

Title	Is standard deviation of daily PM2.5 concentration associated with respiratory mortality?
Author(s)	Lin, H; Ma, W; Qiu, H; Vaughn, MG; Nelson, EJ; Qian, Z; Tian, L
Citation	Environmental Pollution, 2016, v. 216, p. 208-214
Issued Date	2016
URL	http://hdl.handle.net/10722/227793
Rights	This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 International License.

1	Is standard deviation of daily $PM_{2.5}$ concentration associated with respiratory
2	mortality?
3	
4	Hualiang Lin ^{a,1} , Wenjun Ma ^{a,1} , Hong Qiu ^b , Michael G. Vaughn ^c , Erik Nelson ^c ,
5	Zhengmin Qian ^{c,*} , Linwei Tian ^{b,*}
6	
7	^a Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for
8	Disease Control and Prevention, Guangzhou, China
9	^b School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong
10	Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China
11	^c College for Public Health and Social Justice, Saint Louis University, Saint Louis,
12	MO 63104, US
13	
14	Correspondence to: Zhengmin Qian, College for Public Health and Social Justice,
15	Saint Louis University, 3545 Lafayette Avenue, Saint Louis, MO 63104, US. Email:
16	zqian2@slu.edu; Fax: 314-977-3234; or Linwei Tian, School of Public Health, Li Ka
17	Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road,
18	Pokfulam, Hong Kong, China; Email: linweit@hku.hk
19	
20	¹ Hualiang Lin and Wenjun Ma contributed equally to this work.
21	
22	

23 ABSTRACT

Studies on health effects of air pollution often use daily mean concentration to 24 25 estimate exposure while ignoring daily variations. This study examined the health effects of daily variation of PM2.5. We calculated daily mean and standard deviations 26 of PM_{2.5} in Hong Kong between 1998 and 2011. We used a generalized additive 27 model to estimate the association between respiratory mortality and daily mean and 28 variation of PM_{2.5}, as well as their interaction. We controlled for potential 29 confounders, including temporal trends, day of the week, meteorological factors, and 30 31 gaseous air pollutants. Both daily mean and standard deviation of PM_{2.5} were significantly associated with mortalities from overall respiratory diseases and 32 pneumonia. Each 10 ug/m³ increment in daily mean concentration at lag 2 day was 33 34 associated with a 0.61% (95% CI: 0.19%, 1.03%) increase in overall respiratory mortality and a 0.67% (95% CI: 0.14%, 1.21%) increase in pneumonia mortality. And 35 a 10 μ ug/m³ increase in standard deviation at lag 1 day corresponded to a 1.40% (95%) 36 37 CI: 0.35%, 2.46%) increase in overall respiratory mortality, and a 1.80% (95% CI: 0.46%, 3.16%) increase in pneumonia mortality. We also observed a positive but 38 non-significant synergistic interaction between daily mean and variation on 39 respiratory mortality and pneumonia mortality. However, we did not find any 40 significant association with mortality from chronic obstructive pulmonary diseases. 41 Our study suggests that, besides mean concentration, the standard deviation of PM_{2.5} 42 might be one potential predictor of respiratory mortality in Hong Kong, and should be 43 considered when assessing the respiratory effects of PM_{2.5}. 44

46	Capsule: This study suggests that, in addition to daily mean concentration, daily
47	standard deviation of air pollution, is also significantly associated with increased
48	respiratory mortality.
49	
50	Keywords: fine particulate matter air pollution; standard deviation; respiratory
51	mortality; time series study
52	
53	

