows programmers
to use many libraries and functions, thus making development easier and

increasing available tools to work with the platform.

We will now comment on the results we got from our experiments. The
most important and distinguishing element of the results comes from the
binary max heap implementations. As we have mentioned in previous chap-
ters, SCC lacks a coherency protocol for the caches, so it is the programmers
responsibility to check the data versions between the cores. The issue arises
when we use shared memory. As we have explained, the lock based im-
plementations use shared memory to save the data structure, so every core
must read and write to that memory. To be sure of the version of the data,
we need to do frequent cache flushes to make sure that the data we read and
write come directly from the shared memory and are in the newest version.
In addition to the frequent cache flushes, the remove and insert operations
on the heap have both a complexity of O(logn). This means that unlike
the other data structures that have a complexity of insertions and removals
equal to O(1), with the binary heap we need to read many more elements

before completing our task, which translates to more memory reads and
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writes. But the fact we evacuate the cache after every request means that
we can not benefit from previous memory accesses by the same core. This
leads to greater advantage in the performance of the client-server model, as
in that model the data structure is saved in private memory of the server so
the cache can be utilizes. This great efficiency in the performance leads also
to great power saves because a program running for less time means that it

will consume less energy.

Another more obvious fact is that for the fifo queue, the two lock imple-
mentation performs always better than the client-server model and of course
the one lock model. Also the two locks model always consumes less power.
On the other hand, we see that the client-server model is always the most

fair, in all three data structures.

We can also notice that our attempt with the client-server implementa-
tion with elimination does not work better, is not more efficient or more fair,
than the simple client-server model. Furthermore, we see that the position
that the cores are allocated play an important role on some implementations
on the throughput. This can by explained either by the change in the con-
gestion of the mesh network that the cores use to communicate with each
other and with the off-chip memory, but also by the change in the congestion
in the memory controllers that are used to access the off-chip memory, as
different cores use different memory controllers depending on the part of the

memory they want to have access to.

In addition to this, we see that the server position in the client-server
model does not play a very significant role in the throughput. Although
some time we get a slightly better performance with the server at the core
#0, in some scenarios and mostly when looking at the communication time

we get almost the same performance, no matter the position of the server.

Finally, with the experiments that have some delay inserted, we saw
that for every data structure there is a period of time that if the cores
where occupied with another task for that time, the overall throughput can
be better, mostly for the lock-based implementations. This means that
in an application where the cores have to do a calculation, or some other
task, between the requests or the lock acquiring try, there might be an
improvement in throughput. The only part that may not be well depicted is
for the binary max heap lock implementation, we probably had to examine

larger delays that could improve throughput for this program.



94 CHAPTER 6. CONCLUSION

6.2 Future Work

Based on the already existing work on data structures for the SCC platform,
and the work done for this thesis, someone can continue and investigate more

aspects both of the SCC and the concurrent data structures.

For example, a future work could be to experiment with the ability the
SCC platform gives us to control and alternate voltage and frequency of
a core or a group of cores. If a core competes for the lock and does not
succeeds in acquiring it, the core can lower its frequency or the voltage, thus
the power it consumes, for some time, until it retries to acquire the lock. Or
in the client serve model, until a request is implemented by the server, the
client that has submitted the request can lower its frequency until notified

that the request is implemented and it can move on.

Another suggestion for further investigation would be a hybrid model
for all three data structures, based on the client-server model and the lock
model. We could have more than one servers, with a group of clients ded-
icated to them and each server would have a small private data structure.
Then this servers would share a common data structure which will be the
important one, located in shared memory. The servers could synchronize
through a lock or more locks to access this central data structure. When a
“local” private data structure is full, the server has to copy the elements in
the central shared data structure and free the space of his “local” structure.

Then he can continue to receive requests from clients.
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Appendix A

Code

In this section we are going to present some of the code that run as the
data structure implementations, the headers we used and the C files with
the functions implementations.

To begin with, the header file to use the functions for every data struc-

ture.

