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Abstract

In this thesis, we study singular pseudo-differential operators defined by groupoids

satisfying the Lauter-Nistor condition, by a method parallel to that of manifolds

with boundary and edge differential operators. The example of the Bruhat sphere

is studied in detail. In particular, we construct an extension to the calculus of

uniformly supported pseudo-differential operators that is analogous to the calculus

with bounds defined on manifolds with boundary. We derive a Fredholmness criterion

for operators on the Bruhat sphere, and prove that their parametrices up to compact

operators lie inside the extended calculus; we construct the heat kernel of perturbed

Laplacian operators; and prove an Atiyah-Singer type renormalized index formula

for perturbed Dirac operators on the Bruhat sphere using the heat kernel method.



1. Introduction: From singular to groupoid

pseudo-differential calculus

Traditionally, the way to study singular pseudo-differential operators involves

studying underlying manifolds with embedded boundaries or corners. These bound-

aries are always defined by the zero set of some functions (known as the boundary

defining functions ρ), with non-vanishing differentials near the boundary. As a con-

sequence, a neighborhood of the boundary ∂M is of the form [0, 1) × ∂M (with

the closed interval [0, 1) parameterized by ρ). Then, one would typically consider

the calculus of pseudo-differential operators whose kernels have poly-homogeneous

expansions in ρ near the boundary (see [23] and the reference there).

The use of groupoids for studying the geometry of manifolds with boundaries (or

corners) was a much later development. Early use of groupoids in pseudo-differential

analysis include the convolution algebra defined on the holonomy groupoid of a

regular foliation by Connes et. al. (see [8] for a review). The notion of pseudo-

differential operators on a groupoid was developed by Nistor, Weinstein and Xu

[29]. Subsequently, Monthubert [26] showed that the b-calculus is, indeed, the vector

representation of pseudo-differential operators on some groupoids. The theory is

further formalized by Ammann et. al. into so called Lie manifolds, or manifolds

with Lie structure at infinity [2, 3, 5].

Despite the development of the groupoid theory, most, if not all analysis was done

on examples very similar to the manifold with boundary case.

In this thesis, we study the analysis of pseudo-differential operators in a system-

atic way parallel to that of singular pseudo-differential operators on manifolds with

boundary (i.e. [25] etc.). Our work is motivated by the study of the Poisson (co)-

differential operator and its homology. These invariants are difficult to compute. The

only attempt to develop any form of machinery seems to be [35], and the Laplacian

defined there is not elliptic in the usual sense. Also it is clear that the singularities

are not explicitly defined by any boundary defining function. Moreover, even if the

homology is computed directly, the result is often infinite dimensional, and therefore

not very meaningful. For this reason, we consider renormalized index theory, which

gives finite results.

The approach in this thesis is based on the principle that all singular pseudo-

differential operators are defined by vector representations of operators on the

1
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groupoids. Therefore instead of studying the calculus of singular pseudo-differential

operators, one only needs to study non-singular pseudo-differential operators on the

groupoid. The main part of this thesis, Sections 2-5, is an account of the technical

details on how this principle is implemented, particularly to the example of the

Bruhat Poisson structure on the sphere CP(1).

Here, we shall give an overview of our approach. In Section 2, We collect together

background material from several standard sources, which is needed for the thesis.

We begin with reviewing the well known formalism of uniformly supported groupoid

pseudo-differential operators by Nistor et. al. [29]. The uniformly supported calculus

is comparable to the small calculus in manifolds with boundary. We shall also

define the notion of a Dirac operator on a groupoid. Then we shall introduce some

examples, most notably the symplectic groupoids of the Bruhat Poisson structure

on flag manifolds, where the Bruhat sphere is the simplest case.

Section 3 focuses on two questions, which are exact counterparts of [25, Chapter

5]:

(1) What (elliptic) pseudo-differential operator on a groupoid has Fredholm vec-

tor representation?

(2) What does the parametrix of a Fredholm operator on a the groupoid defining

the Bruhat sphere look like?

Lauter and Nistor’s [18] theory gives a quick answer for (1), namely, if an operator

is invertible on all the singular leaves, then its vector representation is Fredholm. In

the simple case of the Bruhat sphere, question (1) therefore immediately reduces to

checking the invertibility of the operator over the only singular leaf. Due to some in-

variance properties, the natural way to proceed is by Fourier-Laplace transform. We

remark that our approach is again parallel to the indicial family formalism for man-

ifolds with boundary (recall that given a partial differential operator Ψ , the indicial

family is defined to be the family of differential operators (e−iξρΨeiξρ)|∂M, ξ ∈ C,

see [19, 25] for detailed definitions). Indeed, it can be said that Fourier-Laplace

transform is the right definition for indicial family. We then turn to describe the

parametrix of Fredholm operators on the Bruhat sphere, using the fact that the in-

verse of a properly supported, invariant pseudo-differential operator is an invariant

pseudo-differential operator with exponential decaying kernel. We then generalize

the notion to groupoids with sub-exponential growth, and prove that the resulting

calculus has a composition rule similar to that of calculus with bounds.
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In Section 4, we turn to the heat calculus of Laplacian operators. The treatment

here is very different from that of [1, 25], and much simpler. That is not surprising

because the source fibers are just non-singular manifolds with bounded geometry,

and the heat kernel is essentially the leaf-wise heat kernel. Therefore the classical

construction suffices. Perhaps the only unexpected result is the proof of transverse

smoothness, which requires additional growth conditions on the differential of the

product map. We shall leave the technical details to Section 4.2.

Given a perturbed Dirac operator that is Fredholm (one satisfying the conditions

in Section 3), it is natural to seek an Atiyah-Singer type formula for its Fredholm

index. That is the theme of Section 5. Again the technique we use is parallel to that

of [1, 19, 25], and is fairly standard. We use the stereographic coordinates on the

open leaf of the Bruhat sphere to define a renormalized trace. The we derive the

local index formula. We do have to fall back to the machinery of [1] to describe the

long time behavior of the heat kernel. However, it can be said that the ‘cheating’

occurs already when we use the stereographic coordinates, which effectively serves

as a boundary defining function. Nevertheless, our result is stronger than that of [1]

in the sense that we are able to derive an explicit trace defect formula.



2. Lie groupoids and pseudo-differential op-

erators

2.1. The differential geometry of Lie groupoids. We begin our technical dis-

cussion with the basic definition of a Lie groupoid. Our definition follows the con-

vention of [22], but with the source and target maps denoted by s and t instead of

α and β.

Definition 2.1. A Lie groupoid G ⇒ M consists of:

(1) Manifolds G and M;

(2) A unit inclusion u : M→ G;

(3) Submersions s, t : G → M, called the source and target map respectively,

satisfying

s ◦ u = idM = t ◦ u;

(4) A multiplication map m : {(a, b) ∈ G×G : s(a) = t(b)} → G, (a, b) 7→ ab that

is associative and satisfies

s(ab) = s(b), t(ab) = t(a), a(u ◦ s(a)) = a = (u ◦ t(a))a;

(5) An inverse diffeomorphism i : G → G, a 7→ a−1, such that s(a−1) = t(a),

t(a−1) = s(a) and

aa−1 = u(t(a)), a−1a = u(s(a)).

Remark 2.2. In this thesis, we assume that the groupoid G is Hausdorff. This extra

assumption is clearly satisfied in all of the examples we shall shortly see. Note that

many important groupoids, like holonomy groupoids of foliations, are not Hausdorff.

Notation 2.3. For simplicity we shall denote a Lie groupoid G ⇒ M by G and call

it a groupoid; Also, with an abuse in notation we consider M as a subset of G via

the unit inclusion u. For each x ∈ M, we write

Gx := s−1(x).

Definition 2.4. We say that a groupoid G is s-connected if Gx is connected for all

x ∈ M.
4
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Definition 2.5. Let G be a Lie groupoid and a ∈ G. The right translation is the

diffeomorphism:

Ra : s−1(a)→ t−1(a), b 7→ ba, b ∈ G.

Definition 2.6. A right-invariant function on G is a smooth function f such that

f(ba) = f(b), ∀a ∈ G, b ∈ s−1(a);

A right-invariant vector field on G is a vector field X such that dsX = 0 (i.e., X is

a vector field along the s-fibers) and

dRa(X(b)) = X(ba), ∀a ∈ G, b ∈ s−1(a).

From the definition, one immediately observes that any right invariant function

f ∈ C∞(G) can be written in the form

(1) f = t−1f̃ , where f̃ := u∗f ∈ C∞(M).

2.1.1. Lie algebroids and singular foliations.

Definition 2.7. A Lie algebroid A is a vector bundle over M, together with a Lie

algebra structure [·, ·] on the space of smooth sections Γ∞(A), and a bundle map

ν : A → TM satisfying

ν([X,Y ]) = [ν(X), ν(Y )], and [X, fY ] = f [X,Y ] + (Lν(X)f)Y,

for any X,Y ∈ Γ∞(A), f ∈ C∞(M).

Example 2.8. Let (M, Π) be a Poisson manifold [37]. Denote the contraction with

the Poisson bi-vector field Π by Π̃ : T ∗M→ TM. Define the bracket

[ω1, ω2] := d(ω1 ∧ ω2(Π)) + ιΠ̃(ω1)dω2 − ιΠ̃(ω2)dω1,

for any 1-forms ω1, ω2. It is easy to check that T ∗M is a Lie algebroid using Π̃ as

the anchor map.

In many ways the Lie algebroid plays the role of tangent bundle in our study. For

example we have:

Definition 2.9. [11] Let E be a vector bundle over M. An A-connection on E is a

differential operator ∇E : Γ∞(E)→ Γ∞(A′ ⊗ E) satisfying the relations

∇E
fXu = f∇E

Xu

∇E
X(fu) = f∇E

Xu+ Lν(X)u,
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for any X ∈ Γ∞(A), f ∈ C∞(M), u ∈ Γ∞(E).

Example 2.10. As in the case of Riemannian manifolds, given a metric gA, i.e.,

a positive definite symmetric bi-linear form on A, one can define the Levi-Civita

A-connection ∇gA on A by the formula

2gA(∇gAX Y, Z) :=gA([X,Y ], Z)− gA([Y,Z], X) + gA([Z,X], Y )

+ Lν(X)gA(Y,Z) + Lν(Y )gA(Z,X)− Lν(Z)gA(X,Y ),

for any X,Y, Z ∈ Γ∞(A).

It is well known that every Lie groupoid G determines a Lie algebroid: Define the

vector bundle

A := {X ∈ TxG : x ∈ M ⊂ G, ds(X) = 0}.

It is clear that restriction gives a 1-1 correspondence between Γ∞(A) and the space of

right invariant vector fields on G. Define [·, ·] to be the Lie bracket between invariant

vector fields, and define

(2) ν := dt|A : A → TM.

It is straightforward to check that A is a Lie algebroid over M.

Definition 2.11. A Lie algebroid defined by some Lie groupoid as above is said to

be integrable.

Note that not all Lie algebroids are integrable. See [9] for details.

For any Lie algebroid A → M, the family of vector fields

F := {ν(X) : X ∈ Γ∞(A)}.

defines a (singular) integrable foliation on M in the sense of Sussmann [36]. We de-

note the leaf space of F by M/F . For each x ∈ M, we denote the leaf of F through

x by Fx. Note that the leaves may be non-embedded sub-manifolds of M. Given a

singular foliation F defined by an integrable Lie algebroid A, the following proposi-

tions, both are direct consequences of the results in [11] (in particular Theorem 1.1),

describe the leaves of F .

Proposition 2.12. Let G ⇒ M be a Lie groupoid. For each x ∈ M, the map

t|Gx : Gx → M is a submersion onto its image.
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Proposition 2.13. Let G be an s-connected Lie groupoid. Then for each x ∈ M,

one has

t(Gx) = Fx; and Fx ∼= Gx/Gxx ,

where Gxx is the Lie group Gxx := {a ∈ G : s(a) = t(a) = x}, known as the isotropy

subgroup.

2.1.2. Riemannian geometry of the s-fibers. Let G ⇒ M be a Lie groupoid

over a compact manifold M. Let A → M be its Lie algebroid. Fix a metric gA (i.e.

a symmetric, positive definite bi-linear form) on A. For each x ∈ M, gA defines a

Riemannian metric on the s-fiber s−1(x) by

gs(X,Y ) := gA(t(a))(dRa(X), dRa(Y )).

Observe that gs is right invariant in the sense that the right translation

Ra : Gt(a) → Gs(a), ∀a ∈ G, X, Y ∈ TaGx

is an isometry for any a ∈ G. As a direct consequence of the assumptions, one has

Lemma 2.14. For each x ∈ M, the Riemannian manifold (Gx, gs) is a manifold

with bounded geometry (see Appendix A.3).

Proof. Consider the A-Levi-Civita connection:

2gA(∇AXY, Z) :=gA([X,Y ], Z)− gA([Y,Z], X) + gA([Z,X], Y )

+ Lν(X)gA(Y,Z) + Lν(Y )gA(Z,X)− Lν(Z)gA(X,Y ),

where X,Y, Z ∈ Γ∞(A). Let RA be the curvature of ∇A.

Consider ∇Gx
X̃
Ỹ , where X̃, Ỹ are right invariant vector fields, and ∇Gx is the Levi-

Civita connection of (Gx, gs) for each x ∈ M. Write X := X̃|M, Y := Ỹ |M, then

X,Y ∈ Γ∞(A). Then for any right invariant vector field Z̃, a ∈ G, one has

2gs(a)(∇Gs(a)
X̃

Ỹ , Z̃) = 2gs(a)((dRa)((∇AX , Y )(t(a))), (dRa)(Z(t(a)))).

It follows that for any X̃, Ỹ right invariant, the vector field a 7→ ∇Gs(a)
X̃

Ỹ (a) is also

right invariant. Furthermore, ∇Gs(a)
X̃

Ỹ (x) = ∇AXY (x) for any x ∈ M.

By similar arguments, for any X̃, Ỹ , Z̃ right invariant, R(X̃, Ỹ )Z̃ is right invariant

and one has

R(X̃(a), Ỹ (a))Z̃(a)) = RA(X(t(a), Y (t(a)))Z(t(a))
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for any a ∈ G. Clearly, the right hand side RA(X(t(a), Y (t(a)))Z(t(a)) is bounded

since M is compact. Formulas for higher covariant derivatives also follow from these

arguments.

Finally, to prove that the s-fibers have positive injectivity radius, observe that M

is compact. It follows that there exists r0 > 0 such that exp∇
A

is a diffeomorphism

form the set

Ar0 := {X ∈ A : gA(X,X) < r2
0}

onto its image. In proof of boundedness of curvature above, we saw that the Levi-

Civita connection is obtained by right translating ∇A. Therefore, for any X ∈
TaGs(a), a ∈ G,

exp∇
Gs(a)

X = (dRa) ◦ exp∇
A ◦(dR−1

a )X.

It follows that the injectivity radius of Gs(a) ≥ r0. �

The bounded geometry of the s-fibers means that the notion from manifolds of

bounded geometry applies. In particular, we say that

Definition 2.15. A function u ∈ C∞(G) is said to have bounded (fiberwise) deriva-

tives if for any x ∈ M, u|Gx has uniformly bounded covariant derivatives.

2.1.3. Examples of Lie groupoids. We give some examples of Lie groupoids rel-

evant to Poisson geometry.

Example 2.16. Let M be a manifold. The pair groupoid over M is the manifold

G := M×M together with the operations:

source and target maps: s(x, y) = y, t(x, y) = x, ∀(x, y) ∈ M×M,

multiplication: m((x, y), (y, z)) = (x, z), ∀(x, y), (y, z) ∈ M×M,

inverse: i(x, y) = (y, x), ∀(x, y) ∈ M×M,

unit: u(x) = (x, x), ∀x ∈ M.

The anchor map is the identity on TM. If, in addition, ω is a symplectic 2-form on

M, then (M ×M, ℘∗1ω − ℘∗2ω) is the symplectic groupoid of (M, ω), where ℘1, ℘2 :

M×M→ M is the projection to the first and second factor respectively.

Example 2.17. (See Lu and Weinstein [21]) Let g be a complex semi-simple Lie

algebra, let k be a compact real form of g. Let θ be the Cartan involution on g

fixing k. Let a be a maximal Abelian subalgebra of ik. Then h = a + ia is a Cartan
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subalgebra of g. Let g = h ⊕
∑

α∈∆ gα be the root space decomposition. Choose a

set of positive roots ∆+ and let n =
∑

α∈∆+ gα. Then g = k ⊕ a ⊕ n is an Iwasawa

decomposition of g (see [15, Chapter IV.4]).

Let 〈·, ·〉 be the imaginary part of the Killing form. Then (g, k, a + n, 〈·, ·〉) is a

Manin triple (see [37, Chapter 10]). Its corresponding Poisson Lie group structure

can be written as

ΠK(g) :=
1
2

∑
α∈∆+

(dRg)(Xα ∧ Yα)− (dLg)(Xα ∧ Yα), g ∈ K,

where

Xα := Eα + θEα, and Yα := iEα − iθ(Eα) ∈ k, α ∈ ∆+,

and Lg, Rg denotes the left and right translation by g respectively.

We turn to construction of the symplectic groupoid. From the construction of

Iwasawa decomposition of Lie algebra above, one gets the Iwasawa decomposition of

Lie group:

G = KAN.

Take G := G as a manifold. Define:

source and target maps: s(g) := k, t(g) := k′,where g = ank = k′a′n′

is the (unique) Iwasawa decomposition;

multiplication: m(g1, g2) := g1(s(g1))−1g2;

inverse: i(g) := k(n′)−1(a′)−1 = n−1a−1k′;

unit: u(k) := k ∈ G ⊃ K.

Example 2.18. [20] Let G = KAN be the Iwasawa decomposition as above. Let

T ⊂ K be the maximal torus with t = ia. Then the Poisson bi-vector field ΠK on K

is T-invariant. Hence one has a well defined Poisson manifold

(T\K, d℘T(ΠK)),

where ℘T : K → T\K is the natural projection onto coset space. This Poisson

structure is known as the Bruhat Poisson structure.

Define the left action of T on K×N by

g · (k, n) := (gk, gng−1), ∀(k, n) ∈ K×N, g ∈ T.
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It is easy to see that the projection onto

T\(K×N)

is a submersion. Define the groupoid operations on G := T\(K×N) ⇒ T\K:

source and target maps: s(T(k, n)) = Tk, t(T(k, n)) := Tk
′,

where nk = k′a′n′ is the (unique) Iwasawa decomposition;

multiplication: m(T(k1, n1),T(k2, n2)) := T(k2, n1n2),

provided one has Iwasawa decomposition n2k2 = k1a
′n′;

inverse: i(T(k, n)) := T(k′, n−1),

where nk = k′a′n′ is the (unique) Iwasawa decomposition;

unit: u(Tk) := T(k, e), e ∈ N.

2.2. Uniformly supported pseudo-differential calculus on a Lie groupoid.

In this section, we review the standard theory of pseudo-differential calculus devel-

oped by Nistor, Weinstein and Xu [29]. We refer to Appendix A.2 for notations on

pseudo-differential operators (on ordinary manifolds).

Definition 2.19. A pseudo-differential operator Ψ on a groupoid G of order ≤ m is

a smooth family of pseudo-differential operators {Ψx}x∈M, where Ψx ∈ Ψm(Gx), and

satisfies the right invariance property

Ψs(a)(R
∗
af) = R∗gΨt(a)(f), ∀a ∈ G, f ∈ C∞c (Gs(a)).

If, in addition, all Ψx are classical of order m, then we say that Ψ is classical of order

m.

