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Abstract

In this thesis there is a detailed note on LDPC codes history and types. There are many standards
such as IEEE802.16e, IEEE802.11ad, IEEE802.11n, Telemetry systems etc. use LDPC codec for their
implementation. There are simulation models for the physical layers of IEEE802.16e and Telemetry
system are developed. Both the simulated models have been analyzed as per the standard specified
rates and code sizes.For IEEE802.16e the codeword length "N’ varies from 576 to 2304 with six
different data rates.In this standard physical layer implementation different modulation schemes are
considered such as QPSK, 16-QAM and 64-QAM. Telemetry system is been analyzed for message
block lengths of 1024, 4096 with three different rates specified. In this standard physical layer
implementation the modulation schemes considered are QPSK and 16-QAM. The decoder used for
both standards is Bit-flipping algorithm.
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Chapter 1

Introduction to LDPC

Low-density parity-check (LDPC)[2] codes are forward error-correction codes, first proposed in the
1962 PhD thesis of Gallager at MIT, but were not used due to practical constraints. LDPC codes
are rediscovered later by McKay and Neal.Design techniques for LDPC codes exist which enable the
construction of codes which approach the Shannons capacity to within hundredths of a decibel. LDPC
codes have already been adopted in satellite-based digital video broadcasting, long-haul optical
communication standards, IEEE wireless local area network standards.

The LDPC code is a linear block code. This type of code maps a block of k information bits
together with a codeword (or codeblock) of n bits. LDPC codes are codes with parity-check matrices
that contain only a very small number of non-zero entries. It is the sparseness of H which guarantees
both a decoding complexity which increases only linearly with the code length and a minimum
distance which also increases linearly with the code length.

An LDPC code parity-check matrix is called (W, W,.) regular if each code bit is contained in a
fixed number,W,, of parity checks and each parity-check equation contains a fixed number, W, of
code bits

For an irregular parity-check matrix we designate the fraction of columns of weight i by v; and
the fraction of rows of weight ¢ by h;. Collectively the set v and h is called the degree distribution
of the code.

A regular LDPC code will have,

m.W, =nW,

ones in its parity-check matrix. Similarly, for an irregular code

1.1 Different types of LDPC construction:

1.1.1 Gallager’s LDPC

The original LDPC codes presented by Gallager are regular and defined by a banded structure in
H. The rows of Gallagers parity-check matrices are divided into W, sets with M/W. rows in each

set. The first set of rows contains W,. consecutive ones ordered from left to right across the columns.



Every other set of rows is a randomly chosen column permutation of this first set. Consequently
every column of H has a 1 entry once in every one of the W, sets.

A length 12(3,4) regular Gallager parity-check matrix is:
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1.1.2 MacKay and Neal LDPC

Another common construction for LDPC codes is a method proposed by MacKay and Neal. In this
method columns of H are added one column at a time from left to right. The weight of each column
is chosen to obtain the correct bit degree distribution and the location of the non-zero entries in each
column chosen randomly from those rows which are not yet full. If at any point there are rows with
more positions unfilled then there are columns remaining to be added, the row degree distributions
for H will not be exact. The process can be started again or back tracked by a few columns, until
the correct row degrees are obtained.

A length 12(3,4) regular MacKay and Neal parity-check matrix is:
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1.1.3 Repeat-Accumulate LDPC construction:

A repeat-accumulate (RA) code is an LDPC code with an upper triangular form already built into
the parity-check matrix during the code design. An mXn RA code parity-check matrix H has two

parts:

HZ[HliHQ]



where Hs is an mXm matrix with the form:

1 0 0 0 0 0
1 1 0 0 0
11 0 0 0
H'EZ : - :
0 0 0 1 0 0
o 00 -« 1 -
L0 00 01 1|

The parity-check matrix of an RA code is called (g, a)-regular if the weight of all the rows H;
of are the same, a, and the weight of all the columns of H; are the same, q. Note that a regular RA
parity-check matrix has columns of weight 2, and one column of weight 1, in Hy and so is not regular
in the sense of (j, r)-regular LDPC codes. An irregular RA code will have an irregular column weight
distribution in Hy, with Hy the same as for a regular code.

