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Abstract. Oceanic Anoxic Event 2 (OAE2), a ∼ 600 kyr

episode close to the Cenomanian–Turonian boundary

(ca. 94 Ma), is characterized by relatively widespread ma-

rine anoxia and ranks amongst the warmest intervals of

the Phanerozoic. The early stages of OAE2 are, however,

marked by an episode of widespread transient cooling and

bottom water oxygenation: the Plenus Cold Event. This cold

spell has been linked to a decline in atmospheric pCO2,

resulting from enhanced global organic carbon burial. To

investigate the response of phytoplankton to this marked

and rapid climate shift we examined the biogeographical

response of dinoflagellates to the Plenus Cold Event. Our

study is based on a newly generated geochemical and paly-

nological data set from a high-latitude Northern Hemisphere

site, Pratts Landing (western Alberta, Canada). We com-

bine these data with a semi-quantitative global compilation

of the stratigraphic distribution of dinoflagellate cyst taxa.

The data show that dinoflagellate cysts grouped in the Cy-

clonephelium compactum–membraniphorum morphological

plexus migrated from high to mid-latitudes during the Plenus

Cold Event, making it the sole widely found (micro)fossil to

mark this cold spell. In addition to earlier reports from re-

gional metazoan migrations during the Plenus Cold Event,

our findings illustrate the effect of rapid climate change on

the global biogeographical dispersion of phytoplankton.

1 Introduction

The Cenomanian–Turonian boundary interval (ca. 94 Ma)

was an episode of extreme warmth, with tropical and mid-

latitude sea surface temperatures exceeding 35 ◦C (e.g., Hu-

ber et al., 2002; Forster et al., 2007; Van Helmond et al.,

2014a). This interval corresponds to Oceanic Anoxic Event

2 (OAE2), during which an increase in the production of or-

ganic carbon and a reduction in the oxygen content of seawa-

ter resulted in unusually high organic matter content of ma-

rine sediments (e.g., Schlanger and Jenkyns, 1976; Jenkyns,

2010). The OAE2 interval is stratigraphically marked by a

positive carbon isotope excursion in all active carbon reser-

voirs, resulting from elevated organic carbon burial rates

(e.g., Tsikos et al., 2004).

The early stages of OAE2 are characterized by a short-

lived (ca. 40 kyr; Jarvis et al., 2011) colder interval as
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Figure 1. Biozonation, lithology, Plenus Marl beds (Jefferies, 1963) and δ13Ccarb (low-resolution data (dots and dotted line) derived from

Pearce et al., 2009; high-resolution data (solid line) derived from Paul et al., 1999) for the Cenomanian–Turonian boundary reference section

at Eastbourne, combined with occurrences of Boreal fauna (Gale and Christensen, 1996). On the right side the ranges of the different

definitions for the Plenus Cold Event are indicated.
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recorded in several marine paleotemperature records (e.g.,

Gale and Christensen, 1996; Forster et al., 2007; Sinninghe

Damsté et al., 2010). It was first recognized as the co-

occurrence of Boreal fauna with a positive oxygen iso-

tope excursion of about 1.5 ‰, recorded in biogenic cal-

cite from beds 4–8 of the Plenus Marl in mid-latitude shelf

sites of northwestern Europe (Gale and Christensen, 1996).

This interval was termed the “Plenus Cold Event” (PCE;

Fig. 1), after the Boreal belemnite Praeactinocamax plenus

(Blainville). Subsequently, the PCE was restricted only to

Bed 4 of the Plenus Marl, being the sole bed containing

abundant Boreal fauna (Voigt et al., 2006; Fig. 1). Bed 4 cor-

responds precisely to the upper trough and second build-up

of the carbon isotope excursion, the upper part of the Meto-

icoceras geslinianum ammonite zone and basal Whiteinella

archaeocretacea planktonic foraminifer zone (Gale et al.,

2005). More recently, Jarvis et al. (2011) extended the PCE

down to beds 2 and 3 of the Plenus Marl (Fig. 1), based on a

positive excursion in carbonate oxygen isotopes.