1. Introduction

55	Numerous epidemiological studies have consistently demonstrated that short-term
56	exposure to ambient $PM_{2.5}$ (particles with an aerodynamic diameter less than 2.5 $\mu m)$
57	is associated with increased respiratory health outcomes (Dominici et al. 2006, Peng
58	et al. 2008, Johannson et al. 2015). The majority of these studies have investigated the
59	effects of daily mean concentration of PM _{2.5} , more generally, the location parameter
60	of $PM_{2.5}$ distribution (Darrow et al. 2009, Chen et al. 2015). There is limited
61	information on the health effects of $PM_{2.5}$ variability, the scale parameter, and the
62	possible interaction of the mean and variability.
63	It is reasonable to hypothesize that daily variation of $PM_{2.5}$ might be
64	independently associated with health outcomes. Consider the following hypothetical
65	scenarios, where each day is divided into three equal periods and under the
66	simplifying assumption that all covariates are held constant. Under this framework,
67	suppose that the mortality count (on the logarithmic scale) is 100 when $PM_{2.5}$
68	concentration is 50 for each of the three time periods, and that the RR per 10 ug/m^3
69	increase in $PM_{2.5}$ is 2. In our first scenario, suppose that the $PM_{2.5}$ concentration is
70	stable at 60 ug/m ³ , resulting in a mortality count of 600 (100*RR*3 time periods
71	=100*2*3=600). In the second scenario, suppose that the mean concentration is the
72	same as the first scenario (60 ug/m^3), yet with large variability between the three time
73	periods, 50, 60 and 70 ug/m^3 , respectively. The mortality count would be 700 [100+
74	(100*2) + (100*4) = 700], which is considerably larger than the mortality in the first
75	scenario. These hypothetical scenarios suggest that variations in PM2.5 throughout a

76 given day should not be ignored as it may directly impact health outcomes.

77	Variability in air pollution is also manifest through peak concentration hours and
78	lower concentration hours. Peak concentration is usually observed during day time,
79	which may expose individuals to higher levels of air pollutants due to increased
80	outdoor activities during the day time. A few recent studies reported that exposure to
81	high levels of air pollution, with a lag time of a few hours, was associated with
82	adverse health outcomes. For example, one study conducted in Japan reported that
83	exposure to suspended particulate matter with a lag of 2 hours was associated with
84	higher mortality risk among patients with hemorrhagic stroke (Yamazaki et al. 2007).
85	Similarly, an experimental study showed that inhalation of diesel exhaust impairs the
86	regulation of vascular tone 2 hours after exposure to air pollution (Mills et al. 2005).
87	These studies imply that standard deviation might be a more straightforward indicator
88	to address the acute health effects of air pollution.
89	The purpose of this study was to examine the effects of ambient air pollution,
90	specifically, the daily variation and daily mean concentration of $PM_{2.5}$, and their
91	interaction, on respiratory mortality in Hong Kong.
92	
93	2. Materials and methods

94 2.1 Air Pollution Data

We obtained hourly air pollution data collected between January 1, 1998 and
December 31, 2011 from the Environmental Protection Department of Hong Kong.
Details of the air pollution monitoring have been described elsewhere (Qiu et al.

98	2012). In brief, there are 14 air monitoring stations in Hong Kong, each of which
99	collected four major air pollutants (PM ₁₀ , NO ₂ , SO ₂ , and O ₃). Hourly concentrations
100	of PM _{2.5} have been monitored in four stations (Tsuen Wan (TW), Tap Mun (TM),
101	Tung Chung (TC) and Central (CL)) since 1998 (Fig. 1). We used the average of daily
102	mean and variation of these four stations in the main model to approximate $PM_{2.5}$
103	concentrations for all of Hong Kong.
104	The daily mean concentration and variability in $PM_{2.5}$ was defined as the average
105	concentration and standard deviation (SD) of 24-hour $PM_{2.5}$ concentration within one
106	day for each station (Xu et al. 2014). We calculated daily mean and SD of hourly
107	$PM_{2.5}$ concentration when at least 18 of the total 24 hourly measurements of $PM_{2.5}$
108	were available for a given station.
109	We also calculated daily mean concentrations of NO_2 , SO_2 and 8-hour mean
110	(10:00 to 18:00) concentrations of O_3 using data from these four stations. Daily
111	meteorological data for the same period, including daily mean temperature ($^{\circ}$ C),
112	relative humidity (%) and wind speed (m/s), were also obtained from the Hong Kong
113	Observatory.
114	
115	2.2 Mortality Data

116 Daily mortality data, which covered all deaths in Hong Kong over the period of

117 1998-2011, were obtained from the Hong Kong Census and Statistics Department.