A(3,2)-regular RA parity-check matrix for length 10 rate % code is:

1 .1 . 1 7
1 .11 1
11 . . .11

H= 11 . . 11
1 .1 11 .
L1 L1 11 |

1.1.4 Quasi-cyclic codes

A code is quasi-cyclic if for any cyclic shift of a codeword by c places the resulting word is also a
codeword, and so a cyclic code is a quasi-cyclic code with ¢ = 1. The simplest quasi-cyclic codes are

row-circulant codes which are described by a parity-check matrix

H = [A17 A2a 7Al}a

where A1, ..., A; are binary vXv circulant matrices.
Provided that one of the circulant matrices is invertible (say A;) the generator matrix for the

code can be constructed in systematic form

(A7'A)T
Tya-1 (A7 14T

(A7 AT

resulting in a quasi-cyclic code of length vl and dimension v(1 1). As one of the circulant matrices

is invertible, the construction of the generator matrix in this way necessarily leads to a full rank H.



1.1.5 Block circulant quasi-cyclic codes

More general quasi-cyclic codes are the block circulant codes. The parity check matrix of a block

circulant quasi-cyclic LDPC code is:

1y 1y 1y o Iy
Ip Ip(pl,l) Ip(pl,Q) S Ip(pl,wr)
Iy Ip(pwe—1,1) Ip(Pwe—12) -+ Ip(Pwe—1w.—1)

where I, represents the pxXp identity matrix and I,(p; ;) represents the circulant shift of the
identity matrix by r + p; j(modp) columns to the right which give the matrix with the r-th row
having a one in the (r+p; jmodp)-th column. Block circulant LDPC codes can have better minimum

distances and girths than row-circulant codes.

1.2 Encoding

Generator matrix for a code with parity-check matrix H can be found by performing Gauss-Jordan

elimination on H to obtain it in the form

H=1[A I

Where A is a (nk) Xk binary matrix and I, is the size n k identity matrix. The generator matrix

is then

G = [I;, AT]

For example let H be parity-check matrix of length n=10 and rate:% is

1101100100
0110111000
H=|)0001000T1T11
1100011010
0010010101

The matrix H is applied elementary row operations in GF(2), and is reduced to row-echelon form.

1 0000O0OT1T1T10
01 000D1OD0T1O0O0
Hr=|0010010101
000100OD0T1T11
00D0O0OT1T1T1O0O0T1

Finally by using column permutations the matrix is converted into standard format.



011101000PO0
1 0100010O0°O0
Hyqg=|1 0 1 01 001 00
00111000O0T1PO0
11001000071

Finally, a generator G for the code with parity-check matrices Hgq and H is given by

1000001101
0100010001
G=|00100111T10
0001010010
00001 O0O0T1TT11

And the codeword can be now generated from the G matrix.
c=uG

where c is the codeword generated and w is the input bit stream.



Chapter 2

LDPC Performance in
TEEE802.16e(WiMAX)

2.1 Introduction to WiMax

WiMax (Worldwide Interoperability for Microwave Access) is a wireless broadband technology, which
supports point to multi-point (PMP) broadband wireless access. WiMax is basically a new shorthand
term for IEEE Standard 802.16[1], which was designed to support the European standards.The IEEE
wireless standard has a range of up to 30 miles, and can deliver broadband at around 75 megabits
per second.The original version of the standard on which WiMAX is based (IEEE 802.16) specified
a physical layer operating in the 10 to 66 GHz range. 802.16a, updated in 2004 to 802.16-2004,
added specifications for the 2 to 11 GHz range.There number of applications of WiMax including
broadband connections, cellular backhaul, hotspots, etc. It is similar to Wi-Fi, but it can enable

usage at much greater distances

2.2 Channel coding in Wimax

Channel coding procedures including randomization, FEC encoding, and modulation.The physical

layer design of WiMax is as shown in the figure below:

Input bit stream
Randomizer LDPC Encoder Modulation
AWGN
Channel
Derandomizer LDP;: DeModulator
Final data Decoder

Figure 2.1: Physical layer of IEEE802.16e
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Figure 2.2: Randomizer

2.2.1 Randomizer

The raw data is randomized before getting encoded.The randomizer is shown in the figure below.
The randomizer is initialized with the vector [LSB]01101110001010 1 [MSB]

2.2.2 LDPC encoder

WiMax 802.16e LDPC code supports six different code classes with four different code rates. All six
code classes have same general matrix structure that allows linear encoding scheme which simplifies
decoding process significantly.

