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Abstract: The problem we consider is a stochastic shortest path problem in the presence of a dynamic learning capability. Specif-
ically, a spatial arrangement of possible obstacles needs to be traversed as swiftly as possible, and the status of the obstacles may
be disambiguated (at a cost) en route. No efficiently computable optimal policy is known, and many similar problems have been
proven intractable. In this article, we adapt a policy which is optimal for a related problem and prove that this policy is indeed also
optimal for a restricted class of instances of our problem. Otherwise, this policy is generally suboptimal but, nonetheless, it is both
effective and efficiently computable. Examples/simulations are provided in a mine countermeasures application. Of central use is
the Tangent Arc Graph, a polynomially sized topological superimposition of exponentially many visibility graphs. © 2011 Wiley
Periodicals, Inc. Naval Research Logistics 58: 389–399, 2011

Keywords: mine countermeasures; probabilistic path planning; random disambiguation path; tangent arc graph; markov decision
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1. THE DISAMBIGUATION PROBLEM

A disambiguation problem instance is a tuple (s, t , A, ρ, c),
where s and t are points in R

2, A is a finite set of open discs in
R

2, ρ is a function A → (0, 1], and c is a function A → R≥0.
An agent wants to traverse from s to t through R

2, along a
continuous curve which is as short as possible in the sense
of arclength. However, the discs of A are potential obstacles;
for each A ∈ A, the probability that A is an obstacle is ρ(A),
independently from the other discs in A. If ρ(A) < 1 then we
say A is ambiguous and if ρ(A) = 1 then A is definitely an
obstacle. The traversing agent cannot enter discs which are
obstacles or ambiguous but, if and when the agent is located
at the boundary ∂A for any A ∈ A, the agent has the option to
disambiguate the disc A at a cost c(A) added to the traversal
arclength, and the agent will learn whether or not A is actu-
ally an obstacle. The status of a disc will never change; if A is
revealed to be an obstacle then the traversing agent may never
enter A, and if A is not an obstacle then A may be entered any-
time thereafter. The central issue is how to direct the agent’s
traversal to optimally utilize this disambiguation capability;
that is, to find a policy for the agent which minimizes the
expected length of the agent’s s, t traversal.
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An example of a disambiguation problem instance is
shown in Fig. 1; suppose the values of ρ(Ai), for i =
1, 2, 3, 4, 5 are 0.6, 0.4, 0.9, 0.8, 0.7, and suppose c(Ai) = 1.1
for all i. One particular traversal policy is illustrated in Fig. 1;
from s the agent proceeds to the red bullet labeled 1, at which
point A1 is disambiguated. If A1 is traversable then the agent
is to continue till the red bullet labeled 2, at which point A2

is disambiguated. Then the agent is to proceed to t through
A2 or clockwise around A2, according as A2 is traversable or
not. If A1 was not traversable, then the agent was to continue
till the red bullet labeled 3, at which point A4 is disam-
biguated. If A4 is traversable then the agent continues till
the red bullet labeled 4, at which point A5 is disambiguated.
Then the agent continues to t through A5 or counterclock-
wise around A5, according as A5 is traversable or not. If
A4 was not traversable then the agent was to continue to t

counterclockwise around A4 and A5. Under this policy, the
agent’s s, t traversal is an s, t-curve-valued random variable
which would be γ1, γ2, γ3, γ4 or γ5 with respective probabil-
ities (0.4)(0.6), (0.4)(0.4), (0.6)(0.2)(0.3), (0.6)(0.2)(0.7),
or (0.6)(0.8). If the respective arclengths of γ1, γ2, γ3, γ4 or
γ5 are 12, 14, 13, 16, and 18, then the expected length of the
agent’s s, t traversal is (0.4)(0.6)[12+2.2]+(0.4)(0.4)[14+
2.2]+(0.6)(0.2)(0.3)[13+3.3]+(0.6)(0.2)(0.7)[16+3.3]+
(0.6)(0.8)[18 + 2.2]. This is only one example of a policy,
and it may not be the best policy.
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Figure 1. An example of a disambiguation problem instance and
a policy for it.

More formally, a policy is a function which, to every pos-
sible disambiguation problem instance (s, t , A, ρ, c), assigns
either an A ∈ A and an x ∈ ∂A or else it assigns t ; this
is interpreted by an agent [with a disambiguation problem
instance (s, t , A, ρ, c)] as an instruction to proceed next from
s to x ∈ ∂A (or, instead, to proceed to t) going along the
shortest s, x curve which avoids all discs of A, and to then
disambiguate A upon arrival at x. If A is revealed at that time
to be an obstacle then ρ(A) is set to 1, and if A is revealed to
not be an obstacle then A is removed from A; either way, the
agent queries the policy again with x in place of s to determine
the next disambiguation point, and so on iteratively until the
agent reaches t .

Finding an optimal policy for a particular disambiguation
problem instance is easily formulated as a Markov decision
process but, unfortunately, it does not seem possible to avoid
an intractably large state space in such a Markov decision
process formulation, as we discuss next in Section 2.

In Section 3, we introduce a new policy called the Reset
policy; it is an optimal policy for an altered problem setting
described in that section. We then show in Section 5 that the
Reset policy is indeed an optimal policy for a restricted family
of instances of our problem, called early layer arrangements.
Although the Reset policy is suboptimal for our problem in
general, we show in Section 4 that it compares very favor-
ably with the Simulated Risk policy of [10] and requires
substantially less computing resources.

