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Abstract
There is a growing trend for researchers to use in vitro 3D models in cancer studies, as they

can better recapitulate the complex in vivo situation. And the fact that the progression and

development of tumor are closely associated to its stromal microenvironment has been

increasingly recognized. The establishment of such tumor supportive niche is vital in under-

standing tumor progress and metastasis. The mesenchymal origin of many cells residing in

the cancer niche provides the rationale to include MSCs in mimicking the niche in neuro-

blastoma. Here we co-encapsulate and co-culture NBCs and MSCs in a 3D in vitromodel

and investigate the morphology, growth kinetics and matrix remodeling in the reconstituted

stromal environment. Results showed that the incorporation of MSCs in the model lead to

accelerated growth of cancer cells as well as recapitulation of at least partially the tumor

microenvironment in vivo. The current study therefore demonstrates the feasibility for the

collagen microsphere to act as a 3D in vitro cancer model for various topics in cancer

studies.

Introduction
Using 2D monolayer cultures of cancer cell lines as a simple model to study cancer research
could be traced back to 1950s [1, 2]. However, similar to healthy tissues, tumor tissues are 3D
entities with cells, extracellular matrix and other microenvironment. To date, it is generally
agreed that the monolayer cell line culture poorly represents the in vivo phenomenon[3],
where cell-cell and cell-matrix interactions exist, therefore limiting its ability to predict cancer
cell response in reality [4].

In recent years, there is a growing trend for researchers to use in vitro 3D models in cancer
studies [3, 5, 6] on topics such as tumor microenvironment [7], angiogenesis [8] and metastasis
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[9]. These models include spheroids [10] and microspheres [11, 12]. They support co-culture
of multiple cell types, allows cell-cell and cell-matrix interactions, and thus better preserve the
in vivo characteristics of tumor tissue. Some models are able to establish the structural diversity
of tumor tissues with zones of proliferating, quiescent or necrotic cells [4]. The ability of these
3D models to include multiple niche factors enables partial recapitulation and close resem-
blance of the in vivomicroenvironment of cancer cells [4, 13, 14], contributing to tumor disease
modeling and personalized chemotherapy screening in the long run.

Tumors are not homogenous organs but very complex tissues involving various cell types
including but not limited to cancer cells, cancer progenitor cells, endothelial cells, inflamma-
tory cells and cancer-associated fibroblasts [3, 15–17]. Apart from the proliferating neoplastic
parenchymal cells (cancer cells), the supportive stroma made up of cells of mesenchymal origin
could account for half of the stromal mass [3]. The progression of cancer does not solely
depend on cancer cells but also on the stromal cells residing in the tumor microenvironment
[18, 19]. It has been shown that multipotent mesenchymal stem cells (MSC) reside in adult tis-
sues [20, 21]. Even though whether these cells originate from bone marrow remains controver-
sial but the close resemblance of MSC with pericytes along the blood vessels wall providing
another appealing explanation [22, 23]. Growing evidences show that cancer associated stroma
particularly fibroblastic cells accelerated tumor growth [3] and promoted a permissive micro-
environment for cancer metastasis [24, 25]. Some findings indicate that mesenchymal stem
cells (MSCs) would transit from bone marrow to tumor during tumor development [26–29].
Nevertheless, the role of MSC in tumorigenesis remains controversial [26, 30–33]. One well
known notion is that, the heterotypic interaction between multiple cell types is necessary for
accurate resemblance of in vivo responses. In order to achieve this goal, 3D models enabling
interactions among multiple cell types are attractive in studying such complicated interactions.

We have previously established a collagen microencapsulation platform, which entraps liv-
ing cells within a reconstituted nanofibrous collagen meshwork [34]. The collagen meshwork
is biocompatible, providing a physiologically relevant microenvironment permissive to cell
attachment, proliferation, migration and differentiation in a wide range of cells including
MSCs [34–37], HEK293 cells [38], embryonic stem cells [39], chondrocytes [40], nucleus pul-
posus cells [41] and osteoblasts [42]. One major advantage of the collagen microencapsulation
model is the fact that the template collagen meshwork supports matrix remodeling, which
refers to simultaneous degradation and deposition of extracellular matrix, when culturing
mature cells and differentiating stem cells in 3D. This strongly justifies its usefulness in acting
as a model recapitulating the in vivo cellular microenvironment during structural and func-
tional tissue formation. A second major advantage of the collagen microencapsulation is its
controllable and miniaturized (hundreds of microns in diameter) size [34] that a micro-tissue
consists of several hundred of cells enables the capability on economical, personalized and high
throughput screening.