The parity-check matrix given has 24 colums and(1-rate)*24 rows with each entry describing
7Zx7 submatix, which is either a permuted identity matrix or a zero matrix.Z varies from 24 to 96

in steps of supporting variable codeword sizes ranging from 576-2304.
Codewordlength = Z % 24

The parity check matrices of LDPC codes for all six code classes are given and they are examples
for RA-LDPC codes.

The given model parity matrices given are for codeword length 2304.This parity check matrix
has to be converted to required model matrix according to required codeword length which depends
on the expansion factor Z.From expanding the model matrix in binary format we get out sparsely
constructed H.Since the LDPC code is RA-LDPC code we can generate systematic generator G
from sparsely spread parity check matrix. Each 0 in the model matrix implies ZxZ identity matrix.
-1 implies ZxZ zero matrix.

The Model matrices for N=2304 for all different rates are as follows:

There are two code classes for rate % ie %A— for highly regular codes, %B for semi regular codes.

Rate %A and B differ mainly in the maximum variable node degree to be supported.

2.2.3 H matrix generation from model matrix

e Get a model matrix for the given rate.

e For the required codeword length get the expansion factor Zf as per the table given.



Rate 1/2:
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: Parity matrix for N=2304 with rate 1/2
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Parity matrix for N=2304 with rate 2/3a

-1

-1
27
-1
14
1
61

36 -1
-1 16
85 -1
-1 88
66 -1
-1 0
85 -1
-1 84

82 -1
-1 37
16 -1
-1 5
24 -1
-1 30
5 -1
-1 55

47
-1
34
-1
50
-1

-1

15
-1
73
-1
62
-1
52

-1

48
-1
37
-1

-1
41

-1
-1
0

-1
-1
-1
-1

Parity matrix for N=2304 with rate 2/3b
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Parity matrix for N=2304 with rate 3/4a
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Rate 3/4 B code:
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Rate 5/6 code:

-1
51
68

81
-1
-1

2
53
-1

25

6
81
-1

Figure 2.9: Table for Codeblock adjustment and Expansion factor

-1
14
20
-1
60
-1

55
-1
83
50

28 -1 -1 14 25 17 -1 -1 85 20 52 78 95 22 92 0 O
68 32 -1 -1 -1 -1 70 43 11 36 40 33 57 38 24 -1 0O
-1 -1 63 39 -1 70 67 -1 38 4 72 47 29 60 5 B0 -1
2163 -1 -1 3 51 -1 81 15 94 9 85 36 14 19 -1 -1
g0 -1 26 75 -1 -1 -1 -1 8 77 1 3 72 60 25 -1 -1
-1 15 28 -1 35 -1 72 30 68 85 84 26 64 11 89 0 -1
Figure 2.7: Parity matrix for N=2304 with rate 3/4b
-1 47 4 -1 91 84 B8 86 52 82 33 5 0 36 20 4 77
36 40 47 12 79 47 -1 41 21 12 71 14 72 0 44 49 0
467 -1 21 -1 31 24 91 61 81 9 8 78 60 88 67 15
15 -1 36 13 10 11 20 53 90 29 92 57 30 84 92 11 66
Figure 2.8: Parity matrix for N=2304 with rate 5/6
k (bytes) Number of subchannels
n (bits) n (bytes)
R=112 R=23 R=3/4 QPSK 16QAM 64QAM
576 72 36 48 54 6 3 2
672 84 Py 56 63 7
768 96 48 64 72 8 4
864 108 54 72 81 9 3
960 120 60 80 % 10 5
1056 132 66 88 99 1
1152 144 2 96 108 12 6 1
1248 156 78 104 117 13
1344 168 84 112 126 14 7
1440 180 9% 120 135 15 5
1536 192 96 128 144 16 8
1632 204 102 136 153 17
1728 216 108 144 162 18 9 6
1824 228 114 152 171 19
1920 240 120 160 180 20 10
2016 252 126 168 189 21 7
2112 264 132 176 198 E2) 11
2208 276 138 184 207 23
2304 288 144 192 216 24 12 8
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e 70=96. since the model matrix is defined for N=2304.

e Now calculate each entry of the model matrix for required rate and codeword length by fol-

lowing steps

_ 13
For code rates 5, §

size corresponding to expansion factor zf are derived from p(i,j) by scaling p(i, j) pro-

AandBcode, %Bcode7 and%coderates, the shift sizes p(f, i, j) for a code
portionally.

plij)p(ij)£0

pLij) = [ {pli:fJ:fJ,w‘J.bo
0

— For code rate %A model matrix H is calculated as

o ptppin <o
10,j) =
P J[mod(p(m;f:.plf.f;>o

e Now Convert the model matrix into binary parity check matrix by applying appropriate shifts

as given in the model matrix.

e Now we got our parity check matrix but it is not in systematic form.