2. STOCHASTIC SHORTEST PATH WITH
DYNAMIC LEARNING IN THE LITERATURE

The problem which we described is a minor modification
of the stochastic obstacle scene problem (SOSP) of Papadim-
itriou and Yannakakis [14], who also describe a discrete

version of SOSP which they call the Canadian traveller’s
problem (CTP). Papadimitriou and Yannakakis prove the
intractability of several variants of SOSP and CTP. (For more
background on CTP see [5].) CTP itself is a special case of
the stochastic shortest paths with recourse (SPR) problem of
Andreatta and Romeo [3], who present a stochastic dynamic
programming formulation for SPR and note its intractability.
Polychronopoulos and Tsitsiklis [17] also present a stochastic
dynamic programming formulation for SPR and then prove
the intractability of several variants. Provan [22] proves that
SPR is intractable even if the underlying graph is directed and
acyclic. Indeed, Provan [22] remarks that “all known no-reset
versions of the problem are NP-hard.”

The underlying difficulty in obtaining a tractable stochas-
tic dynamic programming formulation—even in the discrete
setting—is that in order for the agent to consider any action at
any location there is a need for the agent to take into account
what the agent has learned about the status of all of the poten-
tial obstacles, and the exponentially many such possibilities
need to be accordingly incorporated when constructing the
state space.

Heuristics are suggested for CTP and SPR in [4,6,17], but
they would not be applicable to our problem in this article
without initially approximating and recasting our continuous
setting to the setting of a finite graph, in which case the resolu-
tion of the discretization drives up the number of vertices and
edges in the approximating graph. By contrast, the algorithm
we propose here is polynomial-time solely in the number of
discs |A|.

Our problem is considered in [10, 21], and a heuristic
in [10] called the Simulated Risk disambiguation policy
(SR) is the only policy comparable with the Reset policy
introduced in this article. In Section 4, we illustrate in a
mine countermeasures path planning example and in many
simulation experiments that the Reset policy introduced in
this article indeed provides results as effective as the SR pol-
icy but with the benefit of using substantially less computing
resources. Then, in Section 5, we prove the optimality for the
Reset policy in a particular class of instances.

On a related note, there is a body of work in the literature
on the Probabilistic Roadmap Method (PRM) (e.g., [7, 12]).
Like our problem, they seek a path in an obstacle field. There
is a “local planner” which maps local traversabilities, and
these are combined into a global roadmap—nonconcurrently
to the agent’s actual traversal. When obstacles are found the
agent has not yet departed. (Thus, in particular, the agent is
not rerouted or charged the cost to get to the point where the
obstacle is encountered.) Moreover, the primary goal of PRM
is not speed of traversal. By contrast, in our problem, only the
agent can perform disambiguations and only when the agent
is at respective location of ambiguity, which fundamentally
changes the problem and the nature of policies. Indeed, for
us, the agent is considering where to go so as to get to the
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destination quickly simultaneous to trying to position itself
to learn the most useful information for achieving a quick
traversal.

There is also a substantial body of literature on the Simulta-
neous Localization and Mapping (SLAM) methodology and
paradigm. (See [8, 9] for an excellent overview.) In SLAM,
the goal is having an agent map an unknown field and, at the
same time, the agent is to keep track of its location within that
map, all in the presence of noise in sensor readings and noise
in the control. The beauty of the methodology is the symbiotic
relationship between the tackling of the mapping problem
and the tackling of the localization problem to overcome
the influence of the noise. By contrast, we assume perfect
knowledge of the agent’s location and control, and perfect
knowledge of the gross features of the field (just excluding
the status of potential obstacles), and we are only concerned
with navigating the agent from start to destination as quickly
as possible.

3. THE RESET POLICY

For the sole purpose of developing a policy for our problem
of interest, we consider—just in this section, Section 3—a
modification of our problem setting called the Reset setting.
It is a simple but fundamental modification, similar to the
“recoverable” variant of CTP in [5] and the “reset” variant of
CTP in [22], and it admits a tractable solution. The optimal
policy in this altered setting may then be extended for use in
our problem setting of interest.

Suppose we are given a disambiguation problem instance
(s, t , A, ρ, c). The Reset setting just differs in the following
way: For each A ∈ A, the status of A as an obstacle is not
fixed over time as we assume in the rest of this article; in
the Reset setting we assume that independent Bernoulli trials
govern whether or not A is traversable at the times of dif-
ferent disambiguation queries of A, with probability ρ(A)

that A is indeed an obstacle at the time of each query. If at
a given moment a disambiguation of A determines that A

is not an obstacle, then the agent may enter A immediately,
and A remains traversable until the agents exits A. Other-
wise, almost immediately after each disambiguation of A,
the status of A is “reset” and A becomes ambiguous again.

We can easily find an optimal policy in this Reset setting by
observing one important property that, without loss of gen-
erality, an optimal policy will have: Namely, if an optimal
policy dictates at any time that A ∈ A be disambiguated
at x ∈ ∂A, and if the disambiguation finds that A is an
obstacle then, without loss of generality (by appealing to
Bellman’s Principle of Optimality), the optimal policy will
dictate that A be disambiguated again. This is because, with
the resetting of A, the current state the agent is in is identi-
cal to the agent’s state right before the first disambiguation

Figure 2. Some of the curves γB : B ⊆ A. Many of the 25 = 32
such curves are not shown, and many are not distinct; for example,
γ{A2,A3,A5} = γ{A1,A2,A3,A5} = γ{A2,A3,A4,A5} = γ{A1,A2,A3,A4,A5}.

of A, when the policy dictated that the disambiguation of
A was to be performed. The implication is that disambigua-
tions of A are to be repeated until A is traversable, and the
number of disambiguations needed is thus a geometric ran-
dom variable with expected value 1

1−ρ(A)
. This means that

under an optimal policy the agent may view A as if it was
deterministically traversable at a cost c(A)

1−ρ(A)
(we will say

this has the value ∞ when ρ(A) = 1, regardless of c(A)).
For each B ⊆ A, let γB denote the shortest s, t path in
R

2\[∪A∈BcA] (see the illustration in Fig. 2) and let �(γB)

denote its arclength; the optimal policy is, quite simply, to
just follow γB∗ from s to t disambiguating discs as necessary,
where B∗ = arg minB⊆A[�(γB) + ∑

A∈B
c(A)

1−ρ(A)
]. Although

this minimization is over a set of exponential size in |A|,
we will soon see (in Section 3.1) that this minimization can
indeed be accomplished in polynomial time.

