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ABSTRACT
We study the irreducibility properties of Generalized Laguerre Polynomials

(GLP) L(α)
n (x) =

∑n
j=0

(
n+α
n−j

) (−x)j

j!
for integral values of the parameter α. We

also study a simple criteria for the Galois group of polynomial to be ”large.” We
show that for positive integer α there is an effectively computable constant n0 such
that L(α)

n (x) is irreducible over the rationals for all n ≥ n0. We also show that
under these condition , the Galois group of L(α)

n (x) is either the alternating or the
symmetric group of n letters. We further prove that for a fixed integer r ≥ 0, there
is an effectively computable constant Nr such that every admissible modification
of L<r>n (x) := L

(−1−n−r)
n (x) =

∑n
j=0

(
n−j+r
n−j

) (−x)j

j!
are either irreducible or if it

is reducible, then it has atmost one linear factor over the rationals. The results are
obtained using the theory of Newton polygons.
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Chapter 1

Introduction

The Generalized Laguerre Polynomial (GLP) is one parameter family defined
by

L(α)
n (x) = (−1)n

n∑
j=0

(
n+ α

n− j

)
(−x)j

j!
,

where n is a positive integer and α be an arbitrary complex number. The leading
coefficient here is 1/n!. Here the binomial coefficient

(
t
k

)
is defined as t(t −

1) · · · (t−k+1) for non negative integers k. The inclusion of the sign (−1)n is not
standard. Sometimes it is more appropriate to work with the monic polynomials
L(α)
n (x) = n!L

(α)
n (x). We have second order linear (hyper-geometric) differential

equation

x
d2y

dx2
+ (α + 1− x)

dy

dx
+ ny = 0 where y = L(α)

n (x),

as well as the difference equation

L(α−1)
n (x)− L(α)

n (x) = L
(α)
n−1(x).

In this thesis, we are concerned with the irreducibility of L(α)
n (x) over Q for in-

tegral values of α. Early investigations were introduced by Schur who established
the irreducibility in the particular specializations aj = (−1)j

(
n
j

)
and aj = (−1)n

corresponding to α = 0 and α = −n − 1 respectively. Schur further established
the irreducibility of L(α)

n (x) for α = 1 (see [28]) and α = 1/2 (see [29]). Since,
the work of Schur a number of authors considered the problem for various val-
ues of α, namely Filaseta ( see [2]), Hajir (see [18]), Gow ( see [16]) and others.
Below we mention a couple of important works in this area.
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Theorem 1. (Filaseta -Lam Theorem) Let α be a rational number which is not a
negative integer, then for all but finitely many positive integers n, the polynomials

n∑
j=0

aj
(n+ α) · (n− 1 + α) · · · (j + 1 + α)

(n− j)! · j!
(x)j

is irreducible over the rationals provided aj ∈ Z for 0 ≤ j ≤ n, and | a0 | =
| an |= 1.

Theorem 2. (Hajir’s Theorem) Let n ≥ 3 be an integer. Let K be a finite exten-
sion of Q, then there is a finite set S(K) of elements in K such that L(α)

n (x) is
irreducible in K[x] for all α /∈ S(K). In particular, in our context we find that for
n ≥ 3, there are at most finitely many integers α such that L(α)

n (x) is reducible.

In chapter 3, we give a proof of this theorem for α ∈ Z+. In 1 the condition
that α is not a negative integer. In chapter 4, we Study about the Galois theory of
local fields, finite extensions of Qp. In chapter 5, first we define Newton index ,
then we discuss about a criteria for an irreducible polynomials to have a ”large”
Galois group. Below we mention a couple of important works in the area of large
Galois groups of a irreducible polynomial.

Theorem 3. Let f ∈ Q[x] be irreducible of degree n. Let K/Q be the splitting
field of f . Then N (f) divides |Gal(K/Q)|. Moreover, if there is a prime divisor
l ∈ (n− 2, n/2) of N (f), then Gal(K/Q) contains An, the alternating group on
n letters (i.e., as large as possible).

Theorem 4. Suppose α is a fixed non negative integer. Then for all but finitely
many integers n , the Galois group of Lαn(x) is An if ∆α

n is square and Sn other-
wise.

The next corollary can be viewed as improvements of the above Hajir’s theo-
rem 19.

Corollary 1. Fix a nonnegative integer α 6∈ {1, 3, 5}. Then for all but finitely
many positive integers n, the Galois group associated with L(α)

n (x) over the ratio-
nals is Sn and if α ∈ {1, 3, 5} then the Galois group be An .

In chapter 6, we show that for any α < 0 with α ∈ [−n,−1], one has that

n!L(−α)
n (x) = (−x)(α)(n− α)!L

(α)
n−α(x).

Thus for α ∈ [−n,−1], L
(−α)
n (x) is reducible. In (see [18]), Hajir addresses

the irreducibility of L(−α)
n (x) where α is negative integer and | α |> n. We will

7



give a proof of this fact later. Among other results, the irreducibility of of L(α)
n (x)

has been considered by several authors for small values of | α | or n. In chapter 6,
we introduce the parameter r defined by α = −1− n− r, and

L<r>n (x) = L(−1−n−r)
n (x).

Note that, if we simplify the coefficients then

L<r>n (x) =
n∑
j=0

(
n− j + r

n− j

)
(−x)j

j!
.

As mentioned earlier, Hajir considers the irreducibility of L<r>n (x) for r > 0. For
1 ≤ r ≤ 8, Hajir (see [18]) establishes the irreducibility of L<r>n (x) for all n.
Generally for r ≥ 0, Hajir shows that L<r>n (x) is irreducible for all but finitely
many values of n.
After discussing all of this, we give a partial answer of a question posed by F.Hajir
(see [18]) regarding the irreducibility of L<r>n (x). The result is stated below.

Theorem 5. For a fixed integer r ≥ 0, then there exist an effectively computable
constant Nr such that every admissible modification of L<r>n (x) is either irre-
ducible or if it is reducible, then it has at most one linear factor over Q for all
n ≥ Nr.
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Chapter 2

Newton polygons

In this chapter, we first introduce the concept of Newton polygons. Some
discussion of Newton polygons can be found in Dorwart (see [10]), Weiss (see
[31]) and Chao (see [7]). Let f(x) =

∑n
j=0 ajx

j with a0an 6= 0. Let p be a prime,
for j ∈ {0, 1, · · · , n}. We define xj = j and yj ∈ Z+

⋃
{0}

⋃
{∞} to the largest

exponent of p dividing an−j .
Let S = {(x0, y0), (x1, y1), · · · , (xn, yn)} be the set of points in the extended

plane. We consider the lower edges along the convex hull of these points. The left
most edge has one end point being (x0, y0) and the right most edge has (xn, yn)
as the end point. The end points of every edge belongs to the set S. If (xi, yi)
and (xj, yj) are the two end points of such an edge, then every point (xu, yu) with
i < u < j lies on or above the line passing through (xi, yi) and (xj, yj). The
polygonal path formed by these edges is called the Newton polygon associated
with f(x).

The construction of the Newton Polygon:-

Let us define νp(m) = {r : pr|m, p(r+1) - m i.e., pr ‖ m}.
Then we may easily deduce the following property.

(1) νp(a) = νp(−a).

(2) If p - a, then νp(a) = 0; in particular, νp(±1) = 0.

(3) νp(0) = +∞; thus, ν is allowed to take values in the extended complex
plane.

(4) νp(ab) = νp(a) + νp(b).

(5) νp(a/b) = νp(a)− νp(b), provided b 6= 0.

9



(0,0)

(1,1) (2,1)

(3,1)

(4,3) (5,3)

Figure 2.1: The Newton polygon for f(x) = x5 + 6x4 + 6x3 + 10x2 + 24x + 40
w.r.t. p = 2.

Then, we have

S = {(0, νp(an−0)), (1, νp(an−1)), · · · , (j, νp(an−j)), · · · , (n, νp(a0))}.

We observe that

(i) the slope of the edges of Newton polygon of f(x) with respect to p increase
from left to right;

(ii) all other points must be on or above edges of Newton polygon of f(x) with
respect to p.

Example 1. Let us consider a polynomial f(x) = x5+6x4+6x3+10x2+24x+40
and consider the Newton polygon of f with respect to the prime p = 2, then

S = {(0, ν(a5)), (1, ν(a4)), (2, ν(a3)), (3, ν(a2)), (4, ν(a1)), (5, ν(a0))}

= {(0, ν(1)), (1, ν(6)), (2, ν(6)), (3, ν(10)), (4, ν(24)), (5, ν(40))}

= {(0, 0), (1, 1), (2, 1), (3, 1), (4, 3), (5, 3)}.

Since, the slopes of the edges of Newton polygon increase left most edge to right
most edge. Then, the Newton polygon for f(x) with respect to prime p = 2
consists 2 edges , one edge from (0, 0) to (3, 1), and another from (3, 1) to (5, 3).

2.1 Dumas Theorem
Theorem 6. Let g(x) and h(x) be in Z[x] with g(0)h(0) 6= 0 and let p be a
prime. Let k be a non-negative integer such that pk divides the leading coefficient
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of g(x)h(x) but p(k+1) does not. Then the edges of Newton polygon for g(x)h(x)
with respect to p is formeds by constructing a polygonal path beginning at (0, k)
and using translates of the edges in the Newton polygons for g(x) and h(x) with
respect to the prime p, using exactly one translate for each edge of Newton poly-
gons for g(x) and h(x). Necessarily, the translated edges are translated in such a
way as to form a polygonal path with the slopes of the edges increasing.

To explain the theorem, we consider an example below.

Example 2. Take p = 3, and consider the two polynomials, f1(x) = x3 + 3x2 +
6x + 9 and f2(x) = 4x2 + 3x + 3. The Newton polygon for f1(x) with respect
to prime p = 3 consists of two edges one with slope 1/2 and other with slope 1.
The Newton polygon for f2(x) with respect to prime p = 3 consist of one edge
with slope 1/2. The Newton polygon for f1(x)f2(x) = 4x5 + 15x4 + 36x3 +
63x2 + 45x + 27 consists two edges one with slope 1/2 and other with slope 1.
The translates of the edges of the Newton polygons for f1(x) and f2(x) with slope
1/2 have merged to form a single edge in the Newton polygon for f1(x)f2(x). We
emphasize that for our purposes when referring to ”edges” of a Newton polygon,
we shall not allow two different edges with same slope.
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(0,0)

(1,1)

(2,1)

(3,2)

Figure 2.2: The Newton polygon for f1(x) = x3 + 3x2 + 6x+ 9 w.r.t. p = 3.

(0,0)

(1,1) (2,1)

Figure 2.3: The Newton polygon for f2(x) = 4x2 + 3x+ 3 w.r.t. p = 3.

(0,0)

(1,1)

(2,2) (3,2)

(4,2)

(5,3)

Figure 2.4: The Newton polygon for f1(x)f2(x) = 4x5 + 15x4 + 36x3 + 63x2 +
45x+ 27 w.r.t. p = 3.
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2.2 Eisenstein’s criteria
Theorem 7. Let f(x) =

∑n
j=0 ajx

j ∈ Z[x] and n be positive integer. Suppose
there is a prime p such that

(i) p | ai where 0 ≤ i ≤ n− 1 but p - an, and

(ii) p2 - a0,

then f(x) is irreducible over Q.

Proof. Let f(x) =
∑n

j=0 ajx
j .

Here

S = {(0, νp(an−0)), (1, νp(an−1)), · · · , (n− 1, νp(a1)), (n, νp(a0))}

= {(0, 0), (1,≥ 1), (2,≥ 1), · · · , (n− 1,≥ 1), (n, 1)}.

We get that (x0, y0) = (0, 0), (xn, yn) = (n, 1), and every other (xj, yj) lies on
or above the line passing through (x0, y0) and (xn, yn). Observe that by Dumas
theorem f(x) is irreducible over Q. Since if f(x) = g(x)h(x) with g(x), h(x) ∈
Z[x] and with deg h(x) > 0, then the Newton polygon for f(x) with respect
to p would be able to represented as translate of 2 or more edges. The latter is
impossible because the only lattice points (the points with integral co-ordinates)
on the Newton polygon for f(x) are its endpoints (x0, y0) and (xn, yn). Thus, the
theorem of Dumas can be viewed as a generalization of Eisenstein.

2.3 A Theorem of I. Schur
In this section, we show how Newton polygons can be used to establish the

following result due to Schur ([25]).

Theorem 8. Let n be a positive integer and a0, a1, · · · , an be arbitrary integers
with | a0 |=| an |= 1, then

an
(n)!

xn +
an−1

(n− 1)!
xn−1 + · · ·+ a1x+ a0

is irreducible over the rationals.

Our use of Newton polygons for obtaining Theorem 8 is summarized by the
following lemma.
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Lemma 1. Let k and l be integers with k > l ≥ 0. Suppose g(x) =
∑n

j=0 bjx
j

and p be a prime such that p - bn, p | bj, ∀j ∈ {0, 1, · · · , n − l − 1} and right
most edge of NPp(g) has slope < 1/k, then for any integers a0, a1, · · · , an with
| a0 |=| an |= 1, the polynomial f(x) =

∑n
j=0 ajbjx

j can not have a factor with
degree in the interval [l + 1, k].

Proof. Case 1: Let us consider

aj = 1, ∀j ∈ {0, 1, · · · , n}.

Therefore, f(x) = g(x). We will prove the lemma by contradiction. Assume f(x)
has a factor with degree in [l+1, k]. Let f(x) = u(x)v(x) where u(x), v(x) ∈ Z[x]
and l + 1 ≤ deg u(x) ≤ k. Since, the slope of the edges of Newton polygon for
f(x) increase from left to right, the condition of the lemma implies that each edge
of NPp(f) has slope in [0, 1/k). If NPp(f) has an edge of slope 0, it must be left
most edge. Now consider an edge slope > 0 of NPp(f) and (a, b), (c, d) be any
two consecutive lattice points on this edge.

By hypothesis,

1

| (c− a) |
≤ | (d− b) |
| (c− a) |

<
1

k

⇒| c− a |> k ≥ deg u(x).

Thus, we get the translate of the edges of NPp(u) can not be found within
those edges of the NPp(f), which have non zero slope i.e., NPp(u) is not a part
of edges of NPp(f) which has a non zero slope.

Therefore, NPp(u) is contained within the edge of slope 0. Thus the length
of slope 0 is ≥ deg(u), but the condition of lemma implies νp(bn−j) ≥ 1 for
j ∈ {l+ 1, l+ 2, · · · , n}, so that, if the left most edge NPp(f) has slope 0 then it
has a length ≤ l < deg(u), which is a contradiction.

Case 2: Next we consider the case of arbitrary integers a0, a1,· · · , an with
| a0 |=| an |= 1. The condition on a0 and an implies that the left and right
most end points of NPp(f) are the same as the left and right most end points
NPp(g) respectively. Also p divides ajbj , for all j ∈ {0, 1, · · · , n − l − 1}, and
p - anbn. All the edges of NPp(g) lie on or above the line containing the right
most edge. The same statement holds for f(x). Note that νp(ajbj) ≥ νp(bj) for
all j ∈ {0, 1, · · · , n}. Hence, we also get that all the edges of NPp(f) lie on or
above the line containing the right most edge of NPp(g).

Let cj = ajbj for all j ∈ {0, 1, · · · , n}.
We have to show that

max
0≤j≤n−1

νp(c0)− νp(cn−j)
n− j

<
1

k
.
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Now

max
0≤j≤n−1

νp(c0)− νp(cn−j)
n− j

= max
1≤j≤n

νp(c0)− νp(cj)
j

= max
1≤j≤n

νp(b0)− νp(bjaj)
j

= max
1≤j≤n

{νp(b0)− νp(bj)
j

− νp(aj)

j
}

≤ max
1≤j≤n

νp(b0)− νp(bj)
j

<
1

k

Therefore, f(x) satisfies the same condition imposed on g(x) in the statement
of the lemma. So that, by appealing to the case 1 of the lemma follows.

Proof of Theorem 8: Let f(x) =
∑n

j=0 aj
xj

j!
where |a0| = |an| = 1.

Let

g1(x) =
n∑
j=0

xj

j!
,

and

g(x) = n!g1(x) =
n∑
j=0

n!

j!
xj.

Let h(x) =
∑n

j=0 aj
n!
j!
xj . To prove the theorem, it is sufficient to show that h(x)

is irreducible over Z.
If h(x) is reducible, let k be the smallest degree of an irreducible factor of

h(x).
Necessarily, one has

k ≤ n/2⇒ 2k ≤ n⇒ k ≤ n− k.

Now, we have to find a prime p such that

(1) p | {n!
0!
, n!

1!
, n!

2!
, · · · , n!

(n−k)!
}

(2) slope of the right most edge is < 1/k;
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Thus, it is enough to find p such that p | n!
(n−k)!

. By Sylvester theorem if m ≥ k
then

P ((m+ 1)(m+ 2) · · · (m+ k)) ≥ k + 1.

Taking m = n− k, we get

P ((n− k + 1)(n− k + 2) · · · (n− k + k)) ≥ k + 1.

So, p ≥ k + 1 exist and satisfies property (1).
We observe that for g(x) =

∑n
j=0 bjx

j , the slope of the right most edge can
be determined by

max
1≤j≤n

νp(b0)− νp(bj)
j

.

In our case, we need to estimate

max
1≤j≤n

νp(n!)− νp(n!/j!)

j
.