The PCE interval is characterized by a 3–7 ◦C cooling of

sea surface temperatures in the proto-North Atlantic and the

European shelf (e.g., Forster et al., 2007; Sinninghe Damsté

et al., 2010; van Helmond et al., 2014a, 2015). In several

regions, such as the Western Interior Seaway (Eldrett et al.,

2014) and proto-North Atlantic (e.g., Forster et al., 2007), the

stratigraphic position of the PCE is characterized by minima

in sediment organic carbon content and redox-sensitive ele-

ment concentrations, which indicates improved oxygenation

of bottom waters (e.g., van Helmond et al., 2014b). Further-

more the stratigraphic position of the PCE coincides with a

decline in atmospheric pCO2 (e.g., Kuypers et al., 1999; Sin-

ninghe Damsté et al., 2008; Barclay et al., 2010), which is

thought to be a consequence of enhanced sequestration of or-

ganic carbon in sediments during the early stages of OAE2

(e.g., Barclay et al., 2010; Sinninghe Damsté et al., 2010).

The incursion of Boreal fauna into lower latitudes has only

been documented for the European shelf. A causal relation

between pCO2 drawdown, sea surface cooling, bottom water

oxygenation and the PCE has been proposed (e.g., Forster et

al., 2007; Sinninghe Damsté et al., 2010; Jarvis et al., 2011;

van Helmond et al., 2014b).

Previously, it remained unclear as to whether the migra-

tion of Boreal fauna was related to a migration of multiple

components of marine food webs. Recently, van Helmond

et al. (2014a, 2015) showed that the first consistent pres-

ence (FCP; presence of multiple specimens in consecutive

samples) of dinoflagellate cysts (dinocysts) belonging to the

Cyclonephelium compactum–membraniphorum morphologi-

cal plexus (Ccm; see below for a detailed discussion on tax-

onomic status) in two sections on the proto-North Atlantic

and European shelf coincided with a cooling of sea surface

temperatures at the stratigraphic level of the PCE. To test

whether Ccm was truly a high-latitude taxon and whether

widespread migration of these dinoflagellates occurred dur-

ing the PCE, we studied a high-latitude site in northwestern

Alberta, Canada (Pratts Landing), and compiled a global dis-

tribution of Ccm across OAE2, calibrated using biostratigra-

phy and carbon isotope stratigraphy.

2 Materials and methods

2.1 Stratigraphic setting of the Pratts Landing section

In northwestern Alberta and northeastern British Columbia,

upper Cenomanian and Turonian strata of the Kaska-

pau Formation form a thick, mudstone-dominated and

northeastward-thinning wedge that spans the foredeep of the

Western Canada Foreland Basin (Varban and Plint, 2005).

Well-exposed sections in the Rocky Mountain Foothills on

the western margin of the foredeep can be correlated with

sections in the Peace River Valley, located close to the fore-

bulge. Correlation has been established by using abundant,

publicly accessible wireline log data (Fig. 2). Detailed corre-

lation through a grid of 756 wireline logs showed that 28

allomembers, bounded by marine flooding surfaces, could

be mapped across the foredeep (Varban and Plint, 2005).

In the western part of the foredeep, exemplified by the sec-

tion at Mount Robert (Figs. 2, 3), nearshore and shoreface

sandstones form stacked successions that prograded only 20–

40 km seaward from the preserved basin margin; shoreface

progradation was limited by a consistently high rate of flex-

ural subsidence (Varban and Plint, 2005, 2008). Traced east-

ward from Mount Robert, successive allomembers become

thinner and finer-grained, and some allomembers (e.g., al-

lomembers 7, 9, 10) pinch out completely before reaching

outcrop in the Peace River Valley, exemplified by the section

at Pratts Landing (Figs. 2, 3). The section at Pratts Land-

ing, which is the focus of this study, is located on the north-

ern bank of the Peace River (56◦01′14′′ N, 118◦48′47′′W;

Fig. 4) and comprises stacked siltier- and sandier-upward

successions, capped, at a prominent flooding surface, by

weakly bioturbated, organic-rich claystones and silty clay-

stones characterized by a very high radioactivity (i.e., bound-

ary of allomembers 6 and 8; Figs. 3, 5). Outcrop spectral

gamma ray profiles allow the Pratts Landing section to be

correlated with confidence to nearby wireline logs (Fig. 3).