Neuroblastoma (NB) is a pediatric cancer accounting for 6% of all malignancies found in
children [43]. NB microenvironment consists of extracellular matrix, stromal fibroblasts, vas-
cular cells and immune cells [3]. Specifically, stromal fibroblasts have been shown to enhance
tumor growth, angiogenesis and metastasis [44, 45]. Reports also show that co-culture of the
neuroblastoma cells (NBCs) with other cell types would lead to significantly different behav-
iors. For example, non-contact co-culture of NBCs with hepatocytes lead to less apoptosis
activity and higher VEGF expression [46, 47]. In another example, co-culture of NBCs with
HUVEC reduced the detectability of the cancer cells to neutrophils [48]. Moreover, cross-talks
between NBCs and Schwann cells have been shown to stimulate NB differentiation, reducing
the aggressiveness of the tumor [49, 50] shedding lights on new therapeutic strategies. On the
other hand, a few reports have shown that the presence of MSC would increase the invasiveness

Feasibility Study on 3D Tumor Model for Neuroblastoma

PLOSONE | DOI:10.1371/journal.pone.0144139 December 14, 2015 2 / 22



of neuroblastoma [27, 51, 52]. Though the role of MSC on neuroblastoma is not completely
known, the presence of MSC does lead to behavioral change in NBCs. In the meantime,
although all these studies have shown that NBCs actively interact with other cell types, these
experiments are all conducted in 2D models. A 3D model permissive to NBCs growth and pro-
liferation, as well as interactions with stromal cells has not yet been reported. In this study, we
hypothesize that the co-microencapsulation of NBCs with MSCs in collagen microspheres will
recapitulate, at least partially, the tumor microenvironment in vivo. Specifically, we aim to
investigate the morphology, growth kinetics and matrix remodeling in the co-microencapsula-
tion environment.

Neuroblastoma (NB) is a pediatric cancer accounting for 6% of all malignancies found in
children [43]. NB microenvironment consists of extracellular matrix, stromal fibroblasts, vas-
cular cells and immune cells[3]. Specifically, stromal fibroblasts have been shown to enhance
tumor growth, angiogenesis and metastasis [44, 45]. Reports also show that co-culture of the
neuroblastoma cells (NBCs) with other cell types would lead to significantly different behav-
iors. For example, non-contact co-culture of NBCs with hepatocytes lead to less apoptosis
activity and higher VEGF expression [46, 47]. In another example, co-culture of NBCs with
HUVEC reduced the detectability of the cancer cells to neutrophils [48]. Moreover, cross-talks
between NBCs and Schwann cells have been shown to stimulate NB differentiation, reducing
the aggressiveness of the tumor [49, 50] shedding lights on new therapeutic strategies. On the
other hand, a few reports have shown that the presence of MSC would increase the invasiveness
of neuroblastoma [27, 51, 52]. Though the role of MSC on neuroblastoma is not completely
known, the presence of MSC does lead to behavioral change in NBCs. In the meantime,
although all these studies have shown that NBCs actively interact with other cell types, these
experiments are all conducted in 2D models. A 3D model permissive to NBCs growth and pro-
liferation, as well as interactions with stromal cells has not yet been reported. In this study, we
hypothesize that the co-microencapsulation of NBCs with MSCs in collagen microspheres will
recapitulate, at least partially, the tumor microenvironment in vivo. Specifically, we aim to
investigate the morphology, growth kinetics and matrix remodeling in the co-microencapsula-
tion environment.

Methods

Neuroblastoma cell culture
Neuroblastoma cell line was a kind gift from Dr. NKV Cheung from Memorial Sloan Kettering
Cancer Center, USA. Cells were cultured at 37°C in a 5% CO2 incubator in Dulbecco’s modi-
fied Eagle medium (DMEM) with high glucose (Gibco), with supplements of 10% Fetal Bovine
Serum (Gibco), 1% penicillin streptomycin (Gibco), 1% glutar-max (Gibco).

