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Abstract

Background

Inflammatory breast cancer (IBC) is a rare, aggressive form of breast cancer associated

with HER2 amplification, with high risk of metastasis and an estimated median survival of

2.9 y. We performed an open-label, single-arm phase II clinical trial (ClinicalTrials.gov

NCT01325428) to investigate the efficacy and safety of afatinib, an irreversible ErbB family

inhibitor, alone and in combination with vinorelbine in patients with HER2-positive IBC. This

trial included prospectively planned exome analysis before and after afatinib monotherapy.

Methods and Findings

HER2-positive IBC patients received afatinib 40 mg daily until progression, and thereafter

afatinib 40 mg daily and intravenous vinorelbine 25 mg/m2 weekly. The primary endpoint

was clinical benefit; secondary endpoints were objective response (OR), duration of OR,

and progression-free survival (PFS). Of 26 patients treated with afatinib monotherapy, clini-

cal benefit was achieved in 9 patients (35%), 0 of 7 trastuzumab-treated patients and 9 of

19 trastuzumab-naïve patients. Following disease progression, 10 patients received afati-

nib plus vinorelbine, and clinical benefit was achieved in 2 of 4 trastuzumab-treated and 0
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of 6 trastuzumab-naïve patients. All patients had treatment-related adverse events (AEs).

Whole-exome sequencing of tumour biopsies taken before treatment and following disease

progression on afatinib monotherapy was performed to assess the mutational landscape of

IBC and evolutionary trajectories during therapy. Compared to a cohort of The Cancer

Genome Atlas (TCGA) patients with HER2-positive non-IBC, HER2-positive IBC patients

had significantly higher mutational and neoantigenic burden, more frequent gain-of-function

TP53 mutations and a recurrent 11q13.5 amplification overlapping PAK1. Planned explor-

atory analysis revealed that trastuzumab-naïve patients with tumours harbouring somatic

activation of PI3K/Akt signalling had significantly shorter PFS compared to those without

(p = 0.03). High genomic concordance between biopsies taken before and following afatinib

resistance was observed with stable clonal structures in non-responding tumours, and evi-

dence of branched evolution in 8 of 9 tumours analysed. Recruitment to the trial was termi-

nated early following the LUX-Breast 1 trial, which showed that afatinib combined with

vinorelbine had similar PFS and OR rates to trastuzumab plus vinorelbine but shorter over-

all survival (OS), and was less tolerable. The main limitations of this study are that the

results should be interpreted with caution given the relatively small patient cohort and the

potential for tumour sampling bias between pre- and post-treatment tumour biopsies.

Conclusions

Afatinib, with or without vinorelbine, showed activity in trastuzumab-naïve HER2-positive

IBC patients in a planned subgroup analysis. HER2-positive IBC is characterized by fre-

quent TP53 gain-of-function mutations and a high mutational burden. The high mutational

load associated with HER2-positive IBC suggests a potential role for checkpoint inhibitor

therapy in this disease.

Trial Registration

ClinicalTrials.gov NCT01325428

Author Summary

Why Was This Study Done?

• Inflammatory breast cancer (IBC) is a rare and poorly understood form of breast cancer
that grows and spreads very quickly. Fifty percent of IBC cases are HER2-positive.

• Afatinib is an investigational drug that showed promise in early-stage trials in the setting
of HER2-positivemetastatic breast cancer.

• Our study was designed to look at how effective and safe afatinib is in treating HER2-
positive IBC patients, and to elucidate how afatinib treatment affects the tumours at the
genomic level.

Inflammatory Breast Cancer and HER2 Blockade
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What Did the Researchers Do and Find?

• We recruited 26 patients for this study and administered afatinib daily, and 10 patients
went on to be treated with daily afatinib and weekly vinorelbine, a chemotherapy drug,
upon disease progression.

• Thirty-five percent (9 of 26) and 20% (2 of 10) of patients had clinical benefit from
being treated with afatinib monotherapy and afatinib plus vinorelbine, respectively.

• We sequenced tumour biopsies before and after afatinib treatment and found that IBC
has a higher mutational load and more frequent mutations in the well-known cancer
gene TP53, compared to non-IBC.

• We did not identify any single gene or mutation that led to afatinib resistance, and biop-
sies before and after treatment were very similar genetically.

What Do These Findings Mean?

• Afatinib appears to be clinically active in HER2-positive IBC, albeit in a relatively small
patient cohort.

• The high mutational load in IBC suggests that checkpoint inhibitors, a type of cancer
immunotherapy, might potentially be an effectiveway of treating patients.

Introduction

Inflammatory breast cancer (IBC) is a rare, aggressive form of breast cancer that accounts for
around 1%–6% of breast cancers [1–4]. IBC tends to affect younger women and has a high risk
of local and distant metastasis. Prognosis is poor, with median survival estimated at 2.9 y in
IBC patients versus 6.4 y in those with non-inflammatory, locally advanced breast cancer [3,5].
Current management of IBC involves a combination of anthracycline and taxane-based che-
motherapy in the neoadjuvant setting, followed by surgery, adjuvant chemotherapy, or radio-
therapy [6].

IBC is thought to be a biologically distinct form of breast cancer, commonly lacking oestro-
gen (ER) and progesterone (PgR) receptor expression [7]. A greater frequency of HER2 and
EGFR overexpression among IBC cases has been reported, occurring in 50% and 30% of
patients, respectively [8]. Genomic profiling techniques have led to the identification of genes
that are potentially involved in disease development [9–11]; however, HER2-positive IBC has
not been characterised through deep exome sequencing.

EGFR and HER2 have been shown to be involved in tumour growth and metastasis of IBC,
and as such represent therapeutic targets [12]. Afatinib is a small molecule tyrosine kinase
inhibitor that irreversibly and selectively blocks signalling from ErbB family members. Clini-
cally, afatinib showed activity in phase II trials with HER2-positive breast cancer patients
[13,14]. Most recently, in the phase III LUX-Breast 1 trial, afatinib combined with vinorelbine
demonstrated similar progression-free survival (PFS) and objective response (OR) rates to tras-
tuzumab plus vinorelbine in patients with HER2-positivemetastatic breast cancer after failure
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on trastuzumab, but the afatinib-containing regimen was associated with shorter overall sur-
vival (OS) and was less tolerable [15].