Now, we find that

νp(n!)− νp(n!/j!)

j
=
νp(n!)− νp(n!) + νp(j!)

j
=
νp(j!)

j
.

Let us fix j ∈ {1, 2, · · · , n} as pνp(j!) to be the largest power of p which
divides j!. Let t be the non- negative integer for which pt ≤ n < pt+1( for
j ∈ {1, 2, · · · , n}. Now, we observe that

ν(j!)

j
=
{[j/p] + [j/p2] + · · ·+ [j/pt]}

j

≤ (j/p+ j/p2 + · · ·+ j/pt)

j

=
(pt − 1)

pt(p− 1)

<
1

p− 1

< 1/k.

Hence, the right most edge of the Newton polygon for g(x) with respect to p has
slope < 1/k. Proof is done.
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Question 1. Let n and k be positive integers and let f(x) be defined by∫ x

0

(tk−1 + tk + tk+1 + · · ·+ tk−1+n)dt = xkf(x).

Therefore,

f(x) =
1

k
+

x

k + 1
+ · · ·+ xn

k + n
.

Prove that if there is a prime p > n for which p | k(k + n) but p2 - k(k + n), then
f(x) is irreducible over Q.

Proof. Given

f(x) =
1

k
+

x

k + 1
+ · · ·+ xn

k + n
. (2.1)

Let

g(x) = (k+1)(k+2) · · · (k+n)+k(k+2) · · · (k+n)x+· · ·+k(k+1) · · · (k+n−1)xn.
(2.2)

Clearly,

f(x) =
1

k(k + 1) · · · (k + n− 1)(k + n)
g(x). (2.3)

Let there is a prime p > n such that

p | (k + n) p2 - k(k + n).

Now, p | k(k + n). Since, p is a prime, p | k or p | k + n or both p | k and
p | (k + n). Since, p > n, p | k and p | (k + n) does not hold together. Now,
p2 - k(k + n) implies p2 - k and p2 - (k + n).

Case -i (p | k but p - (k + n) and p2 - k, p2 - (k + n))
Since,

g(x) = (k+1)(k+2) · · · (k+n)+k(k+2) · · · (k+n)x+· · ·+k(k+1) · · · (k+n−1)xn.

Here,

S = {(0, νp(an−0)), (1, νp(an−1)), · · · , (j, νp(an−j)), · · · , (n, νp(a0))}

= {(0, 1), (1, 1), · · · , (n− 1, 1)(n, 0)}.

Since, the slope of the edges of Newton polygon increases left most edge to right
most edge and all other points must be on or above edges of Newton polygon of
g(x) with respect to p, then the Newton polygon for g(x) with respect to prime p
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consist one edge from (0, 1) to (n, 0). In this case, g(x) is irreducible over Q.

Case-ii: (p | (k + n) but p - k and p2 - k, p2 - (k + n))
Here,

S = {(0, 0), (1, 1), (2, 1), · · · (n− 1, 1)(n, 1)}.

For the same reason stated above the Newton polygon for g(x) with respect to
prime p consist one edge from (0, 0) to (n, 1). In this case also, g(x) is irreducible
over Q. Therefore, in both cases, g(x) is irreducible over Q. So, from the equa-
tion (2.3), we say that f(x) is irreducible over Q. We are done.
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Chapter 3

Irreducibility of L(α)n (x) where
α ∈ N ∪ {0}

The generalized Laguerre polynomial is defined by

L(α)
n (x) =

n∑
j=0

(n+ α) · (n− 1 + α) · · · (j + 1 + α)

(n− j)! · j!
(−x)j

=
n∑
j=0

(n+ α)!

(j + α)!(n− j)!
(−x)j

j!
,

where n is a positive integer and α is an arbitrary complex number. The leading
coefficient here is 1/n!.

As an example if α = 1,

L(1)
n (x) =

n∑
j=0

(n+ 1) · (n) · · · (j + 2)

(n− j)! · j!
(−x)j

=
n∑
j=0

(n+ 1!)

(n− j)! · (j!) · (j + 1)!
(−x)j

=
n∑
j=0

(
n+ 1

j + 1

)
(−x)j

j!
.
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3.1 Irreducibility of L(α)
n (x) where α = 0

The classical Laguerre polynomials corresponds to α = 0 is

L(0)
n (x) =

n∑
j=0

(n) · (n− 1) · · · (j + 1)

(n− j)! · j!
(−x)j

=
n∑
j=0

n!

(n− j)! · j! · j!
(−x)j

=
n∑
j=0

(
n

j

)
(−x)j

j!
.

Now, comparing this polynomial with the polynomial
∑n

j=0 aj
(−x)j

j!
, we get |a0| =

|an| = 1. So, Schur’s theorem implies that the classical Laguerre Polynomial is
irreducible over the rationals.

3.2 Irreducibility of L(α)
n (x) where α ∈ N

We want to prove that L(α)
n (x) is irreducible over Q, where

L(α)
n (x) = (−1)nn!L(α)

n (x)

=
n∑
j=0

(−1)n+j

(
n

j

)
(n+ α) · (n+ α− 1) · · · (j + 1 + α)xj.

Clearly, L(α)
n (x) is monic polynomial and has integral coefficients. To prove the

result, we use some software technology (SAGE). Our main result is stated below.

Theorem 9. There is an effectively computable constant n0 such that L(α)
n (x) is

irreducible over the rationals for all n ≥ n0.

This method would imply the irreducibility of a slightly more general polyno-
mials.
Let L̃(α)

n (x) ∈ Z[x] defined as

L̃(α)
n (x) =

n∑
j=0

aj

(
n

j

)
(n+ α) · (n+ α− 1) · (n+ α− 2) · · · (j + 1 + α)xj,

where aj are arbitrary integers with satisfies the condition that |an| = |a0| = 1.
We shall denote a polynomial of the form L̃(α)

n (x) by f(x). Such a polynomial
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L̃(α)
n is sometimes called an admissible modification of the original polynomial
L(α)
n .

Let g(x) denote the polynomial

g(x) =
n∑
j=0

(
n

j

)
(n+ α) · (n+ α− 1) · (n+ α− 2) · · · (j + α + 1)xj.

Thus, both L̃(α)
n and L(α)

n , are admissible modifications of g(x). Our main tool in
establishing the irreducibility of L(α)

n (x) is the following lemma of Filaseta (see
[2]).

Lemma 2. Let k be a positive integer. Suppose, g(x) =
∑n

j=0 bjx
j ∈ Z[x], and

there is prime p satisfying

(i) p - bn, but p divides bj for j ∈ {0, 1, · · · , n− k}, and

(ii) the rightmost edge of the Newton polygon NPp(g) of g(x) with respect to p
has slope < 1/k.

Then any admissible modification of g does not have a factor of degree k over Q.

Now, we restate Lemma 2 in terms of the function ν, namely, we have its
following version.

Lemma 3. Let k be a positive integer. Suppose, g(x) =
∑n

j=0 bjx
j ∈ Z[x], and

there is prime p satisfying

(i) νp(bn) = 0, but νp(bj) ≥ 1 for j ∈ {0, 1, · · ·n− k}, and

(ii) for any j ∈ {1, 2, · · · , n}, one has

νp(b0)− νp(bj)
j

< 1/k.

Then any admissible modification of g(x) does not have a factor of degree k over
Q.

Example 3. As an example of lemma 3, we can deduce the irreducibility of

x19

20!
+
x18

19!
+ · · ·+ x2

3!
+
x

2!
+ 1

over the rationals by multiplying by 20!, and considering the prime p = 5, 19.
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Proof. Let

f1(x) =
x19

20!
+
x18

19!
+ · · ·+ x2

3!
+
x

2!
+ 1,

and
g1(x) = 20!f1(x).

Then
g1(x) = x19 +

20!

19!
x18 + · · ·+ 20!

3!
x2 +

20!

2!
x+ 20!.

In this case, we take prime p = 19. Comparing the above equation with g1(x) =∑19
j=0 bjx

j , then we observe that

(i) νp(b19) = 0, νp(bj) = 1∀j ∈ {0, 1, · · · , 17},

(ii) for any j ∈ {1, 2, · · · , 19}, one has

νp(b0)− νp(bj)
j

< 1/2.

This implies that g1(x) only may have a linear factor over Q.
Now the Newton polygon of g1(x) with respect to p = 5, consist two edges. The
edges are (0, 0) to (15, 3), and (15, 3) to (19, 4). The left most edge ofNP5(g1(x))
has two lattice points at (5, 1) and (10, 2). Then by Dummas theorem it may have
factor of degree five or degree ten, but not have a linear factor. Therefore, g1(x)
does not contain a linear factor.
In both case of different prime, we observe that g1(x) does not have facto of any
degree, Therefore, g1(x) is irreducible over Q. Therefore, f1(x) is irreducible
over Q.

It is easy to understand that g(x) is a monic with integer coefficients of degree
n. Let us assume that g is reducible, then it has a factor with degree in [1, n/2].
Since g is reducible over Q, it is also reducible over Z. Therefore, we deduce that
if g is reducible, then it has a factor with integer coefficients and degree ≤ n/2.
In Lemma 3, we take

bj =

(
n

j

)
(n+ α) · (n+ α− 1) · (n+ α− 2) · · · (j + α + 1)

=

(
n

j

)
(n+ α)!

(j + α)!
=

(
n

j

)
cj (say).
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If i < j

ci
cj

=
(n+ α)!

(i+ α)!
· (j + α)!

(n+ α)!
=

(j + α)!

(i+ α)!
= (j + α) · (j + α− 1) · · · (i+ α + 1).

This implies if i < j then cj/ci.
Now,

νp(b0)− νp(bj)
j

=
νp((n+ α)!/(α)!)− νp((n+ α)!/(j + α)!)− νp

((
n
j

))
j

=
(νp((n+ α)!)− νp((α)!− νp

((
n
j

))
− νp((n+ α)! + νp((j + α)!

j

≤ νp((j + α)!)

j
.

By using the formula, νp(a!) =
∑∞

i=1

[
a
pi

]
where [·] denotes the greatest inte-

ger function, we get

νp((j + α)!)

j
=

1

j

∞∑
i=1

[
j + α

pi

]
<

1

j

∞∑
i=1

j + α

pi
=

1

j

j + α

p− 1
≤ 1 + α

p− 1
.

Therefore, if we are to show that g does not have a factor of degree k, it is
sufficient to show that there exist a prime p such that p satisfies the both condition

(i) p/bj for all j ∈ {0, 1, · · · , n− k},

(ii) (1 + α)/(p− 1) ≤ 1/k i.e p ≥ (1 + α)k + 1.

We will give different arguments for various sizes of k with respect to n. For
k ≥ 2, we will achieve our result by showing that there is a prime p ≥ (1+α)k+1
that divides c0, c1, · · · , cn−k. since, cj/ci if i < j, it is enough to show that p|cn−k.
As a corollary, we have the following result.

Corollary 2. For a positive integer n, define h(x) ∈ Q[x] as

h(x) =
anx

n

(n+ α)!
+ · · ·+ ajx

j

(j + α)!
+ · · ·+ a1x

(α + 1)!
+

a0

(α)!
, |a0| = |an| = 1.

Then either h(x) is irreducible, or, if h is reducible, then h has at most a linear
factor.
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Proof. Here

h(x) =
anx

n

(n+ α)!
+ · · ·+ ajx

j

(j + α)!
+ · · ·+ a1x

(α + 1)!
+

a0

(α)!
, |a0| = |an| = 1.

=
n∑
j=0

aj
(j + α)!

xj

=
1

(n+ α)!

n∑
j=0

(n+ α)!

(j + α)!
ajx

j

=
1

(n+ α)!

n∑
j=0

ajcjx
j, where cj =

(n+ α)!

(j + α)!
.

Let us consider the polynomial

g(x) =
n∑
j=0

cjx
j, where cj =

(n+ α)!

(j + α)!
.

Since, there is a prime p that divides c0, c1, · · · , cn−k i.e.,

νp(cj) ≥ 1 for all j ∈ {0, 1, · · · , n− k},

but νp(cn) = 0. Then by lemma 3, any admissible modification of g(x) i.e.,

g̃(x) =
n∑
j−0

ajcjx
j

does not have a factor of degree k over Q.
Since, h(x) = 1

(n+α)!
g̃(x), it follows that h(x) is irreducible over Q.

We will prove the case later when k = 1. We begin by considering the cases
for k ≥ 2. But our strategy is:

Find a prime p ≥ (1 + α)k + 1 such that p|cn−k.

Case (i): 2n/ log n < k ≤ n/2.
For k in the indicated range, we will show that there is a prime p in the interval

(n− k + α, n+ α]. First of all, any prime p in (n− k + α, n+ α] divides

cn−k = (n+ α)(n+ α− 1)(n+ α− 2) · · · (n− k + α + 1)
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and hence, p divides cj for all j ∈ {0, 1, · · · , n− k}. Now observe that this prime
p satisfies

p > n− k + α = n− n/2 + α = n/2 + α.

Thus, 2p > n + 2α. Consequently, ν(cj) = 1 for all j ∈ {0, 1, · · · , n − k}
(i.e., p divides cj exactly once for all j ∈ {0, 1, · · · , n − k}). Next, let us try
to figure out if p divides any other cj . Note that, since 2p > n + 2α, p divides
cj = (n + α)(n + α − 1)(n + α − 2) · · · (j + α + 1) if and only if p appears
as one of the factors in the product formula for cj . That is, p|cj if and only if
p ∈ [j + 1 + α, n+ α], i.e., if and only if j ≤ p− 1− α. Therefore, we have

ν(cj) =

{
1 if 0 ≤ j ≤ p− 1− α
0 if j ≥ p− α.

It is easy to understand that the Newton polygon NPp(h) has only two edges, one
joining (0, 0) and (n − p + α, 0); and the other edge joining (n − p + α, 0) and
(n, 1). Thus, the slope of the rightmost edge of NPp(h) is 1/(p − α). Now, we
observe that

p− α > n− k ≥ k (since, n ≥ 2k).

Therefore, we may now conclude that the slope of the rightmost edge of NPp(h)
is < 1/k. By appealing to Lemma 2, we deduce that h(x) does not have a factor
of degree k in this cases.

Thus, it remains to show that there is a prime p in the interval (n−k+α, n+α]
for 2n/ log n < k ≤ n/2 By explicit gap estimates on primes [3], we have

π(x) >
x

log x− 0.5
for x ≥ 67, (3.1)

and
π(x) <

x

log x− 1.5
for x ≥ e1.5. (3.2)

It is sufficient to show that π(n + α)− π(n + α − 2(n + α)/ log n) > 0. Let
us take u = (log n)/2. Then, we have

π(n+ α)− π((n+ α)(1− 1/u))

>
n+ α

log(n+ α)− 0.5
− (n+ α)(1− 1/u)

log(n+ α) + log(1− 1/u)− 1.5
,

provided, n + α ≥ 67 and (n + α)(1− 1/u) ≥ e1.5. Since α is a positive integer
≥ 1 then 67(1 − 2/ log 66) > e1.5, we just have to take n ≥ 66. The expressions
on the right hand side above upon simplification yields
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(n+ α){log(n+ α) + log(1− 1/u)− 1.5− log(n+ α) + log(n+α)
u

+ 0.5− 1
2u
}

(log(n+ α)− 0.5)(log(n+ α) + log(1− 1/u)− 1.5)
.

For n ≥ 66, clearly the factors in the denominator above are > 0, and n+ α > 0.
Thus, the expression above is positive if and only if

log(n+ α) > u+ 1/2− u log(1− 1/u).

Now, we have

−u log(1− 1/u) = 1 +
1

2u
+

1

3u2
+ · · ·

<
1

2
+

1

2

(
1 +

1

u
+

1

u2
+ · · ·

)
=

1

2

(
1 +

u

u− 1

)
< 3/2.

Therefore, it is sufficient to show that log(n+α) > u+2, i.e., log((n+α)2/n) > 4
which is equivalent to have (n + α)2/n > e4. Since 672/66 > e4, our assertion
follows for n ≥ 66. A quick search with SAGE (a mathematical open source
software), it follows that the interval (n− 2n/ log n, n] contains a prime for each
n ∈ [8, 65]. So, we are done in case (i) for every n ≥ 8.

Case (ii): n2/3 < k ≤ 2n/ log n. Our main tool in this section and in the next
case as well, is a lemma due to Erdós, which gives effective lower bounds on the
largest prime factor of product of consecutive integers. But first, let us define the
quantity ∆(u, k) as

∆(u, k) = u(u+ 1) · · · (u+ k − 1), u ∈ Z.

For a positive integer a, let P (a) denote the largest prime factor of a. Sylvester
showed that if u ≥ k, then P (∆(u, k)) > k. For k = u, this precisely the
statement of Bertrand’s postulate. The following lemma is based on an idea of
Erdós which generalizes Sylvester’s result.

Lemma 4. Let C ≥ 1 and 0 < θ < 1 be given. Suppose the integer k satisfies
nθ < k ≤ 2n/ log n. Further suppose that u ≥ n/2 is an integer. Then there is a
constant k0 = k0(C, θ) such that

P (∆(u, k)) > Ck for all k ≥ k0.
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Proof. We will prove the lemma by contradiction. Let us assume that P (∆(u, k)) ≤
Ck for all k ∈ (nθ, 2n/ log n]. Let us define the set T as

T = {u, u+ 1, · · · , u+ k − 1}.