Mesenchymal stem / stromal cell (MSCs) culture
Human MSCs from bone marrow [53] were kindly provided by Prof. GCF Chan, Department
of Paediatrics and Adolescent Medicine, The University of Hong Kong and cultured as mono-
layers as previously described [53]. The current protocol has been approved by the Combined
Clinical Ethics Committee of the University of Hong Kong and Hong Kong West Cluster Hos-
pitals of Hospital Authority. In brief, MSCs were cultured at 37°C in a 5% CO2 incubator in
DMEM with low glucose (Gibco), with supplement of 10% Fetal Bovine Serum (Gibco), 1%
penicillin streptomycin (Gibco) and 1% glutar-max (Gibco). The growth medium was replaced
every 3–4 days. At around 80% confluence, hMSCs were isolated by trypsinization with 0.05%
trypsin-EDTA (1X) (Gibco) briefly before re-suspending in full medium for subsequent experi-
ments. Cells at P6 were used for subsequent experiments.
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Collagen microencapsulation
Cells were microencapsulated as previously reported [34]. In brief, hMSC and NBCs were cul-
tured to sub-confluence and were then detached by treating NBCs and MSCs with 0.25% and
0.05% trypsin- EDTA(1X) (Gibco) for 5 minutes. NBCs and MSCs were mixed at different pre-
determined ratios (NBCs: 100, 80, 50, 20 and 0%) before microencapsulation. Rat tail type I
collagen (Becton Dickenson Biosciences, Bedford, MA) was neutralized by 0.1N NaOH and
diluted into different final concentrations (0.5, 1 and 2mg/ml). Cell mixtures were suspended
in neutralized collagen solution to make up cell–matrix mixtures with different final cell densi-
ties (2.5x10e5, 5x10e5 cells/ml and 1x10e6 cells/ml, equivalent to 1250, 2500 and 5000 cells/5μl
droplet, respectively). Liquid droplets of cell-matrix mixtures were dispensed onto a non-adhe-
sive surface, which is UV-irradiated parafilm in a 90-mm diameter Petri dish (Sterilin, London,
United Kingdom), and then incubated at 37°C with 5% CO2 for 45 minutes to induce gelation.
Gelated collagen microspheres containing both NBCs and MSCs at predetermined ratios were
gently flushed with a co-culture medium into a Petri dish for free-floating suspension cultures
for different duration (7, 14 and 21 days). A total of 100 microspheres were cultured in each
petri dish. The co-culture medium was mixed by NBC and MSC culture medium according to
cell encapsulation ratio, replenished every 2–3 days.

Measurement of the dimension of the cell-matrix microspheres
The temporal morphological change of the NBC-MSC-collagen microspheres was recorded
under a phase contrast microscope up to 21 days. The diameters of approximately 10% of the
microsphere populations were randomly selected and measured using an eye-piece
micrometer.

Growth kinetics of cells
Every 200 microspheres were encapsulated with 2.5e5 cells with different NBC: MSC ratios at
day 0, and they were cultured for 7, 14, and 21 days. At each time point, 200 microspheres
from each group were digested enzymatically by collagenase from Clostridium histolyticum
(Sigma) at 200 units/ml for 45–60 min. Single cells suspensions were obtained by treating the
digested aggregates with 0.25% trypsin-EDTA(1X) (Gibco) before numeration by trypan blue
assay. The growth of cells in microspheres could then be calculated.

Flow cytometry analysis on the proportion of NBCs
Single cell suspensions (1x10e6 cells) obtained from collagenase-trypsin digestion of the
NBC-MSC-collagen microspheres were re-suspended in 500 μl of co-culture medium, incu-
bated at room temperature for an hour to allow the recovery of cell surface protein expression,
and were then fixed by 0.01% PFA for 15 minutes. Cells were then blocked by 2% Goat serum
(Vector Laboratories) in PBS for 30 minutes before indirect staining of antibodies. To each
sample, 1μl of mouse monoclonal antibody against Neuroblastoma (NB84a, abcam) in 2%
Goat serum (dilution 1:100) was added. Isotype controls (normal mouse IgG antibody, Milli-
pore) were performed at each time point. After staining at room temperature for 30 minutes,
1ml PBS was added to each tube to wash off the excess antibodies. After centrifugation at 2000
rpm for 5 min, the supernatant was removed and 0.5μl of Alexa Fluor 647 goat Anti-mouse
secondary antibody (Invitrogen) in 2% goat serum (dilution 1:200) was added to each sample.
After staining in dark at room temperature for 30 minutes, 1ml PBS was added to each tube to
wash off the excess antibodies. After centrifugation at 2000 rpm for 5 min, the supernatant was
removed and Cell pellets were resuspended and preserved in 500μl 1% PFA at a cell density not
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less than 4x10e5 cells/ml for flow cytometry analysis in FACSCanto II Flow Cytometer (BD
Biosciences, Bedford, MA). 10,000 events of each sample were analyzed. Results were analyzed
with Flowing Software 2.5.1.