Returning to our setting of interest, disambiguation prob-
lem instances without reset: To each instance (s, t , A, ρ, c)
the Reset policy assigns the first disc A ∈ B∗ penetrated
by γB∗ and the point x ∈ ∂A where γB∗ penetrates A, with
B∗ defined as arg minB⊆A[�(γB) + ∑

A∈B
c(A)

1−ρ(A)
]. (See the

illustration in Fig. 2 where points of penetration for each
of the curves shown are indicated by red bullets.) If there
is no penetration (for example, if γB∗ turned out to be γ∅
in the illustration in Fig. 2) then the Reset policy assigns t .
We will see next in Section 3.1 that γB∗ can be computed in
O(|A|3 log |A|) operations using the tangent arc graph (TAG)
introduced in [10].

It is important to re-emphasize that in our setting of interest
(disambiguation problem instances without Reset), the pol-
icy just determines where to next disambiguate, and then the
information must be updated as per the results of the disam-
biguation, at which point the policy is queried again. Thus,
for example in Fig. 2, perhaps γB∗ is γA2,A3,A5 here; this curve

Naval Research Logistics DOI 10.1002/nav



392 Naval Research Logistics, Vol. 58 (2011)

would be followed till the red bullet, but perhaps A3 is then
discovered to be an obstacle, in which case the subsequent
policy query will redirect the traversal away from continuing
on γA2,A3,A5 .

3.1. The Tangent Arc Graph

In this section, we describe the construction of the tangent
arc graph (TAG) introduced in [10], given disambiguation
problem instance (s, t , A, ρ, c). The purpose of TAG here is
to provide an efficient way to compute γB∗ as defined in the
immediately preceding section.

For any distinct points x, y ∈ {s, t} ∪ (
⋃

A∈A ∂A), we
say the closed line segment x, y is a tangent segment pro-
vided that, for all z ∈ {x, y}\{s, t}, x, y is tangential at z

to A for some A ∈ A. The vertex set of TAG consists of
s, t , all points of intersection between any tangent segment
and any ∂A (over all A ∈ A), and all points of intersection
between two or more ∂A’s. The edge set of TAG consists of
all connected components of all tangent segments after the
vertices of TAG are removed, and all connected components
of ∪A∈A∂A after the vertices of TAG are removed. An exam-
ple of a TAG is pictured in Fig. 3. (It is the TAG associated
with the example illustrated in Fig. 1.) Each edge of TAG is
weighted with its arclength plus, for each of its endpoints and
for each A ∈ A, an additional 1

2
c(A)

1−ρ(A)
if the edge intersects

A and the endpoint is on the boundary ∂A.
Note that TAG is a topological superimposition of all the

(exponentially many) visibility graphs1 generated by s, t , Bc

over all choices of B ⊆ A, and note that for each A

that is traversed there is c(A)

1−ρ(A)
added to Euclidean traver-

sal length; thus, a shortest s, t path in TAG is indeed γB∗ .
Observe that there are only O(|A|2) tangent segments, each
intersecting O(|A|) discs, so we have O(|A|3) vertices and
O(|A|3) edges in TAG. The number of operations to set

1 Given two points s, t and a set of obstacles in the plane R2 (usually
the obstacles are open disks, polygonally bounded regions, or con-
vex sets) a visibility graph is a simple graph consisting of some set of
vertices on the boundary of the union-of-obstacles (s and t are also
taken to be vertices) and edges between some pairs of these vertices
such that the edges are either continuous curves on the boundary
of the union-of-obstacles or are line segments that do not intersect
obstacles. (Hence the term “visibility,” indicating “unobstructed line
of sight.”) The visibility graph is further required to contain a path
which is the shortest continuous s, t-curve avoiding all obstacles.
In the case where the obstacles are open disks, it suffices to take as
edges all of the unobstructed line segments whose both endpoints
are (s or t or are) tangential to discs, and also to take as edges the
segments of circle on the boundary of the union-of-obstacles, and
the vertices are taken as the endpoints of these line segments and
all of the locations on the boundary of the union-of-obstacles where
disc boundaries intersect each other. This specific choice of visibil-
ity graph is often called “the” visibility graph, and indeed it does
contains the shortest continuous s, t-curve avoiding all obstacles.

Figure 3. An example of a tangent arc graph (associated with the
example in Fig. 1).

up TAG is O(|A|3 log |A|) (the log arises from a sorting
operation) and the number of operations in a heap imple-
mentation of Dijkstra’s Algorithm to locate a shortest path is
also O(|A|3 log |A|) (the log arises from the cost of each heap
operation). Hence the total number of operations needed to
find the desired shortest s, t path γB∗ is O(|A|3 log |A|). (See
e.g., [1] for details and analysis of the heap implementation
of Dijkstra’s Algorithm.)