2.2.4 Systematic Generator matrix(kxn) construction from H(mxn)

1 The H we have is man parity check matrix.

2 Divide it into following matrices.
A B T

C D E

3 A is of size (m — 2) Xk B is of size (m — 2) Xz T is of size (m — z)X(m — z) C is of size z Xk

D is of size zXz E is of size zX (m — z)
4 Now compute the following
— Pl=ET 'A+C

— P} =T"'(A+ BP))

— P =[P, P,

5 Now we can write G as
G = Iy, P]

The G we got is systematic Generator.
For N=576 and rate 1/2 G and H are

10
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Figure 2.11: Parity matrix for N=2304 with rate 1/2
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2.2.5 Modulator and AWGN channel

This block modulates the LDPC coded bits into corresponding modulation scheme. Here we are
considering QPSK, 16-QAM and 64-QAM modulation schemes. The channel is just an additive white
gaussian noise channel and the factor we are varying is signal to noise ratio(SNR). For different SNRs,
the channel effect is different. Better the SNR, better to decode so that the received signal contains

less errors.

2.2.6 LDPC Decoder

Hard decision decoder deals with the bit stream. This bit stream is obtained after demodulating
the received signal. We consider bit flipping algorithm for hard decision decoding.
For Hard decision decoding, bit flipping algorithm is considered. This algorithm takes the

demodu- lated bits from the demodulator. The steps involved in this algorithm are
e Compute the syndrome r x H”

If the syndrome vector is zero, the code word is without errors.

For each bit , compute the unsatisfied parity checks.

Flip the set of bits for which unsatisfied checks are more.

Compute the syndrome again, if it satisfies stop. otherwise repeat upto certain no. of times

and declare as decode failure.

2.2.7 Results

Simulations are done for all rates with N=576 and the BER plots are given below.Different Modu-
lation schemes were considered for the simulation.Hard bit-flip decoder works well when compared
to SPA.Time taken by Hard bit-flip is less. So we can conclude that Hard BF algorithm is efficient
for the given LDPC encoder.

Comparision of Sum-product algorithm and Hard bit-flipping algorithm is also done and the

result is as follows

12
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Figure 2.16: SNR vs BER for rate=3/4b
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Figure 2.17: SNR vs BER for rate=5/6
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Chapter 3

Telemetry Systems

3.1 Introduction

Telemetry[3] is an automated communications process by which measurements and other data are
collected at remote or inaccessible points and transmitted to receiving equipment for monitoring.It
also encompasses data transferred over other media such as a telephone or computer network, optical
link or other wired communications like phase line carriers. Many modern telemetry systems take
advantage of the low cost and ubiquity of GSM networks by using SMS to receive and transmit
telemetry data.

There are wide variety of application for telemetry and like any other tele communication fields

these systems also have standards such as IRIG.

3.2 Modelling of Telemetry system

The Raw data is randomized and then given to LDPC encoder. In the given standard the input
block length is 1024 or 4096. and data rates are %, %and%. After encoding the data is modulated
with different modulation schemes such as QPSK and 16-QAM.Then data is passed through an

AWGN channel and received at the receiver.

3.2.1 LDPC encoder

The LDPC codes presented are intended to decrease error probabilities in a primarily noisy trans-
mission channel for use in the aeronautical mobile telemetry (AMT) test environment.

The LDPC code is a linear block code with options for n,k, where n is the length of the code
block and textitk is the length of the information block. An LDPC code can be entirely defined by
its parity check matrix, H. The k X n generator matrix that is used to encode a linear block code
can be derived from the parity check matrix through linear operations. Code rates, r, chosen for
this AMT application are 1/2, 2/3, and 4/5. Information block sizes (k) are 1024 and 4096 bits.
Given the code rate and information block sizes, codeword block sizes are calculated using n = k/r.

