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Abstract

Acoustic models plays a very important role in many speech applications like speech recognition,

spoken term detection, topic classification, language identification etc. Acoustic segment modeling

(ASM) is a method to build acoustic models based on acoustic similarities of speech segments.

Typically, the standard process of training acoustic models is supervised which has attained

great success in past. The issue with supervised techniques is the availability of large amount of

transcribed data and language-specific knowledge. Transcribing the speech data is time consuming,

tedious and demands a lot of expert human labour, and hence expensive.

This work is focused on building acoustic models in an unsupervised scenario, where only un-

transcribed speech recordings are available. The main objective of unsupervised acoustic modeling

to recognize the basic units of a spoken language, to tokenize speech utterances and to build the cor-

responding acoustic models. The framework consists of three stages - Initial segmentation, segment

labeling and iterative modeling. This work concentrated on first two stages. Utterances are first

segmented and similar segments are clustered in an unsupervised manner. The clusters obtained are

termed as ASM units.

We implemented a Language Identification System using unsupervised clustering techniques on

few languages. We checked performance of system using multiple test files from these languages.
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Chapter 1

Introduction

Acoustic Segment modeling (ASM) is an unsupervised of modeling the acoustic units present in

speech signals. It is used to model the underlying phoneme like speech units into various classes.

These classes are called ASM units. Acoustic Segment modeling is used in many speech applications

like Language identification, Spoken term detection, Speaker recognition, topic classification etc.

ASM training includes main step of Segmentation and Labeling as explained below.

1.1 Segmentation and Labeling

The word segmentation is interpreted as the process of dividing something continuous into discrete,

non-overlapping entities i.e., the process of deciding boundaries. Labeling is defined as classifica-

tion of segments obtained. Over the past few years, interest in automatic speech segmentation has

increased. A number of speech analysis and synthesis applications need to divide speech signals

into phonetic segments (phonemes and syllables) [1]. Both Automatic Speech Recognition (ASR)

models and Text-to-Speech (TTS) systems depends on reliable segmentation for achieving good

performance [2]. Furthermore, automatic speech segmentation methods are used for the automatic

phonetic analysis of large amounts of speech data [3].

Speech segmentation divides an speech utterance into homogeneous portions, where in each

portion, the signals share similar properties. Various levels of speech processing uses speech segmen-

tation effectively. For example, one may want to divide an audio stream into speech and non-speech

signals such as noise or music, or divide a speech stream according to speaker identity. This problem

is known as audio diarization and receives extensive research interests nowadays [4]. And in many

1



other speech recognition or understanding applications, one may need to segment speech sequence

into sentences, phrases, words, syllables or phonemes. Unlike written language, speech signals lack

explicit punctuations such as spaces or capitalizations in text for division. Moreover, human speech

is a continuous signal and does not change abruptly due to the temporal and physical constraints of

the vocal tract. These facts make speech segmentation a challenging problem.

Figure 1.1: Segmented Speech Signal

In the past research, speech signals were segmented manually but there are major drawbacks

with manual speech segmentation. Firstly, it is extremely time consuming. An increasing amount

of segmented speech data is needed, but the tremendous work load often constraints the amount of

speech recordings that can be segmented. Secondly, no standard multi-lingual procedure for speech

segmentation has been defined yet. Finally, the manual segmentation and labeling of speech is prone

to human random errors and inconsistencies.

By contrast, automatic segmentation procedures are by definition free from human interaction.

Vast amounts of speech recordings can thus be segmented and labeled by applying by applying a

fixed set of objective criteria in a consequent manner. The accuracy of such segmentation may be

poorer than human performance, but the errors are more systematic and can hence be taken into

account when using the segmented speech material. Since the criteria causing the errors are explicit,

some of the errors can be corrected.

Thus, automatic phoneme segmentation has received much research interest.
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1.2 Thesis organization

The remainder of this thesis is organized as follows:

Chapter 2 provides background knowledge and some pre-existing signal processing techniques

used in this thesis.

Chapter 3 gives an overview of Acoustic segment modeling.

Chapter 4 gives overview of spectral clustering techniques.

Chapter 5 shows experiments and evaluation.
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Chapter 2

Signal Processing Techniques

This chapter provides background about the techniques used in the following chapters. The con-

ventional speech feature representation - Mel-scale frequency cepstral coefficients (MFCCs) and the

most commonly used acoustic model Gaussian Mixture Model (GMM) will be described. It will

explain some details about K-means clustering. It will also review the modeling technique - Hidden

Markov Model (HMM) used in this thesis work. The Dynamic Time Warping (DTW) algorithm will

be reviewed since it will be used in experiments as a matching method on the speech representations.