Histology and immunohistochemistry of NBC-MSC-collagen
microspheres
NBC-MSC-collagen microspheres were fixed in 4% PFA at room temperature in dark for 30
minutes and were dehydrated using a serial gradient ethanol treatment before processing for
paraffin sections of 5μm thickness. Routine hematoxylin and eosin (Sigma) staining was con-
ducted to reveal the cell morphology in the microspheres. To evaluate the presence of NBCs, a
primary antibody (ab49501, abcam) was used. Anti-mouse secondary antibody (BA-1000, Vec-
tor laboratories) was used in immunohistochemistry, followed by ABC staining, diaminobenzi-
dine labelling, and counterstaining using hematoxylin. To evaluate the presence of type I
collagen, a primary antibody (C2456, Sigma), was used. Anti-mouse secondary antibody (BA-
1000, Vector laboratories) was used in immunohistochemistry, followed by ABC staining, dia-
minobenzidine labelling, and counterstaining using hematoxylin. To evaluate the presence of
Matrix-metalloproteinase 9, a primary antibody (ab38898, abcam) was used. Anti-rabbit sec-
ondary antibody (BA-2000, Vector laboratories) was used in immunohistochemistry, followed
by ABC staining, diaminobenzidine labelling, and counterstaining using hematoxylin.

Data analysis and statistics
Quantitative results including microsphere dimension, cell numbers and NBC proportions
were presented as mean ± standard deviations if not otherwise stated. Two-way ANOVA with
appropriate post hoc tests were used to reveal statistically significant differences among differ-
ent groups. The significance level was set at 0.05 and SPSS 19.0 (IBM, NY, USA) was used to
execute to statistical analysis.

Results

Morphological characterization of NBC-MSC-collagen microspheres
Fig 1A1–1E6 shows the gross appearance of NBC-MSC-collagen microspheres in different
groups. The spherical appearances were similar in the beginning of the culture but became
diverse at later stage, as microspheres in groups with higher initial NBC proportion gradually
lost their spherical shape and became irregular in conformation, suggesting overgrowth. Dur-
ing culture, tiny micro-masses in suspension were observed in NBC 100%, 80% and 50%
groups after the first week. While in the NBC 20% group, observable masses appeared after the
second week. The NBC 80% group had relatively larger amount of micro-masses than in other
groups. There was no overgrowth micro-masses in the NBC 0% group (100% MSC group). Fig
1F shows the change in the dimension of the microspheres during culture. There was signifi-
cant contraction of the microspheres in the first week for all groups, followed by rises in diame-
ter in all cancer cell containing groups, suggesting the tumorigenic growth. In the meantime,
fusion and aggregation of microspheres are observed. The graph also shows that the extent of
contraction and enlargement is dependent on the NBCs content. All groups except the NBC
100% one dramatically decreased in size in the first day after encapsulation. Microspheres con-
taining healthy MSCs only (NBC 0%) continuously drop in size over time. The NBC 20%
group showed a constant dimension after the initial drop in size while groups with 50% or
more NBCs started to increase in size after 7 days, suggesting rapid growth of the tumor cells.
Two-way ANOVA showed that both the time factor (p<0.001) and the NBC: MSC ratio
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Fig 1. Gross appearance and dimension of neuroblastoma cell-mesenchymal stromal cell (NBC-MSC) co-encapsulated collagenmicrospheres.
Microspheres with different percentage of NBCs and hence NBC:MSC ratios: (A): 0% NBC (100%MSC); (B): 20% NBC (80%MSC); (C): 50%NBC (50%
MSC); (D): 80% NBC (20%MSC) and (E): 100% NBC (0%MSC) were cultured for different period of time: 0 (A1,B1,C1,D1,E1); 1 (A2,B2,C2,D2,E2); 3 (A3,
B3,C3,D3,E3), 7 (A4,B4,C4,D4,E4), 14 (A5,B5,C5,D5,E5) and 21 (A6,B6,C6,D6,E6) days (scale bars: 100 μm: A2,A3,A4,A5,A6,B2,B3,B4,B5,B6,C2,C3,C4,
C5,D2,D3,D4; 500 μm: A1,D5,E3,E4,E6; 1000 μm: B1,C1,C6,D1,D6,E1,E2,E5); (F): Line chart showing the temporal change in the dimension (mean±1SD)
of the NBC-MSC-collagen microsphere populations during cultures.

doi:10.1371/journal.pone.0144139.g001
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(p<0.001) significantly affected the dimension of the microspheres. Bonferroni post hoc tests
showed that apart from the day1-day14 (p = 0.518) and the day3-day7 (p = 1.000) pairs, all
other comparisons were statistically significantly different from others (p<0.001) while all
NBC: MSC ratio groups were statistically significantly different from others (p<0.001).