The LDPC used in telemetry sytem is QC-Block circulant LDPC.

The code block length and information block length for different rates is tabulated in next page
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Information Block

Codeblock Length, n

Length. & Rate 1/2 Rate 2/3 Rate 4/5
1024 2048 1536 1280
4096 8192 6144 5120

Figure 3.1: Table for Codeblock length for different rates

Information Block

Submatrix size M

Length. & Rate 1/2 Rate 2/3 Rate 4/5
1024 512 256 128
4096 2048 1024 512

Figure 3.2: Table for Sub-matrix sizes M

The k X n generator matrix G shall be used to encode a linear block code. The matrix G can
be derived from the parity check matrix H.

Parity matrix generation
For each n,k a parity check matrix H is constructed from size M X M submatrices.The sizes of M
is given in the table below: The H matrices for each code rate are specified below. I is the M x M
identity matrix and 0p; is the zero matrix.

Parity Check Matrices

_O.Il Oy Iy Oy I, ®T],
Hy, =1y Iy 0y Iy IL, &I, ®1I,
| 7 s ®II 0y II, ®TI Iy
0y 0y Oy Oy Iy 0y 1, @1,
Hy = |, @11, @11, Iy Iy Iy 0y Iy 1L, ®1I, @11,
L Iy o, el @IL, 1, IL;®I, 0, I, &I Iy
0y 0y 0y 0y Oy Oy
Hys =| 11, 11, ®11,, Iy I, @I, @Il Iy I, @11,, @11, I, Hy
L 1y I, ®11,; @11, Iy 1, ®11,, ®11,, Iy L, ®I1,; ®II,,

Permutation matrix IT has non-zero entries in row ¢ and column entries are defined by IIj(z) for
i€ 0,1, M —1

7 (i)= % (8, + |_4f IM J)mod 4)+ (g, (|_4? IM J)-i- f)mod%

wheredy, and @ (j) are defined for each submatrix size as follows
Code Rate =1/2, Information Block Size = 1024, M = 512

k | G | gl0M) | g(1.M) | $u(2.M) | $(3.M)
1 3 16 0 0 0

2 0 103 53 8 35

3 1 105 74 119 97

4 2 0 45 89 112

5 2 50 47 31 64

6 3 29 0 122 93

7 0 115 59 1 99

8 1 30 102 69 94
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Code Rate =1/2, Information Block Size = 4096, M = 2048

k| 6 | ¢(0.M) | g1 M) | $u(2.M) | $x(3.M)
1 3 108 0 0 0
2 0 126 375 219 312
3 1 238 436 16 503
4 2 481 350 263 388
5 2 96 260 415 48
6 3 28 84 403 7
7 0 59 318 184 185
8 1 225 382 279 328
Code Rate =2/3, Information Block Size = 1024, M = 256
k| Gk | g(0.M) | g(1.M) | $u(2.M) | ¢u(3.M)
1 3 59 0 0 0
2 0 18 32 46 44
3 1 52 21 45 51
4 2 23 36 27 12
5 2 11 30 48 15
6 3 7 29 37 12
7 0 22 44 41 4
8 1 25 29 13 7
9 0 27 39 9 2
10 | 1 30 14 49 30
11| 2 43 22 36 53
121 0 14 15 10 23
13| 2 46 48 11 29
14| 3 62 55 18 37
Code Rate =2/3, Information Block Size = 4096, M = 1024
k| G | g0M) | g(1.M) | §(2. M) | $i(3.M)
1 3 160 0 0 0
2 0 241 182 35 162
3 1 185 249 167 7
4 2 251 65 214 31
5 2 209 70 84 164
6 3 103 141 206 11
7 0 90 237 122 237
8 1 184 77 67 125
9 0 248 55 147 133
10 | 1 12 12 54 99
11 ] 2 111 227 23 105
12 ] 0 66 42 03 17
13| 2 173 52 20 97
14 | 3 42 243 197 91
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Code Rate =4/5, Information Block Size = 1024, M = 128