Finally, we present several speech corpora that are used in the experiments performed in this thesis.

2.1 MFCC representations

The first step in any automatic speech recognition system is to extract features i.e. identify the

components of the audio signal that are good for identifying the linguistic content and discarding

all the other stuff which carries information like background noise, emotion etc.

The main point to understand about speech is that the sounds generated by a human are filtered

by the shape of the vocal tract including tongue, teeth etc. This shape determines what sound comes

out. If we can determine the shape accurately, this should give us an accurate representation of the

phoneme being produced. The shape of the vocal tract manifests itself in the envelope of the short

time power spectrum, and the job of MFCC’s is to accurately represent this envelope.

MFCC is a filter bank based approach, the design of filters in such a way that they be similar to

the human auditory frequency perception. Researchers have suggested that directly computed filter

bank features are more robust for recognition of speech in noisy condition [5]. As the human ear is
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also a good speaker recognizer, people tried MFCC feature for speaker recognition.

Figure 2.1: Triangular filters placed according to Mel frequency scale. A Melfrequency filter is used
to reduce spectral resolution, and convert all frequency components to be placed according to the
Mel-scale

MFCC is widely used in Automatic Speaker Recognition systems because of:

• The cepstral features are roughly orthogonal because of the DCT.

• Cepstral mean subtraction eliminates static channel noise.

• MFCC is less sensitive to additive noise than some other feature extraction technique such as

linear prediction cepstral coefficients (LPCC).

What is the Mel Scale?

The Mel scale relates perceived frequency, or pitch, of a pure tone to its actual measured fre-

quency. Humans are much better at discerning small changes in pitch at low frequencies than they

are at high frequencies. Incorporating this scale makes our features match more closely what humans

hear.
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Figure 2.2: Frequency to Mel-Frequency Mapping

The formula for converting from frequency to Mel scale is:

M(f) = 1125 ln(1 + f/700) (2.1)

To go from Mels back to frequency:

M−1(f) = 700(exp(m/1125)− 1) (2.2)

Implementation steps:

1. Segmenting all concatenated voiced speech signal into 25ms length frames. Frame step is

usually 10ms, which allows some overlap to the frames.

2. A short-time Fourier transform (STFT) is performed on every frame of segmented speech

signal given by:

S(k) =

N∑
n=1

s(n)h(n)e−j2πkn/N , 1 ≤ k ≤ K (2.3)

where, s(n) is our time domain speech frame, h(n) is an N sample long analysis window, and

K is the length of DFT. The periodogram-based power spectral estimate for the speech frame

s(n) is given by:

P (k) =
1

N
|S(k)|2 (2.4)

3. Next step is to compute the Mel-spaced filterbank. This is a set of 20-40 (26 is standard)

triangular filters that we apply to the periodogram power spectral estimate from previous

6



step. To calculate filterbank energies we multiply each filterbank with the power spectrum,

then add up the coefficents.

4. Take the log of each of the energies from step 3. This leaves us with log filterbank energies.

5. Take the Discrete Cosine Transform (DCT) of the log filterbank energies to give us the cepstral

coefficents.

The resulting features are called Mel Frequency Cepstral Coefficients (MFCCs).

Figure 2.3: Block diagram for MFCC generation

After the above steps, the calculation of MFCCs given a speech signal is complete. In practice,

when using MFCCs in the acoustic modeling, long-term MFCCs features are often considered, such

as delta (4) MFCCs and delta-delta (44) MFCCs [6]. The4MFCCs are the first derivatives of the

original MFCCs and the 44 MFCCs are the second derivatives of the original MFCCs. A common

configuration of the modern ASR feature extraction module is to use the original MFCCs stacked

with the 4 and 44 features. The original MFCCs are represented by the first 12 components of the

DCT output plus the total energy (+4 Energy + 44 Energy), which results in a 13+13+13=39

dimensional feature vector for each speech frame.

2.2 Gaussian Mixture Models

One of the most important task when working with mixture model-based clustering is precisely, se-

lecting the type of function which offers a better adjust to the data field and the type of task we face
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up to. Between the different types of mixture model-based clustering, one of the most commonly

used is clustering based in Gaussian Mixture Models (GMMs) [7], [8].

Gaussian mixture model as a simple linear superposition of Gaussian components, aimed at pro-

viding a richer class of density models than the single Gaussian. Techniques based on GMM are

applied to many different tasks. Some of the most common applications are speaker identification,

speech recognition, image segmentation, biometric verification or detection of image color and tex-

ture.