Morphological changes of NBC-MSC-collagen microspheres at different
NBC: MSC ratios, time points, initial cell density and collagen
concentration
Fig 2 shows the H&E staining of the NBC-MSC-collagen microspheres with different encapsu-
lation ratios and at different time points during culture. The 0% NBC (pure MSC) group
showed increasingly compact structures with randomly distributed MSCs for up to 2 weeks
(Fig 2A1 and 2A2) while most of the microspheres showed complete attrition at 21 days of cul-
ture. Groups with increasing NBC: MSC ratios (20, 50 and 80%) (Fig 2B1–2D3) showed a simi-
lar trend that they segregated into two different layers of tissues. In brief, at 7 days of culture, a
layer of cells packed at the surroundings of collagen microspheres in which cells with lower
density were present (Fig 2B1, 2C1 and 2D1). In the 20% NBC group, there seems to be a
higher ratio of cells with elongated morphology at 7 days (Fig 3B1) while relatively rounded
cells with high cell density and low matrix density were dominant at later time points (Fig 2B2
and 2B3). Moreover, the micro-tissue masses were still largely spherical in shape. In the 50%
NBC group, the shapes of the micro-masses were irregular and high density cell populations
seems to outgrow the collagen microsphere and more cells invaded into the collagen micro-
spheres at increasing time (Fig 2C1–2C3). In the 80% NBC group, a thin layer of high density
cells was encapsulating the microspheres, which contains many cell clusters and “voids” at 7
days of culture (Fig 2D1). At 14 and 21 days, the structures were highly irregular in shape and
highly porous with cells packed at high density throughout the structures while the collagen
microspheres seems to be disintegrated (Fig 2D2 and 2D3). A magnified view of Fig 2D3
showed clearly the high density cell layer and the less dense region (Fig 2F). In the 100% NBC
group, the structure was still spherical but highly compacted at 7 days (Fig 2E1) while the colla-
gen microspheres were completely torn apart in later time points with highly porous and irreg-
ular structures with low cell density (Fig 2E2 and 2E3).

Fig 3 shows the H&E staining of the NBC-MSC-collagen microspheres at different encapsu-
lation cell densities when NBC was fixed at 80%. At 1250 cells per microsphere, cells seems to
be encapsulated within the collagen microsphere while a thin layer of cells covered the periph-
ery of the microsphere at early time point (7 days) (Fig 3A1) but at later time points, irregular
cellular outgrowths were found leaving only very few cells within the microsphere (Fig 3A2
and 3A3). At higher cell densities (2500 and 5000 cells per microsphere), obvious voids were
found in the collagen microspheres with densely packed cells in irregular shaped outgrowths
surrounding the microsphere at 7 days (Fig 3B1 and 3C1). At later time points, the outgrowths
became larger and more porous (Fig 3B2, 3B3, 3C2 and 3C3).

Fig 4 shows the H&E staining of the NBC-MSC-collagen microspheres with different colla-
gen concentrations. A higher collagen concentration seems to encapsulate the cells better
within the microsphere while a thin layer of cells were growing at the periphery of the micro-
sphere (Fig 4B1). At 14 days, irregular and massive outgrowth was found in the lower collagen
concentration group (Fig 4A2) but dense colonies of cells and voids were found within the
microspheres in the higher collagen concentration (Fig 4B2).
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Growth kinetics in NBC-MSC-collagen microspheres
Fig 5A shows the line graph on the cell number in NBC-MSC-collagen microspheres with dif-
ferent NBC: MSC ratios at different time points during co-culture. Microspheres with 0%
NBC, i.e. 100%MSCs showed a continuous drop in the cell number. On the other hand, all
groups containing cancer cells showed a positive growth over time. The 20% group showed
gradual increase in the first 2 weeks and all in a sudden the number dramatically increased

Fig 2. H&E staining showing the general morphology of NBC-MSC-collagenmicrospheres with different NBC proportions and at different time
points. (A): 0% NBC (100%MSC); (B): 20% NBC (80%MSC); (C): 50% NBC (50%MSC); (D): 80% NBC (30%MSC); (E): 100%NBC (0%MSC). A1, B1,
C1, D1, E1: day 7; A2, B2, C3, D2, E2: day 14; B3, C3, D3, D3a, E3: day 21 after culture (Scale bars: 100 μm).

doi:10.1371/journal.pone.0144139.g002
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exponentially on day 21. The 100% NBC group (0% MSC) showed significant increase in early
cultures on day 7 than other groups but that did not provide this group any further growth
advantage in later days. Similar trends were found in the 50% and 80% NBC: MSC groups.
Two-way ANOVA showed that both the time factor (p<0.001) and the NBC: MSC ratio factor
(p<0.001) significantly affected cell number. Bonferroni post hoc tests showed that 0% NBC
(100%MSC) significantly different from all other groups (p< = 0.003). The 20% NBC group
showed significant differences of 0% (p = 0.003), 80% (p = 0.033) and 100% (p = 0.008), respec-
tively. The 50% NBC group, and the 80% and then 100% were not significantly different
among themselves (p> = 0.342). The 100% NBC only showed significant difference from the
0% and 20% NBC: MSC ratios (p< = 0.008). Interestingly, starting with the same cell number,

Fig 3. H&E staining showing the NBC-MSC-collagenmicrospheres at different encapsulation cell density. (A1-A3): 1250 cells/microsphere; (B1-B3):
2500 cells/microsphere; (C1-C3): 5000 cells/microsphere; 1: 7 days; 2: 14 days; 3: 21 days (scale bars: 100 μm).

doi:10.1371/journal.pone.0144139.g003
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the 20% NBC group showed a much lower (~2 days) doubling time, which measures the time
taken for the cell population to double itself, as compared with higher NBC:MSC ratio (Fig
5B). The 0% NBC (100%MSC) group showed no growth while the 100% NBC (0%) showed
much lower doubling time (>6 days).

