25

2y
»°

o OPOMHBEYS .
N SHI=
nvpgopros

E®NIKO METZOBIO [TOAYTEXNEIO

2XOAH HAEKTPOAOI'QN MHXANIKQN KAI MHXANIKQN YITOAOI'TETOQN
TOMEAX TEXNOAOI'TAY ITAHPO®OPIKHY KAI YIIOAOI'TETQN

EPTAXTHPIO MIKPOYTIOAOTIZTON KAI YHOIAKQN TYSTHMATON

Avantoén MeBoooroyiog Avvapiknc Awayeipiong
Xvoyvotntog o FPGAs péoo EAEyyov tov Movorati@v
Agdopévov og llpaypnatiko Xpovo

AITIAQMATIKH EPT'AXIA

[T€Tpog A. Xovcovpng

EmPrénov: Anunitprog 1. Zovvtpng
Avarinpotc Kadnyntmg E.M.IL

AOnva, Oefpovdpilog 2016

25

2y
»°

‘l\
h(\
s X
OPOMHBEYS .
N SHI=
nvpgopos

E®GNIKO METZOBIO I[IOAYTEXNEIO

2XOAH HAEKTPOAOI'QN MHXANIKQN KAI MHXANIKQN YITOAOI'TXTQN
TOMEAX TEXNOAOTI'TAX ITAHPO®OPIKHX KAI YIIOAOI'TETQN

EPTAXTHPIO MIKPOYTIOAOTIZTQN KAI WHOIAKOQN SYSTHMATOQN

AvantoEn MeBoooroyiog Avvaptkng Awayeipiong
Yvyvotntog o€ FPGAs péoow EAEyyov tov Movomatiov
Agoopévov oc llpaypatiko Xpovo

AIIIAQMATIKH EPI'AXIA

[T€Tpog A. Xovcovpng

Emprénwov: Anuntplog L. Zovvrpng
Avaminpotc Kadnynmc E.M.IL.

EykpiOnke and v tpuein egetactikn emtponn v 29" dgfpovapiov 2016

Anuntprog 1. Zovvrpng Kuopd IMexpeotln I'edpyrog Owovopdkog
Av. Kadnynmc E.M.IL. Kabnynmc E.M.IL. En. KaOnynmg E.M.II.

AbMva, @efpovdprog 2016

[TeTpog A. Zovcsovpng
Aumhopatovyog Hiektpodldyog Mnyavikdg kot Mnyovikodg Ynoroyiotov E.MLIT.

Copyright © ITétpog A. Xovcovpng, 2016

Me empoiaén mavtog dwaidpatoc. All rights reserved.

AmaryopeveTal 1) avTlypoen, omobKevo Ko SLovVopY| TG TapoVoaG EPYACING, €5
OAOKANPOL M TUNHOTOG OVTNG, Yo eumopikd okomd. Emirpémeton m avarvmoon,
amoONKELOT KOl OLLVOUY Y10 GKOTO U KEPOOGKOMIKO, EKTALOEVTIKNG 1) EPEVVNTIKNG
@OoNG, LLO TNV TPOVTOOEST VL AVOPEPETAL 1 TTNYN TPOEAEVOTG KOl VO dlaTnpEiTot To
napov unvopa. Epotiuata mov agopodv tn xpnon g epyaciog yio. KEPIOGKOTIKO
oKOTO TPEMEL VO AmeLBVVOVTOL TPOG TOV GLYYPAPEQ.

Ot amoyelg Kol T0. GUUTEPACUATO TOV TEPLEYOVIOL GE AVTO TO £YYPOUPO

ekQPalovy Tov cuyypagéa Kol Ogv TPEMEL Vo EPUNVELDETL OTL AVTITPOGOTEVOVY TIG
emionueg B€oeig Tov EOvikod Metadfiov [Torvteyveiov.

Contents

EUPETIPLO BUCOVMV ..ottt 7
EUpetpro TTIWVAK®V ..coeviiiiiiiiiiiiiiiiitcctccee e 9
ZOVTOUN TEEPTATIY weuvermrertereeurenieeteste st esreetesseesresstesrtesbeestesreebesatesseebeesaesseensesanessees 10
AADSTIACT .ottt ettt b et ettt a et eea e b et e e aeenaeeteeaee 11
BUY0PIOTIEG ettt 12
1o BAIOOYMYT ettt ettt ettt e ettt e et e e st e e s b e e et e e e nb e e s at e e snaeenane 13
1.1 EVOOUATOUEVO ZUGTILOITOL «eeenveeeerieeeiiieerieeereeeeeitee et e e sieeeeireeesnreessneeeeane 13
1.2 Evoouatopévn DToAOYIOTIKT] — TPOKATGELG .cevveeerreeerereeeireeeireeenreeeseeeenane 14
1.3 FPGA - 10TOPTKT] EEEMEN eeveiiiiiieiiieeteeetee ettt 15
1.4 ITheovektnuota xpNons TV FPGA ..o 17
1.5 AT TOU FPGA ..ttt et 19
1.6 "ETOULEC PUBAMOONKES covvveeririeiiieeeitee ettt ettt et sare e saae e 21
1.7 [Teprypaoen TpoPAnuatog Kot IIPOTOGT AVONG weevveeerrieeieeeireeeiieeeieeeae 22
1.8 Epyaldeio TOU YPNOULOTOMONKOY .eveeeirieeiiieeiieeeiieeereeere e eeireesaee e 23
2. INTFOAUCTION ettt ettt et et e sbe e st sbe e s e naeeas 26
2.1 Embedded SYStEMS ...c..eoiiriiiieieteeeeeeeete ettt 26
2.2 Embedded computing — challenges..........cceceevuervienienenienieeeieneeeeeeenn 26
2.3 FPGA - @VOIULION .utiiiiiieieeteeteteteeee ettt ettt st 28
2.4 Benefits of FPGA technologycoceoeeiiiiininininiriciccccrecereeeeeeene 29
2.5 FPGA SITUCTUIE .eouetieiieeiieeieete ettt ettt 30
2.6 SOFtWAre lIDrari@S..ceueerueeieeierieeieetereeeete ettt st 32
2.7 Suggested SOIULIONccuerieriiriiriiriieieieteteree ettt 32
2.8 TOOIS USEA ..cuuiiuiieiiiiieieeieeteee ettt ettt ettt st ettt sae b s enaeen 33
3. Data path, control path, synchronous and asynchronous designccccc...... 36
3.1 GENETAL ..ttt sttt st b et ae e e sae s 36
3.2 Data Pathu.cc e 37
3.3 Control path (CONrol UNIt) c..eeecveerieriieieeieeeeeeee et 38
3.4 Combinational (asynchronous) designcccccceeeervieeneeniieiiieniieeneeneeene 40
3.5 Sequential (Synchronous) deSigncceceevieriieinieriieenienieerteeeeeee e 41
3.6 Synchronous vs asynchronous designccoceeveerieriieeniensieeneeeeeeneeene 43
3.7 PANS et 46
3.8 FPGA tIMING couttiiiiiiieeieesteete ettt ettt te ettt sabe st e et e ssse e snesnnas 47

3.9 Timing in XilinX deSIZNS...c.eceverieririririeieteieiereneeeeere ettt 50

3.10 Suggested SOIULIONccouiruerierierieniieteieeteser ettt 52
3.10.1 Timing information of original CIrCUItccceeerererrererieieierrenienene 52
3.10.2 FINdiNg CroSSIOAdScvevverueruerrininiieiiriteteteteeestesee sttt eens 52
3.10.3 CONIOL ittt sttt st s 54
3.10.4 Finding initial control Signals......c..cccceceeeririieneneneneneneeeceeeeene 54
3.10.5 Presenting parental SignalS......c.cceeeeriiirnieriiiiniienieieeeeteeeee e 55
3.10.6 Manual retouch of file.....cccoerirerinirieieeeeeere e 56
3.10.7 Generating VHDL Codecooiiriiiiiiniiiieeieeteeteeeeeete e 57
3.10.8 Creating digital clock manager (DCM).......ccccoveeviiniennienienienienne. 57
3.10.9 Schematic of the enhanced CIrCUIt....c..cecervrierierienenenereeeeceeeeene 59

CASE STUAY weenrieiieiiieeieet ettt ettt et e st e et e st e e seessbe e st e ssse e saessaennnesssaanns 60
CONCIUSION 1ttt sttt ettt sa et st e be e e sat e b e etesseensenas 62
FUBUIE WOTK .ttt ettt ettt sae e 63
Appendix A — Detailed TULOralceecveeriieriiiieieeteeeee et 64

A1 From VHDL to implementationccccceeeueerieriieeniienieeniesieeseeseessieeseens 64

A.2 Analyzing the circuit using Planahead Expanderccccocceveeveniencnnenne. 71

A.3 Inserting Selector iNto the Project......oceeiireerereererieneeeeereeeeeeeeee 74

A4 Building the digital clock managerccocoevevieiiniinennneeeeee 75

A.5 Inserting the digital clock manager........cocceceveeeeieiienenenenenereccecenen 79

A.6 Connecting internal signals using FPGA Editorcccooeevieniiieniiincnniene. 80

A7 Simulating the New deSigNcocuevveviereniririrteieeteeereeee e 81

APPENAIX B ittt ettt ne 84
B.1 Edf file eXplanationc..coceeeieieiiinieninincrieeeeeteeeeeereee e 84
B.2 Twr file eXplanation.........cocoeeieieiiinieninininieeeeeceeeese e 88

AppendixX C — SOUICE COUC.....iruiriiriieniiiieieietententeeeei ettt sbe sttt seeneens 91

C.1 Main circuit of the demO.....cceeeririiiiieeeeeeeeeeeee e 91

C.2 Selector Of the demOcc.couevereririiieteeeer e 93

C.3 Digital clock Managercooueeviirieeiieieeeeteetete ettt 95

Cd WIAPPET B ittt sttt e nee s 98

C.5 Test bench of demO CIrCUIt.....ccererereririiieieeeereree e 100

BUBAIOYPOUDTOL ceveveeeniteeeiteeeiteeete ettt ettt e s sane 102

Evpempro Ewkovov

1: ZOYXpovat EVOWUATWHEVO ZUGTIHOTO. «eeveenreeiienieeeeeienieenieeeeseeeseeeeesseensesasesseas 13
2: FPGA TAV®W 0& TUTIWHEVI KUKAWDOTO weevveenveeniereeererrenseensesiesseesseseessesssessaessenns 16
3: EEEALEN TNG AYOPAG OE EKATORHUPLI cerevereeenreenierieenrerirenseeseetesseessessesseensessaessenns 17
4: Apyitektovikn TUToU vnoidwv pe Stacuvvdéoels block kat switch boxes 20
5: AlaSkaoior KATAOKEVT)G KUKAWUATOG TIAVW 0€ FPGA ..o, 25
6: Control and Data Path.........cocooieiiiiiineeeec e 36
7: Basic components of Control and Data Pathccccceeeevienerniincienieieienceeeene 37
8: MIPS Data Pathcooiieiiiieieee ettt 37
01 IMIPS L.ttt sttt ettt b e bt ettt nee 40
10: Combinational CIFCUIt.....eeueeeerierteieeteetet et s 41
11: Block Diagram and Timing Diagram of Clock PulSescccccoeviereiiinieriieenneenne. 43
12: Asynchronous vs. Synchronous DeSigncocceevuierierrieeniensiienienieenee e 45
13: Clocked Sequential CirCUIT ..eoviirieriierieeieeeieeteete ettt sreeseesaeenes 45
14: Pulsed Sequential CirCUIT.....ocvieiieeieeiieeeieeieeeteeie et et e et esre e e s e saeeeee 45
152 Critical Path.ec.eeeeeeieeeeeee et 46
16: Combinational CirCUIT....coueivuerierieieeteeteee ettt 47
17: Setup and HOId TIME ..cevieeieeiieieeieeteeeeee ettt esae e st e eaea e 48
18: Propagation TIMEc.cceueeiieeieeieeieeeeete ettt ettt st 48
192 TIMING ISSUES ettt ettt ettt be s 49
20: CombinatioNal LOZIC....ccueeteieriinieniiniieitetetestesieseest ettt 50
271: XilinX TimiNg DESIZN cuveeveeuiriieieieienierienieeieee ettt sttt saesae e 50
22 INTEICONNECTIONS c..teiteeiieeteette et estee et et e et e bt e s bt e st e sabe e bt e st e e bt e sasesaseesaneenneenane 51
23: InterconneCtion DEtail.......cceevueeierierieriereeieeeee ettt 51
24: Path EXaMPIE..coeieiiiiiieeietceeteeeetct ettt ettt 54
25: Slow to Fast Clock SWItChINGcooviiiiiiiiiriiieecte e 61
26: Opening Screen of Planaheadcceecveeiinieeienieeceeeeeereee e 64
27: NEW ProOjJECE SCIEEN c..eiiiiiiiieeieeteete ettt ettt ettt sttt e sbe e s s 64
28: Main screen of Planahead.........coeeeveriiiiieiienineneeeeeeeeeeeee e 65
29: RTL SChEMALIC .veuteeieieeieeiteieetesitetesteset ettt sttt et r et nne e 65
30: SYNTNESIS SETLINGS ..eevieeiieiieeiieie ettt ettt ettt e et esbeesatesbeesaaesssaesanessseenns 66
371: Add SOUICES SCIEEN ..cuveiiiiiiiieiteettete ettt ettt et st sb et sbe e e saeenaeeas 66
B2 INEW FlE ettt et ettt b et 67

33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:

Hierarchical Code STrUCTUTE........oouiiiiriireeieeteeeeeeeee ettt 67
PartitioNS OVEIVIEWcccuueiiiiiiieiieeieeiteetee ettt sttt e st esseesreesaee e e e e 68
Setting @ PartitiON...cc.eeeieiieieeieeieeeet ettt et s 68
USING PartitiONS ...cuveriiiiiiiiiicieeiectctctceteteete ettt ettt 69
Synthesis SChEMALICco.eeuiiiiiiieiie et 69
Implementation SETHNEScc.coereririririeceeee ettt 70
Promoting Partitionscccovevieiiiniininiinicecienececeeeeceeet et 70
Xampp Main WINAOW....c..coueruiriirieiriieteietenienieesesieeie ettt e st ee s nee 71
[0CalROSt MAIN SCIEEN....civiiiiiiiiieiteteteee ettt s 71
Database OVEIVIEWcoueeviiriiiiiniiieeieteeetee ettt 72
Importing Expander in EClIPSe (1) c.vevieruirieniiiiiinieeneeteieeeeeeeeee e 72
Importing Expander in EClIPSE (2) c..cevvevirierieniiienieeneeteieeieeeeeeeveeeeveee 73
Expander main WINAOWcc.coievueriiniiniiienicieeienecieeeeeteree ettt 73
Setting INPUL ATGUMENTS.c...iivieeiierieeieerte ettt eie et eereesaeeeteesaeesbessseesaseeseennne 74
Opening Screen Of Core GENEIAtOr.....c.eivierieeriierieerteeteesee e et e sresveesreesaeenes 75
Locating CloCKiNg WiZardcccveevierieeniiinieeieeeieeiteste ettt 75
Defining iNPUL frEQUENCY c..veieieeiieieeeeece ettt 76
Defining output freQUENCIES ..veeviieiieeiieieeteeteee et 76
OPLIONAI PINS weieiriiiiieitieiieeieerte ettt te et e s te et e s be e aeesseesseessseesseasssesssessssassseenns 77
Other OPTIONS. ceutietieetierteetterte et e st e bt et esbe et esbe e seessseesseesssesseesssesssessssasssennns 77
ReNAMING OPTIONS ..enviiiiiiieeeiieeite ettt et 78
SEtNGS ChECK wenviiiiiieie ettt 78
Importing and implementing PartitioNS.......c..cevveveereerienrierenienteneeee e 79
Promoting partitionsccc.ceveveenieniiniinienteenieneceeteee ettt 80
FPGA EditOr Main SCIEEN....ccuiiieeieieeieeterieete ettt sttt ettt ettt enees 80
Add SIMUIAtION SOUICES....eeuietieierierieiieetesteeee ettt ettt sttt beeee e 82
SIMUIALOT SEHINGS..cveveeuieiieieteertee ettt ettt ettt 82
SIMUIALOT WINAOW ..ottt sttt s s 83

Evpempro IIvakomv

1: EEEALEN Tou aplBpo TUAWY 0T FPGA ..ot 17
2: TIMING COMPATISON..uutitiriiritirtieieniterterteertesreetesreessestesseesseentesseessesstesseesesseessesas 51
3: Example of EXxpander OULPULcc.eeeeieirieieicieieeesteeereeeee ettt 56
4: Sorted Generator INPULeoeieeiiiieeeeeeeet ettt sttt 57
5: Switching between ClocKS.......oiiiiiiiiiee e 58

Yovroun mepiinyn

Ta dedopéva péca oe Eva KOKA®UA oXEOOV TAVTOTE amotteiTot vo peTakvnovy
amd 1o onueio dnuovpyiag Tovg HEcH 6To KUKAUA o€ éva GALo onueio, OOTE Vo
ovveylotel n emeepyosio tovg N va amodnkevtodv yio peAdovtikyy ypnon. H
petaxivnon avtn dev yivetal akaproio, oAAG amattel Eva ypovikd oo To 0moio
€104yl TOAAOVG TEPLOPIGHOVS TTOL £XOVV VO KAVOLV LE TOV YPOVICUO KOL TNV 0TOS00T)
TOV KUKADOUOTOG. LVYKEKPIUEVA, 1) LEYIOTN EMTPEMOUEVT] GLYVOTNTA AELTOVPYiG EVOS
KUKADOUOTOG £E0PTATAL AUETO OO TNV HEYIOTY KABVOTEPT O™ TOV GLVAVTATOL KOTH TNV
petaxivnon tov dedopévav.

2NV GLYKEKPYEVT] OIMA®UATIKY] Epyocio yivetal Tpoomdheio yio TNV avanTuEn
piog pebodoroyiog kabmg Kot TV avtictoly®v epyoreimv AOYIGHIKOD TOL &ivat
amoPOiTNTO Y10l TNV HEAETT KOl OVOADGT) TOV LOVOTATIOV OEOOUEVMV EVOG KUKADLOTOG,
Yxomog givar péca and v ovykekpuévn pebodoroyio n Pedtioon g amddoomg Tov
Vo €E£TOON KUKADOUATOG. AVTO EMITLYYAVETAL HEGH TNG EVPECTG TOV GCNUATOV TOV
kabopilovv Vv evepyomoinon TV HOVOTATIOV OESOUEVOV KOl TMOV OVIIGTOL®V
kaBvotepnoemv S1A000NG TOL EMTPENEL GTO 1010 TO KOKA®UA Vo Tpocsdlopilel v
BéATion cLyvOTNTO AgttoVpYiog TOV GE TPAYUATIKO ¥pOVO.

Koatd cvvéneio, N tapovca SumAopatikn Kiveitoa tave o dvo dEoveg. [lpatov,
N ocvotuatiky dwtdnwon e pebBodoroyiag mov yperaletar va akolovOnocel Evag
OYEJOGTNG CLGTNUATOV TPOKEEVOL VO BEATIOGEL TNV ATOO0GT] TOL KUKADLOTOG TOV
Kkataokevdlel. H avalvtikn dtotdnmon g pebodoroyiag Ba Bonbncetl tov oyediaot
va amoPUYEL OPKETO OO TO TEYVIKA KOl GYEOOOTIKG TPOPANLOTA TOV CLVAVIOVTOL
Katd TN odpkel pog mopopoleg dadtkaciag. Agvutepov, M avATTLEN UEPIKMOV
epyoreimv LoYIoHIKOD, TOV GE GUVEPYOGIN LE LEPIKE epmopikd epyoieia TG etapeiog
Xilinx, Ba BonBncovv Tov 6yedlacty] va emTvyel KAAOTEPT 0mdOO0GT GTO GUGTN LA KOl
VoL EMLTAYHVOLY TNV SL0OIKOGIN TG AVATTLENG Kot TG EMOAHELONG TOV KUKAMUATOC.
H Beltiowon mov emttvuyydvetal oty amdo00T GLYKPIVETOL LE TO aPYIKO KOKAMLOL.

A&Ea1g KAEWOWA: KPIGIHO HOVOTATL, HOVOTATIOL JEQOUEVMV, UEYIOTN KoBvoTéPNOoN,

HEYIOTN GUYVOTNTO AEITOVPYING, OLVOLIKT OlOXEIPIGT) POAOYIDV, CNUATO EAEYYOL,
Planahead

10

Abstract

Data created in a circuit is often needed to be transmitted to a part of the design
other than their creation place in order to be further processed or stored for future
utilization. These transmissions cannot take place in zero time, but a short amount of
time is required, which results in many timing constrains regarding the timing and
the performance of the circuit. In particular, the maximum allowed frequency for
operating a circuit highly depends on the maximum delay met during data
transmissions.

In this diploma thesis a methodology is developed and described along with the
software tools required for studying and analyzing the data paths of a circuit. This
methodology aims to improve the performance of the circuit under examination. That
is achieved by defining the signals which control the activation of the data paths as
well as their propagation delays. All the above, help the circuit to adjust its operating
frequency to the optimal one in real time.

To conclude, this diploma thesis has two main goals. First, explicitly define and
describe the methodology which will guide a system designer to improve the
performance of his/her circuit. The detailed description of the methodology will help
the designer to avoid some of the technical problems which occur during the design
process. Second, the development of some software tools, in collaboration with some
commercial software applications provided by Xilinx, will help the designed
accomplish even better performance in the system and accelerate the process of
developing and verifying the circuit. The performance improvement is compared to
the original circuit.

Key words: data paths, critical path, maximum delay, maximum frequency of
operation, dynamic clock management, control signals, Planahead.

11

Evyoaprotieg

H mapodoa sumhopatikn epyacio eivol amoTEAEGHO TNG GLVEPYNUGING LOV LE TO
Epyaotipro Mikpovmoroyiotodv kot Pnelakdv Zvotmudtov ond tov Ampiiio tov 2014
péxpt kai to PePpovapto tov 2016.

Oa NBska va gvyapiomon Beppd tov Kabnynt k. Anuntpo Xodvipn yo v
EUMIGTOCLVY] 7OV HOL €0€1&e otV ovafeon NG CLYKEKPUEVNG €PYOCING, TOV
dwaktopa K. NikOAao Zopmdkn yio v kafodnynon, Tig €VGTOYES TOPATPNCELS
KaBmg Kot v dyoyn cuvepyacio wov glyape kob® OAN T SdPKELD TNG EKTOVNONG TNG
napovoos epyaciag. Emiong, svyapiotd Oeppd tovg vmoynelovg O10GKTOopES Kot
oLVEPYATEG TOL gpyaotnpiov kol Wutépms tovg K. Kwvotavtivo Mapaykd ot
I'edpyro Aevtapn yio v moAldTun forfeta Tovg 6Ta TPOPALATE TOV AVEKLYOV KOTE
TN SIIPKELD TNG EPELVOG.

Téhog, Ba B0 va evyoploTHom BEPULAE TV OIKOYEVELX LOV Y10 TNV VITOGTHPEN
OV OV TTPOGEPEPE Kol W0O0UTEPQ TIG TEAEVTALEG NEPES KABMG KO TOVG PIAOVLE LoV,
IMavvn, AréEavopo, Xmopo, Aswvida, ['dvvn ko ['dpyo, Yo to evolaépov kat tnv
vrootNPEN Tov £deLyvay Katd TN oldpkela g epyacioc. Xwpic exeivovg n mapodoa
gpyaocia dev Ba elye olokinpwbetl emttvymg.

12

1. Ewayoym

1.1 Evoopotopéve Zvotipoto

‘Evog amloc optopdc Tov EVOOUATOUEVOD GULOTNUOTOC Eivol OTOL0ONTOTE
OLOKELN 1 Oomoio TEPIAAUPAVEL VOV VITOAOYIGT] TOL €ival QPOCIOUEVOS GE pia
OLYKEKPIUEVN AetTovpyia Kol dgv givar YEVIKOU 0KOmov. XvyVvd, To GOGTNUO TPETEL VA
OVTOTTOKPIVETOL GE VTOAOYIGTIKOVG TEPLOPICUOVS TPAYUOTIKOD Ypovov (real time
computing constrains) Kot &ivol evoouatmuévo ®¢ PEPOG OGS OAOKANPOUEVNG
OLOKELNG TOV TOAAES POopEG TteptAapPavel VAo (hardware) Kot pnyavikd pépn.

To evoOUaTOUEVO GLGTAUATO TOTKIAOVY ATTO POPNTEG GUOKEVEG OIS YNPLOUKAL
POAOYLL KOl GUOKEVEG LOVGIKNG, £0G EQAPLOYEG LEYOANG KAHOKOG, OTTMG pOVAPLOL Kot
ELEYKTEC EPYOOTOUGIMV, KO GUGTAUATO WOOITEPO LEYAANG TOAVTAOKOTNTOS OTTWG Elval
T avtokivnto. H ToAvTAoKOTTO TOV EVEOUATOUEVOV GLGTNUATOV UTopel va glval
HiKpn, OTmg o€ Evav amAo pikpoeleyktn (micro controller), £ém¢ vymAr e GuoTHUATA
He TOAAEC LOVAOES, TEPLPEPELNKES CLOKEVEG 1| GLOKEVEG doyeiptong dikTHmv. Znv
ewova 1 givar opatd dSidpopa cHYYpOVE EVOOUATOUEVO CLOTHUOTO OLPOPETIKNG
TOALTAOKOTNTOG GYES10ONS 0O TOAAG KO SLUPOPETIKG TEDTOL EPAPUOYDV.

‘ E' \ Embedded Systems -

= Group =

1: Xoyypova Evewuotwuévo, 2ootiuora.
IInyn: es.informatik.uni-kl.de

Ta oOyypova ocvomiuoata ovyvd Poacilovior o€ HKPOEAEYKTEG, OMAMON
eMeEePYOOTEG UE EVOOUATOUEVY] HVIAUN 1 OAAEG TEPLPEPELOKEG GLOKEVEC, OAAA
KOVOVIKOL LMKPOETEEEPYACTEG CLVAVIMVTOL OKOUO E0IKE GE TOADTAOKO GUGTILATA.
O emeepyaotéc pmopohv va gival yevikob okomo gite 101kd oyedlacpévor (custom
designed) ywo pion moAd ovykekpiuévn epappoyn. ‘Eva yapoktnplotikd mopdostypo
eedkevpévon emelepyaotn eivol o eneEepyactnc ynoelakov onpotog (digital signal
processor - DSP).

IMo ooV dpumg Adyo ¥PNOYLOTOIOVVTOL LKPOETEEEPYACTES; TV EPMTNON OLTY,
VILAPYOLY OVO ATAVINGELS:

o O pkpoeneEepyaotés etvat £vog ToAD amodoTikog TPOTOG VAOTOINGTG YNPLaKOV
CLOTNUATOV, KOODG TPOGPEPOVY TNV SVVATOTNTO ETOVOYPTCLUOTOINONS TNG
oyedlaong tov VAoV amhd pe pio aAloyn Aoylopikov. Avtd sivor daitepa
ONUOVTIKO, KaODS 1 oxediaon OLOKANPOUEVOV KUKAOUATOV TOPOUEVEL Ui
axpipn kot ypovoPodpa dradikascia.

13

e Ot pwpoemelepyootés kabiotodv €ukOAdTEPN TNV OXEIOCT OIKOYEVELDV
TPOTOVTIWV T OO0 LITOPOVV VO, KATAGKELOGTOVV Y10 VO TAPEYOVV SLOUPOPETIKA
GUVOAQ YOPOUKTNPIOTIKADOV GE SLOPOPETIKEG TIUEG KAl LTOPOVV Vo, ETEKTAOOVV Y10
VO TTOPEYOLV VEN YOPOKTNPLOTIKG, dote va cvpuPadiovv pe T paydaio
HETOPAAAOLEVES OryOPEG.

1.2 Evoopotopévi vmorloyioTiK — TPOKANGELS

H esvoopatopévn vmoloyiotikry (embedded computing) eivar amd mwOAAEG
anOYES TEPIGGOTEPO OMOUTNTIKY] OmO TA TPOYPOUUOTO 7OV YPAPOVTAL Yol
TPOGMOTIKOVG LoAoyotés. H Asttovpywodtnta givor onuoviiky 1060 otV
VTOAOYIOTIKT YEVIKOD GKOTOD OGO KOl TNV EVOOUATMOUEVY] VITOAOYIGTIKY], OAAL Ol
EVOOUATOUEVEG EPAPLOYEG TTPETEL VOL IKAVOTOLOUV TOAALOVS EMTAEOV TEPLOPIGLLOVG.

o [loivmAokor odyopiBuoi: Or Aertovpyieg mov eKTEAOLVTOL OO TOV
pikpoenegepyaoty| pmopet vo givar waitepa cOVOeTES (Yoo Tapadetypa, EAeYYOG
™G PONG KOGHOL GTO OVTOKIVNTO)

o AMiacgbdvoeon ue tov ypnorn: Or LIKPOETEEEPYOAGTES YPNOLUOTOIOVVTAL GLYVA Y10
oV €AEYYXO0 TOAOTAOK®V Ol0GVVIECEMY LE TOV XPNOTN Ol OMOIEG UTOPOVV VO
TePAAUPEvouY TOAAL pevoL Kot €TAOYEG (Yoo TOPAOELYHO, GE £VOL GUCTNHO
evtomicpov Béomg (global positioning system - GPS)

Mo va yivouv ta mpdypoto okOpo OLVGKOAOTEPM, TOAAES AElTOLPYiES TV
EVOOUUTOUEVOV GUGTNUATOV TPETEL VO TPOLYLOTOTOLOVVTOL LEGO GE GUYKEKPLUEVEG
npobeopieg (deadlines).

o [lpayuatikog ypovog (real time): TIoAAG eVOOUOTOUEVE VTOAOYIOTIKA
CLGTNOTO TTPETEL VO, AEITOVPYOVV GE TTpaylatikd ¥pdvo. Av o dedopéva dev
elval €tolpa péypt por cvykekpluévn mpobeopio, T0 cOGTNUO KIVOLVEVEL UE
Katdppevon. H pun mpnon tov meplopiopudv ypdvov pmopel vo onpiovpynocet
dVoOPESTNUEVOLS TEAATEG 1] VO KOOTIoEL akOpa Kot ovOpmmiveg (még.

o ertovpyiec molhamiav pvOuwv (multirate): O AE1TOVPYIEC TOV EVOOUATOUEVOV
CLGTNUATOV OYL LOVO TTPETEL VO OVTOTOKPIVOVTOL GE GUYKEKPUUEVEG TPOBEGIiES,
OAAG TOaVOV TOALEG AelTovpyiec TPpayHaTIKOD ¥povov umopel va eEgMacovtol
napdAAnia. Etvar mBovo kdmoieg Aettovpyieg va ektelobvtan pe apyd pvoud ko
dAeg pe ypnyopo. Ot epapuoyés molvuéowv (multimedia) eivor to kOpro
TAPASEIYLO GUUTEPIPOPAS TOAAATAMY PLOU®V, KOO TO, TUNUOTO YOV Kot
EIKOVOG EKTEAOVVTOL HE TOAD OOPOPETIKOVG pLOUODG OAAG TpEmel va
TOPOAUEVOLY GUYYPOVIGUEVOL.

o Koorog rotaokevns: To cuVOAKO KOGTOG KOTAOKELNG €VOC GLGTNUATOG Eivat
TOAD ONUAVTIKO 0 TOAEC eQapproyés kot mpocdlopiletarl amd wOAAOVG
TAPAYovVTeG, OMMG 0 TUTOG TOV emelepynoTr), 1| TOCOTNTO TNG UVAUNG Kol TO
TAN00¢ TV EEMTEPIKOV GUOKEVDV.

o Joyoc (power): H xataviilmorn ioyxbog emmpedler v dwdpkele Long g
pmoTopiog TV GopNTOV GUGTNUAT®Y, TOL G TOAAEG EQUPLOYEG ivarl kpiotun,
OAAG Kot TNV Tapaymyn OepuodtnTag TOv UmOpEl VoL 0ONYNOEL OE TPOCMOPIVN
aduvapio xpons TOV GLCTHHATOC.