Gaussian Mixture Model (GMM) is a parametric probability density function represented as a

weighted sum of Gaussian component densities. GMMs are commonly used as a parametric model

of the probability distribution of continuous measurements or features in a biometric system, such as

vocal-tract related spectral features in a speaker recognition system. GMM parameters are estimated

from training data using the iterative Expectation-Maximization (EM) algorithm or Maximum A

Posteriori (MAP) estimation from a well-trained prior model.

Fig. 2.4 illustrates the joint density capturing capabilities of GMM, using 2-dimensional data

uniformly disturbed along a circular ring. The red ellipses, superimposed on the data (blue) points,

correspond to the locations and shapes of the estimated Gaussian mixtures.
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Figure 2.4: Illustration of distribution capturing capability of GMM. GMM trained with diago-

nal covariance matrices (a) 4-mixtures (b) 10-mixtures and (c) 10-mixture GMM trained with full

covariance matrices

A Gaussian mixture model is a weighted sum of M component Gaussian densities as given by

the equation,

p(x|λ) =

M∑
i=1

wi g(x|µi,Σi) (2.5)

where x is a D-dimensional continuous-valued data vector (i.e. measurement or features), wi, i =

1,.....,M, are the mixture weights, and g(x|µi,Σi), i = 1,....,M, are the component Gaussian densities.

Each component density is a D-variate Gaussian function of the form,

g(x|µi,Σi) =
1

(2π)D/2|Σi|1/2
exp

{
− 1

2
(x− µi)′Σ−1i (x− µi)

}
(2.6)
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with mean vector µi and covariance matrix Σi. The mixture weights satisfy the constraint that∑M
i=1 wi = 1.

The complete Gaussian mixture model is parameterized by the mean vectors, covariance matrices

and mixture weights from all component densities. These parameters are collectively represented by

the notation,

λ = {wi, µi,Σi} , i = 1, 2, ...,M (2.7)

EM Algorithm for Gaussian Mixture Models:

Given a Gaussian mixture model, the goal is to maximize the likelihood function with respect

to the parameters (comprising the means and covariances of the components and the mixing coeffi-

cients).

1. Initialize the means µi, covariances Σi and mixing coefficients wi, and evaluate the initial value

of the log likelihood.

2. E-Step: Evaluate the responsibilities using the current parameter values

γ(zni) =
wig(xn|µi,Σi)∑M
j=1 wjg(xn|µj ,Σj)

(2.8)

3. M-Step: Re-estimate the parameters using the current responsibilities

µnewi =
1

Nk

N∑
n=1

γ(znk)xn (2.9)

Σnewi =
1

Nk

N∑
n=1

γ(znk)(xn − µnewi )(xn − µnewi )T (2.10)

wnewi =
Nk
N

(2.11)

where,

Nk =

N∑
n=1

γ(znk) (2.12)
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4. Evaluate the log likelihood

ln p(X|µ,Σ, w) =

N∑
n=1

ln

{ M∑
i=1

wi g(x|µi,Σi)
}

(2.13)

and check for convergence of either the parameters or the log likelihood. If the convergence

criterion is not satisfied return to step 2.

2.3 K-Means Algorithm

The K-means algorithm [9], [10] is another algorithm for clustering real-valued data. It is based

on minimizing the sum of Euclidean distances between each point and its assigned cluster, rather

than on a probabilistic model. The algorithm takes as input an n× d data matrix (with real-valued

entries), a value for K, and operates as follows:

1. Initialize by randomly selecting K mean vectors, e.g., pick K data vectors (rows) randomly

from the input data matrix

2. Assign each of the n data vectors to the cluster corresponding to which of the K clusters means

it is closest to, where distance is measured as Euclidean distance in the d-dimensional input

space.

3. For each cluster k, compute its new mean as the mean (average) of all the data vectors that

were assigned to this cluster in Step 2.

4. Check for convergence. An easy way to determine convergence is to execute Step 2 and check if

any of the data points change cluster assignments relative to their assignment on the previous

iteration. If not, exit; if 1 or more points change cluster assignment, continue to Step 3.

The K-means algorithm can be viewed as a heuristic search algorithm for finding the cluster

assignments that minimize the total sum of squares, namely the sum of the squared Euclidean dis-

tances from each of the n data points to a cluster center. Finding the optimal solution is NP-hard,

so K-means may converge to local minima. For this reason it can be useful to start the algorithm

multiple random starting conditions, and select the solution with the minimum sum of squares score

over different runs.

The K-means algorithm can also be thought of as a simpler non-probabilistic alternative to

Gaussian mixtures. K-means has no explicit notion of cluster covariances. One can reduce Gaussian
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mixture clustering to K-means if one were to (a) fix a priori all the covariances for the K components

to be the identity matrix (and not update them during the M-step), and (b) during the E-step, for

each data vector, assign a membership probability of 1 for the component it is most likely to belong

to, and 0 for all the other memberships (in effect make a hard decision on component membership

at each iteration).