Temporal change in the percentage of NBC in the microspheres
Fig 6A shows the percentages of NBCs among different groups over time. In the 20% NBC
group, the percentage of NBCs were maintained at around 20% at day 7 and 14 but dramati-
cally increased to 33% at day 21 (Fig 6A). On the other hand, 50% and 80% NBC groups

Fig 4. H&E staining of NBC-MSC-collagenmicrospheres at different collagen concentrations. (A): 1mg/ml; (B): 2mg/ml; 1: 7 days; 2: 14 days (scale
bars: 100 μm).

doi:10.1371/journal.pone.0144139.g004
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Fig 5. Growth kinetics of cells in co-cultured NBC-MSC-microspheres with different proportions of NBCs. At day 7, day 14 and day 21, 200
microspheres were digested to count the cell number. (A): Growth kinetic curves showing the changes in the number of cells over time at different
encapsulating ratios (mean±1SD); (B): Population doubling time for different groups.

doi:10.1371/journal.pone.0144139.g005
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Fig 6. Percentage of NBCs in the NBC-MSC-collagenmicrospheres with different initial NBC: MSC
ratios at different time points. (A): Error bar charts showing the percentage of NBCs determined via flow
cytometry (mean±1SD); (B): Table showing the mean percentage of NBCs in different groups and at different
time points; (C): Representative histogram showing cells stained with isotype control antibody and cells were
stained with NB84a antibody in different groups at different time points.

doi:10.1371/journal.pone.0144139.g006
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showed similar level of NBCs over time. Fig 6C shows the representative histogram of the flow
cytometry-base enumeration of NBCs in different groups. Fig 6B shows the percentage of
NBCs calculated from data obtained by flow cytometry. Two-Way ANOVA showed that NBC:
MSC ratio factor (p<0.001) significantly affected the percentage of NBC overtime, but not the
time factor (p = 0.85). Bonferroni post hoc tests showed that the 20% NBC group significantly
different from 50% (p<0.001) and 80% (p<0.001) respectively. The 50% NBC group and the
80% were not significantly different among themselves (p = 0.366).

Immunohistochemistry of Type I collagen
Fig 7 shows the immunohistochemical analysis of collagen type I in the NBC-MSC-collagen
microspheres. In 0% NBC (100% MSC) group, the type I collagen positive microsphere
remained spherical although it becomes more porous at 14 days (Fig 7A and 7B). In the 20%
NBC groups, the microsphere was intact on day 7 but started to be decomposed on day 14 and
was almost completely decomposed on day 21 (Fig 7B2 and 7B3). For the 50% NBC group, the
microspheres were still intact at day 7 (Fig 7C1) but more porous at later time points (Fig 7C2
and 7C3). This trend was similar in the 80% NBC group (Fig 5B). Type I collagen expressing
cells, which are likely to be MSCs, were mostly confined within the microspheres although
some were identified occasionally in the outgrowth outside the microspheres (Fig 7F and 7G).

Immunohistochemistry of MMP9
Fig 8 shows the immunohistochemical staining of MMP9 of the NBC-MSC-collagen micro-
spheres with fixed 80% NBCs and with different cell densities and collagen concentrations. The
collagen regions showed positive staining while MMP9-expressing cells were found both in the
out-growth and the peripheral layers of cell masses (Fig 8A1, 8B1, 8B2 and 8C1).