We performed an open-label, single-arm phase II clinical trial to investigate the efficacy and
safety of afatinib alone and in combination with vinorelbine following disease progression in
patients with HER2-positive IBC. Recruitment to this trial was terminated early following the
results of the LUX-Breast 1 trial.We carried out prospectively planned whole-exome sequenc-
ing of tumour biopsies at baseline and after progression on afatinib monotherapy to explore
two questions: (1) what is the mutational landscape of HER2-positive IBC, and is it distinct
fromHER2-positive non-IBC; and (2) how does exposure to HER2 inhibition affect the evolu-
tion of IBC?

Methods

Study Design

This was an open-label, phase II, multicentre trial of afatinib for the treatment of HER2-posi-
tive IBC (ClinicalTrials.gov NCT01325428, S1 and S2 Texts). Patients were treated with afati-
nib monotherapy until disease progression (Part A), and then afatinib and vinorelbine until
disease progression (Part B).

PFS was assessed separately for Part A and Part B, and over the whole study. OS was only
assessed over the whole study period. The primary endpoint was clinical benefit (defined as sta-
ble disease [SD] for�6 mo, partial response [PR], or complete response [CR]). Secondary end-
points were objective response (OR) and duration of OR and PFS; other endpoints included
OS and safety.

Following the results of the LUX-Breast 1 trial, Part B was stopped and recruitment to the
whole trial was stopped thereafter. Patients in Part A were informed that they would no longer
be able to receive afatinib plus vinorelbine upon progression, and had to agree with the investi-
gator regarding continuation of afatinib monotherapy. Patients in Part B who were deriving
benefit from treatment could continue afatinib plus vinorelbine.

PR was considered to be confirmed if the criteria were met at least 4 wk later. SD had to be
observed at least 42 days after first study drug administration in the respective part of the study
to be considered for best overall response regardless of confirmation, and had to last for more
than 182 d to qualify for clinical benefit.

The study was conducted in line with the Declaration of Helsinki, the International Confer-
ence on Harmonization GoodClinical Practice Guideline and approved by the local ethics
committees (S1 Appendix). All patients provided written informed consent prior to study
participation.

Patients

Female patients aged�18 y with investigator-confirmed IBC characterized by diffuse erythema
and oedema (peau d’orange) with locally advanced or metastatic disease and histologically con-
firmedHER2-positive disease (i.e. immunohistochemistry [IHC] 3+ or IHC 2+ with FISH/
SISH positivity) were eligible for the study (S1 Table). Patients were required to have an East-
ern CooperativeOncologyGroup (ECOG) status of 0–2 and life expectancy of�6 mo. Other
exclusion criteria for the trial included: radiotherapy, chemotherapy, hormone therapy, immu-
notherapy, trastuzumab, or surgery (other than biopsy) within 2 wk prior to the first dose of
afatinib in Part A, known pre-existing interstitial lung disease, active brain metastases, signifi-
cant chronic or recent acute gastrointestinal disorders with diarrhoea as a major symptom, any
other current malignancy or malignancy diagnosed or relapsed within the past 5 y (other than
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non-melanomatous skin cancer and in situ cervical cancer), inadequate bonemarrow, and
renal and liver functions.

Treatments

In both parts of the study, patients received a single oral dose of afatinib 40 mg once daily until
disease progression. The first dose was administered at the trial site, and subsequent doses were
taken at home. Afatinib dose reductions were required for any drug-related grade�3 adverse
events (AEs) and selected grade 2 AEs. The afatinib dose was reduced in 10 mg decrements to a
minimum of 20 mg; all dose reductions were permanent. In Part B, patients received previously
tolerated afatinib doses and additionally received short infusion (approximately 10 min) intra-
venous vinorelbine at a weekly dose of 25 mg/m2 in a 4-weekly course until disease progression.
Vinorelbine treatment was administered at the trial site under the supervision of the investiga-
tor; treatment was withheld if platelet count was<100,000 cells/mm3 or absolute neutrophil
count was<1,500 cells/mm3.

Assessments

Tumour assessments were performed by computed tomography or magnetic resonance imag-
ing at screening and every 8 wk after the first dose of afatinib. Investigators evaluated response
according to Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1. AEs were
graded using Common Terminology Criteria for Adverse Events (CTCAE) version 3.0.

Whole-Exome Sequencing

Tumour biopsies were obtained before afatinib treatment and on disease progression in Part
A, snap frozen, and optimal cutting temperature compound (OCT)-embedded.Venous blood
samples were obtained and genomic DNA was extracted.Whole-exome sequencing was per-
formed on pre-treatment tumour biopsies, matched germline genomic DNA and post-treat-
ment tumour biopsies according to the manufacturer’s protocol (Agilent SureSelect Human
All Exon 50Mb Kit). Tumour and germline DNA were sequenced at the Beijing Genomics
Institute on the Illumina HiSeq 2000 to an average depth of 396x and 157x, respectively (S2
Table).

Mutation Calling and Genomic Analysis

Raw sequencing data were aligned to human genome sequence version hg19 using bwa (v0.5.9)
[16], duplicates marked using Picard (v1.54), and indel realignment performedwith GATK
IndelRealigner (v1.0.6076) [17]. Somatic single nucleotide variant (SNV) calling was per-
formed using VarScan2 (v2.3.7) [18], MuTect (v1.1.7) [19], Virmid (v1.1.0) [20], and Strelka
(v1.0.14) [21]. SNVs called by�2 tools were further filtered for variant allele frequency (VAF)
�5%. Small indels were identified using Pindel (v0.2.5a7) [22] and VarScan2 (v2.3.7). Indels
called by both tools were further filtered for VAF �5%. Mutations in genes of interest were
visualizedwith Oncoprints [23].