In the west, the Cenomanian–Turonian boundary was rec-

ognized at the top of Kaskapau allomember 6 at Mount

Robert, based on the distribution of inoceramid bivalves

(Fig. 3). At that section, late Cenomanian Inoceramus ex

gr. pictus (Sowerby) is widely distributed through allomem-

bers 2 to 6, whereas Mytiloides puebloensis (Walaszczyk and

Cobban) is present 2 m above the allomember 6–7 contact,

indicating that the lowest zone of the Turonian is present in

the lower part of allomember 7 (cf. Kennedy et al., 2000).

The upper bounding surface of allomember 6 can be traced,

through well logs, for 220 km eastward to Pratts Landing,

where it corresponds to the sharp basal surface of a gypsum-

cemented silty claystone. That sharp surface, separating al-
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Figure 2. Map of northwestern Alberta and adjacent British Columbia showing distribution of well logs, cores and outcrops used to establish

the regional stratigraphic framework that forms the basis for the present study. Outcrop sections at Mount Robert in the west and Pratts

Landing in the east are correlated via wireline well logs (gamma ray and resistivity pairs).

lomembers 6 and 8, corresponds to an abrupt increase in ra-

dioactivity, and lies 25 cm below the first appearance of the

early Turonian inoceramids Mytiloides goppelnensis (Badil-

let and Sornay) and Mytiloides kossmati (Heinz; Figs. 3, 5).

The wireline log correlation shows that, at Pratts Landing, all

of allomember 7 is missing, and the earliest Turonian zone

of M. puebloensis also appears to be unrepresented, empha-

sizing the hiatal character of the allomember 6–8 boundary

(Fig. 3).

During the Late Cretaceous, the study site was located at

∼±5 61◦ N (van Hinsbergen et al., 2015; paleolatitude.org),

on the eastern flank of the foredeep, about 160 km from the

contemporaneous western shoreline of the Western Interior

Seaway (Varban and Plint, 2005, 2008). We generated car-

bon isotope and dinoflagellate cyst data across about 23 m of

upper Cenomanian to lower Turonian strata, based on stable

carbon isotope stratigraphy and inoceramid biostratigraphy

(Figs. 3, 6).

2.2 Stable isotope geochemistry

The carbon isotope composition of bulk organic carbon

(δ13Corg) was measured at 20 cm intervals across OAE2 in

order to constrain its exact position, and at 50 cm inter-

vals for the remainder of the section. Analyses were per-

formed in the Stable-Isotope Biogeochemistry Laboratory of

the School of Geography and Earth Sciences, McMaster Uni-

versity, Hamilton, Ontario, Canada. In total, 77 samples were

treated with 3 N HCl to remove carbonates, rinsed with dem-

ineralized water, freeze-dried and powdered. Between 1 and

3 mg of powdered sediment sample was weighed in tin cap-

sules and then put in a rotating carousel for subsequent com-

bustion in an elemental analyzer. After purification of the

gas sample it was passed through a SIRA II Series 2 dual-

inlet isotope-ratio mass spectrometer to determine the stable

carbon isotopic composition of organic matter. Carbon iso-

tope ratios were measured against an international standard,

NBS-21. The analytical reproducibility, based on replicate

samples, was better than 0.1 ‰.