Definition 2.20. For a pseudo-differential operator Ψ = {Ψx} on G. The support

of Ψ is defined to be

Supp(Ψ) =
⋃
x∈M

Supp(Ψx).

The operator Ψ is called properly supported if the set

(K× G)
⋂

Supp(Ψ)

is compact for every compact subset K ⊆ G; The operator Ψ is called uniformly

supported if the set

{ab−1 : (a, b) ∈ Supp(Ψ)}
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is a compact subset of G.

We denote the space of uniformly supported pseudo-differential operators (resp.

classical pseudo-differential operators) on G, of order≤ m, by Ψm
µ (G) (resp. Ψ[m]

µ (G)).

The way to define the total symbol for Ψ ∈ Ψ∞(G) is similar to that of an ordinary

pseudo-differential operator. Fix an A-connection ∇ (say, ∇XY := ∇Aν(X)Y for some

usual connection ∇A). Then there is a neighborhood of the zero section Ω ⊂ A such

that the exponential map exp∇ : Ω → G is a diffeomorphism onto its image. Fix a

smooth function χ(g) supported on the image of exp∇ and equal to 1 on a smaller

neighborhood of M. Define Θ(g, h) := χ(g) exp−1
∇ (g).

Definition 2.21. [29, Equation (16)] Given Ψ ∈ Ψ∞(G). Define σ ∈ C∞(A∗) by

σ(ζ) := Ψx(ei〈ζ,Θ(·)〉χ(·))(x), ∀x ∈ M ⊂ G, ζ ∈ A∗x.

The function σ is called the total symbol of Ψ with respect to (∇, χ).

As in the case of manifolds, if there exist homogeneous symbols σm, σm−1, · · · , of

orders m,m− 1, · · · respectively, such that

σ −
N−1∑
l=0

σm−l ∈ Sm−N (M)

for N = 1, 2, · · · , then we say that Ψ is a classical pseudo-differential operator on G.

In this case, we define the principal symbol of Ψ as

σtop(Ψ) := σm.

As in the case of manifolds, we denote the space of uniformly supported classical

pseudo-differential operator of order m by Ψ[m]
µ (G).

Definition 2.22. A classical pseudo-differential operator Ψ ∈ Ψ[m]
µ (G) is said to be

elliptic if

σtop(Ψ)(X) 6= 0

for any X 6= 0 ∈ A∗.

A pseudo-differential operator Ψ ∈ Ψ∞(G) acts on C∞(G) by

Ψ(u)(a) := Ψs(a)(u|s−1(s(a))).

It is easy to see that the composition Φ ◦ Ψ is well defined as long as either Φ or Ψ

is uniformly supported. Furthermore, the composition respects the grading:
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Lemma 2.23. Let Ψ ∈ Ψ[m](G), Φ ∈ Ψ[m′](G) be such that either Ψ or Φ is properly

supported. Then Φ ◦ Ψ ∈ Ψ[m+m′](G).

2.2.1. Example: Dirac operators on a groupoid. In this section, we briefly

describe the Dirac type operators on a groupoid G [18, Section 6].

We begin with recalling the notion of Clifford algebra, following [7, Chapter 3].

Let V be a finite dimensional vector space over R or C. Let B(·, ·) be a symmetric

bi-linear form on V. Then the Clifford algebra of (V, B), denoted by Cl(V, B), is the

algebra generated by V with the relation

vw + wv = −2B(v, w).

The algebra Cl(V, B) is Z2-graded by

Cl(V, B) = span{1, vi1 · · · vi2j : j = 1, 2 · · · } ⊕ span{vi1 · · · vi2j+1 : j = 0, 1, 2 · · · },

where {vi} is any basis of V.

A Clifford module of Cl(V) is a Z2-graded vector space E = E+ ⊕ E− such that

the Clifford action γ : Cl(V)→ End(E) satisfies

γ(Cl+(V))E± ⊆ E±

γ(Cl−(V))E± ⊆ E∓.

Example 2.24. Let B be an inner product on V. Then ∧•V = (
⊕

i=0 ∧2iV) ⊕
(
⊕

i=0 ∧2i+1V) is a natural Cl(V, B) module, with action defined by:

γ∧(v)ω := v ∧ ω − ιB(v,·)ω, ∀v ∈ V, ω ∈ ∧•V,

where ι denotes the contraction. It is easy to verify that such an action of V extends

to Cl(V).

Example 2.24 also provides a canonical bijective map between Cl(V) and ∧•V as

vector spaces, namely,

(3) v 7→ γ∧(v)1, v ∈ Cl(V),

where 1 is the identity in the exterior algebra ∧•V. It is easy to see that the Z2

splitting of ∧•V into even and odd orders gives a Z2 grading of the Clifford algebra

Cl(V).
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Example 2.25. Let V be an even dimensional vector space with inner product B.

Let e1, e2, · · · , e2n be an orthonormal basis of V. Define

P := Span{e2i−1 + ie2i : i = 1, · · · , n} ⊂ V ⊗ C.

Then P⊕ P̄ = V ⊗ C. Define the action of V ⊗ C on S := ∧•P by

(4) γS(v)ω :=

 v ∧ ω, ∀v ∈ P

ιB(v,·)ω, ∀v ∈ P̄.

The Clifford module S is known as the spin representation of the Clifford algebra

Cl(V).

Here, we list some basic facts about Clifford modules. See [7, Chapter 3] for

details.

Lemma 2.26. Let V be an even dimensional vector space over R.

(1) The complexified Clifford algebra Cl(V) ⊗ C is isomorphic to the matrix al-

gebra End(S), where S is the spinor module;

(2) The spinor module S is the only irreducible representation of Cl(V);

(3) For any Clifford module E, End(E) ∼= Cl(V) ⊗ HomCl(V)(Cl(V),E), with

isomorphism given by v ⊗ T 7→ T (v).

We turn to consider bundles of Clifford modules. Let G ⇒ M be a groupoid. Let

A → M be the Lie algebroid of G, equipped with a metric gA. Abusing notation we

also use gA to denote the inner product on A′. Then we define the Clifford bundle,

to be the vector bundle

Cl(A′) :=
⋃
x∈M

Cl(A′x, gA(x)).

Note that Cl(A′) is also Z2-graded and we write

Cl(A′) := Cl(A′)+ ⊕ Cl(A′)−.

Analogous to the case of Clifford algebras, we define:

Definition 2.27. A (bundle of) Clifford module is a Z2-graded Hermitian vector

bundle E = E+ ⊕ E− over M, with an action map γ ∈ Γ∞(A⊗ E⊗ E′), such that

(1) For any ξ ∈ A′ ⊂ Cl(A′), γ(ξ) : E→ E is skew-symmetric;

(2) Each Ex, x ∈ M is a Cl(A′x)-module.
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A Hermitian A-connection ∇E is called Clifford if for any X ∈ Γ∞(A), ξ ∈
Γ∞(A′), u ∈ Γ∞(E),

∇E
X(γ(ξ)u) = γ(ξ)∇E

Xu+ γ(∇gAX ξ)u,

where∇gA is the Levi-Civita connection. It can be shown that CliffordA-connections

always exist (see [18, Section 6]).

Consider the pullback bundle t−1E. Any A-connection ∇E on E uniquely deter-

mines a right-invariant family of connections, still denoted by ∇E for simplicity, on

the s-fibers of G by requiring that

∇E
X̃

(t−1u) = t−1(∇E
Xu),

for any right-invariant vector field X̃ with X̃|M = X, and u ∈ Γ∞(E). Furthermore,

if E is a Cl(A)-module, then t−1E|Gx is a Cl(T ∗Gx)-module for each x ∈ M, and ∇E

is a Clifford connection in the usual sense.

The curvature of any even rank Clifford A-connection ∇E decomposes under the

isomorphism End(E) ∼= Cl(A′)⊗ EndEnd Cl(A′)(E) as

γ(R) + FE/S,

where R is the Riemannian curvature of A, considered as a section in Γ∞(∧2A′ ⊗
Cl(A)) with γ acting on the Cl(A) factor, and FE/S ∈ Γ∞(∧2A′ ⊗ EndCl(A′)(E)) is

known as the twisting curvature.

Definition 2.28. A (groupoid) Dirac operator is a differential operator from t−1E

to itself of the form

ð = (t−1γ) ◦ ∇E,

where ∇E is a right-invariant, Clifford connection on the s-fibers of G; A perturbed

Dirac operator is an operator of the form

ð + Ψ ∈ Ψ1
µ(G,E),

where ð is a Dirac operator, and Ψ is an odd degree operator in Ψ−∞µ (G,E) satisfying

Ψ(a−1) = (Ψ(a))∗, ∀a ∈ G.

It is easy to see that all Dirac operators are symmetric, hence essentially self

adjoint. From our definition, it is also clear that any perturbed Dirac operators are

also essentially self-adjoint.
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2.2.2. The reduced kernel and convolution product. Let G ⇒ M be a groupoid

with compact set of units M. Recall that we fixed a fiberwise metric gA on the

Lie algebroid A and extended it to a Riemannian metric on each s-fiber by right

translation. Hence, one has a family of Riemannian volume densities µx on s−1(x).

We shall also regard µ ∈ Γ∞(| ∧top Ker(ds)|).

Definition 2.29. For any pair of functions f, g ∈ C∞(G), such that f(b)g(ab−1) ∈
L1(Gs(a), µs(a)), ∀a ∈ G, the convolution product f ◦ g is defined to be

f ◦ g(a) :=
∫
b∈Gs(a)

f(ab−1)g(b) µs(a)(b).

In particular, the convolution product is well defined for any pair f, g ∈ C∞c (G),

and f ◦ g ∈ C∞c (G). The resulting algebra (C∞c (G), ◦) is known as the convolution

algebra of G.

The convolution product can also be defined for sections of vector bundles. Let

E,F be vector bundles over M, f ∈ Γ∞(t−1E⊗ s−1E′), g ∈ Γ∞(t−1E⊗ s−1F). Since

one has natural identifications

(t−1E⊗ s−1E′)ab−1
∼= s−1Et(a) ⊗ t−1E′t(b), and (t−1E⊗ s−1F)b ∼= Et(b) ⊗ Fs(b),

the point-wise multiplication

f(ab−1)g(b) ∈ (t−1E⊗ s−1F)a

is well defined for each a ∈ G, b ∈ Gs(a), using the pairing between E′t(b) and Et(b).

Hence the convolution product can be defined as:

Definition 2.30. For any f ∈ Γ∞(t−1E⊗ s−1E′), g ∈ Γ∞(t−1E⊗ s−1F), such that

f(b)g(ab−1) is a L1(Gs(a), µs(a)) section with values in Et(a)⊗Fs(a) for all a ∈ G, then

the convolution product f ◦ g is defined to be

f ◦ g(a) :=
∫
b∈Gs(a)

f(ab−1)g(b) µs(a)(b) ∈ Γ∞(t−1E⊗ s−1F).

Alternatively, consider the set

G̃ := {(a, b) ∈ G × G : s(a) = s(b)}.
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On G̃ one defines the natural maps

t̃ : G̃ → G, t̃(a, b) := a

s̃ : G̃ → G, s̃(a, b) := b

s(2) : G̃ → M, s(2)(a, b) := s(a) = s(b)

π : G̃ → G, π(a, b) = ab−1.

Note that G̃ is just the fibered product groupoid of G, with source and target maps

s̃, t̃. Using the relations

t ◦ m̃ = t ◦ t̃, s ◦ m̃ = t ◦ s̃, and s ◦ t̃ = s(2) = s ◦ s̃,

one naturally identifies the bundles (over G̃):

m̃−1(t−1E⊗ s−1E′) ∼= t̃−1(t−1E)⊗ s̃−1(t−1E′)

s̃−1 ⊗ (t−1E⊗ s−1F) ∼= s̃−1(t−1E)⊗ t̃−1(s−1F).

Hence, one can rewrite Definition 2.30 using the language of Appendix A.1 as

(5) f ◦ g(a) =
∫

(b′,b)∈t̃−1(a)

(
m̃−1f(b′, b)

)(
s̃−1g(b′, b)

)
µ̃(b′, b),

where µ̃ ∈ Γ∞(| ∧top ker(ds̃)|) is defined by µ̃ = µ at s̃−1(b′) ∼= s−1(s(b)), regarded

as a family of measures (densities) on the fibers.

Definition 2.31. For any Ψ = {Ψx}x∈M ∈ Ψ∞(G). The reduced kernel of Ψ is

defined to be the distribution

KΨ (f) :=
∫

M
u∗(Ψ(i∗f))(x) µM(x), f ∈ C∞c (G),

where i and u denote respectively the inversion and unit inclusion.

Observe that, if Ψ ∈ Ψ−∞(G), then KΨ ∈ C∞(G), i.e., there exists κ ∈ C∞(G)

such that

KΨ (f) =
∫
x∈M

(∫
b∈Gx

κ(b)f(b−1) i∗µs(b)

)
µM, ∀f ∈ C∞c (G),

and one can recover Ψ by the formula:

Ψ(f)(a) =
∫
Gs(a)

κ(ab−1)f(b) µs(a)(b).

Remark 2.32. In [29], the authors defined the reduced kernel canonically using 1-

densities.
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One particularly important property of the reduced kernel of a pseudo-differential

operator on a groupoid is the following:

Lemma 2.33. [29, Corollary 1] For any Ψ ∈ Ψ∞(G), the reduced kernel is co-normal

at M and smooth elsewhere.

2.2.3. Some representations of Ψ∞(G). In this section, we recall some homomor-

phisms from Ψ∞µ (G) to other spaces of operators. The materials in this section can

be found in [18]. Let G ⇒ M be an s-connected Lie groupoid. Let A be the Lie

algebroid of G.

Definition 2.34. Given any Ψ ∈ Ψ−n−1
µ (G), define the 1-norm of Ψ by (see [18,

Equation (16)])

(6) ‖Ψ‖1 := sup
x∈M

{∫
Gx
|κ(a)|dµx(a),

∫
Gx
|κ(a−1)|dµx(a)

}
,

where κ(a) is the reduced kernel of Ψ . Note that κ is continuous because Ψ ∈
Ψ−n−1
µ (G).

Next, we define the full norm of any Ψ ∈ Ψ0
µ(G) by

(7) ‖Ψ‖ := sup
ρ
‖ρ(Ψ)‖H,

where ‖·‖H is just the operator norm, and the supremum ranges through all bounded

representation ρ of Ψ0
µ(G) on H satisfying

‖ρ(Ψ)‖H ≤ ‖Ψ‖1, ∀Ψ ∈ Ψ0
µ(G).

We denote the closure of Ψ0
µ(G) under ‖ · ‖ by

U(G),

and the closure of Ψ−∞µ (G) under ‖ · ‖ by

C∗(G) ⊂ U(G).

Another important homomorphism is the so called vector representation, which

defines the class of (leafwise)-differential operators on a manifold that we are inter-

ested in:

Definition 2.35. The vector representation is the homomorphism defined by ν :

Ψ∞ν (G)→ End(C∞(M)),

(ν(Ψ)u)(x) := Ψx(t−1u)(x).
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Remark 2.36. Equivalently, one can define (ν(Ψ))u to be the (unique) function on

M satisfying (ν(Ψ))u ◦ t = Ψ(u ◦ t)

Remark 2.37. Observe that if X ∈ Γ∞(A) is regarded as a differential operator on G,

then the vector representation of X is just ν(X), the image of X under the anchor

map (regarded as a differential operator on M), so there is no confusion using the

same notation for both.



3. Elliptic and Fredholm operators

Using the same arguments as in the construction of parametrices of elliptic pseudo-

differential operators on a manifold, one has:

Lemma 3.1. Let Ψ ∈ Ψ[m]
µ (G) be elliptic. Then there exists an operator Q ∈

Ψ[−m]
µ (G), known as the parametrix of Ψ , such that

(8) R1 = Ψ ◦Q− id and R2 = Q ◦ Ψ − id

are elements in Ψ−∞µ (G).

If G is the pair groupoid over a compact manifold, then all elements in Ψ−∞(G)

are compact. It follows from Equation (8) that all elliptic operators are Fredholm.

Unfortunately, in general, elements in Ψ−∞µ (G) are not compact operators. In the

following section we review a Fredholmness criterion given by Lauter and Nistor [18].

Here, we first recall the notion of an invariant sub-manifold.

Definition 3.2. Let G ⇒ M be a groupoid. A proper sub-manifold Z ⊂ M is

called an invariant sub-manifold if s−1(Z) = t−1(Z). For an invariant sub-manifold,

we denote GZ := s−1(Z). It is clear that GZ is a groupoid over Z by restricting the

groupoid structure on G. Also, for any Ψ = {Ψx}x∈M ∈ Ψ∞(G), define the restriction

of Ψ to be the operator

Ψ |Z := {Ψx}x∈Z ∈ Ψ∞(GZ).

3.1. Lauter and Nistor’s Fredholmness criterion. Let G ⇒ M be a groupoid

with compact units M. Assume that the anchor map ν : A → TM is an isomorphism

when restricted to some open dense subset M0 ⊆ M. Then one can also define the

metric

gM0(X,Y ) := gA(ν−1X, ν−1Y ), ∀X,Y ∈ TxM0, x ∈ M0.

By definition, it is clear that t|Gx : Gx → M0 is a local isometry.

Following [18], we shall make the following assumptions:

Definition 3.3. An s-connected groupoid G ⇒ M is said to be a Lauter-Nistor

groupoid if

(1) The unit set M is compact;

(2) The anchor map ν : A → TM is bijective over an open dense subset M0 ⊆ M;
19
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(3) The Riemannian manifold (M0, gM0) has positive injectivity radius and has

finitely many connected components M0 =
∐
α Mα;

(4) As a groupoid, GM0
∼=
∐
α Mα ×Mα, the pair groupoid.

Note that condition (2) implies the Lie algebroid is integrable, using the following

result from Debord [10].

Theorem 3.4. Let A be a Lie algebroid over M, with anchor map ν : A → TM.

Suppose that there exists an open dense subset U ⊂ M such that ν is injective on

A|U . Then A is integrable.

Indeed, we shall mainly be studying examples where the groupoid is explicitly

given.

The following lemma is useful for verifying assumption (4).

Lemma 3.5. If all connected components of M0 are simply connected, then GM0
∼=∐

α Mα ×Mα.

Proof. Observe that, for each x ∈ M0, Gx is a covering of Fx, the connected compo-

nent in M0 containing x. If all connected components of M0 are simply connected,

then Gx ∼= Fx for all x ∈ M0. It follows from Proposition 2.13 that the isotropy

subgroups Gxx are trivial for all x ∈ M0. Hence the assertion. �

Since the Riemannian curvature is a local object, it follows that (M0, gM0) is a

manifold with bounded geometry. Also, it is easy to see that for any vector bundle

E→ M, the restriction E|M0 → M0 is a vector bundle of bounded geometry. Hence

one can consider the Sobolev spaces Wl(M0,E) for any l ∈ R.

Let Ψ = {Ψx} ∈ Ψ[m]
µ (G,E). For any x ∈ M0, assumption (4) enables one to

identify

Gx ∼= Mα,

where Mα is the connected component of M0 containing x. Hence one identifies

Γ∞(Mα,E) ∼= Γ∞(Gx, s−1E). Under such identification, one has

(9) ν(Ψ)(f)|Mα = Ψx(f |Mα),

for any f ∈ Γ∞(M,E). Since Ψx is a pseudo-differential operator of order ≤ m,

Equation (9) enables one to extend the vector representation ν(Ψ) to a bounded

map

νl(Ψ) : Wl(M0,E)→Wl−m(M0,E),
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for any l ≥ m. In particular, if Ψ ∈ Ψ−∞µ (G,E), then ν0(Ψ) is just the smoothing

map

(10) ν0(Ψ)f(x) =
∫
y∈Mα

ψ|GM0
(x, y)f(y)µM0(y), f ∈ L2(M,E),

where ψ ∈ Γ∞c (G, t−1E ⊗ s−1E′) is the reduced kernel of Ψ , and we have used the

identification GM0
∼=
∐
α Mα ×Mα.