2.4 Hidden Markov Model

A hidden Markov model (HMM) is a statistical Markov model in which the system being modeled

is assumed to be a Markov process with unobserved (hidden) states. A HMM can be presented as

the simplest dynamic Bayesian network.HMMs [11] are the most popular and successful statistical

acoustic models for speech recognition.

A hidden Markov model (HMM) refers to a statistical model designed to capture the hidden

states of a system and their evolution, which are governed by a Markov process. An HMM may

be formulated in a simple state-space form, and much of the earlier works in this area focused on

solving the problem of nonlinear optimization with the utility of forward-backward algorithms. A

Hidden Markov Model is a discrete-time finite-state homogenous Markov chain observed through a

discrete-time memoryless invariant channel. The channel is characterized by a finite set of transi-

tion densities indexed by the states of the Markov chain. These densities may be members of any

parametric family such as Gaussian, Poisson, etc. The initial distribution of the Markov chain, the

transition matrix, and the densities of the channel may depend on some parameter that characterizes

the HMM.

Hidden Markov Models have become a basic tool for modelling stochastic systems with a wide

range of applications in such diverse areas as nanotecnology [12], quantized Gaussian linear regres-

sion [13], [13], telecommunication [14], speech recognition [15], switching systems [16], [17], financial

mathematics [18] and protein research [19].

The generative model of the standard HMM is given by:

qt+1 ∼ P (qt+1|qt) (2.14)

ot+1 ∼ p(ot|qt) (2.15)
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where qt and ot are the state and observation vector respectively at time t. The parameters of a

HMM with N discrete states are given by θ(π,A, b) where π = {πi : 1 ≤ i ≤ N} are the initial

probabilities of the states, A = {aij : 1 ≤ i, j ≤ N} are the transition probabilities between two

states and b = {bj(ot) : 1 ≤ j ≤ N} are the observation probabilities of the states. A typical left-to-

right HMM topology used in a speech recognition system is illustrated in Figure 2.5. Two special

non-emitting states are used to represent the left-to-right topology. By having the nonemitting start

state, the initial probabilities are simply π1 = 1 and πi = 0 for i 6= 1. The arrow joining two states

indicates the permissible transitions in the given direction. The HMM in Figure 2.5 assumes that the

speech signals being modeled can be logically divided into three segments, within each, the signals

are considered i.i.d (independent and identically distributed) and piece-wise stationary.

Figure 2.5: The 3 state left-to-right Hidden markov model used in speech recognition

In order to use the HMMs in speech recognition, one needs to be able to:

• evaluate the likelihood of the model given the observations

• decode the most likely state sequence given the observations

• estimate the HMM parameters to maximise the objective function.
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Chapter 3

Acoustic Segment Modeling

Acoustic models play a very important role in many spoken language applications. They are used

to describe the acoustic properties of a set of predefined speech units, e.g., phonemes. Typically the

training of acoustic models is a supervised process, which require not only the speech observations

but also manual transcriptions and language-specific linguistic knowledge, such as phoneme defi-

nition and word dictionary. Supervised training of acoustic models has attained great success for

many resource-rich languages (e.g., English, Mandarin). But the issue with this process is that it is

not straightforwardly applicable to other languages for which manual transcriptions and linguistic

knowledge are difficult to be acquired or even completely absent. Thus, in recent years, there is

an increasing research interest in designing acoustic modeling methods that are less reliant on well-

organized training resources [20–26].

Acoustic segment modeling (ASM) is an approach used for characterizing fundamental acoustic

units. Acoustic models classifies utterances by their acoustic feature sequences. The main goal of

acoustic segment modeling is to segment the speech utterances and then build a model for similar

segments. M.Siu et al. [26], A. Garcia et al. [27] and M. Siu et al. [28] investigated an similar approach

to ASM. ASM has many practical applications. It is used in spoken language identification [29],

topic classification [26] [28], speaker recognition [30] [31], zero-resource QbyE STD tasks [32] and

also semantic retrieval of spoken content [33]. ASMs has been shown to be very useful in handling

multilingual issue in speaker recognition. Typically, the standard process of training acoustic models

is supervised which requires not only language-specific knowledge but also a large amount of tran-

scribed data. ASM built with supervised techniques has attained great success in past but the issue
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with this approach is that it requires a lot of labeled speech data. Transcribing the speech data is

time consuming, tedious and demands a lot of expert human labor, therefore it becomes expensive.

Hence, transcribed databases are only available for a very small number of languages in the world.