/* A header file to ease the use of functions and

« structures for the programs developed during my
x thesis. All the programs will be developed for the
x Intel SCC computer using the RCCE platform.

x Tasoulas, Zois Gerasimos

* 31st October 2015

* Microlab ECE NTUA

x Athens, Greece

*/

#ifndef DSTRUCTSLIB_H
#define DSTRUCTSLIB_H

/>I¢********:I<>I¢****«\k****i’»** STRUCTURES sctsokskorstokskroksoskskonsokskonsokkon /
//:;\—::\'*;4::;::;: ! K sk sk 3k 5k ! ssokk Stack sk
struct stackNode {

uint32_t num|8];

//struct stackNode snext;

} typedef stacknode;

[Hssksorsoksorokkorrkokork FIFO and Sorted List sersskoksosokskosskokskosokok /

struct listNode {
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96 APPENDIX A. CODE

uint32_t numl§];

//struct listNode *next;

//struct listNode *prev;
} typedef listnode;

/skskok sk
struct heapNode {

uint32_t num|8];
} typedef heapnode;

sk Binary Heap s

x Stack (Client — Server) s

void client_push (int, uint32_t *, uint32_t %, RCCE_FLAG x);

uint32_t client_pop (int, uint32_t *, RCCE_FLAG x);

void server_push(int, uint32_t *, stacknode *, int x, RCCE_FLAG x, int);
void server_pop(int, uint32_-t *, stacknode #, int *, RCCE_FLAG x);

[k ik Stack (Locks) s Kk
void locked_push(int, uint32_t, int *, stacknode *, int);

uint32_t locked_pop(int, int *, stacknode x);

sk FIFO List (Client — Server) soksoksoskokk
void client_enqueue(int, uint32_t *, uint32_t %, RCCE_ FLAG *)

uint32_t client_dequeue(int, uint32_t *, RCCE_FLAG x);

void server_enqueue(int, uint32_t *, listnode x, int %, RCCE_FLAG x, int);
void server_dequeue(int, uint32_t *, listnode x, int, int %, RCCE_FLAG x);

/
[ *%

[k

« FIFO List (Locks) s
void locked_enqueue(int, uint32_t, int *, listnode x, int);

uint32_t locked_dequeue(int, int #, int *, listnode x);

uint32_t locked2_dequeue(int, int *, listnode x*);

/
/%%
/

<+ Binary Heap (General) 3

void combine(int, heapnode *, int);

[#rpkrekrrkrrkx Binary Heap (Client — Server) sskkxskkkxk k/
void client_insert (int, uint32_t *, uint32_t %, RCCE_FLAG x);

uint32_t client_extract (int, uint32_t %, RCCE_FLAG x);

void server_insert (int, uint32_t *, heapnode *, int *, RCCE_FLAG x, int);
void server_extract (int, uint32_t %, heapnode *, int *, RCCE_FLAG x);

« Binary Heap (Locks)

void locked_insert (int, uint32_t, int =, heapnode *, int);
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70 uint32_t locked_extract(int, int *, heapnode x);

71
72 #endif
The library for stack structure functions.

1 +#include <stdlib.h>

2 #include <stdint.h>

3 #include "RCCE.h”

4 #include ”dstructslib.h”

5

6 void client_push (int ID, uint32_t *num, uint32_t xbuffer, RCCE_FLAG xflag_push)
7 {

8 RCCE flag_write(flag_push, RCCE_FLAG_SET, ID);

9 RCCE_put((t-vcharp)buffer, (t_-vcharp)num, 8«sizeof(uint32_t), ID);

10 printf ("I sent %d\n”, num[0]);

1}

12

13 uint32_t client_pop (int ID, uint32_t xbuffer, RCCE_FLAG xflag_pop)

14 {

15 uint32_t num(8];

16 RCCE flag_write(flag_pop, RCCE_FLAG_SET, ID);

17 RCCE_wait_until(+flag_pop, RCCE_FLAG_UNSET);

18 RCCE_get((t-vcharp)num, (t_vcharp)buffer, 8xsizeof(uint32_t), ID);

19 printf ("I received %d\n”, num|0]);
20 return num[0];
21 }
22
23 void server_push(int ID, uint32_t xbuffer, stacknode xstack_array, int xhead, RCCE_FLAG xflag_push, int SIZE)
24 {
25 if (xhead == (SIZE + (SIZE / 2) — 1)) {
26 printf (” Stack_out_of_space”);
27 return;
28 }
29 xhead += 1;
30 RCCE _get((t_vcharp)stack_array[«head].num, (t_vcharp)buffer, 8*sizeof(uint32_t ), ID);
31 printf (" Pushed %d\n”, stack_array[«head].num[0]);
32 RCCE flag_write(flag_push, RCCE_FLAG_UNSET, ID);
33 return;
34 }
35
36 void server_pop(int ID, uint32_t xbuffer, stacknode *stack_array, int xhead, RCCE_FLAG xflag_pop)
37 |
38 if (xhead == —1)
39 stack_array [++ (*head)].num[0] = —1; Write —1 on stack_array|[0]