Recall that we defined U(G) and C∗(G) to be the closure of Ψ0
µ(G) and Ψ−∞µ (G)

under the full norm ‖ · ‖ respectively. We shall denote J := C∗(GM0) (the closure of

pseudo-differential operators of order −∞ on the groupoid over M0). The importance

of J lies in

Lemma 3.6. For any Ψ ∈ J, the vector representation ν(Ψ) is a compact operator

on L2(M0).

Proof. If Ψ ∈ Ψ−∞µ (GM0), then Equation (10) says that ν(Ψ) is just a properly

supported, smoothing operator on M0, which is well known to be compact. The

assertion follows by taking limits. �

One remarkable fact about these spaces is the following lemma:

Lemma 3.7. [17, Lemma 2] One has short exact sequences

0→ C∗(GM0) = J→ C∗(G)→ C∗(GM\M0
)→ 0

0→ U(GM0)→ U(G)→ U(GM\M0
)→ 0.

Another useful fact about Lauter-Nistor groupoids is that their vector represen-

tation is faithful. In other words:

Lemma 3.8. [28] The map ν : Ψ∞µ (G,E)→ End(Γ∞c (t−1E)) is injective.

Proof. Let Ψ = {Ψx}x∈M ∈ Ψ∞µ (G,E) be such that ν(Ψ) = 0. First consider Ψx for

arbitrary x ∈ M0. For any u ∈ Γ∞c (t−1E|Gx), let ũ ∈ Γ∞c (E) be the extension of u

by 0. Then

Ψx(u) = ν(Ψ)(ũ)|M0 = 0.

Therefore Ψx = 0 for any x ∈ M0. Now consider x ∈ M \ M0. For any u ∈
Γ∞c (t−1E|Gx), let û ∈ Γ∞c (t−1E) be any extension of u. Then one has

Ψ(û) = 0
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on GM0 , because Ψx = 0 for any x ∈ M0. Since Ψ(û) is continuous and GM0 is dense

in G, it follows that Ψx(û) = 0 everywhere, hence Ψ = 0. �

In the following theorem, let A be any fixed elliptic (pseudo)-differential operator

of order k > 0. (One can take A to be, say, a Laplacian operator in Definition 4.1).

Then (id +A∗A)−
1
2k is well defined by functional calculus. Moreover, by [18, Theorem

4] and its corollaries, ν
(
(id +A∗A)

m
2k

)
: Wm(M0,E)→W0(M0,E) is bounded for all

m. With these preliminaries, the main result of Lauter and Nistor can be stated as:

Theorem 3.9. [18, Theorem 7] For any Ψ ∈ Ψ0(G), or Ψ ∈ Ψ[m](G) elliptic self-

adjoint, the spectrum and essential spectrum of ν(Ψ) satisfy

(11) σ(ν(Ψ)) ⊆ σU(G)(Ψ) and σe(ν(Ψ)) ⊆ σU/J(Ψ).

In particular, for any Ψ ∈ Ψ[m]
µ (G) such that Ψ(id +A∗A)−

m
2k is invertible in then

U(G)/J, ν(Ψ) extends to a Fredholm operator from Wm(M0,E) to L2(M0,E); if

Ψ(id +A∗A)−
m
2k ∈ J, then ν(Ψ) : L2(M0,E)→ L2(M0,E) is compact.

Proof. By definition, for each λ ∈ C \ σU(G)/J, there exists Q ∈ U(G) such that

(Ψ − λ)Q− idU(G), Q(Ψ − λ)− idU(G) ∈ J.

Since ν maps J to compact operators, it follows that ν(Ψ) is Fredholm, hence λ ∈
C \ σe(ν(Ψ)). The second inclusion follows by contra-positivity. The first inclusion

is similar (with J replaced by {0}).
To prove that ν(Ψ) is Fredholm (resp. compact) from the hypothesis, observe

that ν(Ψ) = ν(Ψ(id +A∗A)−
m
2k )ν((id +A∗A)

m
2k ), and use the well known fact that the

composition between a Fredholm (resp. compact) operator and a bounded invertible

operator is Fredholm (resp. compact). �

Using the injectivity of the vector representation, and the fact that injective homo-

morphisms of C∗-algebra preserve the spectrum [6, p.12], the inclusion in Equation

(11) can be sharpen to an equality. In particular:

Theorem 3.10. [18, Theorem 8] Suppose the groupoid G is Hausdorff. Then, for

any Ψ ∈ Ψ0(G), or Ψ ∈ Ψ[m](G) elliptic self-adjoint, the spectrum and essential

spectrum of ν(Ψ) satisfy

(12) σ(ν(Ψ)) = σU(G)(Ψ) and σe(ν(Ψ)) = σU/J(Ψ).
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Suppose that M\M0 is a disjoint union of closed immersed invariant sub-manifolds

M\M0 =
k⋃
j=1

Zk.

Then the hypothesis of Theorem 3.9 can be made more explicit by

Theorem 3.11. [18, Theorem 10] For any Ψ ∈ U(G), the spectrum Ψ + J in U(G)/J

can be written as a union

σU(G)/J(Ψ + J) = σS(A∗)(σtop(Ψ))
⋃ k⋃

j=1

σU(GZj )(Ψ |Zj ),

where σtop(Ψ) is the principal symbol of Ψ .

Proof. It suffices to prove that the homomorphism

Ψ + J 7→ σtop(Ψ)⊕ Ψ |Z1 ⊕ · · · ⊕ Ψ |Zj

is injective. That is true because σtop(Ψ) = 0 implies Ψ ∈ C∗(G), and the first exact

sequence of Lemma 3.7 implies Ψ ∈ J. �

Combining Theorem 3.9 and Theorem 3.11, we get

Corollary 3.12. [18, Theorem 10] Given an elliptic operator Ψ ∈ Ψ[m]
µ (G),m ≥ 0.

Suppose for all invariant sub-manifolds Zj, there exist Φj ∈ Ψ−m(GZj ,E|Zj )
⋂

U(GZj )

such that

(Ψ |Zj )Φj = Φj(Ψ |Zj ) = id,

then ν(Ψ) is Fredholm.

3.2. Application: Fredholm operators on the Bruhat sphere. In this section,

we study the Bruhat sphere CP(1) in greater detail.

3.2.1. The Bruhat sphere and its symplectic groupoid. The Bruhat Poisson

structure is obtained by taking G = SL(2,C),K = SU(2), and AN = set of upper

diagonal matrices in Example 2.18. It is well known that the Bruhat sphere has two

A-leaves: Te and its complement. As we have seen in Example 2.18, the symplectic

groupoid over the Bruhat sphere is T\(SU(2)× N). Here, we describe the groupoid

structure in greater detail.
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Notation 3.13. Let α, β, w ∈ C, |α|2 + |β|2 = 1. Then we write

[α, β]wT :=
((

α β
−β̄ ᾱ

)
, ( 1 w

0 1 )
)

T ∈ G = T\(SU(2)×N).

Also, recall that one can define stereographic coordinates

z = x+ ıy 7→ [z, 1] ∈ CP(1)− [1, 0], x, y ∈ R

ż = ẋ+ ıẏ 7→ [1, ż] ∈ CP(1)− [0, 1], ẋ, ẏ ∈ R.

Then the source submersion s can be trivialized as

x(z, w) :=

[
w̄ − z

(1 + |w̄ − z|2)
1
2

,
1

(1 + |w̄ − z|2)
1
2

]w
T

, z, w ∈ C.

ẋ(ż, ẇ) :=

[
ż ¯̇w − 1

(|ż|2 + |ż ¯̇w − 1|2)
1
2

,
ż

(|ż|2 + |ż ¯̇w − 1|2)
1
2

]ẇ
T

, ż, ẇ ∈ C.

For any k =
(

α β
−β̄ ᾱ

)
∈ K, n = ( 1 w

0 1 ) ∈ N, one has the Iwasawa decomposition

nk = k′a′n′, where

k′ =

(
α′ β′

−β̄′ ᾱ′

)
∈ K, α′ =

α− w̄β
(|β|2 + |α− w̄β|2)

1
2

, β′ =
β

(|β|2 + |α− w̄β|2)
1
2

.

Hence, one can easily write down the source, target and inverse maps

s([α, β]wT) = [α, β](13)

t([α, β]wT) = [α− w̄β, β]

([α, β]wT)−1 =

[
α− w̄β

(|β|2 + |α− w̄β|2)
1
2

,
β

(|β|2 + |α− w̄β|2)
1
2

]−w
T

.

It follows that in the x and ẋ coordinates s(x(z, w)) = [z, 1], s(ẋ(ż, ẇ)) = [1, ż]. The

inverse can also be written down:

([1, 0]wT)−1 = ([1, 0]−wT ), (x(z, w))−1 = x(z + w̄,−w), ∀z, w ∈ C.

Remark 3.14. It is clear that the symplectic groupoid defining the Bruhat Poisson

sphere is a Lauter-Nistor groupoid. Indeed, many Poisson homogeneous spaces con-

structed by Lu (see [20]), with open symplectic leaves, have symplectic groupoids

satisfying the Lauter-Nistor conditions. Finally, note that we shall not use the sym-

plectic structure in this thesis.
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The Poisson bi-vector field can be also be explicitly written down [31]. On the

stereographic coordinate patch excluding Te, one has

Π = (1 + x2 + y2)∂x ∧ ∂y;

On the opposite coordinate patch one has

Π = (ẋ2 + ẏ2)(1 + ẋ2 + ẏ2)∂ẋ ∧ ∂ẏ.

As an illustration, we describe the metric on the open leaf induced by the Poisson

bi-vector field. For simplicity, take the round metric on the sphere

(1 + x2 + y2)−2(dx2 + dy2),

and the dual metric on A = T ∗CP(1):

gA := (1 + x2 + y2)2((∂x)2 + (∂y)2).

Then the metric on the open leaf CP(1)− {Te} is defined by

gA(ν−1∂x, ν
−1∂x) = gA((1 + x2 + y2)−1dy, (1 + x2 + y2)−1dy) = 1

= gA(ν−1∂y, ν
−1∂y),

gA(ν−1∂x, ν
−1∂y) = 0,

where ν(ω) := ιωΠ, ∀ω ∈ T ∗CP(1) is the anchor map

Remark 3.15. Here, we observe that the metric we obtained is just the Euclidean

metric on R2. On the polar coordinates (ṙ, ϑ̇) 7→ ẋ(ṙeiϑ̇), the metric gM0 is just

ṙ−1dṙ2 + dϑ2. A metric of this form is known as ‘scattering metric’ in the edge

calculus literature (see [1]). We shall use this fact later in Section 5. However, it is

important to note that the compactification to the Bruhat sphere is not the same as

the standard compactification to the disk with boundary.

3.2.2. Inverse and the Laplace-Fourier transform. Observe that, over Te, one

has

s−1(Te) = t−1(Te) = N ∼= R2

as a Lie group. Therefore, given any pseudo-differential operator Ψ = {Ψx}x∈CP(2),

it follows that ΨTe is an operator on R2 that is invariant under translation. As we

shall see in this section, the simple structure on Rn enables one to study inverses

through the Laplace-Fourier transform, which in turn gives a simple Fredholmness

criterion.
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Set ∇ be the usual flat, translation invariant connection on Rn, χ = 1 on Rn×Rn.

One can regard Rn as a groupoid over a one point space. Recall, from Definition

2.21, the total symbol of any properly supported ΨTe ∈ Ψ∞% (Rn) is defined by

(14) σ(ζ) := (ΨTe)p(e
−i〈p,ζ〉).

By virtue of Lemma A.15, one has

ΨTe(f)(p) =
∫
ζ∈Rn

σ(ζ)ei〈p,ζ〉f̂(ζ) dζ.

It would be useful to consider Ψ as convolution with a distribution. Define

ψ(f) := ΨTe(f(−p))(0) =
∫
ζ∈Rn

σ(ζ)
∫
q∈Rn

ei〈q,ζ〉f(q) dqdζ,

so that one has

ΨTe(f)(p) = ψq(f(p− q)).

Note that ψ is just the reduced kernel in Definition 2.31, regarding Rn as a groupoid

over a point.

Assume that one has the estimate

C(1 + |ζ|)m ≥ |σ(ζ)| ≥ C ′(1 + |ζ|)m > 0

for some constants C,C ′ > 0 (which implies that Ψ is elliptic of order m). It is

straightforward to check that (σ(ζ))−1 is also a symbol. Since the symbol map is a

homomorphism, it follows that the inverse of Ψ is given by

(15) Ψ−1
Te

(f)(p) =
∫
ζ∈Rn

(σ(ζ))−1ei〈q,ζ〉f̂(ζ) dζ.

Next, we describe the kernel of Ψ−1 in greater detail. Note that Equation (14) is

still valid for ζ ∈ Cn. Such extension is known as the Laplace-Fourier transform and

shall be denoted by σ̃(ζ) or F(f) if f ∈ C∞c (Rn). Indeed, one has

Lemma 3.16. For any properly supported, invariant pseudo-differential operator Ψ

on Rn, the Laplace-Fourier transform σ̃(ζ) is a holomorphic function on Cn.

In the case when Ψ is a differential operator, it was shown in [32, Chapter 4.2] that

the reduced kernel of Ψ−1 decays exponentially, depending on the zeros of σ̃(ζ), i.e.,

the poles of σ̃(ζ)−1. Here, we prove a similar result for general pseudo-differential

operators.
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Proposition 3.17. Let H be a holomorphic function on the strip

Sθ := {(ζ1, · · · ζn) ∈ Cn : | im(ζi)| < θ, ∀i},

and satisfies the estimate

(16) |∂IH(ζ)| ≤ CI(1 + |ζ|)m−|I|, ζ ∈ Sθ,

for each multi-index I and some CI > 0, m ∈ R. Let κ be the distribution

κ(f) :=
∫
ζ∈Rn

H(ζ)f̂(ζ) dζ, f ∈ C∞c (Rn).

Then κ is C∞ on Rn\{0}. Furthermore, for any 0 < ε < θ, one has

κ|R\{0} = e−ε|p|F, ∀|p| > 1

for some smooth function function F with bounded derivatives.

Proof. First of all, since ς(ζ), ζ ∈ Rn is a symbol, it is well known that κ is C∞ on

Rn\{0}, and for any natural number N and multi-index I, there exists CI,N > 0

such that

(17) |∂Iκ(p)| ≤ CI,N (1 + |p|)N , ∀ζ ∈ Rn, |p| ≥ 1.

By the well known Paley-Weiner theorem, F(f) is holomorphic on C for any f ∈
C∞c (Rn), and for any natural number N , there exists constants CN such that

|F(u)(ζ)| ≤ CN (1 + |ζ|)−N

for any ζ ∈ Sθ. Using Equation (16) in the hypothesis, the integrand

H(i(ε, ε, · · · , ε) + ζ)× F(f)(i(ε, ε, · · · , ε) + ζ), ζ ∈ Rn

lies in L1(Rn) for any 0 < ε < θ. Therefore we can use Fubini’s theorem to compute

the integral∫
ζ∈Rn

H(ζ)F(f) dζ =
∫
· · ·
∫ (∫

H(ζ)F(f)(ζ)dζ1

)
dζ2 · · · dζn.

We then use the Cauchy integral formula to shift the contour of ζ1-integration to

ξ1 + iε, ξ1 ∈ (−∞,∞).
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The integral becomes∫
· · ·
∫ (∫

H(ξ1 + ir, ζ2, · · · , ζn)
∫
e−i〈(iε+ζ1,ζ2,···ζn),q〉f(q) dqdξ1

)
dζ2 · · · dζn

=
∫
· · ·
∫ (∫

H(ξ1 + iε, ζ2, · · · , ζn)
∫
e−i〈(ξ1,ζ2··· ,ζn,q〉(eεq1f(q))dqdζ2

)
dζ3 · · · dζndξ1

= · · · =
∫

H(ξ1 + iε, ξ2 + iε, · · · , ξn + iε)
∫
e−i〈(ξ1,ξ2,···ξn),q〉eε(q1+···+qn)f(q) dqdξ

by using Fubini’s theorem and Cauchy integral formula repeatedly.

Define the distribution

κ̃ε(g) :=
∫

H(ξ1 + iε, ξ2 + iε, · · · , ξn + iε)
∫
e−i〈(ξ1,ξ2,···ξn),q〉g(q) dqdξ.

Since H(ξ1 + iε, ξ2 + iε, · · · , ξn + iε) is a symbol for ξ ∈ Rn by assumption, using

Equation (17) again, one conclude that κ̃ε is C∞ on Rn\{0}, and for any natural

number N and multi-index I, there exists CI,N > 0 such that

|∂I κ̃ε(p)| ≤ CI,N (1 + |p|)N , ∀ζ ∈ Rn, |p| ≥ 1.

Furthermore, by uniqueness of kernel, it follows that

κ(p) = eε(p1+···+pn)κ̃ε(p)

on Rn\{0}. Since p1+· · ·+pn−(−|p|) is bounded above on the subset {p1, p2, · · · pn <
1}, one can write

κ = e−ε|p|F̃

for some smooth function F̃ satisfying Equation (17) on the subset

{|p| > 1}
⋂
{p1, p2, · · · , pn < 1}.

Repeating the arguments by considering the contours

(ξ1 ± iε, ξ ±2 iε, · · · , ξn ± iε),

one gets a similar estimate on each quadrant. The assertion follows by combining

these estimates. �

Remark that the assumption of Proposition 3.17 is very mild. For example, one

has
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Lemma 3.18. Let P be a polynomial of order n, Ptop be its highest order part. Let

f be a compactly supported function on Rn. Suppose that Ptop|Rn is elliptic, and

P + F(f) 6= 0 on Rn. Then P + F(f) 6= 0 on some strip Sθ, θ > 0, and (P + F(f))−1

satisfies the assumption of Proposition 3.17

Also, we recall the following well know fact about the obstruction to existence of

invertible perturbations (see, for example, [8] for an overview of the subject):

Lemma 3.19. For any properly supported, invariant, elliptic pseudo-differential op-

erator ΨTe ∈ Ψ[∞]
% (Rn), there exists K ∈ Ψ−∞% (Rn) such that ΨTe +K is invertible if

and only if the K-theoretic analytic index

indAna(Ψx) ∈ K0(C∞c (Rn), ◦)

vanishes. Here, ◦ denotes the convolution product on C∞c (Rn).

Finally, we end up with:

Theorem 3.20. Let Ψ = {Ψx}x∈CP(2) ∈ Ψ[m]
µ (SU(2)×N/T) be elliptic. Let σ̃(ζ) be

the Laplace-Fourier transform of ΨTe. Suppose σ(ζ) satisfies the estimate

C(1 + |ζ|)m ≥ |σ̃(ζ)| ≥ C ′(1 + |ζ|)m

for some C,C ′ > 0, on some strip ζ ∈ Sθ for some θ > 0. Then Ψ is Fredholm.