118 They were coded according to the 9th revision (1998-2000) or 10th revision

119 (2001-2011) of the International Classification of Diseases (ICD). Overall respiratory

120	deaths (ICD-9: 460-519 or ICD-10: J00-J99, 519, excluding influenza), chronic
121	obstructive pulmonary diseases (COPD, ICD-9: 491-492, and 496 or ICD-10:
122	J40-J44), and pneumonia (ICD-9: 480-486 or ICD-10: J12-J18) were extracted to
123	construct the corresponding time series. We excluded influenza because previous
124	studies suggested that influenza epidemics may confound the associations between air
125	pollution and respiratory mortality (Ren et al. 2006, Qiu et al. 2012). Therefore, daily
126	hospital admissions for influenza were abstracted and used to identify influenza
127	outbreaks, which were then treated as a potential confounder in the analysis (Thach et
128	al. 2010).
129	
130	2.3 Statistical methods
131	We examined the short-term association between daily mean and variation of
132	PM _{2.5} concentrations and respiratory mortalities using generalized additive models
133	(GAM), and a quasi-Poisson link function was applied to account for over-dispersion
134	in daily respiratory mortality (Zanobetti and Schwartz 2008, Stieb et al. 2009). We
135	used a penalized smoothing spline to filter out seasonality and long-term trends in
136	daily mortality, as well as temperature and relative humidity. We included day of the
137	week and public holidays in the model as dummy variables (Schwartz and Morris
138	1995). To adjust for the potential confounding effect of influenza outbreaks, we
139	entered a dummy variable for weeks with the number of influenza hospital admissions
140	exceeding the 75 th percentile in a year into the model (Wong et al. 2002).
141	To reduce the potential concerns associated with multiple testing and model

142	selection, we selected a priori model specification and degrees of freedom (df) for
143	temporal trends and meteorological factors, as has been done by others (Bell et al.
144	2008, Peng et al. 2008, Tian et al. 2013). We used a df of 6 per year for time trends to
145	filter out the information at time scales of 2 months, a df of 6 for mean temperature of
146	current day temperature (Temp $_0$) and previous 3 days' moving average (Temp $_{1-3}$) and
147	a df of 3 for current day's relative humidity (Humidity ₀). For temperatures, 6 df was
148	chosen to account for potential nonlinear relationship between temperature and
149	mortality (Curriero et al. 2002). Briefly, we set up a core model to remove the
150	long-term trends, seasonal variations and to adjust for time varying confounders as
151	follows:
152	$\log[E(Y_t)] = \alpha + s(t, df = 6/year) + s(Temp_0, df = 6) + s(Temp_{1-3}, df = 6)$
153	+ s(Humidity ₀ , df=3) + β_1 *DOW+ β_2 *PH+ β_3 *Influenza,
154	where $E(Y_t)$ is the expected respiratory mortality count on day t, α is the model
155	intercept, s() indicates a smoother function based on penalized splines, t represents
156	time, and β is the regression coefficient.
157	After the core model was established, we included the $PM_{2.5}$ concentration in the
158	model to analyze the association between daily mean and variation of $PM_{2.5}$ and
159	mortalities from specific respiratory diseases.
160	We estimated the linear effects with different lag structures including both
161	single-day lag (from the current day (lag ₀) up to three lag days (lag ₃)), as previous
162	studies in China showed little evidence of association with a lag beyond 3 days (Kan
163	et al. 2007, Lin et al. 2016). We also examined the respiratory mortality impacts of

multi-day lags (moving averages for the current day and the previous 1, 2 and 3 days:
lag₀₁, lag₀₂, and lag₀₃).

166	To justify the assumption of linearity between the logarithm of respiratory
167	mortality and daily mean and variation of $PM_{2.5}$, we used a smoothing function to
168	graphically examine the exposure-response relationship between daily mean and
169	variation of $PM_{2.5}$ and respiratory mortality (Kan et al. 2007, Tian et al. 2014).
170	We further investigated the interaction between daily mean and variation of
171	$PM_{2.5}$ in relation to respiratory mortality, the purpose of which is to check whether the
172	effect of $PM_{2.5}$ variation can be ascribed to $PM_{2.5}$ mean, as there is a relatively high
173	correlation between these two indicators. Each of these two factors was firstly
174	classified into two levels (high and low) using the median value as the cut-point, and a
175	new variable was then created to represent the combination of the two variables,
176	which could be classified into four categories: low mean and low variation (LL), low
177	mean and high variation (LH), high mean and low variation (HL), and high mean and
178	high variation (HH). It is reasonable to expect that, if the effect of $PM_{2.5}$ variation is
179	purely due to $PM_{2.5}$ mean, the effect of LH would be similar to that of LL, and the
180	effect of HL would be similar to that of HH; otherwise, it may indicate that the effects
181	of these two indicators were independent.
182	Our analysis suggested that they were independent (controlling for daily mean
183	concentration of $PM_{2.5}$ did not change the risk estimates of daily $PM_{2.5}$ SD, as shown
184	in Table 3), so we further examined their interaction using an additive model proposed
185	by Andersson (Andersson et al. 2005), and calculated three measures of additive