14

o [lepiopiouévor mopor ovotiuatog: e ovtifeon HE TOVG TPOCOMTIKOVG
VTOAOYIOTEC, TOL TEPIOGOTEPH EVOOUATOUEVO, CLOTAUATO dloBETouVV
TEPLOPIOUEVOVS TTOPOVG TPpog allomoinon (Yo moapddetypo, Tpopodocio amd
urotopio, TEPLOPICUEVN TOCOTNTO KOPLOG UVIAUNG, AlyeG 1] KOBOAOL GLOKEVEG
€10000V/e£000v). Emopévag, eivar amapaitntn n tpocektikn a&lomoinon tovg,
MoTE M €QOPUOYN OV Ba TPEEEL OTO CULYKEKPIUEVO GUOTNHO. VO UTOPEL v
Aertovpyel cwOTA.

O e€mtepikol mepropiopol elvar o onUavTiKy Tyn SvokolMag otV oyedioon
EVOOLUTOUEVOY cvathudtov. Kotd v oyediaon, Toug mpénel va Anebodv vmdym ta
TOPOKAT® CNUAVTIKE TpOoPApaTa.

T1o00 vliKo yperaletor; Y TOPYEL TPOTOG Y10l OTUAVTIKO EAEYYO TNG TOGOTNTAG TNG
VIOAOYIOTIKNG 10Y00G OV €PapproleTat 610 TPOPANUO LECH TNG EMAOYNG TOV TOHTOV
TOV HUKPOETMEEEPYAUTTI], TNV TOGOTNTO TNG LVIUNG, TIG GVOKEVES 16000V Kol E£600V Kol
TOALG GALa. E@dcov mpémel cuyva va 1kavomolouvTal TETO01 TEPLOPIGHOL AmTOd0oNS
Kol KOGTOVG KOTOOKEVNC, N EMAOYN TOL VAKOV givar onuavtikn. Av to LAIKO givol
Ayo, to cvotnua dev Ba umopet va avramokpifel otig mpobeopieg. Av 10 VAKO glvan
VIEPPOAKO, TO KOOGTOC TOL GULOTNUATOS OVEAVETOL YWPIiG avaioyn Peitioon g
amod00oNG.

Hlwg 1kavormoiodvrion o1 mpobeouies; O PO TPOTOG KOVOTOINoNG Hiog
npobeopiag eivar 1 emtdyvvon TOL LAMKOD, OCTE TO TPOYPOUMO Vo EKTEAEITOL
ypnyopotepa. H emdoyn avt) Opmg avfdavel 10 KOGTOC TOV GULOTHUOTOC, OTMG
avapépinke. Eival emiong mBavo n avénon tov ypovicpol Tov eneEepyactn v, unv
Bedtuboel Tov xpoOvo eKTEAEONG, EPOCOV 1| TOYVTNTO TOL TPOYPAUUOTOS LITOPEL Vo
nepropileton amd To GHGTNUO LVAUNG.

Hlwg eloyiotomoieitar 1 KoTovVOAWGN 1oydog, X& OAOL TOL CLGTNUOTO, T
KatavaAmon 1oyvog eivar kpicio {NTnpo. ATALTeiTOl TPOCEKTIKY GYESINOT Yo TV
emPpdovvon un KpiCW®V TUNUATOV TOV GULOGTHUATOS YO TOV TEPLOPIGUO NG
KATOVAAMONG VO KAVOTOLOLVTAL OKOUN Ol amapoiTnTol 6TOYO0L 0amdO0oTG.

2yeotoon ue ovvorotnra avefaluions. H mhatedppo LAIKOO pmopel va
xpNoomomOel v apkeTég YeVIEG TPOIOVI®MV pHE AAyIoTEG 1 KOOOAOL OAAOYES.
Qoto0c0, civar emBount M mpocsOnkn dSvvototHTOV pUEcw Tov Aoyioukov. Efvor
EMOUEVMG OMUOVTIKN] GOOTH oYedl0oT TOL VAIKOL Mate vo Tpofrepbel n amddoon
AOYIGLUKOV TTOL OKOLLOL OEV £YEL OYEOIOOTEL.

A&iomotio. H a&lomotio elvat onpovtikn Katd v onpovpyio mpoioviov aAld
KOl GE OPICUEVEC EQUPUOYES, OTTMOC TA KPIOIUA OO TAEVPAS OAGPAAELNS GUGTILLOTOL
(safety critical systems).

1.3 FPGA - wotopikn €€€Mmén

To FPGA (Field Programmable Gate Array - ovotoyia emntdmo
TPOYPOUUATICOUEVOV TOAMV) €lval TOTOG TPOYPOUUATILOUEVOL OAOKANPOUEVOL
KUKADUOTOG YEVIKNG XPNONG TO omoio dtafétel peydio aptBpd TumomompévVeY TUAOY
KoL GAL®V YNOLK®OV AEITOVPYIDV OTIMG ATOPIOUNTES, KATOYWPNTEG LWVIUNG, YEVVITPLES
PLL ka1 moAAd dALa. Mepwcd FPGA evoopotdvouv eniong avoloyikég Aettovpyies.
Koatd tov mpoypoppoatiopd tov FPGA, o omoilog yiveton mdvtote evad avtd eivor
TomofeTUéVO AV o€ €vo TUTOUEVO KOUKAMUO, EVEPYOTOLOUVTOL Ol €MOLUNTEG

15

Aertovpyieg kot SoovuVoEovTat LETAED TOVG MOTE VO GUUTEPLPEPETOL MG OAOKANPOUEVO
KOKAOLO LE GLYKEKPIUEVT] AELTOVPYiaL.

O kddwcag pe tov omoio mpoypappotiletor to FPGA ypdopetot o€ kdmola YAdcoo
meptypoeng VAkol 0nwg n VHDL o 1 Verilog. ‘Exet mapopotlo nedio epapuoydv pe
A0 TPOYPOUUOTICOUEVO OAOKANPOUEVE YNOLOKAE cvoTipate O0ntmg to. PLD kot ta
ASIC. Opwc 10 FPGA 6100£te1 KAmota 10104TEPQ YAPOAKTNPLOTIKE TOV TEPTYPAPOVTOL
TOPAKATO:

e To FPGA yaver tov mpoypoppatiopd tov Kabe @opd mov yAaver v Taom
TPoPodociag Tov. Emopévmg, amortel eEmTtepikd KPOETEEEPYUOTN 1| VUM LE
pévyun ovykpdtnon dedopévev (non volatile memory) amd to omoia Ho
wpoypappatileTon, Kdbe popd mov ETAVEPYETAL 1] TAGT TPOPOOOGING.

e O mpoypappatiopds tov FPGA pmopet va ahddlel kaBe popd mov tpomonoteitot
TO AOYIOUIKO TOV UIKPOETMEEEPYAGTN 1 T OESOUEVA TNG UVIUNG TTOV TO EAEYYEL.

e Aegv vmdpyet kdmowo Oplo oTov apldpd TOV QOP®V WOV UTOPEl Vo
TPOYPAUHOTIOTEL.

¢ H xotavaioon oy0og eivar onpovtikd ovénuévn oe oxéon pe ta ASIC.

To FPGA &ivon waitepa KotdAANAO €kl TOL Ol TAPAUETPOL AEITOLPYING TPETEL
va oAAGCovv cuyva 1 6e HIKPEG TOcOTNTEG Tapay®wyng, evd to ASIC, Aoyw palikng
TOPOYOYNC, EIVOL PONVOTEPO EKEL TTOL ATOLTOVVTOL LEYAAEG TOGHTNTEG KoL 1] EXBVUNTY
Aertovpyia givar avotnpd mpokabopiopévn, xopig sedipata (ta ASIC dev pmopodv va
TPOYPOUUOTIOTOVV Eav).

Boowm dopkn povada tov FPGA eivor 10 Aoywkd pmiok, pe tnv ypnomn Tov
0mO10V VAOTOOVVTOL Ol AOYIKEC GUVOPTNOELS OV EKPPALOVV TIG AgLTovpyies €vOG
YNOLOKOU KUKAMUOTOG. AVALOYA LE TO LEYEDOS TOL KUKADNOTOS, TOAAG AOYIKA UITAOK
oLVOEOVTOL Y10l VO DAOTOMNGOLV TO TANO0C TOV amopaitnT®v AOYIKOV GUVAPTGEMV.
2115 ewoveg 2 ko 3 paivovion pepikd FPGAs.

R
I

.
=
=2
= |
s
-+
=
4
-
—
-t
—

i+
-
-
—
—
=
=

—

-
—

d‘-—l

LAY

2: FPGA névw o€ ToTwpuévo, KokAMUOTO,
IInyn: en.wikipedia.com, codehackcreate.com

H Bopnyavia twv FPGA mpoékvye and t1g mpoypappatilOUeEVESG PViIES LOVO
avayvoong (programmable read only memory - PROM) ko t1¢ mpoypoappoatilopeveg
Aoyikég ovokevég (programmable logic device - PLD). Kat ot dvo mponyodueveg

16

OLOKEVEG £XOVV TNV SVVATOTNTO TPOYPUUUATIGHOD o€ opddes (banches). QQotdc0, 0
TPOYPOUUOTICUOG TOVG oTNPILoVTOV G€ KOA®OIOUEVT] AOYIKT) OVALEGH GTIC TOAEG.

H dexaetia tov 1990 nMtav expnktiky ywe to FPGA t6c0 amd dmoyn
TOAVTAOKOTNTOG TNG OYEOiNoNG TOVG 0G0 Kot dykov Tapaywyns. Tnv idw mtepiodo Ta
FPGA ypnoiponoodvtay e TMAETIKOWVOVIOKEG EQapHOYES Kot ota diktua. [Ipog to
tého¢ G oekaetiag, To FPGA Bprkav tov dpoOUo TOVE GE MO EUTOPIKES EQPAPUOYEG,
TNV ovtokvnToPropnyavio Kot Blopmyovikés epopuoyEC.

Mia tpdo@atn téomn eivar 1 VPPLOKY| APYITEKTOVIKT, SNANOT O GLVIVACUOG TWV
AOYIKOV Aok Tov mapadoctak®v FPGA pe evoopotopévovg enefepyaotés Kat o
OYETIKO TEPLPEPELAKA YLOL VO GYNUOTICOVV VO OAOKANPOUEVO GOGTHUO. TAVD OE EVaL
mpoypoyuoTiiopevo chip (system on a programmable chip). H ovykekpyévn
OPYITEKTOVIKY] TEPLOPILEL TNV KOTOVAA®GY 10YVOG, ONUOVPYEL €va HIKPOTEPO GE
péyebog cvoTNUO Kot 68 PeyoADTEPN a&lOTIoTIO TMV CLVIEGEWV TV VO EEXWMPLOTMV
ovotnuatwv. (Wolf, 2008)

Ytov mivoko KOl TO YPAENUO TOV 0KOAOVOOLV VTAPYOVV GULYKEVIPOUEVQ
dlpopa ototyela. mov @ovepdvouy TNV 1otopikn e&EMEN tov FPGA (mmyn:
en.wikipedia.com).

Year 1982 1987 1992 2000

8.192 9.000 600.000 millions
1: E&élién tov apiBuod molaov oo FPGA

10000 < market size

7500
5000

2500

1993

2005 2010 2013 2020

3: EEEMén g ayopds o€ exatopubpio.

1.4 ITieovektipora ypions tov FPGA

H woavémrta tov FPGAs va cuvdvdlovv ta KaAvtepa otorygion amd Toug 0LO
koopovg (ASICs kot cvotiuata Paciopéva oe eneEepyaotn) 0dNyNoE TNV gupeia
vwoBEon tovg amd OAeg TG frounyavies. Ta FPGA mapéyovv taydtnta kot a&lomiotia,
EVD OEV ATOLTOVV TO UEYAAO TPOKATAROAKO KOGTOG TOV Tapovotdlel pia oyxedioon
Bacwopévn ota ASIC. To emavampoypoppoatilopevo mopitio €xel to idw
TAEOVEKTNUATO Kol VEMEID e Eva AOYIGHIKO TTOV TPEYEL GE £vaL GUGTNUA BAGIGUEVO
o€ ene&epyaotn, 0AAA dev mepropiletar amd Tov aplOud TV SHOEGIUOY VTOAOYICTIK®V
nopnvov. Ze avtiBeon pe tovg emeEepyaoctéc, ta FPGA sivor mapdAinia and v
KOTOOKELT TOVG Kl £TO1 SLOUPOPETIKES Olepyacieg dev yperdleTon va avtaywvifovtot yio
T0Vg 10100 mopovg. Kdébe aveEdptntn vmoloyiotiky diepyocio ovotiBetar oe €va

17

SpopeTIKO TUNHA TOL chip kot pmopel va Agttovpyel avtdVopa XOPig EMPPOn amd
GAAeg dlepyaocies. Zuvemmg, M amOd0oon €vOg TUNUOTOS HIOG — EQOPUOYNG OV
emnpealetar 0tav meplocoTepes dlepyaocieg mpootebodv oto cvotnua. (The Linley
Group, 2009)

Ta kOpla mheovektpota g xpnong tov FPGA cvvoyilovtot mapakdto:

e Amddoon. Expetairevdpeva v mopariniio oto vAko, to FPGA vrepéyovv wg
TPOG TNV VTOAOYICTIKN Y0 TOV YNPLoKadv eneCepyostdv ofjpartog (digital signal
processors - DSP) eykotaieimovtag tnv A0YIK TG 0koAOVOIOKNG EKTELEOT|G KOl
emrvyydvovtog meplocotepa avd kOkAo poioywov. H BDTI, po etaipeio
benchmarking, ce pelém g €6ei&e 6t1 T FPGA pmopodv va mapaddcovy
TOAAEG POPES TAPOATAV® ATOO0GT AVA OOAAPLO GE LEPIKES EQPUPUOYEG GE GYEDN
pe éva DSP (BDTI Industry Report, 2006). O éheyyog 1600wV Kot €£0dwV 610
EMIMEDO TOV LMKOV TOPEYXEL KAADTEPOLS YPOVOLS OTTOKPIONG KO EEEIOIKEVUEVN
AELTOVPYIKOTNTO Y10 VO IKOVOTIOWOEL TIG AVAYKEG LIOG EQAPLOYTS.

e Xpovog otnv ayopd (time to market). H teyvoloyia tov FPGA mpocpépet
eveM&la Kot KavoTNnTeG TOyElag mpotvumonoinons. Mia 1déa Kat pia oyedioon
UTOPOLV VO, QOKILOOTOUV GTO VAIKO Ywpig va pecorafrnoet m yxpovoPopa
dwdwkacio ¢ kataokevng evoc ASIC (Thompson, 2004). Ot cuvéyelg arldayég
Kol Pertidoelg g oxedlaong pmopovv va emttevyBodv oe mpeg avti yi
ePOOUAOES. ZTO EUTOPLO VILAPYOVY TOAAEG EMIAOYEG DAIKOV LE OLOUPOPETIKOVS
tomovg /O Mdn ovvdedeuéveg mave oe éva emavompoypoppatiiopevo chip.
Emiong, n ovveymg avEavopevn dobeoipudtnto epyaleiov Aoyiopikod vyniov
eEMIEOOV UEIOVOVY TOV ¥pdvo ekudOnong ewodyovtag moAAOmAL eminedo
AQOIPEONC KOl TPOSPEPOVTOS ETOULES VAOTOMGELS Yo TPONYUEVO EAEYYO KO
eneEepyacio GNUATOG.

e Koéotoc. To mpoxatafoiikd koctog oyediaong evog ASIC Eemepva kotd TOAD TIg
avtiotoyes Aoels Paciopéves oe FPGA. H peydin apywm enévovon tov ASIC
pumopel va dwcooroynBel amd yioo KOTACKEVAOTES TOL TAPAYOLV KOl TOVAOLYV
palud chip. H @oon tov emavampoypappatilopevonr mupitiov EAATTIOVEL TO
KOGTOG OvATTTLENG Kol TV xpovoPopa dtadkacio Kataokevns. Emedn cvyva
oTNV TPAEN 01 TPOSAYPAPES EVOC GLGTHHOTOG OAAALOVV e TOV ¥POVO, TO KOGTOG
TOV cVVEYDV 0AAaY®DV o€ oyedtdoelg FPGA elvar apeintaio étav cuykpiBel pe
10 peydro kdotog enavacyediaong evog ASIC.

e Afwomotio. Evdd 1o epyodeion Aoyiopkod mopéyovv TO TPOYPOUUATIOTIKO
nepBairov, ta kukAmpato v FPGA eivol pio vAomoinom g eKTéAeong Tov
npoypappatog oto VAkd. Ta cvotiuata PBacicpévo coe emeepyaotn cuyva
TapEYOLVY TOAAG etimeda apaipeons yio fondeio oV OpOLOAdYNON SEPYATIDV
Ko ToV Solpac o Topmv avdpesa o depyaciec. To enimedo “odnyog” eréyyet
TOVG TOPOVG TOV VAIKOV KOl TO AEITOVPYIKO CVUGTNHO OlorXEPILETOL TNV LV KO
oV enefepyootn. Xe kdbe 01béciuo vroloyloTikd mupnva Hovo pio £vioin
umopel va extedeotel kGBe ypovikn oTIyUn Kol To GLOTHHATO Paciopéva oe
eneEepyaoTn KvOuveEHOLV YPOVIKA KPIGILES dlepyacieg GUVEXDG VA SOKOTTOLV
n plo v aAAn. Ta FPGA, ta omoio dev dtoBétovv Asttovpyikd cuoTNUA,
EAOYLOTOTTOLOVV TOVG KIVOUVOLS aE10MIoTIOG LE TPOYUATIKE TapAAANAY EKTEAEST
EVIOADV KOl VIETEPUIVIGTIKO DAKO aplepmpévo og Kabe diepyacio wov vrdpyet
GTO GUGTN QL.

18

e Moakpoypovio. covripnon. Onwc avapépbnke mponyovpéveg, ta FPGA eivar
avafoduioyo kot 6gv amaitobv 10 KOGTOG Kol TOV YPOVO ETAVASIOUUOPPOCTS
onmg éva ASIC. Ta ymoeokd mpotOKoALN ETKOIVOVIOV, Y10, TOPASELYLO, EXOVV
TPOJYPUPES OV UTOpel vor AAAAEOLY HE TOV KaPO KOl Ol SEMAPEG TOL
Bacilovtor e ASIC evdeyopévag vo TpoKaAEGOVY TPOPANLOTO GUVTIPNONG Kol
ocvppatomrag. Me tig duvatdtteg emavadapopewong to FPGA pmopodv va
avtaneEElOovy oe peAloVTIKEG Tpottomomaelg mov OBa ypelaotodv. Kabwg éva
POV 1 éva cVoTNUA WPLUALEL, AEITOVPYIKES EVIGYVGELS UTOPOLV VA YIVOUV O€
ovtod YOpic TOV ¥POVO MOV AmOUTEITOL Yol GYEOIOOT LDAIKOV amd TV opyn.
(National Instruments, 2012)

1.5 Ao tov FPGA

Ta FPGA amotehovvion and tpia Pacikd otoryeio: logic boards, Bupec e10660v
Kot €£600V kot mpoypappoatiiopevn dpopordynorn. O tomog g logic board mov
ypnopomoleitoan exnpedlel v tayvnta kol v emedaveln tov FPGA. ‘Evag kowvdg
tomog logic board mov ypnowomnoteitanr ota cvyypova FPGA Bociletar ota lookup
tables (LUT), ta onoia amoteAovvtat amd évav N:1 moAvmAéiktn kot po pvrqun N bit.
Oocov apopd v ynorokn Aoykn, évo LUT andkd anapBuel évav mivoko aindelog,
dtvovtag v dvvatdtta oto FPGA va vAomotel mepimiokmn ynoelokn Aoykn. (Brown
& Rose)

LUT

‘Eva LUT elvan évag mivakog mov aviikafiotd VmoAoyIGHOUG TNV GOPO. TNG
extéleonc pe pio mo amAn kot ypryyopn Asttovpyia indexing. Av ko tao LUT €yovv
emheyel ¢ N KOPLO VTOAOYIOTIKY povada ota epmopikd FPGA, to péyebog toug og
kéBe logic board mpémel va mpocdiopiotel mpooektikd. Ta peydio LUT pmopovv va
YEPLOTOVV TO TOADTAOKOVG VTOAOYIGHOVG KOl OCUVETDS VO HEUDGOVV TIG
KaBvotepnoelg TV 6TV KOAMIIMOT aVAUESH OTIG dLAPOPES LoVAdES. 26TOCO, 0VTO
odnyel oe mo apyég viomomoelg twv LUT efoutiag g ypnong HeYoAOTEP®V
TOAMTAEKT®V. ATO TV GAAN mAgvpd, pkpotepa LUT éxovv ¢ oamotéleocpo tnv
xpnowonoinon peyaAvtepov apBpov logic blocks, wdtt mov avidver TIg
kabvotepnoel; kolwdimong otnv oyedioon. EmmAéov, vmdpyer poe povédo
amodnkevong evog bit mov givar éva D flip flop. O moilvmAéktng e£600v emdéyet Eva
amotéleopa ite amd TV cuvdptnon wov givar vAoromuévn péca oto LUT eglte amod to
bit mov givar amodnkevpévo oto flip flop.

Awovvogon

Ta ovyypova FPGA eivar oyedlacpuévo ypnolomoidvIos TV opYLITEKTOVIKN
“yNoidov”. ZOPUeova e avTiV, ot SoUKEG Lovadeg TomofeTovvTol o€ £va S160100TATO
TAEYHO Kol SlooLVOEOVTOL LE v GUYKEKPIUEVO HOTIPO. AVTEC Ol dOMIKES LOVADES
oynpoatiCovv Tig VNnoideg 01 0ToiEC EMMTALOVY GTOV MKENVO TOV S10GLVOEGEMY. AVTN 1
APYLTEKTOVIKT EMTPEMEL GTOVG VITOAOYIGLOVG VO TPy LOTOTTOmB0ovV Tomikd 610 FPGA,
EVA PEYOADTEPOL VTTOAOYIGHOL OTLAVE GE KOUUATLO Kol ovTioToryilovtol 6 puotkd logic
blocks péca oto TAéypua.

19

4: Apyrtextovikn tomov vioidwy ue draovvoéaels block ko switch boxes

To kdBe block £xel TpdoPacn otovg yeitoveg Tov péow tov block dracHvoeonc,
10 omoio ouvvdéel TG €10000VG kol €£6dovg Tov Aoywov block otovg mOHPovg
dpoporoyNoNg HEcw mpoypappoaTiCopeveoy dtoukontdv 1 moivmiekt®v. To block
o VLVOESN G EMTPENEL BTNV £16000 Kat TNV ££000 TOL Aoykov block va amodoBovv cg
opllovtieg kol kaBeteg OWOpouES, Pertidvoviag kotd moAL v gveAelia
dpopoAOYNONG.

Kd&be dapopodpevo ototyeio tov FPGA amautel éva bit mAnpoopiag yio va
dwatnpnoet pia dSroupdpewon kabopiouévn and tov ypriot. I'a éva FPGA Bacilopevo
oe LUT, avtég o1 mpoypappotilopeveg tomobecieg mepthapifavouy ta meplexoeVo TOL
Aoywov block kot tv ocuvvéeocwwomrta. H dSwpdpemon emtvyydvetor pécw
TPOYPOUUOTIGHOD TV bits 7ov cvvdéovtolr pe OoVTEG TIG TPOYPOUUUATILONEVESG
tonofeciec, cOpemva pe v €i6odo Tov ¥pnotr. Yrapyovv moAlol TpomTol Yo TV
amodnkevon gvog bit Svadikng TANPOPOPIaG e TNV TLO dINUOPIAN va givar 1 SRAM, 1
antifuse kou 1 flash pviun. (Kuon, Tessier, & Rose, 2008)

H mo evpela ypnopomorodpevn pébodog yia v amodnkevon mAnpoeopiog
drapodpewong ota epmopikd FPGA elvou n ntntikn otatiky RAM, nepiocdtepo yvwot
®g SRAM. Avtr 1 teyviKn €Yve ONUOPIANG EMEWON TTAPEYEL OLVATOTNTES YPNYOPTG KO
AmEPLOPLOTNG EMOVASIOUOPPMONG GE Lidt NON YVOGTH TeYvoroYia. MewekTnpaTo ™G
SRAM egivar n vynAn KATOVAA®ON EVEPYELNG KOL 1| TTNTIKOTNTO TOV OEOOUEVOV.
Zuykpvopevn pe GAAeS Texvoroyies pvnung, éva otoyyeio tg SRAM eivon peyoiivtepo
(amattel 6 émg 12 transistor) Kot TopoLGIALEL GNUAVTIKY GTOTIKN KOTOVAA®OT) EEa1Tiog
pevpdtov dwppone. ‘Eva axdpo onpoviikd peovektnuo eivar 6tt 1 SRAM odev
dwtnpet ta dedopéva TG YmPIg EVEPYELD, TOV SNUHAiveL OTL KaTd TV ekkivnon to FPGA
dev €xel OUOPP®ON Kol TPEMEL VAL TPOYPUUUOTICTEL YPNCIUOTODVTOG AOYIKT Kot
amodnkevon extdg chip. AVTO EMLTLYYAVETOL YPNCILOTOUDVTOG UM TTNTIKY LV V1o
dlnpnon g JpdOpPE®ONG Kol VOV HUKPOEAEYKTH Y10 VO TPOUYUOTOTOWGEL TNV
SdIKOGI0 TOV TPOYPAUUATIGHOV KOTA TNV ekkiviion Tov FPGA.

AV K0l MyOTEPO OMNUOPIANG, TOALEG OIKOYEVELEC GUGKEVMV YPTGLLOTOLOVV LVIIT|
flash ywo vo amoOnkevcovv v mAnpoeopia dwoupopemwong. H puviun flash etvon
dwpopetikny and v SRAM emedn etvor pn ik Ko pmopel va eyypoget
ePLOPopEVO apliud gopwv. H un mmmrikdtra e pvnung flash onpaiver 6t o
J€JOUEVO LTTOPOVV VAL EYYPAPOVV Kol VO Tapapeivouy amobnkevpéva akdpo Kot yopic
mv mapoyn pevpatog. e avtifeon pe ta FPGA nov BaciCoviar ce SRAM, avtd mov
BasiCovtar oe pviun flash mopapévovv dwpopeopéva and tov ypnotn Kot dgv
YPEBLOVTOL EMITAEOV VAIKO Y10 VO, TPOYPAUUATIGTOVV KOTE TNV EKKIVIOT), TOV GNUaiveL

20

ot givanl €tona vo Agttovpynoovv apécws. Emumiéov, éva kdttapo flash pviung
KOTOUOKELALETOL OO AyOTEPQ transistors Kol GUVERMDG EYEL UKPOTEPES ATMAEIEG AOY®
pevpdtov doppong. QoTd00, 01 GUYKEKPUEVEG UVILES £YOVV TEPLOPICUEVO KOKAO
AVOYVOGEMV/EYYPOPDV KOl GLYVE YOUNAOTEPES TOYVTNTESG EYYPOPNG CLYKPITIKA UE TIG
SRAM. O ap1Budg TV KOKA®V gyypaeng eEaptdtal amd TV TeXVOLOYin AAAL TUTTIKA
KULOUVETOL GE UEPIKA EKATOUUVOPLO Qopés. Emumpocheta, or mepiocdtepec te)VIKEG
eyypaong oe flash amoitovv vynlotepn tdon cLYKPITIKE pE To GAAD KUKAMUOTOL.
Enopévog, yperdlovion fondntikd kukhopoto ektdg chip 1 dopég dmwg avtiieg td.omng
Y10 VO TPOLY LOLTOTIO|GOVV EYYPAPEC.

Mua tpitn TpocEyyion Yo TPOYPOUUOTIoUO Elvar 1) TeyvoLoyio pviung antifuse.
Onwg vmodnAdvel kot 10 Ovopo, TPOKELTOL Yo €vay UETOAMKO GUOVOEGHO OV
ovumeplpEPeToL To 0vTifeTo amd pio aceaielo. O ovvdespog antifuse givol kKovovikd
avoytdg (Un ovvdedepévoc). Mo TpoypoploTIoTiKY dladtkacio Tov tepthappdvet site
&vay TPOYPOULOTIOT LYNAOD pevpatog gite pia aktiva laser Mdvovv Tov cUVIECHO
Y10 VOL GYNUOTIOTEL P NAEKTPIKY] GHVOEST] GOV VOL VTN PYE KOAMDOL0 OVAUEST OTIG IKPES
tov antifuse. Ilopovocwaler opketd mAeovekTNuUOTo OAAG Ogv glvon
eMOVOTPOYPOUUATicIo. MOMG £€vag OGUVOEGHOC ALDCEL, £Yel LWOOTEL £vav un
avtiotpentd petacynuatiopd. Ta FPGA mov Paciloviar oe avt) tv teyvoroyia
Bewpovvtar mpoypappatilopeva povo pio eopd. To yeyovdg avtd mepropiler v
eveMla Kot Kabotd aKatdAANAn v texvoAoyia Yoo Tpotvmonoinon. 261600, 1
YPAOM TS TEYVOAOYiOG cuvodeveTal amd pepikd mAeovektnpata. O ohvoeoog Exel
O [UKPO Hé€YeBOC OLYKPITIKE pHe TO KOTTOPO TOV GAA®V TEYVOALOYI®DV TTOL
amoTEAOLVTAL OO aPKETA transistor. AVt 0dnyel og piKpég kabvotepnoelg 614600MG
KOl UNOEVIKY] OTOTIKN KATOVAAW®GCT EVEPYEWNS EMELDN OEV LAPYOVV TAEOV PELLLOTOL
drpuyns. Emiong o1 obvdeopot eivar daitepa avOekticol otnv aktvoBoiria, yeyovoc
oL KAO1oTA TNV TEYVOAOYIN KATAAANAT Y10 GTPOATIOTIKEG Kol OLUCTNUKES EQUPUOYES.