40 RCCE_put((t_vcharp)buffer, (t_vcharp)stack_array[*head].num, 8xsizeof(uint32_t), ID);
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printf (" Popped %d\n”, stack_array[+head].num[0]);
RCCE _flag_write(flag_pop, RCCE_FLAG_UNSET, ID);
(xhead) —= 1; //1f head was —1, then we restore it, else we just move the index one positio

return;

void locked_push(int ID, uint32_t nm, int xhead, stacknode xarray, int SIZE)

{

RCCE_shflush(); //Flush needed to make sure that we read the updated value of head
if (xhead == (SIZE + (SIZE / 2) — 1)) {
printf (” Full_stack !!! 7);
return;
}
(*head) += 1;
array [*head].num|[0] = nm;
RCCE_shflush(); //To be sure that head value and array is updated on all cores

return;

uint32_t locked_pop(int ID, int xhead, stacknode xarray)

{

uint32_t element;

RCCE_shflush(); //Flush needed to make sure that we read the updated value of head
if (xhead == —1) {
return —1;

} else {

element = array[(xhead)——].num[0];
RCCE_shflush(); //To be sure that head value and array is updated on all cores

return element;

The library for fifo queue structure functions.

#include <stdlib.h>
#include <stdint.h>
#include "RCCE.h”
#include ”dstructslib.h”

void client_enqueue(int ID, uint32_t *num, uint32_t xbuffer, RCCE_FLAG xflag_enqueue)

{

RCCE_flag_write(flag_enqueue, RCCE_FLAG_SET, ID);
RCCE_put((t-vcharp)buffer, (t-vcharp)num, 8+sizeof(uint32_t), ID);
printf ("I sent %d\n”, num[0]);
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uint32_t client_dequeue(int ID, uint32_t xbuffer, RCCE_FLAG xflag_dequeue)

{

uint32_t num|8];

RCCE_flag_write(flag_dequeue, RCCE_FLAG_SET, ID);
RCCE_wait_until(xflag_dequeue, RCCE_FLAG_UNSET);

RCCE _get((t_vcharp)num, (t_vcharp)buffer, 8*sizeof(uint32_t), ID);
printf (71 received %d\n”, num|0]);

return num[0];

void server_enqueue(int ID, uint32_t xbuffer, listnode * list_array , int xhead, RCCE_FLAG xflag_enqueue, int SIZE)

{

}

if (xhead == (SIZE + (SIZE / 2) — 1)) {
printf (” List _out_of_space.\n");
return;
}
xhead += 1;
RCCE_get((t-vcharp)list_array[*head].num, (t_-vcharp)buffer, 8xsizeof (uint32_t), ID);
printf (” Inserted %d\n”, list_array [«*head].num[0]);
RCCE _flag_write(flag_enqueue, RCCE_FLAG_UNSET, ID);

return;

void server_dequeue(int ID, uint32_t xbuffer, listnode x list_array , int head, int *tail, RCCE_FLAG xflag_dequeue)

{

if (xtail > head) {
uint32_t num|8];
num|[0] = —1;
printf (? Empty._list'\n”);
RCCE_put((t_vcharp)buffer, (t_vcharp)num, 8x*sizeof(uint32_t), ID);
} else {
RCCE_put((t_vcharp)buffer, (t_vcharp)list_array [* tail ]. num, 8*sizeof(uint32_t ), ID);
printf (" Extracted %d\n”, list_array[* tail |. num/[0]);
*tail +=1;
}
RCCE flag_write(flag_dequeue, RCCE_FLAG_UNSET, ID);

return;

void locked_enqueue(int ID, uint32_t num, int *head, listnode xarray, int SIZE)