Tumour copy number aberrations, ploidy, and purity were determined using ASCAT 2
[24], which allows for exome sequencing data as input (available at https://github.com/Crick-
CancerGenomics/ascat) (S3 Table). Some samples were excluded from copy number analysis
due to low tumour content. Segmented copy number data were divided by sample mean ploidy
and log2 transformed for GISTIC2.0 analysis [25]. Copy number segments were defined rela-
tive to ploidy as previously described [26]: amplification, gain, and loss were defined as log2(4/
2), log2(2.5/2), and log2(1.5/2), respectively.

Inflammatory Breast Cancer and HER2 Blockade
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Genome-doubling status was determined as previously described [27]. Briefly, each sample,
s, was represented as an aberration profile of major and minor allele copy numbers at chromo-
some arm resolution. The total number of aberrations (relative to diploid), Ns, and the proba-
bilities of loss/gain for each allele at each chromosome arm, Ps, was calculated. Ten thousand
simulations were run for each sample s, where Ns sequential aberrations, based on Ps, were
applied to a diploid profile. A p-value for genome doubling was obtained by counting the per-
centage of simulations in which the proportion of chromosome arms with a major allele copy
number�2 was higher than that observed in the sample.

The weighted Genomic Instability Index (wGII) was used to assess chromosomal instability
[28]. Briefly, the percentage aberrant regions for each autosome was calculated separately and
mean percentage aberration then calculated across all 22 chromosomes to account for variation
in chromosome size, so that large chromosomes do not have a greater effect on the GII score
than small chromosomes.

Mutational signatures were determined using the R package deconstructSigs [29]. Using
this tool, the fraction of mutations in each of the 96 trinucleotide contexts was calculated, and
the weighted combination of published signatures from [30] identified to most closely recon-
struct the mutational profile of the sample.

The mutation copy number and cancer cell fraction of each mutation were calculated by
integrating ASCAT-derived integer copy number and tumour purity estimates with the variant
frequency as described in [31]. This was used as input for PyClone [32], which uses a hierarchi-
cal Bayesian Dirichlet process in order to infer clonal population structure. A modified version
of PyClone was used as described in [33]; clusters with 3 or fewer SNVs were excluded.

HLA typing was performedwith OptiType [34]. Nonsynonymous mutations were extracted
from each tumour sample and translated into mutant peptide 9–11mers long [33]. Using the
patient-specificHLA type, we used NetMHC (v2.8) [35] to predict the binding strength of each
mutant and wildtype peptide to the respectiveMHC class I molecules. Somatic mutations that
gave rise to peptides with a binding affinity of�500 nM were considered to be putatively
neoantigenic.

TCGA Data

The comparison to the HER2-positive non-IBC cohort is based upon data generated by The
Cancer GenomeAtlas (TCGA) Research Network: http://cancergenome.nih.gov/ [36]. Tumour
samples were filtered for positive HER2 IHC status (n = 131, S4 Table). For the matched
cohort, a subset was selected by matching cases based on age (±10 years), ER, and PgR status;
this allowed only for a one-to-one matching due to the limited number of TCGA cases
available.

Statistical Analysis

Analyses of efficacy and safety in this trial were descriptive and exploratory. A sample size of
40 patients was selected for this study; assuming an underlying clinical benefit rate of 50%, 40
patients would provide more than a 90% probability of observing a clinical benefit rate of at
least 40%. Analyses of clinical benefit rate (CBR) and OR rate were planned for the following
subgroups: hormone receptor (ER and PgR), EGFR status, new brain metastases, patients pre-
senting with target lesions only versus those with non-target lesions only versus those with
both, and prior trastuzumab therapy. Exploratory analyses using genomic data were planned
to search for predictive markers of response and resistance to afatinib.

MutSigCV (v1.3) [37] and GISTIC2.0 [25] were used to determinemutational significance
of somatic SNVs and somatic copy number alterations (SCNAs). Multiple-testing corrections
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in these tests were carried out using the Benjamini-Hochberg false discovery rate method.
Mann-Whitney and Fisher’s exact test were used for comparison between two groups. Survival
curveswere estimated using the Kaplan-Meier method, and the log-rank test was used to test
for significance.

Results

Patients

The study was performed at 14 centres in seven countries betweenDecember 2011 and
November 2014. Twenty-nine patients were screened, and 26 received afatinib monotherapy;
of these, 10 patients continued into Part B of the study (Fig 1). Twenty-four of 26 patients had
metastatic disease at study inclusion. Patient demographics at baseline are shown in Table 1.

Efficacy with Afatinib (Part A)

Nine (35%) of 26 treated patients had confirmed clinical benefit with afatinib monotherapy
(eight PRs and one SD of�6 months; Table 2, S5 Table). Three patients had an unconfirmed
PR, resulting in an overall response rate (ORR) of 42% (n = 11). Twenty (77%) patients pro-
gressed or died on afatinib monotherapy; median PFS was 110.5 days (95% CI 58.0–386.0). In
total, there were three on-treatment and one post-study deaths. Planned subgroup analyses
were performed (S1 Fig). Clinical benefit with afatinib monotherapy was achieved in 0 of 7
trastuzumab-treated patients and 9 of 19 (47%) trastuzumab-naïve patients. Median PFS with

Fig 1. Study flow and patient disposition. This figure describes the study and number of patients in each part of the clinical trial

(blue outline), reasons for patients being excluded or discontinuing treatment (purple outline), and number of patients with genomic

analysis performed (green outline). PD, progressive disease.

doi:10.1371/journal.pmed.1002136.g001
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Table 1. Patient demographics at beginning of study.