1.6 "Etowneg frpriodnkeg

[ToAAG epmopikd epyodreio mapéyovy €va yevikd oet and tunpato FPGA, dniadn
oLVUPOMKEC avamapacTAcElS £Tolumy blocks Agttovpyudv mov o ypnotg emBvpel va
evoouat®cel 610 dkd Tov FPGA design. Avtd to Tpuqpoto Topovstdloviol 6Tov
YPNOTN TOV EPYOAEIOV MG GUUPOAN ETOLLN TPOG XPNON TAV® GE L0, TAAKETOL.

Ta tuuata mptv v odvBeon (pre synthesized components) map€yovtor g
evomteg kmoka avtikelpévov (object code) yowpic va eivor omapaitmro va
aroKaAOYouv Tov Tnyaio kmdwka emmédov RTL 1 netlist. To cvotua mepthappdver
TOMATAEG BPA0OTKES TOPEXOVTOC VAL OAOKANPOUEVO GET TUNUATOV TPO cLVOEOTG,
pe €0pog amd amAég Aoykég TOAEG LEXPL AetTovpyieg VAKOD LYNAOD EMTEOOV, OTMG
TOMOTANCIOOTEG KOl OLOUOPOMOTES TOAU®V 1M oKOMO Kol emeCepyoaoTtés Kot
TEPUPEPELOKE ETIKOVOVIOGC.

Avtd T éTota TURUATO UTOPOVV va E160x000V 6E Y10 aTd TOV PN OTH TOL
epyoreiov kot émerta oAOKANPO To design va petapepBel oe pio KATAAANAN ULOKN
ovokevn. To mAeovekTiuato y¥pNong £TOU®V TUNUATOV elval moAAd. Mepikd
AVOPEPOVTOL EVOEIKTIK(TOPOKATM:

e Meiwon Tov xpovov oL amotteiTot yio TV OAOKANPp®on Tov design kafdg ToAAd
OLY VA XPNOUYLOTOLOVIEVO TUNLOTO TOPEYOVTOL ETOLLOL.

21

e FEukoAdtepog €leyyxog TG owothg Asttovpyiog Tov oyediov, apov To EToyLo
TULOTO TOLPEYOVV EYYVTUEVO COGTH Agttovpyia.

* AvvotdTnTo ETOVOYPNGUYLOTOINGNG TUNUATOV TOAAES POPEC.

® ATOJ00TIKOTEPO. KUKAGUOTO, KOODC TO TPOoEEPOUEVO TUNUOTO Eivorl
BeAtiocTomompéva yia v Agttovpyio mov mpoopilovral.

1.7 Ieprypooen Hpopifqpatog ko Ilpotacn Avong

H xaBvotépnon tov kpicipov povomatiod avaykalel To KOKA®UO Vo AEITOVpYEl
og pio cuykekplévn cuyvotnta 1 omoia dev mapoPidlel Tovg TePLOPIGHOVS TOV. AVTN
N ovxvOTNTO VITOAOYILETOU MG O AVTICTPOPOS apBUdC TG KaBuoTéEpnong mov ExEL TO
Kpioyo povomdtl. ApPKETO cLYVA M TEMKN oLYVOTNTO Agrtovpylog eivar oo
YOUNAGTEPN Y10 VAL G PAAGTEL OTL TO KPIGIHO povordrtt dev mapafraletor kot 0Tt OAEG
ot €l60d01 Kat o1 ££0001 TV empépovg Tunpdtev ivor £ykvpes kot otabepés. Emeidon
TO KUKA®UO AstTovpyel o€ éva gevaptlo “worst case”, etvar BERato dtt dha ta vTdAoUTa
LLOVOTIATIOL AELTOVPYOVV OLOAG KOl Ol XPOVIKOTL TEPLOPIGLOTL TOVG IKAVOTOLOVVTOL. AVTN
N cvyxvotTa Elval vVYNAOTEPN dVVATH TOV TO KOKAMO UTOPETL VOL AEITOVPYNGEL YOPIG
TPOPANpa ota povomdtio dedopévmv tov. To mpdPAnua evtoniletar otny vdOeon Ot
TO KPIoHO HOVOTATL Elval TAVTOTE EVEPYO KO G AMOTEAEG O TTEPLOPILEL TNV TaXLTNTA
TOV KUKAMDUATOG.

Qot600, 10 Kpioyo povomdrtt dev egivor mavto evepyd, SOTL To dedopEval
EVEPYOTOLOVV KOl OEVEPYOTOLOVV TO LOVOTATIOL OLVOIKG KOTd Tn OldpKed TOL
Kokhov extéleonc. Emopévac, otav eivar yvootd Ot 10 Kpicluo povomdtt givorl
avevepyld, 1o KOUKA®UO €ivol KovO Vo TPOGOPUOGEL T CLYVOTNTO TOL KOl VO
Aertovpynoetl 6e vynAdtepn cvyvotnta. Otav To Kpicio povomdtt evepyomombet, o
KOKA®UO EAOTTMOVEL T1 GLYVOTNTA TOL GTNV OPYIKN TNG TWN. AVt glval n KOpa (ko
amAomomuévn) 10€a otnv omtoio oTnpiletor 1 SLVAUIKT KMUAK®GT] GUYVOTNTOG.

[Ipokepévov va emtevyBel | KAPLAK®ON, amotteiton Hio avAaALGT) TV YPOVIKDV
OMOTEAECUATOV TOV KUKADUOTOS KO 1] TPOGHNKN £VOC KUKAMUATOG 0VAOPOGTG TOV
ovvey®g Ba Tapakorovbel T Aettovpyio TOL KUPLOV KVKADUOTOS Kol Vo TPOGOpUOLet
™ oVYvOTNTO TOL. MEGM aVAALGNG TOV KLKADMOTOG, €lval dvvatd va Kabopiotohv
TOL0. GNUOTO. EVEPYOTOLOVV KO OTEVEPYOTOLOVV TO KPIGIHO HOVOTATL TNG o)ediaong
wote vo mopakoiovBovvrat. Avtd ta Ppato givonl apkeTA Yoo vo €mTayhVouV
SuvoKd TO KOKAMLLOL.

[Ma ké0e oTavpodpd L TOV GLUVAVTATOL, 1] AOYIKT] GLVAPTNGT TOV VAOTOLEITOL GTO
onueio g dwotavpmons (to onueto avtd eivor ocvvnBwg éva LUT) peietdron
TePUTEP®. MECH TNG AVAALGNG TV SLOGTOVPMDCENMY, LITOPOVV Vo KaboploTohv Toln
ONULOTO EAEYYOVV OO LOVOTLATIO KOl KATO GUVETELD LEPKE amd avtd o onpata Oo
eAEyovv TNV dactavpwon Pdoel g TpEyovsag Tng tovg. O tpdmog pe Tov omoio
avTdG 0 EAeYYOG EmTLYYAVETOL Eival apeTdfAnTog Kabdg eivat amodnkevpuévog oe Eva
lookup table mov dev petafdaiietor Kotd Tov ¥povo ektéreons. Me tov tpdmo avtdv
emtuyydvetar 1 dwyeipion g dactadpwonsg yopic vo aAAAEEL M AOYIKN TOL
KUKADLOLTOG,.

22

1.8 Epyaieia mov ypnoipomon)dnkayv

2mv mapodoo SIMAOUATIKY epyacia ypnolwonomdnke to epyoleio Planahead
m¢ etopeiag Xilinx. Emutpémer otov ypnotn vo ocvvBécel 10 oxéolo TOv, VO
TPOYUOTOTOWCEL AVAAVGT] TOV YPOVIGLOV, VO EAEYEEL TNV ATOKPIGT] TOV KUKAMUOTOG
o€ SLAPOPEG E1GOO0VG KOl KATOGTAGELS Kol Vo, TPOYpappaticetl to design tov v oe
pio mhakéta Yo Tpaypatiky Aettovpyia. Me 1o epyadeio avtd, etvat duvatn 1 HeAET
TOV OMOTELECUATOV VAOTOINoNG Tdve oto FPGA (implementation) Kot Tov ypovicpol
(timing) pe otdy0 TV avdAvon g kpioung Aoykng. EmimAéov, fondd oty Pertimon
™m¢ oamddoong tov design tov ypnotm péow floor planning, tpomomoinong twv
TEPLOPICUDV KOL TOALDV SOQOPETIK®V pvOuicewv oe eminedo ovvBeong Kot
vAomoinong.

Kd&be design mov vAiomoteitanr pe v Pondewa tov Planahead mepvdel and ta
01do10 Tov placement, Tov mapping kot Tov routing. AkoAovbei pio cvvroun avéivon
v K40 éva amd avtd to oTdo:

» Placement: eivar éva omopaitnto Pruo 6TV MAEKTPOVIKY CYESIOOT KoL
avaQépeTaL oty avabeon tomobecidv pe akpifela daPOp®V TUNUAT®V TOV
KUKAOMOTOG pHEsa otV meployn tov chip. Eva koatdtepng motdotnrog placement
Oyt novo emmpedler v anddoon tov chip, ahdd mBavév vo odnynoel oty
adVVoUio. KATOOKELNG TOL TOPAYOVTIOS KOAMOIDGES HEYAAOL HNKOLS TOV
Eemepvouv Tovg dlabéaovg mopovg yia routing. Katd cuvéneta, n dadikacio
avTn TPEMEL v KAVEL TIC avabicels evomapdAinia PeAtiotonmolel Eva mAn0og
oTOY®WV, OOTE Vo EMTELYOOVLV Ol TPOSYPAPEG ATOO0ONS. XOPUKTNPIGTIKOL
otdy0l Tov placement mepthapfavoov:

o JVVOMIKO UNKOS KOAWOIWOE®Y: 1 EAAYIOTOMOINGN TOL UNKOVS TOV
KOAWOIDOEMY OMOTEAEL TOV TPOTAPYIKO GTOYO TOV AOYICUIKOV TOV VAOTOLEL
1o placement. Avtd Oyl uévo cuviekel otV peiwon Tov peyébovg tov chip,
OAAG TOVTOYPOVA UEIDOVEL TNV KATOVAA®ON 1ox00g Kot TNV KoBuotépnon
d1ad000NG T®V ONUAT®V TOL £ivat oVAAOYN TOV UKOVG KAAMOTI®MONG.

e Xpoviouog: o KOKA0g poroylod evag chip kabopiletar and v kabvotépnon
TOV HLOKPVTEPOL LOVOTTATION TOV, TOV GUYVEA OVOPEPETOL O KPIGILO LOVOTIATL.
"Exovtag kabopiopéveg mpodioypapic amdooons, To AOYIGHKO TPEMEL va. Eivot
olyovpo 0Tt OV LLAPYEL LOVOTATL TOV VoL EEMEPVE TNV PEYIGTN KOBOPIGUEV
kaBvotépnon.

o Xoupopnon: Evo givon amapaimto vo petwbel 1o pnKog tov KaAmddcemy
(MOTE VO EMOPKOVV 01 TOPOL TOV routing, eival eniong avaykaio ot wOpol avtol
VO IKOVOTIOL0VV TPOOLOYpaPEG TOTIKOTNTAG TAve oto chip. Mo mepoyn pe
CLUPOPNOT 10MC OOMYNOEL GE TOPOKAUYELS OOPOUDV ovEdvovTog TIg
KAA®OLDOELS.

o Joyvg: M pelwon g 1oyvog cuVNOMG TEPLAUPAVEL TNV GOOTN KATAVOUN TOV
TuNpdTov yoo v peioon ™ Kataviimong kot tnv eEopdAvvon g
Bepurokpaciog Tov chip.

e 'Evog 0evtepedmv 6TdY0G TOL AOYIoUIKOV gival 1 peimon tov ypdvov mov
amottel yio TNV oAoKANpwo tov o placement.

» Mapping: eivou pio péB0d0g e TNV omoia to design Pmopel var AvTIoTO(IGTEL GTA
euokd pins tov FPGA o610 omolo Oa mpoypoappotiotel, Sniaodrn moieg 1 ddpopa

23

ototyeia emiéyovror amd Tig fIPA0ONKES Y10 VO VAOTOMGOLV TOL KUKADUOTO TOV
design. Awapopetikd, eivor to péco pe 10 omoio to design umopel va
aAnAemidpdost pe tov “é€m KOGHO”. XaPTOYPAPOVTOG ECMTEPIKE YNOLOKA
ONMOTO GE PINS KATO0G GLOKEVTG, N AOY1KT) TOL design Umopel Vo EMKOIVOVIGEL
pe aida tpunpato tov chip. Qg pépog tov mapping, kabopilovral Kot ovaroyucd
YOPAKTNPOTIKG ota pins, Onw¢ IO standards, dvvauelg odnynong (drive
strengths) kot slew rates. e enimedo AOYIOUIKOV, TO mapping EMLTVYYOVETOL [UE
xpnomn Spopemcemv Kot apyeiwv mepropiopmv. Eva FPGA design pmopet va
£xel MOANUTAEG KOOOPIGUEVEG OLOUOPPDGELS, e KaOe pia va mepiéyet To apyeio
TEPLOPICUDV (YOPTOYPAPNOT pins, TEPLOPIGHOL TOTOOETNONG Kol SpOOAOYN oG,
TEPLOPICUOL POAOYIOD KOl YPOVICUOV) TOL OMOLTEITOL YOl VO GTOXEVOEL GE
VAOTTOINOM TAVE® GE SLUPOPETIKES PLGIKEC GVOKEVEC.

Routing: eivo pio dradikacio mov otnpiletor oto placement, mov kabopilel v
tomofecio kibe evepyov otoryeiov Tov ypnoiponoteitol amd 1o KhkAouo. Metd
10 placement, to routing Tomo0etel KOAMOIL TOV ATALTOVVTAL YLl TNV GUVOESN
TOV TOTOOETNUEVOV ££0PTNUATOV VO dtatnpel OAOVG TOLG Kavdveg Tov design.
210 AoyIoKo divovtat Kamoto Tpobmdpyovio ToAYY®Ve Tov amroTeAohvTal amd
pins Kol TPOOPETIKE KAmoleg Tpoimdpyovoeg Kalmoiwaoels. Kdébe Eva and avtd
T0. TOAVYVa cvoyetiletot pe éva net, Bdoet ovopatog 1 vog apBpov. H kipla
gpyacio Tov router £ivat vo ONUIOVPYNOEL YEMUETPIEG DGTE OAN TOL Pins TOL 1010V
net va etvat GuvoedEEVA, KAVEVO Pin GLUCYETIGUEVO e AAAO net va PNy cuvoEeTot
Kol OA01 01 Kavoveg Tov design va 1oyvovv. ‘Evog router umopel va amotdyetl unv
ouvdéovtag 600 pins Tov Enpene va cuvdeBoHV (open), cuvdéovtag dVo pins TOLV
dev énpeme (short) N mopafralovrog kdmoov kavdva. EmmAéov, yia va cuvdoefovv
oMOoTO TO nets, ol routers WPEMEL VO TNPNGOLV TOV YPOVIGUO, VO UNV
dnuovpyncovy tpoPAnuata crosstalk, vo TnpNGOLV TIG ATOUTACELS TUKVOTNTOG
Kol TOAAG OAAc. ATd ta mapomdve elvar epgavég 0Tl To routing eivor pia
wiaitepa 0VGKOAN dradtKacioL.

2xedov kdOe mpoPAnua mov oyetiCetan pe to routing givor dSvoemiivto. To
amAoVGTEPO TPOPANUA OPOLOADYNONG, YVOGTO G OEVTPO TOL Steiner, e0PECTg
TOV GLUVTOUOTEPOL SPALOV Y1 va net ympic epmdola ko Kavoveg tov design eivor
NP-dvoKkoro av OAeg o1 yovieg emtpémovror Kou NP-mAnpec av pdévo oplovria
Kot KaBeta Kahddwo emrpénovtat. Katd cuvéneta, ot routers omdvia tpocmadodv
va Bpouv pio PéAtiotn Avon. AvtiBeta, oxeddv ohdkAnpm m SpopoAdynon
Baciletar oe egvupotikég ADoelg mov mpoomabovv va Ppouvv amAd o
KOVOTTOM TIKT AVGM.

24

Lege Spsihens

Techro gy Mappng

L

5: Modikooio kataokevns kokAwuarog navew oe FPGA

To Planahead 6o ypnowomomBel eniong yio v obHVOEST TOV TPLOV UEPDOV
(kVopo KOk Ao, kOkAopa Selector mov mapoakolovbel ta ofjpato A&yyov Kol TO
digital clock manager mov emAéyst TV KATAAANAN CLYVOTNTO AEITOLPYING) TOV
oLVOETOVY TO TEMKO KOKA®LO.

To devtepo epyoreio mov Ba ypnowyomomBel eivar pio epopuoynq mov
avantoydnke oto mhaico ¢ dSmAopotikng kot ovopdletor Planahead Expander.
AvVOoADEL TO OMOTEAECUOTO TNG YXPOVIKNG OVOADONG TOV KUPLOV KULKAMUOTOS (TO
aroteAéopato avtd mapéyovral and to Planahead) xou Bydaler cav é€odo ta onjpata
eléyyov koBMOG ko TG avtiotoyeg ocvyvotnteg Asrtovpyiag. H epappoyn elvan
YPoUUEVN o€ Java yio v umopel vo eKTEAEGTEL € OTOL0ONTOTE AEITOVPYIKO GUGTNUAL.
Mol pe Tov Expander épyeton pio axdpo epappoyn ypoppévn o Java mov ovopaleton
Generator. H epoppoyn avt) dwPaler to opyeio mov dnpovpynnke amd tov
Expander kot dnuovpyet éva apyeio pe kddika VHDL mov viomotel 10 KOKA®UO TOV
TapoKoAoLOel ta onuaTe EAEYYOL OMMG TPOGOOPIcTNKAY OO TO TPOTYOVUEVO
gpyaieio.

To ISE ¢ Xllinx ypnowonoteitat yio v Kotackevn e povadag digital clock
manager. H povada avt petatpénet pio cuyvotnta 16000V o€ péypt €& (e€aptdron
a6 Tov TOomo tov FPGA mov ypnoiponoteitar) cuyvotnteg e£0dov kabopiopéves amod
ToV YpNotn. Xmv mapovoa epyacia, povo to I[P Core Generator tov ISE
ypnoonoteital. Oreg ot AAhec Aertovpyieg emttvyydvovtal péca omd to Planahead. H
kataokevr] tov digital clock manager givat g0koAn kot Tpaypatomoleital péca amod
YPAPIKO TEPPAAAOV.

To FPGA Editor and v Xilinx ypnowonoteitan (epdcov ypetdletol) yio va
OLVOECEL TAL ECMTEPIKA CNUOTO TOL KUPOL KUKADUOTOS HE TS €16000VG TOL
KukA®patog Selector. Av 0gv VTOPYOVY ECMOTEPIKA GNUOTO, COUVOESN WUTOPEl va
nmpaypatonombet péow kddwka VHDL kat 1o FPGA Editor dev ypetdletatl. EmumAéov,
avT M eQapuoy umopel va ypnotpomomBel yioo mAnpoeopieg oyeTKEG pE TNV
kaBvotépnon o€ ovykekpiuéva dpopoioynuéva koiddw mov Ba fondicovv tov
YPNOT VO EMLTAYVVEL OKOLO TEPICTOTEPO TO KLPLO KOKAMLLOL.

To Isim and v Xilinx &lvatl évag TPOGOUOIWTNAE OV XPNCULOTOLEITAL Yo, VOl
ereyyet m Aettovpyia Tov véou kot PBEATIOpEVOD KUKAGNLOTOS. O TPOGOUOIOTNG divel
™V JLUVATOTNTA EAEYYOV TMV KVUATOLOPPDV IGO0V Kol 5600V TOV KUKAMLOTOG.

25

2. Introduction

2.1 Embedded systems

A simple definition of an embedded system is whatever device which contains
a task specific central possessing unit (CPU) and not a general purpose one. Usually,
the system must meet real time computing constrains and it is embedded as a part of
a whole device that often includes hardware and mechanical parts.

Embedded systems range from mobile devices, such as digital watches and
portable music players, to large scale application devices, such as traffic lights and
factories controllers, to highly complicated systems like cars. The complexity of the
embedded systems may vary from small like a simple micro-controller, to large multi-
unit systems, peripheral devices and network controllers.

Modern systems often rely on micro-controllers, which are processors with
embedded memory or other peripheral devices. Micro-processors are quite common
too, especially on highly complicated systems. Processors vary from general purpose
to custom designed for a highly specialised application. A typical example of a
specialised processor is a digital signal processor or DSP for short.

Why are micro-processors currently in use? There a two major answers to that
question:

e Micro-processor is a very efficient way of implementing digital systems because
they offer the ability of reusing many hardware designs with a simple software
update. This is very important and the main reason is that designing integrated
circuits remains an expensive and time consuming process.

e Micro-processors facilitate designing of families of products which can be made
in order to provide different specifications in various price levels. They may also
be expandable so that they keep up with the rapidly changing market needs.

2.2 Embedded computing — challenges

Embedded computing is, according to many opinions, a more demanding
process than writing software for personal computers. Proper functionality remains
important for both personal and embedded computing, but embedded applications
must meet many more constrains.

e Complicated algorithms: Functions executed by a micro-processor may be
highly complicated. For instance, controlling the fuel flow in a car.

e User interface: micro computers are usually used for controlling complicated
user interfaces which contain a lot of lists and buttons. For example, a global
positioning system (GPS) uses a very expressive user interface.

Furthermore, many tasks of embedded systems must be completed within strict
deadlines, which adds more constrains and complexity into designing embedded
software. Some of these extra demands are mentioned below.

e Real time: many embedded systems must operate in real time. If data is not
ready until a specific deadline, the whole system may collapse. Not meeting all

26

timing constrains in a system, may result in dissatisfied customers or even
deaths (please consider a system used in surgeries or an airplane controller).

e Multirate functions: Many functions in embedded systems must meet all timing
constrains but also many real time processes may take place in parallel. It is
highly likely that some of these processes have a slow pace and others have a
faster one. Multimedia applications are a good example of multirate functions,
because audio and video segments are executed in the system with different
rates but they must always be synchronised in order to be presented to the user.

e Manufacturing costs: The total manufacturing cost is a critical part in many
applications and it is defined by many factors such as the type of processor
used, the amount of on board memory and the number of peripherals.

e Power: Power consumption affects the battery life of all mobile devices, which
is crucial in many applications. It also affects the heat production of the device
which may lead to temporal malfunction.

e [imited hardware resources: Unlike personal computers, most embedded
systems possess limited hardware resources to take advantage of (for example,
power coming from a battery, limited ram onboard, few or even none peripheral
1/0O devices). Therefore, it is necessary that all resources are used efficiently and
the user application will function correctly.

External limitations are an important source of difficulties in designing
embedded systems. During designing process, all important problems mentioned
below must be taken into serious consideration.

How much hardware is needed? There is a way of controlling the quantity of
processing power given to a problem by carefully choosing the type of micro
processor, the amount of RAM, the I/O devices and so on. The choice of the hardware
components is very important if we recall that many timing, cost and performance
constrains must be met. If the system lacks hardware, it will miss its deadlines and it
will not meet its user’ s expectations. If the system possesses too much hardware, the
total cost of the system will rise without any noticeable performance improvements.

How are deadlines satisfied? The absolutely raw way of satisfying a deadline is
by accelerating the hardware, so that commands execute faster. However, this may
lead to a more expensive system. Moreover, it is likely that the overclock of the
processor won’ t benefit the execution time due to memory limitations.

How is power consumption minimised? Power consumption is a major problem
almost on every embedded system. By slowing down non crucial datapaths, the
system achieves better power consumption and at the same time it meets all
deadlines. However, the designing process requires a lot of attention and it is time
consuming because of its complexity.

Upgradable design. The hardware platform of a system can be used for many
generations of products with zero or few modifications. However, adding new
capabilities is still desirable and it can be achieved through software updates.
Therefore, the correct and future proof design of the hardware is very important, so
that software which is not yet designed will be executed without any problems on the
platform.

27

Reliability. Reliability is an important feature of both hardware and software. It
is also desirable in some applications such as safety critical systems. Careful planning
and design are needed in order reliable products to be built.

2.3 FPGA - evolution

FPGA (stands for Field Programmable Gate Array) is a type of general purpose
programmable integrated circuit which possesses a large number of standardized
gates and other digital components, such as counters, registers, PLL generators and
so on. Some FPGAs embody analog functions as well. During the programming
process of a FPGA, that always takes place when the FPGA is on the printed circuit,
all desired functions are activated and interconnected. The final result is that the
FPGA behaves as an integrated circuit with a specific function.

The source code, which the FPGA is programmed with, is usually written in a
hardware description language like VHDL or Verilog. Its application field is quite
similar to other programmable integrated circuits, such as PLDs and ASIC. However,
FPGAs have some unique features:

e FPGA forgets its programming every time it is unplugged. Therefore, it requires
an external micro processor or a non volatile memory unit, which will program
the main FPGA unit when needed.

e FPGA programming may change every time that the software located in the
micro processor or the memory unit is modified.

e There is no upper limit on how many times a FPGA unit can be programmed.

e Power consumption is significantly increased compared to ASIC.

FPGAs are very suitable in applications where their parameters change often or
in small production rates, while ASICs, due to mass production, is cheaper in large
quantities and the desired function is strictly predefined with no errors (ASICs cannot
be reprogrammed. The can be programmed once).

The basic structural unit of the FPGA is a logical block, the combinations of
which implement boolean functions that express functions of a digital circuit.
Depending on the size of the circuit, many logical blocks can be combined to
implement all necessary boolean functions.

FPGA industry resulted from programmable read only memories (PROM) and
programmable logic devices (PLD). Both of them are capable of banch programming.
However, their programming was depending on wired logic between gates.

FPGAs were skyrocketed during the 90s as long as design complexity and
production rates are concerned. During the same era, FPGAs were only used in
telecommunications and networks. However, during the late 90s, they were used in
more consumer applications, such as car industry and various industrial applications.

A resent trend is a hybrid architecture, which means combining the logical
blocks of the traditional FPGAs with embedded processors and the required
peripheral units to form a complete system on a programmable chip. This hybrid
architecture limits the power consumption, creates a system with smaller size but
more reliable. (Wolf, 2008)

28

2.4 Benefits of FPGA technology

FPGA chip adoption across all industries is driven by the fact that they combine
the best parts of ASICs and processor based systems. FPGAs provide hardware timed
speed and reliability, but they do not require high volumes to justify the large upfront
expense of custom ASIC design. Reprogrammable silicon also has the same flexibility
of software running on a processor based system, but it is not limited by the number
of processing cores available. Unlike processors, FPGAs are truly parallel in nature,
so different processing operations do not have to compete for the same resources.
Each independent processing task is assigned to a dedicated section of the chip and
can function autonomously without any influence from other logic blocks. As a result,
the performance of one part of the application is not affected when more processing
is added. (The Linley Group, 2009)

The main benefits of using FPGAs can be listed as follows:

e Performance. Taking advantage of hardware parallelism, FPGAs exceed the
computing power of digital signal processors (DSPs) by breaking the paradigm
of sequential execution and accomplishing more per clock cycle. BDTI, a noted
analyst and benchmarking firm, released benchmarks showing how FPGAs can
deliver many times the processing power per dollar of a DSP (BDTI Industry
Report, 2006) solution in some applications. Controlling inputs and outputs at
the hardware level provides faster response times and specialized functionality
to closely match application requirements.

e Time to market. FPGA technology offers flexibility and rapid prototyping
capabilities in the face of increased time to market concerns. An idea or a
concept can be tested and verified in hardware without going through the long
fabrication process of custom ASIC (Thompson, 2004) design. Incremental
changes and iterations on an FPGA design can be implemented within hours
instead of weeks. Commercial off the shelf hardware is also available with
different types of 1/O already connected to a user programmable chip. The
growing availability of high level software tools decreases the learning curve
with layers of abstraction and often offers valuable IP cores (prebuilt functions)
for advanced control and signal processing.

e Cost. The nonrecurring engineering expense of custom ASIC design far exceeds
that of FPGA based hardware solutions. The large initial investment in ASIC is
easy to justify for OEMs shipping thousands of chips per year, but many end
users need custom hardware functionality for the tens to hundreds of systems
in development. The very nature of programmable silicon means that
fabrication costs or long lead time for assembly are absent. Because system
requirements often change over time, the cost of making incremental changes
to FPGA designs is negligible when compared to the large expenses of
respinning an ASIC.

e Reliability. While software tools provide the programming environment, FPGA
circuitry is truly a “hard” implementation of program execution. Processor
based systems often involve several layers of abstraction to help schedule tasks
and share resources among multiple processes. The driver layer controls
hardware resources and the operating system manages memory and processor
bandwidth. For any given processor core, only one instruction can be executed

29

at a time and processor based systems are continually at risk of time critical
tasks preempting one another. FPGAs, which do not use an operating system,
minimize reliability concerns with true parallel execution and deterministic
hardware dedicated to every task.

e Long term maintenance. As mentioned earlier, FPGA chips are field upgradable
and do not require the time and expense involved with ASIC redesign. Digital
communication protocols, for example, have specifications that can change
over time and ASIC based interfaces may cause maintenance and forward
compatibility challenges. Being reconfigurable, FPGA chips can keep up with
future modifications that might be necessary. As a product or system matures,
functional enhancements can be made without spending time redesigning
hardware or modifying the board layout. (National Instruments, 2012)

2.5 FPGA structure

FPGAs consist of three fundamental components: logic boards, input and
output ports and programmable routing. The type of logic board used affects the
speed and area efficiency of the FPGA. A common type of logic board found in
modern FPGAs is based on look up tables (LUT), which consists of an N:1 multiplexer
and an N-bit memory. As far as digital logic is concerned, a LUT simply enumerates
a truth table, giving the ability to the FPGA to implement arbitrary digital logic.
(Brown & Rose)

LUT

A LUT is an array that replaces runtime computations with a simpler and faster
array indexing operation. Although the LUT has been selected as the core
computational unit in commercial FPGAs, its size in each logic board has been
carefully considered. Larger lookup tables can handle more complex logic functions,
thus reducing the wiring delay between blocks. However, this results in slower LUTs
due to the usage of larger multiplexers. On the other hand, smaller lookup tables
result in larger number of logic blocks used which increases wiring delays in the
design. In addition, there is a single-bit storage element in the base logic block which
is a D flip flop. The output multiplexer selects a result either from the function
implemented in the LUT or from the stored bit in the flip flop.