{

RCCE_shflush(); To ensure we read the updated value of head
if (xhead == (SIZE + (SIZE / 2) — 1)i) {
printf (” List _out_of_space.\n");
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return;
}
xhead += 1;
array [*head].num[0] = num;
RCCE_shflush(); //To make sure new head value and array are seen by other cores

return;

uint32_t locked-dequeue(int ID, int xhead, int *tail, listnode xarray)

{

uint32_t num;

RCCE_shflush(); //To read the updated values
if (xtail > xhead)
return —1;
num = array|(xtail)++].num|0];
RCCE_shflush(); //To make sure all cores see the updated prices

return num;

/# To use the following function you have to be sure that
x #dequeue <= #enqueue and when the first enqueue happens
* then the number of continous dequeues is not greater than
* the total enqueues that have been commited until that

* moment
*/
uint32_t locked2_dequeue(int ID, int xtail, listnode xarray)

{

uint32_t num;

RCCE_shflush(); //To read the updated values
if (xtail == —1)
return —1;

num = array|[(*tail)++].num[0];
RCCE_shflush(); //To make sure all cores see the updated prices

return num;

The library for binary max heap structure functions.

#include <stdlib.h>
#include <stdint.h>
#include "RCCE.h”
#include ”dstructslib.h”

void combine(int x, heapnode sheap_array, int tail )
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7 A

8 int 1, r, mp;

9 uint32_t swap;

10

11 I =2 x*x;

12 r=(2xx)+ 1;

13 mp = X;

14 if ((1 <= tail) && (heap_array[l].num[0] > heap_array[mp].num]0]))
15 mp = ;

16 if ((r <= tail) && (heap-array[r].num[0] > heap_array[mp].num0]))
17 mp =r;

18 if (mp!=x){

19 swap = heap_array[x].num[0];
20 heap_array[x].num[0] = heap_array[mp].num|0];
21 heap_array[mp].num[0] = swap;
22 combine(mp, heap_array, tail);
23 }
24}
25
26 void client_insert (int ID, uint32_t #num, uint32_t xbuffer, RCCE_FLAG x*flag_insert)
21 {
28 RCCE flag_write(flag_insert, RCCE_FLAG_SET, ID);
29 RCCE_put((t-vcharp)buffer, (t-vcharp)num, 8x*sizeof(uint32_t), ID);
30
31 }
32
33  uint32.t client_extract (int ID, uint32_t xbuffer, RCCE_FLAG xflag_extract)
34 1
35 uint32_t num(8];
36 RCCE_flag_write(flag_extract, RCCE_FLAG_SET, ID);
37 RCCE_wait_until(+flag_extract, RCCE_FLAG_UNSET);
38 RCCE_get((t-vcharp)num, (t_vcharp)buffer, 8xsizeof(uint32_t), ID);
39
40 return num[0];
41 )
42

43 void server_insert (int ID, uint32_t sbuffer, heapnode xheap_array, int xtail, RCCE_FLAG xflag_insert, int SIZE)
a4
45 int i, p;
46 uint32_t swap;
47 if (+tail == (SIZE + (SIZE / 2) — 1)) {

48 printf (" Heap_out_of_space.\n”);
49 return;

50 }

51 xtail += 1;
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52 RCCE_get((t-vcharp)heap_array[tail].num, (t_vcharp)buffer, 8«sizeof (uint32_t), ID);
53

54 i = tail;

55 p = ((*tail) / 2);

56 while ((1 > 1) && (heap-arrayli].num[0] > heap_array[p].num|0])) {

57 swap = heap_array[p].num|0];

58 heap_array[p].num[0] = heap_array|[i].num[0];

59 heap_array[i |. num[0] = swap;

60 i =p;

61 p=i/2

62 }

63 RCCE _flag_write(flag_insert, RCCE_FLAG_UNSET, ID);

64 return;

65 }

66

67 void server_extract (int ID, uint32_t xbuffer, heapnode sxheap_array, int *tail, RCCE_FLAG xflag_extract)
68 {

69 if (xtail == —1) {

70 uint32_t num[8];

71 num|[0] = —1;

72 printf (” Empty_list!\n”);

73 RCCE_put((t-vcharp)buffer, (t_vcharp)num, 8+sizeof(uint32_t), ID);
74 } else {

75 RCCE_put((t_vcharp)buffer, (t_vcharp)heap_array[1].num, 8xsizeof(uint32_t), ID);
76

7 heap_array [1]. num[0] == heap_array[*tail].num[0];