186	interactions: relative excess risk due to interaction (RERI), attributable proportion
187	(AP) and synergy index (SI). When RERI and AP were equal to 0 and SI equal to 1,
188	we considered that to be absence of additive interaction; while additive interaction
189	was present if RERI and AP did not equal 0 and SI exceeded unity. Furthermore, an SI
190	greater than 1 denoted a synergetic interaction, which implied that the joint effects of
191	two factors in an additive model was greater than sum of their individual effects. On
192	the other hand, if SI was smaller than 1, it implied an antagonistic interaction,
193	indicating that in the presence of two exposures in an additive model, one factor
194	decreased the effect of the other (Lundberg et al. 1996, Zhang et al. 2016).

196 2.4 Sensitivity analysis

197 A few sensitivity analyses were conducted to check the robustness of the findings. We used one alternative indicator for PM_{2.5} variability, namely the standard deviation 198 of PM_{2.5} concentration at day time (7:00 am to 8:00 pm) as people usually have more 199 outdoor activities and are exposed to the ambient air pollution during these hours. We 200 also changed the degrees of freedom in the smoothing function of temporal trends. We 201 also fit a model using a smoothing function (df=3) for wind speed to assess the impact 202 of wind speed on the risk estimates. To check the potential exposure misclassification 203 resulting from the pollution data, we did a sensitivity analysis by restricting daily 204 mortality data to those residents who lived nearby Tsuen Wan Station, as this station 205 has been suggested to be most representative of Hong Kong's overall air quality for 206 the majority of the population (Qiu et al. 2012). 207

208	All analyses were conducted using the "mgcv" package in R. We reported the
209	results as excess relative risk (ERR) in respiratory mortality for each 10 ug/m^3
210	increase in daily $PM_{2.5}$ variation. Statistical significance was defined as p<0.05.
211	
212	3. Results
213	We recorded 95,857 deaths from respiratory diseases during the study period.
214	Among them, 25,743 were from COPD and 59,713 from pneumonia. On average,
215	there were 19 people died from respiratory diseases per day, 5 from COPD, and 12
216	from pneumonia.
217	
218	Table 1
219	Summary statistics of daily respiratory mortality, air pollutants, and weather
220	conditions in Hong Kong, 1998-2011.

Variable	Davia	Mean±SD	Percentile				
	Days		Min	P25	P50	P75	Max
Daily mortality count							
Overall respiratory	5113	18.8±6.4	4	14	18	22	58
COPD	5113	5.0±2.6	0	3	5	7	18
Pneumonia	5113	11.7±5.0	0	8	11	15	39
Air pollution ($\mu g/m^3$)							
PM _{2.5} mean	5112	37.5±19.9	5.8	21.7	34.0	48.9	172.0
PM _{2.5} SD	5112	10.5±6.4	2.0	6.0	8.5	12.8	92.2