Although we use discs as the potential obstacles in the
definition of our disambiguation problem, this choice is just
a notational and computational convenience. Indeed, any
collection of open, convex sets with smooth boundary can
be used as the set of potential obstacles, and the definition
and use of the tangent arc graph and the Reset policy are
unchanged, but practically there would need to be a way to
efficiently compute tangencies between pairs of such poten-
tial obstacles. Also, even if the boundaries are not smooth
there may be efficiently computable adaptations to modify
TAG and maintain its purpose; for example, in the case of
polygons, their extreme points may take on the role of points
of tangency in the construction of TAG, although the number
of vertices and edges in TAG will go up as the number of
extreme points goes up.

4. COMPUTATIONAL EXPERIMENTS

As mentioned in Section 2, the only policy comparable
with the Reset policy for disambiguation problem instances
(without reset) is the Simulated Risk policy proposed in [10].
We now show empirically that the Reset policy yields results
comparable in quality to the Simulated Risk policy but with
substantially less computational expense.

Minefield detection and localization is an important prob-
lem currently receiving much attention in the scientific and
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Figure 4. Mine countermeasures example, COBRA data. Gray-
scale reflects ρ(A) of discs.

engineering literature; see, for instance, [23] and the refer-
ences cited there. Witherspoon et al. [24] depict the oper-
ational concept for minefield reconnaissance via unmanned
aerial vehicles. Multispectral imagery of an area of inter-
est is processed and a mine detection algorithm identifies
locations of potential mines (see [11]), discs about these
locations comprise A. The marks ρ(A) : A ∈ A, are pos-
terior probabilities that the respective detections represent
actual mines, as rendered by a postprocessing classifica-
tion rule [13, 15, 16, 18, 20]. The following problem instance
(called the COBRA data set) shown in Fig. 4 is referred to
in [10, 13, 19, 21] and has 39 potential mines whose x- and
y-coordinates are listed in Table 1.

The associated marks ρ(A) in Table 1 were generated by
the postprocessing classification rule in [13]. Each detection
A has radius 50, s is the point (0, 800), and t is the point

(0, 100). We assume the disambiguation cost c is the same for
all detections, and we denote the expected length of the (s, t
traversal curve associated with the) Reset policy by Ereset(c),
and the expected length of the (s, t traversal curve associated
with the) Simulated Risk policy by Esimrisk(c).

Although computing the Reset policy and realizing the
associated s, t traversal can be done efficiently (as previously
described), evaluating Ereset(c) and Esimrisk(c) is much more
difficult since there are exponentially many s, t traversals that
are possible to be the one that is realized, and we obtain the
expected length by weighting them all by their respective
probabilities. Thus, in this section, to evaluate Ereset(c) and
Esimrisk(c), we will limit the s, t traversals to a maximum of 4
disambiguations, at which point the traversal must go next to
t . The comparison between Ereset(c) and Esimrisk(c) is shown
in Table 2; for all disambiguation costs c > 1.1 we found that
Ereset(c) and Esimrisk(c) were either exactly equal or differed
by at most about half a percent, and when c < 1.1 they could
differ by 2.6 percent. Thus, the two policies are quite com-
parable here in quality, but the Reset policy is substantially
less computationally intensive since the Simulated Risk pol-
icy requires solving an additional optimization problem to
choose a parameter α that is used in its execution.

4.1. Other Simulations

To further compare the Reset policy and the Simulated Risk
policy, random minefields were simulated similar to the set-
ting above (the so-called COBRA data set) as follows; s was
the point (0, 800), t was the point (0, 100), and 39 potential
mines were randomly generated from the uniform distribu-
tion on the rectangle [−400, 400] × [150, 750]. The radius
of the discs A centered at the potential mines was 50, the
disambiguation cost for each disc was c = 25, and the marks
ρ(A) were each randomly generated from the uniform dis-
tribution on the interval [0, 1]. To make the potential mines
more formidable, we further conditioned (on the distribution

Table 1. Mine countermeasure example (COBRA data): ρ(A) and x, y-coordinates of A’s center, for all A ∈ A.

x-coordinates y-coordinates ρ(A) x-coordinates y-coordinates ρ(A) x-coordinates y-coordinates ρ(A)

321.17 158.27 0.59017 54.23 201.12 0.54178 158.17 516.48 0.43525
215.13 428.31 0.61890 −145.67 703.06 0.61714 −151.01 572.15 0.56076
221.12 557.31 0.64047 −166.36 299.42 0.49173 296.16 163.31 0.11649
163.31 186.14 0.65636 28.31 205.03 0.15269 −79.26 709.99 0.56085
100.40 376.47 0.51487 −105.75 262.20 0.25748 185.31 182.18 0.65266
116.39 110.84 0.44124 −128.60 274.12 0.62001 −61.19 345.12 0.17183
−91.27 664.45 0.16675 −82.87 248.29 0.58308 105.47 509.80 0.85147
−19.93 568.04 0.59937 −310.23 402.92 0.65428 −320.73 532.23 0.33092
−35.11 242.61 0.10330 −169.99 438.90 0.64163 95.39 248.12 0.18868
−78.75 396.14 0.07310 −245.28 372.05 0.52154 −166.45 180.33 0.61082

−134.53 769.27 0.19386 −258.45 641.03 0.65670 111.60 640.10 0.56529
−219.32 313.68 0.57449 −455.72 742.57 0.63987 −157.10 441.96 0.64444
−242.22 321.51 0.65655 −237.86 546.19 0.13793 −269.98 379.65 0.52802
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Table 2. Comparison of the Reset and Simulated Risk policies on a mine countermeasures example (COBRA data).