Characteristic Part A: Part B:

Afatinib monotherapy Afatinib plus vinorelbine

(n = 26) (n = 10)

Sex, n (%)

Female 26 (100) 10 (100)

Age, years

Mean (SD) 51.5 (8.8) 51.5 (12.5)

Race, n (%)

Asian 17 (65) 7 (70)

- Southeast Asian 13 (50) 5 (50)

- Korean 4 (15) 2 (20)

Black/African American 1 (4) 0

White 8 (31) 3 (30)

Smoking status, n (%)

Never smoker 22 (85) 7 (70)

Ex-smoker 4 (15) 3 (30)

Body mass index, kg/m2

Mean (SD) 25.0 (3.9) 26.0 (4.5)

Tumour histology, n (%)*

Infiltrating duct carcinoma 23 (88) 10 (100)

Papillary carcinoma 1 (4) 0

Infiltrating lobular carcinoma 2 (8) 0

Paget disease 1 (4) 1 (10)

Other 2 (8) 1 (10)

ER status at first diagnosis, n (%)

Positive 13 (50) 4 (40)

Negative 13 (50) 6 (60)

PgR status at first diagnosis, n (%)

Positive 6 (23) 1 (10)

Negative 20 (77) 9 (90)

HER2 status at first diagnosis, n (%)

Positive 26 (100) 10 (100)

Negative 0 0

Metastatic sites at study inclusion, n (%)

0 2 (8) 0

1 5 (19) 1 (10)

2 6 (23) 2 (20)

3 9 (35) 4 (40)

�4 4 (15) 3 (30)

Prior chemotherapy, n (%)

Yes 18 (69) 7 (70)

No 8 (31) 3 (30)

Prior trastuzumab, n (%)

Yes 7 (27) 4 (40)

No 19 (73) 6 (60)

*Patients could have more than one type of tumour histology.

doi:10.1371/journal.pmed.1002136.t001
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afatinib monotherapy was apparently shorter in trastuzumab-treated patients versus trastuzu-
mab-naïve patients (64 versus 151 days, p-value = 0.099, log-rank test; S2 Fig).

Efficacy with Afatinib plus Vinorelbine (Part B)

Following progression on afatinib monotherapy, ten patients received afatinib plus vinorelbine
(Part B). Confirmedclinical benefit was achieved in two (20%; Table 2, S5 Table, S1 Fig); a fur-
ther two patients had an unconfirmedPR, with an overall CBR rate of 40% (n = 4). Eight (80%)
patients progressed or died. Median duration of PFS was 106.0 d (95% CI 36.0–190.0).

OS was analysed across the whole study. Eleven (42%) patients died during the study, and
medianOS was 713.0 d. Median PFS across the whole study was shorter in trastuzumab-treated
patients versus trastuzumab-naïve (136 versus 395 d, p-value = 0.024, log-rank test, S3 Fig).

Safety

Median duration of exposure to treatment was 111 d (range: 17–700) in Part A and 84.5 d
(range: 42–237) in Part B. All patients had treatment-related AEs (Table 3).

Mutational Landscape of HER2-Positive IBC

Twenty-two of 26 patients in Part A had tumour biopsy material suitable for whole-exome
sequencing analysis (Fig 2). Overall, we identified an average of 134.5 (range: 30–468) somatic
codingmutations (Fig 2A, S6 Table). The most commonly mutated gene was TP53 (MutSig q-
value = 1.68x10-11); 86.4% (19/22) of the tumours harboured a somatic mutation in TP53 (S7
Table). Strikingly, five patients had gain-of-functionTP53 mutations at hot-spot residue p.
R248 (S4 Fig). Planned exploratory analyses showed that OS was non-significantly shorter in
patients carryingTP53 p.R248 mutations pre-treatment versus those with loss-of-function
(nonsense, frame-shift, splice site) mutations (398 versus 652 d, p-value = 0.626, log-rank test).
Patients IBC007 and IBC001 had much higher numbers of somatic SNVs compared to the rest
of the cohort (468 and 393, respectively) but did not have mutations in known DNA mismatch
repair genes.

Table 2. Summary of efficacy in patients enrolled in clinical trial.

Measurement Part A: Part B:

Afatinib monotherapy Afatinib plus vinorelbine

(n = 26) (n = 10)

Clinical benefit, n (%) 9 (35) 2 (20)

Confirmed PR 8 (31) 1 (10)

SD�6 mo 1 (4) 1 (10)

SD <6 mo 7 (27) 4 (40)

Unconfirmed PR 3 (12) 2 (20)

Progressive disease, n (%) 8 (31) 3 (30)

Not evaluable 2 (8) 1 (10)

Progression-free survival, days

Median (95% CI) 110.5 (58.0–386.0) 106.0 (36.0–190.0)

Overall survival, days

Median (95% CI) 713.0 (400.0–NE)

Results in this table according to RECIST (v1.1), based on best overall response. Clinical benefit: confirmed CR, PR, or SD�6 mo; NE, not estimable.

doi:10.1371/journal.pmed.1002136.t002

Inflammatory Breast Cancer and HER2 Blockade

PLOS Medicine | DOI:10.1371/journal.pmed.1002136 December 6, 2016 9 / 23



Mutations in the PI3K/AKT/mTOR pathway are frequent in breast cancer, and activation
of this pathway via molecular aberrations in PIK3CA, PIK3CB, PIK3R1, AKT, TSC1/2, and
PTEN promotes resistance to HER2-targeted therapies [39–41]. Seven patients harboured
PIK3CA mutations, including four with hotspot mutation p.H1047R [42]. IBC007 harboured
an activating AKT1 p.E17K mutation, and IBC025 carried an activating ERBB2 p.V777L muta-
tion (Fig 2B) [43,44]. No other somatic mutations in this pathway were identified.

In order to gain insight into the mutational processes shaping the IBC landscape, we utilized
previously extractedmutational signatures and applied them to the IBC cohort (Fig 2A, S5A
Fig) [29,30]. Signature 1A, which was previously associated with age of diagnosis [45],
accounted for the majority of mutations (64.2% ± 26.1). Signatures 2 and 13, attributed to
activity of the APOBEC family of cytidine deaminases, were together present in 64% (14/22) of
tumours (16.4% ± 19.7% of somatic mutations). In particular, the excess of mutations in
IBC001 and IBC007 appear to be driven by APOBECmutagenesis (S5B Fig), which was
observed in both clonal and subclonal mutations for these samples (S5C Fig).