Also acoustic models built for a specific language cannot be directly applied to other languages for

which manual transcriptions are not available. Due to these reasons, building acoustic models in

unsupervised scenario, where only untranscribed speech recordings are available has gained more

attention in recent years. Unsupervised acoustic modeling is basically a clustering approach. Utter-

ances are first segmented and clustered in unsupervised manner. Absence of requirement of speech

transcriptions and explicit linguistic knowledge makes it more dominant. Due to these reasons, most

of the present techniques are inclined towards unsupervised framework.

Acoustic segment modeling consists of mainly three stages, named as initial segmentation, seg-

ment labeling and iterative modeling.

1. Initial segmentation is the first stage that divides a continuous speech utterance into variable-

length segments. Each segment has similar acoustic properties. Segmentation minimizes a

distortion measure within a segment. Features within a segment are similar to each other

as compared to features across segments. Distortion measure can change the performance of

segmentation algorithm significantly. Euclidean distance was used as a distortion measure

in [34]. Speech segmentation using maximum-likelihood approach and dynamic programming

was proposed by Lee et al. [35] and Bacchiani et al. [36]. A maximum margin clustering

method was proposed in [37]. In [38], a bottom-up hierarchical clustering method was proposed.

Bayesian hidden Markov model (HMM) with Dirichlet process priors was used for segmentation

in [39].

2. After getting segments for all utterances, similar segments are clustered together and each

cluster is given a unique label. Similarity between segments is calculated based on some

distance measure. The segments which are very similar in nature will have less distance as

compared to other dissimilar segments. So all similar segments are placed in one group and

dissimilar segments in different groups. Each group formed is then given a unique label such

that all segments belonging to particular group gets same label. These clusters are called ASM

units. Vector quantization (VQ) was proposed in [35] for segment labeling in which segment

is represented by mean of all the features in it and k-means is used for clustering similar

segments. The segmental GMM (SGMM) approach was proposed in [40]. In [41], GMM
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labeling (GL) method was proposed for segment labeling. Gaussian component clustering

(GCC) and Segment clustering (SC) was proposed in [34].

3. After segment labeling, each segment cluster is assigned a cluster label. After assigning labels

to all the segments, iterative modeling is applied on top of it. Usually, standard Viterbi

decoding technique [42] is used for this purpose.

3.1 Initial Segmentation

The main aim of initial segmentation is to detect the phoneme boundaries that divide a speech

utterance into non-overlapping segments. Each of these segments are suppose to have acoustic

properties coherent in nature. Also segment boundaries are associated with significant acoustic

discontinuities [43]. The segmentation can be formulated as a problem of minimizing some kind

of within segment distortion measure. In this work, we estimated segment boundaries using sum

of square error (SSE) criterion. This section describes the basic formulation of optimal segmentation.

Figure 3.1: A brief description of segmentation model.

Let O = {o1, o2, ....., oT } denote the feature vectors extracted from an utterance, where T is the

length of O and each oi is a d-dimensional feature vector. A segmentation that divides sequence

O in k non overlapping contiguous segments can be denoted as S = {s1, s2, ..., sk}, where sj =

{cj , cj+1, ..., ej} using cj , ej to represent the first and last indices of jth segment. SSE criterion on

S segmentation is defined as,

SSE(O,S) =

k∑
j=1

ej∑
i=cj

||oi − m̂j ||2 (3.1)

m̂j =
1

(ej − cj)

ej∑
i=cj

oi (3.2)

In the initial state, the algorithm defines one segment si for each xi present in X, i.e., segments
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containing just one vector of the data. The algorithm iteratively merges segments until it reaches

the imposed number of segments. Given the segments sj , sj+1 and R as the segment resulting from

grouping of sj and sj+1, the grouping criterion is defined as:

∆SSE(O, j) = SSE(O,R)− SSE(X, sj)− SSE(X, sj+1) (3.3)

The optimal grouping is performed by merging the adjacent segments such that the grouping criterion

is the minimum. This kind of approach is known as Agglomerative Clustering algorithm.

3.2 Feature Representation for Speech

Theoretically, recognizing speech directly from the digitized waveform should be possible. However,

because of the large number of variations in the speech signals, it is better to apply some feature

extraction to reduce that variability. Particularly, eliminating various source of information, such as

whether the sound is voiced or unvoiced and, if voiced, it eliminates the effect of the periodicity or

pitch, amplitude of excitation signal and fundamental frequency etc.

For speech recognition, data manipulation can be simplified by eliminating the redundant and

irrelevant aspects of the speech waveform. An efficient representation for speech recognition would

be set of parameters that yield similar values for the same phonemes uttered by various speakers.