Interconnection

Modern FPGAs are designed using the island styled architecture. According to
this, logic blocks are tiled in a two dimensional array and interconnected with a
pattern. The logic blocks form the “islands” which float in the ocean of
interconnections. This architecture allow computations to be performed spatially in
the fabric of FPGA and large computations are broken into pieces and mapped into
physical logic blocks in the array.

The logic block accesses its neighbors through the connection block, which
connects logic block input and output terminals to routing resources through
programmable switches or multiplexers. The connection block allows logic block
inputs and outputs to be assigned to arbitrary horizontal and vertical tracks, increasing
routing flexibility.

30

Each configurable element of the FPGA requires 1 bit of storage to maintain a
user defined configuration. For a LUT based FPGA, these programmable locations
generally include the contents of the logic block and the connectivity of the routing
fabric. Configuration is accomplished through programming of storage bits
connected to these programmable locations according to user’ s input. There are
many methods for storing a single bit of binary information, the most popular being
SRAM, antifuse and flash memory. (Kuon, Tessier, & Rose, 2008)

The most widely used method for storing configuration information in
commercially available FPGAs is volatile static RAM, better known as SRAM. This
method was made popular because it provides fast and unlimited reconfiguration in
a well known technology. Drawbacks of SRAM are the high power consumption and
data volatility. Compared to other memory technologies, the SRAM cell is larger
(requires 6 to 12 transistors) and dissipates significant static power because of current
leakage. Another major disadvantage is that SRAM does not maintain its contents
without power, which means that during power up the FPGA is not configured and
must be programmed using off chip logic and storage. This can be achieved by using
a non volatile memory to hold the configuration and a micro controller to perform
the programming procedure.

Although less popular than SRAM, many families of devices use flash memory
to store configuration information. Flash memory is different from SRAM because it
is non volatile and can be written a limited number of times. The non volatility of
flash memory means that data can be written to it and remains stored when power is
removed. In contrast with SRAM based FPGA, a flash based one remains configured
by user defined logic and does not require extra hardware to be programmed during
boot up, which means that a flash based FPGA can be ready immediately. Moreover,
a flash cell is made by less transistors compared to SRAM cells, thus there are fewer
transistors to contribute to current leakage. However, flash memory has a limited
read/write cycle lifetime and often offers less write speeds compared to SRAM. The
number of write cycles varies depending on technology, but is typically some million
times. Additionally, most flash write techniques require higher voltage compared to
normal circuits; they require additional off chip circuitry or structures like charge
pumps on chip to be able to perform writes.

A third approach to achieving programmability is antifuse technology. Antifuse,
as its name suggests, is a metal based link that behaves oppositely of a fuse. The
antifuse link is normally open (unconnected). A programming procedure that involves
either a high current programmer or a laser melts the link to form an electrical
connection across it, like creating a wire between the antifuse endpoints. Antifuse
has several advantages but it is not reprogrammable. Once a link is fused, it has
undergone a physical transformation that cannot be reversed. FPGAs based on this
technology are generally considered one time programmable. This severely limits
their flexibility in terms of reconfigurable computing and nearly eliminates this
technology for use in prototyping environments. However, there are some distinct
advantages of using antifuse in an FPGA platform. First of all, the antifuse link can
be made very small compared to the large multi transistor SRAM cell and does not
require any transistors in order to be formed. This results in very low propagation
delays across links and zero static power consumption, because there is no longer

31

current leakage due to transistors. Antifuse links are also not susceptible to high
energy radiation particles that induce errors known as single event upsets making
them more likely candidates for space and military applications.

2.6 Software libraries

Many commercial tools provide a generic set of FPGA macro components —
symbolic representations of blocks of functionality that a user desires to add to an
FPGA design. These components are presented to the user as FPGA-ready schematic
symbols (or graphical representations) that can be instantiated into a design. FPGA-
ready schematic components are like traditional PCB-ready components, except
instead of the symbol being linked to a PCB footprint, each is linked to a pre-
synthesized EDIF model.

The pre-synthesized components are supplied as object code entities without
having to expose underlying RTL- or netlist-level source code. The system includes
multiple libraries providing a comprehensive set of pre-synthesized components,
ranging from simple gate-level functional blocks, up through high-level hardware
functions, such as multipliers and pulse-width modulators, to high-level functions,
such as processors and communications peripherals. These components can be
instantiated into designs by the system user and then the whole design can be targeted
to a suitable physical device. There are many advantages of using pre built
components. Some of them are refered below:

e The time needed to complete a design is reduces because many of the most
commonly used components are already built by the tool.

e Debugging the hardware design is easier because the components provided are
functioning correctly and are error free.

e A segment can be used many times.

e More efficient circuits are created because the provided segments are already
optimized for a specific function.

e The resultis a design environment that offers true device vendor independence,
with the ability to quickly retarget the FPGA design to a different device with
relative ease.

2.7 Suggested solution

The critical path delay forces the circuit to operate at a certain frequency which
does not violate its constrains. This frequency is calculated as the reciprocant of the
delay that the critical path has. Quite often the final operational frequency is even
lower to ensure that the critical path is not violated and all inputs and outputs of the
components are valid and stable. Because the circuit operates in a “worst case”
scenario, it is certain that all other paths are functioning properly and their timing
constrains are met. That frequency is the highest possible that the circuit can function
without errors in its data paths. The problem is that this specific approach assumes
that the critical path is always active and as a result it limits the speed of the circuit.

However, the critical path is not always active because the data operations
activate and deactivate paths dynamically during execution cycle. So, when it is

32

known that the critical path is inactive, the circuit is able to adjust its frequency and
operate at a higher clock rate. When the critical path is activated, the circuit lowers
its frequency at its original value. This is the main (and simplified) idea which the
dynamic frequency scaling is based on.

In order the dynamic frequency scaling to be achieved, an analysis of the timing
results of the circuit is required and then a “feedback” circuit to be added to
constantly monitoring the operation of the master circuit and adjusting its operational
frequency. By analyzing the circuit, it will be possible to determine which signals
activate and deactivate the critical path of the design so that they will be monitored.
Those steps are enough to accelerate dynamically the circuit.

For every crossroad found before, the boolean function that is implemented at
the crossroad component (that component is a lookup table of the FPGA fabric) is
studied further. It is worth mentioning that the function is found in the netlist file and
it is already stored in the database of the tool. By analyzing crossroads, the tool will
be able to determine which signals activate which path. As a conclusion, some of
these signals are going to control the crossroad based on their current values. The
way that this type of control happens is constant as it is stored into a lookup table
programmed at implementation time and does not change at runtime of the design.

According to digital design theory and boolean algebra, a boolean function can
be implemented in many different ways, such as a ROM, a nand circuit, a nor circuit
or a multiplexer. All the above ways do not affect the logic of the function and are
totally equivalent. The choice of the multiplexer was made because it possesses select
signals by default which determine which of its inputs will become the output.

2.8 Tools used

In the present diploma thesis the main software tool used was the Xilinx
Planahead. It allows the user to synthesize his design, to perform a timing analysis, to
check the performance of the circuit in many different inputs and to program that
design onto a physical device. With that tool it is possible to study the implementation
and the timing results in order to analyse the critical logic. Moreover, it helps
improving the performance of the user’ s design through floor planning, constrains
modification and many more synthesis and implementation settings.

Every single design which is implemented with Planahead goes through
placement, mapping and routing. All three stages are explained in detail just below:

Placement is an essential step in electronic design automation - the portion of
the physical design flow that assigns exact locations for various circuit components
within the chip’ s core area. An inferior placement assignment will not only affect the
chip's performance but might also make it non manufacturable by producing
excessive wire length, which is beyond available routing resources. Consequently, a
placer must perform the assignment while optimizing a number of objectives to
ensure that a circuit meets its performance demands. Typical placement objectives
include:

e Total wire length: Minimizing the total wire length, or the sum of the length of
all the wires in the design, is the primary objective of most existing placers. This

33

not only helps minimize chip size, and hence cost, but also minimizes power
and delay, which are proportional to the wire length (This assumes long wires
have additional buffering inserted; all modern design flows do this.)

e Timing: The clock cycle of a chip is determined by the delay of its longest path,
usually referred to as the critical path. Given a performance specification, a
placer must ensure that no path exists with delay exceeding the maximum
specified delay.

e Congestion: While it is necessary to minimize the total wire length to meet the
total routing resources, it is also necessary to meet the routing resources within
various local regions of the chip’ s core area. A congested region might lead to
excessive routing detours, or make it impossible to complete all routes.

e Power: Power minimization typically involves distributing the locations of cell
components so as to reduce the overall power consumption, alleviate hot spots,
and smooth temperature gradients.

e A secondary objective is placement runtime minimization.

Mapping: is a method by which the design can be interfaced to the physical
pins of the FPGA device in which it is programmed. Put another way, it is the means
by which the design can interact with the 'outside world'. By mapping internal digital
signals to the device pins, the logic is able to communicate to other areas of your
product. As part of this mapping, you would also define analog characteristics of the
pins, such as 10 standards, drive strengths and slew rates.

This mapping is achieved using ports (or port components), configurations and
constraint files. An FPGA design can have multiple defined configurations, with each
configuration containing the constraint files (pin mappings, clock constraints, place
and route constraints) required to target a different physical device.

Routing: In electronic design, wire routing, commonly called simply routing, is
a step in the design of printed circuit boards (PCBs) and integrated circuits (ICs). It
builds on a preceding step, called placement, which determines the location of each
active element of an IC or component on a PCB. After placement, the routing step
adds wires needed to properly connect the placed components while obeying all
design rules for the IC.

The task of all routers is the same. They are given some pre-existing polygons
consisting of pins (also called terminals) on cells, and optionally some pre-existing
wiring called pre routes. Each of these polygons are associated with a net, usually by
name or number. The primary task of the router is to create geometries such that all
terminals assigned to the same net are connected, no terminals assigned to different
nets are connected, and all design rules are obeyed. A router can fail by not
connecting terminals that should be connected (an open), by mistakenly connecting
two terminals that should not be connected (a short), or by creating a design rule
violation. In addition, to correctly connect the nets, routers may also be expected to
make sure the design meets timing, has no crosstalk problems, meets any metal
density requirements, does not suffer from antenna effects, and so on. This long list
of often conflicting objectives is what makes routing extremely difficult.

Almost every problem associated with routing is known to be intractable. The
simplest routing problem, called the Steiner tree problem, of finding the shortest route

34

for one net in one layer with no obstacles and no design rules is NP-hard if all angles
are allowed and NP-complete if only horizontal and vertical wires are allowed.
Variants of channel routing have also been shown to be NP-complete, as well as
routing which reduces crosstalk, number of vias, and so on. Routers therefore seldom
attempt to find an optimum result. Instead, almost all routing is based on heuristics
which try to find a solution that is good enough.

Design rules sometimes vary considerably from layer to layer. For example, the
allowed width and spacing on the lower layers may be four or more times smaller
than the allowed widths and spacings on the upper layers. This introduces many
additional complications not faced by routers for other applications such as printed
circuit board or Multi-Chip Module design. Particular difficulties ensue if the rules
are not simple multiples of each other, and when vias must traverse between layers
with different rules.

Planahead will also be used to connect the three components (master circuit,
Selector which monitors controls signals, and the dcm which chooses the appropriate
clock frequency) that compose the final circuit.

The second tool used is a custom made application called Planahead Expander
which analyzes the timing results of the master circuit (provided by Planahead) and
outputs the control signals as well as the operational frequency of each one. This
application is written in Java in order to be executed under every operating system.
Along with Expander, there is another Java application called Generator, which parses
the file generated by Expander and creates a file with VHDL code that implements
the circuit that monitors the control signals determined by Expander.

ISE by Xilinx is also used to create the dcm unit. The dcm unit converts an input
frequency into up to six (depending on the type of FPGA used) output clocks with
user controlled frequencies. In this thesis, only the IP Core Generator of the ISE tool
will be used. All the other operations will be performed by Planahead instead. The
building of the dcm is easy and it is performed by a graphical user interface.

FPGA editor by Xilinx is used (if necessary) in order to connect the internal
signals of the master circuit with the input pins of the selector circuit. If no internal
signals exist, the connection can be done by VHDL code and FPGA editor will not be
needed. Furthermore, this application can be used in order to extract delays on
specific routed wires which will help user accelerate even more the master circuit.

ISim by Xilinx is the simulator that will be used in order to verify that the new
and enhanced circuit performs better than the original. The simulator can be used to
check the input and output waveforms of the circuits.

35

3.1

Data path, control path, synchronous and
asynchronous design

General

Most processors and other complicated hardware circuits are typically divided

into two major components: data path and a control unit or control path. The data
path contains all the hardware necessary to perform all operations supported by the
system and holds data in memory. In many cases, these hardware modules are parallel
to one another and the final result is determined by multiplexing all the partial results.
The control unit determines the operation of the data path, by activating switches and
passing control signals to the various multiplexers according to the instructions of the
memory. In this way, the control unit can specify how the data flows through the data
path. (Digital System Design Using Data Path and Control Unit, 2013)

The general structure of a modern digital system that performs a specific task

is as follows:

ool B B Lecsccmmeenismasomaneses "

 Signals |

2um e it
11388 it EEE
#e8 | i RIEL 3‘
B Control Unit Data Path L 1

- (CV) (DP)
gor { P i1 5e0
a5 t i . M
B3s Li i } i85
B v — - 2

Signals
6. Control and Data Path
e External control signals: they specify the task required by the circuit (for

example calculation of the average of some integers)

External status signals: indicate the status of the circuit (such as finished
processing, error or overflow detected)

External data inputs/outputs: data going into the circuit or out of it (the integers
to be averaged and their average)

Data path control signals: signals generated by the control unit to control
different blocks in the data path (like shift registers, counters, multiplexers)
Data path status signals: signals that indicate the status of some blocks in the
data path (for instance when an adder produces a carry or an overflow, when
the sign bit of the result is negative)

36

3.2 Data path

The data path contains blocks that only deal with data; they do not provide control
to any other blocks and themselves need to be controlled (possibly by the control
unit). Data path blocks can be viewed as the workers that perform certain tasks on
the data who need to be managed by someone else (in this case the control unit is
the manager that tells every “worker” in the data path what to do). Some examples
of data path blocks are:

o Registers: parallel load registers to read data in parallel, shift registers to read
data serially one bit at a time, digit serial registers that read data serially one
digit at a time, where the digit size could be 4 bits, 8 bits and so on.

e Arithmetic circuits: adders, subtractors, multipliers

e Multiplexers: to route one out of many data signals to one or more destinations

e Counters: As timers and counters (for example to count how many times a
certain event occurred, or how much data was read)

e Comparators and logic circuits: logic operations like AND, OR, XOR and so on

As an example, we will build a simple MIPS data path incrementally considering
only a subset of the supported instructions. In order to build the instruction fetch
block, we need the following three components:

Instruction
address

Instruction | - —lPC} - JAdd Sum} -
Instruction —
memory .
a. Instruction memory b. Program counter c. Adder

7: Basic components of Control and Data Path

An adder is required to increment the PC (program counter) to the address of
the next instruction. It can be implemented as an ALU permanently wired to perform
only addition. As a result, no extra control signal is required. A memory unit is needed
to store instructions of a program and supply instructions given an address. It needs
to provide only read access once the program is loaded so no control signal is
required. Finally, program counter or instruction address register is a register that
holds the address of the current instruction. A new value is written to it every clock
cycle. No control signal is required to enable write. By combining those three
components, we create a data path portion for instruction fetch:

Read

address
-
- Instruction

Instruction
memory

8: MIPS Data Path
37

Another example of a datapath is the following. Let us consider addition as an
arithmetic operation. Data will be retrieved from memory in detail and contents from
registers regl and reg2 are added and the result is stored in reg3. The sequence of
operations is:

o reg] outy Xin
e reg2.., choose X, addition, Yi,
* You, reg3in

The control signals written in one line are executed in the same clock cycle. All
other signals remain untouched. So, in the first step the contents of reg1 are written
into the register X through the bus. Then, the content of reg2 is placed onto the bus
and the multiplexer is made to choose input X as the contents of reg1 are stored in
register X. The ALU then adds the contents in the register X and reg2 and stores the
result of the addition in the special temporary register Y. In the final step the result
stored in Y is sent over to reg3 over the internal processor bus. Only one register can
output its data onto bus in a single step, hence steps 2 and 3 cannot be combined.
(Processor: Datapath and Control, 2014)

3.3 Control path (control unit)

The control unit (CU) handles all processor control signals. It directs all input
and output flow, fetches code for instructions from microprograms and directs other
units and models by providing control and timing signals. A control unit component
is considered as the brain because it issues orders to just about everything and ensures
correct instruction execution. John von Neumann included the control unit as part of
his architecture. In modern computer designs, the control unit is typically an internal
part of the CPU with its overall role and operation unchanged since its introduction.
(Englander, 2009)

More precisely, the control unit is generally a sizable collection of complex
digital circuitry interconnecting and controlling many execution units (for example,
ALU, data buffers, registers) contained within a CPU. The CU is normally the first
CPU unit to accept from an externally stored computer program, a single instruction
(based on the CPU’s instruction set). The CU then decodes this individual instruction
into several sequential steps (fetching addresses/data from registers/memory,
managing execution [for instance, data sent to the ALU or I/O], and storing the
resulting data back into registers/memory) that controls and coordinates the CPU’s
inner works to properly manipulate the data. The design of these sequential steps are
based on the needs of each instruction and can range in number of steps, the order
of execution, and which units are enabled. Thus by only using a program of set
instructions in memory, the CU will configure all the CPU's data flows as needed to
manipulate the data correctly between instructions. This results in a computer that
could run a complete program and requiring no human intervention to make
hardware changes between instructions (as had to be done when using only punch
cards for computations before stored programmed computers with CUs where
invented). These detailed steps from the CU dictate which of the CPU’s
interconnecting hardware control signals to enable/disable or which CPU units are
selected/de-selected and the unit’s proper order of execution as required by the

38

instruction’s operation to produce the desired manipulated data. Additionally, the
CU’s orderly hardware coordination properly sequences these control signals then
configures the many hardware units comprising the CPU, directing how data should
also be moved, changed, and stored outside the CPU (i.e. memory) according to the
instruction’s objective. Depending on the type of instruction entering the CU, the
order and number of sequential steps produced by the CU could vary the selection
and configuration of which parts of the CPU’s hardware are utilized to achieve the
instruction's objective (mainly moving, storing, and modifying data within the CPU).
This one feature, that efficiently wuses just software instructions to
control/select/configure a computer’s CPU hardware (via the CU) and eventually
manipulates a program’s data, is a significant reason most modern computers are
flexible and universal when running various programs. As compared to some 1930s
or 1940s computers without a proper CU, they often required rewiring their hardware
when changing programs. This CU instruction decode process is then repeated when
the program counter is incremented to the next stored program address and the new
instruction enters the CU from that address, and so on till the programs end.

Other more advanced forms of control units manage the translation of
instructions (but not the data containing portion) into several micro-instructions and
the CU manages the scheduling of the micro-instructions between the selected
execution units to which the data is then channeled and changed according to the
execution unit’s function (i.e., ALU contains several functions). On some processors,
the control unit may be further broken down into additional units, such as an
instruction unit or scheduling unit to handle scheduling, or a retirement unit to deal
with results coming from the instruction pipeline. Again, the control unit orchestrates
the main functions of the CPU: carrying out stored instructions in the software
program then directing the flow of data throughout the computer based upon these
instructions (roughly likened to how traffic lights will systematically control the flow
of cars [containing data] to different locations within the traffic grid [CPU] until it
parks at the desired parking spot [memory address/register]. The car occupants [data]
then go into the building [execution unit] and comes back changed in some way then
get back into the car and returns to another location via the controlled traffic grid).

Control units are designed in two different ways: hardwired control and
microprogram control. Hardwired control units are implemented through use of
sequential logic units, featuring a finite number of gates that can generate specific
results based on the instructions that were used to invoke those responses. Hardwired
control units are generally faster than microprogrammed designs. Their design uses
a fixed architecture and it requires changes in the wiring if the instruction set is
modified. This architecture is preferred in reduced instruction set computers (RISC)
as they use a simpler instruction set. A controller that uses this approach can operate
at high speed; however, it has little flexibility and the complexity of the instruction
set it can implement is limited. The hardwired approach has become less popular as
computers have evolved. Previously, control units for CPUs used ad-hoc logic and
they were difficult to design. The idea of microprogramming was introduced in 1951
as an intermediate level to execute computer program instructions. Microprograms
were organized as a sequence of micro-instructions and stored in special control
memory. The algorithm for the microprogram control unit is usually specified by
flowchart description. The main advantage of the microprogram control unit is the

39

simplicity of its structure. Outputs of the controller are organized in micro-instructions
and they can be easily replaced. (Mukhopadhyay, 2012)

A combination of a data path along with its control unit is shown below (blue lines
indicate control signals):

4 J RogDat

\ Beanch
T MeTHaad

atructon [31-26] Mooy

Control L :
i W*;i'to

ALUSe
' FoegWrie

e PC

3 | Jrestruction [25-21)
>

mtruction [20-14]

™
Y Read

Reag atal

Instrucson ||
P1-0] |
mtruction

rstrucson [15-11)

6 |2
Wiite
1o 0

Read

("R
L]

—

i
i

-
3
-

o Wit
(dala Registers

el
\&
@u:l

3

Instruction [15-0]

16 [sign | 2
| cxtomd|
\

ratruction [3-0]

9: MIPS

3.4 Combinational (asynchronous) design

A combinational circuit consists of an interconnection of logic gates.
Combinational logic gates react to the values of the signals at their inputs and produce
the value of the output signal, transforming binary information from the given input
data to a required output data. A block diagram of a combinational circuit is shown
in the next figure. The n input binary variables come from an external source; the m
output variables are produced by the internal combinational logic circuit and go to an
external destination. Each input and output variable exists physically as an analog
signal whose values are interpreted to be a binary signal that represents logic 1 and
logic 0. (Note: Logic simulators show only 0’s and 1’s, not the actual analog signals.)
In many applications, the source and destination are storage registers. If the registers
are included with the combinational gates, then the total circuit must be considered
to be a sequential circuit. For n input variables, there are 2n possible combinations of
the binary inputs. For each possible input combination, there is one possible value for
each output variable. Thus, a combinational circuit can be specified with a truth table
that lists the output values for each combination of input variables. A combinational
circuit also can be described by m Boolean functions, one for each output variable.
Each output function is expressed in terms of the n input variables.

40

The binary variables are represented physically by electric voltages or some
other type of signal. The signals can be manipulated in digital logic gates to perform
required functions. There are several combinational circuits that are employed
extensively in the design of digital systems. These circuits are available in integrated
circuits and are classified as standard components. They perform specific digital
functions commonly needed in the design of digital systems. In this chapter, we
introduce the most important standard combinational circuits, such as adders,
subtractors, comparators, decoders, encoders, and multiplexers. These components
are available in integrated circuits as medium-scale integration (MSI) circuits. They
are also used as standard cells in complex very large-scale integrated (VLSI) circuits
such as application-specific integrated circuits (ASICs). The standard cell functions
are interconnected within the VLSI circuit in the same way that they are used in
multiple-IC MSI design. (Mano & Ciletti, 2007)

- S L

—_— < s . —
Combinational = :
—> m outputs

n inputs - R
P - circunt

> I -

10: Combinational circuit

3.5 Sequential (synchronous) design

A block diagram of a sequential circuit is shown in Fig. 10. It consists of a
combinational circuit to which storage elements are connected to form a feedback
path. The storage elements are devices capable of storing binary information. The
binary information stored in these elements at any given time defines the state of the
sequential circuit at that time. The sequential circuit receives binary information from
external inputs that, together with the present state of the storage elements,
determine the binary value of the outputs. These external inputs also determine the
condition for changing the state in the storage elements. The block diagram
demonstrates that the outputs in a sequential circuit are a function not only of the
inputs, but also of the present state of the storage elements. The next state of the
storage elements is also a function of external inputs and the present state. Thus, a
sequential circuit is specified by a time sequence of inputs, outputs, and internal
states. In contrast, the outputs of combinational logic depend only on the present
values of the inputs.

There are two main types of sequential circuits, and their classification is a
function of the timing of their signals. A synchronous sequential circuit is a system
whose behavior can be defined from the knowledge of its signals at discrete instants
of time. The behavior of an asynchronous sequential circuit depends upon the input
signals at any instant of time and the order in which the inputs change. The storage
elements commonly used in asynchronous sequential circuits are timedelay devices.
The storage capability of a time-delay device varies with the time it takes for the
signal to propagate through the device. In practice, the internal propagation delay of
logic gates is of sufficient duration to produce the needed delay, so that actual delay
units may not be necessary. In gate-type asynchronous systems, the storage elements

41

consist of logic gates whose propagation delay provides the required storage. Thus,
an asynchronous sequential circuit may be regarded as a combinational circuit with
feedback. Because of the feedback among logic gates, an asynchronous sequential
circuit may become unstable at times. The instability problem imposes many
difficulties on the designer. These circuits will not be covered in this text.

A synchronous sequential circuit employs signals that affect the storage
elements at only discrete instants of time. Synchronization is achieved by a timing
device called a clock generator, which provides a clock signal having the form of a
periodic train of clock pulses. The clock signal is commonly denoted by the identifiers
clock and clk. The clock pulses are distributed throughout the system in such a way
that storage elements are affected only with the arrival of each pulse. In practice, the
clock pulses determine when computational activity will occur within the circuit, and
other signals (external inputs and otherwise) determine what changes will take place
affecting the storage elements and the outputs. For example, a circuit that is to add
and store two binary numbers would compute their sum from the values of the
numbers and store the sum at the occurrence of a clock pulse. Synchronous sequential
circuits that use clock pulses to control storage elements are called clocked sequential
circuits and are the type most frequently encountered in practice. They are called
synchronous circuits because the activity within the circuit and the resulting updating
of stored values is synchronized to the occurrence of clock pulses. The design of
synchronous circuits is feasible because they seldom manifest instability problems
and their timing is easily broken down into independent discrete steps, each of which
can be considered separately.

The storage elements (memory) used in clocked sequential circuits are called
flip flops. A flip-flop is a binary storage device capable of storing one bit of
information. In a stable state, the output of a flip-flop is either O or 1. A sequential
circuit may use many flip-flops to store as many bits as necessary. The block diagram
of a synchronous clocked sequential circuit is shown in Fig. 10. The outputs are
formed by a combinational logic function of the inputs to the circuit or the values
stored in the flip-flops (or both). The value that is stored in a flip-flop when the clock
pulse occurs is also determined by the inputs to the circuit or the values presently
stored in the flip-flop (or both). The new value is stored (i.e., the flip-flop is updated)
when a pulse of the clock signal occurs. Prior to the occurrence of the clock pulse,
the combinational logic forming the next value of the flip-flop must have reached a
stable value. Consequently, the speed at which the combinational logic circuits
operate is critical. If the clock (synchronizing) pulses arrive at a regular interval, as
shown in the timing diagram in the next figure, the combinational logic must respond
to a change in the state of the flip-flop in time to be updated before the next pulse
arrives. Propagation delays play an important role in determining the minimum
interval between clock pulses that will allow the circuit to operate correctly. A change
in state of the flip-flops is initiated only by a clock pulse transition—for example,
when the value of the clock signals changes from 0 to 1. When a clock pulse is not
active, the feedback loop between the value stored in the flip-flop and the value
formed at the input to the flip-flop is effectively broken because the flipflop outputs
cannot change even if the outputs of the combinational circuit driving their inputs
change in value. Thus, the transition from one state to the next occurs only at
predetermined intervals dictated by the clock pulses. (Mano & Ciletti, 2007)

42

Inputs - * Qutputs
Combnational

ciroan

Flip-Nops

a) Block diagram

Clock pulses

(b) Timing dagram of clock pulses

11: Block Diagram and Timing Diagram of Clock Pulses

3.6 Synchronous vs asynchronous design

Much of today’ s logic design is based on two major assumptions: all signals
are binary, and time is discreet. Both of these assumptions are made in order to
simplify logic design. By assuming binary values on signals, simple Boolean logic can
be used to describe and manipulate logic constructs. By assuming time is discreet,
hazards and feedback can largely be ignored. However, as with many simplifying
assumptions, a system that can operate without these assumptions has the potential
to generate better results.

Asynchronous circuits maintain the assumption that signals are binary, but
remove the assumption that time is discrete. This has several positive benefits:

¢ No clock skew. Clock skew is the difference in arrival times of the clock signal
at different parts of the circuit. Since asynchronous circuits by definition have
no globally distributed clock, there is no need to worry about clock skew. In
contrast, synchronous systems often slow down their circuits to accomodate the
skew. As feature sizes decrease, clock skew becomes a much greater concern.

e Lower power. Standard asynchronous circuits have to toggle clock lines, and
possibly precharge and discharge signals, in portions of a circuit unused in the
current computation. For example, even though a floating point unit on a
processor might not be used in a given instruction stream, the unit still must be
operated by the clock. Although asynchronous circuits often require more
transitions on the computation path than synchronous ones, they generally have
transitions only in areas involved in the current computation. It is worth
mentioning that there are some techniques in synchronous design that
addresses this issue as well.

o Average case instead of worst case performance. Synchronous circuits must wait
until all possible computations have completed before latching the results,
yielding worst case performance. Many asynchronous systems sense when a
computation has completed, allowing them to exhibit average case
performance. For circuits such as ripple carry adders where the worst case delay
is significantly worse than the average case delay, this can result in substantial
savings.

o Easing of global timing issues. In systems such as synchronous microprocessor,
the system clock, and thus system performance, is dominated by the slowest,
also known as critical path. So, most parts of a circuit must be carefully

43

optimized to achieve the highest clock rate, including rarely used segments of
the system. Since many asynchronous systems operate at the speed of the circuit
path currently in operation, rarely used segments of the circuit can be left
unoptimized without adversely affecting system performance.

e Better technology migration potential. Integrated circuits will often be
implemented in several different technologies and platforms during their
lifetime. Early systems may be implemented with gate arrays, while later
production units may migrate to semi custom or custom ICs. Greater
performance for synchronous systems can often be achieved by migrating all
system components to a new platform, since once again the overall system
performance depends on the longest path. In many asynchronous systems,
migration of only the most critical system components can improve system
performance on average, since performance depends on the currently active
path. Furthermore, since many asynchronous systems are aware of the
completion of a computation, components with different delays may often be
substituted into a system without altering other elements or structures.

e Automatic adaption to physical properties. The delay through a circuit can
change due to variations in fabrication, temperature and power supply voltage.
Synchronous circuits must assume that the worst possible combination of
factors is present and clock the entire system accordingly. Many asynchronous
systems, on the other hand, will operate as quickly as the current physical
properties allow.