	NO ₂	5112	55.5±20.4	7.7	40.2	53.6	67.9	152.4
	SO_2	5112	17.6±11.0	0.1	10.5	15.1	22.6	121.5
	O ₃	5112	45.3±23.5	1.1	26.0	41.5	61.2	144.4
	Meteorological factors							
	Temperature (°C)	5113	23.5±5.0	8.2	19.5	24.7	27.8	31.8
	Relative humidity	5113	77.9±10.3	27.5	73.2	79.0	84.7	98.1
221	Abbreviation: SD, star	ndard deviation	; Px, xth pe	rcentile;	Min,	minim	um; Ma	ax,
222	maximum.							
223								
224	During the study pe	eriod, there were	190 days wit	h missin	g inforn	nation a	at TW	
225	station, 90 days at TM s	station, 456 days	at TC station	, and 44	days at	CL stat	tion,	
226	accounting for 3.7%, 1.5	8%, 8.9% and 0.	9% of the obs	servation	ı days, r	espectiv	vely.	
227	However, there was onl	y 1 day for the e	entire study pe	riod whe	ere mon	itoring	stations	5
228	were unable to collect a	ir pollution mea	surements. Th	e daily 1	nean an	d stand	ard	
229	deviation of PM _{2.5} conc	entration were 3	7.5 and 10.5 u	ug/m ³ . S	uppleme	entary I	Figure s	1
230	shows the time series of	f daily mean and	standard devi	iation of	°PM _{2.5} c	oncent	rations	in
231	Hong Kong during the s	study period. Th	ere were seaso	onal patt	erns for	both m	iean and	ł
232	standard deviation of P	M _{2.5} with higher	concentration	s in the	cold sea	ison. Tł	ne daily	
233	mean concentrations of	NO_2 , SO_2 and C) ₃ were 55.5, 1	17.6, and	131.1 u	g/m ³ ,		
234	respectively. The daily 1	mean temperatur	e and relative	humidi	ty were	23.5 °C	c and	
235	77.9%, respectively.							

with the mean concentration of $PM_{2.5}$ (correlation coefficient, r = 0.67) and was also correlated with other covariates (for example, r=0.63 for SO₂, and r = 0.17 for O₃). There were low to moderate correlations between other pollutants and weather covariates, except between SO₂ and O₃ (Table 2).

241

242 **Table 2**

- 243 Pearson correlation coefficients between PM_{2.5} variation, air pollutants, and weather
- conditions in Hong Kong, 1998-2011.

Pollutants	PM _{2.5} SD	PM _{2.5} mean	NO ₂	SO_2	O ₃	Temperature
PM _{2.5} mean	0.67**					
NO ₂	0.61**	0.75**				
SO ₂	0.63**	0.59**	0.60**			
O ₃	0.17**	0.49**	0.35**	0.02		
Temperature	-0.18**	-0.36**	-0.43**	-0.08**	-0.08**	
Humidity	-0.12**	-0.42**	-0.39**	-0.28**	-0.42**	0.25**

245 **p< 0.01, * P< 0.05.

246

Fig. 2 shows the respiratory mortality effects of daily mean and standard

deviation of PM_{2.5} by lag time (in days) in the single pollutant models. We found that

- both mean and standard deviation of daily $PM_{2.5}$ concentration were significantly
- associated with increasing mortalities from overall respiratory diseases and
- 251 pneumonia at most of the lag times examined; more acute effects were observed for

252	$PM_{2.5}$ deviation than $PM_{2.5}$ mean. For example, a 10 ug/m ³ increase in daily mean
253	concentration of $PM_{2.5}$ at lag 2 day corresponded to a 0.61% (95% CI: 0.19%, 1.03%)
254	and 0.67% (95% CI: 0.14%, 1.21%) increase in mortalities from overall respiratory
255	diseases and pneumonia, respectively. And a 10 ug/m ³ increase in daily standard
256	deviation of $PM_{2.5}$ at lag 1 day corresponded to a 1.40% (95% CI: 0.35%, 2.46%) and
257	1.80% (95% CI: 0.46%, 3.16%) increase in mortalities from overall respiratory
258	diseases and pneumonia, respectively. In the models, we did not find any effects on
259	mortality from COPD. In the two-pollutant models with adjustment for daily mean
260	concentrations of NO ₂ , SO ₂ or O ₃ , their effects changed very little and remained
261	statistical significant (Table 3).

263 **Table 3**

ERR in mortality for an 10 ug/m^3 increase in daily standard deviation of PM_{2.5} in different models.

Models	Overall respiratory morality	Pneumonia morality
Model-single*	1.40 (0.35, 2.46)	1.80 (0.46, 3.16)
Day time	1.35 (0.21, 2.50)	1.40 (0.35, 2.46)
Model w/PM _{2.5} Mean	1.39 (0.27, 2.52)	1.35 (0.21, 2.50)
Model w/SO ₂	1.46 (0.39, 2.55)	1.39 (0.27, 2.52)
Model w/NO ₂	1.21 (0.13, 2.32)	1.46 (0.39, 2.55)
Model w/O ₃	1.44 (0.38, 2.52)	1.21 (0.13, 2.32)
Model w/ws	1.39 (0.34, 2.45)	1.79 (0.45, 3.15)

Nearby TW	1.23 (0.32, 2.15)	1.39 (0.34, 2.45)
df=5/year	1.56 (0.51, 2.63)	1.23 (0.32, 2.15)
df=7/year	1.10 (0.04, 2.16)	1.56 (0.51, 2.63)
df=8/year	1.06 (0.01, 2.12)	1.10 (0.04, 2.16)

266 * Results obtained from single-pollutant models.