Discussion

In vitro cancer models
In order to accelerate preclinical drug screening and to achieve personalized medicine in the
future, the development of disease or patient-specific in vitro model are of great importance
[54]. As discussed above, conventional 2D monolayer models are being criticized for their
non-physiological culture environment and they are not able to recapitulate the in vivo condi-
tion, therefore producing unreliable data. With the advance in field of tissue engineering, the
use of an in vitro three dimensional model in mimicking tumors is becoming more popular.
[55–57]. An important issue in fabricating an in vitro model would be the choice of biomateri-
als, which could be of natural origin or artificially synthesized. Numerous studies have shown
promising results by using natural biomaterials such as collagen, fibrin, Matrigel[58] and hyal-
uronic acid. With their ready availability, ease of use and high bioactivity, they are popular and
attractive choices for researchers. Collagen has an excellent biocompatibility and negligible
immunogenicity. These properties enable scientists to use collagen as an appropriate material
for in vitro cancer model. However, the ease of degradation, undefined matrix composition
and weak mechanical properties are their problems. In addition, high batch-to-batch heteroge-
neity in composition makes comparison between different studies very difficult. On the other
hand, synthetic materials such as PA, polyester, PEG possess tunable parameters and permit
more precise control of material properties[59], leading to less complexity, high reproducibility
and comparability between different studies. Yet some of them are toxic and they require more
sophisticated processing steps before they can be used for modelling. PEG-based hydrogel, for
instance, has non-fibrillar structure and requires either physical or chemical cross-linking
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processes [60–62]. These would affect the cellular behavior and the ease of use when compared
to natural polymers like collagen. In fact, a universal biomaterial suitable for all disease models
does not exist. Researcher should pick the one that fit for their particular interest of study.[56–
58, 62] In recapitulating the in vivo tumorigenesis, a few features should be present in the
model, including limitless proliferation, angiogenesis, invasion and metastasis.[57] Our study

Fig 7. Immunohistochemistry of type I collagen of NBC-MSC-collagenmicrospheres with different NBC proportions and at different time points.
(A): 0% NBC (100%MSC); (B): 20% NBC (80%MSC); (C): 50%NBC (50%MSC); (D): 80% NBC (30%MSC); (E): 100% NBC (0%MSC). A1, B1, C1, D1,
E1: day 7; A2, B2, C3, D2, E2: day 14; B3, C3, D3, D3a, E3: day 21 after culture (Scale bars: 100 μm).

doi:10.1371/journal.pone.0144139.g007
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showed that collagen microspheres recapitulate several unique features of 3D tumor model
such as irregular tumor outgrowth, epithelial-mesenchymal structures and tumor invasion,
and vascular spaces. In the future, our group would further develop the collagen microsphere
techniques in recapitulating other in vivo features, especially tumor angiogenesis which is criti-
cal in constructing a valid cancer models[55, 63, 64], by co-encapsulating endothelial cells.

MSC provides a stromal niche supporting NBC growth
MSCs alone cultured in collagen microspheres maintain their viability without significant
change in cell number. This reveals that MSC is a normal healthy adherence-dependent cell
type that normally will not proliferate in 3D constrain. On the contrary, when NBCs were

Fig 8. Immunohistochemistry of MMP9. (A): 5000 cells/ml; (B): 2500 cells/ml; (C): 1250 cells/ml; 1: 0.5 mg/ml; 2: 1 mg/ml; 3: 2mg/ml (scale bars: 100 μm).

doi:10.1371/journal.pone.0144139.g008
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cultured in collagen microspheres, they rapidly proliferate and grow in an uncontrollable man-
ner with irregular shaped outgrowth. This also reveals the tumorigenic nature of NBCs. When
co-culturing these two cells types within the same microsphere, NBC growth is further facili-
tated by the additional reduction in the doubling time. Moreover, upon addition of 80% of
MSC into the NBCs, the proportion of NBC increased from 20% to>35% in the microspheres.
These strongly suggest that MSC provides a conductive niche facilitating NBC growth. MSCs
have multiple differentiation potential that they can be stimulated to commit to multiple line-
ages when triggered by different signals or placed in different niches [65]. MSCs exhibit fibro-
blastic phenotype and may therefore provide a cancer-associated fibroblastic niche as reported
[66, 67]. Cancer associated fibroblasts may secrete growth or signaling factors such as Wnt,
BMP and Ephrin to affect cancer growth [68]. Similarly, MSCs are known to secrete a lot of sol-
uble signals such as growth factors and chemokines [52, 69–71] that may also contribute to the
supportive stromal niche for cancers with enhanced growth and metastasis. Fibroblasts and
MSC may deposit and maintain their ECM such as type I collagen [72] and secrete growth fac-
tors including VEGF and TGF-β [73] to support the tumor growth. Another interesting obser-
vation of the current study is that the total number of cells in the microspheres initially
containing 80% NBCs increased for more than 50 fold but the final NBC proportion was only
maintained at around 60%, suggesting that growth of non-cancerous cells was stimulated.
These cells are likely to be niche cells including stromal fibroblasts and endothelial cells, etc.
Nevertheless, further studies are warranted.