2.3 Palynological processing

Dinocyst abundances were determined for 21 samples, cov-

ering the entire section, using standard palynological meth-

ods. About 5 g of freeze-dried sediment was processed fol-

lowing a standardized quantitative method (e.g., Sluijs et al.,

Biogeosciences, 13, 2859–2872, 2016 www.biogeosciences.net/13/2859/2016/
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Figure 3. Regional cross section (located in Fig. 2) showing how allomembers of the Kaskapau Formation can be correlated across the

foredeep from Mount Robert to Pratts Landing. Cross section is condensed from more detailed lines in Varban and Plint (2005). The

Cenomanian–Turonian boundary is shown as a broken line at the top of allomember 6. Note how allomember 7 laps out eastward onto

allomember 6, and that both allomembers 6 and 8 become increasingly radioactive towards the east. Spectral gamma ray profiles taken at

Pratts Landing confirm the correlation of the various stratal units at outcrop with their equivalents in subsurface. The inset stratigraphic logs

show more detailed representations of the lithological successions, gamma ray profiles, and the distribution of inoceramid bivalves at Mount

Robert and Pratts Landing. Detailed legend in Fig. 6.

2003), which involves the addition of a known amount of

Lycopodium marker spores (Stockmar, 1971). To dissolve

carbonates and silicates, HCl (∼ 30 %) and HF (∼ 38 %)

were added, respectively. After centrifugation, acids were

discarded. The remaining residues were sieved over a 15 µm

nylon mesh and the > 15 µm fraction was mounted on slides

for analysis by light microscopy. Samples were counted to a

minimum of 250 dinocysts, which were identified to genus

or species level at 500× magnification, following the taxon-

omy of Fensome and Williams (2004). All samples and slides

are stored in the collection of the Laboratory of Palaeobotany

and Palynology, Utrecht University, the Netherlands. All data

(δ13Corg and palynology) are listed in the Supplement (Ta-

ble S1).
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Figure 4. Map showing the southern part of Alberta. The study site

at Pratts Landing is located on the Peace River about 70 km east

of the Alberta–British Columbia border. Inset map shows details of

the Peace River area in the vicinity of the town of Fairview, with the

outcrop locality and access roads indicated.

2.4 Taxonomy and literature survey

Originally the cysts Cyclonephelium membraniphorum

(Cookson and Eisenack, 1962), which was renamed Cauveri-

dinium membraniphorum (Masure in Fauconnier and Ma-

sure, 2004), were differentiated from Cyclonephelium com-

pactum (Deflandre and Cookson, 1955), based on the gen-

erally higher and structurally ordered crests and membranes

of C. membraniphorum. Additionally, cysts of C. membra-

niphorum form a series of funnel-shaped structures bordering

unornamented mid-dorsal and mid-ventral areas. However,

the apparent morphological variation regarding ornamenta-

tion within the two species exceeds the defined difference

between the two species. Therefore, it was proposed to re-

fer to the dinocyst morphological complex Cyclonephelium

compactum–membraniphorum, rather than separating both

species (Marshall and Batten, 1988). We agree that the

two species are members of a morphological continuum

and therefore group all these morphotypes of this contin-

uum from our study site and the literature under the Cy-

clonephelium compactum–membraniphorum morphological

plexus (Ccm) (Fig. 7; Table 1). For the compilation of the

Figure 5. Field photographs of the Pratts Landing site. Photograph

(a) shows an overview of upper part of the section showing resis-

tant, gypsum-cemented ledge that marks a sharp erosional bound-

ary between two claystone units. Immediately above the boundary

there is a large increase in the uranium content of the sediment.

The early Turonian inoceramid bivalves Mytiloides goppelnensis

and Mytiloides kossmati appear 25 cm above the erosion surface.

Photograph (b) shows an overview of the lower part of the section

showing highly bioturbated silty sandstone of Kaskapau allomem-

ber 6, sharply overlain, at a major flooding surface (13.6 m level in

Fig. 6) by thinly bedded claystones. Rocks embracing the Plenus

Cold Event are represented by a 1.4 m thick, shallowing (sandier)-

upward succession bounded above by a major flooding surface. The

Cenomanian–Turonian boundary, marked by a resistant ledge, lies

at the 15.3 m level. Note that all of Kaskapau allomember 7 is absent

at the erosion surface marking the Cenomanian–Turonian boundary,

as illustrated in Fig. 3.

global biogeographical distribution of Ccm prior to, during

and after OAE2, a literature survey was conducted.