Abbreviations: ERR, excess relative risk; df, degree of freedom; "Model w/SO₂" 267 means results from model with SO₂ being controlled for; "Model w/ws" means results 268 from the model with wind speed being controlled for; "Nearby TW" means results 269 from model with subjects around Tsuen Wan Station. 270 271 Fig. 3 shows the smoothing curves of the concentration-response curves for the 272 effects of daily mean and standard deviation of PM_{2.5} on mortalities from overall 273 274 respiratory diseases and pneumonia. The concentration-response curves, while not perfect, suggested an approximately linear relationships. 275 In the sensitivity analyses, we used standard deviation of PM_{2.5} at day time as an 276 exposure indicator and produced comparable results: each 10 ug/m³ increase in daily 277 standard deviation of PM_{2.5} corresponded to a 1.35% (0.21%, 2.50%) and 1.40% 278 (0.35%, 2.46%) increase in mortalities from overall respiratory diseases and 279 pneumonia, respectively. And when we controlled for daily mean concentration of 280 281 PM_{2.5}, the risk estimates of daily PM_{2.5} SD remained similar: the ERRs were 1.39% (95% CI: 0.27%, 2.52%) and 1.35% (95% CI: 0.21%, 2.50%) for mortalities from 282 overall respiratory diseases and pneumonia, respectively. We used alternative degrees 283

284	of freedom to adjust for temporal trends (5, 7 and 8 per year), with most of the results
285	largely unaffected (Table 3). The model using only air pollution data from the TW
286	station and the model controlling for wind speed both yielded results comparable to
287	those from the main model. All these suggested that the association between daily
288	PM _{2.5} variation and overall respiratory diseases and pneumonia obtained from the
289	main models was robust.
290	Table 4 shows the interaction between daily mean and standard deviation of
291	$PM_{2.5}$ in relation to their effects on respiratory and pneumonia mortality. Despite the
292	lack of statistical significance, the results suggested that there was some weak
293	synergistic interaction between the two factors in regards to their association with
294	overall respiratory mortality (RERI = 1.28, AP = 1.25, and SI = 1.87) and pneumonia
295	mortality (RERI = 0.73, AP = 0.71, and SI = 1.34).
296	

297 **Table 4**

The interactive effects between daily mean and standard deviation of $PM_{2.5}$ on respiratory mortalities in Hong Kong, 1998-2011.

Models	No. of days	ERR(%)	Lower(%)	Upper(%)
Overall respiratory mortality				
Low-low	1708	0	-	-
Low-high	852	0.58	-1.56	2.78
High-low	765	0.89	-1.43	3.27
High-high	1784	2.75	0.66	4.89

RERI	1.28 (95% CI	: -1.72, 4.35))	
AP (%)	1.25 (95% CI	: -1.73, 4.16))	
Synergy index	1.87 (95% CI	: 0.21, 16.54)	
Pneumonia mortality				
Low-low	1708			
Low-high	852	1.32	-1.41	4.12
High-low	765	0.88	-2.05	3.89
High-high	1784	2.93	0.29	5.64
RERI	0.73 (95% CI	: -3.13, 4.54))	
AP (%)	0.71 (95% CI	: -3.05, 4.46))	
Synergy index	1.34 (95% CI	: 0.23, 7.93)		

Abbreviations: ERR, excess relative risk; RERI, relative excess risk due to interaction;
AP, attributable proportion.

302

303 Discussion

To our knowledge, this is the first study to report the association between daily

standard deviation of $PM_{2.5}$ concentrations and respiratory mortality and its possible

interaction with daily mean concentration of $PM_{2.5}$. Using 14 years of data with about

307 96,000 deaths in Hong Kong, our study suggested that, besides daily mean

- 308 concentration of PM_{2.5}, standard deviation of PM_{2.5} might be another respiratory
- 309 health predictor; and it appears that these two factors might have some positive, but
- 310 non-significant, synergistic interaction in terms of their effects on respiratory

mortality. These findings provided additional insights into the deleterious respiratoryhealth effects of air pollution.