For each prime p ≤ Ck, let e = e(p) be the highest exponent of p that divides
some element of T (pe may divide more than one element of T ). Choose one such
element and let us call this element up. Now, consider the set

S = T /{up : p ≤ Ck}.

Since, for each prime p ≤ Ck, we are omitting at most one element from T . We
deduce that

|S| ≥ |T | − π(Ck) = k − π(Ck).

We know that
π(x) < 1.25x/ log x for all x ≥ 114.

So, we take n ≥ (114/C)1/θ, so that, Ck ≥ 114. For such values of of Ck, we
have

π(Ck) < 1.25Ck/ logCk ≤ 1.25Ck/ log k.

Therefore, we have
|S| > k(1− 1.25C/ log k).

Let us define ∆S = ∆S(u, k) as

∆S =
∏
s∈S

s.

Note that ∆S |∆(u, k). It is given that each element of T , and hence, every element
of S , is ≥ n/2. Therefore,

∆S ≥
(
n

2

)k(1−1.25C/ log k)

.

Next, we estimate an upper bound for ∆S that, in the end, will contradict the above
lower bound, and thereby proving the lemma. Note that, since all prime factors of
∆S are ≤ Ck, and νp(∆S) = 0 if p - ∆S , we have

∆S =
∏
p|∆S

pνp(∆S) =
∏
p≤Ck

pνp(∆S).

Note that the highest exponent of p ≤ Ck that divides a s ∈ S is ≤ e = e(p).
For a fixed 1 ≤ j ≤ e, the number of multiples of pj in T is≤ [k/pj]+1. Note that
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at least one of these multiples is up defined earlier (To see this, observe that pe|up,
and that j ≤ e, so that, up is a multiple of pj). Since, up /∈ S and ∆S |∆(u, k), we
deduce that the number of multiples of pj in S is equal to the number of multiples
of pj in T minus 1, i.e.,

≤
[
k

pj

]
.

Let χ(j) = χp(j) denote the number of multiples of pj in S. We know that
χ(j) ≤ [k/pj]. Note that

νp(∆S) =
∑
s∈S

νp(s) =
e∑
j=1

∑
s∈S

νp(s)=j

j =
e∑
j=1

∑
s∈S

νp(s)≥j

1 =
e∑
j=1

χ(j) ≤
e∑
j=1

[
k

pj

]
.

The last quantity in the above expression is ≤ νp(k!). Hence, we have

∆S =
∏
p≤Ck

pνp(∆S) ≤
∏
p≤Ck

νp(k!) = k! < kk.

Since, we have assumed that k ≤ 2n/ log n, we have that

∆S <

(
2n

log n

)k
.

Now, comparing this with the lower bound obtained for ∆S , we find that

2n

log n
>

(
n

2

)(1−1.25C/ log k)

.

Rewriting, we have
41−1.25C/2 log k

log n
>

1

n1.25C/ log k
.

Next we use the trivial bound log n > log k, and the bound k > nθ for the
right hand side. We further take k > exp(1.25C/2), so that the quantity 1 −
1.25C/2 log k < 1. Thus the last inequality above implies

4

log k
>

1

k1.25C/θ log k
=

1

e1.25C/θ
.

Therefore, we deduce from above that

k < k1 = exp(4 exp(1.25C/θ)).

Thus, if we set

k0 = 1 + max{114/C, exp(1.25C/2), exp(4 exp(1.25C/θ))},

then we have a contradiction for k ≥ k0, and the proof of the lemma is done.
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For our purposes, we take u = n − k + 1 + α, C = 1 + α and θ = 2/3 in
Lemma 4, so that, we have

k0 = 1 + e4e3.75
(1+α)

2 .

Note that k ≤ 2n/ log n and n > k, it follows that

log n > log k ⇒ 1

log n
<

1

log k
⇒ 2n

log n
<

2n

log k
⇒ k <

2n

log k
,

k < 2n/ log k. Accordingly, we take n ≥ (k log k)/2 ≥ (k0 log k0)/2. For these
values of n, we deduce that h(x) does not have a factor of degree k where k is in
the range (n2/3, 2n/ log n].

Case(iii): (k2 < k ≤ n2/3) Here k2 is fixed, and will be specified later. The
treatment in this case is similar to that in case(ii). We even use the same sets T
and S. As before, we take C = (1 + α) and θ = 2/3. Only in the last step in
the proof of Lemma 4, we make a small adjustment. Here, we replace the upper
bound 2n/ log n of k by n2/3. We further note that for k ≥ e

(12.5)(1+α)
2 , one has

1− 1.25(1 + α)/ log k > 0.8.

So, we take k2 = e
(12.5)(1+α)

2 , and after making these changes, we have that

n2/3 >

(
n

2

)0.8

.

The last inequality clearly does not hold for n ≥ 26. Since, we have taken k ≥ k2,
we must take n ≥ k3/2 ≥ k

3/2
2 . Thus, for n ≥ k

3/2
2 , the polynomial h(x) does not

have factor of degree in (k2, n
2/3]. This settles case (iii).

Case(iv): 1 < k ≤ k2. The arguments in this section are based on effective
versions of Thúe’s theorem due to Baker [1].

Theorem 10. Let f(x, y) ∈ Z[x] be absolutely irreducible (i.e., it is irreducible
over the fields of complex numbers C). Let deg f = m, and let H denote the
height (maximum of the absolute values of coefficients of f ). If (x, y) is an integral
solution of f(x, y) = 0, then we have

max{|x|, |y|} < exp exp exp
(

(2H)10m
10
)
.

Finally, we will need the following estimate from [3].
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Theorem 11. For any z ≥ 1, we have∑
p≤z

p−a prime

log p < 1.02z.

We begin by proving a lemma concerning the largest prime factor ofm(m+α).

Lemma 5. If P (·) denotes the largest prime factor of a number, and α be any
positive integer then

lim
m→∞

P (m(m+ α)) =∞.

Proof. We will proof the lemma by contradiction. Let us assume that for any
K > 0, and any M > 0, there is a m > M such that P (m(m+ α)) ≤ K. Fixing
K > 0, and let us define

P = {p ≤ K : p, a prime} and P (K) =
∏
p≤K

p.

Now, we define a new set

A = {p : P (m(m+ α)) ≤ K.}

We assume that |A| = ∞. Now by using the fundamental theorem of arith-
metic, we can express every integer l as

l = l1l
3
2,

where l1 is cub-free. Thus, there exist integers X = Xm, Y = Ym, and cube-
free integers A = Am and B = Bm such that

m+ α = AX3 and m = BY 3; m be an positive integer.

Therefore, we get the equation

AX3 −BY 3 − α = 0. (3.3)

Since, our assumption that |A| = ∞, it clearly implies that at least one of the
following sets is infinite:

A1 = {Xm : m ∈ A}, A2 = {Ym : m ∈ A}.

For fixed cube-free positive integers A and B, (6.16) is absolutely irreducible.
Now, we prove it by proving the following lemma.
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Lemma 6. For fixed cube-free positive integers A and B, and α be any positive
integer then Ax3 −By3 − α is absolutely irreducible.

Proof. Let A, B are fixed cube free, and α be any positive integer. Let

u(x, y) = Ax3 −By3 − α. (3.4)

We want to show that u(x, y) is absolutely irreducible. We will prove it by con-
tradiction. Let us assume that u(x, y) is reducible over C.
Let

u(x, y) = v(x, y)w(x, y). (3.5)

Then
deg u = deg v + degw.

Let
v(x, y) = a1x+ a2y + a3,

and
w(x, y) = b1x

2 + b2y
2 + b3xy + b4x+ b5y + b6.

v(x, y)w(x, y) = a1b1x
3 + a2b1x

2y + a1b3x
2y + a1b5xy + a2b4xy + a3b3xy

+a1b2xy
2 + a2b3xy

2 + a2b2y
3 + a1b6x+ a3b4x

+a2b6y + a3b5y + a3b1x
2 + a1b4x

2 + a3b2y
2

+a2b5y
2 + a3b6.

Now, comparing the coefficients in the above equation with those in the equa-
tion (6.17), we get

a1b1 = A, (3.6)

a2b2 = −B, (3.7)

a3b6 = −α, (3.8)

a2b1 + a1b3 = 0, (3.9)

a1b2 + a2b3 = 0, (3.10)

a1b6 + a3b4 = 0, (3.11)

a1b4 + a3b1 = 0, (3.12)

a2b6 + a3b5 = 0, (3.13)

a3b2 + a2b5 = 0, (3.14)

a1b5 + a2b4 + a3b3 = 0. (3.15)
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Now, solving the equations ((6.22) and (6.23)), ((6.24) and (6.25)), and ((6.26)
and (6.27) ), we get

b2
3 = b1b2, (3.16)

b2
4 = b1b6, (3.17)

b2
5 = b6b2. (3.18)

From equations ((6.29), (6.30) and (6.31)), we can say that b1, b2, b6 must have
the same sign. Now from equation (6.19) , it is clear that a1 and b1 have same
sign. Also from equation (6.20), it is clear that a2 and b2 has opposite sign. Again
from equation 6.21, it is clear that a3 and b6 have opposite sign. Since b2, b6

have same sign, then a2, a3 have same sign. Again from the equation (6.24), we
get b4 = −a1b6/a3, this implies b4, a1 have same sign. Again from the equa-
tion (6.27), we get b5 = −a3b2/a2, this implies b5, b2 has opposite sign. Again
from the equation (6.22) we get b3 = −a2b1/a1, this implies b3, b1 have same
sign. From the above observation we conclude that b1, b2, b3, b4, b6, a1 has same
sign, and a2, a3, b5 has same sign. Therefore, we get the result that a1, b5 have
opposite sign. a2, b4 and a3, b3 also have opposite sign. Therefore, the sign of
a1b5, a2b4, a3b3 are all negative. Then this cannot satisfy the equation (6.28), if
it is satisfied, then all are zeros. So, we arrive at a contradiction. Therefore, our
original assumption was wrong. This implies u(x, y) is absolutely irreducible.

Hence, by Theorem 10, we deduce that any integral solution (X, Y ) of (6.16)
must satisfy

max{X, Y } < exp exp exp

(
(2H)103

10
)
, where H = max{A,B}.

Since P (m(m+α)) ≤ K, we deduce that m and m+α are made up of primes≤
K. Since A is a cube-free divisor of m, we have A|P (K)2. Similarly, B|P (K)2.
Thus, one has

max{X, Y } < exp exp exp

(
(2e2.04K)103

10
)

= nK , a fixed number.

But this implies both A1 and A2 to be finite, and therefore, we arrive a contra-
diction. So our original assumption is wrong. Thus |A| < ∞, and the lemma
follows.

Let us now get back to the polynomial h(x). Since, we are trying to show that
h(x) does not have a factor with degree in (1, k2]. We take K = (1 + α)k2 + 1 in
Lemma 18. We further take n = deg h to be

n > P (K)2n3
K .
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Then from Lemma 18, we deduce that P (n(n+α)) > K = (1 +α)k2 + 1. Next,
we note that for any 2 ≤ k ≤ k2, one has that

n(n+ α)|cj for all j ∈ {0, 1, · · · , n− k}.

Let p = P (n(n+ α)). Thus, we have for any 2 ≤ k ≤ k2 that

p|n(n+α)|cj ∀j ∈ {0, 1, · · · , n− k}, and p ≥ (1 +α)k2 + 1 ≥ (1 +α)k+ 1.

Our conclusion in case (iv) now follows from Lemma 3.

Case(v): k = 1. As indicated earlier, we will consider the polynomial g(x) instead
of h(x) in this case. The coefficients of g are given by.

bj =

(
n

j

)
(n+ α) · (n+ α− 1) · (n+ α− 2) · · · (j + 1 + α) =

(
n

j

)
cj.

Clearly, ncj|bj for any 1 ≤ j ≤ n − 1. Also, (n + α)|cj for any j ≤ n − 1.
For j = 0, n|bj . Therefore, n(n + α)|bj for all j ≤ n − 1. Once again, we take
n > P (K)2n3

K , but withK = α+2. Then we deduce that P (n(n+α)) ≥ (α+2).
If p denotes P (n(n + α)), then we deduce that there is a prime p ≥ (α + 2)
(= (1 + α) · 1 + 1) such that

p|n(n+ α)|bj for all j ∈ {0, 1, · · · , n− 1}.

Thus, by appealing to Lemma 3, we conclude that g cannot have a linear factor.
This completes case (v).
Let n0 be the maximum of all the lower bounds on n in cases (i) through (v), i.e.,
n0 is largest among the following:

• 8 from case (i)

• (k0 log k0)/2, where k0 = 1 + e4e3.75(1+α)/2 from case (ii)

• exp((18.75)(1 + α)3/4) from case (iii)

• P (K)2n3
K from case (iv) where

P (K) =
∏
p≤K

p, nK = exp exp exp

(
(2e2.04K)103

10
)
,

and
K = (1 + α) exp((18.75)(1 + α)/2) + 1.

• P 2
3 n

3
3 from case (v)

Clearly, the fourth item gives the maximum value, and this gives us an explicit
estimate for n0 (albeit too large).
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Chapter 4

Galois theory of Local Fields

4.1 Preliminaries on Valuation and Completion
In this section we recall certain facts from the valuation theory. Let F be a

field. A subring V of F is said to be a valuation ring of F if for every a 6= 0 in F ,
at least one of a or a−1 belongs to V . We list down all the relevant attributes of a
valuation ring in the next proposition.

Proposition 1. Let V and F be as above. Then we have the following.

(i) The field of fractions of V is K.

(ii) V is a local ring (i.e., has a unique maximal ideal).

(iii) V is integrally closed in F (only elements of F integral over V are those of
V ).

(iv) If I and J are ideals in V , then either I ⊆ J or J ⊆ I . Thus the set of
ideals of V is totally ordered under inclusion.

(v) If V is Noetherian, then V is a PID. Furthermore, for some prime p ∈
V , every ideal is of the form (pn). For any such prime p, one has that
∩∞n=1(pn) = (0).

Proof. If a 6= 0 is an element of F , then one of a or a−1 is in V . Since, a can be
expressed as a/1 or 1/(a−1), part (i) now follows.

For part (ii), we show that the set M of all non-units forms an ideal of V .
Since, M does not contain a unit, it is a proper ideal of V . Since, every proper
ideal of V is contained in M, we deduce that M must be the unique maximal
ideal of V . To prove our claim, observe that if a and b are nonzero non-units, then
one of a/b or b/a is in V . If a/b ∈ V , then a + b = b(1 + a/b), i.e., a + b = bv
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for some v ∈ V . Now, if a + b is a unit, then it forces b to be a unit, contrary
to our assumption on b. Consequently, a + b ∈ M. Similarly, if b/a ∈ V , then
a + b ∈ M. Lastly, if a ∈ V and v ∈ V , then va is again a non-unit in V , and
consequently, va ∈M. Therefore,M is an ideal as claimed.

We next prove part (iii). If a ∈ F is integral over V , then there exists elements
c0, c1, · · · , cn−1 in V such that

an + cn−1a
n−1 + · · ·+ c0 = 0.

If a ∈ V , then there is nothing to prove. So, we assume a /∈ V . Therefore,
1/a ∈ V . Multiplying the last equation by 1/an−1 and rearranging, we have

a = −(cn−1 + cn−2/a+ · · ·+ c0/a
n−1) ∈ V,

thereby proving part (iii).
For part (iv), assume that I and J are ideals of V and that I 6⊆ J . We will

show that J ⊆ I . If not, then let j be in J\I and i in I\J . Now, one of j/i or i/j
is in V . Clearly, j/i /∈ V , else j = (j/i)i ∈ J , a contradiction. But if i/j ∈ V ,
then i = (i/j)j ∈ J is also an impossibility. It now follows that J ⊆ I .

Finally, for part (v), We let I be an ideal of Noetherian ring V , and let {a1, a2, · · · an}
be a finite set of generators for I . By the last part, after relabeling suitably, we
may assume that

(a1) ⊆ (a2) ⊆ · · · ⊆ (an).

But then one has
I ⊆< a1, a2, · · · , an >⊆ (an) ⊆ I.

Thus, I = (an) and V is a PID. The maximal idealM is thus a principal ideal. If
M = (p), then it follows that p is a prime (maximal ideals are prime). In fact, it
is easy to see that all other primes are associates of p. To see this, note that if (q)
is another prime ideal, then (q) ⊆ (p) implies p|q. Since, a prime is irreducible,
the assertion follows at once. Recall that in a PID, irreducible elements are prime,
and as such, it follows that p is the unique (up to associates) irreducible element
of V . Next, consider a nonzero ideal I = (a) in V . Since, a PID is also a UFD,
a can be expressed uniquely as a product of a unit and a finitely many irreducible
elements in V . As p is the unique irreducible element in V , we therefore have that
a = upm where u is a unit in V . Now, we can easily see that I = (a) = (pm).
The last assertion of part (v) follows similarly. For, if a is in ∩∞n=1(pn), then pn|a
for all n. Since V is a UFD, it follows that a = 0.

We will now introduce the notion of an absolute value on a field F .

Definition 1. An absolute value on a field F is a map | · | : F → R having the
following properties:
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(i) |x| ≥ 0 for all x ∈ F and |x| = 0⇐⇒ x = 0.

(ii) |xy| = |x||y| for all x and y in F .

(iii) |x+ y| ≤ |x|+ |y| for all x and y in F .

The absolute value is said to be nonarchimedean if it satisfies following
stronger version of (iii).