SCNA calling was possible in 20 of 22 tumours (S8 Table). Seventy percent (14/20) of the
tumours had undergone whole-genome doubling and had higher genomic instability scores
(wGII) compared to non-genome-doubled tumours (0.54 ± 0.18 versus 0.31 ± 0.06, p-
value = 4.6x10-3, Mann-Whitney) (Fig 2A). Even though all IBC patients were HER2-positive
via IHC or FISH (S1 Table), only 16 of 20 tumours were called as having ERBB2 amplification;
two tumours (IBC011 and IBC029) harboured gains and two tumours (IBC007 and IBC028)

Table 3. Most common treatment-related adverse events reported in�10% of patients.

Adverse Event Part A: Part B:

Afatinib monotherapy Afatinib plus vinorelbine

(n = 26) (n = 10)

All-grade Grade�3 All-grade Grade�3

Any 26 (100) 10 (38) 10 (100) 7 (70)

Diarrhoea 24 (92) 6 (23) 7 (70) 2 (20)

Rash 17 (65) 0 1 (10) 0

Decreased appetite 10 (38) 1 (4) 2 (20) 0

Mucosal inflammation 9 (35) 3 (12) 3 (30) 1 (10)

Nausea 7 (27) 0 5 (50) 0

Paronychia 7 (27) 1 (4) 0 0

Vomiting 6 (23) 0 1 (10) 0

Weight decreased 6 (23) 1 (4) 3 (30) 0

Dermatitis acneiform 5 (19) 1 (4) 0 0

Epistaxis 4 (15) 0 0 0

Fatigue 4 (15) 1 (4) 3 (30) 1 (10)

Dry eye 3 (12) 0 0 0

Erythema 3 (12) 0 0 0

Palmar-plantar erythrodysaesthesia 3 (12) 0 0 0

Stomatitis 3 (12) 0 1 (10) 1 (10)

Neutropenia 1 (4) 0 8 (80) 7 (70)

Anaemia 0 0 5 (50) 2 (20)

Abdominal pain* 2 (8) 0 3 (30) 0

Dyspnoea 0 0 2 (20) 0

*Reported as abdominal pain upper in Part A.

doi:10.1371/journal.pmed.1002136.t003
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Fig 2. Somatic mutations in HER2-positive IBC. (A) Top panel shows number of somatic mutations (SNVs and indels)

identified across the 22 IBC patients. Data tracks below indicate if patient was: treated with trastuzumab prior to afatinib

monotherapy (orange); oestrogen-receptor (ER) or progesterone-receptor (PgR) positive (yellow); derived confirmed

clinical benefit from afatinib monotherapy (red); tumour underwent whole-genome doubling (WGD) (pink). Mutational

signatures identified in IBC tumours were predominantly age-related (Signatures 1A and 1B) (blue), APOBEC-related

(Signatures 2 and 13) (salmon), and others (grey). NEV, not evaluated; NA, no information available. (B) TP53, PIK3CA,

AKT1, and ERBB2 mutations identified in samples are indicated if present (blue) or absent (grey). Gain-of-function

mutations (TP53 p.R248, PIK3CA p.H1047R, AKT1 p.E17K, ERBB2 p.V777L) are indicated by a yellow dot. Clonal and
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had neither amplification nor gain of ERBB2 (Fig 2B). It is possible that these four tumours
could represent false negatives due to reasons such as sampling bias caused by intra-tumour
heterogeneity or normal tissue contamination. Sixty percent (12/20) of tumours had EGFR
gains (11 gains, 1 amplification), consistent with previous reports [8]; 10 tumours had PTEN
loss (Fig 2B). GISTIC [25] analysis revealed recurrent focal amplifications across 6 loci, includ-
ing 17q12 (q-value = 9.22x10-13), 8q24.21 (q-value = 4.89x10-3), and 1q32.1 (q-
value = 5.80x10-2) containing ERBB2,MYC, and MDM4, respectively (Fig 2C, S9 Table).
Recurrent focal losses were identified across 12 chromosomal regions, including 11p5.15 (q-
value = 2.09x10-2) containing SIRT3 and PHRF1.

We carried out planned exploratory analyses to identify predictive markers of response and
resistance to afatinib. We did not identify an association between EGFR gains or HER2 amplifi-
cations and response to afatinib. Since activation of PI3K/Akt signalling is thought to impact
the efficacy of HER2-targeted treatment [46–48], we focused on mutations in this pathway to
explore any potential impact on PFS. We observed that somatic activation of this pathway (i.e.
PIK3CA activating mutation or gain, ERBB2 activating mutation, PTEN deletion,AKT1 acti-
vating mutation) was significantly associated with shorter PFS in trastuzumab-naïve patients
(p-value = 0.03, S6 Fig). Although activating mutations of the PI3K pathway have been
reported as occurringmore frequently in ER-positive breast tumours [40], we did not observe a
difference in this small cohort (6/10 ER-positive versus 7/12 ER-negative). Unexpectedly, a
trastuzumab-naïve patient (IBC024) harbouring a gain overlapping PIK3CA and PTEN hetero-
zygous deletion at baseline showed a PR for 48 wk before disease progression.

Genomic Analysis of HER2-Positive IBC versus HER2-Positive non-IBC

To determine if there were significant differences in mutational profiles betweenHER2-posi-
tive IBC and HER2-positive non-IBC, we compared our results against a cohort of TCGA
patients with HER2-positive breast cancer (n = 131, S4 Table) [36]. We observed that the aver-
age number of somatic protein-changing mutations per patient was higher in IBC than non-
IBC patients (102.4 ± 89.4 versus 71.9 ± 115.3; p-value = 0.0107, Mann-Whitney) (Fig 2D).