Proof. Given any Ψ as in the hypothesis. Let σ̃(ζ) be the Laplace-Fourier transform

of ΨTe. Put ς := σ̃−1. Then ς satisfies the hypothesis of Proposition 3.17. Hence

Ψ−1
Te

has a reduced kernel of the form

ψ = e−ε|p|F (p)

on Rn\{0}, where F (p) ∈ C∞(Rn\{0}) satisfies Equation (17).

We need to prove that Ψ−1
Te
∈ U(GTe). To do so, write ψ := ψµ + ψe, where ψµ

is compactly supported and ψe ∈ C∞(Rn), ψe = 0 on a neighborhood of 0. Let Ψµ
and Ψe be the corresponding pseudo-differential operators. Then Ψµ ∈ Ψ[−m]

µ (GTe).

It remains to consider ψe. Since ψe decays exponentially, it is clear that one can find

a sequence {κj}, j = 1, 2, · · · in C∞c (Rn) such that

‖ψe − κj‖L1(Rn) → 0.
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Let Kj ∈ Ψ−∞µ (GT) be the corresponding invariant pseudo-differential operators.

Then by Definition 2.34,

‖Ψe −Kj‖1 → 0.

It follows from Definition 2.34 of the full norm that Kj → Ψe. Hence Ψe ∈ U(GTe) as

well. The result follows from Lemma 3.12. �

Proposition 3.17 and Theorem 3.20 not only give a criterion for an operator ν(Ψ),

where Ψ ∈ Ψ[∞]
µ (G) to be Fredholm, they also give a more precise description for the

parametrix of ν(Ψ) modulo compact operators.

Theorem 3.21. Let Ψ ∈ Ψ[m]
µ G be an elliptic operator satisfying the hypothesis of

Theorem 3.20. There exists operators Q ∈ Ψ−[m]
µ (G), and S ∈ Γ∞(t−1E ⊗ s−1E′)

(regarded as a reduced kernel in Ψ−∞(G)) of the form

S(a) = e−εd̃(a,s(a))κ̃, a ∈ G,

for some ε > 0, where d̃ is a smooth function on G2 satisfying d̃ − d ≤ 1, and

κ̃ ∈ Γ∞b (t−1E⊗ s−1E) such that

ν(Ψ)ν(Q+ S)− id

is a compact operator.

Proof. By standard arguments one can find Q ∈ Ψ−[m]
µ (G) such that

ΨQ− id = R1, R1 ∈ Ψ−∞µ (G).

On the other hand, Proposition 3.17 implies that one has

(ΨTe)
−1 = Q̃+ e−εd̃(a,s(a))F

for some F ∈ Γ∞(t−1E ⊗ s−1E|G
Te

) with bounded derivatives. Since both QTe, Q̃

are properly supported parametrices of ΨTe, it follows that

(ΨTe)
−1 −QTe = STe

for some STe ∈ Γ∞(t−1E⊗ s−1E|s−1(Te)) of the form

STe(a) = e−εd̃(a,s(a))κ.

Let U ⊂ M be a local trivialization of s around Te, i.e., U × GTe
∼= s−1U. Fix

any function χ ∈ C∞c (U) such that χ = 1 on a smaller neighborhood of Te. Define
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a section S̃(a) ∈ Γ∞(t−1E ⊗ s−1E) as follows: If a ∈ s−1(U), a is identified with a

point (x, p) ∈ U× GTe, and we define

S̃(a) := S(p)χ(x).

Otherwise, we define S̃(a) := 0. By the computations in the proof of Lemma 4.16,

S̃ satisfies the estimate

S̃(a) = e−εd̃(a,s(a))κ̃,

where κ(a) and κ(a−1) are both sections of bounded derivatives. Moreover, it is

obvious that S̃|G
Te)

= STe. It follows that

R̃ := Ψ(Q+ S̃)− id ∈ Φ−∞(G)

satisfies R̃Te = 0. By Corollary 3.27 below, it follows that that ν(R̃) = ν(Ψ)ν(Q +

S̃)− id is a compact operator. �

3.3. Exponentially decaying kernels. Inspired by the results of Proposition 3.17

and Theorem 3.20, we construct the pseudo-differential calculus with bounds, in

parallel with the theory of poly-homogeneous distributions for manifolds with corners

(see [25, Chapter 5]).

First, let G ⇒ M be a Lauter-Nistor groupoid. We say that

Definition 3.22. The groupoid G is of sub-exponential growth if for any ε > 0,∫
a∈s−1(x)

e−εd(x,a)µx(a) ≤ C

for some constant C independent of x ∈ M; it is of polynomial growth if for some

integer N and constant C, ∫
a∈B(x,r)

µx(a) ≤ CrN .

Clearly, polynomial growth implies sub-exponential growth.

Example 3.23. Since each s-fiber of the symplectic groupoid over the Bruhat sphere

is quasi-isometric to the Euclidean space R2, the groupoid T\(SU(2) × N) is of

polynomial growth.

Recall that in Section 2, given a Hausdorff groupoid G, we defined the groupoid

G̃ := {(a, b) ∈ G × G : s(a) = s(b)}. Also recall that for any X ∈ Γ∞(A), X
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determines a right invariant vector field XR ∈ Γ∞(Ker(ds)). Here, we furthermore

define vector fields on G̃ by

XR̃(a, b) :=(XR(a), 0) ∈ TaG × Tb(G) ⊆ T̃G

XL̃(a, b) :=(0, XR(b)),

for any (a, b) ∈ G̃. Similarly, given any vector bundle E → M, and A-connection
A∇E on E, right translation defines a connection ∇̂t−1E on t−1E → Gx, for each

x ∈ M. We shall consider the family of pullback connections ∇̂s̃−1(t−1E)⊗t̃−1(t−1E′)

on s̃−1(t−1E)⊗ t̃−1(t−1E′)→ Gx × Gx ⊆ G̃.

Fix a Riemannian metric gA on A, which in turn determines a metric on each of

Gx. For each (a, b) ∈ G̃, define d(a, b) to be the Riemannian distance on Gs(a) = Gs(b)

between a and b.

Definition 3.24. For each ε > 0, the ε-calculus of order −∞,Ψ−∞ε (G,E), is defined

to be the space of sections ψ ∈ Γ∞(t−1E⊗ s−1E′), regarded as reduced kernels, with

the property that there exists some ε′ > ε such that for all (a, b) ∈ G̃,m = 0, 1, 2 · · · ,

eε
′d(a,b)(∇̂s̃−1(t−1E)⊗t̃−1(t−1E′))k(m̃−1ψ)(a, b) ≤ Ck

for some constants Ck > 0.

For each m ∈ Z, ε > 0, the (classical) ε-calculus of order m is defined to be the

space

Ψ[m]
ε (G,E) := Ψ[m]

µ (G,E) + Ψ−∞ε (G,E).

As in the case of manifolds with boundary [23, 25], we need to compute the

composition rule of the calculus.

Lemma 3.25. For any ε1, ε2 ≥ 0

Ψ−∞ε1 ◦Ψ−∞ε2 ⊆ Ψ−∞min{ε1,ε2}.

Proof. For simplicity we only consider the scalar case. It suffices to consider the

convolution product u1 ◦ u2 for any u1 ∈ Ψ−∞ε1 (G), u2 ∈ Ψ−∞ε2 (G). In view of the

formula

u1 ◦ u2(a) =
∫
b∈Gs(a)

u1(ab−1)u2(b)µs(a)(b) =
∫
c∈s−1(t(a))

u1(c−1)u2(ca)µt(a)(c),

one can without loss of generality assume ε1 ≤ ε2. Then by definition one has the

estimates u1(a) ≤ e−ε
′
1d(a,s(a))C, u2(a) ≤ e−ε

′
2d(a,s(a))C ′ for some ε′1 > ε1, ε

′
2 > ε2.

One may further assume that ε′1 < ε′2.
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The hypothesis implies for any a ∈ G

|u1 ◦ u2(a)| ≤C1

∫
b∈Gs(a)

e−ε
′
1d(a,b)e−ε

′
2d(b,s(b))µs(a)(b)

≤C1

∫
b∈Gs(a)

e−ε
′
1|d(a,s(a))−d(b,s(b))|−ε′2d(b,s(b))µs(a)(b)

=C1

∫
b∈Ba

e−ε
′
1d(a,s(a))e−(ε′2−ε′1)d(b,s(b))µs(a)(b)

+ C1

∫
b6∈Ba

eε
′
1d(a,s(a))e−(ε′2+ε′1)d(b,s(b))µs(a)(b),

where Ba denotes the set {b ∈ Gs(a) : d(b, s(b)) < d(a, s(a))} for each a. Hence for

the first integral, one has∫
b∈Ba

e−ε
′
1d(a,s(a))e−(ε′2−ε′1)d(b,s(b))µs(a)(b)e

−ε′1d(a,s(a))

= e−ε
′
1d(a,s(a))

∫
b∈Ba

e−(ε′2−ε′1)d(b,s(b))µs(a)(b)

≤ e−ε′1d(a,s(a))

∫
b∈Gs(a)

e−(ε′2−ε′1)d(b,s(b))µs(a)(b),

and the last integral is finite and only depends on s(a). As for the second integral,

write

ε′1d(a, s(a))−(ε′2 + ε′1)d(b, s(b))

=− ε′1d(a, s(a)) + 2ε′1(d(a, s(a))− d(b, s(b)))− (ε′2 − ε′1)d(b, s(b)).

Since d(b, s(b)) ≥ d(a, s(a)) for any b 6∈ Ba. It follows that the second integral is

again bounded by

e−ε
′
1d(a,s(a))

∫
b∈Gs(a)

e−(ε′2−ε′1)d(b,s(b))µs(a)(b).

Adding the two together and rearranging, one gets eε
′
1ds(a)(u1 ◦ u2)(a) is a bounded

function, as asserted.

To prove the assertion for derivatives, observe that by right invariance of µ,

m̃∗(u1 ◦ u2)(a, b) =
∫
u1(ac−1)u2(cb−1)µs(a)(c),

for any (a, b) ∈ G̃. It follows that for any X,Y ∈ Γ∞(A),

L
XR̃m̃∗(u1 ◦ u2)(a, b) =

∫
L
XR̃(m̃∗u1)(a, c)(m̃∗u2)(c, b)µs(a)(c)

L
Y L̃m̃

∗(u1 ◦ u2)(a, b) =
∫

(m̃∗u1)(a, c)L
XR̃(m̃∗u2)(c, b)µs(a)(c)
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(here, note that L
XR̃m∗u1(a, c) only differentiates in the a-direction), and so on for

higher derivatives. �

Note that the vector representation ν is well defined on Ψ−∞ε (G,E) because of the

sub-exponential growth assumption.

To apply the results of Section 3.1, we first verify that

Proposition 3.26. For any ε > 0,

Ψ−∞ε ⊆ C∗(G,E),

where C∗(G,E) is defined in Definition 2.34.

Proof. Let {φn} ∈ C∞(R) be a series such that 0 ≤ φn ≤ 1, φn = 1 on [0, n),

and φn = 0 on [n + 1,∞), and define χn(a) := φn(ds(a)) ∈ C∞c (G). Given any

κ ∈ Ψ−∞ε (G,E), Write κ(a) = e−εds(a)u(a), where u(a) is bounded.

Consider κn := χnκ ∈ Γ∞c (G,E) ∼= Ψ∞µ (G,E). For any x ∈ M, n ∈ N, one has∫
a∈s−1(x)

|κ− κn|(a)µx(a) =
∫
a∈Gx\B(M,n)

e−εds(a)(1− χn)|u|(a)µx(a)

≤ e−
εn
2

∫
a∈Gx\B(M,n)

e−
ε
2
ds(a)(1− χn)|u|(a)µx(a),

where B(M, n) := {a ∈ G : d(a, s(a)) < n}. By the sub-exponential growth assump-

tion, the integral is bounded by some constant C, independent of x. It follows that

supx∈M ‖κ−κn‖L1(s−1(x)) → 0 as n→∞. Also, observe that κ(a−1) = e−εds(a)u(a−1)

(since ds(a−1) = ds(a)). Applying exactly the same arguments to κ(a−1) one arrives

at

‖κ− κn‖1 → 0.

Hence κ ∈ C∗(G,E). �

Combining the above Proposition 3.26 with Lemma 3.7, one has:

Corollary 3.27. For any ε > 0, Ψ ∈ Ψ−∞ε (G,E) such that Ψ |Zj = 0, for any

invariant sub-manifolds Zj, then ν0(Ψ) : L2(M0)→ L2(M0) is a compact operator.

As a simple application of the calculus with bound, we can rewrite Theorem 3.21

as
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Corollary 3.28. For any Ψ ∈ Ψ[m]
µ (G,E) satisfying the hypothesis of Theorem 3.21,

there exist Q̃ ∈ Ψ[−m]
ε (G,E) such that

ν(Ψ)Q̃− id ∈ Ψ[−∞]
ε (G,E)

is compact.



4. The heat calculus

4.1. The heat kernel of perturbed Laplacian operators. In this section, we

construct the heat kernel of some second order pseudo-differential operators on a

groupoid G ⇒ M with M compact.

Given a vector bundle E over M, fix an A-connection ∇E on E. Then the pull-back

defines a (family of s-fiberwise) connection on the bundle s−1E → s−1(x), x ∈ M,

which we shall still denote by ∇E. Also, recall that we fixed a metric on A, hence

a Riemannian metric on the fibers s−1(x), x ∈ M, which we shall still denote by gA.

We define the Laplacian by taking the trace of the square of ∇E. More precisely:

Definition 4.1. The Laplacian ∆E ∈ Ψ2
µ(G) is the family of operators {∆E

x}x∈M,

where

∆E
x :=

n∑
i=1

(∇E
Xi∇

E
Xi −∇

E
∇E
Xi
Xi

),

and Xi is any local orthonormal basis of TGx.

Note that ∆E is elliptic, and its principal symbol does not depend on the chosen

connection ∇E.

We consider an operator of the form

(18) ∆E + F +K,

where F ∈ Γ∞(t−1E ⊗ t−1E), considered as a differential operator of order 0; and

K ∈ Ψ−∞µ (G,E). We shall denote the reduced kernel of K by κ.

Since the restriction of t−1E to each s-fiber Gx is a vector bundle with bounded

geometry, we have the Sobolev norms ‖ · ‖∞,l defined by Equation (39). For u ∈
Γ∞(t−1E), we define

‖u‖l := sup
x∈M
{‖u|s−1(x)‖∞,l}.

Denote by t−1E⊗s−1E′n(0,∞) the pullback of t−1E⊗s−1E′ → G by the projection

G × (0,∞)→ G.

Definition 4.2. A (groupoid) Heat kernel of ∆E + F +K is a continuous section

Q ∈ Γ0(t−1E⊗ s−1E′ n (0,∞)),

such thatQ(a, t), Q(a−1, t) are smooth when restricted to all Gx×(0,∞), and satisfies:
36
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(1) The heat equation

(∂t + ∆E + F +K)Q(a, t) = 0.

Here, we use the fact that s−1E′|Gx ∼= Gx × E′x, and let ∆E + F + K to act

on the t−1E factor of Q(a, t)|Gx ∈ Γ∞(t−1E ⊗ s−1E′) ∼= E′x × Γ∞(t−1E) for

each t fixed;

(2) The initial condition

lim
t→0+

Q ◦ u = u, ∀u ∈ Γ∞c (t−1E),

where ◦ denotes the convolution product.

Let Q be a groupoid heat kernel. Then it is clear that for any x ∈ M, (a, b) ∈
Gx×Gx 7→ Q(ab−1, t) is a heat kernel of (∆E+F+K)x on the manifold with bounded

geometry Gx. Using the uniqueness of the heat kernel on manifolds with bounded

geometry, it is clear that:

Lemma 4.3. A groupoid heat kernel Q of ∆E + F +K, if it exists, is unique.

4.1.1. The formal solution. Before we start, we need to define some notation.

Recall that there exists r0 > 0 such that exp∇ is a diffeomorphism from the set

Ar0 := {X ∈ A : gA(X,X) < r2
0}

onto its image. For each x ∈ M, we denote the polar coordinates on Ax, the fiber

of A over x, by (r, ϑ). The image of Ar0 under exp∇ is denoted by B(M, r0). Note

that since

d(exp∇(r, ϑ), x) = r,

therefore B(M, r0) = {a ∈ G : d(a, s(a)) < r0}, as expected. The exponential map

also defines a local trivialization of t−1E: For each a = exp∇X ∈ B(M, r0), E ∈ Es(a)

where X ∈ As(a), define T (a)(E) ∈ t−1Ea to be the parallel transport of E to a

along the curve exp∇ τX, τ ∈ [0, 1]. Hence T is a map from the set {(a,E) : a ∈
B(M, r0), E ∈ Es(a)} to t−1E|B(M,r0), and we denote its inverse map by T−1. When

restricted to t−1E|Gx for some x ∈ M, the image of T−1, lies in Ex. In that case we

shall still denote the restricted map by T−1 : t−1E|Gx⋂B(M,r0) → Ex.

Lastly, we let J := det(d exp∇)◦(exp∇)−1 to be the Jacobian, and V := d(a, s(a))×
d exp∇(∂r) be the radial vector field.
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Consider a kernel of the form

q(a, t)Φ(a, t) ∈ Γ∞(t−1E⊗ s−1E′ n (0,∞)),

where q : B(M, r0)× (0,∞)→ R is the Gaussian function

q(a, t) := (4πt)−
n
2 e−

d(a,s(a))2

4t .

A straightforward calculation shows that:

Lemma 4.4. One has

(∂t + ∆E + F )q(a, t)Φ(a, t) = q(a, t)(∂t + ∆E + F + t−1∇E
V +

LV J

2tJ
)Φ(a, t).

Lemma 4.5. There exists a formal power series

Φ(a, t) =
∞∑
i=1

tiΦi(a), Φi ∈ Γ∞

satisfying the equation

(19) (∂t + ∆E + F + t−1∇E
V +

LV J

2tJ
)Φ(a, t) = 0.

Proof. Equating coefficients one gets

∇E
V (J

1
2 Φ0) = 0

∇E
V (J

1
2 Φi) + iΦi =− (∂t + ∆E + F )Φi−1, i = 1, 2 · · ·

These are simple ordinary differential equations, with explicit solutions

Φ0(expX) =J−
1
2T (expX)

Φi(expX) =− J−
1
2T

∫ 1

0
J

1
2T−1((∂t + ∆E + F )Φi−1(exp τX))τ i−1 dτ.

�

Fix a cutoff function χ supported on B(M, r0) such that χ = 1 on the smaller set

B(M, r02 ) := {a ∈ G : d(a, s(a)) ≤ r0
2 }. Write

GN (a, t) := χ(a)q(a, t)
N∑
i=1

tiΦi(a), t ∈ (0,∞).

Then one has

Lemma 4.6. For any N > n
2 ,
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(1) For any k, l ∈ N, there exists a constant Ck,l such that

‖∂kt ((∂t + ∆E + F )GN )‖l ≤ Ck,ltN−
n
2
−k− l

2 ;

(2) For any t0 > 0, the map

u 7→ GN (·, t) ◦ u, 0 ≤ t ≤ t0

is a uniformly bounded family of operators on Γl(t−1E), and for any u ∈
Γl(t−1E),

lim
t→0+

‖GN ◦ u− u‖l = 0.

Proof. On B(M, r02 ), from the proof of Lemma 4.5, one has

(∂t + ∆E + F )GN (a) = tNq(a, t)ΦN (a)

= (4π)−
n
2 tN−

n
2 e−

d(a,s(a))2

4t ΦN (a).