¢ Robust mutual exclusion and external input handling. Elements that guarantee
correct mutual exclusion of independent signals and synchronization of external
signals to a clock are subjected to meta-stability. A meta-stable state is an
unstable equilibrium state, such as a pair of cross coupled CMOS inverters at
2.5V, which a system can remain in for an unlimited period of time. Thus, there
is chances that mutual exclusion circuits will fail in a synchronous system. Most
asynchronous systems can wait an arbitrarily long time for such an operation to
complete, allowing robust mutual exclusion. Moreover, since there is no clock
which signals must be synchronized with, asynchronous circuits accommodate
more gracefully inputs from the outside world, which are by definition
asynchronous.

Although asynchronous systems appear to have way more advantages, one may
wonder why synchronous systems actually dominate. The answer is that
asynchronous circuits have several problems.

Asynchronous circuits are more difficult to design in an ad hoc way that
synchronous ones. In a synchronous system, a designer can simply define the
combinational logic necessary to implement a function in hardware and surround it
with latches. By setting the clock rate to a long enough period, hazards about
undesired signal transitions and dynamic state of the circuit are removed. In contrast,
designers of asynchronous systems must pay a great deal of attention to the dynamic
state of the circuit in order to avoid hazards and incorrect results. (Roosta, 2010)

The ordering of operations, which was arranged by the placement of latches in
a synchronous system, must be carefully ensured by the asynchronous control logic.
For complex systems, these issues become too difficult to handle. Unfortunately,

44

asynchronous circuits in general cannot leverage off of the existing CAD tools and
implementation alternatives for synchronous systems. For example, some
asynchronous methodologies allow only algebraic manipulations (associative,
commutative and De Morgan’s Law) for logic decomposition. Placement, routing,
partitioning, logic synthesis and most other CAD tools either require modifications
for asynchronous circuits, or are not applicable at all. Finally, even though most of
the advantages of asynchronous circuits are towards higher performance, it is not
clear that asynchronous systems are actually any faster in practice. Asynchronous
systems generally require extra time due to their signaling policies and as an
aftermath average case delay is increasing.

A z
& Combmatonal | -
Asyschronous - Logsx
y Y
n z
&= Combmational & - -
- Logic
Synchronous y Y

1 Dignal Sweage

Clock

12: Asynchronous vs. Synchronous Design

In synchronous circuits the inputs are pulses (or levels and pulses) with certain
restrictions on pulse width and circuit propagation time. Therefore synchronous
circuits can be divided into clocked sequential circuits and unclocked or pulsed
sequential circuits. In a clocked sequential circuit which has flip flops or, in some
instances, gated latches, for its memory elements there is a (synchronizing) periodic
clock connected to the clock inputs of all the memory elements of the circuit, to
synchronize all internal changes of state. Hence, the operation of the entire circuit is
controlled and synchronized by the periodic pulses of the clock. On the other hand,
in an unclocked or pulsed sequential circuit, such a clock is not present. Pulse mode
circuits require two consecutive transitions between 0 and 1 to alter the circuits state.
A pulse mode circuit is designed to respond to pulses of certain duration; the constant
signals between the pulses do not affect the circuit’ s behavior.

Xy SEQUENTIAL ZiYy Output Pulses
Input Levels [X3 - CIRCUTT — — .?_] or
T - & Levels

Clock Pulses —— S—

13: Clocked Sequential Circuit

X} ———d SEQUENTIAL Zyy Output Pulses
inpmh.ﬂm[3 “ CIRCUTT z,] of

= =
Xy pr———

Levels

14: Pulsed Sequential Circuit

From the above block diagrams, the following things can be noted:

45

e Pulse outputs. For pulsed sequential circuits these occur only for the duration of
the respective input pulse and in some cases for duration considerably less. For
clocked sequential circuits these outputs occur for the duration of the clock
pulse.

e Level outputs. These change state at the start of the respective input or clock
pulse and remain in that state until the next state of output is required.

A requirement of synchronous sequential circuits is that the duration of the
activating pulse or clock pulse should be sufficiently low in value that the pulse (or
clock) has disappeared by the time the secondaries (the flip flop outputs) have taken
on their new value; otherwise the circuit will change state again. This means that the
storage elements should be edge triggered devices, such as D type flip flops, the JK
flip flop and their derivatives. (Synchronous and Asynchronous Circuits, 2006)

3.7 Paths

In digital design, it is common that data produced in one segment of the circuit
need to be transferred to another segment in order to be stored or further processed.
The route that connects the source and the destination points of the signal is called
path. Although signals travel at high speed in the circuit and the wiring distances are
limited, there is some time required for the signal to reach its destination. That
amount of time (usually some nanoseconds in modern digital design) is called delay
and can affect greatly the performance of a system. As there is a number of paths in
any digital design, the longest path - the path that takes the maximum time for the
signal to settle to the output - is called the critical path, as noted in the following
figure. This could be from state element to state element, or from input to state
element, or state element to output or from input to output (unregistered paths). The
critical path of the design should be smaller than the permissible delay determined by
the clock cycle.

critical path

15: Critical Path

The delay of a path is the result of many different factors and constrains during
design and operation cycle. The following table summarizes some of the key reasons
that control the delay of a path.

46

Cell library CAD tools (logic

SHlEe (eTE DR designer, FPGA synthesis, place Designer

STz chip designer and route)
Number of levels synthesis RTL
. cell topology,
Internal cell delay :rg)r/r?:actzlrs transistors cell selection
P sizing
Wire delay S place and route e
parameters generator
Cell input Physical el topology, Il selecti
capacitance parameters tran_s!stors el seeien
sizing
Cell fanout synthesis RTL
Cell drive strength p:rgﬁ;ilrs transistor sizing cell selection

A designer must consider all connected registered pairs, paths from input to
register, and register to output. Design tools can help in the search because synthesis
tools report delays on paths, special static timing analyzers accept a design netlist and
report path delays and simulators can be used to determine timing performance. Tools
such as synthesizers also include provisions for specifying input arrival times (relative
to the clock) and output requirements (set up times of next stage). (Wawrzynek,
2013)

3.8 FPGA timing

Timing is a term used in digital circuits to refer to the time it takes a signal to
propagate from one flip flop, through some combinational logic, to the next flip flop.
This is shown in the next diagram.

D Q> Combinational —D Q

Logic

16: Combinational Circuit

It is very important to mention that combinational logic is not instantaneous. It
takes time for the signal to propagate. The reason for this is that digital circuits
actually look like a bunch of RC circuits. Mosfets are the transistors of choise for
digital circuits. The gate (switch part) of a mosfet acts much like a capacitor and
requires a small amount of time to charge and discharge. The more transistors used
in the circuit, the longer it takes to turn them on and off.

47

Since each flip flop will copy the value of input D to output Q at the rising edge
of each clock, that means that a single clock cycle is required for the output of the
first flip flop to propagate through the combinational logic and reach the input of the
second flip flop. Flip flops require their inputs to be stable for a certain amount of
time before and after the rising edge of the clock. These times are known as setup
and hold times respectively. These parameters constrain the circuit even more
because it has to be ensured that the delay of the combinational logic is short enough
and that the signal will get there in a clock period minus the setup time. However, it
cannot be too fast as it will violate the hold time.

Clock AN N /N

o
/_-l'-.-.-

18: Propagation Time

The clock to Q propagation delay specifies the amount of time after the rising
edge of the clock that Q outputs the new value. This delay cuts into the time for the
combinational logic since the input to the combinational logic is delayed. To
summarize, the time it takes the signal to propagate through the combinational logic
must be shorter than the clock period minus the clock to Q propagation delay minus
the setup time. The combinational logic delay must also be greater than the hold time

minus the clock to Q propagation delay. In other words, the following formula must
be valid:

HT —CQ < CLD < CLK — CQ — ST

(CLD = combinational logic delay, CLK = clock period, ST = setup time, HT = hold
time, CQ = clock to Q propagation delay)

While the correct value is propagating, the output of the combinational logic
can change multiple times before settling on the correct value. There are two
important parameters that capture this behavior. Firstly, contamination delay is the
amount of time the output of the combinational logic will stay constant after its inputs
are changed. After that delay, the outputs are contaminated. Secondly, combinational

48

logic propagation delay is the time required for the output to be valid after the input
changes. That means for the time between the contamination delay and propagation
delay of the combinational logic, its output is unpredictable and possibly invalid. The
designer of the circuit must make sure that the contamination delay does not violate
the hold time and that the combinational logic propagation delay does not violate the
setup time. The above can be better expressed by the formulas:

cD > HT — CQ
CLPD < CLK — CQ — ST

(CLPD = combinational logic propagation delay, CD = contamination delay)

Since the clock signal needs to travel through the chip, it does not reach all
components at the exact same time. The difference in time it takes to reach the inputs
of two flip flops is known as clock skew. In some cases clock skew can actually be
helpful, but in the majority of cases it takes away time from the circuit. Considering
the effects of clock skew (CS for abbreviation), the previous formulas are updated as
shown:

CD > HT — CQ + CS
CLPD < CLK — CQ — ST + CS

It is worth mentioning that clock skew can have either signs. This is since the
clock could arrive earlier to the first flip flop or later. It really just depends on how
the circuit is laid out on the chip. If the first flip flop gets the clock earlier (positive
clock skew), then the constrain on the contamination delay becomes stricter and the
constrain on the combinational logic propagation delay becomes looser. If the clock
arrives at the second flip flop first, the opposite is true and valid. In general, clock
skew is a problem for the design. This is the reason why FPGAs have special resources
dedicated to routing clock signals. These are designed to deliver the clock to the entire
FPGA fabric (or subsections for local clocks) with minimal clock skew.

D1

Clock 1 /N ™ ™
: :“ Clock-to-Q “ “
. s 1 % Propagation Delay
ock Skew | ‘! ‘u ‘u
Q1 ' |
_
" . *
‘N *. *. Combinational Logic
L * » Propagation Delay
' . .
D2 ‘e | | || | | ||| |
i==rFrF=-=-=-=5etup-=-=--=---- '
' : . '
' " ' . ' 1
'] ' ' 1
Clock2 s ZN AN v PN
: : : : H :
" H]
--------- HOlm == === = =
Q2

19: Timing Issues

49

0,
@
!
T
|
|
|
|
:
|
|
_——
i

Switch
Maltrix

{::%::’) Siice(1)
K=

N i e i e w v ul

,.___

|

|

I

-

-

|

I

|

I

I

I

I

T

20: Combinational Logic

For the above diagram, the combinational logic simply inverts the input signal.
The signals with a suffix of 1 are the left flip flop in the first diagram of 3.2, while
the ones with a suffix of 2 are the right flip flop. The grey shaded part of the signal is
to show how that pulse propagates through the circuit. Q2 is an inverted version of
Q1 delayed by a clock cycle, since it goes through a flip flop. In the above example,
timing is met because the setup and hold times are never violated. (FPGA Timing,
2015)

3.9 Timing in Xilinx designs

The major delay source in Xilinx’s FPGA are interconnections. Slices define
regular connections to the switching fabric and to slices in CLBs above and below it
on the die. These two types of connections are show in the two following schematics.

cout cout cout cout

:—cfa_ﬁ _____ {___‘. :—CEB_ ______ ‘I___‘n
| Slice : b Stice :
I X1¥Y1 | X3y |
I g | \
| 1! |
| stice 1| sice !
| xovs 11| xavn :
] |

I CIN CIN 1 CIN cIN |
—__jeour__ _jcout_ ____|COuUT__ _|couT_
ICLB 1 icLe !
: Slice I]I Slice |
| X1Y0 I Xavo I
] (I | I
I (I | I
! Slice : : Siice :
1| xovo 11| xaevo i
I (I | I

21: Xilinx Timing Design

A simplified model of interconnection is presented in the next graph. Wires are
slow because each dot represents a transistor switch, path may not have the shortest
length possible and the wires are too long. Delay in FPGA designs are particularly
layout sensitive. Placement and routing tools spend most of their execution time in
timing optimizations. When Xilinx designs FPGA chips, wiring channels are
optimized for shorter wires and path lengths.

50

this

Conneet
this

L L L L

22: Interconnections

But what are the dots representing? One flip flop and a pass gate for each switch
point (shown below). In order to have enough wires in the channels to wire up CLBs
for most circuits, many switch points are needed. Thus, 80% of an FPGA area is for
wiring. (Spartan-6 FPGA Clocking Resources, 2015)

23: Interconnection Detail

. . ¥
cLB CcLB CLB -
configuration _]__ |atd-. \ sef dllrlnq

L e configuration.
S - s v .

:_ l 1 _T_ Cross-point
=t = connection ***® L ess

1 !

The following table provides data about the delays in some Xilinx designs in
common functions. As expected, delays are less for the next generation of Virtex.

1.1 ns
3.5ns
4.3 ns
39ns
2.4 ns
14 ns

2: Timing Comparison

0.9ns
2.5ns
3.0 ns
2.8 ns
1.8 ns
1.1 ns

Key points taken into consideration when designing the solution:

1. Performance is directly related to clock frequency. Usually higher clock
frequency results in higher performance (more operations completed per

second).

2. Maximum clock frequency is determined by the worst case path (critical path).

3. To first order the delay of a path is the sum of the delays of the parts in series
(FF output: clk to Q, total combinational logic delay, FF input: setup time),
plus some extra for worst case clock skew (“uncertainty”).

51

3.10 Suggested solution

In the following sections it will be described the whole process of analyzing the
circuit and building the feedback circuit as well as “assembling” the units and
implementing them on the FPGA chip. In the appendix A, there are some detailed
tutorials about Planahead, the custom tool named Planahead Expander as well as step
by step guide to implement the new and enhanced circuit on the FPGA and run
simulations using Xilinx tools.

3.10.1 Timing information of original circuit

In order to analyze the circuit and study not only its critical path but also every
path that is in the design under examination, Planahead tool by Xilinx will be used.
Planahead manages the source code files of the design, synthesizes it and implements
it. User is able to insert the desired timing constrains (for instance the greatest
possible clock period, or the latest nanosecond that data must be in a stable state) and
Planahead tries not to violate any of these constrains. In case that the constrains are
too tight and Planahead is not able to meet them successfully, it will be mentioned in
the timing report and user will be prompted to insert new and looser timing
constrains. Planahead gives also the ability to inspect the inner structure of a circuit,
make manual changes and adjusting the optimizations level that will take place in the
circuit (for example, how Planahead will handle the input and output pins, the usage
of buffers and D flip flops for synchronizarion and many other options).

After synthesizing the design, its output files with the extensions edf (netlist of
the implemented design) and twr (timing report of the implemented design) will be
used for further analysis by the custom tool Planahead Expander in order to locate
the signals that control the critical path. In appendix B, the structure of those two files
will be explained. Quite briefly, edf file stores all information about how pins are
connected to each other and which signals reach each pin of the components used in
the design. On the other hand, twr file contains information about the delay found in
each path analyzed and reports all violations that may occurred (a negative number
representing the slack of a path indicates that some violation happened because the
timing constrains were too strict).

Planahead also outputs many other log files and reports in order to help user
follow the results of each stage. There are, however, many output files which are
encrypted and are not user accessible. Those files are used by Planahead and are not
meant to be processed by user. Finally, some of the files contain the same information
but in a different file format (to illustrate, twx is exactly the same timing report as in
twr file but it uses the xml format instead of the plain text).

3.10.2 Finding crossroads

Planahead Expander parses the netlist file (edf file) as well as the timing report
(twr file) and stores all information into an internal database. First, the tool parses the
edf file and stores the signals of the circuit as well as all the pins of the components
they reach. Then, the tool starts parsing the timing report and stores information such
as source and destination component, total path delay, components that are crossed
by the path and their names in the database.

52

In timing report, besides component names and delays, signal names which
connect the components are also mentioned. When the timing report parser finds the
name of a signal in the path under examination, it searches into database for the pins
that this particular signal reaches. At this point, the tool makes a pin - path match and
it is the first major step into finding the control signals. The matches that Expander
makes, are all stored in the database as well. The way that Expander makes the
matches justifies the design option to parse the netlist file first. It is worth mentioning
that up to this point, Expander is able to perform pin - path matches correctly only in
circuits that their timing report does not include signal or component names in the
form of directories (for example, design1/component1/and1/input1). Some of these
directories are quite simple and they can be resolved automatically by the application,
otherwise the user will be informed via a graphical user interface option that results
may not be completely accurate. If the circuit uses unique names and identifiers for
signals and components, Expander will produce one hundred percent accurate results.
(Directories are the result of automatic renaming performed by Xilinx tools during
synthesis and implemenation. Directories may also occur when the source code of
the circuit has an hierarchical structure. Directories are present in the timing report
file but they are “disassembled” in the edf file in an unfathomable way. As a result,
Expander is not able to successfully match the signal with the corresponding pin).

Let’s describe in a more detailed way the match process that Expander follows.
When a signal is found, the names of the connected components are known because
they are mentioned in the timing report before and after the name of the signal. A
signal name differs from a component name because it is recognized by the keyword
“net”. Expander searches into database for the signal and retrieves all the pins and
components names that it reaches. From all these results, only the ones that match
the two component names found previously in timing report are kept and a pin - path
match is now possible to be stored.

In addition to the above information, timing report provides detailed
information about the delay and its distribution in the path. There are quite a few
types of delays mentioned in a timing report (for example, “net” delay explains the
delay a signal meets when it propagates through a wire. Net delays are usually higher
than other types of “logic” delay). Expander stores the total delay up to the pin
currently examined in the database. If the component or the pin is met a second time,
Expander compares the current delay to the previous one stored and keeps the greater
one because a “worst case scenario” is approached. That way it is certain that
afterwards no violation of the critical path and the timing constrains of the circuit will
happen. A detailed analysis of the delays per path is presented to the user in one of
the output files that Expander produces. The whole delay analysis is taking place
during the timing report parsing and the results are used later.

After the matching has been done (it takes place in parallel with timing report
parsing), the tool is able to locate crossroads in the design. A crossroad is defined as
the component that two or more distinct paths are reaching it. For instance, in the
following figure it is already known that paths with identification numbers 1 and 2
are reaching pins I1 and 12 of component with name “demonstration”. Expander is
able to figure out that “demonstration” is a crossroad point and uses it for the next

53

steps in the analysis. Crossroads are presented to the user in a pdf file after the
application is successfully terminated.

Component 2 Component 1

=l o

P P

= =

L] -

Component 5 Component 4 Component 3
o
-4
=
w
Component 6

24: Path Example

3.10.3 Control

At crossroads, the logic of the selection of which path will pass to the output
should be further examined. This is essential because the input values of some of the
signals define in a unique way the output signal and which path will be activated.
This «way» is programmed into the crossroad component (which usually is a lookup
table of the FPGA fabric) during implementation and does not change at runtime. In
other words, the crossroad remembers its output value based on the input signals and
this «memory» cannot be changed after implementation is complete.

It is quite logical to assume that the slowest signal (the one with the greatest
delay) will be the one that results in the output of the crossroad. By the time it arrives,
all other inputs signals, which are faster, will have stable and correct values so the
lookup table will take its decision. The rest of the signals are considered as control
signals of the crossroad and are inserted into a table of the internal database in order
to be further processed and analyzed.

The assumption made previously does not change the logic of the circuit or
the decisions of the crossroad. This can be proven by digital design theory and
boolean algebra. Please refer to appendix D for more information about
implementing a boolean function as a multiplexer, which is the most basic selection
logical component.

3.10.4 Finding initial control signals

The signals, which were stored into the database from the previous processing
step, it is likely to be controlled by other signals. For example, one such signal might
was the output of another crossroad met before and as a result it is controlled by
other signals. The ultimate goal of Expander is to find those signals that are
completely independent from others. Such signals could be (some of) the input
signals of the circuit, the clock and various other signals which are internal in the
circuit and not user defined.

54

Expander examines each of the signals stored from the previous step separately
and tries to find all the signals that control it (called parental signals from now on). If
two signals have the same parents, they are not inserted twice in the database. Instead
Expander refreshes the id of the path, so that it knows which paths are controlled by
each signal. That information will be used later in order to group the parental signals
into frequency categories based on the paths they control.

For each signal, Expander applies a BFS (breadth first search) algorithm in order
to locate the proper signals because the circuit features quite common structure with
a graph (components are the nodes of the graph and nets are the edges that connect
the graph). The implementation of the algorithm has been modified in order to be
adjusted to the data structures used. In particular, the application searches into the
database in order to find the component that outputs the signal under examination
(that component is unique; it is not possible two or more components to output
exactly the same signal). If such a component is successfully found, then Expander
examines all the input signals of that component because they control the signal that
is currently examining. These signals are inserted into a priority queue according to
the BFS algorithm in order to find their parental signals later. However, before
performing that action, Expander checks if the component found is a LUT (lookup
table). In case of a positive answer, Expander does not insert into its priority queue
the signal which was implemented as a multiplexer, because that signal is being
output, and the rest of the input signals are examined later. As a logical consequence,
if the component is not LUT, then all of the input signals are inserted into the priority
queue. If a component that outputs the currently examined signal is not found (for
example it is the user defined input of the circuit), then that signal is marked as
“parental” because it controls a crossroad either immediately or by controlling other
signals.

It is worth mentioning that Planahead renames many signals when it uses
directories or hierarchical source code. In addition, there are some components, such
as RAMs, which are presented as “black boxes” to the user. Expander cannot find
parental signals in that cases and as an aftermath it marks all the outputs of the black
boxes as parental signals. This is a design convention that was made because of
Planahead limitations as well as the extensive signal and component renaming that
takes place into large circuits.

Finally, all the parental signals which were found in this step are presented to
the user in an Excel (.xlsx) file in columns along with the paths that they control and
the delay of each path. That file not only helps user verify and understand the results
but it is also needed for the final step of the processing done by Expander.

3.10.5 Presenting parental signals

The last part of Expander reads the previous Excel file and exports a text file
with a worst case approach scenario. That file will be later used by Generator in order
to create a circuit in VHDL that monitors the signals mentioned in the file and when
it detects a change in one of them, it outputs an “index” signal (this index is driven
into the digital clock manager) which promotes the proper clock frequency back to
the original circuit.

55

Expander reads the signals. For each different signal it finds in the Excel file, it
checks the delays of the paths that are controlled by that signal. As mentioned before,
it uses a worst case approach, which means that it keeps the largest delay of the paths.
This is done to ensure that no timing violations will take place during synthesis,
implementation and simulation.

In the text file, it is mentioned the name of each parental signal along with the
maximum frequency that it can trigger. That frequency is calculated as the reciprocal
of the delay found before. After the creation of this text file, Expander terminates
because its job has been done.

Important note about Expander

Expander displays many messages to its console in order to help user track the
state of the process. When everything terminates normally, the console will contain
a message of successful termination. Otherwise, an error message will be displayed
in red which will inform the user about the error.

3.10.6 Manual retouch of file

Before generating the VHDL code, some manual changes to the output file of
Expander are required in order Generator to run without problems. In particular, the
frequencies must be grouped and then sorted in ascending order (Generator uses a
binary search algorithm). The user can define up to six groups with different
frequencies (these numbers are assuming that the user implemented the circuit on a
Kintex 7 platform. Numbers may vary when using other platforms). These two
operations that are taking place manually can be better explained through a simplified
example.

In the following table, Expander found ten parental signals each with a different
frequency. Please take into consideration that some of these frequencies are quite
close. This is a strong indication that those frequencies can target the same group
which is going to be characterized by the slowest signal (largest delay). Of course
user is able to group the frequencies as desired but groups must always follow the
limitations about:

1. Up to how many different groups the digital clock manager can support (up to
six in Kintex 7)

2. Respect the upper limits of each signal. Signals cannot be accelerated because
this will lead to timing violations of the critical path.

Signal name Signal frequency (MHz)
A 111
247
250
115
118
222
320
322
360
121
3: Example of Expander Output

C—=—IOTMMmMOUOW

56

From the above table it can be claimed that three groups can be created. The
first group is going to consist of signals A, D, E and J because their frequencies are
close to each other. This group will get a frequency equal to its slowest; in that case
111 mhz. With same thoughts, the second group consists of signals B, C and F with
a frequency of 222 mhz. Lastly, the remaining signals will compose the third group
with a frequency of 320 mhz.

The file must be manually rearranged by user in order Generator to create the
VHDL code for the monitoring and selecting circuit. The above table should be
transformed as shown below, in order Generator to function properly.

Signal name Signal frequency (MHz)
A 111
111
111
111
222
222
222
320
320
320
4: Sorted Generator Input

—_ IOGMOW MmO

3.10.7 Generating VHDL Code

Generator is a fully automatic tool. It parses the files containing the signal
names along with their frequencies as they were edited manually by the user which
contains a list of signal names and their corresponding frequency. During parsing,
Generator creates a list with the different frequencies found in the file. This list is
already sorted in ascending order because the input file was created that way. This
list helps Generator define the index that Selector should output when a signal it
monitors changes.

Generator uses some helping functions (such as convert a string to binary
number) as well as a vhdl code generator which creates a VHDL file.

After Generator terminates successfully, an output file entitled “Selector.vhd”
is created, which contains synthesizable VHDL code. This code monitors the parental
signals specified by Expander and outputs a vector which is the index needed for
frequency selection. This file will be later added in to Planahead. (Detailed
instructions can be found in the appendix A).

3.10.8 Creating digital clock manager (DCM)

The third and last segment of the new and enhanced circuit is the digital clock
manager. This component can be easily created via a graphical user interface in a
Xilinx tool called Core IP Generator. However, the automatically created code needs
some modifications by user in order to be properly implemented into the design.

Digital clock manager is a special structure which deals with multiple clocks in
the same circuit. More specificly, a digital clock manager accepts as an input a clock
pulse of a user defined frequency (on Kintex 7 the range of accepted frequencies are

57

100 up to 900 mhz) and produces up to six different clock pulses of user desired
frequencies (once again a digital clock manager targeting Kintex 7 supports up to six
outputs. Other platforms may support fewer or more output clock pulses). By default,
all output clocks are connected to global clock buffers in order to be accessible by
the rest of the circuit.

It is worth mentioning that Xilinx does not provide the exact way that the digital
clock manager functions. However, it is mentioned that the manager performs
suitable multiplications and divisions on the input clock signal in order to generate
the desired output pulses. That is the main reason that a digital clock manager may
fail to produce exactly the desired outputs; if frequencies are too close (almost equal),
the manager will be unable to perform proper operations and the resulted clocks will
not be the desired. DCMs also eliminate clock skew, thereby improving system
performance. Similarly, a DCM optionally phase shifts the clock output to delay the
incoming clock by a fraction of the clock period.

Another structure needed to build the digital clock manager is called bufgmux
and it is provided by Xilinx as well. This is a special multiplexer 2 to 1 (cannot be
modified by user) which operates the same way as a normal multiplexer but has some
key differences. First of all, bufgmux accepts in its input pins two clock pulses and
not signals of std logic(_vector) as well as a select signal (std_logic only) which
selects the clock that will be forwarded to the output. However, the most important
difference compared to a simple multiplexer is the way that the clock switching is
happening. Because bufgmux drives many other synchronous components with its
clock, it must be ensured that the switching will take place fast and no glitches or
spikes will appear. The clock signal must always be stable in order not to trigger flip
flops accidentally. A normal multiplexer is not able to guarantee such smooth
switching so it is unappropriate for such a sensitive task on the fabric.

When the S input changes, the bufgmux does not drive the new input to the
output until the previous clock input is Low and the new clock input has a High-to-
Low transition (please refer to the next table). By not toggling on the first Low-to-
High transition of the input, the output clock pulse is never shorter than the shortest
input clock pulse.

Inputs Outputs
10 | S (0]
10 X 0 [0]
X 11 1 11
X X A 0
X X v 0

o

5: Switching between Clocks

If the user needs to connect more than two clock frequencies, user can utilize
more bufgmux units into cascode mode (the output of the first multiplexor will
become the input of the second and so on). Each bit of the indexing signal will drive
a single layer of multiplexor. The output of the last multiplexor will be the desired
output of the digital clock manager. It is highly important to mention that each FPGA
offers a limited number of units “bufgmux” and user must pay attention to that when

58

grouping the parental signals. The exact number of such units are mentioned in the
data sheet of the FPGA used.

Detailed instructions on how a digital clock manager is built and which
modifications are required to the output file in order to be properly implemented with
the rest of the code can be found in appendix A.

3.10.9 Schematic of the enhanced circuit

The new circuit is composed by three parts: the original circuit, the selector and
the digital clock manager. The connections of these three segments can be made
either in VHDL level or using a tool provided by Xilinx called FPGA editor. The former
can be used for input signals and the latter for internal signals which are not known
or visible in VHDL level. Detailed instructions on how to use FPGA editor can be
found in appendix A.

Please note that this is not the final block diagram of the circuit created.
Depending on the structure and functions that the original circuit performs, these
three modules need to be synchronized. The feedback loop, which consists of the
Selector circuit and the digital clock manager, inserts a delay until the right clock is
selected. As a result, data driven into the original circuit must be delayed by the same
number of clock cycles in order to arrive in synchronization with the clock signal.

The Selector circuit, based on its structure, insert a two-clock-cycle delay. That
is because it uses two levels of D flip flops in order to synchronized the data arrived
with its clock (first level of flip flops) and to compare the current input with the
previous one in order to detect all changes. This is achieved by delaying the input by
one clock cycle (second level of D flip flops) and the performing asynchronous
exclusive or (better known in digital design as XOR) functions. The digital clock
manager functions in asynchronous mode as well.

Data delay can be easily achieved by putting the proper number of D flip flops
before the input of the original circuit. This will delay the input until its clock pulse is
ready. It is worth mentioning that those flip flops will also be triggered by the clock
that is selected by the digital clock manager.