Given that TP53was the only significantlymutated gene identified in IBC,we compared the
mutation burden of this gene between the 2 cohorts.We observed that TP53mutations were sig-
nificantly enriched in the IBC cohort compared to non-IBC (19/22 versus 53/131; p-
value = 5.76x10-5, Fisher’s exact) [49], as were TP53 hotspot p.R248 mutations (5/19 versus 3/53;
p-value = 0.026, Fisher’s exact) (Fig 2E). Consistent with the highermutational load, IBC
tumours also had a higher number of predicted neoantigens compared to non-IBC (49.59 ± 37.9
versus 31.0 ± 41.8, p-value = 8.39x10-4, Mann-Whitney) (Fig 2F). Similar to IBC, the most preva-
lent mutational processes among the non-IBC cohort were age and APOBEC-related, with simi-
lar distributions of thesemutational signatures between the 2 cohorts (S5D Fig).

subclonal mutations are indicated by dark blue and yellow outlines, respectively. Amplifications (�2x ploidy), gains (�1

copy number relative to ploidy), and losses (�1 copy number relative to ploidy) in ERBB2 (HER2), PIK3CA, EGFR, and

PTEN are indicated by red, pink, and dark blue, respectively. Somatic activation of PI3K/AKT/mTOR pathway (defined as

PIK3CA activating mutation or gain, PTEN deletion, AKT1 mutation) indicated in orange. (C) Plots showing results of

GISTIC analysis identifying recurrent focal gains (left panel in red) and losses (right panel in blue); y-axis is genomic

position and x-axis is GISTIC q-value; green line represents significance threshold (q-value = 0.25). Gene names are

indicated where significantly mutated cancer driver genes were previously associated with the GISTIC peak in a pan-

cancer analysis of SCNAs [38]. (D) Box plot showing higher numbers of somatic nonsynonymous (NS) mutations

identified in IBC patients compared to non-IBC patients. The band inside the box denotes median. (E) Bar plot showing an

enrichment of TP53 mutations in IBC patients versus non-IBC patients. Yellow bar is proportion of gain-of-function TP53

p.R248 mutations. (F) Boxplot showing higher numbers of neoantigens predicted in IBC patients compared to non-IBC

patients. Asterisk (*) denotes significant p-value <0.05.

doi:10.1371/journal.pmed.1002136.g002
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There were no significant differences in the proportion of genome-doubled tumours (14/20
versus 75/131, p-value = 0.34, Fisher’s exact) or wGII scores (0.47 versus 0.51, p-value = 0.3843,
Mann-Whitney) between IBC and non-IBC tumours. Applying GISTIC to the non-IBC
tumours, 5 of 6 recurrently amplified regions and all 12 recurrently deleted regions in IBC had
wide-peak boundaries that overlapped with those of non-IBC tumours (S9 Table). Only the
11q13.5 amplification in IBC did not overlap with non-IBC, which includes PAK1, an onco-
gene that activates MAPK and MET signalling and regulates cell motility; interestingly, previ-
ous reports have associated IBCwith MAPK hyperactivation [50,51].

Utilizing an age and ER/PgR status matched cohort (Methods), the results were concordant,
with a higher burden of somatic protein-changing mutations, neoantigens, and TP53 muta-
tions in IBC versus non-IBC (S7 Fig).

Tracking Genomic Evolution of Afatinib Treated IBC

Among 13 tumour biopsies obtained following disease progression, we identified an average of
181.4 (range: 50–505) somatic mutations, of which 79.1% ± 12.0% were shared with baseline
tumours (Fig 3A, S10 Table). The overall mutation burden in tumours following treatment was
higher in post-treatment samples compared to pre-treatment samples (172.5 ± 136.7 versus
156.1 ± 151.9, p-value = 0.030, paired t test). No recurrent mutations were identified among
newly arising mutations post-treatment, and no newmutations in PI3K/Akt pathway genes
were identified, aside from a MTOR p.K30N mutation (variant of unknown significance) in
IBC021.

Nine of 13 matched pairs had copy number data (S11 Table); all tumours had the same
genome-doubling status pre- and post-treatment, and there was no difference in ploidy (2.9
versus 2.9, p-value = 0.80) or wGII scores (0.42 versus 0.46, p-value = 0.55) (S8 Fig, S3 Table)
between pre- and post-treatment samples. ERBB2 amplification status appeared to change in
two of nine patients, from gain to copy-neutral in IBC029 and from copy-neutral to gain in
IBC007 (Fig 3A). Overall, SCNAs between paired samples (n = 9) were highly concordant, and
unsupervisedhierarchical clustering showed that tumour biopsies clustered by patient rather
than treatment stage (S9 Fig).

Drug resistance may arise as a consequence of an evolutionary bottleneck, where a resis-
tant subclone is selectively enriched during therapy [52]. We utilized previously described
methods to compare the clonal architecture of tumours before and after treatment [32,53].
Of these nine patients, IBC021 was the only patient with confirmed clinical benefit.We
observed in all patients a cluster of variants that was clonal in both pre- and post-treatment
biopsies (cancer cell fraction [CCF] around 1.0 on both x and y axis in S10 Fig); all gain-of-
function PIK3CA and TP53 mutations, when present in the tumour, belonged to this cluster.
In eight of nine patients, we observed some evidence of branching evolution, with new clones
identifiable in the post-treatment samples and others declining in frequency or disappearing
(Fig 3B, S11 Fig). Interestingly, the majority of mutations identified after treatment were
detected in the pre-treatment tumour biopsy at a similar CCF (S10 and S11 Figs), and the
overall clonal composition in all 8 tumours remained largely similar between the two time
points with little evidence of bottlenecking, consistent with the lack of confirmed benefit in
these patients, aside from IBC021. In one patient (IBC007), new clones were not observed,
but there were distinct clonal shifts; there was clonal expansion of two subclones from 2% to
38% and 22% to 81%, and the major clone decreased slightly from 96% to 78%; no known
drivers were identified in the subclones (S10 Table). Importantly, we cannot exclude the pos-
sibility that the observed dynamics could be due to tumour sampling bias between pre- and
post-treatment samples.
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Discussion

Longitudinal analysis of the genomic evolution of tumours during therapy can inform drug
resistance mechanisms and the changing landscape of disease over time. Here, we report the
first prospectively planned clinical trial in IBCwith genomic analysis, and the first assessment
of afatinib with or without vinorelbine in patients with HER2-positive IBC.