78 (xtail) —=1;

79 combine(1, heap_array, *tail );

80 }

81 RCCE_flag_write(flag_extract, RCCE_FLAG_UNSET, ID);

82 return;

83 1}

84

85 wvoid locked-insert (int ID, uint32_t num, int *tail , heapnode *array, int SIZE)
86 {

87 int i, j;

88 uint32_t swap;

89 RCCE_shflush();

90 if (xtail == (SIZE + (SIZE / 2) —1)) {

91 printf (” List_out_of_space.\n" );

92 return;

93 }

94 stail += 1;

95 array [+ tail ]. num[0] = num;

96 j = *tail;
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i=j/2

while ((i > 1) && (array[j].num[0] > array[i]. num[0])) {
swap = array[i]. num/0];
array[i]. num[0] = array[j]. num[0];

array[j |. num[0] = swap;

J =1
i=j/2
RCCE_shflush(); //To make sure new head value and array are seen by other cores

return;

uint32_t locked_extract (int ID, int *tail, heapnode *array)

{

uint32_t num,;

RCCE_shflush(); //To read the updated values
if (xtail < 0)
return —1;
num = array[1].num[0];
array [1]. num[0] = array[(*tail)——].num|0]; //Move last element to the top, reduce tail index
combine(1, array, *tail );
RCCE_shflush(); //To make sure all cores see the updated prices

return num;

Following we will give one example for every data structure. We are
going to present a client-server implementation for the stack, a lock imple-
mentation for the binary max heap and a two lock implementation for the
fifo queue.

The code for the stack.

/* A client server model executing stack operations

x (insert and delete).

Core with ID 0 is the server and the others are the

*

x clients

x Tasoulas, Zois Gerasimos
«+ Microlab, ECE, NTUA
16th September, 2015

*

#include <stdint.h>
#include <stdlib.h>
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14  #include <errno.h>
15 #include "RCCE.h”
16  #include ”dstructslib.h”

17

18 int RCCE_APP(int argc, char xargv(])

19 {
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

int i, ID, op, totalUEs, error, checkvar = 0, iterations, SIZE, xhead;

int data[200] = {1,0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0,

0,1,1,1, 1,0, 0,0, 1, 1,1,0, 1,0, 1,1, 1, 1,0, 1, 0,0, 1,0, 1, 0, 1, 0, 0, 1, 0
0,1, 1, 1,0, 1,0, 1,0, 1,1, 1,0, 1,0, 1,0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0
0,0, 00, 1,0,0 0,0, 1,1, 0,0,0, 1, 1,1, 0,1, 0, 0,0, 1,0, 0,1, 1,1, 0, 1, 0
1,1,1,1,1,1,1,1,1,0, 1, 1,0, 1,0, 1,1, 0, 0, 1,0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0
0,1,0 1,1, 1,1, 0,0, 0, 1,0 1,0,0,0 0 0,1, 0 1,1, 1, 1, 1,0, 0, 1, 1, 0, 1
0,1,0, 1,1, 1, 0,0, 0, 0, 0, 0, 0, 0};

uint32_t num(8], myvar, xbuffer;
double stimel, stime2, ftime;
time_t t;

stacknode *stack_array;
RCCE_FLAG flag_push, flag_pop, flag_finished;
RCCE_FLAG_STATUS status;

RCCE._init(&arge, &argv);
stime2 = RCCE_wtime();
ID = RCCE_ue();
if (arge !=2) {
if (ID == 0)
printf (?SIZE_needed._in_the_input\n”);
return (1);
}
SIZE = atoi(argv[1]);
totalUEs = RCCE_num_ues();
iterations = (SIZE / (totalUEs — 1));
buffer = (uint32_t *) RCCE_malloc(8xsizeof(uint32_t));

if (error = RCCE_flag_alloc(&flag_push))
printf (" Mark_01:_Could_not_allocate_flag_push_on_%d,_error=%d\n”, ID, error);
if (error = RCCE_flag_alloc(&flag_pop))
printf (" Mark_02:_Could_not.allocate_flag_pop_on_%d,_error=%d\n”, ID, error);
if (error = RCCE_flag_alloc(&flag_finished))
printf (”Mark.03:_Could_not._allocate_flag_finished .on_%d,_error=%d\n”, ID, error);

if (error = RCCE_flag_write(&flag_push, RCCE_FLAG_UNSET, ID))

printf (" Mark_04:_Could_not.initialize_flag_push._on.%d,_error=_%d\n”, 1D, error);
if (error = RCCE_flag_write(&flag_pop, RCCE_FLAG_UNSET, ID))

printf (”Mark._05:_Could_not.initialize_flag_pop._on_%d,_error=%d\n”, ID, error);