3 Results and discussion

3.1 Dinocyst biogeography

At Pratts Landing the OAE2 interval is recorded between

10.2 and 16.8 m, based on a 2 ‰ positive shift in δ13Corg

Biogeosciences, 13, 2859–2872, 2016 www.biogeosciences.net/13/2859/2016/
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Figure 6. Lithostratigraphy, detailed lithological log, δ13Corg, abundances of Cyclonephelium compactum–membraniphorum morphological

plexus (Ccm) and inoceramid bivalve stratigraphy for Pratts Landing. Sample intervals for palynology are indicated by horizontal black lines.

(Fig. 6). The Cenomanian–Turonian boundary is placed

at 15.3 m, at the sharp base of a 20 cm thick, heav-

ily gypsum-cemented silty claystone lacking macrofauna

(Fig. 5). The base Turonian marker inoceramid species

Mytiloides puebloensis was not found, but the succeeding

inoceramid zone, characterized by M. goppelnensis and M.

kossmati, starts approximately 25 cm above the basal sur-

face (Fig. 3). Ccm is a general constituent (1–4 %) of the

dinocyst assemblage at Pratts Landing throughout the sec-

tion, i.e., also below the onset of OAE2 (Fig. 6).

All localities (n= 35) with reported cysts of Ccm (i.e.,

Cauveridinium membraniphorum, Cyclonephelium mem-

braniphorum, Cyclonephelium compactum and/or Cy-

clonephelium compactum–membraniphorum) are listed in

Table 1 and shown in Fig. 8. The first common presence

(FCP) of Ccm could only be determined for 20 of the lo-

calities as a result of poor stratigraphic constraints and only

qualitative reporting of Ccm at the other 15 localities.

Recent dinocyst biostratigraphic studies from the East

Coast Basin, New Zealand, show that the FCP of Ccm was

ca. 500 kyr before the onset of OAE2 (Schiøler and Cramp-

ton, 2014). At northern high latitudes, notably Pratts Landing

and the Norwegian Sea (Radmacher et al., 2015), Ccm is a

consistent constituent of the dinocyst assemblage throughout

the late Cenomanian. In contrast, at most Northern Hemi-

sphere mid-latitude sites, Ccm has not been reported before

OAE2, with the exception of a few spot occurrences at East-

bourne and Iona-1 (Pearce et al., 2009; Eldrett et al., 2014).

Crucially, Ccm was never a consistent constituent of mid-

latitude dinocyst assemblages before OAE2. This indicates

that Ccm had a high-latitude biogeographical distribution in

both hemispheres before OAE2.

Five Northern Hemisphere shelf sites in Europe and

North America, namely Pratts Landing, Iona-1 (southwest-

ern Texas, USA), Bass River (New Jersey, USA), East-

bourne (East Sussex, UK) and Wunstorf (Lower Saxony,

Germany), were selected to compare established biozona-

tion, high-resolution records of δ13C, and the relative abun-

dances of Ccm (Fig. 9; Pearce et al., 2009; Eldrett et al.,

2014; van Helmond et al., 2014a, 2015). Maximum relative

abundances of Ccm (i.e., > 10 %) are recorded during the first

maximum in the OAE2 characterizing carbon isotope excur-

sion (point “A” – cf. Voigt et al., 2008), at Pratts Landing

(Figs. 6, 9). At the same stratigraphic position, Ccm becomes

abundant at several other Northern Hemisphere mid-latitude

sites, for example the southern part of the Western Interior

Biogeosciences, 13, 2859–2872, 2016 www.biogeosciences.net/13/2859/2016/
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Figure 7. Various specimens of the Cyclonephelium compactum–

membraniphorum morphological plexus (Ccm), gradually changing

from the C. membraniphorum end-member (a–c) to the C. com-

pactum end-member (g–i). Specimens (a) (England Finder coordi-

nates (EFc): U59/2-slide 1) and (i) (EFc: L70/1-slide 2) are from

Wunstorf sample 42.21 m.b.s. (meters below surface), specimen (b)

(EFc: H13-slide 1) is from Bass River sample 590.69 m.b.s, speci-

men (c) (EFc: R65/1-slide 1) is from Wunstorf sample 45.81 m.b.s,

specimens (d) (EFc: M59/2-slide 1) and (h) (EFc: V53/2-slide 1)

are from Pratts Landing sample 6.5 m, specimens (e) (EFc: E59/2-

slide 1) and (g) (EFc: T64/3-slide 2) are from Bass River sample

590.08 m.b.s, and specimen (f) (EFc: J8/1-slide 1) is from Pratts

Landing sample 12 m. Scale bars represent 50 µm.