The co-encapsulation microsphere model mimics the in vivo
characteristics of tumor tissues
The current 3D model mimics the in vivo characteristics of tumor tissues in manifold. First,
Neuroblastoma represents a cancer of epithelial cells while MSCs in collagen provides a
stroma-like environment. This mesenchymal-epithelial tissue structure was revealed by the
spontaneously segregated dual-layer tissue structures. Moreover, is characterized by Homer
Wright Pseudorosettes in histology [74]. In the current model, such “rosettes-like”morphology
was observed occasionally (S1 Fig), suggesting that the current model mimics the in vivo tumor
tissue well. Whether different fabrication parameters including the time points, ECM factors,
cell factors and cell ratios can recapitulate different stages or subtypes of neuroblastoma
deserves further investigation. Second, NBCs growth resulted in the formation of irregular tis-
sue outgrowths, representing tumorigenicity and uncontrolled growth of cancer cells. Third,
this model can be used to study EMT processes such as cancer metastasis, which may be due to
the loss of epithelial adhesion molecules between cancer cells [75]. NBCs have been found to
transmigrate or invade through the collagen microsphere or stroma-like tissues. This enables
future studies on various cell types, soluble factors and matrix factors in affecting the EMT or
the metastasis process, providing a model for basic cancer cell biology studies. For example,
matrix metalloproteinase (MMPs) are important enzymes manipulated by cells to remodel the
ECM and is also the important mediators of metastasis as cancer cells recruit these enzymes to
make way for their invasion into matrix-rich mesenchymal cells [76]. MMP9 is reported to be
closely associated with development of metastasis [77–79]. Our results showed that MMP9-ex-
pressing cells are usually found on the periphery of the microspheres or within the tissue
micro-mass pinched off from the microspheres but not in the central region of the collagen
microspheres. This might indicate that those actively migrating cells secrete MMP9 to facilitate
their matrix digestion during invasion [80, 81]. Fourth, the collagen microsphere system may
mimic the in vivo tumor tissue by providing a hypoxic environment. Our previous study
showed the expression of HIF1α in ESC-derived chondrocytes cultured in the collagen
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microsphere platform [39] suggesting that cells at the center of the microsphere may sense
hypoxic signal. Fifth, at 14 and 21 days and high cell densities, there were a lot of “voids” in the
3D tumor-like tissue or in another word, the tissue becomes very “porous”. This characteristic
may be an analogous feature of the “leaky” structure of tumor [82], which refers to the forma-
tion of vascular spaces or lumens.

Limitations of the current model
Tumor tissue has a unique feature in vascularization that the high metabolic demands of the
cancer cells usually triggers vascular structure changes to achieve the purpose of enriching vas-
cular nutrient supply. However, the current model does not include blood vessel cells such as
endothelia cells and hence vasculature. Further studies including endothelial cells to form a
multi-cellular tumor model warrants investigation. Preliminarily, we demonstrate the feasibil-
ity to use quantum dots of different fluorescence properties to label multiple types of cells
including NBCs, MSCs and human umbilical cord derived endothelial cells (HUVEC) for a tri-
culture model of the tumor niche (S2 Fig). Second, unlike NBC, MSC has no specific marker,
therefore it is difficult to estimate its number in the population. As a result, we can only use
flow cytometry to detect the number of NBC and calculate the number of non-NBC which
may consists of MSCs, MSC differentiated cells like fibroblasts and endothelial cells, or even
NBC differentiated cells. Third, our study demonstrates the capability to use collagen microen-
capsulation to reconstitute stromal microenvironment in 3D neuroblastoma model and inves-
tigates the tumor growth promoting effects of the stromal supportive niche. Nevertheless,
answering particular cancer related biological questions and using it for drug screening have
not been covered by the current report but would be the objectives of our future studies.

Conclusion
Presence of MSCs in the 3D NBC model further promotes NBC growth with decreased dou-
bling time and increased percentage of NBC at certain NBC: MSC ratio, suggesting that the
presence of MSCs indeed serve as a supportive stromal niche. Moreover, the current model
recapitulates several unique features of 3D tumor model such as irregular tumor outgrowth,
epithelial-mesenchymal structures and tumor invasion, and vascular spaces, co-encapsulating
NBCs and MSCs in 3D collagen microsphere therefore represent a potential 3D model for can-
cer niche studies.

Supporting Information
S1 Fig. Immunohistochemistry of NB84a as a marker for NBC in NBC-MSC-collagen
microspheres. (scale bar: 100 μm).
(TIF)

S2 Fig. Fluorescent images of NBC-MSC-HUVEC-collagen microspheres. NBC, MSC and
HUVEC were labelled with qantum dots (Qdot 585, Qdot 655) and fluorescent dye (PKH67).
NBC (Red: Qdot 585), MSC (Green: PKH67) and HUVEC (Blue: Qdot 655). (A): Day 7; (B):
Day 14; (C): Day 21. (scale bars: 100 μm).
(TIF)
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