)

i

)

)

)

0
1
1
1
1

I

)

I

)

I
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r = RCCE_flag_write(&flag_finished, RCCE_FLAG_UNSET, ID))
printf (” Mark_06:_Could_not_initialize.. flag_finished _on_%d,_error=%d\n”, 1D, error);

srand((unsigned) time(&t));
if (ID == 0) {

}

stack_array = (stacknode %) malloc((SIZE + (SIZE / 2)) * sizeof(stacknode));
head = (int *) malloc(sizeof (int ));

xhead = —1;
for(i =0; 1 < (SIZE / 2); i++) {
xhead = i;

stack_array [*head].num[0] = (rand() % 100001);

RCCE_barrier(& RCCE_.COMM_WORLD);
if (ID == 0) {

stimel = RCCE_wtime();
while (checkvar == 0) {
for (i =1; 1 < totalUEs; i++){
if (error = RCCE_flag_read(flag_push, &status, i))
printf (”Mark_07:.Could.not.read _flag_push._on_%d,_error=%d\n”,
i, error);
if (status == RCCE_FLAG_SET) {

server_push(i, buffer, stack_array, head, &flag_push, SIZE);

}

if (error = RCCE_flag_read(flag_pop, &status, 1))
printf (”Mark._08:_Could_not._read _flag_pop_on_%d,_error=%d\n",
i, error);

if (status == RCCE_.FLAG_SET) {

server_pop(i, buffer, stack_array, head, &flag_pop);

}
for (i =1;1 < totalUEs; i++) {
if (error = RCCE_flag_read(flag_finished, &status, 1))
printf (”Mark._09:_Could_not._read_flag_finished _on._%d,_error=%d

} else {

\n”, i, error);

if (status == RCCE_FLAG_UNSET)
break;

if (i == totalUEs — 1)
checkvar = 1;

op = ID;
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104 for (i =0; 1 < iterations; i++) {

105 if (datajop] ==1) {

106 num([0] = (rand() % 10000001) + ID;

107 client_push (ID, num, buffer, &flag_push);

108 RCCE_wait_until(lag_push, RCCE_FLAG_UNSET);

109 //Push is "non—blocking” we have to be sure it was processed by the
110 / /server

111 } else {

112 myvar = client_pop(ID, buffer, &flag_pop);

113 }

114 op +=1;

115 if (op > 199)

116 op = 0;

117 }

118 if (error = RCCE_flag_write(&flag_finished, RCCE_FLAG_SET, ID))

119 printf (”Mark.10:_Could_not_write_flag_finished_on_%d,_error=%d\n”, ID, error);
120 }

121 ftime = RCCE_wtime(); //Get ending time

122 RCCE-_free((t-vcharp) buffer);

123 if (ID==0){ //Printing and freeing stack and execution time

124 printf (?\nTotal_time\t\t_%f_secs\nCommunication_took\t_%f_secs\n”, ftime — stime2,
125 ftime — stimel);

126 if (xhead == —1)

127 printf (” Queue_is_.empty\n”);

128 free (head);

129 }

130 RCCE-finalize();

131 return (0);

132}

The code for the binary max heap.

/* Implementing a shared binary max heap, protected with lock from
* simultaneous accesses. Executing binary max heap operations

* (insert and delete max).
« We use core’s 0 lock as a global lock for our data

* structure. To do any operation with the data you need to

x acquire this lock before proceeding.