Fig 3. Genomic analysis of tumour biopsies before treatment and following disease progression on afatinib monotherapy.

(A) Somatic mutations (SNVs and indels) identified in pre- and post-treatment biopsies. Green, mutations identified in pre-treatment

only; yellow, mutations identified in both pre- and post-treatment; blue, mutations identified in post-treatment only. Data tracks

below denote: if patient derived confirmed clinical benefit from afatinib monotherapy (red); amplifications (�2x ploidy), gains (�1

copy number relative to ploidy), and losses (�1 copy number relative to ploidy) in ERBB2 (HER2), EGFR, PIK3CA, and PTEN are

indicated by red, pink, and blue, respectively. NEV, not evaluated; NA, no information available. (B) Two main patterns of clonal

evolution following afatinib monotherapy observed, either branched evolution or shifting clonal structure. Numbers refer to mutation

clusters from PyClone results, also in S10 Fig. T1, pre-treatment biopsy; T2, post-treatment biopsy; CCF, cancer cell fraction.

doi:10.1371/journal.pmed.1002136.g003
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Afatinib monotherapy demonstrated activity in patients with HER2-positive IBC,with nine
(35%) patients achieving clinical benefit and median PFS of 110.5 d. This is concordant with
data from a phase II trial assessing lapatinib 1500 mg daily in 126 patients with relapsed or
refractoryHER2-positive IBC, in which no patients had a CR but 49 (39%) had a PR and median
PFS was 102.2 d [54]. Following progression on afatinib monotherapy, two (20%) patients
achieved clinical benefit with addition of vinorelbine, and median PFS in Part B was 106.0 d.

The most common treatment-related events reported during the trial were diarrhoea, rash,
and decreased appetite in Part A, and neutropenia, diarrhoea, nausea, and anaemia in Part B.
Overall, the safety profile observedwas generally consistent with previously published data on
afatinib and vinorelbine. Importantly, this trial included pre-planned exome analysis of tumour
biopsies at two time-points: before treatment and at disease progression. To our knowledge, this
is the first report characterising IBC through exome sequencing.We identified a high incidence
of TP53mutations, as reported previously [49], and an enrichment of p.R248 hotspot DNA-
contact mutations that promote nuclear accumulation of p53 [55–57]; cellular and animal stud-
ies indicate that these gain-of-functionmutations induce increased invasion, chemoresistance
and decreased survival [58–60]. Our results showed a non-significant reduction in OS in IBC
patients carryingTP53 p.R248 mutations, consistent with previous analysis [61] and reports of
nuclear p53 overexpression representing an adverse prognosticmarker in IBC [62–64].

We identified recurrent focal gains across 6 loci and losses across 12 regions, including
11p5.15 containing SIRT3 and PHRF1 (also identified in the non-IBC cohort). SIRT3 is deleted
in 40% of human breast tumours, and loss of SIRT3 increases reactive oxygen species produc-
tion and HIF-1a stabilization [65]. PHRF1 functions as a tumour suppressor by promoting the
TGF-beta cytostatic programme [66]; a recent transcriptomic study identified reduced TGF-
beta signalling as a specific gene expression signature of IBC compared to non-IBC [67]. Com-
paring IBC to non-IBC, the only different recurrent focal SCNA was the amplification of
11q13.5 containing PAK1 in IBC; PAK1 is an oncogene that activates MAPK and MET signal-
ling and regulates cell motility, and previous reports have associated IBCwith MAPK hyperac-
tivation [50,51].

We compared tumours before and after afatinib monotherapy to investigate potential driv-
ers of resistance. The tumour pairs displayed a high degree of genetic relatedness, both in terms
of point mutations and large-scale genomic aberrations.We did not observe changes in ERBB2
amplification status in the majority (7/9 or 78%) of our tumours, consistent with previous
reports of loss of HER2-positivity occurring in only 12%–32% of patients undergoing anti-
HER2 therapy [68–71]. In the two patients who appeared to undergo a change in amplification
status, we are unable to conclude if the lack of ERBB2 amplification (in the pre-treatment
biopsy for IBC007 and in the post-treatment biopsy for IBC029) was due to technical limita-
tions of exome sequencing, sampling bias, or selection of a HER2-negative subclone during
therapy (in the case of IBC029).

In contrast to EGFR mutant lung adenocarcinomas, in which the T790M gatekeeper muta-
tion is commonly selected following EGFR inhibitor exposure [72], there was no evidence of
selection for mutations in specific genes in the post-treatment IBC tumours. Eight out of 9
tumour pairs displayed branching evolution, with new clones emerging and others disappearing
after treatment, possibly reflecting the differential effect that afatinib monotherapy had on the
different subclones; it is worth noting that only 1 of 8 of these patients (IBC021) derived con-
firmed clinical benefit from afatinib monotherapy. It is also possible that subclones detected
only in the pre- or post-treatment tumour biopsy in this study could be related to sampling bias
or caused by the “illusion of clonality” derived from a single-region biopsy. Regardless, the
majority of mutations in these tumours were shared between the two time points and possessed
largely similar clonal compositions, concordant with previous reports in pre- and post-
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treatment samples of multiple myeloma and high-grade serous ovarian carcinoma [53,73].
IBC007was the only tumour with an apparent shift in clonal structure, possibly reflecting ran-
dom drift of tumour clones or sampling bias, given that this patient did not respond to afatinib
monotherapy [32,53]. Immune checkpoint inhibitors have been shown to provide clinical bene-
fit in a variety of cancers, including melanoma and lung cancer [74–77]. In particular, a high
mutational load (>100 somatic nonsynonymous codingmutations) was reported as signifi-
cantly correlated with improved OS in patients with metastatic melanoma treated with ipilimu-
mab or tremelimumab [78]. Several clinical trials investigating the efficacy of checkpoint
inhibitors have already been initiated in HER2-positive breast cancer (NCT02734004,
NCT02605915, NCT02318901, NCT02403271) and HER2-positive gastric cancer
(NCT02689284). The mutational burden in our study revealed an average of 102.4 nonsynon-
ymous mutations in baselineHER2-positive IBC, above the threshold indicated for clinical ben-
efit with anti-CTLA4 therapy [78]. The highmutational and neoantigenic load associated with
HER2-positive IBC suggests a potential role for checkpoint inhibitor therapy in this disease.