(v) |x+ y| ≤ max{|x|, |y|} for all x and y in F .

The usual absolute values on R or C is an archimedean absolute value. Our
interest however will be in the nonarchimedean ones which are mostly induced by
valuations.

Definition 2. A discrete valuation ν(·) is a function ν : F → Q∪ {∞} satisfying
the following properties:

(i) ν(x) =∞ if and only if x = 0 (by convention).

(ii) ν(xy) = ν(x) + ν(y) for all x and y in F .

(iii) ν(x+ y) ≥ min{ν(x), ν(y)} for all x and y in F .

It is easily seen that a valuation ν induces a nonarchimedean absolute value |x| =
|x|ν = c−ν(x) where c > 1 is a real number.

Note that ν : F ∗ → Q is a group homomorphism from the multiplicative
group of nonzero elements F ∗ in F to an additive subgroup of Q. Consequently,
its image must be a cyclic subgroup of Q, i.e., it is of the form rZ where r ∈
Q. We remark that any discrete subgroup of (R,+) would work. We will be
concerned with nonarchimedean absolute values of number fields induced by p-
adic valuations.

Proposition 2. Let ν be a discrete valuation on a field F . Then

O = OF = {x ∈ F : ν(x) ≥ 0} = {x ∈ F : |x| ≤ 1}

is the valuation ring (called the discrete valuation ring or DVR) with the unique
maximal ideal m given by

m = {x ∈ F : ν(x) > 0} = {x ∈ F : |x| < 1}.

Consequently, by Proposition 1, O is integrally closed in F .
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Proof. The fact thatO is a ring follows from the nonarchimedean and multiplica-
tive properties of the absolute value. For any x 6= 0 in F , we have |x||x−1| = 1.
It now follows from the definition of O that it is a valuation ring. From Proposi-
tion 1, we find that O has a unique maximal ideal consisting of all the non-units
inO. It can be easily seen that for x ∈ O, one has |x| = 1 if and only if x is a unit
in O if and only if ν(x) = 0. The last part of the proposition now follows.

Recall that ν(F ∗) = rZ where r ∈ Q. Thus, r is the smallest positive element
in the image of ν. This means there is an element π ∈ F ∗ with ν(π). Thus π ∈ m.
Such an element is called a uniformizer of O.

Proposition 3. We have m = (π) = πO. Any element x of F ∗ can be expressed
uniquely as x = uπn where u is a unit in O and n ∈ Z. Thus, in particular, we
have F = O[1/π].

Proof. It is clear that (π) ⊆ m. Now let a 6= 0 be in m. Note that from the
choice of π, it follows that ν(a) ≥ ν(π). Thus, ν(aπ−1) = ν(a) − ν(π) ≥ 0.
Consequently, aπ−1 ∈ O, and hence, a ∈ (π).

For the second part, we note that for any a ∈ F ∗, there is an integer n such
that

ν(a) = nr = nν(π) = ν(πn).

It follows that ν(aπ−n) = 0, i.e., aπ−n ∈ O∗ (the group of units in O). Thus
a = uπn where u is a unit inO. Since n is unique (depends on a only), it forces u
to be unique as well. This proves the uniqueness part. The last bit follows at once
now.

As our final exercise on DVR, we show that O is a PID (in fact, it is an Eu-
clidean Domain).

Proposition 4. Let I be an ideal inO. Then I = mn = (πn) for some nonnegative
integer n. Thus, O is a PID. Moreover, we have ∩∞n=1m

n = (0).

Proof. Let nr = min{ν(x) : x ∈ I} where n is a positive integer. Thus nr > 0
(else, I contains a unit). Let a ∈ I be the element with ν(a) = nr. Thus by
Proposition 3, we have a = uπn, and consequently, mn = (πn) = (a) ⊆ I .
Conversely, suppose, b ∈ I , and let ν(b) = kr = kν(π) = ν(πk). By our
construction, it follows that k ≥ n. Also, by Proposition 3, there is a unit u′ such
that b = u′πk. Therefore, b ∈ (πk). Since, k ≥ n, we have (πk) ⊆ (πn). Thus,
b ∈ (πn) = mn. From our choice of n, we also find that it is unique. The last is
proved by working similarly to the proof of Proposition 1.

We now take up the completion (topological) of F with respect to the metric
induced by a discrete valuation ν.
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Definition 3. Let C = Cν(F ) denote the set of Cauchy sequences in F with re-
spect to the absolute value induced by ν. It is easy to see that C has a natural
commutative ring structure with addition and multiplication inherited from F . Let
N denote the set of all null sequences in F . Thus, N is clearly an ideal in C . In
fact, N can be shown to be a maximal ideal. The quotient ring C /N , which is
thus a field, is called the completion of F with respect to the absolute value | · |ν
induced by ν and is denoted by Fν . Essentially, Fν consists of all the equivalence
classes of Cauchy sequences in F . That it is a field, follows from the quotient
description above.

In fact, Fν is a valued field (field with a valuation). For, if x = {xn} where
xn ∈ F , is an element of Fν , then we may define

ν(x) = lim
n→∞

ν(xn) and |x| = lim
n→∞

|xn| = c− limn→∞ ν(xn) = c−ν(x),

where c > 1 is a constant. It should also be noted that |x| = 0 (or ν(x) = ∞)
if and only if {xn} is a null sequence, i.e., if and only if x = 0. Furthermore,
if x 6= 0, then {ν(xn)} must be a eventually constant sequence for {xn} to be
Cauchy. Therefore, the range of the extended ν is again rZ∪{∞}. Thus, we may
as well define its discrete valuation ring Oν of Fν to be

Oν = {x ∈ Fν : ν(x) ≥ 0} = {x ∈ Fν : |x| ≤ 1}

with the unique maximal ideal m given by

mν = {x ∈ Fν : ν(x) > 0} = {x ∈ Fν : |x| < 1}.

Our key result concerning Fν is the following. Most of the properties listed below,
follow from Proposition 1, or are very similar to proofs done in the case ofO. We
leave these details and prove the others.

Proposition 5. Let Fν and Oν be as above. Then we have the following.

(i) F is dense in Fν

(ii) The field of fractions of Oν is Fν .

(iii) There is a natural inclusion O ↪→ Oν by x→ {x, x, · · · }. Therefore, there
is also a natural inclusion F ↪→ Fν .

(iv) Oν is integrally closed in Fν .

(v) Oν ∩ F = O
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(vi) Oν is a local ring with the unique maximal ideal mν , generated by π (the
uniformizer of F ). Thus, mν = πOν .

(vii) Any ideal of Oν is of the form πnOν where n is nonnegative integer. More-
over ∩∞n=1π

nOν = (0).

(viii) For every x ∈ Oν , there exists a {xn} → x where xn is a unique ele-
ment O/πnO (here, we interpret xn as an element of O), and xn ≡ xn−1

(mod πn−1). Thus O is dense in Oν .

(ix) One has an exact sequence

0 −−−→ Oν
·πn−−−→ Oν

εn−−−→ O/πnO −−−→ 0,

where n ≥ 1 and εn(x) = xn + πnO. In particular, we see that

Oν/πnOν ∼= O/πnO ∀ n ≥ 1.

(x) The residue fields k = O/πO and kν = Oν/πOν are isomorphic.

Proof. Most of these are straightforward. We begin with part (vi). Clearly, we
have πO ⊆ mν . Let α be a nonzero element of mν . As noted earlier, ν(α) ∈ rZ
where r = ν(π). Thus, there is an integer k such that ν(α) = ν(πk). A routine
calculation as before shows that there is a unit uν ∈ Oν such that α = uνπ

k.
Part (vii) follows from Proposition 1.

For part (viii), observe that F is dense in Fν . Thus, for any x ∈ Oν , and n ≥ 1,
there is an element a/b ∈ F , where a, b are in O, such that∣∣∣∣x− a

b

∣∣∣∣ < 1

rn
=

1

|πn|
.

Also, by the noarchimedean property of | · |, one has∣∣∣∣ab
∣∣∣∣ ≤ max

{
|x|,
∣∣∣∣x− a

b

∣∣∣∣} ≤ 1.

It follows that a/b ∈ Oν . Since, ν(a/b) ≥ 0, we may assume that π - b. Define xn
to be the unique element ab−1 (mod πnO). In particular, we find that |xn−a/b| ≤
1/|πn|. Thus, for all n ≥ 1, we have

|x− xn| < max

{∣∣∣∣x− a

b

∣∣∣∣, ∣∣∣∣xn − a

b

∣∣∣∣} ≤ 1/|πn|, i.e., x ≡ xn (mod πn).
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We have thus gotten hold of a sequence {xn} inOν that converges to x. The other
half follows from the observation that xn − xn−1 = (x − xn) − (x − xn) ≡ 0
(mod πn−1).

For part (ix), we observe that the map Oν → Oν , sending x→ πnx is clearly
injective. Also, if {xn} is a sequence of numbers inO satisfying the conditions in
(viii), then one has for any m ≥ n that

|xn−xm| ≤ max{|xi−xi−1| : n ≤ i ≤ m} ≤ max{1/pi−1 : n ≤ i ≤ m} = 1/pn−1

Thus, {xn} is Cauchy, and hence has a limit x in Fν . Since, xn ∈ O for all n, it
follows that

|x| = lim
n→∞

|xn| ≥ 1,

i.e., x ∈ Oν . Consequently, εn is onto for every n ≥ 1. To finish the prove, it thus
remains to show that ker εn = πnOν . Suppose, x = {xi} be in the kernel of εn
where {xi} is as in part (ix). It thus follows that xn ≡ 0 (mod πn). If m ≥ n,
then

xm ≡ xm−1 ≡ · · · ≡ xn ≡ 0 (mod πn),

while,from xn−1 ≡ xn ≡ 0 (mod πn−1), we find that xn−1 ≡ 0 (mod πn−1).
Proceeding inductively, one obtains that xm ≡ 0 (mod πm) for all m ≤ n. Thus,
the sequence {xi}, when considered as a sequence inO, satisfies xi = πnyi, where
yi ∈ O and yi = 0 for all i ≤ n. Thus

x = lim
i→∞

xi = πn lim
i→∞

yi ∈ πnOν .

Conversely, if x ∈ πnOν , then it is easy to see that xn = εn(x) ≡ 0 (mod πn).
Part (x) easily follows from (ix) by taking n = 1. This finishes the proof of

the proposition.

We will be particularly interested in finite extensions of completion Qp of Q
with respect to the absolute value induced by p-adic valuation on Q, which in turn
arises from the fundamental theorem of arithmetic. The valuation ring of Qp is
denoted by Zp. Our next goal will be to study the relationship between localization
of an extension of a number field and the extension of its localization. We begin
by constructing a complete valued local field starting with a Noetherian domain
O and a given prime ideal p in O. We follow the same steps as one would take to
obtain Qp starting with Z. That is, first localize Z at (p) to obtain the local ring

Z(p) =

{
a

b
: a, b ∈ Z, b 6= 0, p - b

}
.
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Q is still the fraction field of Z(p). In fact, it is the valuation ring of Q with respect
to the p-adic valuation. Now, complete Q with respect to the p-adic absolute value
to obtain Qp. Let F denote the field of fractions ofO. LocalizeO at p by inverting
all the elements of the multiplicatively closed setO\p to obtain the local ringO(p)

whose unique maximal ideal is given by B = pO(p), and whose field of fractions
is F . Next, we give a notion of valuation ν = νp on O(p) which, we then extend
to all of F by setting ν(a/b) = ν(a)− ν(b). In order to look for a valuation onO,
we appeal to Krull-intersection theorem and Nakayama’s Lemma.

Theorem 12. (Krull Intersection Theorem) Let R be a commutative Noetherian
ring, I be an ideal in R and let M be a finitely generated module over R. Further
let L = ∩∞n=1I

nM . Then IL = L.

Theorem 13. (Nakayama’s Lemma) Let R be a commutative ring with unity, and
let M be a finitely generated module over R. Further suppose that an ideal J of
R is contained in its Jacobson radical (intersection of maximal ideals of R). If
JM = M , then M = 0.

As an immediate consequence, we have the following.

Corollary 3. In O(p), we have ∩∞n=1B
n = (0). Consequently, for every x ∈ O(p)

there exists a unique nonnegative integer n = n(x) such that x ∈ Bn\Bn+1 (here,
we interpret B0 as O(p)).

Proof. First, we take M = R = O(p) in Theorem 12. Since O is Noetherian, it
follows that so is O(p), and as such can be thought as a finitely generated module
over itself. We further take I = B and L = ∩∞n=1B

n. From the conclusion of the
theorem, it thus follows that BL = L. Since, B is the only maximal ideal inO(p),
we deduce that it is the Jacobson radical of O(p). Note that L is an ideal in O(p),
and hence, finitely generated. Now, taking J = B in Theorem 13, we deduce that
L = (0). Now, let x ∈ O(p). If x is a unit, then x ∈ O(p)\B. Otherwise, the ideal
(x) is either (x) is contained in some maximal ideal in O(p). Since B is the only
maximal ideal in O(p), it follows that x ∈ B. As ∩∞n=1B

n = (0), we have that

B =
∞⋃
n=1

(Bn\Bn+1).

Therefore, we conclude that there is a unique n = n(x) such that x ∈ Bn\Bn+1.

Thanks to Corollary 3, we may now define a valuation on O(p) by setting

ν(x) = n(x)r ∈ rZ
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where r is positive rational number (we keep r for strategic purposes). If x and
y are elements of O(p) with corresponding valuation numbers n(x) and n(y), re-
spectively, then

Bn(x)||(x) and Bn(y)||(y).

Therefore, it follows that Bn(x)+n(y)||(xy), and consequently, ν(xy) = ν(x)+ν(y)
for all x and y inO(p). Also, x+y ∈ Bm wherem = min{n(x), n(y)}. Therefore,
it follows that the absolute value induced by ν on F is nonarchimedean. Let Fp

be the completion of F with respect to ν. Thus, Fp is a complete valued field. Let
Op be its valuation ring (in fact, it is a DVR) with the unique maximal ideal BOp.
All the properties of Op and Fp can be obtained by appealing to Proposition 5.
Moreover, it thus turns out that O(p) has a uniformizer π (an element with the
smallest positive valuation in O(p)) which also behaves as the uniformizer in Op.

4.2 Finite Extensions of Qp

In this section, we briefly discuss some algebraic number theory on Qp. Let
us clarify the notations first. We let L denote a finite extension of Qp with [L :
Qp] = N , and letOL denote the integral closure of Zp in L. For α ∈ L, we denote
its minimal polynomial in Qp[x] by mα(x). Thus, [Qp(α) : Qp] = degmα = d
(say) where d|N . Let σ1, σ2, · · · , σN be the N distinct Qp-embeddings of L into a
normal closure M of L. The norm NL/Qp(α) of α is defined to be the determinant
of the Qp-linear transformation given by multiplication by α. Alternatively, one
has

NL/Qp(α) =
N∏
i=1

σi(α).

We recollect a description of the norm thus defined.

Proposition 6. LetL,OL and α be as above. ThenNL/Qp(α) = (−1)Nmα(0)N/d ∈
Qp.

We are primarily interested in giving a p-adic absolute value on L. It turns out
that the p-adic absolute value | · | = | · |p extends in a unique way and can be given
by

|α|p = |NL/Qp(α)|1/Np ,

and that L is complete with respect to these equivalent norms. This is established
by using the fundamental theorem on finite dimensional normed vector spaces,
namely that if V is a finite dimensional vector space over a valued field (such as
Qp), then all vector space norms on V are equivalent and that V is complete with
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respect to this norm. We omit the proof and refer the reader to the treatment given
in Gouvea’s text. It follows that the valuation ν(α) is thus given by

ν(α) = − 1

N
logp |NL/Qp(α)| = 1

N
ν(|NL/Qp(α)|).

Since, (Z,+) is the value group of Q∗p, we deduce that the same forL∗ is contained
in 1

N
Z. In fact, the value group of L∗ is of the form 1

e
Z where e|N . The number e

is called the ramification index of L.

Proposition 7. The image ν(L∗) = (1/e)Z for some positive integer e|N .

Proof. It is clear that H = ν(L∗) is an additive subgroup of Q contained in
(1/N)Z. Also, ν(L∗) contains Z as Qp is contained in L∗. Let d/e be an el-
ement of H with gcd(d, e) = 1 and e is as large as possible. Note that e|N .
Now, there are integers u and v such that ud + ve = 1. Therefore, we find that
1/e = u(d/e) + v ∈ H . Now, observe that NH is a subgroup of Z, and there-
fore, there is a l such that NH = lZ. It follows that H = (l/N)Z. Thus, there
is a k ∈ Z such that 1/e = kl/N . But then l|N . Now, l/N ∈ H . Since,
1/e = kl/N ≥ 1/(N/l), and since e was chosen to be as large as possible, it
follows that k = 1, and hence, H = (1/e)Z.

As a consequence, we state a theorem of Coleman which he uses to establish
the irreducibility of truncated exponential series.

Theorem 14. Let f(x) ∈ Q[x] and let p be a prime. Consider the Newton polygon
NPp(f) of f with respect to p. If d divides the denominator of slopes of all the
edges of NPp(f), then d divides the degree of any factor g of f in Q[x].

We will give a proof of this theorem in last chapter.
Our next goal is to determine the valuation ring of L. In fact, OL turns out to

be the valuation ring of L. We need a little lemma based on an application of the
following version of Hensel’s lemma regarding lifting factorization of polynomi-
als from Fp[x] to Qp[x].