It is elementary that e−
d(a,s(a))2

4t is bounded for any a, t, and ΦN is smooth and

hence has bounded derivatives. On G\B(M, r02 ) observe that e−
d(a,s(a))

4t and all its

derivatives decay faster than any powers as t → 0. That proves (1) in the case l =

k = 0. Other cases follow from a similar argument, with the additional observation

that

∂te
− y

2

t =− t−1(
y2

t
)e−

y2

t = O(t−1)

∂ye
− y

2

t =− t−
1
2 (
y2

t
)

1
2 e−

y2

t = O(t−
1
2 ).

To prove (2), write for any a ∈ G,

GN ◦ u(a) :=
∫
Gs(a)

GN (ab−1)u(b)µs(a)(b)

=
∫
s−1(t(a))

GN (c−1)u(ca)µt(a)(c) (using the right invariance of µ)

=
∫
t(a)

(4πt)−
n
2 e

d(c−1,t(c))2

4t χ(c−1)
( N∑
i=0

tiΦi(c−1)
)
u(ca)µt(a)(c).

By right invariance and symmetry of the distance function d(·, ·), one has d(c−1, t(c))

= d(c, s(c)). Hence χ(c−1) = χ(c), and e
d(c−1,t(c))2

4t = e
d(c,s(c))2

4t . Therefore the inte-

grand is supported on B(M, r0) and the integral can be computed by a change of



40

variable c = exp∇X,X ∈ At(a), gA(X,X) ≤ r2
0:∫

s−1(t(a))
(4πt)−

n
2 e−

d(c−1,t(c))2

4t χ(c−1)
( N∑
i=0

tiΦi(c−1)
)
u(ca)µt(a)(c)

=
∫
s−1(t(a))

(4πt)−
n
2 e−

d(c,s(c))2

4t χ(c)
( N∑
i=0

tiΦi(c−1)
)
u(ca)µt(a)(c)

=
∫
X∈At(a)

(4πt)−
n
2 e−

gA(X,X)

4t χ(exp∇X)

×
( N∑
i=0

tiΦi((exp∇X)−1)
)
u((exp∇X)a) det(d exp∇)(X) dX.

It is clear that the last expression converges to

χ(exp∇ 0)(
N∑
i=0

tiΦi((exp∇ 0)−1))u((exp∇ 0)a)(det(d exp∇)(0)) = u(a),

since (4πt)−
n
2 e−

gA(X,X)

4t is just the Gaussian heat kernel on the usual Euclidean space.

�

4.1.2. From parametrix to heat kernel. In the last section we constructed an

approximate solution to the heat kernel. In this section we use the method of Levi

parametrix to construct a heat kernel. We turn to operators of the form

∆E + F +K.

For each N > n
2 , define the sections R(k)

n ∈ Γ∞(t−1E⊗ s−1E′[0,∞)):

R
(1)
N := (∂t + ∆E + F +K)GN

R
(k)
N :=

∫ t

0
RN (·, t− τ) ◦R(k−1)

N (·, τ)dτ

=
∫ t

0

∫
s−1(a)

Rn(ab−1, t− τ)R(k−1)
N (b, τ)µs(a)(b)dτ

Q
(0)
N :=GN

Q
(k)
N :=

∫ t

0
GN (·, t− τ) ◦R(k)

N (·, τ)dτ, k ≥ 1.

Then one has the estimates

Lemma 4.7. Let N > n+l
2 . There exists constants C̃l, l ∈ N such that

‖R(k)(·, t)‖l ≤ C̃lC̃k0Mk(1 + tN−
n+l
2 )ktk−1((k − 1)!)−1.
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Proof. Using the same arguments as in the proof of (2) Lemma 4.6, one has KGN =

κ(·)◦GN (·, t)→ κ in the ‖·‖l-norm as t→ 0. Therefore KGN is a continuous section

over G × [0,∞), and its l-partial derivatives extends continuously to t ∈ [0,∞).

Combining with (1) of Lemma 4.6, it follows that the integrand is a continuous

section on G × [0, t], so the integral exists (and is finite).

Combining (1) of Lemma 4.6 and the boundedness of K to obtain for each l,

‖R(1)
N (·, t)‖l = ‖(∂t + ∆E + F +K)GN (·, t)‖l ≤ C̃l(1 + tN−

n+l
2 )

for some C̃l > 0. Expand R(k) as a multiple integral:

R
(k)
N (a, t) =

∫
0≤tk−1≤···≤t1≤t

∫
b1,b2,···bk−1∈s−1(a)

R
(1)
N (ab−1

1 , t− t1)R(1)
N (b1b−1

2 , t1 − t2) · · ·

×R(1)
N (bk−1b

−1
k , tk−2 − tk−1)R(1)

N (bk−1, tk−1)µ(b1) · · ·µ(bk−1).

Next, consider the domain of integration. Since both GN and κ have compact

supports, R(1)
N is compactly supported for each t ≥ 0. In particular, there exists

ρ > 0 such that R(1)
N (c1c

−1
2 , t) = 0 for any c1, c2 ∈ G such that s(c1) = s(c2) and

d(c1, c2) ≥ ρ. Using the bounded geometry property of the s-fibers, we take

M := sup
c∈G

∫
B(a,ρ)

µs(c) <∞.

Then it follows that the volume of the domain of integration is bounded by

∫
b1∈B(a,ρ)

∫
b2∈B(b1,ρ)

· · ·
∫
bk−1∈B(bk−2,ρ)

µs(a)(b1) · · ·µs(a)(bk−1) ≤Mk−1.

By elementary calculation, one also gets

∫
0≤tk≤···≤t1≤t

dt1dt2 · · · dtk−1 = tk−1((k − 1)!)−1.
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Finally, one has for any a ∈ G,

|R(k)
N (a, t)|l ≤

∫
0≤tk−1≤···≤t1≤t

∫
b1,b2,···bk−1∈s−1(a)

|R(1)
N (ab−1

1 , t− t1)|l

×|R(1)
N (b1b−1

2 , t1 − t2)|0 · · · |R(1)
N (bk−1b

−1
k , tk−2 − tk−1)|0

× |R(1)
N (bk−1, tk−1)|0µs(a)(b1) · · ·µs(a)(bk−1)

≤
∫

0≤tk−1≤···≤t1≤t

∫
b1∈B(a,ρ)

∫
b2∈B(b1,ρ)

· · ·
∫
bk−1∈B(bk−2,ρ)

C̃lC̃
k−1
0 (1 + tN−

n+l
2 )kµs(a)(b1) · · ·µs(a)(bk−1)

≤ C̃lC̃k0Mktk−1(1 + tN−
n+l
2 )k((k − 1)!)−1.

The assertion follows by taking supremum over a ∈ G. �

Lemma 4.8. Assume that l > 1, 2N > n+ l.

(1) There exists constants C ′l such that

‖Q(k)
N (·, t)‖l ≤ C ′lC̃k0Mk(1 + tN−

n+l
2 )ktk(k!)−1;

(2) The kernel Q(k)
N (a, t) is continuously differentiable with respect to t and

(∂t + ∆E + F +K)Q(k)
N = R

(k+1)
N +R

(k)
N .

Proof. Define the section

B(a, t, s) := (GN (·, t− s) ◦R(k)
N (·, s))(a), ∀a ∈ G, t ∈ [0,∞), s ∈ [0, t].

Since GN (·, t − s) is C l by our construction, by (2) of Lemma 4.6, one has for any

0 ≤ s ≤ t,

‖b(·, t, s)‖l ≤ C ′
∫ t

0
‖R(k)

N (·, s)‖lds

≤ C ′C̃k0Mk(1 + tN−
n+l
2 )k

∫ t

0
sk−1((k − 1)!)−1ds

≤ C ′C̃k0Mk(1 + tN−
n+l
2 )ktk(k!)−1,
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from which (1) follows. To prove (2), one has

(∂t + ∆E + F +K)(
∫ t

0
B(a, t, s)ds)(a, t)

=B(a, t, t) +
∫ t

0
(∂t + ∆E + F +K)GN (·, t− s) ◦R(k)

N (·, s)ds

=R
(k)
N (a, t) +

∫ t

0
R(0)(·, t− s) ◦R(k)

N (·, s)ds

=R
(k)
N (a, t) +R

(k+1)
N (a, t).

�

Finally, we can construct the heat kernel

Lemma 4.9. For any l, N with 2N > n+ l + 1, the series

∞∑
k=0

(−1)kQ(k)
N (·, t)

converges to a limit Q(·, t) ∈ Γ0(t−1E ⊗ s−1E′ × (0,∞)), independent of N , in the

‖ · ‖l norm. Furthermore,

(1) The section Q is the heat kernel of ∂t + ∆E + F +K;

(2) GN approximates Q in the sense that

‖Q−GN‖l = O(t)

as t→ 0.

Proof. From (1) of Lemma 4.8, one has Q(k)
N < 1

2k
for sufficient large k. Convergence

of the series
∑∞

k=0(−1)kQ(k)
N follows from the comparison test. Assertion (2) follows

from Q−GN =
∑∞

k=1Q
(k)
N , and implies the initial condition of (1), i.e.,

lim
t→0+

‖Q ◦ u− u‖l = 0,

since

‖Q ◦ u− u‖ ≤ ‖(Q−GN ) ◦ u‖l + ‖GN ◦ u− u‖l → 0.
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To show that (∂t+∆E +F +K)Q = 0, observe that ‖(∂t+∆E +F +K)Q(k)
N ‖l ≤ 2−k

for sufficient large k. Therefore one has

(∂t + ∆E + F +K)
∞∑
k=1

(−1)kQ(k)
N =

∞∑
k=1

(−1)k(∂t + ∆E + F +K)Q(k)
N

=R
(1)
N +

∞∑
k=2

(−1)k(R(k)
N +R

(k−1)
N )

= 0.

�

Notation 4.10. We shall denote the heat kernel of the Laplacian ∆E + F +K, as

constructed above, by

e−t(∆
E+F+K) := Q(·, t).

Remark 4.11. Alternatively, let e−t(∆
E+F ) be the heat kernel of ∆E +F constructed

using the same method as above. Then a heat kernel of ∆E + F +K is given by

(20) e−t(∆
E+F+K) = e−t(∆

E+F ) +
∞∑
i=1

tiQ̃(i),

where

Q̃(i) :=
∫

0<τ0<···<τi<1
e−t(∆

E+F )(·, τ0t)◦κ◦e−t(∆
E+F )(·, τ1t)◦κ◦· · ·◦κ◦e−t(∆

E+F )(·, τit),

and the integration is over the Lebesgue measure.

As in the case of manifolds with bounded geometry, the heat kernel of Laplacian

on groupoids satisfies the following ‘off diagonal’ estimate:

Proposition 4.12. Fix ε > 0 such that for any a ∈ G, κ(ab−1) = 0 and GN (ab−1, t)

= 0 for any t, whenever b ∈ Gs(a)\B(a, ε). Let t > 0 be fixed. For any λ > 0, there

exists C > 0 such that

(21) |e−t(∆E+F+K)(a, t)| ≤ Ce−λd(a,s(a)), ∀a ∈ G, d(a, s(a)) > 2ε,

and Q(a−1, t) ∈ L1(Gs(a))
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Proof. Let I ∈ N be such that Iε ≤ d(a, s(a)) ≤ (I + 1)ε. Then Q
(k)
N (a, t) = 0 for

any k < I. Therefore one has

|Q(a, t)|eλd(a,s(a)) ≤
∞∑
k=I

eλ(I+1)εC ′0C̃
k
0M

k(1 + tN−
n
2 )ktk(k!)−1

= eλ(I+1)εC
′
0C̃

I
0M

I(1 + tN−
n
2 )ItI

I!
×
∞∑
k=0

C̃k0M
k(1 + tN−

n
2 )ktkI!

(k + I)!
.

It is clear that the last expression goes to 0 as I → ∞, so Equation (21) is proved.

From Equation (21), one has

Q(a−1, t) ≤ Ce−λd(a−1,t(a)) = Ce−λd(a,s(a)).

It follows that Q(a−1, t) ∈ L1(Gs(a)) because Gs(a) has at most exponential volume

growth. �

4.1.3. The heat kernel of the vector representation. We turn to study the heat

kernel of ν(∂t+∇E +F +K), where ν is the vector representation. The construction

becomes very simple, once we know the heat kernel of (∂t +∇E + F +K).

Theorem 4.13. If Q is a heat kernel of ∂t+∇E +F +K, then ν(Q) is a heat kernel

of ν(∂t +∇E + F +K) in the sense that

ν(∂t +∇E + F +K)ν(Q)f = 0, ∀t > 0(22)

lim
t→0+

‖ν(Q)f − f‖ = 0

for any f ∈ Γ∞(E).

Proof. By Proposition 4.12, νQ is well defined for each t ≤ 0. By definition one has

t−1(ν(∂t +∇E + F +K)ν(Q)f) = (∂t +∇E + F +K)Q(t−1f) = 0.

The second equality follows by a similar argument. �

One important observation from Theorem 4.13 is that the heat kernel of the vector

representation is not a smoothing operator. However, if G ⇒ M is a Lauter-Nistor

groupoid in the sense of Definition 3.3, then for any f ∈ Γ∞c (E|M0), one has

(23) ν(K)(f)(x) =
∫
a∈Gx

κ(a−1)f(t(a))µx(a) =
∫
y∈Mα

κ|GM0
(x, y)f(y)µM0 ,

where Mα is the connected component of M0 containing x and we have used the

identification GM0
∼=
∐
α Mα ×Mα.
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4.1.4. Application: Heat kernel in edge calculus. As an application of our

construction, we give a simple proof to Albin’s conjecture on generalization of [1,

Theorem 4.3]. We refer to the same paper for details.

Theorem 4.14. A Laplacian operator on any manifolds M with iterated complete

edge has a heat kernel.

Proof. By [3], the pseudo-differential calculus is defined by a groupoid G over the

compactification M of M0. In particular, any Laplacian on M0 is the vector repre-

sentation of a Laplacian operator on G. The lemma follows from our constructions

above. �

4.2. Transverse regularity of the heat kernel. In the last Section, we proved

that the series
∑∞

k=0(−1)kQ(k)
N (·, t) converges to the heat kernel Q(·, t) in the ‖ · ‖l

norms. It follows that Q is smooth on each s-fiber. In this section, we consider the

problem of regularity of the heat kernel Q.

4.2.1. Riemannian metrics and connections on the groupoid G. Let G be a

groupoid with compact units M, let s be the source map. As in the beginning of this

section, we have already fixed an invariant metric gA on the foliation ker(ds) ⊂ TG.

We shall extend gA to TG. Fix a distribution H ⊂ TG complementary to ker(ds).

Then the differential ds identifies H ∼= s−1TM. It follows that any metric on M

defines a metric gH n H. We define the metric gG on G by taking the orthogonal

sum of H and ker(ds).

The distribution H canonically induces a splitting

T G̃ = ker(ds̃)⊕ ker(dt̃)⊕H(2),

such that H = {ds̃(X) : X ∈ H(2)} = {dt̃(X) : X ∈ H(2)} (see [13]). Indeed, one

can write down H(2) explicitly:

H(2) := (H×H)
⋂
T G̃.

Also, note that the relation s(2) = s ◦ t̃ = s ◦ s̃ implies

ker(ds(2)) = ker(ds̃)⊕ ker(dt̃).

Given any metric gG as above, the splitting T G̃ = ker(ds̃)⊕ ker(dt̃)⊕H(2) defines

a metric on G̃, which shall be denoted by g̃G .
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Next, we equip TG with a special connection, following [13]. Recall that one

has identification TG = Ker(ds) ⊕ s−1T ∗M. Denote the orthogonal projection onto

Ker(ds) by PV . Take the Levi-Civita connection ∇TG on (G, gG). Then ∇TG induces

a connection on V := Ker(ds) by

∇VXY := PV∇TGX Y ∀X ∈ TG, Y ∈ Γ∞(Ker(ds)) ⊂ Γ∞(TG).

We define the connection ∇V⊕H on TG by taking the direct sum of ∇V and s−1∇TM.

4.2.2. The regularity theorem. In this section, we state and prove our transverse

regularity theorem. Let G ⇒ M be a groupoid with M compact. We shall assume

that the Lie algebroid A is orientable. Let µ be the s-fiber-wise invariant Riemannian

volume form.

Recall that G̃ := {(a, b) ∈ G × G : s(a) = s(b)} and m̃(a, b) = ab−1, ∀(a, b) ∈ G̃.

Also, we write m̃∗ to denote the differential of m̃, regarded as a bundle map, i.e.

m̃ ∈ Γ∞(HomT (G̃, m̃−1TG)); and L(m)µ to denote the m-th Lie derivative of µ. (see

Appendix A.1).

Theorem 4.15. Assume that

(1) The source map s : G → M is a fiber bundle;

(2) For each m ∈ N, there exist constants Cm, εm > 0 such that

|(∇HomT (G̃,m̃−1TG))mm̃∗|(b′, b) ≤ Cmeεm(ds(b′,s(b′))+ds(b,s(b)));

(3) The Lie derivatives of µ satisfy the estimate

|L(m)µ(XH̃1 , · · · , XH̃m)(b′, b)| ≤ Cmeεm(ds(b′,s(b′))+ds(b,s(b)))|X1| · · · |Xm|.

Then for any F ∈ Γ∞(t−1E⊗s−1E′),K ∈ Ψ−∞µ (G,E), the heat kernel e−t(∆
E+F+K) ∈

Γ∞b .

Proof. Recall from Lemma 4.9 that the heat kernel is defined to be the sum

e−t(∆
E+F+K) =

∞∑
k=0

(−1)kQ(k),

where, using Equation (5), the Q(k) have the form:

Q(0)(a, t) =GN (a, t)

Q(k)(a, t) =
∫ t

0

∫
(b′,b)∈t̃−1(s(a))

m̃−1GN (b′, b, t− τ)s̃−1R(k−1)(b′, b, τ)µ̃(b̃)dτ,
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where R(k)
N is defined by taking convolution product of R(1)

N := (∂t+∆E +F +K)GN
with itself k-times.

Fix a connection ∇E on E→ M. We denote by ∇t−1E⊗s−1E′ to be the tensor of the

pullbacks of ∇E by s and t. Hence ∇t−1E⊗s−1E′ is a connection on G. Pulling-back

again by t̃, one has the bundle t̃−1(t−1E ⊗ s−1E′) over G̃, and the corresponding

connection ∇t̃−1(t−1E⊗s−1E′).

We begin with estimating the covariant derivatives of R(1)
N . Taking covariant

derivative throughout the proof of (2) of Lemma 4.6, one gets

∇t−1E⊗s−1E′(κ ◦GN )→ ∇t−1E⊗s−1E′GN ,

as t goes to 0. Modifying the arguments of the proof of (1) of Lemma 4.6 in the

same manner, one gets the estimate

‖(∇t−1E⊗s−1E′)m((∂t + ∆E + F )GN )‖0 ≤ C(1)
m tN−

n
2
− l

2
−m.

Combining the two, it follows that

‖(∇t−1E⊗s−1E′)mR(1)
N (·, t)‖0 ≤ C(1)

m (tN−
n+l
2
−m + 1)

for some constants C(1)
m independent of t.

Next, we estimate the derivatives of R(k)
N . Write

R
(k)
N (a, t) =

∫ t

0

∫
(b′,b)∈s̃−1(a)

m̃−1R
(1)
N (b′, b, t− τ)s̃−1R

(k−1)
N (b′, b, τ)µ̃(b′, b)dτ.