Speech analysis can be done either in time domain or in frequency domain. The speech analysis is

done to obtain a more useful representation of the speech signal in terms of parameters that contain

relevant information in an efficient format.

Many feature extraction techniques are available which includes, Linear predictive analysis

(LPC), Linear predictive cepstral coefficients (LPCC), Mel-frequency cepstral coefficients (MFCC),

Power spectral analysis (FFT) etc. In this section, we summarize the feature extraction technique

that is used in our analysis.

3.2.1 Posterior features using GMM

Posterior features are used successfully in many speech applications, like speech recognition [44],

spoken term detection [45], story segmentation [46] and spoken language identification [47]. Poste-

rior features are more robust as compared to conventional spectral features like MFCC’s. In this

17



work, segment-level posterior representations are formulated and applied to the problem of segment

labeling.

Given a trained GMM and a observation point ot, the posterior probability that it is generated

by the ith Gaussian component ci can be computed using the Bayes rule as follows:

P (ci/ot) =
wiN(o/µi,Σi)

p(o)
(3.4)

where,

p(o) =

M∑
i=1

wiN(o/µi,Σi) (3.5)

where N(.) is Gaussian distribution, M is number of mixtures, wi is the weight of the ith Gaussian

component, µi is its mean vector and Σi is its co-variance matrix. Thus, the frame-level posterior

feature vector qt is composed as,

qt = [p(c1|ot), p(c2|ot), p(c3|ot), ...., p(cM |ot)]T (3.6)

where, C = {c1, c2, ......, cM} are the M pre-defined speech classes represented by M gaussian com-

ponents of GMM.

A matrix Q ∈ RM×T is obtained by stacking frame-level posterior feature vectors, given as

Q = [q1, q2, ....., qT ] (3.7)

where T is the number of frames. Q is referred to as a class-by-frame matrix.

Let S = {s1, s2, ......sK} are the segment boundaries obtained after initial segmentation, then a

class-by-segment matrix X ∈ RM×K is given as,

X = [x1, x2, ....., xK ] (3.8)

where,

xk =
1

ek − bk + 1

ek∑
t=bk

ot (3.9)

Thus, xk are the normalized accumulated posterior probabilities.
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Chapter 4

Clustering Techniques

This section describes the segment labeling approaches using spectral clustering methods. In recent

years, spectral clustering has become one of the most popular modern clustering algorithms. It is

simple to implement, can be solved efficiently by standard linear algebra methods, and very often

outperforms traditional clustering algorithms such as the k-means algorithm. There are two spectral

clustering techniques as described below.

4.1 Gaussian Component Clustering

Gaussian Component Clustering (GCC) approach is used for segment labeling. GCC is a two-stage

approach, i.e., building initial acoustic models followed by labeling speech segments. The main idea

is to train a universal GMM with many components, and perform clustering on these Gaussian

components. Each of these cluster represents a small GMM which is regarded as the initial acoustic

model for an ASM unit. These initial acoustic models are then used to score speech segments so as

to generate initial label sequences.

With the Gaussian-by-segment matrix X ∈ RM×K , GCC actually performs clustering on the

row vectors of . We use inner product as the similarity measure between each pair of the row vectors,

and follow the state-of-the-art spectral clustering procedure as described in [48]. The affinity matrix

A ∈ RM×M is given as,

A = XXT (4.1)

where Ai,j denotes the similarity between the ith and jth Gaussian components. The normalized
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Laplacian matrix L ∈ RM×M [49] is,

L = I −D−1/2AD−1/2 (4.2)

where, D = diagA1 is a diagonal matrix with its diagonal element Di,i =
∑M
m=1Ai,m.1 is a column

vector of all ones.

The embedding representations of the M Gaussian components Y = [y1, y2, ....., yR] can be

obtained by,

min
Y ∈RM×R

tr(Y TLY ) s.t., Y TY = I (4.3)

The solution to above equation is given by eigenvalue decomposition of L , i.e., the column vector yr

is the rth smallest eigenvector of L. The embedding representations of the Gaussian components are

actually the row vectors of Y , on which k-means is applied to obtain the cluster memberships. The

resulted clusters of Gaussian components form a set of GMMs, which are used to label the speech

segments. The whole procedure is summarized in following Algorithm.

Algorithm: Gaussian Component Clustering(GCC)

Input: Gaussian-by-segment matrix X ∈ RM×K , and the cluster number R.

Output: R GMMs and cluster label of each segment.

1. compute affinity matrix A.

2. compute Laplacian matrix L.

3. construct matrix Y = [y1, y2, ...., yR], where yr is the smallest eigenvector of L .

4. normalize each row vector of Y to have unit l2-norm.