Theorem 15. (Hensel’s Lemma, second form) Let f(x) ∈ Zp[x], and suppose that
there are polynomials g1 and h1 in Zp[x] satisfying the following conditions.

a) g is monic,

b) g1 and h1 are relatively prime (mod p), i.e., there are polynomials U and
V in Fp[x] such that Ug1 + V h1 ≡ 1 (mod p), and

c) f ≡ g1h1 (mod p).
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Then there are polynomials g and h in Zp[x] such that

(i) g is monic,

(ii) g ≡ g1 (mod p), h ≡ h1 (mod p), and

(iii) f = gh.

We use this to prove something really interesting about the monic irreducible
polynomials in Qp[x].

Lemma 7. Let f(x) be a monic irreducible polynomial in Qp[x]. If f(0) ∈ Zp,
then f(x) ∈ Zp[x].

Proof. Let

f(x) = xn + an−1x
n−1 + · · ·+ a0 ∈ Qp[x], with a0 ∈ Zp.

Let m = min{ν(ai) : 0 ≤ i ≤ n−1}. Note that m ≤ 0 (as f is monic). If m = 0,
then we are done. If m < 0, then we work with g(x) = p−mf(x) =

∑n
j=0 bjx

j

where bn = p−m and bj = p−maj for j ∈ {0, 1, · · · , n− 1}. Note that ν(bj) ≥ 0
for all 0 ≤ j ≤ n, ν(b0) > 0 and ν(bn) > 0, and that there is at least one j such
that ν(bj) = 0. Let k be the smallest positive integer in {1, 2, · · · , n − 1} such
that ν(bk) = 0. Thus, we have

ν(bj)



> 0 if 0 ≤ j < k

= 0 if j = k

≥ 0 if k + 1 ≤ j ≤ n− 1

> 0 if j = n.

Thus, (mod p), g factors as

g(x) ≡ (bnx
n−k + · · ·+ bk)x

k (mod p).

Since, bk is a unit, it follows that the two factors appearing above are relatively
prime (mod p). Now, by appealing to Theorem 15, we deduce that g, and hence,
f factors in Qp[x], a contradiction. Thus, it follows that m = 0, and the proposi-
tion is proved.

Immediately, we have what we are seeking here.

Corollary 4. The integral closure OL of Zp in L is the valuation ring of L.
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Proof. Let α ∈ L be a nonzero element. It suffices to show that |α| ≤ 1 if and
only if α ∈ OL. If α ∈ OL, then its minimal polynomial mα over Qp belongs to
Zp[x]. Thus, a = mα(0) ∈ Zp. Consequently, we have

|α| = |NL/Qp(α)|1/N = |aN/d|1/N = |a|1/d ≤ 1,

where d = degmα. Conversely, if |α| ≤ 1, then following the argument above,
we find that |mα(0)| = |α|d ≤ 1. Thus, the minimal polynomial mα of α which is
monic, irreducible and has its constant term in Zp. By Lemma 7, we deduce that
mα ∈ Zp[x], and consequently, α ∈ OL.

We now describeOL which apart from being a valuation ring, is also an exten-
sion of Zp. Most of the valuation theoretic properties follow from our discussions
in the previous section.

Proposition 8. Let L and OL be as above. Then we have the following:

(i) OL is integrally closed in L.

(ii) OL is a free Zp-module of rank N = [L : Qp].

(iii) The unique maximal ideal p (also called valuation ideal) is generated by a
uniformizer π satisfying |π|e = |p| = 1/p (Thus, we have pOL = (πe) = pe)
where e is the ramification index of L/Qp.

(iv) The residue field ` = OL/πOL is a finite extension of Fp = Zp/pZp of
dimension f ≤ N = [L : Qp]. Thus |l| = pf .

(v) N = [L : Qp] = ef .

Proof. Part (i) follows from the fact that OL is a valuation ring in L.
For part (ii), we let {α1, α2, · · · , αN} be a Qp-basis of L consisting of ele-

ments from OL (such a basis exists as for every y ∈ L, there is a n(y) ∈ Zp such
that n(y)y ∈ OL). Let β ∈ OL. Then there exist elements xi ∈ Qp such that

x1α1 + x2α2 + · · ·+ xNαN = β.

Applying σi to the above for i = 1 to i = N , we get N equations of the form and
noting that σi(xi) = xi, we get

x1σi(α1) + x2σi(α2) + · · ·+ xNσi(αN) = σi(β) i = 1, 2, · · ·N.

Expressing this in terms of matrices, we have AX = B where

A = [σi(αj)]1≤i,j≤N , X = [x1x2 · · ·xN ]t and B = [σ1(β)σ2(β) · · ·σN(β)]t.
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Note that (detA)2 is the discriminant of the basis {α1, α2, · · · , αN} where αi ∈
OL. Thus, (detA)2 6= 0 and belongs to Zp. Let ∆ = detA. Thus, by Cramer’s
rule, the unique elements xi ∈ Qp are given by

xi = ∆i/∆ = ∆i∆/∆
2.

where ∆i is the determinant of the matrix obtained by replacing the i-th column
in A by the column Bt. Note that ∆i, being the discriminant of the N algebraic
integers {α1, · · · , αi−1, β, αi+1, · · · , αN}, is in Zp (it may be 0). Thus, the quan-
tity ∆2xi, which is already in Qp, also happens to be an algebraic integer being a
product of two algebraic integers ∆ and ∆i. Therefore, it must be that ∆2xi ∈ Zp
for all i = 1, 2, · · · , N . Consequently, we deduce that OL is contained in free
Zp-module of rank N given by

N -times︷ ︸︸ ︷
1

∆2
Zp ⊕

1

∆2
Zp ⊕ · · · ⊕

1

∆2
Zp .

Thus, OL is a free Zp-module of rank ≤ N . But OL contains a free Zp-module of
rank N , namely the Zp-module

{n1α1 + n2α2 + · · ·+ nNαN : ni ∈ Zp}.

The conclusion of part (ii) follows at once.
Part (iii) follows from the discussion in the previous section and the fact that

1/e is the generator (smallest positive element) of the value group of L∗. For
part (iv), observe that Zp has a natural inclusion inside OL as OL ∩ Qp = Zp.
Define the map i : Zp/pZp → OL/πOL by i(a+ pZp) = a+ πOL. The inclusion

pZp ⊆ pOL = πeOL ⊆ πOL

ensures that the map i is well defined. Also, i is clearly a field homomorphism.
Furthermore, if x + pZp ∈ ker i, then x ∈ πOL. But this means, |x| < 1. Since,
x ∈ Zp, we may then deduce that x ∈ pZp. Thus, i is injective, thereby proving
the first half of part (iv). For the other half, we note that if x1, x2, · · · , xt are
linearly dependent over Qp, i,e,. there exist ai ∈ Qp, not all zero, such that

a1x1 + a2x2 + · · ·+ atxt = 0,

then by multiplying the last equation by a suitable power of 2, we find that all ai
can be assumed to be in Zp with at least one of the ai, say as above is a unit in Zp.
Now, reducing the equation (mod π), we find that

t∑
i=1

(ai + πOL)(xi + πOL) = 0 +OL,
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with (crucially) as + πOL, a unit in OL/πOL (being nonzero element of a field).
Therefore, linearly dependent sets in OL remain linearly dependent over Fp when
reduced (mod π). Consequently, we have dimFp(OL/πOL) ≤ dimQp L.

For part (v), we use (ii) first to deduce that

OL/πeOL = OL/pOL ∼= ZNp /pZNp ∼= (Zp/pZp)N .

Thus, we have |OL/πeOL| = pN . Next, observe that the map φi(: πi)/(πi+1) →
OL/(π), sending πx + (pi+1) → x + (π) sets up an isomorphism for i = 1, 2,
· · · , e − 1. Thus, each of the quotients (πi)/(πi+1) is isomorphic to residue field
` = OL/(π). Since, OL ⊃ (π) ⊃ · · · ⊃ (πe), we have a natural projective
sequence

OL/(πe)→ (π)/(πe)→ · · · (πe−1)/(πe)→ 0.

Set OL = (π0). By quotient of quotient isomorphism theorem for modules, one
has

(πi)/(πe)

/
(πi+1)/(πe) ∼= (πi)/(πi+1) ∼= ` as OL −modules

for all i = 1, 2, · · · , e−1. By induction on i above, one can show that |OL/(πe)| =
|`|e = pef . For, at the base step i = 1, one has

(πe−1)/(πe) ∼= `

Therefore, one has
|(πe−1)/(πe)| = |`|1.

Thus, proceeding inductively, we get at the i+ 1-st step that

(πe−i−1)/(πe) = |`||(πe−i)/(πe)| = |`||`|i = |`|i+1,

proving the formula. Comparing the two values obtained for |OL/(πe)|, we de-
duce that N = ef .

We next take up the Galois group Gal(L/Qp). In what follows, we assume that
L/Qp is Galois. We will require some knowledge of the Galois theory of finite
extensions of finite fields. We state and prove the main theorem in this context.

Theorem 16. Let k be a finite field of cardinality q where q is power of a prime.
Let ` be a finite extension of k of degree f . Then `/k is Galois with Gal(`/k) is
the cyclic subgroup of order f generated by the Frobenius automorphism ψ of `
given by ψ(α) = αq for α ∈ `.
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Proof. Since ` is a k-vector space of dimension f , it follows that |`| = pf . Note
that every α ∈ ` satisfies αqf = α. Thus, the polynomial f(x) = xq

f − x ∈ k[x],
being separable, has all its roots in `. Since, any element of ` is a root of f ,
it follows that ` is the splitting field of f(x), and hence, `/k is Galois. Now
consider the Frobenius map ψ given by ψ(α) = αq. Let q = pm. Since, ` has
characteristic p, it follows that

ψ(α+β) = (α+β)q = αq +βq = ψ(α) +ψ(β) and ψ(αβ) = (αβ)q = αqβq

for all α and β in `. Furthermore, ψ(α) = 0 implies α = αq = 0. Thus ψ is
injective. Since, ` is finite, it follows that ψ is onto, and as such, an automorphism.
Finally, if a ∈ k, then ψ(a) = aq = a. Therefore, ψ ∈ Gal(`/k). Now, observe
that if ψt is identity, then for any α ∈ `, one has

α = ψt(α) = αq
t

.

In particular, if α is the primitive element of `, then we find that αqt−1 = 1. Since,
the multiplicative order of α is qf − 1, we deduce that t ≥ f . Thus, 1, ψ, ψ2,
· · · , ψf−1 are all distinct elements of Gal(`/k), and |Gal(`/k)| = f , the result
follows.

We get back to Gal(L/Qp). The key result in this direction is that there is a
canonical surjective homomorphism φ : Gal(L/Qp) → Gal(`/Fp) where ` and
Fp are the respective residue fields OL/pOL and Zp/pZp. For a σ ∈ Gal(L/Qp),
define σ : `→ ` as

σ(α + pOL) = σ(α) + pOL.

Since σ(pOL) is a prime ideal and pOL is the only prime ideal in OL, it follows
that σ(pOL) = pOL. Consequently, σ is well defined. It is easy to see that σ
is a field homomorphism. Again from our discussion above and the fact σ is an
automorphism it follows that

σ(α− β) ∈ pOL =⇒ α− β ∈ pOL.

Thus, σ is an automorphism of `. Finally, if ā = a + pZp ∈ Fp, i.e., a ∈ Zp, we
recall that ā sits inside ` as a+ pOL. Since σ fixes a, we thus have

σ(a+ pOL) = σ(a) + pOL = a+ pOL.

Thus, we obtain the promised map φ : Gal(L/Qp) → Gal(`/Fp) by defining
φ(σ) = σ. It is easy to see that φ is in fact a group homomorphism.

Proposition 9. The map φ defined above is surjective.
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Proof. Let a be a primitive element of `, i.e., `∗ =< a >, and let α be its pre-
image in OL under the canonical surjective map OL → OL/pOL. Let

f(x) =
∏

ρ∈Gal(`/Qp)

(x− ρ(a)) ∈ Fp[x]

be the minimal polynomial of a over Fp. Now, consider the set {σ(α) : σ ∈
Gal(L/Qp)}. This set is partitioned into equivalence classes under ‘is equal to’
relation. We pick a representative from each of these classes and let G′ denote the
set of these representatives and define

g(x) =
∏
σ∈G′

(x− σ(α)).

It follows that g is the minimal polynomial of α over Qp. Since α ∈ OL, we have
that g ∈ Zp[x]. Now, consider ḡ = g (mod p) ∈ Fp[x]. Now, we note that

ḡ(x) =
∏
σ∈G′

(x− σ(α) + pOL) =
∏
σ∈G′

(x− σ(α + pOL))
∏
σ∈G′

(x− σ(a)).

Thus, ḡ(a) = 0, and consequently, f |ḡ in Fp[x]. Let ρ ∈ Gal(`/Fp), then it thus
follows that there is a σ ∈ G′ such that ρ(a) = σ(a). Since, a is a primitive
element of `∗, hence, ρ and σ agree on `, and hence, are equal. Consequently, one
has ρ = σ = φ(σ) where σ ∈ G′ ⊆ Gal(L/Qp). This finishes the proof of the
proposition.

The kernel of the map φ which is thus a normal subgroup of Gal(L/Qp) is
called the inertia group of L and denoted by I(L/Qp). Thus,

Gal(L/Qp)/I(L/Qp) ∼= Gal(`/Fp).

From |Gal(L/Qp)| = [L : Qp] = ef , it therefore follows that |I(L/Qp)| = e. If
e = 1, then

Gal(L/Qp) ∼= Gal(`/Fp),

and hence, cyclic. In this case, we say that L/Qp is unramified.

4.3 Local Global Galois Principal
In this section, our main goal is to find a connection between the Galois group

of a number field and that of its localization. This study, along with the theory of
Newton polygons, give us substantial amount of information regarding the Galois
groups of number fields in many interesting cases.
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Let K/Q be a Galois extension with [K : Q] = n. Let OK be its ring of
integers. Let p be a prime in Z, and let p1, p2, · · · , pr be all the primes in OK
lying over p, i.e., pi ∩Q = pZ. In fact, these are also the primes appearing in the
prime factorization of p. Since K/Q is Galois, its Galois group Gal(K/Q) acts
transitively on the set {p1, p2, · · · , pr}, and hence, their ramification index are the
same, say e. Consequently, one has

pOK = (p1p2 · · · pr)e.

Let k = OK/pOK denote the residue field. The residue field k is a finite extension
of Fp = Z/pZ and its degree f is called the residual degree. The numbers r, e, f
and n are related by the formula n = ref . Let p ∈ {pi : 1 ≤ i ≤ r}. We will be
particularly interested in the stabilizer of p under the action of Gal(K/Q), called
the decomposition group of p/p and denoted by D(p/p), i.e.,

D(p/p) = {σ ∈ Gal(K/Q) : σ(p) = p}.

Thus, the decomposition groups of different pi are conjugates of each other.
Note that OK is a Dedekind domain, and hence is Noetherian. Like was done

in a previous section, we localizeOK at p to obtainOK,(p) whose field of fractions
is still K. Now we give a valuation to OK,(p), extend it to K and then complete
K with respect to the norm induced by the valuation. Let Kp be completion of K
and let Op denote its valuation ring. Note that in OK,(p), all other pi except p be
comes unital. Thus, in OK,(p), one has

pOK,(p) = peOK,(p).

Thus, if π is the uniformizer of OK,(p), then we have p = uπe where u is a unit
in OK,(p). By our construction, the value group to be assigned to OK,(p) is rZ
where r ∈ Q. Note that r = ν(π). We take r = 1/e and take |x| = p−ν(x)

for all x ∈ OK,(p). Therefore, |π| = p−1/e, and consequently, |p| = p−1. Thus,
the norm | · | thus assigned to OK,p coincides with the usual p-adic norm on Qp.
Consequently, we have

Qp = completion of Q w.r.t. | · | ⊆ completion of K w.r.t. | · | = Kp.

Since, the p-adic absolute value extends uniquely to an extension of Qp, we deduce
that | · | is the unique extension in this case. It further follows that the ramification
index of Kp/Qp is indeed e, the same as that of p/p. Furthermore, from the
isomorphisms

Op/pOp
∼= OK/p, and Zp/pZp ∼= Z/pZ,
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it follows that the residual degree of pOp/p is is equal to that of p/pwhich is taken
to be f . Therefore, we find thatKp/Qp is a finite extension of degree ef . Our final
task will be establish that Kp/Qp is in fact, a Galois extension. This is achieved in
the proposition below. But, we will need a result on decomposition group D(p/p)
which can be proved in an exact similar manner as in Proposition 9. The result
states that there is a surjective group homomorphism

D(p/p)→ Gal(OK/p : Z/pZ).

It now follows that |D(p/p)| = ef . We use this fact along with the proposition
below to show that Kp/Qp is Galois.

Proposition 10. We have Gal(Kp/Qp) ∼= D(p/p).

Proof. We begin by showing that there is a canonical homomorphism η : Gal(Kp/Qp)→
Gal(K/Q) whose image is contained in the decomposition group D(p/p). Let
σ ∈ Gal(Kp/Qp) and α ∈ K. Let f(x) ∈ Q[x] be the minimal polynomial of α.
Since, σ is identity on Qp, and hence on Q, one has that f(σ(α)) = σ(f(α)) = 0.
Thus, σ(α) is a root of f(x) and since, K/Q is Galois and K ↪→ Kp, we deduce
that σ(α) ∈ K. Thus, the restriction σ

∣∣
K

of σ is in Gal(K/Q). We thus define
η(σ) = σ

∣∣
K

. Next, we observe that

σ(p) = σ(pOp ∩K) = σ(pOp) ∩ σ(K) = σ(pOp) ∩K.