59

Case Study

The circuit that was studied was an arithmetical and logical unit which performs
operations on 64 bit signed integers. It also accepts as input a 4 bit selection signal
which controls the operation that will be performed. Supported operations are:

e Addition

e Subtraction

e Increment first operand by one

e Increment second operand by one
e Decrement first operand by one

e Decrement second operant by one
e Multiplication

e Comparison

e Logical AND

e Logical OR

e Logical XOR

e Logical NOT

e Logical NAND

e Logical NOR

e Shift Left

e Shift Right

The original circuit had a critical path with delay of 5.7 nanoseconds which
means that maximum operating frequency is equal to 175 MHz. Despite the operands
values or the operation performed, that frequency was constant throughout
simulation process.

However, the circuit was capable of handling even greater frequencies. After
the analysis, it was found that when the critical path is not active, the maximum
operating frequency of the arithmetical and logical unit was approximately 304 MHz.
For safety reasons, to ensure that no path is violated, the unit was clocked a little bit
lower at 300 MHz. When the critical path changed its state, the operational frequency
became 175 MHz.

The scheduler circuit requires two clock cycles to detect changes and select the
proper frequency. In order to increase the throughput of the circuit, a 3 stage pipeline
structure was created. Two clock cycles after data input or operation signal changed,
the new frequency is ready and arrives before the third cycle along with data that
triggered that frequency. As a result, data is processed under the right frequency and
after the fourth clock cycle, the result is stable at the output of the unit.

60

Signals which trigger frequency switching are all four bits which control the
operation performed and some of the most and least significant bits of both input
integers. Only few of intermediate bits of the input numbers trigger a different
frequency.

The test bench conducted contained 150 operations. Half of them were
additions, 20 multiplications, 35 logical operations and 20 comparisons. As expected
from theory, most additions were performed under the higher frequency and was the
type of operation with the highest improvement. 28 out of 75 additions (37%) were
executed with 300 MHz frequency. As a result, the total execution time was reduced
by 21%. 31% of logical operations were performed at high frequency shortening the
total execution time by 18.3%. Comparisons and multiplications were mainly
executed at low frequency which indicates that these operations form and use the
critical path of the design. Only one comparison was executed at 300 MHz improving
the total execution time by 2.9%. No improvement was witnessed for the
multiplication operations.

25: Slow to Fast Clock Switching

61

Conclusion

It can be generally stated that the current thesis has achieved its goal since the
methodology that was developed manages to operate a circuit beyond its critical path
frequency for the first time without any errors or instabilities. The circuit constantly
monitors some of the global control signals and operates at a frequency which does
not violate any of the currently activated paths. Moreover, this methodology is not
depending on the structure of the circuit and can be applied to any hardware IP design
even without access to the source code (only the entity declaration is needed, which
is public so that the circuit can be connected to other parts of the design).

The monitoring of the signals introduces some overhead in the design.
However, the overall overhead is still better or equal (at a worst case scenario) with
the period of the systems slowest clock. Before any modifications, the circuit operates
at the critical path frequency which is the lowest possible that does not violate any
timing constrains. The clock switching operation needs at most time which is equal
to the slowest clock period. That means that the circuit in the worst approach operates
like the one without any modification. In any other case, the circuit can raise its
frequency and operate performing faster calculations and other operations.

62

Future Work

The current work could be expanded towards various directions. Some of those
are listed below.

An urging matter that requires further examination is the renaming of
components and signals that occurs during the process of the netlists by Planahead,
as well as the disintegration of the names that are parsed as directories. Both problems
can be surpassed by migrating the current project in the 2014.2 version of Vivado,
that deals with those issues effectively. Another advantage of using Vivado is the
enhanced and more modern version of FPGA Editor which allows more accurate and
user - friendly manual modifications of placement and routing. A proposed solution
to the renaming issue is the following. Using the elaborated design, it is possible to
find the correct net name whose names need to be preserved and set the correct
MARK _DEBUG constraints in the XDC. The correct name for the RndData net is
Data because the net exits the module via port Data. After applying MARK _DEBUG
constraint on these net names found via the elaborated design using set _property
MARK _DEBUG true [get _nets ...], synthesis is able to correctly apply the constraints
and preserve the nets. In the netlist, the net name does change, but the
MARK _DEBUG properties are preserved. This is an expected behavior as Vivado
synthesis does rename ports in the default flatten_hierarchy rebuilt flow. (Vivado
Synthesis - Net names are not preserved by mark debug, 2015)

Furthermore, the project could be expanded by implementing approximate
computing, in favor of acceleration of datapath execution and increased exploitation
of the slack of the paths. Approximation is not a new idea, as it has been used in areas
such as lossy compression and numeric computation; in fact, John von Neumann
wrote a paper on it in 1956 (Probabilistic logic and the synthesis of reliable organisms
from unreliable components, Automata Studies (Shannon & McCarthy, 1956).
According to a Computing Community Consortium blog post on the U.S. Defense
Advanced Research Projects Agency (DARPA) 2014 Information Science and
Technology (ISAT) Targeted Approximate Computing workshop, a number of
researchers are working in this area. (Kugler, 2015)

63

Appendix A - Detailed Tutorial

0.1 From VHDL to implementation

Launch Planahead and from the opening screen choose “Create new project”
Follow the instructions of the pop up window.
3. Inscreen “Project type” choose RTL project.

N —

N X2GO-nzompaki-50- 1850655106 _sIDVATE dpd2

D) nowtcavans. Paces syem < B @) S fot 78, 1140 ool

Eie Tools Window Help

=T | £ XILINX
Specify the type of project to create.
Getting !

& BTLProject
ou wil b able 1o sdd sources. generate I, run ATL analysis. syrthesis, implementation. design planning
analyzis.

I:@ [e ot specify sources at this time 1D features

O Post-gynthesis Project
‘ou wil be sbie to sdd sources, vew device resources, run design analysis, plarning and imglementation.

™
=
)

) WO Planring Project
Do not specify design sources. You wil be able to vew part/package resources. fands. disiogs.

) Wmpoet ISE Place & Route resuls
You wil b sble 19 do post-implemantation snalsis of your design.

0 mported Project
Create a Planshead project from a Synpléy, XST or ISE Project File.

¥ 0
;

v features.

|_=geck || pme= | cancel |

B0 I ke Termiea [f] Prasanesaiar H--r
26: Opening Screen of Planahead

4. Specify the source code (in Verilog or VHDL) you want to insert.
5. In screen “Default part” choose the target device you wish
6. Check the settings specified and click “Finish”

| %200-nompaki-50-1456555166 MOMATE.dp32
D) smicatiors Paces syvem - W@ St 10 1101 o)

Fée Tools Window Help

L B £ XILINX.
New Project Summary

D) A& niew FITL project named praject L' wil be created

&, Mo source fes or deectores wil be added. Use Add Sources to add them later.

105 features
Ay Mo Corfiguralile files will be sdded. Use Add Sources 1o add thee later,
&, o constraints hins wil be added. Uso Add Sources 10 add them later.
@) The defaut part and product famdy for the rew praject: lands, dinlogs.
=" Cafault Fan: x 7w4BSHIGL1ST-1
f y Product; Vites-7

Family: Virtew-7
Package: figl157
Speed Grade: -1

W
i

PlanAhead 1o ereste the project. ehek Finish

wow featunes.

egwek || 1 | EBnish |_cancel |

S Tel Console

B I Mate ermisal] Panaresa1ar E‘i--r

27: New Project Screen

64

The main screen of Planahead is now open. On the left side there is “Flow
Navigator”, which contains all steps needed to implement the design as well as
settings panel and many other useful tools.

) X260-nzompaki-50- 14506551005 _sIDMATE dpi2
S Feb 78 1180

D) sestcaters: oces e < @ o disE

Eie Ect Flow Tools Wndow Lsoul \Sew bl

HR2neRbx &b % 6K TS E0 o |8 implementation Complete
Flaw Nangator @ Project Manager Ongnal s <
A, -Oex L Project Summary * oe
« Project Manager “ @ project Settings Messages &
) Propect Settings “ Project nams: Original ks Summany, 0 erons
4 Add Sources Product tamiy: antex.7 0 crtical wamings
0w catslog Project part TETCAfbg AT
&4 Run Behaaral Simy Top mocule name gutd Go Tor {
FLAnahis ‘
&* Open Elsborated De m——
Hierarchy LUbranes Compde Order # omthess P inplsmentation :
4 Synthesis & Seurces Termplates
@ Synthasis Settings | Propertes Oe % Saus: o Complets Status: o Cemplate
. = Pati scTkTOUbGABA2 Pat keTRTOUBGAS4-2
B Run Syrithesis +« =& . " S i Strat sn M
&* Open Synthetced D MeGy Daalaad ot tegy: [SE Detans
Flow: Flow: iz
implament stion &
@ enplement stion Sett 7 Resources rE
s Vet iodt RTLEstmation Syrehesis Estimation Nethst Estrmation bmplemented Utilization
&* Open implamentad | Part: s TETOMOAB-2 .
- Dweign Funs _ D
A Frogeme and Detg. 3, [N [Pt [Constraints | stratagy [Host | Status [Frogress [start [Elapsod_utd %) | Fiax
@) Bitstroam SRINGS | | e [SyTERL w77 OeIEg#84-3 constrs_L Fiananesd Dafacits (5T 141 § cmplate! BN 10C% 212516 2521 FH 000013 1.090
¥ Ganarals Btsraam | o imgil_1 wc7i70tbg484.2 constrs_L 1SE Defauts (15 14) tectoros PAR Complete! NN 100% 22516 207 FPM 00:01:52 1.000
1
]
+
el 00’ | 7]
o] Tel Console © Messages (dlog 3 Reports < Design Auns
i i o) |

28: Main screen of Planahead

7. (Optional) In case you want to add more source files, click on the “Add sources”
option of Flow navigator and follow the instructions of the pop up window.

8. (Optional) Launch Simulator by clicking on “Run behavioral simulation” to
verify the circuit operation, make sure that the source files do not contain syntax
errors and the code does not have any critical bug.

9. (Optional) Click on “Open Elaborated design” to see a schematic of the circuit
and ensure that all connections have been done properly.

X200-nzompaki-50-1456655105_MOMATE dp32
ES) apstcatiors aces wrtem -~ B @ fam et 70, 1200 o i
o ur vl inlix
Efe ESt Flow Tools Wndow Layout \hew bHelp 5L Search commands

gEramoRhxXd P> N EO& K| L G EohLayea SLE RN Implementation Complete
Flaw Naigatar + | Elaborated Design x:7k70tibga84 2 (actie) X
- w | EProject Summary x50 RTL Schematic X &
= 2zntances 197 WO Rods 1397 Mets
Project Manager ¥ T [e— . —
@ Project Settings g = - D—p"
B el X i T
&* hdd Scurces] =‘5 s]
P — A
i catalog il L} i
@ fun Behavaral S, % —
+ ATL Analysis 2 : it
+ B Elaborsted Design | 5 | T —
& Repart DRC = - A
7 Schematic o m -

Synthesis

@ Synthesis Settings
$ Fun Syrthesis
&* Open Syitheszed D

implementation
&) mplomantation Sett
I Run implement ation
&* Open implemented [L

F 8 M

4 Program and Dabug
@ Bitstream Settings
%1 Genarate Bitstream

|

3 Tel Console el

o 0
sl | |

G0 I Mate Termea [Oripinat ahu - {ome,..

29: RTL Schematic

65

10. Click on “Synthesis settings”. A new window opens which contains all settings
which can be configured by user. Default settings are okay, but user can make
changes.

| XT00-naompaki-50-1458555 168 MDMATE. 2532
15 dovscasors Paces Spuee - B Son Fet 20 1100 P
fle Ede Flow Took Window Lamout Wew Help
el RN A X b b B 5O @ K E 3 Eovaur tyeut -|F 4] implemantation Complate
< * Dasig w7iTobolne 2 (il
+ » | EProject Summary x| Prajet Settings = e
= it 15
+ Project Manager Synthesis =
@ Satt £
© Propect Sattings £ -3“ Constraints |
& add Sources 4
ik 1P catalog . Dedault constrart set constrs_1
@ Pun Bohavioral S| = %
gl options
4 RTL Analysis 3 L
+ & Baborated Devign | 5 Siraegy § Planthoad Dofauls (657 141 =
= = gl
O Repert DRC 5 ,:J] Descrption Plandhead Dufauts 05T defaults wah hierarchy)
Szhematie
i ¥ Synthasks txsth o
+ Synthesis - apt_frode soeed =
&) Synthesis Settings -apt_level ! =]
© Fun Sythais awgistar_balancing) -
2* Open Synthesces D +ngister_dupliestion e =i
ik +um_arcodng o -
+ implemandation ® =~ * off =
) implemertation Sett # £ -auto_bram_packing na =
B Fun implementation use_dipaB 7o) =
B opin Iriamisated § Seloct an optlon abowe to see a description of it
+ Program sed Debug
@) Bestrmam Settngs
¥ Generate Bturesn
I T |
sl EPROWS |
i =
i [acle 1
G M i 1] Deipras s s Il

30: Synthesis Settings

11. Click “Apply” and then “OK” to save any changes.

Now a wrapper file must be created in order to create partitions (this will be
done later). VHDL top file must contain only one entity in order to be compiled
successfully. So, a wrapper file is needed in order to wrap the main circuit inserted
before and the two new components that will be inserted later. Wrapper file is like a
main function of a common programming language which calls and controls the rest
of the source code. Wrapper will be the top module of the entire circuit and will
control all the separate source code files.

12. Click on “Add sources” from flow navigator and choose “Add or create design
sources”.

% X200-nzompeki-50-1455555168 MOMATE dp32
1) seencucens Paces sptem = EE@ e L inL i
File Ede Flow Jooh Wrdow Lmyout Yiew Help
FrEoeRm X Db @ & % L o= oefavk tayot -1 5 implementation Complete
Flew Nawgater # Elaborated Design wc7k7ONbgas4 2 (acive
= = « | LProject Summary x i RTL Schematlc Fux
2| 5 : Ada Souces

+ Project Manager g

@) Project Settings Ella Add Sources

o & 5

o “:r“ 3 This guicies you theough tha process of adding and ereating sources far your progect

Lk e catalog * ﬁ

@ Pun Behaviorad S, | % | N Add or Create Constraits
+ RTL Analysis é o % Add or Creace Design Scurces

[Slabormied Desian | | L, f s Add ar Create Smulstion Sources
D Feport DAC = El it Spotify umulation specific HOL fies, or directones containg HOL
Schemate R o or Lo AT Sources |r:;. 1 ackd 10 your projoct. Croate & new source e on dik and
Add o Croate Embedded Sources P 10 YouT progect

+ Symthetis =

@ synthesis Sattngs » Add Existing #

Fun Synthesis

&* Open Synthesced O

+ Implemertation
& implemaritation Satt "
B Fun implemartation
2 open Implamardes |
+ Program and Dabug _
@ Btstraam Settngs FlanAhead T contirae, chek Nast

® Gannrate Btsreaen

o) I G Tl Console

Specty arelior create scurce fles to add to the project.
B M i (] Drigrat . o m| | |

31: Add Sources Screen
66

13. Click “Create new file”.

N\ X200-nzompaki-50- 1856656108 MDVATE dpi2

D) sotcatiors aces srtem - ER@ fam e 20, 1247 o oo

Efe ESt Flow Tools Wndow Layout \hew Help = -
i woRhXH>D R EOR K| E GHotwiaent | W & %D Implementation Complete
Flaw Neanigator «| | Elaborated Design wc7k70tEg434 2 (actie) x

o == o | EProject Summary x % RTL Schematic x e x

22 e preprm— &l
Add or Create Design Sources

Specly HOL and netlist fles. or directories containing HOL and netlist files, to add to your project. Create & new ‘{}
source file on dak and add & to your project.

Project Manager
&) Progect Settings
¥ dd Scurces
& w catalog —
& Pun Behmsaral sme
4 RTL Analysis
+ [Elabcrated Design
D repan GRC
7d Schematic

4 Propattie

[Twame [ubrasy |Location |

FRAR+

T ATL Msthst

TI=EE

+ Synthasis
& Synthesis Seatings
B Run Syrthesis
=* Open Synthesaed D

implementation
& implamantstion Sett
I Run implementation
&* Open implemented |

-3 g1

_ sdodies | | agdowectones.. | [creatorie.

4 Frogram snd Dabug
@ Dtstream Settings
¥ Ganarate Btstroam —
2 |_=Back

< i

A0

RN Ry | S i comcle (B 4
B e [gt et T
32: New File

14. Follow instructions until the new file is created. The file will be blank and as a
result it will produce syntax errors. Write the Verilog or VHDL code for the
wrapper (example of source code will be included in Appendix C).

15. After saving the file, make sure that Planahead recognized the hierarchical
structure of the project. Wrapper file should be on top and below it should be
the circuit.

N X200-nzompaki-50- 1456655166 MDVATE dpl2

1) destcatiors Paces St — @ T fop 10 1245 S
caseStudy Planihesd 13.7

Eée Ect Flow ool Wndow Layout \hew Help [e
HErowealXx/$pb 36X EoEmrwma - |%|® implementation Complete
Flaw Nargatar & Project Manager casestudy x
oW Sources — O % | Eproject Summary x Oe x
T st RE = @ project Settings foe s © Musseaes + f

@ Proect Settings | | 2uarng | Pract name: casestisdy Summary 0 eeToes

| Specity Pantitions. | Product faeniy. Va7 0 entical wamings
¥ add Sources ‘ ﬂ Praject part g4582 © 88 warmnay
Lol | sictor Socir Sarars et FER

‘LEI' Rsports

<, ML Aralyel Wicarchy T IBCiRa COnpRE ORGAT
a = & syrthesis & [» implemantation 2
185 Open Elaarated Dy 4 Sources © Templates
Status: Complete Status Coenplete
s Gymthess Source Node Properties —owe = U W ol e ¥
Part: wc Tk 70tibgegd.2 Part: HeTk70tfhgas4.-2
@ Synthesis Settings | 4 o e % : 3 iyl
rad Blanabepd Defgulty trate 3£ Dafgyty
 Fun Syrihesis @ U_aly - b4 - Bahavaral (el vhd) Fb__'w T Flowe i~
&* Open Syrtherzed O =
Instance: U ¥ Resources S
B ==t) Show Tabis
Py s | v I [E BTLEstimation Syrahess Estimation Metlat Estmaticn lmplemented Utilization
: General attnbutes o =
I Ruin ireplement atior Part: wc7k70tbo4B4-2 =

u* Open implemented
¥ Promote Partitians |

[rogress ____Jstant _
1 O
Prograsm and Debug

@ Btsaream Settings

% Generate Btstroam :: |
2 »|
o ¢l
|
o= z | (1)
(O F & Tol Console © Messages W iog | 2 Reports = Deslgn Runs
& v i e Gl g

33: Hierarchical Code Structure

16. Click on “Open Elaborated design” from project navigator.
17. From the sources panel make sure that “RTL netlist” tab is selected.

67

MOMATE dpia

D) somiatiors mxces spve - B@ o feb 20 1207 Perid
— 2
Eie Et Flow Tools Wndow Layout Wew Help =
BrEwoRhXd b3 % A0EK E GEodripn [HenD implementation Complete
Flaw herdgatar « Elaborated Design »c7k70tbg484 2 (sctne) = = . — i
LEm =0 % | EProject Summary % o1 RTL Schematic x Ouw x
%) Minstences 195U0Pory
4 Project Manager
@ Propect Settings - a1 *
[spocity Fart 4o Prmitices (2 ;
¥ ade Scurces 1 Uk By &
U e catalog & Wselector (Seiact u
@ fun Behavaral I:.
« RTL Analysis o
« [Elsborated |@
D Rapart ORC A Scurces Gt ATL Wetlist |=
i Fropenies -yl
+ Synthesis + [L
@ Smthasis Set H
B Run Syrehess *
+ [synthested Des Lo X
£ Ede Timing = -
& Raport Tising Tel Console —Oex
] Report Clock o Hlfulw UCF File Immmmmnmn S1ud, [=]
@ rapart ORC 8| | Eiriched Parsing UCE File /mossmzonpil spetre r.uefl
F Repart Hoisn A IND: IDesigoutils 20-20] Innha constraints found. use coamand “writy u(f “ceestraints Tavalid file= to save a1l the invalid consteaints to @ file
InF0: [Project 1-111] Unisin Tramsformation Sumsary:
W reportundzati | total of 1 instances were transforsed.
£ schamatic x BUFGHLB =» BLRGHUK (BUFGCTRL. WCC, GD): 1 dnstances
Phase 0 | Netlist Checksum: Sbecalll
g, oan e craian Tine.(31: cpo o 30:00/08 1 wlapand = 00:03:05 . Whsary (KG): prak = 136,569 : gain = 0,75
@ implomantation 5 |
I Ruin impiementat|
&* Open implemente Tipe & Tel connond here
i S Td Console o Messages llog

3 Raports & Design Puns

34: Partitions Overview

18. Right click on the name of the original circuit and select “Set Partition”. After
that, new options will appear in Flow navigator.

N X200-reompaki-50- 1456555166 MDVATE dpdZ

fam e IR 131Y

Fle Edt Flow Jools Window Layout e Help

HeSweQRxed 350G K ESEmtmen -[F oD a
Flaw Nanigator « Elaborated Design *. constes 2 | we7kT0BG484 2 (o) *
axw RTL Natit = OETE || LProject Summary X 5 RTL Schematic x O x
= = 4 linsances 178\0Pos 176 Mats _
Project Manager ’“—Mm@‘ 5 L ¥ 5|
@ Project Smtings | 155 Mets (175
1] specity |- b g iy o LOCKED
i hdd 5o (o[u_der 4 nstance Properties.., Gk o . < promots
% |40 U_seld T Bport Statistics... o (183
LF w Catalog Fr =]
@, Fun Behmoral Sime & unsing " B!
& Draw Phiock ELIT paeree D‘"w
ALNTL Analysly, I —— el wockl _ltoataFeroutpn S wetatat
+ [Elaborated Design T =l it aF el 13101 D> wotum
D repert DRC o] e
Il seheenatic s |5 B
 Synthesis o B
' H
*
: | Be o
General hig v, @ —_— =
@ Mark curtent :
Tel Canicle & —oex
fros/ft/AT LT srca/canstrs_2/amparta /Sources/Bit_Tull.ucf|
Finy| 7 Schematic Lo sktop/petras bt bftblie. srch/constrs_2nmports/Solrces/dfz_full.uct]
TN ‘Show Connectity it Summary:
Bul 5o Ta Inst: P ingtances
5o Ta Defintion Shat?
Phase T T Mll!\ (.M(K‘Ill n:mr

C—
Set Partion
[l Bt

opan_rtl_design:

i = 09:00:07 . Menary (ME): peak = 3138.963
ll!(J'ﬁ‘inr 1|Jll'lll\dl| fl‘l! i@!! (!'ul ”lil U bftli

gain = 0.000

5 Td Console

)t et

O bessages Hlcg A Reports @ Design Puns

35: Setting a Partition

19. Click on “Specify partition” option from flow navigator and make sure that all
actions are set to “implement” for both synthesis and implementation tabs.

68

N\ X2GC-nzompaki-50- 1450556166 sDMATE dp32

D) aesncatiors pcer Stem = IR @ o Fel 8. 13,15 e i

Ele Edn Flow Tools Window Layout Yeew Help

g deRxabddN 506 K G =0ty e |B Synthesis and Implementation Out-of-Date Tore nfs

Flow Naagator « Elaborated Design * constrs_2 | sc7k70tibga84 2 (uctie ®
ok —OEl Er mary ® 5 ATL Schematic x O x
% #3176 UOPorty 176 Mets

1K = 1

| Specify Partiticns.

Project Manager
@ Project Settings. e
Spacty Partiions | | || 4
o hdd Sources '3:
Lk w catalog
), Fun Behavioral Simi

il Wdem
i u_uen'.ard 0 Specty whether partitions wil be imported or implemented

s Implementation
Aetian | frem | Presarvation
+ RTL Analysis - ol —
+ [Elaborated Design
D Repest DRC

7 Schematic

+ Symthess
&) Synthesis Sattings =
P R Syrahesis
* Open Syraheseed

Implamantation Tel Console | —oex
@ wplomentation Set | w7 =| I
B Fun implementatiar | .
«* Open Implemernted

& Promote Partitions | o |[cancni |
= Program and Debug x| t K T s UbTt]
@ Bastream Settings [list u denl]
%) Generate Bitstrear [ast UWselactor]] _t
B i 1 0]
i 1 3 (s B To Consale © Messages HLog 3 Reports ch Design Fum
Open partitan settings ta changn aptions
B M I

36: Using Partitions

20. Click on “Run Synthesis” from flow navigator. Depending on the circuit, the

21.

time for synthesis may be quite long. User can check the progress from the
upper right progress bar and from the Tcl console of Planahead.

(Optional) After synthesis is complete, click on “Open synthesized design” and
then “Schematic” from flow navigator to inspect how the circuit will be
implemented on the FPGA.

N X200-nzompaki-50- 1456655166 MDVATE dpl2

1) destcatiors Paces St — @ fam fot 20 1307 oo

easeStudy 5 1- MlanAhead 14.7

Ele Edt Flow Tools Window Laoul \iew el

L]
Flrw Nanigatar % Synthesized Design xc7i70tfogess 2
2 E Project Summary X @ Dedce X

Project Manager

RTL Anabysis

Synthesis

« implamentation

+ Program and Debug (]

&

+ [synthesied Desk

sEoeRRXH PSP TN O K E G Eod e S E SN implementation Complate
1 x

i Schematic x & x

Sg8 instences 159 U0 Ports 798 Mets

J Properties

@) Propect Settings
Specify Partitian

¥ add Scurces

Lk ¥ Catalog

G, Foun Behasoral 54

AR+

21 Natist

JOmEEex

&* Open Elaborated

& Synthesis Setting
& Run Syrthess

3, Edat Tming Col

& Repart Timing

= Roparn Cleck i

D Repart DRC

- Repart Noise

1] Fopart Uticat
Schermatic

: 3k

& implementstion 5
I+ Aun
& Open implemente
& Promate Paritar

S Tel Comole o 4
Ea T

37: Synthesis schematic

22. After synthesis is complete, click on “Implementation settings” from flow

navigator to see all available settings. User can make changes although default
settings are satisfactory.

69

N X2G0-niompaki-S0- 1450065 108 _SDVATE dpld

D) scsem man e - @ Sm frt 2, 132 e
Ele Edt Flow Took Window Layout \ew bek = f !]
Hrameaamxdd b D% 06K L iEEveasinon S SN Synthesis and implementation Out-of-Date [=ots rfc
Flow Nagator “ Design * conatrs 2 | me Tl OgHB4 2 (acive) ®
T FTL Netiist ! Projedt Settings Ou x
= = | r |
+ Project Manager [aroeper w | implementation 7]
@ Project Setings 15 pets Constraints
[specify Parttions | |#- L_bf (18 General
¥ Add Sources :: - b':‘;:w (Salacton) Q Detault gonstraint set: [constrs 2 (st
0 catalog | =
W frun Behavioral Sims Hwakasion Options
RTL Analysis 9 Sirateqy: [A ISE Dofacls® (SE 14} =] 2
+ [Baborated Design | | Syrehevs 1SE Defaulls, regaters in 108 o
O Repont DR & Sources Ik ATL Metll | D e
— anslat build} &
A Enwmek Properties mertation y o i d
4 gythoss « +[E a
i Synthesis Settings = ~ad a
P Run Syrhesn E“:."m i o 2
&* Open Syranewzed © F : Q ul : %]
4+ implamentation T Coraels = + I -0 x
B e | Mare Optiars .
? ;ummums-u :i 180G = TBUFS (1% | .,._.,_m_,, =]
Gotbisamibsiayen | 1 || PRSCIIRERRELS Seloct an option above 1o 560 a description of it
&2 Open mglemented | 9| | openrel_gessgn: Tid |
& Promote Partiters | | s4t_property is_part
x | | startgrosp |
s P | set_progerty is_part |
ogram and Debug ok S
6 Btriream Settings BAT_property 1s_pary - —
¥: Generate Bitstroas st progerty is_part b Cancl q
® | G - om|
|
o | 1 2 Td Console Messages WLog 3 Reports S Detign Runs

K] e e

38: Implementation Settings

23. Click on “Run implementation” from flow navigator. Depending on the circuit,
the time for implementation may be quite long. User can check the progress
from the upper right progress bar and from the Tcl console of Planahead.

24. After implementation is complete, click on “promote partitions” from flow
navigator. A new window will appear.

N X200-nrompsid-50-1456555 106 sDMATE dpd2

D) aestcnions Pices sy = B

n el 28, 1343

fle Edt Flow Tools Window Layout ‘Sew Help

BFEEweRRXHS>DP BN TOBK E @Eomuumoun -|FensH

g

(T —
Implementation Complete

igat P gn Q484 2 Pramate Partitians e
Ax= Q Please select ertire runs o specific partitians to be promoted. This O &%
¥ copies the partitions in implementad run to the spacified promate
Project Manager 1 diractory, After promating runs, you can import the partitions into
) Froject Settings .
7 cpecty Partmions | Sednct Farttions to promeote |
& | == =
¥ Add Sources |8 ugem (¢ :
& 1P catalog {0 W satector Run | Directory osergtian |
& Run Behaviersl S @ mmth 1 |dycaseStudy.promateftsymth 1 || - |
b wrapper
RTL Analysls sl
« [Blsborated Design || - U_selector
D Regort DAC A Sources 0 ATL Metfist W U tkem
i Frapartins | |emmeis | Y |
+ Synthesis - ., & - wrapper
B syrahesis Settings & sl
& Fun Synthesis - U_selector
&* Open Syrthesized [& Udem
+ implamantation . Tel consale | —Oex
i [Parsing UCF File [/Mone/m: 4 | o]
[Run implementation .. FUTICA WAFRNING nstraints netrs_Linewsvrapeer. et il
Y ad - Fimished Parsing UCF File 20 | wefl
& Open implements #| | 1F0: Ioesignutils 20.200 Tavall F to sawe all the invalid constraiats to & file
B Promote Partitions | | -, | | INF0: [Project 1-111] Unases Tr |
> 4 total of 1 instances were
Frogram and Debug * MK - I (BUFGITRL.

B Bestream Settings

Fhase 0 | Netlist Checksum: 021 |
% Generate Bitstreas

E:;M_r:l_anun. Time (5): cpu | A futomatically manage Partition sction and import location iu 000

T .

» [O—| 1
o O B7Tel Console = Messages Hiog 3 Repons o Design Rums
T I e) ety - e (@] || o

39: Promoting Partitions

25. Make sure to select everything from both synthesis and implementation except
wrapper. Click “OK”.

70

0.2 Analyzing the circuit using Planahead Expander

Expander requires some additional software to function properly. User must
have installed both Eclipse and Xampp. Expander is written in Java and runs as an
application through Eclipse and uses MySQL server found in Xampp. After successful
installation, open Xampp and click “manage servers”. Turn on both MySQL database
and Apache web server.