5. apply k-means on the M row vectors of Y to find R clusters.

6. assign the ith Gaussian component to cluster r if the ith row vector of Y is assigned to cluster

r.
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7. form a GMM for each cluster by assigning equal weights to its Gaussian components.

8. score each segment with the R GMMs, and label it with the index of the GMM that scores

highest.

4.2 Segment Clustering

Segment clustering (SC) is applied directly on the segment posterior representations. It is a one

stage approach. SC applies clustering on speech segments. The similarity measure is reformed as

the inner product of the posterior representations. It also uses k-means to obtain the cluster mem-

berships of the speech segments.

Let X ∈ RM×K be a class-by-segment matrix. Segment clustering (SC) aims to perform clus-

tering on the column vectors of X. In practice, the use of standard spectral clustering algorithm

encounters a computational problem in segment clustering. The affinity matrix A and the Laplacian

matrix L are so large that they cannot be computed efficiently and properly stored in the mem-

ory. The algorithms that are capable of handling hours of data for the application of unsupervised

acoustic modeling are meant to be designed. Therefore it is desirable to reformulate the problem

such that the derivation of the embedding becomes practically feasible. We tackle this problem by

deriving Y without the explicit computation of A and L. The similarity between speech segments

is still computed as the inner product of the posterior representations, i.e.,

A = XTX (4.4)

With the affinity matrix A, the computation of Laplacian matrix L is reformulated as,

L = I −D−1/2AD−1/2 = I −D−1/2XTXD−1/2 = I − X̂T X̂ (4.5)

where,

X̂ = XD−1/2 (4.6)
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with D = diag(XT (X1)). Then the embedding representations of speech segments becomes,

max
Y ∈RK×R

tr(Y T (X̂T X̂)Y ) s.t., Y TY = I (4.7)

That is, Y is given by the largest eigenvectors of X̂T X̂. The eigenvector of X̂T X̂ can be derived by

multiplying the corresponding eigenvector of X̂X̂T with X. Specifically, let Ŷ = [ŷ1, ŷ2, ......, ŷR]T

be a matrix consisting of R largest eigenvectors of X̂X̂T . Then Y can be obtained by two steps:

(1) compute Y = (Ŷ X̂)T , and (2) normalize each column vector of Y to have unit l2-norm. After

computing Y , k -means is applied to obtain the cluster memberships of the speech segments. The

whole procedure is summarized in following Algorithm.

Algorithm: Segment Clustering(SC)

Input: Class-by-segment matrix X ∈ RM×K , and the cluster number R

Output: Cluster label of each segment

1. compute X̂ ∈ RM×K as X̂ = XD−1/2.

2. compute Â = X̂X̂T , Â ∈ RM×M .

3. construct Ŷ = [ŷ1, ŷ2, ......, ŷR]T ∈ RR×M , where ŷr is the rth largest eigenvector of A.

4. compute Y = (Ŷ X̂)T , Y ∈ RK×R.

5. normalize each column vector of Y to have unit l2-norm.

6. normalize each row vector of Y to have unit l2-norm.

7. apply k -means on the K row vectors of Y to find R clusters.

8. assign the ith segment to cluster r if the ith row vector of Y is assigned to cluster r.
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Chapter 5

Experimental Evaluation

This chapter includes some of the results we got for evaluation of performance of our clustering

techniques. It also describes the Language Identification Model built using these techniques.

5.1 ASM Evaluation

5.1.1 Speech Corpora - TIMIT database

The DARPA TIMIT Acoustic-Phonetic Continuous Speech Corpus (TIMIT - Texas Instruments

(TI) and Massachusetts Institute of Technology (MIT)), contains recordings of phonetically-balanced

prompted English speech. It was recorded using a Sennheiser close-talking microphone at 16 kHz

rate with 16 bit sample resolution. TIMIT contains a total of 6300 sentences (5.4 hours), consisting

of 10 sentences spoken by each of 630 speakers from 8 major dialect regions of the United States. All

sentences were manually segmented at the phone level. The prompts for the 6300 utterances consist

of 2 dialect sentences (SA), 450 phonetically compact sentences (SX) and 1890 phonetically-diverse

sentences (SI).

The training set contains 4620 utterances, but usually only SI and SX sentences are used, result-

ing in 3696 sentences from 462 speakers. The test set contains 1344 utterances from 168 speakers.

The core test set, which is the abridged version of the complete testing set, consists of 192 utterances,

8 from each of 24 speakers (2 males and 1 female from each dialect region). With the exception of

SA sentences which are usually excluded from tests, the training and test sets do not overlap.
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This speech corpus has been a standard database for the speech recognition community for several

decades and is still widely used today, for both speech and speaker recognition experiments. This

is not only because each utterance is phonetically hand labeled and provided with codes for speaker

number, gender and dialect region, but also because it is considered small enough to guarantee a

relatively fast turnaround time for complete experiments and large enough to demonstrate system

capabilities.