Since, σ(pOp) is a prime ideal of Op, and we know that pOp is the only prime
ideal in the local ring Op, we deduce that σ(pOp) = pOp. Consequently, we find
that σ(p) = p, and as such, η(σ) ∈ D(p/p). Conversely, suppose ρ ∈ D(p/p).
We would like to extend ρ to a Qp-automorphism of Kp. Let x ∈ Kp, then there
exists a sequence {xn} ∈ K such that x = limn xn. We define γ(ρ) : Kp → Kp

as
γ(ρ)(x) = lim

n→∞
ρ(xn).

Since ρ is an isometry on L, γ(ρ) is well defined. It is also easy to see that γ(ρ) is
a field homomorphism. Moreover, from the isometric property of ρ. we find that

γ(ρ)(x) = 0 ⇐⇒ lim
n→∞

ρ(xn) = 0 ⇐⇒ lim
n→∞

xn = ⇐⇒ x = 0.

Thus, γ(ρ) is an automorphism of Kp. Lastly, we have that if a ∈ Qp, then
a = limn an where an = a for all n ≥ 1, so that one has

γ(ρ)(a) = lim
n→∞

an = lim
n→∞

a = a.

Thus γ(ρ) is indeed an element of Gal(Kp/Qp). We note that the restriction of
γ(ρ) to K is simply, ρ, i.e., we have that ηγ(ρ) = ρ for any ρ ∈ D(p/p). This
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means that ηγ : D(p/p) → D(p/p) is the identity map. It follows that η is onto
and γ is 1 − 1. This in turn implies that η is 1 − 1 and γ is onto. Thus, η and
γ are the respective inverses of each other, and consequently we have the desired
result.

Thus, we have following local global Galois principle.

Corollary 5. The Galois group Gal(Kp/Qp) can be realized as a subgroup of
Gal(K/Q).
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Chapter 5

Galois group of L(α)n (x) where
α ∈ N ∪ {0}

In this chapter, we investigate the Galois group associated with GLP L(α)
n (x)

over Q and also find when the determinant of this polynomial be square, where

L(α)
n (x) =

n∑
j=0

(
n+ α

n− j

)
(−x)j

j!
.

We restrict ourselves to the case that α be an integer. In the late 1920’s and
early 1930’s, I.Schur established the irreducibility of these polynomials in the
case α ∈ {0, 1,−n − 1} and then obtain the following results associated with
their Galois groups over the rationals;

(1) L(0)
n (x) has Galois group Sn for each n.

(2) L(1)
n (x) has Galois group Sn for each even n with n+ 1 is not square.

(3) L(1)
n (x) has Galois group An for each odd n each even n with n+ 1 square.

(4) L(−n−1)
n (x) has Galois group Sn for each n 6≡ ( mod 4).

(5) L(−n−1)
n (x) has Galois group An for each n ≡ ( mod 4).

He also gave the remarkable formula for the discriminant Disc(n, α) of the
monic integral polynomials L(α)

n (x) = (−1)nn!L
(α)
n (x) namely

Disc(n, α) =
n∏
j=2

jj(α + j)j−1.
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5.1 A Criteria For Having Large Galois Group
In this section, we will consider an application of Corollary 5 from the pre-

vious chapter to computing Galois groups of polynomials via the use of Newton
polygons. Let f(x) ∈ Q[x] be irreducible, p be a prime and let NPp(f) denote
the Newton polygon of f with respect to the prime p. Let V = {(xi, yi) : i =
0, 1, · · · l} be the vertices of NPp(f) and mi = (yi − yi−1)/(xi − xi−1) be the
slope of the i-th edge for i ∈ {1, 2, · · · , l}. Lastly, we let ni denote the positive
integer xi − xi−1 where i ∈ {1, 2, · · · , l}. The fundamental theorem of Newton
polygons states that

Theorem 17. Let the notations be as above. Then there exist l polynomials f1, f2,
· · · , fl in Qp[x] such that

(i) f = f1f2 · · · fl in Qp[x],

(ii) deg fi = ni, and

(iii) if β is a root of fi in Qp, then the p-adic valuation (unique extension of the
usual valuation on Q) of β is mi.

If K/Q is the splitting field of f and. Let p be a prime in OK lying over p.
Let Kp be the completion of K under the p-adic norm. We have seen that Kp/Qp

is Galois extension of degree ef where e and f are respectively the ramification
index and residual degree of p/p. Let α be a root of f in Qp. Let g ∈ Qp[x] be its
minimal polynomial. Now, α is also a root of fi for some i ∈ {1, 2, · · · , l}. Thus,
ν(α) = mi. On the other hand, we also have that ν(α) ∈ (1/e)Z. Let di be the
denominator of mi. Then it follows that di|e. But e divides [Qp(α) : Qp] which
in turn divides [Kp : Qp] = |Gal(Kp/Qp)|. Therefore, di divides the order of the
Galois group Gal(Kp/Qp).

Definition 4. (Newton Index) Let Np(f) be defined to be the lcm of the denomi-
nators of slopes mi of NPp(f). The Newton index N (f) of f is defined as

lcmp−prime(Np(f)).

Since, mi = 1 for all but finitely many primes p, we can see thatN (f) is well
defined. Here is the main theorem on the Newton index.

Theorem 18. Let f ∈ Q[x] be irreducible of degree n. Let K/Q be the splitting
field of f . Then N (f) divides |Gal(K/Q)|. Moreover, if there is a prime divisor
l ∈ (n− 2, n/2) of N (f), then Gal(K/Q) contains An, the alternating group on
n letters (i.e., as large as possible).

54



Proof. Let d be a divisor of N (f), then by definition, d divides the denominator
of some slope of NPp(f) for some prime p. From the discussion preceding the
theorem, we then find that d divides |Gal(Kp/Qp)|, which by Corollary 5, divides
|Gal(K/Q)|. Thus, d divides |Gal(K/Q)|, proving the first half of the theorem.
For the second part, we note that if d = l is a prime in the interval (n − 2, n/2),
then l dividing |Gal(K/Q)| implies that Gal(K/Q) contains a l-cycle. It now
follows from Jordan’s criteria that Gal(K/Q) contains An.

Now we will state the main result of this section.

Theorem 19. Suppose α is a fixed non negative integer. Then for all but finitely
many integers n , the Galois group of Lαn(x) is An if ∆α

n is square and Sn other-
wise.

To prove this theorem , we mainly use the following lemma.

Lemma 8. Suppose a prime p ∈ (n/2, n− 2) and f(x) =
∑n

j=0

(
n
j

)
cj x

j ∈ Q[x]
is an irreducible polynomial of degree n over Q with p-integral coefficients , i.e.,
νp(cj) ≥ 0 for j = 0, 1, · · · , n. Suppose further that

(i) νp(c0) = 1,

(ii) νp(cj) ≥ νp(c0) for 1 ≤ j ≤ n− p,

(iii) νp(cp) = 0.

Then p divides the order of the Galois group of f over Q. Indeed , this Galois
group is An if disc(f) ∈ Q∗2 and Sn otherwise.

Proof. Clearly,
(
n
j

)
is divisible by p if and only if n − p + 1 ≤ j ≤ p − 1. Then

given assumption guarantees that (0, νp(c0)) and (p, 0) are the first two corners of
NPp(f). This implies that the slope of the left most edge is −νp(c0)

p
. Then from

the first condition, it follows that p | Nf . Then using the theorem 18, we get the
result.

Remark 1. One can easily show that the Lemma 8 holds for p ∈ (1 +n/2, n− 2)
if we replace i) with i’) 1 ≤ νp(c0) ≤ p/(2p− n− 1).

Now we are ready to prove the main theorem of this chapter.
Proof of theorem 19:

Let us take α be a positive integer. Let

L(α)
n (x) =

n∑
j=0

(n+ α)!

(j + α)!(n− j)!
(−x)j

j!
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and

L(α)
n (x) = (−1)nn!L(α)

n (x)

=
n∑
j=0

(−1)n+j

(
n

j

)
(n+ α) · (n+ α− 1) · · · (j + 1 + α)xj.

We want to work with the normalized (monic, integral) polynomial

f(x) =
n∑
j=0

(
n

j

)
(n+ α) · (n+ α− 1) · · · (j + 1 + α)xj.

We wish to apply Lemma 8 to it, so we let

cj =
n∏

k=j+1

(k + α), 0 ≤ j ≤ n. (5.1)

and seek a appropriate prime p, i.e., one satisfying the condition of Lemma. By
suitably strong form of Dirichlet’s theorem on primes in arithmetic progression,
there exist an effective constant D(α) such that if x ≥ D(α) and h(x) ≥ x

2 log2(x)
,

the interval [x − h, x] contains a prime. Taking x = n − 3 ≥ D(α), we find that
for some integer l ∈ [1, n], p = l + α is a prime satisfying

n+ 1 + α

2
≤ p ≤ n− 3 (5.2)

as long as
n− 3

n2 log2(n− 3)
+

3

n
+

1 + α

2n
≤ 1/2 (5.3)

i.e.,
n− 3

2 log2(n− 3)
+ 3 +

1 + α

2
≤ n/2.

Which clearly holds for all n large enough with respect to α. Let us now fix a
prime p = l + α satisfying equation 5.2 . Since, we have (n + 1 + α)/2 > n/2.
It is obvious because 1 + α > 0. Then this implies that

n/2 < (n+ 1 + α)/2 ≤ p ≤ n− 3 < n− 2.

So, our cj are integral. This implies that f(x) is p-integral for every prime p.
Since j ∈ [0, n], then there exist a prime in [j + 1 + α, n + α] such that p

divides cj = (j + 1 + α) · · · (n+ α). Since , we take p = l + α . Hence

p/cj ∀j ∈ {0, 1, · · · l − 1}
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Again from equation 5.2

p ≥ (n+ 1 + α)/2

i.e.,
2p ≥ (n+ 1 + α)

This implies that p exactly divides cj i.e., νp(cj) = 1 ∀j ∈ {0, 1, · · · , l − 1}
Since , we already take p = l+ α , this implies that p - cj ∀j ∈ l, · · · , n i.e.,

νp(cj) = 0 for l ≤ j ≤ n.

Since, α is not a negative integer and p = n+ α, this implies p > l − 1 and

2p ≥ n+1+α⇒ l+2p ≥ n+1+l+α = n+1+p⇒ l+p ≥ n+1⇒ n−p < l,

i.e., condition ii) and iii) of Lemma 8 hold. In chapter 3, we already shown that
there is an effectively computable constant n0 dependent on α such that f(x) is
irreducible for n ≥ n0. Thus, all the conditions of Lemma 8 hold, and the proof
of the theorem is complete.

The next corollary can be viewed as improvements of the above Hajir’s results.
( see [6]).

Corollary 6. Fix a nonnegative integer α 6∈ {1, 3, 5}. Then for all but finitely
many positive integers n, the Galois group associated with L(α)

n (x) over the ratio-
nals is Sn.

57



Chapter 6

Irreducibilty of L(α)n (x) where
α ∈ Z−

6.1 Reducibility of L(−α)
n (x) for all integers α ∈ [1, n]

Let α ∈ [1, n], then L(−α)
n (x) ∈ Z[x] defined as

L(−α)
n (x) =

n∑
j=0

(n− α) · (n− α− 1) · (n− α− 2) · · · (j + 1− α)

(n− j)!j!
(−x)j

i.e.,

L(−α)
n (x) =

n∑
j=0

(
n− α
j − α

)
(−x)j

j!
.

We know that

L(α)
n (x) =

n∑
j=0

(
n+ α

j + α

)
(−x)j

j!
.

First we show that L(−α)
n (x) = is reducible for α ∈ [1, n]. Now,

L
(α)
n−α(x) =

n−α∑
j=0

(
n

j + α

)
(−x)j

j!
.

Now, we deduce that
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(−x)(α)(n− α)!L
(α)
n−α(x)

=
n−α∑
j=0

(
n

j + α

)
(n− α)!

(−x)(j+α)

j!

=
n−α∑
j=0

(n− α)!n!

(n− j − α)! (j + α)!

(−x)(j+α)

j!

=
n∑
i=α

(n− α)!n!

(n− i)! (i)!

(−x)(i)

(i− α)!
(replacing j by i− α)

= n!
n∑
i=α

(n− α)(n− α− 1) · · · (i− α + 1)

(n− i)!
(−x)(i)

(i)!

= n! ·
n∑
i=0

{(n− α)(n− α− 1) · · · (i− α + 1)}
(n− i)!

(−x)(i)

(i)!

(since if we put the value i = 0, 1, · · · , α− 1 then the quantity in the above {} be 0)

= n!
n∑
j=0

(
n− α
j − α

)
(−x)j

j!

= n!L(−α)
n (x).

Therefore, we get

n!L(−α)
n (x) = (−x)(α)(n− α)!L

(α)
n−α(x).

From the above equation, it is clearly shows that L(−α)
n (x) is reducible for all

integers α ∈ [1, n].

6.2 Irreducibilty of L(α)
n (x) where α is a negative in-

tegers and α < −n
In this section, we will discuss about irreducibility of L(α)

n (x), where α is
a negative integer, and α < −n. Now, we can replace the parameter α by a
parameter r via the translation α = −1− n− r, and consider instead

L<r>n (x) = L(−1−n−r)
n (x) =

n∑
j=0

(
n− j + r

n− j

)
(x)j

j!
. (6.1)
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It is also useful to note that

L<r>n (x) = n!L<r>n (x) =
n∑
j=0

(
n

j

)
(r + 1) · (r + 2) · · · (r + n− j)xj (6.2)

is monic and has a positive integer coefficients as r is a non negative integer. If
r = 0, then let us say as

En(x) := L<0>
n (x) =

n∑
j=0

xj

j!
, (6.3)

and if r = n then we define

zn(x) := L<n>n (x) =
n∑
j=0

(2n− j)!
j!(n− j)!

xj. (6.4)

In (see[18]), we find the following.

Conjecture 1. For integers r, n ≥ 0, L<r>n (x) is irreducible over Q.

In the same paper (see[18]), Hajir settles the following.

Theorem 20. For a fixed integer r ≥ 0, all but finitely many L<r>n (x) is irre-
ducible over Q.

6.2.1 Irreducibility criteria
Take a prime p and z ∈ Q∗(= Q\{0}), we write νp(z) = u where z = pum/n

with integers m and n not divisible by p. It is convenient to put that νp(0) = ∞.
We use two results which follow from the main theorem of Newton polygons
(theorem 21 stated below); these are state below as corollary 7 and Lemma 13.
We review the definition of Newton Polygons below.

Definition 5. The p−Newton PolygonNPp(f) of a polynomial f(x) =
∑n

j=0 ajx
j ∈

Q[x] is the lower convex hull of the set of points

Sp(f) = {(j, νp(aj)); 0 ≤ j ≤ n}.

It is the highest polygonal line passing on or below the points in Sp(f). The
vertices (x0, y0), (x1, y1), · · · , (xv, yv) , i.e., the points where the slope of Newton
Polygon changes (including the rightmost and leftmost points ) are called the cor-
ners NPp(f); their x co-ordinates (0 = x0 < x1 < · · · < xv = n) are the breaks
of NPp(f). For the i-th edge , joining (xi−1, yi−1) to (xi, yi), we put mi = yi−yi−1

xi−xi−1

and is called the i-th slope of NPp(f).
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The main theorem of Newton polygons is stated below.

Theorem 21. Let (x0, y0), (x1, y1),
· · · (xr, yr), denote the successive vertices of NPp(f). Then there exist a polyno-
mial f1, f2, · · · fr in Qp[x] such that

(1) f(x) = f1(x)f2(x) · · · fr(x)

(2) for i = 1 · · · r, the degree of fi is xi − xi−1

(3) for i = 1 · · · r, and αi any root of fi in Qp . We have νp(αi) = −mi.

The main irreducibility criteria in this case is due to Coleman (see[9]).

Corollary 7. (Coleman) Suppose f ∈ Q[x] and p is a prime. If an integer d
divides the denominator (lower terms) of every slope of NPp(f), then d divides
the degree of each factor g ∈ Q[x] of f(x).

Proof. Note that a factor f(x) of degree k in Q[x] induces a factor of degree k in
Qp[x], and since, every polynomial in factors into irreducible factors in Qp[x], it
suffices to prove the theorem for Qp-factors of f . Let g be an irreducible factor
of f in Qp, and let α be a root of g in some normal closure of Qp. By the funda-
mental theorem of Newton polygons (see Theorem 17 below), νp(α) is equal to
the slope of some edge of NPp(f). By the hypothesis of the theorem, d divides
the denominator of νp(α). On the other hand, by the last proposition, νp(α) also
belongs to (1/e)Z where e divides [Qp(α) : Qp] = deg g. It follows that d|e, and
hence, d| deg g.

We have following two lemmas stated below.

Lemma 9. Let m be a non negative integer, and p is a prime. If we write m in the
base p as

m = a0 + a1p+ a2p
2 + · · ·+ atp

t, 0 ≤ ai ≤ p− 1.

Then

νp(m!) =
m− σp(m)

p− 1
,

where σp(m) = a0 + a1 + a2 + · · ·+ at.