Then the corollaries of Lemma A.3 imply for any (local) vector field X on G,

(∇t−1E⊗s−1E′

X R
(k)
N )(a, t)

=
∫ t

0

∫
(b′,b)∈s̃−1(a)

∇t̃(t−1E⊗s−1E′)
(
m̃−1R

(1)
N (b′, b, t− τ)s̃−1R

(k−1)
N (b′, b, τ)

)
(XH̃)µ̃ dτ

+
∫ t

0

∫
(b′,b)∈s̃−1(a)

m̃−1R
(1)
N (b′, b, t− τ)s̃−1R

(k−1)
N (b′, b, τ)

(
L(1)µ̃(XH̃)

)
dτ,

where XH̃ ∈ Γ(H̃) ⊂ Γ(T G̃) is the horizontal lift of X. Observe that for all t > 0,

R
(1)
N (·, t) is supported on a set of the form {a ∈ G : ds(a, s(a)) ≤ ρ} for some ρ > 0.

It follows that R(k−1)
N is supported on the set {a ∈ G : ds(a, s(a)) ≤ (k − 1)ρ}; and

m̃−1R
(1)
N (b′, b, t− τ) is supported on the compact set {ds(b′, b) ≤ ρ}. Hence, for each

a ∈ G fixed, the domain of integration can be re-written as

B(a, ρ) := {b ∈ G : s(b) = s(a), ds(a, b) ≤ ρ},

and whose volume is bounded by some constant M independent of a.
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Expanding the first integrand using Leibniz rule, one gets:

∇t̃(t−1E⊗s−1E′)
(
m̃−1R

(1)
N (b′, b, t− τ)s̃−1R

(k−1)
N (b′, b, τ)

)
(XH̃)

=
(
∇m̃−1(t−1E⊗s−1E′)m̃−1R

(1)
N (b′, b, t− τ)(XH̃)

)
s̃−1R

(k−1)
N (b′, b, τ)

+ m̃−1R
(1)
N (b′, b, t− τ)

(
∇s̃−1(t−1E⊗s−1E′)s̃−1R

(k−1)
N (b′, b, τ)(XH̃)

)
=
(
(m̃−1∇t−1E⊗s−1E′R

(1)
N (b′, b, t− τ))(m̃∗XH̃)

)
s̃−1R

(k−1)
N (b′, b, τ)

+ m̃−1R
(1)
N (b′, b, t− τ)

(
s̃−1(∇t−1E⊗s−1E′R

(k−1)
N (b′, b, τ)(X))

)
,

where the last line follows from of Equation (35) and the observation that ds̃(XH̃) =

X. Using hypothesis (2), one has for any (b′, b) ∈ G̃,

∣∣(m̃−1∇t−1E⊗s−1E′R
(1)
N )(m̃∗XH̃)

∣∣(b′, b, τ)

≤‖∇t−1E⊗s−1E′R
(1)
N (·, τ)‖0|X(b′b−1)|C0e

ε0(ds(b′,s(b′))+ds(b,s(b)))

≤C(1)
m (tN−

n+l
2
−1 + 1)|X(b′b−1)|C0e

ε0(ds(b′,s(b′))+ds(b,s(b))).

Now, one can estimate ‖∇t−1E⊗s−1E′R
(k)
N ‖0. For any a ∈ G,

∣∣∇t−1E⊗s−1E′R
(k)
N (a, t)

∣∣
≤
∫ t

0

∫
B(a,ρ)

C0e
ε02kρ‖∇t−1E⊗s−1E′R

(1)
N (·, t− τ)‖0‖R(k−1)

N (·, τ)‖0µ(b) dτ

+
∫ t

0

∫
b∈B(a,ρ)

‖R(1)
N (·, t− τ)‖0‖∇t−1E⊗s−1E′R

(k−1)
N (·, τ)‖0µ(b) dτ

+
∫ t

0

∫
b∈B(a,ρ)

‖R(1)
N (·, t− τ)‖0‖R(k−1)

N (·, τ)‖0C0e
ε02kρµ(b) dτ,

where we used hypothesis (3) to estimate the last term,

≤
∫ t

0

∫
b∈B(a,ρ)

C
(1)
1 (1 + (t− τ)N−

n+l
2
−1)C0e

ε02kρ

× C̃k−2
0 Mk−2(1 + τN−

n+l
2 )k−1τk−2((k − 2)!)−1µ(b) dτ

+
∫ t

0

∫
b∈B(a,ρ)

C̃0(1 + (t− τ)N−
n+l
2 )‖∇t−1E⊗s−1E′R

(k−1)
N (·, τ)‖0µ(b) dτ

+
∫ t

0

∫
b∈B(a,ρ)

C̃0(1 + (t− τ)N−
n+l
2 )

× C̃k−2
0 Mk−2(1 + τN−

n+l
2 )k−1τk−2((k − 2)!)−1C0e

ε02kρµ(b) dτ
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≤
∫ t

0
C̃0(2 + tN−

n+l
2 )M‖∇t−1E⊗s−1E′R

(k−1)
N (·, τ)‖0 dτ

+ (C(1)
1 + C̃0)C̃k−2

0 Mk−1C0e
ε02kρ(2 + tN−

n+l
2 )ktk−1((k − 1)!)−1

Using an induction argument, it is straightforward (but tedious) to obtain the fol-

lowing estimate for any N > n
2 +m+ 1:

(24) ‖∇t−1E⊗s−1E′R
(k)
N (·, t)‖0 ≤ kC̃k1Mkeε02kρ(tN−

n
2 + 2)ktk−1((k − 1)!)−1,

for some constant C̃1.

It is straightforward (if not tedious) to repeat the same arguments above to get

estimates for higher derivatives:

(25) ‖(∇t−1E⊗s−1E′)mR(k)
N (·, t)‖0 ≤ kmC̃kmMkeε

′
m2kρ(tN−

n
2 +m)ktk−1((k − 1)!)−1,

for some constants C̃m, ε′m. Finally, arguments similar to the proof of (1) Lemma

4.8 gives the estimate

‖∇t−1E⊗s−1E′

X Q
(k)
N (a, t)‖0 ≤ kC ′1e2ε0kRtk((k − 1)!)−1.

It follows that
∑∞

k=0(−1)kQ(k)
N converges uniformly in all derivatives up to order

m, provided N > n
2 + m. Since N is arbitrary, it follows that e−t(∆

E+F+K) ∈
Γ∞b (t−1E⊗ s−1E′). �

4.2.3. Example: the Bruhat sphere. We again look at the example of the Bruhat

sphere. We shall explicitly define a metric on the groupoid G = T\(K×N). Observe

that G is an associated bundle over K = CP(1). It is well known that one has

identifications as vector bundles

TG ∼= (TT)\(TK× TN)

Ker(ds) ∼= T\(K× TN).

Observe that G = T\(K×N) is an associated bundle of the principal bundle K→
T\K, hence the arguments in [16, Section 11] can be used to fix a complementary

distribution to Ker(ds). Fix an ad K-invariant metric gk on K, the Lie algebra of K.

Let t⊥ be the orthogonal complement of t ⊂ k. Define T⊥ to be the distribution on

K

T⊥ := {dRK
k (X) : k ∈ K, X ∈ t⊥} ⊆ TK,
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and the distribution on G

H := {d℘T(X, 0) ∈ T (T\(K×N)) : (X, 0) ∈ T⊥ × TN},

where ℘ denotes the projection onto he coset space. It is easy to see that H is a

distribution complementary to ker(ds) = T\(K×TN). To define a metric on H, one

simply takes the pullback of the round metric gk on T\K, more explicitly,

gH(℘T(dRK
k (X1), 0), ℘T(dRK

k (X2), 0)) := gk(X1, X2).

Finally, we define a metric gG on G = T\(K × N) by taking the orthogonal sum of

gs and gH.

In our special case G = T\(K × N), G̃(2) is diffeomorphic to T\(K × N × N),

where T acts on K by right multiplication and on N × N by conjugation, and the

diffeomorphism is given explicitly by

T(k, n1, n2) 7→ (T(k, n1),T(k, n2)) ∈ G × G ⊇ G̃(2).

Consider the map m̃ : G̃(2) → G, m̃(a, b) := ab−1. One has the commutative

digram

(26)

K×N×N m̂−−−−→ K×Ny y
G̃(2) ∼= T\(K×N×N) m̃−−−−→ G = T\(K×N),

where m̂ : K×N×N→ K×N is defined to be the function

m̂(k, n1, n2) := (k′, n1n
−1
2 ).

We verify that the metric we constructed satisfies the assumptions of Theorem

4.15. Hence the heat kernel of a Laplacian operator on the Bruhat sphere is smooth.

Lemma 4.16. For each m ∈ N, there exists a polynomial pm on N× N = R2 × R2

such that, for any T(k, n1, n2) ∈ G̃(2), X ∈ T
T(k,n1,n2)G̃(2),∣∣(∇HomT (G̃,m̃−1TG))mm̃(X)
∣∣
gG
≤ |pm(n1, n2)||X|

g
(2)
G
.

Proof. We prove this lemma by direct computation. First, one obtains a formula for

m̃ using Equation (13). Namely, for any k =
(

α β
−β̄ ᾱ

)
, n1 =

(
1 w′
0 1

)
, n2 = ( 1 w

0 1 ) , one

has

m̃(T(k, n2, n2)) =

[
α− w̄β

(|β|2 + |α− w̄β|2)
1
2

,
β

(|β|2 + |α− w̄β|2)
1
2

]w′−w
T

.



52

First consider the H-component. Any vector X ∈ T⊥ can be written in the form

X = ∂t

∣∣∣
t=0

(
ke

t
(

0 v
−v̄ 0

)
, n1, n2

)
, v ∈ C.

Then, dm̃(X) is by definition:

dm̂(X) := ∂t

∣∣∣
t=0

m̃
(
e
t
(

0 v
−v̄ 0

)
k, n1, n2

)
=((

(|β|2−|α|2)(w̄2v−w2v̄)+|w2|2(ᾱβ̄v−αβv̄)
2Q

v
Q

− v̄
Q

−(|β|2−|α|2)(w̄2v−w2v̄)−|w2|2(ᾱβ̄v−αβv̄)
2Q

)
k′, 0

)
,

where we denoted Q := |β|2 + |α− w̄2β|2. It follows that

dm̃(d℘T(X)) =
1
Q
d℘T(X).

Similarly, one has

∂t
∣∣
t=0

m̂(k,w1 + z1t, w2) = (0, z1, 0)

∂t
∣∣
t=0

m̂(k,w1, w2 + z2t)

=

((
(α−w̄2β)β̄z2−(ᾱ−w2β̄)βz̄2

2Q
−|β|2z̄2
Q

|β|2z2
Q

−(α−w̄2β)β̄z2+(ᾱ−w2β̄)βz̄2
2Q

)
k′,−z2

)
.

We estimate a lower bound for Q in terms of w. Since it is clear that Q 6= 0, we may

without loss of generality assume that |w2| > 1. Suppose |β| ≤ 1
2|w| ≤

1
2 . Then the

relation |α|2 + |β|2 = 1 implies |α| ≥ 3
4 . It follows that |α− w̄β|2 ≥ (3

4 −
1
2)2 = 1

4 ≥
1

4|w2|2 . Hence |β|2 + |α− w̄β|2 ≥ 1
4|w|2 in both cases.

Finally, from the above computations, we observe that the coefficients of the m-th

covariant derivatives of m̃ are of the form

Q−mpI(α, ᾱ, β, β̄, ω, ω̄),

where pI are polynomials. The assertion follows. �

It is easy to see that the s-fiber-wise Riemannian volume form µ also satisfies

similar estimates. Therefore we conclude that

Corollary 4.17. For any vector bundle E→ CP(1), any Riemannian metric gA on

A, F ∈ Γ(E⊗ E′) and K ∈ Ψ−∞µ (G,E), the heat kernel

e−t(∆
E+F+K) ∈ Γ∞b (t−1E⊗ s−1E′ n (0,∞)).
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4.3. Short time asymptotic expansion of the heat kernel. Let G ⇒ M be

a groupoid with M compact, and the Lie algebroid A → M of even rank κ. Let

∇E be a Clifford A-connection and ð be the corresponding Dirac operator. Then a

straightforward calculation shows that

ð2 = ∆E + (
1
4
R̃+ FE/S),

where R̃ is the scalar curvature and FE/S is the twisting curvature. Therefore the

construction of the heat kernel above applies.

Before stating our main result Lemma 4.18, we first need to define some notation.

Let Ck×k be the set of all matrices with coefficients in C. Given any power series

h : Ck×k → C

h(Zij) = h(0) +
∑
I

hIZI ,

where the sum is over all multi-indexes I = {i1j1, i2j2, · · · , ipjp}, and ZI := Zi1j1Zi2j2

· · ·Zipjp . Let (ωij) ∈ ∧V′ be a matrix of 2-forms on some vector space V. We define

h(ωij) to be the polynomial

(ωij) 7→ h(0) +
∑
I

hIωI ∈
⊕
l even

∧lV′,

where ωI := ωi1j1 ∧ ωi2j2 ∧ · · · ∧ ωipjp .
In particular, take h to be the Taylor series expansion of

Z 7→
√

det
(Z

2
(sinh

Z

2
)−1
)

: Cκ×κ → C,

where Z 7→ Z
2 (sinh Z

2 )−1 : Cκ×κ → Cκ×κ is defined by the power series of z 7→
z
2(sinh z

2)−1 : C→ C. Define the Â-genus by

(27) Â := h(R).

It is straightforward to check that Â ∈ Γ∞(∧A′) is a well defined section.

Lemma 4.18. The heat kernel e−tð
2 ∈ Γ∞(s−1E⊗t−1E′n(0,∞)) has an asymptotic

expansion

e−tð
2
(x, t) ∼= (4π)−

n
2

∞∑
i=0

ti−
n
2Qi(x), ∀x ∈ M ⊂ G,

for some Qi ∈ Γ∞(Cl(A′)⊗ EndCl(A′)(E)). Furthermore

(1) The coefficient Qi ∈ Cl2i(A′)⊗ EndCl(A′)(E);
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(2) One has

(
strQκ

2

)
µA = order κ component of Â ∧ expFE/S.

Proof. Regarding all operators involved as families of operators along the s-fibers,

the heat kernel of ð|s−1(x) is just

Qx(a, b) := Q(ab−1), s(a) = s(b) = x.

The computations of the asymptotic expansion of Qx(a, a) = Q(x) is very standard.

See, for example, [7, Chapter 4]. �

For convenience, we denote the order κ component of Â ∧ expFE/S by Ωκ(Â ∧
expFE/S).

It is easy to compute the asymptotic expansion of the heat kernel of the operator

ð2 +K. From Equation (20), the heat kernel of ð2 +K can be written as

e−t(ð
2+K)(a, t) = e−tð

2
(a, t) +

∞∑
i=1

(−1)itiQ̃(i)(a, t),

where Q̃ is the heat kernel of ∆E, and Q̃(i) :=
∫

0≤τ0≤···≤τi≤1 Q̃(·, τ0t) ◦ κ ◦ Q̃(·, τ1t) ◦
κ ◦ · · · ◦ κ ◦ Q̃(·, τit). Since Q̃(i)(·, 0) are smooth, it follows immediately that

Corollary 4.19. The heat kernel e−t(ð
2+K) ∈ Γ∞(s−1E ⊗ t−1E′ n (0,∞)) of the

Laplacian ð2 +K has an asymptotic expansion

e−t(ð
2+K) ∼= (4π)−

n
2

∞∑
i=0

ti−
n
2Qi(x), ∀x ∈ M ⊂ G,

for some Qi ∈ Γ∞(Cl(A′)⊗ EndCl(A′)(E)). Furthermore

(1) The coefficient Qi ∈ Cl2i(A′)⊗ EndCl(A′)(E);

(2) One has

(
strQκ

2

)
µA = Ωκ(Â ∧ expFE/S).



5. The renormalized trace and index theorem

Consider a Fredholm operator on Γ∞(E) of the form ν(ð +Ψ), where ð is a Dirac

operator and R ∈ Ψ−∞µ (G,E).

We saw that the heat kernel is not a smoothing operator in general, and the usual

trace formula ∫
M
κ(x, x)µ(x)

cannot be applied. Instead, one need to consider an extension of the trace functional,

known as the renormalized trace.

5.1. The renormalized integral. We shall only consider the case of the Bruhat

sphere. In this case, one has the two stereographic projection coordinates

reiϑ 7→ [reiϑ, 1] and ṙe−iϑ 7→ [1, ṙe−iϑ],

and one can consider the cutoff integrals∫
r≤r0

∫
0≤ϑ≤2π

f([reiϑ, 1])rdϑdr =
∫
ṙ≥ 1

r0

∫
0≤ϑ≤2π

f([1, ṙe−iϑ])
1
ṙ3
dϑdṙ

for any f ∈ C∞(CP(1)) as r0 →∞. Using standard arguments reviewed in [30], one

has:

Lemma 5.1. For any k = 1, 2, · · · , and F ∈ C∞c (R), one has the expansion as

r0 →∞: ∫ ∞
1
r0

Fλ−kdλ =
k−1∑
j=1

Cjr
j
0 +R log r0 + C0 +O(r−1

0 )

for some constants C0, · · · , Cj , R. In particular, the constant term C0 is given by

the formula

C0 = ∂k−1
λ F (0)

k−1∑
j=1

1
j

+
1

(k − 1)!

∫ ∞
0

∂kλF (λ) log λdλ :=
R

∫ ∞
0

F (λ)λ−kdλ.

We return to the case of the Bruhat sphere. Given any section ω ∈ Γ(∧2A′),
such that ω is two times differentiable on CP(1) and three times differentiable on

CP(1) \ {Te}, we define:

Definition 5.2. The renormalized integral of ω is the number

R

∫
ω :=

R

∫ ∞
0

(∫ 2π

0
(f ◦ ẋ)(ṙe−iϑ)dϑ

)
ṙ−3dṙ,

where ω = fµ0, and µ0 is the volume form defined by the round metric. Here, note

that (ṙ, ϑ) 7→ f ◦ ẋ(ṙe−iϑ) is two times differentiable on the whole R2-space.
55
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Remark 5.3. We may choose other volume forms instead of the round one, and the

result depends on our trivialization. This discrepancy is well known. See [30] for a

review.

5.2. The renormalized trace and trace defect formula. With the renormalized

integral defined, it is natural to define the renormalized trace.

Definition 5.4. Let E be a Z2-graded vector bundle over M. Let µ be a fixed

s-fiberwise volume on G identifying Ψ−∞(G,E) ∼= Γ∞(t−1E ⊗ s−1E′). For any K ∈
Ψ−∞(G,E) with reduced kernel κ ∈ Γ∞(t−1E ⊗ s−1E′), the renormalized (super)-

trace of K is defined to be

RStr(Ψ) :=
R

∫
str(κ|M)µ.

In this section, we compute explicitly

R

∫ (
f ◦ g(x)− g ◦ f(x)

)
µM0(x),

where for simplicity we assume f, g ∈ C∞(G) and g is compactly supported (hence

the convolution products are well defined). In general, the expression is non zero.

Hence proving that the ‘renormalized trace’ is not a trace.

Theorem 5.5. One has the trace defect formula

R

∫ (
f ◦ g(x)− g ◦ f(x)

)
µM0(x)

=− π
∫

C

(
re(w′)∂ẋ + im(w′)∂ẏ

)(
f([1, 0]w̄

′
T )g([1, 0]−w̄

′

T )
)
|dw′|2.

Proof. By Definition 2.29, the convolution product f ◦ g, written in Notation 3.13,

is given by the formula

f ◦ g(z) =
∫
w∈R2

f(x(z + w̄,−w))g(x(z, w))|dw|2.