Cost interval I Ereset(c) for all c ∈ I Esimrisk(c) for all c ∈ I Ereset(c) − Esimrisk(c) for all c ∈ I maxc∈I |Ereset(c)−Esimrisk(c)

Esimrisk(c)
|

(0.0, 1.1) 734.90+3.1033c 717.22+2.1665c 17.68+0.9368c 0.02600
(1.2, 4.1) 717.92+2.1665c 717.92+2.1665c 0 0
(4.2, 15.9) 721.60+1.2698c 720.89+1.2698c 0.71 0.00096
(16.0, 19.6) 721.60+1.2698c 722.92+1.1423c −1.32+0.1275c 0.00158
(19.7, 49.5) 720.89+1.2698c 722.92+1.1423c −2.03+0.1275c 0.00549
(49.6, 50.4) 722.92+1.1423c 722.92+1.1423c 0 0
(50.5, 68.9) 722.92+1.1423c 723.07+1.1393c −0.15+0.0030c 0.00007
(69, 76.0) 723.07+1.1393c 723.07+1.1393c 0 0
(76.1, 116.4) 723.07+1.1393c 725.81+1.1033c −2.74+0.0360c 0.00002
(116.5, 228.1) 725.81+1.1033c 725.81+1.1033c 0 0
(228.2, ∞) 977.54 977.54 0 0

of the mines) that the shortest s, t curve avoiding all regions
A ∈ A should have length at least 1000; this is similar to the
COBRA data where the shortest such s, t traversal had length
977.54.

In 100 such minefield simulations, the sample median,
sample mean, and sample standard deviation of
|Ereset(25)−Esimrisk(25)

Esimrisk(25)
| were, respectively, 0.008, 0.029, and

0.049. So, the quality of the Reset policy was comparable
with the quality of the Simulated Risk policy, yet took much
less computing resources; on a 3.5 Gigahertz computer, the
mean running time to find the s, t traversal curve associated
with the Reset policy was on the order of seconds, whereas the
mean running time to find the s, t traversal curve associated
with the Simulated Risk policy was about 60 times greater!

We did another 100 simulations with the only change
being that c = 35; here the sample median, sample mean,
and sample standard deviation of |Ereset(35)−Esimrisk(35)

Esimrisk(35)
| were,

respectively, 0.004, 0.019, and 0.034. Again, the mean run-
ning time to find the s, t traversal curve associated with the
Reset policy was on the order of seconds, whereas the mean
running time to find the s, t traversal curve associated with
the Simulated Risk policy was about 60 times greater.

4.2. Reset Policy Compared with Optimal Policy
When Plane is Discretized

We would like to compare the performance of the Reset
policy to the performance of the optimal policy but, unfortu-
nately, the optimal policy does not seem to be practically
computable except for the most trivial of disambiguation
problem instances. However, if a disambiguation problem
instance—which in this article is set in the (continuous)
plane—has the plane restricted to a discrete subset of the
plane then, in limited circumstances, the optimal policy in this
restricted discretization may be practical to compute through
brute force.

In this subsection, we return to the COBRA disambigua-
tion problem instance from the beginning of Section 4 and
perform this kind of discretization, and within it we compare

the Reset policy to the optimal policy. The discretization is
done as follows. For each pair of integers i, j , we declare the
point (20i, 20j) in the plane to be a vertex. Then, for each
pair of integers i, j , the four line segments from (20i, 20j) to
(20i + 20, 20j) of length 20, from (20i, 20j) to (20i, 20j +
20) of length 20, from (20i, 20j) to (20i + 20, 20j + 20) of
length 20

√
2, and from (20i + 20, 20j) to (20i, 20j + 20)

of length 20
√

2 are each declared to be edges. (Thus, every
vertex is adjacent to eight edges; see the far-right picture in
Fig. 5.) For this subsection only, we will restrict all traversals
to be walks along these vertices and edges.

For the COBRA disambiguation problem instance from
the beginning of Section 4, and for each of the costs c =
15, 20, 25, 35, 50, 100, 200 (and only allowing a maximum of
two disambiguations), we computed the expected lengths of
the s, t traversals—under the restriction that traversals may
only use the vertices and edges of our discretization—for
the Reset policy, for the Simulated Risk policy, and for the
policy of minimum expected traversal length; their respec-
tive expected lengths are denoted Ereset(c), Esimrisk(c), and
Eoptimal(c), and are shown in Table 3. (Also, see Fig. 5.) The
computation of Eoptimal(c) was done by brute force, using the
BAO∗ Algorithm of [2] to evaluate (or eliminate from con-
sideration via pruning) all possible policies in this discrete
setting, which resulted in the exact identification of the opti-
mal policy. The computer running time to compute Eoptimal

for this table was approximately 40 hours, the running time
to compute Esimrisk was approximately 80 seconds, and the
running time to compute Ereset was about 3 seconds. Thus,
in this example, the Reset policy is just about as effective as
the optimal policy, but the Reset policy provides a substantial
savings in computational expense.

5. OPTIMALITY OF RESET POLICY IN EARLY
LAYER ARRANGEMENTS

The purpose of this section is to consider a special family
of disambiguation problem instances (without reset) called
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Figure 5. Superimposition of the possible s, t traversals in the COBRA data instance (when the plane is restricted to a discretization)
generated by the optimal policy (left figure) and the Reset policy (right figure) when the disambiguation cost is c = 35. Traversal is black,
vertices are red, edges are yellow, disk boundaries are blue, edges intersecting disc boundaries are red. A closeup of the discretization is in
the far-right figure.

early layer arrangements and to prove that the Reset policy
is optimal for these early layer arrangements. Indeed, this
will form another motivation for the use of the Reset policy
as a heuristic in more general instances. (In Section 3, we
motivated the Reset policy by showing that it was optimal in
a related, but fundamentally different setting wherein obsta-
cles’ ambiguities are continually reset. Then in Section 4, we
showed empirically that the Reset policy is effective in our
nonreset setting of interest. However, for general disambigua-
tion problem instances in our setting of interest, the Reset
policy is not actually the optimal policy. But in this section,
we will indeed identify a family of disambiguation problem
instances for which the Reset policy is actually optimal in
our setting of interest.)