Lemma 10. Let m, r be non negative integers and p is a prime. Let b =
(
m+r
r

)
,

where m, r are non negative integers. For any prime p, νp(b) is the number of
carries in the base p addition of m and r.
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Proof. Now

νp(b) = νp

((
m+ r

r

))
= νp

(
(m+ r)! | (m!r!)

)
= νp((m+ r)!)− νp(m!)− νp(r!)

=
σp(m) + σp(r)− σp(m+ r)

p− 1
(by lemma (9)).

The latter expression is precisely the number of carries in the base p addition of
m and r.

Let us take a positive integer n and a prime p. We will define s + 1 non
negative integers 0 = k0 < k1 < · · · < ks = n (where s is the number of nonzero
p-adic digits of n) called the pivotal indices associated to (n, p). Write n in the
base p, labeling only the non zero digits

n = b1p
e1 + b2p

e2 + · · ·+ bsp
es , (6.5)

where 0 < b1, b2, · · · , bs < p, and e1 > e2 > · · · > es ≥ 0.
Now, let k0 = 0 and ks = n, we define

ki = b1p
e1 + b2p

e2 + · · ·+ bip
ei i = 0, 1, 2, · · · , s. (6.6)

The above partial sums are the pivotal indices associated to (n, p). This definition
is motivated by coleman’s calculation ofNPp(En). We will discuss a fundamental
fact about the GLP L<r>n (x) for r ≥ 0 that the p Newton polygon lies on or above
NPp(En). Now, we discuss some more terminology.

Definition 6. Let p be a prime number and consider a polynomial f(x) =
∑n

j=0 aj
xj

j!

∈ Q[x]. We say that f is p-Hurtwitz integral if νp(aj) ≥ 0 for j = 0, · · · , n. We
say it is Hurtwitz integral if it is p-Hurtwitz integral for all primes p i.e., if the
Hurtwitz co-efficients aj ∈ Z for all j = 0, · · · , n. We say f is p−Coleman if f
is p-Hurtwitz integral and νp(aj) = 0 for j = ki, 0 ≤ i ≤ s where ki is defined
in (6.6).

We now prove the earlier stated fact about p-Coleman polynomials.

Lemma 11. If f ∈ Q(x) is p-Coleman integral of degree n, then

(1) NPp(f) = NPp(En);
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(2) the breaks of NPp(f) are precisely the pivotal indices associated to(n, p);

(3) the slopes of NPp(f) all have denominator divisible by pνp(n).

Proof. Part-(1): Here

f(x) =
n∑
j=0

aj
xj

j!
,

and

En(x) := L<0>
n (x) =

n∑
j=0

xj

j!
.

As f is Hurtwitz integral at p, the vertices of NPp(f) lies on or above of vertices
NPp(En). Again since f is p−Coleman integral, then νp(aj) = 0, where j = ki
and 0 ≤ i ≤ s. Now, j’th vertices of NPp(f) is (j, νp(aj/j!)) = (j, νp(1/j!)).
This implies that the vertices are in fact same. So, NPp(f) = NPp(En).

Part-2: We know from Coleman [9] that the breaks ofNPp(En) are the pivotal
points associated to (n, p).
Part-3:Let the slopes of NPp(En) be mi, then

mi =
νp(1/ki!)− νp(1/ki−1!)

ki − ki−1

=
ki−1 − σp(ki−1)− ki + σp(ki)

(p− 1)(ki − ki−1)
(by lemma (9))

=
bi − bipei
bipei(p− 1)

(from the equation (6.6))

=
1− pei
pei(p− 1)

.

We have the following.

Lemma 12. (Coleman criterion) Suppose f ∈ Q[x] has degree n and p is a prime
number. If f is p−coleman then pνp(n) divides the degree of any factor g ∈ Q[x]
of f . If f is a p-coleman integral for all primes p dividing n. Then f is irreducible
in Q[x].

Proof. Let n = b1p
e
1 + b2p

e
2 + · · · + bsp

e
s and pνp(n) divides n. The slopes of

NPp(En) are

mi =
−(pei − 1)

pei(p− 1)
.
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Then by lemma (11), pνp(n) divides the denominator of each mi. Then by corol-
lary (7), pνp(n) divides the degree of each factor of f over Q. Let n =

∏
pnp

(where nP = νp(n)) be the prime factorization of p then pnp divides the degree of
each factor of f in Q. Since this is true for all p | n. Hence, n divides the degree
of each factor of f over Q. Therefore, f is irreducible over Q[x].

Example 4. The classical Laguerre polynomial

L(0)
n (x) =

n∑
j=0

(
n

j

)
(−x)j

j!

is p−coleman integral for every prime p. Since from 6.6, we have

ki = b1p
e1 + b2p

e2 + · · ·+ bip
ei i = 0, 1, 2, · · · , s.

Let j = ki, then
j = b1p

e1 + b2p
e2 + · · ·+ bip

ei ,

and
n− j = bi+1p

ei+1 + bi+2p
ei+2 + · · ·+ bsp

es

are completely disjoint. So, there is no carry in the base p addition of this num-
bers. Then by lemma 9, implies that νp

(
n
j

)
= 0 for such j. Then by lemma 11,

NPp(L
(0)
n (x)) = NPp(L

<0>
n (x))

for all primes p. Then by lemma 12, L(0)
n (x) is irreducible over Q[x].

The following lemma due to Filaseta.

Lemma 13. (Filaseta criteria) Suppose

f(x) =
n∑
j=0

bj
xj

j!
∈ Q[x]

is Hurwitz integral, and | b0 |= 1. Let k be a positive integer ≤ n/2. Suppose
there exist a prime p ≥ k + 1 such that

νp(n(n− 1)(n− 2) · · · (n− k + 1)) > νp(bn).

Then, f(x) cannot have a factor of degree k in Q[x].

We have the following.

Lemma 14. If p is a prime number which divides n, then L<r>n (x) is p−Coleman
integral if and only if

(
n+r
r

)
6≡ 0 mod p.
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Proof. We know that

L<r>n (x) =
n∑
j=0

(
n− j + r

n− j

)
(−x)j

j!
.

Let

L<r>n (x) =
n∑
j=0

aj
xj

j!
.

Then aj =
(
n−j+r
n−j

)
. Clearly, νp(aj) ≥ 0 for all primes p. So, this is Hurwitz

integral. Suppose that p divides
(
n+r
r

)
. Also, k0 = 0. Now,

a0 =

(
n+ r

n

)
=

(
n+ r

r

)
.

Therefore, p | a0 and this implies νp(a0) > 0. So,

νp(aki) 6= 0, 0 ≤ i ≤ s.

Therefore, L<r>n (x) is not p−Coleman. Now, suppose if

p -
(
n+ r

r

)
= a0,

this implies νp(a0) = 0. Since, νp(a0) is the number of carries in the base p
addition of n and r, then there is no carry in the base p in the addition of n and r.
Since, from the equation (6.5)

n = b1p
e1 + b2p

e2 + · · ·+ bsp
es

and from the equation (6.6),

ki = b1p
e1 + b2p

e2 + · · ·+ bip
ei i = 0, 1, 2, · · · , s.

Then
n− ki = bi+1p

ei+1 + bi+2p
ei+2 + · · ·+ bsp

es .

The base p expansion of n− ki is simply truncation of that of n. Therefore, there
cannot be a carry in the addition of n− ki and r. This shows that

νp(aki) = 0, (0 ≤ i ≤ s).

This implies L<r>n (x) is p−Coleman integral .
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We have following theorems.

Theorem 22. If gcd(n,
(
n+r
r

)
) = 1, then L<r>n (x) is irreducible over Q.

Proof. Let p be a prime which divides n. Since, n and
(
n+r
r

)
is relatively prime,

then p -
(
n+r
r

)
. Using lemma (14) we get L<r>n (x) is p−coleman. Since, L<r>n (x)

is p−Coleman for all prime p divides n, then by (Coleman criteria) lemma (12),
L<r>n (x) is irreducible over Q.

Theorem 23. If gcd(n, r!) = 1, then L<r>n (x) is irreducible over Q.

Proof. Given gcd(n, r!) = 1. Clearly, L<r>n (x) is Hurtwitz integral at p. Since, p
be prime which divides n then p - r!. We want to show that

νp(aki) = 0, (1 ≤ i ≤ s) where aki =

(
n− ki + r

r

)
.

Now,

νp(aki)

= νp((n− ki + 1) · · · (n− ki + r))− νp(r!)

= νp(n− ki + 1) + νp(n− ki + 2) + · · ·+ νp(n− ki + r), (i = 0, 1, · · · s− 1).

We know
n− ki = bi+1p

ei+1 + bi+2p
ei+2 + · · ·+ bsp

es .

So, p | n− ki. Again

p - r!

⇒ p > r

⇒ p - n− ki + t, (1 ≤ t ≤ r).

So, we get ν(aki) = 0 where 0 ≤ i ≤ s − 1. Since, aks = 1, this implies
ν(aks) = 0. Therefore,

ν(aki) = 0 (0 ≤ i ≤ s).

Therefore, L<r>n (x) is p-Coleman, i.e., L<r>n (x) is irreducible over Q.
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6.2.2 Primes in Short Intervals
We want to prove of Theorem 20. Before going to prove we need to establish

the existence of primes of appropriate size, namely primes for which the Newton
polygon of L<r>n (x) precludes the existence of factors of certain degrees. Now
we state important result here to use next section.

This theorem is a well known consequences of the Prime Number Theorem,
generalizing Chebyshev’s theorem on the theorem on the existence of a prime in
(n, 2n).

Theorem 24. Given h ≥ 2 , there exist a constant C(h) such that whenever
N ≥ C(h) , the interval [N(1− 1/h), N ] contains a prime . We may take C(h) =
eh+1/2(1− 1/h)−h.

Corollary 8. If n + r ≥ 48 and and n ≥ 8 + 5r/3, then there exist a prime p in
the interval (n+ r)/2 < p < n− 2.

We have the following theorem.

Theorem 25 (Harborth-Kemnith). If n ≥ 48683, then the interval (n, 1.001n]
contains a prime.

6.2.3 Irreducibility of L<r>
n (x) for Large n

First we fix r ≥ 0, and let n = n0n1 = n2n3, where

n1 =
∏

p|gcd(n,(n+rr ))

pνp(n),

n3 =
∏
p|n

νp(n)≤νp(r!)

pνp(n).

Note that, n0 is the largest divisor of n which is co -prime to
(
n+r
r

)
. Also, it is

clear that n2 | n0 . So, n1 | n3 | gcd(n, r!). It follows that

n1 ≤ r!. (6.7)

We can improve it slightly.
We know that a prime p divides

(
n+r
r

)
iff there is a carry in the base p addition

of n and r. Thus if pa divides n and r < pa , then p -
(
n+r
r

)
. So p - n1; as an
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example primes exceeding r do not divide n1. Therefore, for a given fixed r, we
get

n1 ≤
∏
p|r!

νp(n)≤νp(r!)

pνp(n)

≤
∏
p|r!

νp(r!)≤blogp(r)c

pνp(n) since pνp(n) < r ⇒ νp(n) log p < log r ⇒ νp(n) < logp(r)

≤
∏
p|r!

pblogp(r)c

(Since p |
(
n+r
r

)
⇒ νp(n) < logp(r). Suppose if logp(r) < νp(n)⇒ r < pνp(n), a

contradiction. )

Again r ≥ 4, νp(r!) ≥ blogp rc and also

p = 2, ν2(r!) ≥ 1 + blog2 rc holds.

r! =
∏
p|r!

pνp(r!)

= 2ν2(r!) ·
∏
p|r!
p 6=2

pνp(r!)

≥ 2 · 2blog2 rc ·
∏
p 6=2

pblogp rc

= 2 ·
∏
p|r!

pblogp rc

≥ 2n1.

This shows that
if r ≥ 4, then n1 ≤ r!/2. (6.8)

We remark that for any prime p satisfying p ≤ r/2, blogp rc < νp(r!).
We have the following lemma.

Lemma 15. If there is a prime p satisfying max(n+r
2
, n − n0) < p ≤ n, then

L<r>n (x) is irreducible over Q.
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Proof. Every Q[x] factor of L<r>n (x) has degree divisible by n0 (by Lemma (14),
and (12)). If n1 = 1, then n = n0. So, we are done. Let n1 > 1. Let us
assume that L<r>n (x) has a Q[x] factor of positive degree k ≤ n/2. We know k ∈
{n0, 2n0, 3n0, · · · (n1 − 1)n0}. To eliminate this possibilities, we apply Filaseta
criteria. So, we require b0 = 1. We set

f(x) = a−1
0 L<r>n (a0x) =

n∑
j=0

bj
xj

j!
,

where
bj = a−1

0 aj0aj = aj−1
0 aj,

and a0 =
(
n+r
r

)
and aj =

(
n−j+r
n−j

)
. Clearly, bj is Hurtwitz coefficients, and bn =

an−1
0 an = an−1

0 . Of course the factorization over Q of f(x) mirrors exactly that
of L<r>n (x). With the hypothesis on p, we have p ≥ k + 1 (since k ≤ n/2).
Moreover, p ≥ n− k + 1, since k ≥ n0 and

a0 =
(n+ 1)(n+ 2) · · · (n+ r)

r!
,

and also (n + r)/2 < p < n + 1, then p - bn = an−1
0 . Now, by apply Filaseta

criteria as f(x) is Hurtwitz integral with | b0 |= 1, k ≤ n/2 and there exist a
prime p ≥ k + 1 such that

νp(n(n− 1)(n− 2) · · · (n− k + 1)) > νp(bn).

Then, f(x) cannot have a factor of degree k in Q[x]. Therefore, L<r>n (x) cannot
have a factor of degree k. So, we arrived at a contradiction . Then, L<r>n (x) is
irreducible over Q.

Definition 7. For an integer r ≥ 0, we define

B(r) =

{
48 if r = 0, 1, 2, 3.

er!+1/2(1− 1/r!)−r! if r ≥ 4.

We have the following lemma.

Lemma 16. Given r ≥ 0 for every integer n ≥ B(r), there exist a prime p
satisfying

max(
n+ r

2
, n− n0) < p ≤ n,

where n0 is the largest divisor of n, co prime to
(
n+r
r

)
.
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Proof. First let us take r ≥ 4. It is clear that from definition (7) if r ≥ 4, then
B(r) > r(r!)/(r!− 2) holds. Thus,

n > B(r)

⇒ n > r(r!)/(r!− 2)

⇒ n(r!− 2)/r! > r

⇒ n(r!− 2)

r!
+ n > n+ r

⇒ 2n(r!− 1)

r!
> n+ r

⇒ (n+ r)/2 < n(1− 1/r!).

Since, r ≥ 4, from the equation (6.8), we get n1 ≤ r!/2.
Now,

n− n0 = n− n/n1

≤ n(1− 2/h) taking h = r!

< n(1− 1/h).

Therefore, we get

max(
n+ r

2
, n− n0) < n(1− 1/h).

We also have n > eh+1/2(1 − 1/h)−h. Hence by using Theorem (24), there exist
a prime p satisfying max(n+r

2
, n − n0) < p ≤ n. Now, let us take r ∈ [0, 3]

and n ≥ 48. Then, by using the equation (6.7), we get n1 ≤ 3!, this implies
n− n0 ≤ 5n/6. On the other hand, we get

(n+ r)/2 ≤ (n+ 3)/2 ≤ 5n/6.

This implies that

max(
n+ r

2
, n− n0) < 5n/6.

Now, by applying Theorem (24) with h = 7, we find that [6n/7, n] ⊂ (5n/6, n]
contains a prime for n > 5320. One can direct check for n ∈ [48, 5320], find that
(5n/6, n] contains a prime for all n ≥ 48 . So, we are done.
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Combining the above lemmata gives the proof of the Theorem 20.
More precisely, we have proved the following.

Theorem 26. For r ≥ 0 , if n ≥ B(r), then L<r>n (x) is irreducible over Q.

6.3 Partial answer of Hajir’s Conjecture
In this section, Our goal is to prove that n is sufficiently large , then every

admissible modification of L<r>n (x) is irreducible over Q. The main result of this
section stated below.

Theorem 27. For a fixed integer r ≥ 0, then there exist an effectively computable
constant Nr such that every admissible modification of L<r>n (x) is either irre-
ducible or if it is reducible, then it has at most one linear factor over Q for all
n ≥ Nr.

Our use of Filaseta criteria for obtaining above result is summarized by the
following lemma.

Lemma 17. Let n be a positive integer. Suppose that p is a prime, that k and α
are positive integers and that l be a non-negative integer for which

pα ‖ (n− l), (6.9)

p ≥ max{2r + 1, 2l + 1}, (6.10)

log(n+ r)

pα log p
+

1

p− 1
≤ 1

k
. (6.11)

Then f(x) =
∑n

j=0 bjx
j , where bj =

(
n
j

) (n+r−j)!
r!

cannot have a factor with
degree ∈ [l + 1, k].

Proof. Let bj =
(
n
j

) (n+r−j)!
r!

where j ∈ {0, 1, · · · , n}.
We first observe that bn = 1. So that p - bn.
Since

bj =

(
n

j

)
(n+ r − j)!

r!
=
n!

j!

(n+ r − j)!
r!(n− j)!