© 0 N U W N =
*

* Tasoulas, Zois Gerasimos

10  * Microlab, ECE, NTUA
11 * 12th December, 2015
12 «/

13

14  #include <stdint.h>
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#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include "RCCE.h”
#include ”dstructslib.h”

int RCCE_APP(int argc, char xargv(])
{

int data[200] = {1,0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0,
, 000601110160 1111°010 0 1,0, 1, 0, 1, 0, O,
0, 1, , 0, 1, , 1, 0,1, 0, 0, 0, O,
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uint32_t num, xbuffer;
double stimel, stime2, ftime;
time_t t;

heapnode xheap_array;

RCCE._init(&arge, &argv);
stime2 = RCCE_wtime(); Get starting time
ID = RCCE_ue();
if (arge !=2) {
if (ID == 0)
printf (” Size_needed _upon._input\n”);
return (1);
}
SIZE = atoi(argv[1]);
totalUEs = RCCE_num _ues|();
iterations = SIZE / totalUEs;

8 integers because memory allocation should be product of 32, we just need one integer
tail = (int *) RCCE_shmalloc(8x*sizeof(int));//Tail variable will hold the tail cell of the heap
if (tail == NULL){

if (ID == 0)
printf (”01:_Problem._with._allocating._shared_memory\n”);
return (1);
}

Allocate heap, heapnode = 32B
heap_array = (heapnode x) RCCE_shmalloc((SIZE + (SIZE / 2)) * sizeof(heapnode));
if (heap_array == NULL){

if (ID ==0)
printf (”02: _Problem.with.allocating.shared _memory\n”);

return (1);
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}
srand((unsigned) time(&t));
if (ID==0){ // Initializing tail index
xtail = ((SIZE / 2) — 1);
RCCE_shflush();
for (i = ((SIZE / 2) — 1); 1 >= (SIZE / 4);i——) {
num = (rand() % 100001); //Doing #SI1ZE /4 inserts to initialize the heap
heap_array[i ]. num[0] = num;
}
for (1 =((SIZE /4) —1);1i >0;i——){
num = (rand() % 100001);
heap_array[i |. num[0] = num;
combine(i, heap_array, = tail );
}
}
RCCE_shflush();
op = ID;

RCCE_barrier(& RCCE_COMM_WORLD);
stimel = RCCE_wtime(); //Get starting time
for (i =0; i < iterations; i++) {
if (datajop] ==1) {
num = (rand() % 100001) + ID;
//printf (” Insert element %d, core %d\n”, num, ID);
RCCE_acquire_lock(0); //Everybody uses lock(0)
locked_insert (ID, num, tail, heap_array, SIZE);
RCCE_release_lock(0);
} else {
RCCE_acquire_lock(0);
num = locked_extract(ID, tail, heap_array);
//printf (" Extract element %d, core %d\n”, num, ID);

RCCE_release_lock(0);

}

op +=1;

if (op > 199)

op = 0;

}
RCCE_barrier(& RCCE_COMM_WORLD);
ftime = RCCE_wtime(); //Get ending time
if (ID==0){ / /Freeing heap and printing execution time

printf (”\nTotal_time\t\t_%f_secs\nCommunication_took\t_%f_secs\n”, ftime — stime2,
ftime — stimel);

RCCE_shflush(); //To be sure we read the updated value of head

if (xtail < 0)
printf (”Heap._is_empty.\n");
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105 }

106 RCCE_shfree((t_vcharp) tail);

107 RCCE_shfree((t_vcharp) heap_array);
108 RCCE-finalize();

109 return (0);

110 }

The code for the fifo queue.

/* Implementing a shared data structure protected with locks from simultaneous

% accesses. Executing fifo list operations (insert and delete).

* We use core’s 0 lock to access the end point of the structure, so to do
x insertions and core’s 1 lock to access the starting point, so to do removals.

To do any operation with the data you need to acquire one of these locks before

*

* proceeding.

© 0 N O Otk W N
%

x Tasoulas, Zois Gerasimos
10  * Microlab, ECE, NTUA
11 * 11th December, 2015
12 */

13

14 #include <stdint.h>

15 #include <stdlib.h>

16  #include <stdio.h>

17  #include <errno.h>

18 #include "RCCE.h”

19  #include ”dstructslib.h”

20

21 int RCCE_APP(int argc, char xargv[])