Seaway, the proto-North Atlantic shelf, the European shelf,

and the Tethys (Figs. 8, 9; Table 1). Despite a spot occur-

rence at point “A”, the FCP of Ccm seems somewhat delayed

at Eastbourne (i.e., Plenus Marl Bed 7 – Fig. 9; Pearce et al.,

2009); this is a local phenomenon, because in other English

Chalk sections (e.g., Dodsworth, 2000) the FCP of Ccm co-

incides with that of other Northern Hemisphere mid-latitude

sites.

3.2 Ecology

At Bass River and Wunstorf the FCP of Ccm precisely cor-

relates with a drop in sea surface temperature (van Helmond

et al., 2014a, 2015), leading to the suggestion that the di-

noflagellate taxon that produced Ccm migrated to these sites

in response to climatic cooling. We therefore suggest that sea

surface temperature was the primary control on the biogeo-

graphical distribution of Ccm outside high-latitude regions.

For the Shell Iona-1 core the FCP of Ccm coincides with

a minimum in organic carbon, redox-sensitive elements and

relatively high abundances of benthic foraminifera and trace

fossils indicative of a period of improved oxygenation of bot-

tom waters (Eldrett et al., 2014). This is in agreement with

previous observations for the interval showing PCE-related

cooling of sea surface temperature in the proto-North At-

lantic (Forster et al., 2007; Sinninghe Damsté et al., 2010;

van Helmond et al., 2014b). The sustained presence of Ccm

after the PCE at all sites, except Bass River (Fig. 9), sug-

gests that, in addition to sea surface temperature, other envi-

ronmental and paleoceanographic factors became dominant

in determining the distribution of Ccm once it had occupied

niches at lower latitudes. For example, salinity, (enhanced)

nutrient availability and proximity to the shoreline may have

been important (Harris and Tocher, 2003). Preservation of

palynomorphs, e.g., dinocysts, is variable within sections and

between sections but is unrelated to the occurrences of cer-

tain species.

The migration of Ccm towards lower latitudes in response

to cooling resembles dinoflagellate migration events during

other periods of marked climatic change. Dinocysts refer-

able to the Arctic Paleogene taxon Svalbardella were en-

countered in mid- and low latitudes during the most pro-

nounced Oligocene glaciations (ca. 30–25 Ma; van Simaeys

et al., 2005). In contrast, during the Paleocene–Eocene Ther-

mal Maximum, tropical species of the dinocyst genus Apec-

todinium moved from low toward high latitudes in response

to peak warmth (Crouch et al., 2003; Sluijs et al., 2007).

Studies across the Cretaceous–Paleogene boundary indicate

initial high latitude to equatorial dinoflagellate migration at

the boundary, followed by a reverse migration. This presum-

ably took place in response to impact-related initial climatic

cooling followed by a return to warmer conditions (Brinkhuis

et al., 1998; Galeotti et al., 2004; Vellekoop et al., 2014).

The biogeographical expansion of Ccm towards the Equa-

tor seems to be a relatively strong response to a moder-

ate change in sea surface temperature (ca. 3–5 ◦C). The

southward migration of Ccm over relatively large distances,

i.e., 20–30◦ of latitude southwards, may have been ampli-

fied by the flatter meridional temperature gradients across

OAE2 (e.g., Sinninghe Damsté et al., 2010). Compared to

the present day, which is characterized by a much steeper

meridional temperature gradient, relatively small changes in

temperature in the mid-Cretaceous and early Paleogene may

have had a much larger impact on the distribution of marine

organisms.