=

(
n+ r − j

r

)
n · (n− 1) · · · (n− j + 1),

Therefore, p/bj∀j ∈ {0, 1, · · ·n− l − 1}
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Next we need to show the right most edge of Newton polygon of f(x) with re-
spect to p has slope < 1/k. The right most edge has slope = max0≤j≤n

ν(b0)−ν(bj)

j
.

So that by the equation 6.11, it is sufficient to show that

ν(b0)− ν(bj)

j
<

log(n+ r)

pα log p
+

1

p− 1
(6.12)

Now

ν(b0)− ν(bj)

= ν{
(
n

0

)
(n+ r)!

r!
} − ν

(
n

j

)
(n+ r − j)!

r!

= ν(n+ r)!− ν
(
n

j

)
− ν(n+ r − j)!

= ν{ (n+ r)!

(n+ r − j)!
} − ν{ (n)!

(n− j)!
}+ ν(j!)

Note that

ν((j)!) =
∞∑
i=1

[
j

pi

]
<
∞∑
i=1

j

pi
=

j

p− 1
.

To handle the remaining terms, we introduce the notation

a(n+ r, i) =

[
n+ r

pi

]
−
[
n+ r − j

pi

]

a(n, i) =

[
n

pi

]
−
[
n− j
pi

]
so that

ν

{
(n+ r)!

(n+ r − j)!

}
− ν
{

(n)!

(n− j)!

}
=
∞∑
i=1

{a(n+ r, i)− a(n, i)}

We note that a(n+r, i) is the number of multiplies of pi in the interval (n+r−

j, n+r].Moreover the sum may be truncated at i =

[
log(n+r)

log p

]
. Since a(n+r, i) =

a(n, i) = 0 when pi > n + r. To complete the proof it therefore suffices to show
that a(n+ r, i)− a(n, i) ≤ j/pα for i ≥ 1.
we distinguish three cases.
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(i) i ≤ α,

(ii) i > α and j ≤ l + r,

(ii) i > α and j > l + r.

Case (i): i ≤ α. By condition 6.9 there exist some m such that n = pαm+ l.

a(n+ r, i) =

[
n+ r

pi

]
−
[
n+ r − j

pi

]
=

[
pαm+ l + r

pi

]
−
[
pαm+ l + r − j

pi

]
=

[
l + r

pi

]
−
[
l + r − j

pi

]

a(n, i) =

[
n

pi

]
−
[
n− j
pi

]
=

[
pαm+ l

pi

]
−
[
pαm+ l − j

pi

]
=

[
l

pi

]
−
[
l − j
pi

]

∴ a(n+ r, i)− a(n, i) =

[
l + r

pi

]
−
[
l + r − j

pi

]
−
[
l

pi

]
+

[
l − j
pi

]
=

[
l − j
pi

]
−
[
l + r − j

pi

]
≤ 0.

So, the condition 6.11 follows in this case.

Case (ii): i > α and j ≤ l + r.
We observe that

j ≤ l + r ⇒ −j ≥ −l − r ⇒ n+ r − j ≥ n− l.

Since, n− l is the multiple of p and p > max{2r, 2l}, so (n+ r− j, n+ r] has no
multiple of p and so a(n+ r, i) = 0. So, the condition 6.11 follows.
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Case (iii): i > α and j > l + r.
In this case, we observe that

j > l + r ⇒ −j < −l − r ⇒ n+ r − j < n− l < n+ r.

∴ n+ r − j < n− l < n+ r.

The number of multiple of pα in (n + r − j, n + r] is [j/pα] + 1. Again since
i > α, n− l is not divisible by pi.

∴ a(n+ r, i) ≤ a(n+ r, α)− 1 ≤ [j/pα].

Since a(n, i) ≥ 0 , then the inequality 6.11 holds in this case.
This completes the proof.

Proof of the theorem 27: Let us take

L<r>n (x) = n!L<r>n (x) =
n∑
j=0

(
n

j

)
(r + 1) · (r + 2) · · · (r + n− j)xj. (6.13)

Let f(x) = L<r>n (x). Then we can write f(x) as

f(x) =
n∑
j=0

(
n

j

)
(r + 1) · (r + 2) · · · (r + n− j)xj

=
n∑
j=0

(
n

j

)
(n+ r − j)!

r!
xj

=
n∑
j=0

(
n+ r − j

r

)
n!

j!
xj

=
n∑
j=0

bjx
j, where bj =

(
n+ r − j

r

)
n!

j!
.

It is easy to understand that f(x) is monic and has a positive integer coefficients
as r is a non negative integer. Let us assume that f(x) is reducible, then it has a
factor with degree in [1, n/2]. Since f(x) is reducible over Q, it is also reducible
over Z. Therefore, we deduce that if f(x) is reducible, then it has a factor with
integer coefficients and degree ≤ n/2. Let k denote the smallest degree of an
irreducible factor of f(x), then k ≤ n/2.
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bj =

(
n+ r − j

r

)
n!

j!

=

(
n+ r − j

r

)
cj (say).

If i < j

ci
cj

=
n!

i!
· j!
n!

=
j!

i!
= j · (j − 1) · · · (i+ 1).

This implies if i < j then cj/ci. Therefore, if we are to show that f does not have
a factor of degree k, it is sufficient to show that there exist a prime p such that p
satisfies the both condition

(i) p/bj for all j ∈ {0, 1, · · · , n− k},

(ii) p satisfied the lemma 17

We will give different arguments for various sizes of k with respect to n.

Case (i): 2n/ log n < k ≤ n/2.
For k in the indicated range, we will show that there is a prime p in the interval

(n− k, n]. First of all, any prime p ∈ (n− k, n] divides

cn−k = n(n− 1)(n− 2) · · · (n− k + 1)

and hence, p divides cj for all j ∈ {0, 1, · · · , n− k}. Now observe that this prime
p satisfies

p > n− k = n− n/2 = n/2.

Thus, 2p > n. Consequently, ν(cj) = 1 for all j ∈ {0, 1, · · · , n − k} (i.e., p
divides cj exactly once for all j ∈ {0, 1, · · · , n−k}). Next, let us try to figure out
if p divides any other cj . Note that, since 2p > n, p divides cj = (n)(n− 1)(n−
2) · · · (j + 1) if and only if p appears as one of the factors in the product formula
for cj . That is, p|cj if and only if p ∈ [j + 1, n], i.e., if and only if j ≤ p − 1.
Therefore, we have

ν(cj) =

{
1 if 0 ≤ j ≤ p− 1

0 if j ≥ p.

It is easy to understand that the Newton polygon NPp(f) has only two edges,
one joining (0, 0) and (n− p, 0); and the other edge joining (n− p, 0) and (n, 1).
Thus, the slope of the rightmost edge of NPp(f) is 1/(p). Now, we observe that

p > n− k ≥ k (since, n ≥ 2k).
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Therefore, we may now conclude that the slope of the rightmost edge of
NPp(f) is < 1/k. By appealing to Lemma 2, we deduce that f(x) does not
have a factor of degree k in this cases.
Thus, it remains to show that there is a prime p in the interval (n − k, n] for
2n/ log n < k ≤ n/2 By explicit gap estimates on primes [3], we already have

π(x) >
x

log x− 0.5
for x ≥ 67, (6.14)

and
π(x) <

x

log x− 1.5
for x ≥ e1.5. (6.15)

Note that it suffices to show that π(n) − π(n − 2n/ log n) > 0. Set u =
(log n)/2. Then, we have

π(n)− π(n(1− 1/u)) >
n

log n− 0.5
− n(1− 1/u)

log n+ log(1− 1/u)− 1.5
,

provided, n ≥ 67 and n(1 − 1/u) ≥ e1.5. Since 67(1 − 2/ log 67) > e1.5, we
just have to take n ≥ 67. The expressions on the right hand side above upon
simplification yields

log n((log n)/u+ log(1− 1/u)− 1− 1/2u)

(log n− 0.5)(log n+ log(1− 1/u)− 1.5)
.

For n ≥ 67, the factors in the denominator above are > 0, and log n > 0. Thus,
the expression above is positive if and only if

log n > u+ 1/2− u log(1− 1/u).

Observe that

−u log(1− 1/u) =1 +
1

2u
+

1

3u2
+ · · ·

<
1

2
+

1

2

(
1 +

1

u
+

1

u2
+ · · ·

)
=

1

2

(
1 +

u

u− 1

)
< 1.5.

Therefore, it suffices to have log n > u + 2, i.e., log n > 4 which is equivalent to
have n > e4. Since 67 > e4, our assertion follows for n ≥ 67. A quick search
with SAGE (a mathematical open source software), it follows that the interval
(n − 2n/ log n, n] contains a prime for each n ∈ [8, 66]. So, we are done in
case (i) for every n ≥ 8.
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Case (ii): n2/3 < k ≤ 2n/ log n.
Recall that in this case k > n2/3 and n is large. We show that there is some

prime p > 3k > 3n2/3 that divides n(n− 1) · · · (n− k + 1) so that

log(n+ r)

pα log p
+

1

p− 1
<

log(n+ r)

p log(n2/3)
+

1

3k
<

2

3k
+

1

3k
<

2

3k
+

1

3k
= 1/k

It only remaining to show that such prime exist.
To prove such prime exist , We mainly use (the next case as well) the lemma 4

due to Erdós, .
For our purposes, we take u = n− k+ 1, C = 3 and θ = 2/3 in Lemma 4, so

that,

p = P (∆(n− k + 1, k)) > 3k for all k ≥ k0.

where
k0 = 1 + e4e5.625 .

Since, we have p > 3k, also note that k ≤ 2n/ log n and n > k, it follows that

log n > log k ⇒ 1

log n
<

1

log k
⇒ 2n

log n
<

2n

log k
⇒ k <

2n

log k
,

k < 2n/ log k. Accordingly, we take n ≥ (k log k)/2 ≥ (k0 log k0)/2.
Since p > 3k > 3n2/3 and p ≥ 2r + 1. Then 3n2/3 > 2r ⇒ n > (2r/3)3/2

holds in this case.
For these values of n, we deduce that f(x) does not have a factor of degree k

where k is in the range (n2/3, 2n/ log n].

Case(iii): (k2 < k ≤ n2/3) Here k2 is fixed, and will be specified later. The
treatment in this case is similar to that in case(ii). We even use the same sets T
and S . As before, we take C = 3 and θ = 2/3. Only in the last step in the proof
of Lemma 4, we make a small adjustment. Here, we replace

the upper bound 2n/ log n of k by n2/3. We further note that for k ≥ e
(12.5)(3)

2 ,
i.e, k ≥ e18.75 one has

1− 1.25(4)/ log k > 0.8.

So, we take k2 = e18.75, and after making these changes, we have that

n2/3 >

(
n

2

)0.8

.

The last inequality clearly does not hold for n ≥ 26. Since, we have taken k ≥ k2,
we must take n ≥ k3/2 ≥ k

3/2
2 . Thus, for n ≥ k

3/2
2 , the polynomial f(x) does not

have factor of degree in (k2, n
2/3]. This settles case (iii).
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Case(iv): 1 < k ≤ k2. The arguments in this section are based on effective
versions of Thúe’s theorem due to Baker [1].

We begin by proving a lemma concerning the largest prime factor of n(n−1).

Lemma 18. If P (·) denotes the largest prime factor of a number, then

lim
n→∞

P (n(n− 1)) =∞.

Proof. We will proof the lemma by contradiction. Let us assume that for any
K > 0, and any M > 0, there is a n > M such that P (n(n − 1)) ≤ K. Fixing
K > 0, and let us define

P = {p ≤ K : p, a prime} and P (K) =
∏
p≤K

p.

Now, we define a new set

A = {p : P (n(n− 1)) ≤ K.}

We assume that |A| = ∞. Now by using the fundamental theorem of arith-
metic, we can express every integer l as

l = l1l
3
2,

where l1 is cub-free. Thus, there exist integers X = Xn, Y = Yn, and cube-
free integers A = An and B = Bn such that

n = AX3 and n− 1 = BY 3; n be an positive integer.

Therefore, we get the equation

AX3 −BY 3 + 1 = 0. (6.16)

Since, our assumption that |A| = ∞, it clearly implies that at least one of the
following sets is infinite:

A1 = {Xn : n ∈ A}, A2 = {Yn : n ∈ A}.

For fixed cube-free positive integers A and B, (6.16) is absolutely irreducible.
Now, we prove it by proving the following lemma.

Lemma 19. For fixed cube-free positive integers A and B, Ax3 − By3 + 1 is
absolutely irreducible.
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Proof. Let A, B are fixed cube free. Let

u(x, y) = Ax3 −By3 + 1. (6.17)

We want to show that u(x, y) is absolutely irreducible. We will prove it by con-
tradiction. Let us assume that u(x, y) is reducible over C.
Let

u(x, y) = v(x, y)w(x, y). (6.18)

Then
deg u = deg v + degw.

Let
v(x, y) = a1x+ a2y + a3,

and
w(x, y) = b1x

2 + b2y
2 + b3xy + b4x+ b5y + b6.

v(x, y)w(x, y) = a1b1x
3 + a2b1x

2y + a1b3x
2y + a1b5xy + a2b4xy + a3b3xy

+a1b2xy
2 + a2b3xy

2 + a2b2y
3 + a1b6x+ a3b4x

+a2b6y + a3b5y + a3b1x
2 + a1b4x

2 + a3b2y
2

+a2b5y
2 + a3b6.

Now, comparing the coefficients in the above equation with those in the equa-
tion (6.17), we get

a1b1 = A, (6.19)

a2b2 = −B, (6.20)

a3b6 = 1, (6.21)

a2b1 + a1b3 = 0, (6.22)

a1b2 + a2b3 = 0, (6.23)

a1b6 + a3b4 = 0, (6.24)

a1b4 + a3b1 = 0, (6.25)

a2b6 + a3b5 = 0, (6.26)

a3b2 + a2b5 = 0, (6.27)

a1b5 + a2b4 + a3b3 = 0. (6.28)

Now, solving the equations ((6.22) and (6.23)), ((6.24) and (6.25)), and ((6.26)
and (6.27) ), we get

b2
3 = b1b2, (6.29)
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b2
4 = b1b6, (6.30)

b2
5 = b6b2. (6.31)

From equations ((6.29), (6.30) and (6.31)), we can say that b1, b2, b6 must have
the same sign. Now from equation (6.19) , it is clear that a1 and b1 have same
sign. Also from equation (6.20), it is clear that a2 and b2 have same sign. Again
from equation 6.21, it is clear that a3 and b6 have same sign. Since b2, b6 have
same sign, then a2, a3 have same sign. Again from the equation (6.24), we get
b4 = −a1b6/a3, this implies b4, a1 has opposite sign. Again from the equa-
tion (6.27), we get b5 = −a3b2/a2, this implies b5, b2 have same sign. Again
from the equation (6.22) we get b3 = −a2b1/a1, this implies b3, b1 have same sign.
From the above observation we conclude that b1, b2, b3, b5, b6, a1, a3 has same sign,
and a2, b4 has same sign. Therefore, we get the result that a1, b5 have same sign.
a2, b4 and a3, b3 also have same sign. Therefore, the sign of a1b5, a2b4, a3b3 are all
positive. Then this cannot satisfy the equation (6.28), if it is satisfied, then all are
zeros. So, we arrive at a contradiction. Therefore, our original assumption was
wrong. This implies u(x, y) is absolutely irreducible.

Hence, by Theorem 10, we deduce that any integral solution (X, Y ) of (6.16)
must satisfy

max{X, Y } < exp exp exp

(
(2H)103

10
)
, where H = max{A,B}.

Since P (n(n−1)) ≤ K, we deduce that n and n−1 are made up of primes≤ K.
SinceA is a cube-free divisor of n, we haveA|P (K)2. Similarly,B|P (K)2. Thus,
one has

max{A,B} ≤ P (K)2 = exp(2
∑
p≤K

log p) ≤ e2.04K .

But this then implies that

max{X, Y } < exp exp exp

(
(2e2.04K)103

10
)

= nK , a fixed number.

But this implies both A1 and A2 to be finite, and therefore, we arrive a contra-
diction. So our original assumption is wrong. Thus |A| < ∞, and the lemma
follows.

Let us now get back to the polynomial f(x). Since, we are trying to show that
f(x) does not have a factor with degree in (1, k2]. We take K = max{3k2, 2r} in
Lemma 18. We further take n = deg f to be

n > P (K)2n3
K .
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Then from Lemma 18, we deduce that P (n(n− 1)) > K = max{3k2, 2r}. Next,
we note that for any 2 ≤ k ≤ k2, one has that

n(n− 1)|cj for all j ∈ {0, 1, · · · , n− k}.

Let p = P (n(n− 1)). Thus, we have for any 2 ≤ k ≤ k2 that

p|n(n− 1)|cj ∀j ∈ {0, 1, · · · , n− k},

and
p > K = max{3k2, 2r} ≥ max{3k, 2r}.

Our conclusion in case (iv) now follows from Lemma 17.

Let Nr be the maximum of all the lower bounds on n in cases (i) through (iv), i.e.,
nr is largest among the following:

• 8 from case (i)

• max{(2r/3)3/2, (k0 log k0)/2}, where k0 = 1 + e4e5.625 from case (ii)

• max{(2r/3)3/2, exp((18.75)3/2 from case (iii)

• P (K)2n3
K from case (iv) where

P (K) =
∏
p≤K

p, nK = exp exp exp

(
(2e2.04K)103

10
)
,

and
K = {3 exp((18.75), 2r}.

Clearly, the fourth item gives the maximum value, and this gives us an explicit
estimate for Nr (albeit too large).
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