Welcome Manage Servers Application log

| Server Status
| @ MySaL Database Stopped Start
| @ ProFTFD Stopped
| @ Apache Web Server Stopped
Configure
Start All Stop All Restart All

40: Xampp main window

The apache web server is optional and is used to check the information stored
into the database that Expander creates. This can be done by visiting “localhost” with
a web browser. A page similar to the next one should appear if everything runs fine.

» 3

Applications FAOs HOW.TO Guides PHPInfo phpbyAdmin

XAMPP Apache + MariaDB + PHP + Perl

Welcome to XAMPP for OS X 5.6.14

Mow you can start using Apache, MariaDB, PHP and

translation missing: en.You have successfully installed XAMPP on this

other components. You can find more info in the FACS section or check th IW-TO Guides for getting started with PHP applications.

Start the XAMPP Control Paned to check the server status.

Community

XAMPP has been around for more than 10 years - there is a huge community behind it. You can get involved by joining our Forums,
adding yoursalf to tha Mailing List, and liking us on Facebook, following our exploits on Twitter, or adding us to your Google+ circles.

Contribute to XAMPP translation at translate.apachefriends.org.

ther community members? We need your help to translate XAMPP into different languages. We

Can you help translate

have set up a site, trans| riends.org, where users can contribute transtations.

Install applications on XAMPP using Bitnami

41: localhost main screen

Database is located after clicking “phpmyAdmin” on the upper right side. On
the new window that appears, on the left side there will be a database with name
“tools”. This is the database that Expander uses.

71

= i TOOLSA

phngAdmm T Aoy koo - [Daos: TOOLS.
aploe ¥ Boph [KiBmseSOL 4 Awolfran Emepdirnpn kové mphBeiypa =t Efoyuyd | o Esoywyh g = -
Npbogare Avarmudver
Be Nivaxag Evipyoa Eyypogic 4 Timog Eivecon MiyeBog Neploocio
Hta components_and_paths gy) Nepsiynan (4 Aoph o Avalfman §+ Mpootian i AScioopa @ Aaypasd 29 InnoD latin!_swodish_ci o "
3 i
4 edool components names oy | Mepfiynon e+ douf & Avalijnen 4 Npooifan B Abticopa @ Aeaypasd 35 innoDB latin]_swodish_ci W
- Inforsisbor_schens daisys g 1 Nepstynon 4 Boun & Avedimnan i NpooBhan B ASeicowa @ dayeosd 390 InecDB lntin!_swodish_ci o
+ o sl - . . .
explaration Mepaiynon o Aouh 4 Avaliimen B4 NpaoSien @ Alcicopa o Aaypagd 24 InnoDE tatin_ywodish_ci nm
4. performance_schema ~
4, promyadmin Implemented d¢ 7 Mepstiymon [Souh & Avalfman § Npoodiian 9 Abcicoua @ Aaypasd % InnoDB latin!_swodish_ci um
- . TOOLS initial_values) Nepsfiyrion o Soufy ¢ Avalfitnon § Nooolfan B9 Aboooua Q) Awaypadd 9 o8 latin!_swodish_ci waa
-~ o Neo
ERE, loal_sigral Nepsiymon W Aouf & Avalitnon §i Npocfen § Alcicoua @ Aaypash 94 InecDB latind_swodish & N
+_ i comporwnts_and_paths
e patha Nepefynon » Aoph & Avaliman i NpooSian & ASeicapn & Aaypogh 1 InncDE latin)_swodish_ci W
4. Colays min ® Nepsfiynon 4 Aouf & Avalfiman §4 NpooBhen @ Abcicopa @ Aaypagd 4474 InnoDB latin)_swodish_ci 14 1
- spionikon pin_path_match & I Nepefivmon s Aoufi & Avalimon 34 Nooolifien B9 Abciooia @ Arypasd " InncOB lntin)_swodish_ci @
- Irpmeied ignal mn & A #i Npaod B !]
Ay ufh & Avadhtnen scdyar - - 1,001 latin!_swodish_ei W
i signals s Epsymon (3 Ao valfitnan §i NpooBhen @ ASoioowa @ Aayposh a e
4 lnal_signal 1 rivereg Edvako 1,230 InmoD@ latin]_swedish ¢l 7ol an
+. v pats 1~ Erhov) Sk ME Tous emlevubvous: 3
. pin
#_ 4 pin_pam_maich &2 Epptinon o extimoon B Ackit Seboudvay
.+ signals -
o Bnpieupyle Mvare
Tvapa ApiBubs oTIADY; |4
Exvihcon
mNapdbuge

Now the java source files must be imported to Eclipse so that the can

42: Database overview

be

executed. Launch Eclipse and select as workspace the directory that user wants. Go
to file and then choose import. A new window opens. Select “Existing project into

workspace” and click next.

puslic class PlancheodExpander ¢

peblie statie vaid main(Serl

String(] input = new Str
Grophs Gui = mew Grephsd
et run(d;
Initializer init = fow]
init.createDatobase()]
while (lgul.getProcoed(]
¥y
Threod, sleas(3

zatch {Interruptedts
pul .errarTotonse
e.primStackTral
¥
¥

input(8] = gui,getTerc),
frput(] = gui.getEdfC),

EdfParser parseEBF = new
parseEDF parse();

TarParser parseTiR = nes -

parsaTHR, parsal);

e conssies 1o diaplay 1 1 time.

Salect
T QT S—————————

= Tasks

c HA Ee - | 5 8 te [@lie] th oo
0 Enwus =8
O-%%E ¢ wRE

boAE b st

E‘JH itputheiter, Exceliriter

@ onmect Mylyn
9 o task and

Caonect
Maven A o e analn » o

Py 2 gune B
- BB e W
Target Contguraton tdtor

R I —

Tear a
@ " mainiBuingl]) void

43: Importing Expander in Eclipse (1)

72

& Grab Appio Emcirpyooio Kotaypogd Mophfupo BodBog

e N W B Y e - O G & - | . &ie Gow

1 pcnage o 1

1) PanatwadEsparderjova I =0 Hrasumd =o

» ([enerane ¢
A original Import Projecis
> L ParanemE e
@ et + | Snct a cincary to waarch for awieting Ecipes proieces.
slic closs PlanshesdExganter |

o Seteet roct duectery v Browse
main(serl

o consoles tn dispay 1 s time.

HOGEBERBLATARNEC A el

44: Importing Expander in Eclipse (2)

Select the option “Select root directory” and browse to the location that the
folder of Expander and Generator are stored. After that, click Next and then finish.
Now both Expander and Generator are ready to be launched.

Expander needs two files which were created before in step Al. Files with
extensions edf and twr were created after implementation. User should locate both
of these files and copy them into the folder that Eclipse uses as workspace.

Launch Expander by selecting run, run as, java application. The main window
of Expander launches and is ready for usage. If database existed, Expander will delete
it and will require a restart. In console Expander will print messages to inform user
about the processes and the state of the application. More detailed error messages
are displayed on the console of Eclipse.

Please select a TWR file: Select file

Please select a EDF file: Select file
Go!

Console:

Databased existed. Please relaunch the application

45: Expander main window

73

After Expander terminates normally, some output files will have been created.
Most of these files are for user information and only one is required for the next step.
This file has name “frequrncies.txt” and contains all the names of the control signals
with their maximum operating frequency. This file needs some manual editing before
proceeding. The frequencies must be grouped according to user’s wishes and then
sorted in ascending order.

When manual editing is done, Generator is ready to be launched. First, save the
edited text file into the directory that the source code of Generator is saved. Generator
also runs inside Eclipse and needs an input argument which is the file name. Select
the source file “CodeGen.java” and go to run, run configuration. A new window will
open and will look like the next picture.

Create, manage, and run configurations
Run a Java application '\\v_,-' '|

LR Name: CodeGen

@ wmain 9= Arguments . B4 JRE “; Classpath % Source | M Envirgnment | 7] Commen
5| aApache Tomeat T
[T]CiC++ Application
Q Eciipse Application frequencies.txt

& Eclipse Data Tools

- Generic Server

~| Generic Server(External Launch) Variables...

Program arguments:

5 HTTP Preview
- JZEE Preview
B Java Applet
¥ [1 Java Application
7] CodeGen
[PlanaheadExpander

VM argumants

[7] PlanaheadExpander (2) Variables...
Ju Junit
Jii Junit Plug-in Test + Usa the -XstartOnFirstThread argument when launching with SWT
B Launch Group
m2 Maven Build Working directory:
$ OSGi Framewark
Juy Task Context Test
5 X5L Other:

* Default:

Filter matched 20 of 29 ftems

2 Close Rn
46: Setting Input Arguments

Select the arguments tab and into the field labeled “program arguments” type
in the name of the manually edited file. Click apply and then run. After Generator
terminates successfully, into the current workspace a file entitled “Selector.vhd” will
have been created. This file contains the source code that will be inserted into the
project in Planahead and will compose the second component of the circuit.

For the next step, Planahead is going to be used once again. User can close
Eclipse and shut down the MySQL and Apache web servers.

0.3 Inserting Selector into the project

1. In the previous project select “Add sources” from flow navigator and then
choose “add or create design files”. Then click “add files” and import the file
with title “Selector.vhd”.

2. Once the file is imported, Planahead will update the hierarchy of the design.
For now, Selector must be at the same hierarchy level with wrapper. Update the
wrapper file so that it uses an instance of Selector and save the changes. After

74

saving is done, the hierarchy is updated and Selector should be below the
wrapper.

3. Click on “open elaborated design” in flow navigator and in the sources panel
select the “RTL netlist” tab.

4. Right click on the selector and select “set partition”.

0.4 Building the digital clock manager

1. From flow navigator select the option IP catalog. Alternatively, type the
command coregen -J Xmx1024m into the tcl console of Planahead. A new
window appears.

[T —T e ron 2 1700 P

1 G B v
0 fagic L Xilinx CORE Generator

There is no project open.

47: Opening Screen of Core Generator

2. Create a new project by clicking File, new project.
3. After the creation of the project, on the left list of options select FPGA features
and design, clocking, clocking wizard. Double click that option

Kiies CORE Ganeratar - home ntompakh Deskiop petros em Semcarrgen o

Clocking Wizard >

Information

[B

Actions

peniioe» .
=4

T e] ety . i TR —

48: Locating Clocking Wizard
75

Clocking wizard opens.

N X260-nzompaki-50- 1456685100 MDVATE dpd2

’Qw— Paces sptem - B @ fam feb 0. 1747 g..t}{‘g
Clothing Wizard wlialix||wiia (x
Documents fiew
W Sl -
logiC P! Clocking Wizard —r
i com g cik_ser 18 = |
aicaml|
ey ——— clocking Features
Camganent name | o _wis_vd 6 Input Clock:
- Clothing Features
X Freauency synthesis
Spread Spectrum
= X Phase sy -
BN i Mirsrase pomer
i | Primitive - Input jezer Unkt
= Lo ® MMCMIT ADV.) PLER 4DV wm s
ner Optimiration
® Baanced
: Mrimise outpi pver Dom cock jtter Bterng)
v Inpia Clack informaan
| o —54
5‘! lﬁlll! Lol Seurce F =
Tearcn i valss | | @ B
el prmary 100000 150 1300 0912 | sngle ended dock capable pin - i
secondaey | o | sieroai - I hff
[inatans o | 1
-" ek
= =
=
51 i mOOR 1|
Sewrcn rq .
| Cuntomize ana|] 1P Symbal | 7] Ressurce Estimation | Dotaaterat | Pogerers | ppess Genenate Lancel telp oo
T M veewmes) costuly(bamen_ () Nims COREGenerits. | () CichmgWind | - -) B ' e | |

49: Defining input frequency

4. Insert a name in the “component name” field and a frequency of input clock in
the “primary” field. Click next.

The higher input frequency the more accurately the digital clock manager will
produce the frequencies specified by user.

. X200-recmpaki-50- 1456555166 HDMATE 8032

) topsatios Psees sptem - B S ot I8, 1734 o i
| Chocking Wiaard (= ik i
| Be Poea | Doouments Yew
EQ» gl 1® St wx &
| lagiC Clocking Wizard e —
T ey s B
ol =2 Lo AR output clock |
o R Settings
_b P The phase it Calculated refatie 10 the active input cock.
) 7 B anant Dutput Freq (WH2) Phase (degrees) Duty Cycle (%) Use
| ¥ C o T TP — k] L aaaiil L L o 2 Drives
[o s Actusl Actust | Res | Actus i P,
:‘ CLE oUTL 100 008 108 000 oo anca oo | e G -
- % ax.our oo | a0 | owe ac oo | see ||mare -
LKk _OUT)y
!
W
"
2= =
= o
Searcn 0 @ &
ww vy o
e =
L e B
T ower
| al =
“ (o] 1 ;H_i)-‘ Lleat E
Saarch Prg
Cuntorze ang| 7| ® Symbai | ©, Ressurce Estimation | Datasneer <Beck |Pagelefd| fpemt> generate Lancel el o }J
B I Mate ermia (8] emebusty - (emein_ O Niies CORE Generats |) Clacking Wisan i R -.-..

50: Defining output frequencies

5. Inthe above window, user can define the output frequencies that wishes. Please
note that the digital clock manager may not produce the desired frequencies
accurately (for example frequencies are too close in value). Click next after you
define as many outputs as desired.

76

51: Optional pins

6. In this page, select some of the optional input and output signals but leave the
“clock feedback source” at its default value.

e

52: Other options

7. Make no changes at the above page.

77

3 Aestcatiors Paces spem - Q@ S fot I, 1703 =l "

Cleking Wizard

Fort Hami|

&

53: Renaming options

8. (Optional) Rename the input and output pins

— con= [

Summar

54: Settings check

9. Check all the options selected to verify that everything is according to the
specifications of the design. If everything is fine, click “generate”.

Clocking wizard creates many files. For the circuit in Planahead, only two of
them are needed. Those files are the VHDL file of the digital clock manager (.vhd)
and the constrains file (.ucf). Both of them will be inserted in the project of Planahead.

The VHDL file, however, needs some manual modifications because by default
the output clocks of the digital clock manager are connected to buffers. It is required
that those output clocks will be connected to special multiplexers called “bufgmux”.
This connections are done by modifying VHDL code and some examples can be
found in the code section of Appendix C. Modify the “entity” declaration of the

78

digital clock manager by inserting a std_logic (or vector) input signal for the selection
signal (this must be the same type with the signal output of the selector), delete the
output clocks and replace them with one unique output port. At the end of the file,
delete the commands that drive output clocks into buffers and replace them with a
line of code:

Mux - bufgmux port map (select signal, inputs, output);

0.5 Inserting the digital clock manager

1. In the previous project select “Add sources” from flow navigator and then
choose “add or create design files”. Then click “add files” and import the file
with extension .vhd.

2. Once the file is imported, Planahead will update the hierarchy of the design.
For now, Selector must be at the same hierarchy level with wrapper. Update the
wrapper file so that it uses an instance of digital clock manager by coping the
entity declaration into wrapper and changing “entity” keyword to
“component”. Create an instance of the dcm just like the other instances and
connect to its pins the proper signals. After saving is done, the hierarchy is
updated and digital clock manager should be below the wrapper. The wrapper
not only instantiates the different units but also connects the input and output
pins of the components via VHDL code. This is achieved, however, only for the
external signals of the main circuit that selector monitors. For the internal
signals the connections will be made using FPGA Editor.

3. Click on “open elaborated design” in flow navigator and in the sources panel
select the “RTL netlist” tab.

4. Right click on the selector and select “set partition”.

5. Click the option “specify partitions” and a new window appears.

) sescatios Pces 3o~ @ fot 0 1847 oo i)

Fée ESt Flow ool Wndow Layout \hew Help
] B8 S & X I 3|5 0elaut Layout - L |4 Implementation Complete
Flow hanigator « Elaborated Deskgn xc7k70tbgasd 2 {actie

FTL Netiist ® % RTL Schematic * Oe x

+ Project Manager

F w catalog
{ Run Behaaaral Sm

< RTL Analysis
+ 4 glaborated Design
D Repart DRC
Sehamatic

COMEAKIDRETOAPILIOWE SRR SIUGIC SISt uthy, promatentemth 1 Reuting

55: Importing and implementing partitions

79

6. Allactions should be set to “implement” for both synthesis and implementation
tabs except for the original circuit which must remain in “import” action in both
tabs.

Click on the “run synthesis” from flow navigator.
Click on the “run implementation” from flow navigator after synthesis is

completed.
9. Click on “promote partitions” and select all options instead of wrapper.

© N

2] ma o
ie ESt Flow ool Windew Layeut Vew Hels
S8 = Dufauk Layout = 5 implementation Complote
TR70tg
O x
Fun Dascnption
$ 1 artsyrar
o Bl ¥ o 1
« RTL Analysis whi
Elabarated Design e
e 5 ATL Nethist e
¢ il .o
4
— D2 X
war Al
-
amatic ana i impert loe !
' ancel

Td Console © Messages (dlog

56: Promoting partitions

10. If no internal signals exist, skip section A.6

0.6 Connecting internal signals using FPGA Editor

1. After implementation is completed, click on “open implemented design” and
then on “FPGA Editor”. A new window appears.

1E3) doticatiors Psces Sysees ma -
File Edit Yiew Tools Wimdouw Melp
Dis[als] (@ o [| ci e 2 O S S = P T e
frrayl | bisd
il Components
ol

[Tue WPins | Hilit

[Wase | site

eels

Seript “/umr/oda/XI Ui 1SE/14. 771SE DS/ 1SE/datasfpga_editor. Ini* pluback comploted.

Roading t/bFt/bfL. runa/ lmpl_ 1 furapper_routed.r

Loading dovice for application RF_Davice from file *7h70t,nph’ In ervironsent /unr/mwxi(lnx 1SE/14, 7/ 1SE_DS/ISES,
appar” In an NCD, verslon 3,2, device xcTk?ot, package fbgdBd, spoed -2

Design creation date: 2015,!]2.!8.0!.&1,1

Bullding chip grnph]m

Loading speed

Ene tinin nreas £1

57: FPGA Editor main screen

80

In the command section of FPGA editor type “setattr main edit-mode toggle”
to enable editing the design.

From list 1 select the name of the component that will be connected. In case
that extensive renaming has been done by Planahead, you can return to
Planahead and click “open synthesized design” and then “schematic”. This will
open the design and will help user locate the signals. The names used in
synthesis are the same used by FPGA Editor.

From list 2 select the name of the signal that is going to be driven to a specific
pin of the component specified. User can locate the names of the signals just
like in the previous step.

Click on the pin of the component and while holding down the control key click
on the name of the signal. Both the signal and the pin of the component must
be selected.

Type in the command section “route”. If an error appears saying that “nothing
found to route”, then ironically everything is fine.

Type in the command section “autoroute”. Some messages will appear
informing the user that everything went fine.

Repeat that procedure as many times as required in order to connect all signal
from the main circuit to the inputs of the selector circuit.

It is worth mentioning that changes made with FPGA Editor are not visible in

Planahead. For example, the schematic option under Synthesis will not show the
changes done. The only way to verify that connections were done correctly is by
running the simulator and checking the waveforms.

Please note that there is an online video tutorial for FPGA Editor. Just search

for “FPGA Editor” on www.youtube.com.

0.7 Simulating the new design

1.

Before simulating the circuit, it needs some delay balancing. This will be
possible after inserting two rows of D flip flops before the entrance of the
original circuit (to balance the two clock cycles delay of selector) and one row
of the same components right after the selector output. By defining a signal in
VHDL code (which will be the output of the Ds) and by changing their values
like “output <= input” in a process which has the clock into its sensitivity list, a
D flip flop is created. (Please note that the number of rows of flip flops required
depends on the original circuit. However, selector always delays for two clock
cycles and the digital clock manager functions asynchronously).

Click on the “add sources” from flow navigator an then select “add or create
simulation files”.

81

) aes Piac ma i
Fée Ect Flow Tools Wndew Liyout \hew He
ot e "o o e L Implementation Complete
Flarw Meanigatar Implemented Design mgl_ trs.2 |

LF %% Devige x D X

Project Manager

Nothst

Add Sources

This guides you through the process of adding and creating sources |

for your praject

4dd or Create

Acd or Create

hckd o
ek o
B
Add o
Properties
=1 Add Esisting
Consolo Oe x
= o
Ahead To cantinue, cick Next
-

et > Cancel

Tel Console

Specdy sndior craato source fles to Bdd to the projest.

58: Add simulation sources

Click “add files” and insert a testbench file written in Verilog or VHDL.
Example code of a testbench file written in VHDL can be found in appendix C.
After the file is imported, click “run timing simulation”. A new window appears
with some settings. User can edit the default settings.

Agpicatiors Maces System ma

Implementation Complote

Ble Ett Flow Jools Wedow Layout \Sew Heln
o "o
Flow Naagator Implemented Design mpl_

mary X @ Device x O =

4 Project Manager |

5.

Nethst

@) Project 5

Sources J Metlist
Proparties

o=
=

Genevics/Farameters options

incramartal <]

Select an option above to see a description of it

orsoin o

Tel Console © Messages i Log

r for tirming simulation

59: Simulator settings

Click “OK” and the simulation window will appear. User can add or remove
signals in order to verify that the new circuit functions properly.

82

w

60

Sim (P20131013] - [Defauit wety']

> Simulator window

83

L]

Appendix B

B.1 Edf file explanation

EDIF (Electronic Design Interchange Format, used as edf by Xilinx) is a vendor-
neutral format in which to store Electronic netlists and schematics. It was one of the
first attempts to establish a neutral data exchange format for the electronic design
automation (EDA) industry. The goal was to establish a common format from which
the proprietary formats of the EDA systems could be derived. When customers
needed to transfer data from one system to another, it was necessary to write
translators from one format to other. As the number of formats (N) multiplied, the
translator issue became an N-squared problem. The expectation was that with EDIF
the number of translators could be reduced to the number of involved systems.

Representatives of the EDA companies Daisy Systems, Mentor Graphics,
Motorola, National Semiconductor, Tektronix, Texas Instruments and the University
of California, Berkeley established the EDIF Steering Committee in November 1983.
Later Hilary Kahn, a computer science professor at the University of Manchester,
joined the team and led the development from version EDIF 2 0 0 till the final version
400.

The general format of EDIF involves using parentheses to delimit data
definitions, and in this way it superficially resembles Lisp. The basic tokens of EDIF
2.0.0 were keywords (like library, cell, instance, etc.), strings (delimited with double
quotes), integer numbers, symbolic constants (e.g. GENERIC, TIE, RIPPER for cell
types) and "Identifiers", which are reference labels formed from a very restricted set
of characters. EDIF 3.0.0 and 4.0.0 dropped the symbolic constants entirely, using
keywords instead. So, the syntax of EDIF has a fairly simple foundation. A typical
EDIF file looks like this:

(ediT wrapper
(edifversion 2 0 0)
(edifLevel 0)
(keywordmap (keywordlevel 0))
(status
(written
(timeStamp 2016 02 21 11 22 29)
(program "‘PlanAhead™ (version "14.7'))
(comment "Built on "Fri Sep 27 19:24:36 MDT 2013"")
(comment "Built by “"xbuild™'™)
)
)
(Library hdi_primitives
(edifLevel 0)
(technology (numberDefinition))
(cell 1BUF (celltype GENERIC)
(view netlist (viewtype NETLIST)
(interface
(port O (direction OUTPUT))
(port 1 (direction INPUT))

)
)
(Library U_alu_alu64_lib

84

(edifLevel 0)
(technology (numberDefinition))
(cell (rename U_alu_alu64 "U_alu#alu64') (celltype GENERIC)
(view view_1 (viewtype NETLIST)
(interface
(port clk (direction INPUT))
(port (array (rename A "A[63:0]'") 64) (direction INPUT))
(port (array (rename B "B[63:0]") 64) (direction INPUT))
(port (array (rename S *"S[3:0]'") 4) (direction INPUT))
(port (array (rename Result "Result[63:0]") 64) (direction
OUTPUT))
)

(contents
(instance T_R 0 (viewref netlist (cellref FD (libraryref
hdi_primitives)))
(property XILINX_REPORT_XFORM (string "'FD'))
(property XSTLIB (boolean (true)))
(property INIT (string "1"b0™))

)
(instance T_R_1 (viewref netlist (cellref FD (libraryref

hdi_primitives)))
(property XILINX REPORT_XFORM (string "FD'™))
(property XSTLIB (boolean (true)))
(property INIT (string "1"b0™))

)
(net (rename Mmux_S 3 B 63 wide _mux_20 OUT15 split 63

“"Mmux_S[3]_B[63]_wide_mux_20 OUT15 split[63]') (Joined
(portref O (instanceref

Mmux_S 3 B 63 wide_mux_20 0UT15121))
(portref D (instanceref T_R_63))
)

)

The 1.0.0 release of EDIF was made in 1985.

EDIF 2.0.0

The first "real" public release of EDIF was version 2 0 0, which was approved
in March 1988 as the standard ANSI/EIA-548-1988. It is published in a single volume.
This version has no formal scope statement but what it tries to capture is covered by
the defined viewTypes:

e BEHAVIOR to describe the behavior of a cell

e DOCUMENT to describe the documentation of a cell

e GRAPHIC to describe a dumb graphics and text representation of displayable
or printable information

LOGICMODEL to describe the logic-simulation model of the cell
MASKLAYOUT to describe an integrated circuit layout

NETLIST to describe a netlist

PCBLAYOUT to describe a printed circuit board

SCHEMATIC to describe the schematic representation and connectivity of a cell
STRANGER to describe an as yet unknown representation of a cell
SYMBOLIC to describe a symbolic layout

85

The industry tested this release for several years, but finally only the NETLIST
view was the one widely used and some EDA tools are still supporting it today for
EDIF 2.0.0. (EDIF Overview, 2005)

To overcome problems with the main 2.0.0 standard several further documents
got released:

e Electronic Industries Association

e EDIF Monograph Series, Volume 1, Introduction to EDIF, EIA/EDIF-1, Sept.
1988

e EDIF Monograph Series, Volume 2, EDIF Connectivity, EIA/EDIF-2, June 1989

e Using EDIF 2 0 0 for schematic transfer, EIA/EDIF/AG-1, July 1989

Documentation from Hilary J. Kahn, Department of Computer Science,

University of Manchester

EDIF 2 0 0, An Introductory Tutorial", September 1989

EDIF Questions and answers, volume one, November 1988

EDIF Questions and answers, volume two, February 1989

EDIF Questions and answers, volume three, July 1989

EDIF Questions and answers, volume four, November 1989

EDIF Questions and answers, volume five, June 1991

EDIF 3.0.0

Because of some fundamental weaknesses in the 2.0.0 release a new not
compatible release 3.0.0 was released in September 1993, given the designation of
EIA standard EIA-618. It later achieved ANSI and ISO designations. It is published in
4 volumes. The main focus of this version were the viewTypes NETLIST and
SCHEMATIC from 2.0.0. MASKLAYOUT, PCBLAYOUT and some other views were
dropped from this release and shifted for later releases because the work for these
views was not fully completed.

EDIF 3.0.0 is available from the International Electrotechnical Commission as
[EC 61690-1

EDIF 4.0.0

EDIF 4.0.0 was released in late August 1996, mainly to add "Printed Circuit
Board" extensions (the original PCBLAYOUT view) to EDIF 3.0.0. This more than
doubled the size of EDIF 3.0.0, and is published in HTML format on CD.

EDIF 4.0.0 is available from the International Electrotechnical Commission as
IEC 61690-2.

Problems with 2.0.0

To understand the problems users and vendors encountered with EDIF 2.0.0,
one first has to picture all the elements and dynamics of the electronics industry. The
people who needed this standard were mainly design engineers, who worked for
companies whose size ranged from a house garage to multi-billion dollar facilities
with thousands of engineers. These engineers worked mainly from schematics and
netlists in the late 1980s, and the big push was to generate the netlists from the
schematics automatically. The first suppliers were Electronic Design Automation
vendors (e.g., Daisy, Mentor, and Valid formed the earliest predominating set). These
companies competed vigorously for their shares of this market.

86

One of the tactics used by these companies to "capture" their customers was
their proprietary databases. Each had special features that the others did not. Once a
decision was made to use a particular vendor's software to enter a design, the
customer was ever after constrained to use no other software. To move from vendor
A's to vendor B's systems usually meant a very expensive re-entry of almost all design
data by hand into the new system. This expense of "migration" was the main factor
that locked design engineers into using a single vendor.

But the "customers" had a different desire. They saw immediately that while
vendor A might have a really nice analog simulation environment, vendor B had a
much better PCB or silicon layout auto-router. And they wished that they could pick
and choose amongst the different vendors.

EDIF was mainly supported by the electronics design end-users, and their
companies. The EDA vendors were involved also, but their motivation was more
along the lines of wanting to not alienate their customers. Most of the EDA vendors
produced EDIF 2.0.0 translators, but they were definitely more interested in
generating high-quality EDIF readers, and they had absolutely no motivation at all to
write any software that generated EDIF (an EDIF Writer), beyond threats from
customers of mass migration to another vendor's software.

The result was rather interesting. Hardly any software vendor wrote EDIF 2.0.0
output that did not have severe violations of syntax or semantics. The semantics were
just loose enough that there might be several ways to describe the same data. This
began to be known as "flavors" of EDIF. The vendor companies did not always feel
it important to allocate many resources to EDIF products, even if they sold a large
number of them. There were several stories of active products with virtually no-one
to maintain them for years. User complaints were merely gathered and prioritized.
The harder it became to export customer data to EDIF, the more the vendors seemed
to like it. Those who did write EDIF translators found they spent a huge amount of
time and effort on generating sufficiently powerful, forgiving, artificially intelligent
readers, that could handle and piece together the poor-quality code produced by the
extant EDIF 2.0.0 writers of the day.

In designing EDIF 3.0.0, the committees were well aware of the faults of the
language, the calumny heaped on EDIF 2.0.0 by the vendors and the frustration of
the end users. So, to tighten the semantics of the language, and provide a more formal
description of the standard, the revolutionary approach was taken to provide an
information model for EDIF, in the information modeling language EXPRESS. This
helped to better document the standard, but was done more as an afterthought, as
the syntax crafting was done independently of the model, instead of being generated
from the model. Also, even though the standard says that if the syntax and model
disagree, the model is the standard, this is not the case in practice. The BNF
description of the syntax is the foundation of the language inasmuch as the software
that does the day-to-day work of producing design descriptions is based on a fixed
syntax. The information model also suffered from the fact that it was not (and is not)
ideally suited to describing EDIF. It does not describe such concepts as name spaces
very well at all, and the differences between a definition and a reference is not clearly
describable either. Also, the constructs in EXPRESS for describing constraints might
be formal, but constraint description is a fairly complicated matter at times. So, most

87

constraints ended up just being described as comments. Most of the others became
elaborate formal descriptions which most readers will never be able to decipher, and
therefore may not stand up to automated debugging/compiling, just as a program
might look good in review, but a compiler might find some interesting errors, and
actually running the program written might find even more interesting errors.