As in Lemma 5.1, we need to consider∫
z∈B(0,r0)

∫
f(x(z + w̄,−w))g(x(z, w))|dw|2|dz|2

as r0 → ∞. Performing the z-integral first and changing variable z′ = z − w̄, w′ =

−w, the integral becomes∫ ∫
z′∈B(−w̄′,r0)

f(x(z′, w′))g(x(z′ + w̄′,−w′))|dz′|2|dw′|2.
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On the other hand, one has∫
z∈B(0,r0)

g ◦ f |dz|2 =
∫ ∫

z∈B(0,r0)
f(x(z, w))g(z + w̄,−w)|dz|2|dw|2.

Combining the two integrals, one gets∫
z∈B(0,r0)

f ◦ g − g ◦ f µM0(z)

=
∫ ∫

z∈B(−w̄,r0)\B(0,r0)
f(x(z, w))g(x(z + w̄,−w))|dz|2|dw|2

−
∫ ∫

z∈B(0,r0)\B(−w̄,r0)
f(x(z, w))g(x(z + w̄,−w))|dz|2|dw|2

after canceling the common domain. In order to compute the integral, one needs

to parametrize the domains B(−w̄, r0)\B(0, r0) and B(0, r0)\B(−w̄, r0). For each

w ∈ C, consider the sets

S+
w :=

{
− r0e

iϕw̄

|w|
− λw̄ : −π

2
≤ ϕ ≤ π

2
, 0 ≤ λ ≤ 1

}
S−w :=

{
− r0e

iϕw̄

|w|
− λw̄ :

π

2
≤ ϕ ≤ 3π

2
, 0 ≤ λ ≤ 1

}
.

It is elementary to see that

S+
w\S−w = B(−w̄, r0)\B(0, r0) and S−w\S+

w = B(0, r0)\B(−w̄, r0)

modulo sets of measure 0. With these natural parametrizations, one has∫
z∈B(0,r0)

(f ◦ g − g ◦ f) |dz|2

=
∫ ∫ 2π

0

∫ 1

0
f(x(−r0e

iϕw̄

|w|
− λw̄, w))

×g(x(−r0e
iϕw̄

|w|
− (1− λ)w̄,−w))r0|w̄| cosϕdλdϕ|dw|2.

Next, we approximate f by its Taylor series at s−1([1, 0]) as r0 →∞. More precisely,

define the trivialization

ẋ(ż, ẇ) :=

[
1

(1 + |ż|2)
1
2

,
ż

(1 + |ż|2)
1
2

]ẇ
T

.
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Write ż = ẋ+ iẏ, ẇ = u̇+ iv̇, ẋ, ẏ, u̇, v̇,∈ R. Using the change in coordinate formula

x(z, w) = ẋ(1
z ,

z2

|z|2w) and the expansions

1

− r0eiϕw̄
|w| − λw̄

=− |w|
r0eiϕw̄

(
1− λ|w̄|

r0eiϕ
+O(r−2

0 )
)

r0e
iϕw̄ + λw̄|w|

r0e−iϕ + λ|w|
=e2iϕw̄ + 2ie2iϕ sinϕ

λw̄|w|
r0

+O(r−2),

one gets

f
(
x
(
−r0e

iϕw̄

|w|
− λw̄, w

))
=f([1, 0]e

2iϕw̄
T )−

(re(e−iϕw)
r0|w|

∂ẋ +
im(e−iϕw)
r0|w|

∂ẏ

)
f([1, 0]e

2iϕw̄
T )

+
2λ|w̄| sinϕ

r0

(
im(e2iϕw̄)∂u̇ − re(w2iϕw̄)∂v̇

)
f([1, 0]e

2iϕw̄
T ) +O(r−2

0 ).

Combining with a similar expression for g, the integrand has an expansion:

f
(
x
(
−r0e

iϕw̄

|w|
− λw̄, w

))
g
(
x
(
− r0e

iϕw̄

|w|
− (1− λ)w̄,−w

))
= f([1, 0]e

2iϕw
T )g([1, 0]−e

2iϕw
T )

−
(re(eiϕw)

r0|w|
∂ẋ +

im(eiϕw)
r0|w|

∂ẏ

)(
f([1, 0]e

2iϕw̄
T )g([1, 0]−e

2iϕw̄
T )

)
(28)

+ f([1, 0]e
2iϕw̄

T )
(2(1− λ)|w̄| sinϕ

r0

)(
im(e2iϕw̄)∂u̇ − re(w2iϕw̄)∂v̇

)
g([1, 0]e

2iϕw̄
T )

+ g([1, 0]−e
2iϕw̄

T )
(2λ|w̄| sinϕ

r0

)(
im(e2iϕw̄)∂u̇ − re(w2iϕw̄)∂v̇

)
f([1, 0]e

2iϕw̄
T )

+O(r−2
0 ).

We compute the (renormalized) integral of each terms in Equation (28). First con-

sider the last term:∫ 1

0

∫ 2π

0

∫
C
g([1, 0]−e

2iϕw̄
T )

(2λ|w̄| sinϕ
r0

)(
im(e2iϕw)∂u̇ − re(e2iϕw)∂v̇

)
f([1, 0]e

2iϕw̄
T )

×r0|w| cosϕ|dw|2dϕdλ

=
∫ 1

0

∫ 2π

0

∫
C
g([1, 0]−w̄

′

T )
(

im(e2iϕw̄)∂u̇ − re(e2iϕw̄)∂v̇
)
f([1, 0]e

2iϕw̄
T )

× 2|w′|2λ sinϕ cosϕ|dw′|2dϕdλ,

by changing variable w′ := e2iϕw. The integral vanishes since
∫ 2π

0 cosϕ sinϕdϕ = 0.

Using the same arguments the integral of the first and the third term are both 0. It
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remains to consider the second term. Again we change variable w′ := e2iϕw to get:

−
∫ 1

0

∫ 2π

0

∫
C

(re(e−iϕw′)
|w′|

∂ẋ +
im(e−iϕw′)
|w′|

∂ẏ

)(
f([1, 0]w̄

′
T )g([1, 0]−w̄

′

T )
)

× |w′| cosϕ|dw′|2dϕdλ.

Applying the identities
∫ 2π

0 cosϕ sinϕdϕ = 0,
∫ 2π

0 cos2 ϕdϕ = π, one finally obtains:

R

∫ (
f ◦ g(x)− g ◦ f(x)

)
µM0(x)

=− π
∫

C

(
re(w′)∂ẋ + im(w′)∂ẏ

)(
f([1, 0]w̄

′
T )g([1, 0]−w̄

′

T )
)
|dw′|2.

�

5.3. The McKean-Singer formula and index formula. We recall the derivation

of index formulas using the McKean-Singer formula.

Fix a Riemannian metric gA on A. Denote the invariant s-fiberwise Riemannian

volume form by µ. Let E be a Cl(A′) module, and (ð + Ψ) be a perturbed Dirac

operator. Consider

(29) lim
t→∞ RStr(e−t(ð+Ψ)2)− lim

t→0+
RStr(e−t(ð+Ψ)2) =

∫ ∞
0

∂t RStr(e−t(ð+Ψ)2)dt.

For the right hand side, one has

∂t RStr(e−t(ð+Ψ)2) = RStr(∂te−t(ð+Ψ)2) = RStr([ð + Ψ, (ð + Ψ)e−t(ð+Ψ)2 ]).

One can then use the trace defect formula in the last section to compute RStr([ð +

Ψ, (ð + Ψ)e−t(ð+Ψ)2 ]). The actual calculation is very complicated. Nevertheless we

denote the result by

η(ð + Ψ) :=
∫ ∞

0
RStr([ð + Ψ, (ð + Ψ)e−t(ð+Ψ)2 ]) dt.

It remains to study the limits limt→0+ RStr(e−t(ð+Ψ)2) limt→∞ RStr(e−t(ð+Ψ)2).

Much work have already been done. We first consider the t→ 0+-limit.

Proposition 5.6. For the t→ 0 limit, one has

(30) lim
t→0+

RStr(e−t(ð+Ψ)2) =
R

∫
Ωκ(Â ∧ exp(−FE/S)).

Proof. Recall that, by Lemma 4.18, one has the asymptotic expansion

e−t(ð+Ψ)2(x, t) ∼= (4π)−
n
2

∞∑
i=0

ti−
n
2Qi(x).
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Since strQi = 0 for any i < n
2 = 1, it follows that

lim
t→0+

(4π)−
n
2

∞∑
i=0

ti−
n
2 str(Qi(x)) =(4π)−1 strQn

2
(x)(31)

=(4π)−1 Ωκ(Â ∧ exp(−FE/S))
µ

,

by (2) of Lemma 4.18. Since M is compact, the convergence in Equation (31) is

uniform in all derivatives. Since Definition 5.2 of the renormalized integral only

involves integration and evaluation of the derivatives of the integrands, it follows

that

lim
t→0+

R

∫
str e−t(ð+Ψ)2(x, t)µ = (4π)−1

R

∫
Ωκ(Â ∧ exp(−FE/S))

as well. �

As a direct consequence of Proposition 5.6, one has

Theorem 5.7. For any perturbed Dirac operators ð + Ψ , not necessary Fredholm,

one has

(32) lim
t→∞ RStr(e−t(ð+Ψ)2) = (4π)−1

R

∫
Ωκ(Â ∧ exp(−FE/S)) + η(ð + Ψ),

provided the limits on both sides exist.

We turn to study the behavior as t→∞. Let ð+Ψ , be a perturbed Dirac operator.

Note that ð + Ψ is essentially self-adjoint. In addition, we assume that ðTe +RTe is

invertible. It follows from Corollary 3.12 that ν(ð + Ψ) is Fredholm. Since one has

GM0
∼= M0 ×M0, it follows that 0 is (at most) an isolated point of σ(ðx + Rx) for

x 6= Te. Our last objective is to study the behavior of the renormalized integral

R

∫
str e−t(ð+Ψ)2µ,

as t→∞.

From our assumptions, it is clear that the null space Ker(ν((ð + Ψ)2)), is finite

dimensional. Denote by P 0 the projections onto Ker(ν((ð+Ψ)2)). Let u1, · · · , uN ∈
L2(M0,E) be any orthonormal basis of Ker(ν((ð + Ψ)2)). Then P 0

x has a kernel

N∑
i=1

ui(y)ui(y′), (y, y′) ∈ M0 ×M0
∼= GM0 .

Consider the regularity of ui. Applying the parametrix formula

ν0(Q1)ν0(Ψ)− id = ν0(R1)
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to ui, where Q1 ∈ Ψ[−m]
µ (G,E), R1 ∈ Ψ−∞µ (G,E), one has

ui = ν0(R1)ui,

for each i. Using Lemma A.25, it follows that ui ∈W∞(M0,E).

By the identification ν((ð + Ψ)2) ∼= (ð + Ψ)2
x, x 6= Te, Ker((ð + Ψ)2

x) is finite

dimensional and consists of elements in W∞(Gx, t−1E). Denote the projection onto

the kernel of (ð + Ψ)2
x by P 0

x (note that P 0
Te

= 0 since (ð + Ψ)2
x is invertible). Then,

using again the fact that 0 is at most an isolated point of σL2((ð + Ψ)2
x), one has

the following well known variation of [34]:

Lemma 5.8. There exists some λ > 0 such that for each x ∈ M,

(33) lim
t→∞

etλ(e−t(ð−Ψ)2x − P 0
x ) = 0

in all Sobolev norms.

Unfortunately, we do not know any direct way to prove that

RStr(e−t(ð+Ψ)2)→ RStr(P 0)

as t → ∞. Instead, we observe that ν((ð + Ψ)2) can be identified with an edge

operator on M0 = R2, studied in [1]. From Lemma 4.14, the heat kernel e−t(ð+Ψ)2

coincides with the heat calculus constructed in [1, Section 4]. Furthermore, it is

easy to see that Definition 5.2 coincides with [1, Equation (6.1)], for the heat kernel.

Therefore, by [1, Lemma 6.1], one has

(34) lim
t→∞ RStr(e−t(ð+Ψ)2) = RStr(P 0) = ind(ν(ð + Ψ)).

Note that the last equality follows from the fact that str(P 0) is an integrable function

on M0, hence the renormalized integral coincides with the usual integral, which

turns out to be ind(ν(ð + Ψ)) because P 0 is just the projection to the null space of

ν((ð + Ψ)2).

Finally, combining Equations (32) and (34), and results in Section 3, one gets

Theorem 5.9. For any self adjoint perturbed Dirac operator ð + Ψ ∈ Ψ1
µ(G,E) on

the symplectic groupoid G = T\(SU(2) × N) of the Bruhat sphere, such that the

Fourier-Laplace transform F((ð + Ψ)Te) is invertible on a tubular neighborhood of
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the real axis, ν0(ð + Ψ) : W1(E) → W0(E) is Fredholm; and its Fredholm index is

given by the Atiyah-Singer index formula:

ind(ν0(ð + Ψ)) = (4π)−1

R

∫
Ωκ(Â ∧ exp(−FE/S)) + η(ð + Ψ).



6. Concluding remarks

In this last section, we make some remarks and highlight some open problems.

Our first objective in generalizing the calculus on manifolds with boundary was to

extend the uniformly supported pseudo-differential calculus to include the parametrix

of Fredholm operators. We did so for the Bruhat sphere case in Section 3, where we

used the exponentially decaying calculus. In the general case, one would derive an

invertibility criterion on the s-fibers over the invariant sub-manifolds. That involves

understanding the representation theory of the isotropy subgroup Gxx on sections

over the Gxx -principle bundle s−1(x). It is known that the kernel of inverse of an

uniformly supported pseudo-differential operator on a manifold with bounded geom-

etry has exponential decay [33]. The only remaining problem is whether one can

use a tubular neighborhood theorem to extend the fiber-wise inverse to the whole

groupoid. In the same vein, Medadze and Shubin [24] proved that the space of

pseudo-differential operators on an unimodular Lie group with exponentially decay-

ing kernel is closed under functional calculus. It would be interesting to prove an

analogue for Lie groupoids. More precisely:

Conjecture 6.1. Let G ⇒ M be a groupoid with compact units M and polynomial

growth. Then the exponentially decaying calculus⋃
ε>0

Ψ[∞]
ε (G)

is closed under holomorphic functional calculus.

The main difficulty in proving the conjecture lies in proving that the inverses of

a smooth family of pseudo-differential operators is still a smooth family. Such a

result would enable one to construct, say, complex powers of elliptic operators in a

framework more concrete than the axiomatic approach of [4].

The discussion on extended calculus cannot be complete without mentioning what

is missing in our construction, compared with the case of edge manifolds. In the latter

case, one can construct a ‘very residual’ calculus, consisting of functions (sections) on

M0×M0 with poly-homogeneous expansions near the singularities. The full calculus

is formed by adding the residual calculus to the decaying calculus. Then it was shown

that the full calculus contains the generalized inverses of (semi)-Fredholm operators.

The proof of these results uses order-by-order cancellations of the boundary defining

function near the singular leaves. It is not clear what analogue should be used for
63
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groupoids. However, the techniques used in [2, 5], and the occurrence of stereographic

coordinates (which just measures the distance from the opposite of the singularity)

in Section 5 might offer a strong hint.

Our next task was to construct the heat kernel of perturbed Laplacian operators

on a groupoid in Section 4. The proof of existence is fairly classical. The mystery

lies in the proof of transverse smoothness of the heat kernel, which requires con-

sidering a (rather arbitrary) transverse metric and bounding the derivatives of the

multiplication operator. At this point, we conjecture that a transverse metric satis-

fying the hypothesis of Theorem 4.15 exists for all Hausdorff groupoids, and can be

constructed by gluing exponential coordinates (as in Nistor [27]).

We went on to derive an Atiyah-Singer type index formula on the Bruhat sphere in

Section 5. We cheated by using the stereographic coordinates on the Bruhat sphere

to define the renormalized integral. Therefore the arguments cannot be easily gen-

eralized beyond the flag manifolds. We further cheated by using known results from

edge calculus to show that the renormalized trace converges to the Fredholm index.

We expect a direct proof of Equation (34) would be possible by better understand-

ing the resolvent and/or null space projection of the Laplacian operator, that would

involve results in functional calculus or residue calculus, as described earlier. One

immediate observation form the renormalized index theory is that the renormalized

index, as well as the K-theoretic index, of an elliptic (pseudo)-differential operator

are well defined even for non-Fredholm operators. We have not studied the connec-

tion between the two, but the arguments involved should be straightforward (see,

for example, [17, Proposition 3]).

On the side of generalizing the renormalized trace, we think one possible way to

proceed is to use the Q-weighted trace machinery developed by Paycha et. al. (see

[30] for an introduction), but that is more speculation than educated guess...

And the thesis ends here. However, the work in this thesis is just the beginning of

a vast subject concerning singular pseudo-differential calculus defined by groupoids.

In the limited space and time we had, we were only able to achieve some success

in the simplest case, namely the Bruhat sphere; but the potential of the techniques

illustrated here, is unlimited.



Appendix A. Some preliminaries on differen-

tial geometry and pseudo-

differential calculus

A.1. Notes on submersions and pullback vector bundles. In this section, we

define some notations concerning pullback of vector bundles and recall some basic

facts. Let B1,B2 be manifolds, π : B2 → B1 be a smooth map, and E be a vector

bundle over B1. Denote the bundle projection by ℘ : E→ B1.

Definition A.1. The pullback bundle is the vector bundle over B2:

π−1E := {(x, e) ∈ B2 × E : π(x) = ℘(e)},

with bundle projection π−1℘(x, e) := x and the fiber-wise linear operations.

One has a natural map πE : π−1E→ E determined by the commutative diagram

π−1E πE−−−−→ Ey y
B2

π−−−−→ B1

.

Consider the particular case E = TB1. One has πTB1 : π−1TB1 → TB1. On other

hand, one also has the differential dπ : TB2 → TB1, These two maps determine a

bundle map π∗ ∈ Γ∞(Hom(TB2, π
−1TB1)) by

π∗(X) := (x, dπ(X)), ∀X ∈ TxB2.

Also recall that one can “pullback” a section to a section of the pullback bundle,

i.e., one has the naturally defined map π−1
E : Γ∞(E)→ Γ∞(π−1E),

(π−1
E f)(x) := f(π(x)), ∀f ∈ Γ∞(E), x ∈ B2.

Given any connection ∇E on E, recall that the pullback connection ∇π−1E is a

connection on π−1E characterized by

(∇π−1E)X(π−1f)(x) = (x,∇E
dπ(X)f(π(x))),

for any x ∈ B2, X ∈ TxB2. It follows, by using the canonical identification

Hom(π−1TB1, π
−1E) ∼= π−1 Hom(TB1,E),

65
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that one can write

(35) ∇π−1E(π−1
E f) = (π−1

Hom(TB1,E)(∇
Ef)) ◦ π∗,

for any section f ∈ Γ∞(E). Moreover, applying covariant derivatives to Equation

(35) and using the Leibniz rule, one gets

(∇π−1E)2(π−1
E f) =∇Hom(TB1⊗π−1E)∇π−1E(π−1

E f)

=∇Hom(TB1⊗π−1E)((π−1
Hom(TB1,E)(∇

Ef)) ◦ π∗)

=((π−1
Hom(TB1,HomT (TB1,E))(∇

Hom(TB1,E)∇Ef) ◦ π∗) ◦ π∗

+ (π−1
Hom(TB1,E)(∇

Ef)) ◦ (∇Hom(TB2,π−1TB1)π∗)

=(π−1
Hom(TB1⊗TB1,E)(∇

E)2f) ◦ (π∗ ⊗ π∗)

+ (π−1
Hom(TB1,E)(∇

Ef)) ◦ (∇Hom(TB2,π−1TB1)π∗),

and so on for higher derivatives.