& | B: | 00 | LM | gu2.0D) | gu3.0D)
1 3 1 0 0 0
2 [0 2= 27 12 13
ElI 0 30 30 19
4 2 26 28 18 14
5 2 0 7 10 15
6 | 3 10 1 16 20
7] 0 5 8 13 17
8 1 18 20 9 4
9 [0 3 26 7 1
0|1 2 24 15 11
1] 2 3 1 16 17
12 0 8 12 18 20
3|2 25 23 1 5
14| 3| 25 15 23 22
15 0 2 15 5 19
16 1 27 22 3 15
17| 2 7 31 29 5
18] 0 7 3 11 21
19 1 15 29 4 17
20| 2 10 21 5 )
21| 0 4 2 2 20
2|1 19 5 11 18
23 2 7 11 11 31
24| 1 9 26 3 13
25| 2 | 26 9 15 2
26 3 17 17 13 18

Code Rate =4/5, Information Block Size = 4096, M = 512

k| & | g(0.M) | g(1.M) | $2.M) | §(3.M)
1 3 16 0 0 0
2 0 103 53 8 35
3 1 105 74 119 97
4 2 0 45 89 112
5 2 50 47 31 64
6 3 29 0 122 93
7 0 115 59 1 99
8 1 30 102 69 94
9 0 92 25 92 103
10 | 1 78 3 47 91
11 ] 2 70 38 11 3
1210 66 65 31 6
13 ] 2 39 62 19 39
14 | 3 84 68 66 113
1510 79 91 49 92
16 | 1 70 70 81 119
17 ] 2 29 115 96 74
18] 0 32 31 38 73
19 11 45 121 83 116
20 2 113 45 42 31
21 | O 86 56 58 127
22 | 1 1 54 24 98
2312 42 108 25 23
24 11 118 14 92 38
25 | 2 33 30 38 18
26 | 3 126 116 120 62

In the standard directly systematic G is been given and Dimensions of G for different code rates are

as shown above

20



Information Block Generator Matrix (G) Size
Length. Rate 1/2 Rate 2/3 Rate 4/5
1024 1024 < 2048 1024 < 1536 1024 < 1280
4096 4096 = 8192 4096 = 6144 4096 = 5120

Figure 3.3: Generator matrix size for different rates

3.2.2 Modulator and AWGN channel

This block modulates the LDPC coded bits into corresponding modulation scheme. Here we are
considering QPSK, 16-QAM and 64-QAM modulation schemes. The channel is just an additive white
gaussian noise channel and the factor we are varying is signal to noise ratio(SNR). For different SNRs,
the channel effect is different. Better the SNR, better to decode so that the received signal contains

less errors.

3.2.3 LDPC Decoder

Hard decision decoder deals with the bit stream. This bit stream is obtained after demodulating
the received signal. We consider bit flipping algorithm for hard decision decoding.
For Hard decision decoding, bit flipping algorithm is considered. This algorithm takes the

demodu- lated bits from the demodulator. The steps involved in this algorithm are

e Compute the syndrome r x HT

If the syndrome vector is zero, the code word is without errors.

For each bit , compute the unsatisfied parity checks.

Flip the set of bits for which unsatisfied checks are more.

Compute the syndrome again, if it satisfies stop. otherwise repeat upto certain no. of times

and declare as decode failure.

3.2.4 Results

The BER is calculated after the stream of bits received are demodulated and decoded and the plots
are plotted.Below the plots for SNR vs BER are shown for both block sizes 1024 and 4096 with rates
1/2,2/3 and 4/5.
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SNR vs BER PLOT 1024x2048 with rate 1,2
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Figure 3.4: SNR vs BER for information block 1024,rate 1/2
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Figure 3.5: SNR vs BER for information block 1024,rate 2/3



SMNR vs BER PLOT N=1024 with rate 4/5
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Figure 3.6: SNR vs BER for information block 1024,rate 4/5

SMNR vs BER PLOT N=4095 with rate 1.2
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Figure 3.7: SNR vs BER for information block 4096,rate 1/2
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SMNR vs BER PLOT N=4056 with rate 2/3
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Figure 3.8: SNR vs BER for information block 4096,rate 2/3

SMNR vs BER PLOT N=4095 with rate 4/5
10 T T T T

—qgpsk
— 16-0AM

BER
L1l Ll

o
[ ]
EN
m
w
=
]

SNR

Figure 3.9: SNR vs BER for information block 4096,rate 4/5

24



References

[1] IEEES02.16e Standard.
[2] Introducing Low-Density Parity-Check Codes: Sarah J. Johnson

[3] APPENDIX R:Low-Density Parity Check Codes for Telemetry Systems

25