3.3 A new stratigraphic marker

Most of the Cretaceous is covered by the Normal Super-

chron C34n (ca. 126–84 Ma; Gradstein et al., 2012), hamper-

ing application of magnetostratigraphy. Stratigraphic correla-

tion for the Cenomanian–Turonian boundary interval there-

www.biogeosciences.net/13/2859/2016/ Biogeosciences, 13, 2859–2872, 2016
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fore relies on biostratigraphy and carbon isotope stratigra-

phy (Gale et al., 2005) as well as on recent advances in

astrochronology (e.g., Meyers et al., 2012; Eldrett et al.,

2015). Pelagic sediments are often carbonate-poor, because

the calcite compensation depth was relatively shallow during

OAE2, complicating planktonic foraminifer and calcareous

nannofossil biostratigraphy (e.g., Erba, 2004). Consequently,

carbon isotope stratigraphy is the main stratigraphic tool for

OAE2 because the positive carbon isotope excursion is rec-

ognized in all active carbon reservoirs (Tsikos et al., 2004).

Calibration of carbon isotope stratigraphy with bioevents is,

however, essential to establish detailed stratigraphic frame-

works.

The coincidence of the FCP of Ccm with the base of the

W. archaeocretacea and the upper part of the M. geslinianum

zones close to the first maximum in the positive carbon iso-

tope excursion (point “A”; Fig. 9) suggests that dinoflagel-

late migration probably occurred within thousands to 10 000

years. The FCP of Ccm thus represents a useful biostrati-

graphic marker, being, to date, the only widely found mi-

crofossil to mark the PCE, except at high latitudes.

4 Conclusions

A global compilation of dinocyst assemblage records com-

bined with new data from a high-latitude site spanning

OAE2 illustrates the migration of dinoflagellates, which pro-

duced the dinocyst morphological complex Ccm, from high-

latitudes to mid-latitudes during the early stages of OAE2

(latest Cenomanian). The first consistent presence of this

taxon at mid-latitudes correlates with the stratigraphic po-

sition of the Plenus Cold Event, following its original def-

inition by Gale and Christensen (1996), making it the sole

widely distributed microfossil to mark this cold spell. The

coincidence of the first consistent presence of Ccm in the

mid-latitudes with this transient cooling implies lasting re-

organization of phytoplankton biogeography in response to

rapid climate change during the Late Cretaceous super-

greenhouse. The migration of Ccm in response to climatic

cooling resembles previously recognized dinoflagellate mi-

gration events during comparable periods of transient climate

change, e.g., the Oligocene glaciations and the Paleocene–

Eocene Thermal Maximum.

The Supplement related to this article is available online

at doi:10.5194/bg-13-2859-2016-supplement.
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Figure 9. Overview of δ13Corg and/or δ13Ccarb, abundances of Cyclonephelium compactum–membraniphorum morphological plexus (Ccm)

and foraminiferal and/or ammonite zonation for the studied sections. (a) Shell Iona-1 core (Eldrett et al., 2014). (b) Pratts Landing (this

study). (c) Bass River (van Helmond et al., 2014a); open symbols are δ13Corg derived from Bowman and Bralower (2005). (d) Eastbourne

(Pearce et al., 2009); high-resolution δ13Ccarb data derived from Paul et al. (1999). (e) Wunstorf – relative abundances of Ccm from van

Helmond et al. (2015), δ13Corg from Du Vivier et al. (2014) and δ13Ccarb from Voigt et al. (2008); a red cross marks a barren sample. Age

is from the astronomically tuned age model for the Shell Iona-1 core (Eldrett et al., 2015). Dashed line represents the first maximum in the

carbon isotope excursion, point “A” (cf. Voigt et al., 2008). Solid lines represent the Cenomanian–Turonian boundary. The blue shaded area

represents the Plenus Cold Event according to its original definition (Gale and Christensen, 1996), the cooling in reconstructed sea surface

temperatures at Bass River and Wunstorf (van Helmond et al., 2014a, 2015), and the (re)oxygenation of bottom waters in the Shell Iona-1

core (Eldrett et al., 2014). Note: the sections are plotted using different depth scales.
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