Before we define the early layer arrangement, we first
review (next in Section 5.1) a basic stochastic decision prob-
lem which is ostensibly unrelated to the kinds of problems we
have considered thus far in this article, but it will turn out in
Section 5.2 to be quite relevant to early layer arrangements.

5.1. A Basic Stochastic Decision Problem

Consider the following basic stochastic decision problem,
which it will be convenient to call the Single Stage Stochastic

Decision Problem (SSSDP). An agent needs to accomplish
a particular task and there is a set � of actions which the
agent can perform sequentially in an effort to accomplish the
task. For each action a ∈ �, if a is performed then there is
probability ρa ∈ [0, 1) that a fails to accomplish the task and
probability 1 − ρa that a successfully accomplishes the task
(independently for the different actions), there is a cost ca ∈ R

charged for performing a, and if a successfully accomplishes
the task then there is a cost �a ∈ R. At least one action a ∈ �

has ρa = 0, so that the task can definitely be accomplished.
A policy is a bijection π : � → {1, 2, . . . , |�|} dictating
an order for the actions to be attempted; action π(1) will be
attempted first, action π(2) will be attempted next, and so
on until the task is successfully accomplished. The agent’s
objective in SSSDP is to choose the policyπ which minimizes
the expected cost f (π). Clearly,

f (π) =
|�|∑
i=1


∏

j<i

ρπ(j)


 (cπ(i) + (1 − ρπ(i))�π(i)). (1)

Now, if π and π ′ are bijections � → {1, 2, . . . , |�|} which
are the same except that, for some index k, π ′(k +1) = π(k)

Table 3. Comparison of the Reset, Simulated Risk, and Optimal policies when plane is restricted to a discretization, on a mine
countermeasures example (COBRA data).

Cost c Eoptimal(c) Esimrisk(c) Ereset(c) |Esimrisk(c)−Eoptimal(c)

Eoptimal(c)
| |Ereset(c)−Eoptimal(c)

Eoptimal(c)
|

15 819.03 819.03 819.03 0 0
20 825.53 826.18 829.03 0.00079 0.0042
25 828.42 831.18 839.03 0.0033 0.013
35 841.18 841.18 847.71 0 0.0078
50 856.18 856.18 864.26 0 0.0094
100 906.18 906.18 919.43 0 0.015
200 1006.18 1006.18 1006.18 0 0
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Figure 6. An early layer instance; gray discs A1, A2, A3, A4 are ambiguous and black discs are definitely obstacles. On the right (in red)
are the shortest s, t paths avoiding all discs, except one (or zero) of the ambiguous discs. Distances from s to ambiguous discs are considered
negligible here.

and π ′(k) = π(k + 1), then elementary simplification yields
that

f (π ′) − f (π) =

∏

j<k

ρπ(j)


 [(

�π(k+1) + cπ(k+1)

1 − ρπ(k+1)

)

−
(

�π(k) + cπ(k)

1 − ρπ(k)

)]
(1 − ρπ(k))(1 − ρπ(k+1)).

It then easily follows that the optimal policy for SSSDP—let
us henceforth denote this policy with the letter �—satisfies,
for all k = 1, 2, . . ., that ��(k) + c�(k)

1−ρ�(k)
≤ ��(k+1) + c�(k+1)

1−ρ�(k+1)
;

this can be seen by noting that f is monotonically nonin-
creasing during a bubble sort starting with any ordering of �

when the sort is performed on the key �· + c·
1−ρ· to order � in

nondecreasing order of the key.
This basic stochastic decision problem and its straightfor-

ward solution will be of use next when we define and analyze
the early layer arrangement.

5.2. Early Layer Arrangements

Let (s, t , A, ρ, c) be a disambiguation problem instance.
For any B ⊆ A, recall the definition of γB in Section 3;
namely, γB denotes the shortest s, t path in R

2\[∪A∈BcA].
Define �′ to be the set of A ∈ A such that γ{A} intersects
A and ρ(A) < 1. (For example, in Fig. 6, �′ is the set of
all four ambiguous discs {A1, A2, A3, A4}.) An early layer
arrangement is a disambiguation problem instance in which
two things happen: First of all, for each A ∈ �′, the arclength
of the segment-of-γ{A}-from-s-until-γ{A}-intersects-A is neg-
ligible. Also, for each B ⊆ {A ∈ A : ρ(A) < 1}, it holds
that γB = γ{A′} for some A′ ∈ �′, or else γB = γ∅. See
Fig. 6 for an example of an early layer arrangement; in that

example, for all B ⊆ {A1, A2, A3, A4} it indeed holds that γB
is γ∅ or γ{Ai } for an i = 1, 2, 3, or 4 and, for the convenience
of a visually clean and uncluttered example, we consider the
distance from s to A1, A2, A3, A4 to be negligible relative to
the distance from s to t .

Let us consider what the Reset policy would dictate for an
early layer arrangement. First, it will be notationally conve-
nient to define � to be �′ with one additional member 	,
and define γ{	} ≡ γ∅, c(	) ≡ 0, and ρ(	) ≡ 0. (This
can be thought of, in effect, as a completely benign dec-
laration that p∅ traverses a virtual disc 	 with cost of dis-
ambiguation 0 and probability 0 of being nontraversable.)
Then, without loss of generality, suppose the members of �

are indexed A1, A2, . . . , A|�| such that �(γ{A1}) + c(A1)

1−ρ(A1)
≤

�(γ{A2}) + c(A2)

1−ρ(A2)
≤ · · · ≤ �(γ{A|�|}) + c(A|�|)

1−ρ(A|�|) . Now, (by
its definition in Section 3) the Reset policy dictates that the
agent disambiguates A1 and, if A1 is traversable, the agent
traverses γ{A1}; if A1 is not traversable then agent would dis-
ambiguate A2 and, if A2 is traversable, the agent traverses
γ{A2}; if A2 is not traversable then the agent would disam-
biguate A3 and…etc., until t is reached. (Because the distance
from s to these points of disambiguation are assumed neg-
ligible, it is convenient and has negligible cost to have the
agent return to s after every unsuccessful disambiguation.)