22 {

23 int data[200] = {1,0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0,
24 0,01, 1,1, 1,0, 0,0, 1,1, 1,0, 1,0, 1,1, 1, 1,0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1,
25 0,001,110 1,0 1,0, 1,1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, O, O, O, O, 1,
26 1, 0, 1, 0, 0,0 0, 1,0, 0,00, 1 1, 0,0,0, 1,1, 1, 0, 1, 0, 0, 0, 1, 0, O, 1, 1, 1,
27 0,1, 0,1, 1,1, 1,1, 1, 1,1, 1, 1,0, 1, 1,0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0,
28 1,0 1,0, 1,0, 1,0, 1,1, 1,1, 0,0, 0,1, 0,1, 0,0, 0,0, 0, 1,0 1, 1, 1, 1, 1, 0,
29 0,1,1,0,1, 1,0, 1,0, 1,1, 1, 0, 0, 0, 0, 0, 0, 0, 0};

30 int ID, i, totalUEs, error, op, *head, xtail , iterations, SIZE;

31 uint32_t num, xbuffer;

32 double stimel, stime2, ftime;

33 time_t t;

34 listnode = list_array ;

35

36 RCCE_init(&argc, &argv);

37 stime2 = RCCE_wtime(); //Get starting time



38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79
80
81
82

110 APPENDIX A. CODE

ID = RCCE_ue();
if (arge !=2) {
if (ID ==0)
printf (”SIZE_needed_upon.input\n”);
return (1);
}
SIZE = atoi(argv[1]);
totalUEs = RCCE_num_ues();
iterations = SIZE / totalUEs;
head = (int *) RCCE_shmalloc(8xsizeof(int));//Iead variable will hold the head cell of the list
//8 integers because memory allocation should be product of 32, we just need one integer
tail = (int *) RCCE_shmalloc(8x*sizeof(int));//Tail variable will hold the tail cell of the list
if (head == NULL){
if (ID ==0)
printf (?01:_Problem._with_allocating_shared_memory\n”);
return (1);
}
if (tail == NULL){
if (ID ==0)
printf (?02:_Problem._with_allocating_shared_memory\n”);
return (1);
}
list_array = (listnode *) RCCE_shmalloc((SIZE + (SIZE / 2)) x sizeof(listnode));
if (list_array == NULL){
if (ID ==0)
printf (?03:_Problem._with._allocating.shared_memory\n”);
return (1);
}

srand((unsigned) time(&t));

// Initializing head, tail index. Initializing queue only by core #0, to be similar to CS implemantation

if (ID==0){
xhead = —1;
xtail = 0;
RCCE_shflush();
for (i =0;1 < (SIZE / 2); i++) {
num = (rand() % 100001) + ID; //Doing totalUEs enqueues to
list_array [i]. num[0] = num;
}
xhead = (SIZE / 2) — 1;
RCCE_shflush();
}
RCCE_ barrier(&RCCE_COMM_WORLD); //To ensure all cores have finished their operations
stimel = RCCE_wtime(); //Get starting time
op = ID;
for (i =0; i < iterations; i++) {
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83 if ((datafop] % 2) ==1) {

84 num = (rand() % 100001) + ID;

85 // printf (" Push element %d, core %d\n”, num, ID);

86 RCCE_acquirelock(0); //lock(0) for insert

87 locked_enqueue(ID, num, head, list_array, SIZE);

88 RCCE _release_lock(0);

89 }oelse {

90 RCCE_acquire_lock(1); //lock(1l) for remove

91 num = locked2_dequeue(ID, tail, list_array );

92 // printf (" Pop element %d, core %d\n”, num, ID);

93 RCCE_release_lock(1);

94 }

95 op +=1;

96 if (op > 199)

97 op = 0;

98 }

99 RCCE barrier(&RCCE_COMM_WORLD); //To ensure all cores have finished their operations
100 ftime = RCCE_wtime(); //Get ending time
101 if (ID==0){ //Printing and freeing queue and execution time
102 printf (”\nTotal_time\t\t_%f_secs\nCommunication_took\t_%f_secs\n”, ftime — stime2,
103 ftime — stimel);
104 RCCE_shflush(); //To be sure we read the updated value of head
105 if (xhead < xtail || *head == —1)
106 printf (” List_is .empty.\n");
107 /= while (xhead >= xtail) {
108 printf ("Element is %d\n”, list_array [*head].num|0]);
109 (xhead) —= 1;
110 !
11 +/
112 }
113 RCCE_shfree((t_vcharp) head);
114 RCCE_shfree((t_vcharp) tail);
115 RCCE_shfree((t_vcharp) list_array);

116 RCCE finalize
117 return (0);
118}

—~

);
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