Following the results of the LUX-Breast 1 trial, recruitment to this study was terminated
early. As such, a limitation of this study is the relatively small sample size of HER2-positive
IBC patients, making it difficult to draw robust conclusions regarding clinical efficacy of afati-
nib in this disease. Furthermore, single-region biopsies could be leading to underestimation of
tumoural heterogeneity and clonal dynamics.

In conclusion, this phase II trial demonstrated that afatinib, with or without vinorelbine,
showed activity in patients with HER2-positive IBC in trastuzumab-naïve patients, albeit in a
small patient cohort. This is one of the first clinical trials to fully and prospectively integrate
longitudinal exome sequencing with drug development. HER2-positive IBC is characterised by
a higher mutational and neoantigenic burden and greater incidence of TP53 mutations com-
pared to HER2-positive non-IBC. PI3K pathway activation was associated with poorer out-
comes on afatinib therapy. Analysis of pre- and post-afatinib monotherapy tumour biopsies
did not identifymajor dynamics of tumour sublcones or recurrent somatic mutations driving
resistance. Epigenetic and tumour microenvironmental changes [79,80] may contribute to
drug resistance in IBC and should be investigated further in future trials.

This study provides a proof of principle that prospective planning of genomic analysis in
clinical trials is feasible in advanced breast cancer, and provides insight into the dynamics of
cancer genome evolution through therapy.
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S1 Fig. Forest plots of confirmed clinical benefit by subgroups. (A) Subgroup analyses for
Part A. (B) Subgroup analyses for Part B.
(TIF)

S2 Fig. PFS curves (Part A) of trastuzumab-treated (n = 7) versus trastuzumab-naïve
patients (n = 19). Y-axis is percentage PFS, x-axis is time to PD or death (days). Blue line, tras-
tuzumab-naïve patients; red line, trastuzumab-treated patients.
(TIF)

S3 Fig. PFS curves (whole study) of trastuzumab-treated (n = 7) versus trastuzumab-naïve
patients (n = 19). Y-axis is percentage PFS, x-axis is time to PD or death (days). Blue line, tras-
tuzumab-naïve patients; red line, trastuzumab-treated patients.
(TIF)
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S4 Fig. TP53mutations identified in IBC. Each missense, nonsense and frameshift mutation
is depicted as a green circle; splice site mutations are not shown. Recurrent gain-of-function p.
R248 mutations are labelled. TAD, transcription-activation domain.
(TIF)

S5 Fig. Mutational processes underlying somatic mutations in pre-treatment biopsies. (A)
Breakdown of mutations driven by age, APOBEC and other mutational processes by patient.
(B) Boxplots of number of mutations explained by age, APOBEC and other mutational signa-
tures. (C) Breakdown of mutational signatures in IBC001 and IBC007. (D) Boxplot of different
contributions of age, APOBEC-related and other mutational signatures in IBC versus non-IBC
tumours.
(TIF)

S6 Fig. PFS curves of patients harbouring activating mutations in PI3K/Akt pathway
(n = 8) versus those without (n = 5). Activation of PI3K/Akt pathway defined as PI3KCA
amplification or activating mutation, PTEN loss and/or activating mutations in AKT1 and
ERBB2.Y-axis is percentage PFS, x-axis is time to PD or death (days). Blue line, patients with-
out mutations in PI3K/Akt pathway; red line, patients with somatic activation in PI3K/Akt
pathway.
(TIF)

S7 Fig. Comparing IBC to an age-matched, ER and PgR status matched non-IBC cohort
(n = 22). (A) Boxplot showing higher numbers of somatic nonsynonymous (NS) mutations
identified in IBC patients compared to non-IBC patients. (B) Barplot showing an enrichment
of TP53 mutations in IBC patients versus non-IBC patients. (C) Boxplot showing higher num-
bers of neoantigens predicted in IBC patients compared to non-IBC patients.
(TIF)

S8 Fig. Ploidy and wGII comparisons between pre- and post-treatment tumours. (A) Ploidy
scores in pre-treatment (x-axis) and post-treatment (y-axis) tumours. Line represents linear
regression fit. (B) wGII scores in pre- and post-treatment tumours.
(TIF)

S9 Fig. Unsupervisedhierarchical clustering of SCNAs in pre- and post-treatment tumour
biopsies (n = 9). Pre-treatment biopsies are labelled T1 and in green; post-treatment biopsies
are labelled T2 and in blue.
(TIF)

S10 Fig. SNV clusters identified in matched tumours pre- and post-treatment.Each of the
nine tumours with copy number data is shown here. SNVmutation clusters in each tumour
determined by Dirichlet clustering using PyClone coloured distinctly and labelled from 1
through 6. Shades of yellow are clusters shared between biopsies, greens are clusters only in the
pre-treatment biopsy, and blues are clusters only in the post-treatment biopsies. Mutations in
driver genes are labelled, where present. T1, pre-treatment biopsy; T2, post-treatment biopsy;
CCF, cancer cell fraction.
(TIF)

S11 Fig. Patterns of clonal evolution following afatinib monotherapy. Eight of 9 tumours
display branched evolution, 1 tumour displayed shift in clonal structure. The intensity of blue
shading corresponds to density of somatic mutations. T1, pre-treatment biopsy; T2, post-treat-
ment biopsy; CCF, cancer cell fraction.
(TIF)
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