5.1.2 Performance measures

The goal of clustering is to attain high intra-cluster similarity and low inter-cluster similarity. So, we

need a criterion to measure the performance of clustering algorithm. Thus, for comparison of per-

formances between baseline and proposed approaches, we used two evaluation metrics: Purity and

Normalized mutual information(NMI). Purity is a one of primary validation measure to determine

the cluster quality. Each cluster is assigned to phoneme which occurred most frequently in it and

then purity is defined as the total number of segments(phonemes) that were classified correctly. It is

in the range of 0 to 1 i.e., bad clustering has a value close to 0 and perfect clustering has a purity of 1.

Let nr,p be the number of frames assigned to the rth ASM unit and belong to the pth phoneme.

Let Ω = {Ω1, Ω2,....,ΩP } and ω = {ω1, ω2,....,ωR} denotes the total number of linguistically defined

phonemes and number of ASM units obtained, respectively. The purity of the rth ASM unit is given

by:

purity(r) =
maxp nr,p∑P

p=1 nr,p
(5.1)

Thus overall purity is given by average of the purity values of all ASM units,

purity =
1

n

R∑
r=1

maxp nr,p (5.2)

where, n is total number of features in all clusters.

Normalized mutual information(NMI) can be interpreted through information theory. It is de-

fined as the mutual information between the cluster assignments and manually present labels nor-

malized by the arithmetic mean of the maximum possible entropy of the marginals. A merit of NMI

is that it does not necessarily increase when the number of clusters increases. The value of NMI also
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lies between 0 and 1. It is formulated as follows:

NMI =

∑R
r=1

∑P
p=1

nr,p

n log

(
nr,p∑R

i=1 ni,p
∑P

j=1 nr,j

)
(H(Ω) +H(ω))/2

(5.3)

where, the numerator represents the mutual information between Ω and ω. H(Ω) and H(ω) are given

by:

H(Ω) = −
R∑
r=1

∑P
p=1 nr,p

n
log

(∑P
p=1 nr,p

n

)
(5.4)

and

H(ω) = −
P∑
p=1

∑R
r=1 nr,p
n

log

(∑R
r=1 nr,p
n

)
(5.5)

5.1.3 Baseline Approaches

We implemented Vector quantization(VQ) [35] and GMM Labeling [41]. We carried out these ex-

periments on TIMIT database [50]. Silence regions were removed using manual transcriptions as

they cover major part of speech segments. Number of clusters considered is 50 and 35. Vector

quantization works by applying k-means clustering directly on MFCC features. In GMM Labeling

technique, first a GMM is trained from all the training data and number of Gaussian components

is set to be the desired number of ASM units. For each segment, we label it with the index of the

Gaussian component which provides the highest likelihood of the speech segment. The number of

Gaussian components considered is 1024.

The comparison of performances of these baseline approaches and our approach is shown in 5.2

and 5.1. It can be seen that graph clustering gives better performance.

Algorithm NMI Purity
VQ 0.1609 0.2324

GMM labeling 0.1979 0.2440
GCC 0.2077 0.2716
SC 0.1916 0.2686

Table 5.1: Comparison of various algorithms using R = 50

Algorithm NMI Purity
VQ 0.1588 0.2222

GMM labeling 0.1959 0.2334
GCC 0.1987 0.2794
SC 0.2206 0.2838

Table 5.2: Comparison of various algorithms using R = 35
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5.2 Language identification system

Language identification refers to the automatic process that determines the identity of the language

spoken in a speech sample. It is an enabling technology for a wide range of multilingual speech pro-

cessing applications, such as spoken language translation [51], multilingual speech recognition [52],

and spoken document retrieval [53]. It is also a topic of great interest in the areas of intelligence

and security for information distillation.

We built Language identification system with three languages : Urdu, Bengali and Telugu us-

ing one of these clustering techniques. Number of clusters chosen is 50 and number of Gaussian

components is 1024. Figure 5.1 shows the block diagram for Language identification system.

Figure 5.1: Language Identification System

For testing how effective our system is, we have chosen 60 test files from each of the language

and decode it likelihood using acoustic models, language models and dictionary for these languages.

We created a confusion matrix describing what number of files were correctly detected. Table 5.3

shows these numbers.

Languages Telugu Bengali Urdu
Telugu 55 1 4
Bengali 6 54 0
Urdu 0 0 60

Table 5.3: Confusion Matrix
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