Suppose, furthermore, that one has a fiber bundle structure Z→ B2 → B1. Since

π is now a submersion, V := ker(dπ) ⊆ TB2 defines a (regular) integrable foliation.

We shall assume that V is orientable. Hence all fiber π−1(p) ∼= Z are orientable.

Fix a complementary distribution H to V. For any (local) vector field X̃ ∈ Γ(TB1),

denote the horizontal lift of X̃ by X̃H.

Definition A.2. Given any ω ∈ Γ∞(∧kV ′), the Lie differential (with respect to H )

is the section LHω ∈ Γ∞(Hom(H,∧V ′)),

LHω(X)(V1, V2, · · · , Vk)(p) = LX̃H(ω(V1, V2, · · · , Vk))(p)(36)

−
k∑
i=1

ω(V1, · · · , [X̃H, Vi], · · · , Vk)(p),

for any X ∈ TpB2, where X̃ is any local extension of dπ(X).

Let κ be the rank of V. For any µ ∈ Γ∞c (∧κV), consider point-wise average

〈µ〉 ∈ C∞(B1), defined by

〈µ〉(p) :=
∫
x∈π−1(p)

µ|π−1(p).

Lemma A.3. For any vector X ∈ TpB1, p ∈ B1, one has the formula

LX(〈µ〉)(p) =
∫
x∈π−1(p)

LHµ(XH).
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Proof. First consider the trivial case B2
∼= U× Z,U ⊆ Rn and H be the distribution

along U×{z}, z ∈ Z. By linearity, one may assume that X = ∂j . Fix a volume form

on Z and denote by µ0 its pullback to U × Z by the projection map onto Z. Then

one can write µ = f(p, z)µ0 for some f ∈ C∞c (B2). Differentiating under the integral

sign, one gets

LX〈µ〉 =
∫
z∈Z

(∂jf(p, z))µ0(z).

It is clear that LHµ0 = 0. It follows that LHµ(∂j) = (∂jf(p, z))µ0(z), and the

assertion follows.

Let H′ be any other complementary distribution. Then one has for any vector

field X, XH
′

= XH + XV for some vector field XV ∈ Γ∞(V). Using the definition,

it is easy to check that

LH
′
µ(XH

′
)− LHµ(XH) = LXVµ,

where the right hand side is just the Lie derivative on the integrable foliation V.

Integrating fiber-wisely, one gets∫
x∈π−1(p)

LH
′
µ(XH

′
) =

∫
x∈π−1(p)

LHµ(XH) +
∫
x∈π−1(p)

LXVµ.

The second term on the right hand side vanishes by Stoke’s theorem. Therefore one

still gets ∫
x∈π−1(p)

LH
′
µ(XH

′
) = LX〈µ〉.

Finally, the general case follows because the assertion is local and one can always

restrict to local trivializations. �

We shall briefly describe several obvious generalizations to Lemma A.3. Fix a

connection∇TB1 on B1. For any ω ∈ Γ∞(∧kV), define L(n)ω ∈ Γ∞(Hom(⊗nH,∧kV))

inductively by

L(1)ω := LHω

L(m+1)ω(X0, · · · , Xm) := LH(L(m)ω(X̃H1 , X̃
H
2 , · · · , X̃Hm))(X0)(p)

−
m∑
i=1

(L(m)ω)(X̃H1 , · · · , (∇
TB1

X̃0
X̃i)H, · · · , X̃Hm)(p),

for any X0, · · ·Xm ∈ Hp, where X̃i is any local extension of dπ(Xi). Then a straight-

forward computation using the Lemma A.3 and the definitions gives
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Corollary A.4. For any µ ∈ Γ∞c (∧κV), X1, · · · , Xm ∈ TpB1, p ∈ B1, one has

∇m(〈µ〉)(X1, · · · , Xm)(p) =
∫
x∈π−1(p)

L(m)µ(X̃H1 , · · · , X̃Hm)(x),

where X̃i is any local extension of Xi.

Lemma A.3 can also be generalized in a different direction Let E be a vector

bundle over B1. For any f ∈ Γ∞c (π−1E), µ ∈ Γ∞(∧κV), define

〈fµ〉(p) :=
l∑

i=1

〈fiµ〉(p)ei(p) ∈ Γ∞(E), p ∈ B1,

where e1, · · · , el is any local basis around p and f =
∑l

i=1 fiπ
−1(ei) on π−1(p). The

definition is independent of choice of a local basis. Let ∇E be any fixed connection

on E. Then a simple application of Lemma A.3 leads to

Corollary A.5. Given any f ∈ Γ∞c (π−1E), µ ∈ Γ∞(∧κV). Then for any vector field

X ∈ Γ∞(TB1), p ∈ B1,

∇E〈fµ〉(X)(p) =
∫
x∈π−1(p)

(π−1(∇E)f)(XH)µ(x) + f(LHµ(XH))(x).

A.2. Preliminaries on pseudo-differential calculus. In this section, we recall

some basic definitions and results about pseudo-differential calculus. All materials

in this section are classical and can be found in, say, Hormander [14].

A.2.1. Distributions and kernels. Let Ω ⊆ R be an open subset. We denote by

C∞c (Ω) the space of smooth compactly supported functions on Ω. The space C∞c (Ω)

is equipped with the C∞-topology:

un → u if sup
x∈K
|∂Ix(un − u)| → 0,

for any compact subset K and any multi-index I.

A distribution (on Ω) is a continuous linear map φ : C∞c (Ω)→ C. We shall denote

the space of distributions by

C∞c (Ω)′.

For any open subset U ⊂ Ω, the restriction of φ to U is defined to be the restriction of

φ to C∞c (U) (extended to C∞c (Ω) by 0). The support of φ, denoted Supp(φ) , is the

collection of points x ∈ Ω such that the restriction of φ to any open neighborhood

of x is non-zero. We say that φ ∈ C∞(Ω) if there exist κ ∈ C∞(Ω) such that

φ(u) =
∫

Ω
κ(x)u(x) dx, ∀u ∈ C∞c (Ω).
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Note that such κ, if it exists, is unique.

The most important result about distributions is the Schwartz distribution theo-

rem:

Lemma A.6. For any continuous map A : C∞c (M)→ C∞c (M)′, there exists a unique

continuous linear functional K : C∞c (M×M)→ C such that

(Af)(g) = K(f(x)g(y)), ∀f, g ∈ C∞c (M).

A.2.2. Pseudo-differential operators on a manifold.

Definition A.7. Let Ω be an open subset on Rn, and m ∈ R. A symbol of order

≤ m is a smooth function σ(x, ζ) ∈ C∞(Ω× Rn) such that for any compact K ⊂ Ω

and multi-index I, J , there is a constant CK
I,J such that∣∣∂Ix∂Jζ σ(x, ζ)

∣∣ ≤ CK
I,J(1 + |ζ|2)

m−|J|
2 ∀x ∈ K.

The set of symbols on Ω of order ≤ m shall be denoted by Sm(Ω); and define

S−∞(Ω) :=
⋂
m∈R

Sm(Ω),S∞(Ω) :=
⋃
m∈R

Sm(Ω).

Definition A.8. A symbol σl ∈ Sl(Ω) is called homogeneous of order l, if

σl(x, λζ) = λlσ(x, ζ), ∀x ∈ Ω, |λ| ≥ 1, |ζ| ≥ 1.

A symbol σ ∈ Sm(Ω) is said to be classical of order m,m ∈ Z if there are homoge-

neous symbols σm, σm−1, · · · , of orders m,m− 1, · · · respectively, such that

σ −
N−1∑
l=0

σm−l ∈ Sm−N (Ω)

for N = 1, 2, · · · .

The set of classical symbols of order m ∈ Z is denoted by S[m](Ω).

Definition A.9. Let M be a manifold. A function σ ∈ C∞(T ∗M) is called a symbol

of order ≤ m if for every coordinate patch (U,x),

σ ◦ (x∗) ∈ Sm(x(U)).

Here, we have identified T ∗(x(U)) ∼= x(U)× Rn. The symbol σ is said to be homo-

geneous (resp. classical) if σ ◦ (x∗) is homogeneous (resp. classical).
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The set of symbols of order ≤ m (resp. classical symbols of order m) is denoted

by Sm(M) (resp. S[m](M)).

Definition A.10. A pseudo-differential operator on Ω ⊆ Rn of order ≤ m is a linear

operator Ψ : C∞c (U)→ C∞(U) of the form

(Ψu)(x) = (2π)−n
∫
ζ∈Rn

∫
y∈Ω

σ(x, ζ)ei〈ζ,x−y〉u(y) dy dζ, u ∈ C∞c (Ω),

for some symbol σ ∈ Sm(Ω). If σ is classical, i.e., σ ∈ S[m](Ω),m ∈ Z, then we say

that Ψ is a classical pseudo-differential operator of order m.

Definition A.11. A pseudo-differential operator on a manifold M of order ≤ m is

a linear operator Ψ : C∞c (M) → C∞(M) such that for any coordinate patch (U,x),

the induced map

u 7→ (x−1)∗(Ψ(x∗u)), u ∈ C∞c (x(U))

is a pseudo-differential operator on x(U) ⊆ Rn of order ≤ m.

The set of pseudo-differential operators on M, of order≤ m (resp. classical pseudo-

differential operators of order m), is denoted by Ψm(M) (resp. Ψ[m](M)). We also

define

Ψ−∞(M) :=
⋂
m∈R

Ψm(M),Ψ∞(M) :=
⋃
m∈R

Ψm(M).

Note that Ψ−∞(M) =
⋂
m∈Z Ψ[m](M).

Definition A.12. Let Ψ ∈ Ψ∞(M) be a pseudo-differential operator with distri-

butional kernel κ(x, y). The support of Ψ , denoted SuppΨ , is defined to be the

support of κ. The operator Ψ is said to be properly supported if for any compact

subset K ⊂ M, the set

(K×M)
⋂

Supp(Ψ)

is a compact subset of M×M.

We denote the space of properly supported pseudo-differential operators of order

≤ m by Ψm
% (M). It is clear that a properly supported Ψ ∈ Ψ∞(M) extends uniquely

to a linear operator from C∞(M) to itself. It follows that the composition of two

pseudo-differential operators Ψ ◦ Φ is well defined whenever one of them is properly

supported.
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A.2.3. The symbol of a pseudo-differential operator. Fix a connection ∇ on

M. Then there is a neighborhood of the zero section Ω ⊂ TM such that the expo-

nential map exp∇ : Ω → M ×M is a diffeomorphism onto its image. Fix a smooth

function χ(x, y) supported on the image of exp∇ and equal to 1 on a smaller neigh-

borhood of the zero section. Define Θ(x, y) := χ(x, y) exp−1
∇ (x, y).

Definition A.13. Given a Ψ ∈ Ψm(M),m ∈ R. Define σ(Ψ) ∈ Sm(M) by

σ(Ψ)(ζ) := Ψ(ei〈ζ,Θ(x,·)〉χ(x, ·))(x), ζ ∈ T ∗xM.

The function σ(Ψ) is called the total symbol of Ψ with respect to (∇, χ).

If the total symbol σ(Ψ) is classical, i.e., there exists homogeneous symbols σm,

σm−1, · · · , of orders m,m− 1, · · · respectively, such that

σ −
N−1∑
l=0

σm−l ∈ Sm−N (M)

for N = 1, 2, · · · , then we say that Ψ is a classical pseudo-differential operator on M.

In this case, we define the principal symbol of Ψ as

σtop(Ψ) := σm.

We denote the space of classical pseudo-differential operators on M by Ψ[m](M).

Remark A.14. It can be shown that if the total symbol with respect to some (∇, χ)

is classical, then the total symbol with respect to any set of (∇′, χ′) is classical. Also,

it is well known that the principal symbol is independent of ∇ and χ.

The following lemma asserts that a pseudo-differential operator Ψ can be recovered

from its total symbol, up to a smoothing operator.

Lemma A.15. [12, Proposition 3.1] Any pseudo-differential operator Ψ on M can

be written in the form

(37) Ψu(x) =
∫
ζ∈T ∗xM

∫
y∈M

σ(ζ)e−i〈ζ,Θ(x,y)〉χ(x, y)u(y)dydζ +
∫
y∈M

κ(x, y)u(y)dy,

for some κ(x, y) ∈ C∞(M×M).
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A.2.4. Pseudo-differential operators between sections of vector bundles. It

is straightforward to generalize the notion of pseudo-differential operators to sections

of a vector bundle: Let E→ M be a vector bundle of rank k. Let (U,x) be a trivial

coordinate patch. Then any smooth section s ∈ Γ∞(E|U) can be regarded as a Ck-

valued smooth function on x(U). We say that a linear map Ψ : Γ∞c (E)→ Γ∞(E), is

a pseudo-differential operator if for any pair of standard basis vectors of Ck, ei and

ej , i, j = 1, · · · , k, the induced map

u 7→ 〈ei, (x−1)∗(Ψ(x∗uej)〉, u ∈ C∞c (x(U)),

is a pseudo-differential operator on x(U) ⊆ Rn.

We denote the set of pseudo-differential operator, of order ≤ m, on E → M by

Ψm(M,E), and so on.

It is clear that the notion of (total and principle) symbol of an element in Ψ(M,E)

can be generalized in a similar manner. However, in this case, the symbol is an

element in

Γ∞(℘−1(E⊗ E′)),

where ℘ : T ∗M→ M is the natural projection. Likewise, an operator Ψ ∈ Ψm(M,E)

is said to be elliptic if its principal symbol σ(ζ) is invertible (as a matrix) whenever

ζ 6= 0.

Finally, note that a smoothing operator on Γ∞c (E) is of the from

u 7→
∫
y∈M

κ(x, y)u(y)dy,

where κ(x, y) ∈ Γ∞(Ex ⊗ E′y), and the integrand is considered as a map from M to

Ex, for each x ∈ M.

A.3. Manifolds with bounded geometry. In this section, we a study special class

of manifolds, namely, manifolds of bounded geometry in the sense of Shubin [33].

Our objective is to define various Sobolev spaces, which would serve as the natural

domain for the pseudo-differential operators. We shall refer the general theory to

[18].

Definition A.16. A Riemannian manifold M is said to have bounded geometry if

(1) M has positive injectivity radius;

(2) The Riemannian curvature R of M has bounded covariant derivatives.
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A.3.1. Basic properties. Here, we recall some basic results concerning manifolds

of bounded geometry.

Lemma A.17. [33, Lemma 1.2] There exists ε0 > 0 such that for any 0 < ε < ε0,

there is a countable set {xα} ⊂ M such that the balls B(xα, ε) is a cover of M, and

any x ∈ M belongs to at most N balls B(xα, 2ε), for some N independent of x.

Recall that for every point x in a Riemannian manifold M, the exponential map is

a homeomorphism from an open neighborhood of 0 ∈ TxM to an open neighborhood

of x. Its inverse thus defines a local coordinate patch, known as the (geodesic) normal

coordinates (around x).

Lemma A.18. Let {(B(xα, ε),xα)} be a cover by normal coordinates patches, such

that the conclusion of Lemma A.17 holds. Then there exists a partition on unity θα
subordinated to {B(xα, ε)}, such that for any k ∈ N, all k-th order partial derivatives

of θα are bounded by some Ck, independent of α.

Definition A.19. Let M be a manifold with bounded geometry. A vector bundle

E → M is said to have bounded geometry if for any k ∈ N, there exist Ck > 0 such

that for any trivial normal coordinate patches, the all k-th order partial derivatives

of the transition function is bounded by Ck.

A.3.2. Sobolev spaces.

Definition A.20. Let E be a vector bundle of bounded geometry. Fix a normal

coordinates cover {(Uα,xα)} of M such that E|Uα is trivial, and a locally finite

partition of unity {θα} subordinated to {Uα}, as in Lemma A.18. Regard θαs as a

smooth vector valued function on Rn through local coordinates.

On Γ∞(E), define the ∞-norms

(38) ‖s‖∞,l := sup
α
{|∂Iθαs(x)| : x ∈ Uα, |I| ≤ l}

for each l ∈ N. We say that a section s ∈ Γ∞(E) has bounded derivatives if ‖s‖∞,l <
∞.

For each m ∈ R, define the 2-norms

(39) ‖s‖2,m :=
(∑

α

‖θαs‖2Wm(Uα)

) 1
2
,

where Wm(Uα) is the m-th Sobolev norm on Uα ⊂ Rn. We denote the completion

of Γ∞c (E) with respect to ‖ · ‖2,m by Wm(M,E).
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Observe that, since all transition functions are uniformly bounded, the equivalence

classes of these norms are independent of the choices made.

Remark A.21. For m ∈ Z, Wm(M) can be equivalently defined by the collection of

distribution u ∈ C∞c (M)′ such that LX1LX2 · · ·LXmu ∈ L2(M) for any collection of

vector fields X1, · · · , Xm with unit length.

As in the case of Rn, one has the Sobolev embedding

Lemma A.22. For any integer m, l such that m > l + n
2 ,

Wm(M) ⊆ C lb(M).

Furthermore, there exists a constant C, depending only on m, l, n, such that

‖u‖0,l ≤ C‖u‖2,m

for any u ∈Wm(M).

Corollary A.23. Let u ∈ Wm(M), where m > l + n
2 for some integer l. Fix any

point x0 ∈ M. For any ε > 0, there exist integer N0 such that for any integer

N > N0,

sup
x 6∈B(x0,N)

|u(x)|l ≤ ε.

Proof. Fix smooth functions χj , j ∈ N such that 0 ≤ χj ≤ 1, χj = 0 on B(x0, j), and

χj = 1 on M\B(x0, j + 1). Since χj → 0 as j → ∞, it follows that ‖χju‖2,m → 0.

By the previous Lemma, one has

sup
x 6∈B(x0,j)

|χj(x)u(x)|l = ‖χju‖0,l ≤ C‖χju‖2,m.

The assertion follows because

sup
x 6∈B(x0,j+1)

|u(x)|l = sup
x 6∈B(x0,j+1)

|χj(x)u(x)|l ≤ sup
x 6∈B(x0,j)

|χj(x)u(x)|l,

for all integer j. �

On a manifold with bounded geometry, a class of ‘uniformly bounded’ pseudo-

differential operators can also be defined. Fix any covering {Uα,xα} of M by normal

coordinates. Let Ψ ∈ ψm% (M). Recall that (x−1
α )∗ψx∗α is a pseudo-differential operator

on Uα. Let σα ∈ Sm(Uα) be the total symbol of (x−1
α )∗ψx∗α. Then we say that

Definition A.24. The pesudo-differential operator Ψ is uniformly bounded if
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(1) The support of Ψ is contained in the set

{(x, y) ∈ M×M : d(x, y) < r}

for some r > 0;

(2) For any multi-indexes I, J , there exists a constant CIJ , independent of α,

such that

|∂Ix∂Jζ σα| ≤ CIJ(1 + |ζ|)m−|J |.

We denote the set of all, uniformly bounded pseudo-differential operators of order

≤ m by Ψm
b (M).

Finally, we can state the main result on boundedness of pseudo-differential oper-

ators on Sobolev spaces.

Lemma A.25. For any Ψ ∈ Ψm
b (M,E), u ∈ Wl(M,E), Ψu ∈ Wl−m(M,E). Fur-

thermore, the map u 7→ Ψ(u) is a bounded map from Wl(M,E) to Wl−m(M,E).
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