Solutions to edif 2.0.0 problems

The solution to the "flavor" problem of EDIF 2.0.0 was to develop a more
specific semantic description in EDIF 3.0.0 (1993). Indeed, reported results of people
generating EDIF 3.0.0 translators was that the writers were now much more difficult
to get right, due to the great number of semantic restrictions, and the readers are
comparatively trivial to develop.

The solution to vendor "conflict of interest" was neutral third-party companies,
who could provide EDIF products based on vendor interfaces. This separation of the
EDIF products from direct vendor control was critical to providing the end-user
community with tools that worked well. It formed naturally and without comment.
Engineering DataXpress was perhaps the first such company in this realm, with
Electronic Tools Company seeming to have captured the market in the mid to late
1990s. Another dynamic in this industry is EDIF itself. Since they have grown to a
rather large size, generating readers and writers has become a very expensive
proposition. Usually the third-party companies have congregated the necessary
specialists and can use this expertise to more efficiently generate the software. They
are also able to leverage code sharing and other techniques an individual vendor could
not. By 2000, almost no major vendor produced its own EDIF tools, choosing instead
to OEM third-party tools.

Since the release of EDIF 4.0.0, the entire EDIF standards organisation has
essentially dissolved. There have been no published meetings of any of the technical
subcommittees, the EDIF Experts group, etc. Most of the individuals involved have
moved on to other companies or efforts. The newsletter was abandoned, and the
Users' Group no longer holds yearly meetings. EDIF 3.0.0 and 4.0.0 are now ANSI,
IEC and European (EN) standards. EDIF Version 3.0.0 is IEC/EN 61690-1, and EDIF
Version 4.0.0 is IEC/EN 61690-2. (Guide to EDIF, 2005)

B.2 Twr file explanation

This extension declares the timing report file generated by Xilinx tools. This
type of file includes detailed description about the paths analyzed in the circuit and
information about their timing behavior, timing violations and constrains verification.
Unlike edif files, the timing report format is easily readable and understandable giving
information to user about the paths in the design. It is worth mentioning that the
content of the timing report depends heavily on the timing constrains that are set by
user before synthesis and implementation. The format and structure of the file do not
change. A typical example of a timing report (.twr file) looks like the following text
document:

INFO:Timing:3412 - To improve timing, see the Timing Closure User Guide (UG612).

INFO:Timing:2752 - To get complete path coverage, use the unconstrained paths
option. All paths that are not constrained will be reported in the
unconstrained paths section(s) of the report.

INFO:Timing:3339 - The clock-to-out numbers in this timing report are based on

88

a 50 Ohm transmission line loading model.

For the details of this model,

and for more information on accounting for different loading conditions,

please see the device datasheet.

Timing constraint: OFFSET = IN 1.8 ns BEFORE COMP *clk™ "RISING";
For more information, see Offset In Analysis in the Timing Closure User Guide (UG612).

22249 paths analyzed, 255 endpoints analyzed, 0 failing endpoints
0 timing errors detected. (0 setup errors, 0 hold errors)

Minimum allowable offset is

1.791ns.

Slack: 0.009ns (requirement - (data path - clock path - clock arrival
+ uncertainty))

Source: S[2] (PAD)

Destination: T_R_45 (FF)

Destination Clock:

clk_BUFGP rising

Requirement: 1.800ns
Data Path Delay: 3.268ns (Levels of Logic = 15)
Clock Path Delay: 1.502ns (Levels of Logic = 2)
Clock Uncertainty: 0.025ns

Clock Uncertainty: 0.025ns ((TSI”2 + TIIN2)N1/2 + DI) / 2 + PE
Total System Jitter (TSJ): 0.050ns
Total Input Jitter (T1J): 0.000ns
Discrete Jitter (DJ): 0.000ns
Phase Error (PE): 0.000ns

Maximum Data Path at Fast Process Corner:

S[2] to T_R 45

Location Delay type Delay(ns) Physical Resource
Logical Resource(s)
A20.1 Tiopi 0.396 S[2]
S[2]
S 2 IBUF
SLICE_X36Y122.C5 net (fanout=192) 1.026 S_2_IBUF
SLICE_X36Y122.C Tilo 0.035 Mmux_S[3]_B[63]_wide_mux_20_OUT7_rs_AS_inv
Mmux_S[3]_B[63]_wide_mux_20_OUT7_rs_AS_inv2
SLICE_X23Y101.AX net (fanout=1) 0.583 Mmux_S[3]_B[63] wide_mux_20 OUT7_rs_AS_inv
SLICE_X23Y101.COUT Taxcy 0.162 Mmux_S[3]_B[63]_wide_mux_20 OUT7_rs_cy[3]
Mmux_S[3]_B[63]_wide_mux_20_OUT7_rs_cy<3>
SLICE_X23Y102.CIN net (fanout=1) 0.000 Mmux_S[3]_B[63]_wide_mux_20 OUT7_rs_cy[3]
SLICE_X23Y102.COUT Tbyp 0.031 Mmux_S[3]_B[63]_wide_mux_20_OUT7_rs_cy[7]
Mmux_S[3]_B[63]_wide_mux_20 OUT7_rs_cy<7>
SLICE_X23Y103.CIN net (fanout=1) 0.000 Mmux_S[3]_B[63] _wide_mux_20 OUT7_rs_cy[7]
SLICE_X23Y103.COUT Thyp 0.031 Mmux_S[3]_B[63]_wide_mux_20_OUT7_rs_cy[11]
Mmux_S[3]_B[63]_wide_mux_20_OUT7_rs_cy<11>
SLICE_X23Y104.CIN net (fanout=1) 0.000 Mmux_S[3]_B[63] _wide_mux_20_OUT7_rs_cy[11]
SLICE_X23Y104.COUT Thbyp 0.031 Mmux_S[3]_B[63]_wide_mux_20_OUT7_rs_cy[15]
Mmux_S[3]_B[63]_wide_mux_20_OUT7_rs_cy<15>
Total 3.268ns (1.009ns logic, 2.259ns route)

(30.9% logic, 69.1% route)

Skipping the introductive text, a detailed description and explanation of some

of the first properties of the path will be given.

Slack: the first item listed for each path is the slack, which is how much time
the path made the constrain by, or in the case of a negative number, how much
it is violated by.

Source: the source is the output pin that drives the path.

Destination: the destination is the stopping point of the path.

Requirement: The requirement is the time constrain number.

Data path delay: this line shows the total path delay as well as the number of
levels of logic used to implement the timing path.

Clock path skew: The Clock Path Skew is the difference between the time a
clock signal arrives at the source flip-flop in a path and the time it arrives at the
destination flip-flop. The PAR clock report shows Net Clock Skew. The Net

89

Clock Skew is skew on the clock net. The Clock Path Skew takes the entire
clock path into account not just the clock net. This would include the IBUFG
delay, net delay to a DCM, delay through a DCM, net delay to global buffer,
delay through the global buffer and the clock net delay.

e Source clock: The Source Clock is the name of the source clock signal (if any)
driving a synchronous source (For Example, FF).

e Destination clock: The destination dock is the name of the destination clock
signal (if any) driving a synchronous destination (For Example, FF).

e Clock uncertainty: The clock uncertainty for an OFFSET constraint might be
different than the clock uncertainty on a PERIOD constraint for the same clock.
The OFFSET constraint only looks at one clock edge in the equation but the
PERIOD constraints takes into account the uncertainty on the clock at the
source registers and the uncertainty on the clock at the destination register so
that two clock edges are in the equation.

After these items, timing report describes the route that the path has chosen in
order to connect the starting and ending point. The file contains information about
the slice that it crosses, what type of delay is caused (for example if is delay on a net
or due to process in a LUT), how many nanoseconds is the delay and the physical and
logical resources of the components that are used inside the slice mentioned before.
Finally, the total amount of delay is further analyzed in order to give user more
detailed information. In general, the format of the timing report is simple and easy to
read. (Timing Analyzer, 2008)

90

Appendix C — Source Code

In this appendix there will be presented some sample VHDL code so that it
made clear how components are connected to each other, how the hierarchical design
takes place and how the wrapper file functions and finally how the source code of
the digital clock manager, which is automatically generated, can be modified to suit
the needs of the project.

C.1 Main circuit of the demo

The main circuit of the demo is a 64 bit arithmetic and logical unit which can
perform 16 different operations. This circuit has four inputs; two 64 bit numbers, a 4
bit code which indicates the operation that will take place and the clock. It outputs
the final result. The source code of the arithmetic and logic unit is quite simple and
self explanatory.
library ieee;

use ieee.std_logic_1164._all;
use leee.numeric_std.all;

entity alu64 is
port (
clk: in std_logic;
A,B: in signed(63 downto 0);

S: in std _logic_vector(3 downto 0);
Result: out signed(63 downto 0)

)

end alu64;

architecture Behavioral of alu64 is
signal T_A, T_B: signed(63 downto 0) := (others => "0%);
signal T_R: signed(63 downto 0) := (others => "0%);
signal T_Sel : std_logic vector(3 downto 0);

begin

process(clk)
begin

if rising_edge(clk) then

T A <= A;
T B <= B;
T Sel <= S;

case T_Sel is
when *0000" =>
TR<=TA+ 1;

when "'0001" =>
TR<=TB + 1;

when 0010 =>
TR<=TA - 1;

91

when

when

when

when

when

when

when

when

when

when

when

when

when

when

end case;

end if;
end process;

Result <= T_R;

end Behavioral;

"0011"

'*0100"

''0101™

"'0110"

"0111™

'1000"

''1001"

1010

"1011"

''1100"

"1101™

""1110"

1111

others

TR

TR

TR

>

>

>

>

<=

<

<

<

<=

<

<

TB - 1;

TA + T_B;

T_A - T_B;

T_A and T_B;

T A or T_B;

T_A xor T_B;

not T_A;

not T_B;

it (T_A > T_B) then

T_R <= x'"0000000000000001*;
elsif (T_A < T_B) then

T_R <= x'"0000000000000002";

else

end

TR

TR

TR

TR

>

>

>

>

>

T_R <= x"0000000000000000";

if;

<

<

<

<=

T_A nand T_B;

T _A nor T_B;

shift_left(T_A,1);

shift_right(T_B,1);

TR <= T_R;

92

C.2 Selector of the demo

This is the code generated by the custom tool called Generator. It has inputs
that are defined by the main circuit. In this case, it accepts as inputs 21 bits of the
inputs of the arithmetic and logical unit that monitor every clock cycle and a clock. It
outputs a signal that also depends on the number of different frequencies that the
digital clock manages produces. In this demo, only two frequencies exist and as a

result Selector outputs a single bit.

library ieee

use leee.std logic_1164._all;
use IEEE.numeric_std.all;

entity Selector is

port (
clk - In

std_logic;

B58, B57, A57, A56, S3, S2, S1, SO, B63, A63, B62, A62, B46,
A45, B45, A44, B2, B1, Al, BO, AO : in std _logic;
0 : out std logic

)

end Selector
architecture
signal
signal

signal
signal

signal
signal
signal
signal
signal
signal
signal
begin

sync :
begin

Behavioral of Selector is

buffB58, buffB57, buffA57, buffA56, buffS3, buffS2,
buffS1l, buffSO : std _logic;

buffB63, buffA63, buffB62, buffA62, buffB46, buffA4s5,
buffB45, buffA44 : std_logic;

buffB2, buffBl, buffAl, buffBO, buffAO0 : std_logic;
changeB58, changeB57, changeA57, changeA56, changeS3,
changeS2, changeS1l, changeSO : std_logic;

changeB63, changeA63, changeB62, changeA62, changeB46,
changeA45, changeB45, changeA44 : std_logic;
changeB2, changeBl, changeAl, changeBO, changeAO :
std_logic;

syncB58, syncB57, syncA57, syncA56, syncS3, syncS2,
syncS1l, syncSO : std_logic;

syncB63, syncA63, syncB62, syncA62, syncB46, syncA45,
syncB45, syncA44 : std logic;

syncB2, syncB1, syncAl, syncBO, syncAO : std_logic;
temp : std_logic = "0~;

low, high : std_logic;

process(clk)

if rising_edge(clk) then
syncB58 <= B58;
buffB58 <= syncB58;

syncB57 <= B57;
buffB57 <= syncB57;

syncA57 <= A57;
buffA57 <= syncA57;

syncA56 <= AbL6;
buffA56 <= syncA56;

93

end if
end process;

changeB58 <=
changeB57 <=
changeA57 <=
changeA56 <=

syncS3
buffS3

syncS2
buffs2

syncS1
buffSi

syncSO0
buffSo

sSyncB63
buffB63

SyncA63
buffA63

syncB62
buffB62

SyncA62
buffA62

syncB46
buffB46

syncA45
buffA45

syncB45
buffB45

syncA44
buffA44

syncB2
buffB2

syncB1
buffBl

syncAl
buffAl

syncBO
buffBO

syncAO
buffAO

buffB5
buffB5
buffA5
buffA5

<=
<=

<=
<=

<=

<=
<=

8
7
7
6

S3;
syncS3;

S2;
syncS2;

S1;
syncS1;

SO;
syncS0;

B63;
syncB63;

AG3;
SyncAG3;

B62;
syncB62;

AB2;
SyncA62;

B46;
syncB46;

A45;
SYyncA45;

B45;
syncB45;

Ad4;
sSyncA44;

B2;
syncB2;

Bl;
syncBl1;

Al;
sSyncAl;

BO;
syncBO;

AO;
syncAO;

Xor syncB58;
XOor syncB57;
XOr sSyncA57;
XOor syncA56;

changeS3 <= buffS3 xor syncS3;
buffS2 xor syncS2;
buffS1l xor syncS1;

changeS2 <=
changeS1 <=

94

changeS0O <= buffSO xor syncSO;
changeB63 <= buffB63 xor syncB63;

changeA63 <= buffA63 xor syncA63;
changeB62 <= buffB62 xor syncB62;
changeA62 <= buffA62 xor syncA62;
changeB46 <= buffB46 xor syncB46;
changeA45 <= buffA45 xor syncA45;
changeB45 <= buffB45 xor syncB45;

changeA44 <= buffA44 xor syncA44;
changeB2 <= buffB2 xor syncB2;
changeBl <= buffBl xor syncBl;
changeAl <= buffAl xor syncAl;
changeBO <= buffB0O xor syncBO;
changeAO <= buffA0 xor syncAO;

low <= changeB58 or changeB57 or changeA57 or changeA56 or
changeS3 or changeS2 or changeS1l or changeSO;
high <= changeB63 or changeA63 or changeB62 or changeA62 or
changeB46 or changeA45 or changeB45 or changeA44 or
changeB2 or changeBl or changeAl or changeBO or changeAO;

process(clk)
begin
if rising_edge(clk) then
if low = 1" then
temp <= "0%;
elsif high = "1" then
temp <= "1°7;
else
temp <= temp;
end if;
end if;
end process;

0 <= temp;

end Behavioral;

C.3 Digital clock manager

Digital clock manager is a source code that is generated automatically by Xilinx
tools according to user’s wishes. However, in order to function properly some
modifications are required. Some changes are needed in the declaration section of
the component and at the end of the source code instead of driving the pulses to
buffers they are connected to a special multiplexer called “bufgmux”.
library ieee;
use ieee.std logic 1164.all;
use ieee.std logic_unsigned.all;

use leee.std logic _arith.all;
use ieee.numeric_std.all;

library unisim;
use unisim.vcomponents.all;

entity dcmCaseStudy is
port
(-- Clock in ports
dcm_clk :in std_logic;

95

-— Clock out ports
selectSignal : in std _logic;

promoted : out std_logic;
-- Status and control signals
RESET :in std_logic;
LOCKED out std_logic
);
end dcmCaseStudy;

architecture xilinx of dcmCaseStudy is

attribute CORE_GENERATION_INFO : string;

attribute CORE_GENERATION_ INFO of xilinx : architecture 1is
"dcmCaseStudy,clk wiz_v3_6,{component_name=dcmCaseStudy,use_phase_ali
gnment=true,use_min_o_jitter=false,use_max_i_jitter=false,use _dyn_ pha
se_shift=False,use_inclk switchover=false,use _dyn_ reconfig=false, feed
back source=FDBK_AUTO, primtype_sel=MMCM_ADV,num_out _clk=2,clkinl_peri
0d=2.000,clkin2_period=10.0,use_power_down=false,use_reset=true,use_I
ocked=true,use_inclk_stopped=false,use_status=false,use_ freeze=false,
use_clk_valid=false,feedback_type=SINGLE,clock_mgr_type=MANUAL ,manual
_override=false}";

signal clkfbout : std_logic;
signal clkfbout_buf : std_logic;
signal clkfboutb unused : std logic;
signal clkoutO : std _logic;
signal clkoutOb unused : std logic;
signal clkoutl : std_logic;
signal clkoutlb unused : std_logic;
signal clkout2_ unused : std _logic;
signal clkout2b unused : std _logic;
signal clkout3 unused : std _logic;
signal clkout3b _unused : std_logic;
signal clkout4 unused : std_logic;
signal clkout5 unused : std _logic;
signal clkout6 unused : std _logic;
-— Dynamic programming unused signals
signal do_unused : std_logic_vector(15 downto 0);
signal drdy_unused : std _logic;
-- Dynamic phase shift unused signals
signal psdone_unused : std _logic;

-- Unused status signals
signal clkfbstopped_unused : std_logic;
signal clkinstopped_unused : std_logic;
signal tempClock : std logic;

begin

-— Input buffering
-- clkinl_buf : IBUFG
-- port map
- (0 => dcm_clk,

- 1 => dcm_clk);

-- Clocking primitive

-- Instantiation of the MMCM primitive

-— * Unused inputs are tied off

-— * Unused outputs are labeled unused
mmcm_adv_inst : MMCME2_ADV

generic map

96

(BANDWIDTH => "OPTIMIZED",

CLKOUT4_CASCADE => FALSE,
COMPENSATION => ""ZHOLD",
STARTUP_WAIT => FALSE,
DIVCLK _DIVIDE => 25,
CLKFBOUT_MULT_F => 60.125,
CLKFBOUT_PHASE => 0.000,
CLKFBOUT_USE_FINE_PS => FALSE,
CLKOUTO_DIVIDE_F => 6.500,
CLKOUTO_PHASE => 0.000,
CLKOUTO_DUTY_CYCLE => 0.500,
CLKOUTO_USE_FINE_PS => FALSE,
CLKOUT1_DIVIDE = 4,
CLKOUT1_PHASE => 0.000,
CLKOUT1_DUTY_CYCLE => 0.500,
CLKOUT1_USE_FINE_PS => FALSE,
CLKIN1_PERIOD => 2.000,
REF_JITTER1 => 0.010)

port map
—-— Output clocks
(CLKFBOUT => clkfbout,
CLKFBOUTB => clkfboutb unused,
CLKOUTO => clkoutO,
CLKOUTOB => clkoutOb_unused,
CLKOUT1 => clkoutl,
CLKOUT1B => clkoutlb unused,
CLKOUT2 => clkout2_unused,
CLKOUT2B => clkout2b_unused,
CLKOUT3 => clkout3 unused,
CLKOUT3B => clkout3b_unused,
CLKOUT4 => clkout4_unused,
CLKOUTS5 => clkout5 _unused,
CLKOUT6 => clkout6 unused,
--— Input clock control
CLKFBIN => clkfbout_buf,
CLKIN1 => dcm_clk,
CLKIN2 = "0",
-— Tied to always select the primary input clock
CLKINSEL = "1",
-- Ports for dynamic reconfiguration
DADDR => (others => "0"),
DCLK = "0°",
DEN = "0",
]| => (others => "07),
DO => do_unused,
DRDY => drdy_unused,
DWE = "0",
-- Ports for dynamic phase shift
PSCLK => "0",
PSEN => "0°,
PSINCDEC = "0°-,
PSDONE => psdone_unused,
-— Other control and status signals
LOCKED => LOCKED,
CLKINSTOPPED => clkinstopped_unused,
CLKFBSTOPPED => clkfbstopped_unused,
PWRDWN = "0",
RST => RESET);

-- Output buffering

clkf _buf : BUFG

port map
(0 => clkfbout_buf,
1 => clkfbout);

promote : BUFGMUX port map (tempClock, clkoutO, clkoutl,

selectSignal);

promoted <= tempClock;

end xilinx;

C.4 Wrapper file

Wrapper file unites all components under a common interface which is seen as
a unit by VHDL compiler. This file creates instances of the components, redirects their
inputs and their outputs and connects them (when external signals are used). The
following code is a simple wrapper file and can be modified to suit custom needs and

other components.

library ieee;
use leee.std logic_1164._all;
use leee.numeric_std.all;

entity wrapper is
port (

)

A,B: in signed(63 downto 0);
S: in std_logic_vector(3 downto 0);
Result: out signed(63 downto 0);

dcm_freq : in std _logic;
rst : in std_logic;
Ick :© out std _logic

end wrapper;

architecture Behavioral of wrapper is

signal index : std_logic = "0%;

signal finalClock : std_logic;

signal indexBuffer : std_logic;

signal dffAl, dffBl, dffA2, dffB2, synclnputA, synclnputB

signed(63 downto 0);

signal dffSl, dffS2, syncS : std_logic_vector(3 downto 0);

attribute KEEP : string;
attribute KEEP of synclnputA: signal is "TRUE";
attribute KEEP of synclnputB: signal is "TRUE";

component alu64

port (
clk: in std_logic;
A,B: in signed(63 downto 0);
S: in std_logic_vector(3 downto 0);
Result: out signed(63 downto 0)
)

end component;

component Selector

port (

clk: in std_logic;

98

B58: in std_logic;
B57: in std_logic;
A57: in std_logic;
A56: in std_logic;
S3: in std_logic;
S2: in std_logic;
S1: in std_logic;
SO: in std_logic;
B63: in std_logic;
A63: in std_logic;
B62: in std_logic;
AB2: in std_logic;
B46: in std_logic;
A45: in std_logic;
B45: in std_logic;
Ad4: in std_logic;
B2: in std_logic;
B1: in std_logic;
Al: in std_logic;
BO: in std_logic;
AO: in std_logic;
0: out std_logic

);

end component;

component dcmCaseStudy is
port
(-- Clock in ports
dem_clk - in std_logic;
-- Clock out ports
selectSignal : in std _logic;

promoted : out std_logic;

-- Status and control signals

RESET in std_logic;

LOCKED - out std_logic
)

end component;
begin

process(finalClock)
begin
if rising_edge(finalClock) then
synclnputA <= A;
synclnputB <= B;
dffAl <= synclnputA;
dffBl <= synclnputB;
dffA2 <= dffAl;
dffB2 <= dffB1;
syncS <= S;
dffS1 <= syncsS;
dffS2 <= dffSi;
indexBuffer <= index;
end if;
end process;

U _dcm : dcmCaseStudy port map (dcm_freq, indexBuffer, finalClock,
rst, Ick);

99

U alu: alu64 port map (FinalClock, dffA2, dffB2, dffS2,
Result);

U_selector : Selector port map (finalClock, synclnputB(58),
synclnputB(57), synclnputA(57), synclnputA(56), syncS(3), syncS(2),
syncS(1), syncS(0), synclnputB(63), synclnputA(63), synclnputB(62),
synclnputA(62), synclnputB(46), synclnputA(45), synclnputB(45),
synclnputA(44), synclnputB(2), synclnputB(1), synclnputA(l),
synclnputB(0), synclnputA(0), index);

end Behavioral;

C.5 Test bench of demo circuit

library ieee;
use leee.std logic_1164._all;
use leee.numeric_std.all;

entity tb_alu64 is
end entity;

architecture Behavioral of tb_alu64 is

signal T_dcmlnputClock : std _logic = "0%;
signal T A, T B, T R : signed(63 downto 0) := (others => "0%);

signal T_Sel : std_logic_vector(3 downto 0) := *0000";
signal rst : std logic := "0";
signal Ick : std logic := "0";
component wrapper
port (
A,B: in signed(63 downto 0);
S: in std_logic_vector(3 downto 0);
Result: out signed(63 downto 0);

dcm _freq : in std _logic;
rst : in std_logic;
Ick : out std logic

R

end component;
begin

U wrap : wrapper port map (T_A, T B, T Sel, T R,
T _dcminputClock, rst, Ick);

-- 500 MHz clock for dcm

process

begin
T _dcmlnputClock <= "0%;
wait for 1 ns;
T_dcminputClock <= "1°7;
wait for 1 ns;

end process;

process
begin
--setup time for dcm
wait for 1501 ns;

--start performing additions

100

T Sel <= "0100";

T A <= x"0000011029200000"; --slow clock
T B <= x"0000128c2f0046e0"";

wait for 50 ns;

T A <= x"00001lebc2f5656e8"
T B <= x"00003fbde61e5660""
wait for 50 ns;

--slow clock

T_A <= x"40003fbde61e5668"

TB <= x"01202aade61e567e";

wait for 50 ns;

--fast clock

T_A <= x"756b6aade75c5c5e™;
T_B <= x'"917c08e5471c5cdf";
wait for 50 ns;

--fast clock

T A <= x"0f4ead35776e5bf9"
T B <= x"7a3d4993666flacl"
wait for 50 ns;

--slow clock

T A <= Xx"4964ec51b36a5bfb"
T B <= x"7a3d4993666flac0"
wait for 50 ns;

--slow clock???

T A <= x"'4964ed8d97aal99f"
T B <= x"7a3d4993dad97c64"
wait for 50 ns;

--fast clock

T_A <= x"4964ec945fdab094";
T_B <= x"7a3d490bb3a68b9%a";
wait for 50 ns;

--fast clock

T A <= x"40003fbde61e5668";
T_B <= x'"cl202aade6le567e";
wait for 50 ns;

--slow clock???

T A <= xX"756b6aade75c5c5e™
T B <= x"917c08e5471c5cdf"’
wait for 50 ns;

--fast clock

T A <= x"0f4ead35776e5bf9""
T B <= x"7a3d4993666flacl"
wait for 50 ns;

--slow clock

T_A <= x"4964ec51b36a5bfb"; --fast clock
T_B <= x'"7a3d4993666T1lac0";
wait for 50 ns;

T_A <= x"40003fbde61e5668"; --fast clock
T_B <= x'"cl202aade6le567e";
wait for 50 ns;
end process;
end Behavioral;

101

Biphoypagia

BDTI Industry Report. (2006). FPGAs for DSP. Berkeley Design Technology.

Brown, S., & Rose, J. (n.d.). Architecture of FPGAs and CPLDs: A Tutorial. Avaktnon
amd EECG: http://www.eecg.toronto.edu/~jayar/pubs/brown/survey.pdf

Digital System Design Using Data Path and Control Unit. (2013). Avaktnon amo
King Fahd University:
http://faculty.kfupm.edu.sa/COE/elrabaa/coe200/DP_CU.pdf

EDIF Overview. (2005). Avaxtnon atmo Elgris Technologies:
http://www.elgris.com/content/edif _overview.html

Englander, 1. (2009). The Architecture of Computer Hardware, System Software and
Networking. New Jersey: John Wiley & Sons.

FPGA Timing. (2015). Avaktnon amo Embedded Micro:
https://embeddedmicro.com/tutorials/mojo/timing

Guide to EDIF. (2005, July 18). Avaktnomn amo Electronic Industries Alliance:
http://web.archive.org/web/20051218041919/http://www.edif.org/introducti
on.html

Kugler, L. (2015, May 15). Is 'Good Enough' Computing Good Enough? Avdaktnon
amo Communications of the ACM:
http://cacm.acm.org/magazines/2015/5/186012-is-good-enough-computing-
good-enough/fulltext#body-2

Kuon, I., Tessier, R., & Rose, J. (2008). FPGA Architecture: Survey and Challenges.
Avaxnon amo Imperial College London:
http://www.doc.ic.ac.uk/~wl/papers/08/kuon08survey.pdf

Mano, M. M., & Ciletti, M. (2007). Digital Design. Pearson Education.

Mukhopadhyay, D. (2012). Design of Control Path. Avaxtnom amo Indian Institute
of Technology Kharagpur:
http://cse.iitkgp.ac.in/~debdeep/teaching/VLSlI/slides/ControlPath.pdf

National Instruments. (2012, April 16). Introduction to FPGA Technology. Avaktnon
amd NI: http://www.ni.com/white-paper/6984/en/

Processor: Datapath and Control. (2014). Avaxtnomn amo6 Linkoplings Universitet:
https://www.ida.liu.se/~TDTS10/info/lectures/Lecture3.pdf

Roosta, R. (2010). Synchronous Vs Asynchronous Design. Avéxtnon and California
State University, Northridge:
http://www.csun.edu/edaasic/roosta/Syn_Asyn_ Design.pdf

Shannon, C., & McCarthy, J. (1956). Automata Studies.

Spartan-6 FPGA Clocking Resources. (2015, June 19). Avaxtnon and Xilinx.com:
http://www .xilinx.com/support/documentation/user_guides/ug382.pdf

102

Synchronous and Asynchronous Circuits. (2006). Avaktnom amd University of
Surrey: http://www.ee.surrey.ac.uk/Projects/CAL/seq-
switching/synchronous_and_asynchronous_cir.htm

The Linley Group. (2009). A Guide to FPGAs for Communications.
Thompson, M. (2004, July 2). FPG As accelerate time to market for industrial designs.

Avaxnon amo Design & Reuse: http://www.us.design-
reuse.com/articles/8190/fpgas-accelerate-time-to-market-for-industrial-
designs.html

Timing Analyzer. (2008). Avaxtnon amo Xilinx:

http://www .xilinx.com/itp/xilinx10/isehelp/pta_p_ar_timing_constraints.htm

Vivado Synthesis - Net names are not preserved by mark debug. (2015, May 29).
Avaktnon amo Xilinx: http://www.xilinx.com/support/answers/57727.html

Wawrzynek J. (2013, March 19). EECS150 - Digital Design. Avaktnon amno Berkeley
http://www-inst.eecs.berkeley.edu/~cs150/sp13/agenda/lec/lec17-
tlmng pdf

Wolf, W. (2008). Computers as Components. Morgan Kaufmann.

103