Our main result of this section is the following.

THEOREM 1: The Reset policy is optimal for all early
layer arrangements.

The optimality of the Reset policy for early layer arrange-
ments will follow from viewing these disambiguation prob-
lem instances as being within the paradigm of SSSDP in
Section 5.1, and by observing that the Reset policy here cor-
responds precisely to the optimal policy � for SSSDP in

Naval Research Logistics DOI 10.1002/nav



Aksakalli et al.: Reset Disambiguation Policy 397

Figure 7. An example of a disambiguation problem instance
where a balk is helpful.

Section 5.1. Indeed, � that we just defined in this section may
be viewed as a set of actions which the agent may choose
from; specifically, each A ∈ � may be considered as the
action of disambiguating A, then traversing γ{A} from s to t

if A is traversable (and if A = 	 then traversing γ∅ from s to
t). The associated cost of performing action A ∈ � is c(A),
the cost if the action A is successful is �(γ{A}), the probability
that action A fails to accomplish the task of providing an s, t
traversal is ρ(A). Thus the Reset policy, in ranking actions
and successively performing them in the order of �· + c·

1−ρ· is
precisely the optimal policy � of Section 5.1.

To complete this proof of the optimality of the Reset policy
for early layer arrangements, we need to be convinced that
there is no loss of generality in restricting the agent’s actions
in an early layer arrangement to be the actions associated in
the previous paragraph with �. Indeed, the definition of an
early layer arrangement is designed to render this nonloss of
generality, except for one single worry, which is described
next in Section 5.3, and addressed after that in Section 5.4.

5.3. Balking

Sometimes in a disambiguation problem instance, it may
be worthwhile to do a disambiguation and, even if the disam-
biguated disc is found to be traversable, it may nonetheless
be worthwhile not to immediately enter the disc. We illustrate
next with an example and then discuss the implications for
the optimality of the Reset policy.

Consider a disambiguation problem instance for which
many, many definite obstacles effectively block all movement
of the agent, except for segment s, b, segment b, c, segment
c, d, segment b, t , segment c, t , and segment d , t illustrated
in Fig. 7, which have respective arclengths 2, 2, 2, 100, 1000,
and 2. There are just two ambiguous discs B and D, and

their boundaries intersect b and d, respectively, in the man-
ner illustrated in Fig. 7, and suppose ρ(B) = ρ(D) = 1

2 and
c(B) = c(D) = 0.1.

Clearly, the agent starting at s should traverse segment s, b,
then segment b, c, then segment c, d, and then should disam-
biguate D in the hopes of then being able to traverse segment
d, t and complete the mission at a relatively low cost. How-
ever, it is easy to see that it would be advantageous for the
agent to disambiguate B while at b—while on the way to d to
disambiguate D, as described. Even though the agent would
not immediately traverse segment b, t even if it turns out to
be traversable (since a much better opportunity should yet be
explored at d), nonetheless the information of whether seg-
ment b, t is traversable would be useful to obtain right away
at the low cost of 0.1 on the chance that D is not traversable
and B is not traversable, in which case the agent discover-
ing at d that segment d, t is not traversable would be saved a
significant backtracking cost to get to b to attempt traversing
segment b, t (when it would not help anyway, and segment
c, t is needed to complete the mission). A balk is such a dis-
ambiguation of a disc wherein even if the disc is traversable
the agent does not traverse into the disc immediately.

Note that the Reset policy will never balk. Indeed, an agent
executing the Reset policy is just following a shortest path,
which is still a shortest path if a potential obstacle A in its
way is revealed to not be an obstacle (since this knowledge
uniformly reduces the length of all paths through A in the
amount of c(A)

1−ρ(A)
). The fact that the Reset policy will never

balk is a potential weakness in the policy, since the Reset
policy could never be optimal in situations like that of Fig. 7
where an optimal policy would perform a balk.

Our primary purpose in this subsection, Section 5.3, is to
ask the question of whether an optimal policy for an early
layer arrangement is balk free. In other words, is it ever help-
ful in an early layer arrangement to disambiguate a detection
and then not immediately follow through to t? In the next
subsection, Section 5.4, we prove that the answer is no, balks
will never be helpful in an early layer arrangement. Thus
there is no loss of generality in limiting the agent’s actions
in an early layer arrangement to be �, wherein A ∈ � repre-
sents the action of disambiguating disc A and, if traversable,
traversing p{A} to t . Note that establishing this fact will com-
plete the proof that the Reset policy is optimal for early layer
arrangements.

5.4. Balks will Never be Helpful in an Early
Layer Arrangement

To show that balks will never be helpful in early layer
arrangements, we next adjust SSSDP of Section 5.1, and call
the adjusted problem GSSSDP (generalized SSSDP). It dif-
fers from SSSDP only in that we subdivide each of the actions
a ∈ � into two actions, â and ã (we will henceforth refer to
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a as a superaction); the action â just finds out at a cost of ca

whether or not a would successfully accomplish the agent’s
task and, as before, the probability that a would accom-
plish the task is ρa . Only after action â is performed—and
assuming that a would successfully accomplish the agent’s
task—may the agent perform the separate action ã, which
executes a at a cost of �a and accomplishes the agent’s task.
Even if the agent performs â and learns that a could suc-
cessfully accomplish the task, nonetheless the agent is not
obligated to perform ã, and may perform ã immediately, later,
or never, as the agent wills.

We will call a policy simple if it has the property that,
for all a ∈ �, if â is performed and it is discovered that a

could successfully accomplish the task then the agent is to
next perform ã and indeed accomplish the task. Restricting
GSSSDP to simple policies is exactly SSSDP, thus we may
view policy � as (also being) a GSSSDP policy which is at
least as good as all other simple policies. In fact, we next
show in Proposition 2 that, for any policy π for a GSSSDP
instance, there exists a simple policy which is at least as
good as π and, transitively, the policy � is at least as good
as π .

PROPOSITION 2: The policy � is optimal for GSSSDP.

PROOF: Induction on |�|; if |�| = 1 then the result is
trivial, so we next suppose the result is true for all GSSSDP
instances where |�| is an arbitrarily chosen positive integer,
and consider any particular GSSSDP instance with |�| one
greater. Let π be any policy for this instance.

Without loss of generality suppose the members of � are
indexed a1, a2, . . . , a|�| such that �a1 + ca1

1−ρa1
≤ �a2 + ca2

1−ρa2
≤

· · · ≤ �a|�| + ca|�|
1−ρa|�|

. There exists a member of �, say am, such

that ρam
= 0 (as mentioned before, otherwise the expected

cost is infinite). Say that the first action which π dictates that
the agent perform is the action âr ; without loss of generality
ρar

= 0 (in particular, ar = am) because otherwise no use-
ful information would be provided by âr (we would already
know for sure ar could accomplish the agent’s task) and the
only meaningful use of performing âr would be to clear the
way to perform ãr next, in which case π is a simple policy,
no better than �, and we would be done. Also without loss of
generality, �ar

< �am
+ cam

1−0 = �am
+ cam

1−ρam
, or else ar could

have been eliminated from � at the outset.
After âr is performed, either it is revealed that ar cannot

accomplish the agent’s task, or it is revealed that ar could
accomplish the agent’s task. In the former case, ar may be
discarded from �, and this GSSSDP incidence is reduced
to an instance where the induction hypothesis applies, and
(without loss of generality, by appealing to Bellman’s Princi-
ple of Optimality) π is henceforth the policy �. Let us denote
by X the expected cost henceforth under �. In the latter case

where it is revealed that ar can accomplish the agent’s task, ar

would stay in � but its disambiguation cost and its probability
of nontraversability would both henceforth be 0. Thus we can
discardam from� (both would definitely accomplish the task,
but ar at a lower cost) and this GSSSDP incidence is reduced
to an instance where the induction hypothesis applies, and π

is henceforth the policy �. Let us denote by Y the expected
cost henceforth under �. Thus the expected cost of π overall
is car

+ ρar
· X + (1 − ρar

) · Y .
Because X and Y are expected costs under policy �, they

are computed in the same manner as in Eq. (1) of Section 5.1,
which yields that X = ∑n

i=1,i =r (
∏

j :j<i,j =r ρaj
)(cai

+
(1 − ρai

)�ai
) and Y = ∑v

i=1(
∏

j :j<i ρaj
)(cai

+ (1 −
ρai

)�ai
) + (

∏v
j=1 ρaj

)(0 + (1 − 0)�ar
), where v is the

maximum index such that �av
+ cav

1−ρav
< �ar

+ 0
1−0 =

�ar
. Next, it is useful to break X into two separate sum-

mations X = ∑v
i=1(

∏
j :j<i ρaj

)(cai
+ (1 − ρai

)�ai
) +∑n

i=v+1,i =r (
∏

j :j<i,j =r ρaj
)(cai

+ (1 − ρai
)�ai

), so that the
expected cost of policy π can be simplified car

+ ρar
· X +

(1 − ρar
) · Y =


 v∑

i=1


 ∏

j :j<i

ρaj


 (cai

+ (1 − ρai
)�ai

)




+

car

+

 v∏

j=1

ρaj


 (1 − ρar

)�ar




+

 n∑

i=v+1,i =r


 ∏

j :j<i,j =r

ρaj


 ρar

(cai
+ (1 − ρai

)�ai
)




≥

 v∑

i=1


 ∏

j :j<i

ρaj


 (cai

+ (1 − ρai
)�ai

)




+




 v∏

j=1

ρaj


 (car

+ (1 − ρar
)�ar

)




+

 n∑

i=v+1,i =r


 ∏

j :j<i,j =r

ρaj


 ρar

(cai
+ (1 − ρai

)�ai
)




which is the expected cost (at the outset) of the simple pol-
icy �-except-for-moving-ar -to-between-av-and-av+1, which
is at least the expected cost (at the outset) of the policy �.
Since policy π was arbitrary, Proposition 2 then follows by
induction. �

With Proposition 2 proven, we have that balks will never be
of use in an early layer arrangement, and we have established
Theorem 1.
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6. CONCLUSION AND FURTHER WORK

The Reset policy introduced in this article for our disam-
biguation problem is motivated by the fact that it is an optimal
policy in a related setting, and it is an optimal policy for
early layer arrangements, a particular class of instances of
our disambiguation problem. The fact that the Reset policy
is balk-free exposes a weakness in this policy; it can not be
optimal for an instance where a balk is required. Nonetheless,
we believe that articulating this weakness will pave the way
for increasingly sophisticated second generation policies to
follow the Reset policy. In general, the Reset policy is effi-
ciently computable and seems to be an effective heuristic for
a difficult problem.
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