313	Similar to our study, a few studies have also reported that temperature variation
314	within a short time period was associated with various adverse health outcomes
315	(Zanobetti et al. 2012, Lin et al. 2013, Xu et al. 2014). Statistical theory also supports
316	that the frequency of extreme events is more dependent on the variability than the
317	mean values (Wordley et al. 1997). However, no such study has examined whether
318	daily variation of air pollution is associated with human health (Madsen et al. 2012).
319	Our results of the association between daily variation of $PM_{2.5}$ and respiratory
320	mortality, particularly pneumonia, could not be explained by their correlation with
321	daily mean PM _{2.5} . We proposed a novel method to examine the individual effect of
322	two moderately/highly correlated factors, which has not been previously reported. We
323	also observed more acute effects of $PM_{2.5}$ SD (0-1 lag days) than those of $PM_{2.5}$ mean
324	(2-3 lag days), and the model controlling for daily mean concentration of $PM_{2.5}$
325	showed a similar effect of daily standard deviation of $PM_{2.5}$, all these supported that
326	the effects of $PM_{2.5}$ SD were not due to its correlation with $PM_{2.5}$ mean.
327	The effects of both daily mean and standard deviation of $PM_{2.5}$ on respiratory
328	mortality changed very little after adjusting for various gaseous pollutants (NO ₂ , SO ₂
329	and O ₃). Consistent results were observed when using alternative model specifications,
330	such as varying degrees of freedom for the smoothing functions for temporal trends
331	and using air pollution information from a central representative air monitoring
332	station. Taken together, this study suggested that both daily mean and variation of

333	PM _{2.5} concentration could plausibly increase the risk of respiratory mortality,
334	particularly pneumonia, and that adaptation of intervention strategies targeted solely
335	to reduce mean concentration of $PM_{2.5}$ might be more successful at preventing poor
336	health outcomes if measures are taken to reduce daily variation as well.
337	Our study further provided the first evidence of some weak, though
338	non-significant, interaction between daily mean and standard deviation of $PM_{2.5}$ on
339	respiratory mortality. Previous studies have mainly considered mean concentration of
340	$PM_{2.5}$ when investigating the health effects and formulating air pollution control
341	measures; this finding suggested that attention should also be paid to the daily
342	variation of PM _{2.5} . The observed non-significant synergistic interactive effects
343	suggested that people may suffer larger health impacts at days with higher values of
344	both the mean and variation.
345	The adverse respiratory effects of larger variation in $PM_{2.5}$ concentration were
346	biologically plausible. It was likely that during the days with higher standard
347	deviation, people may have higher levels of exposure to $PM_{2.5}$ and inhale more
348	particles. Some vulnerable subgroups may be less acclimatized to significant swings
349	in $PM_{2.5}$ and thus led to more adverse health outcomes. Another possibility might be
350	that increased daily variation of $PM_{2.5}$ concentrations may stress the ability of the
351	respiratory system to adapt to extremely high levels of $PM_{2.5}$ concentrations, which
352	happen frequently within a relatively short time period (which is more often observed
353	in day time with more outdoor human activities, and thus more exposure to traffic
354	exhausts). Such adaptation ability may be reduced in the presence of another illness,

such as respiratory conditions. Recently, one Japanese study suggested that exposure 355 to high levels of suspended particulate matter with a lag of 2 hours was associated 356 357 with higher mortality risk among patients with hemorrhagic stroke (Yamazaki et al. 2007), and in one experimental study, inhalation of diesel exhaust was shown to 358 impair the regulation of vascular tone 2 hours after exposure (Mills et al. 2005). The 359 mechanisms for the observed positive interaction between daily mean and standard 360 deviation of PM_{2.5} concentrations remained largely unknown. However, it is possible 361 that, in Hong Kong, when both larger variations and higher daily mean concentrations 362 363 of PM_{2.5} occur simultaneously, the participants would be exposed to higher levels of ambient air pollution. This exposure would lead to enhanced acute mortality effects, 364 especially for those who are the most vulnerable and susceptible, such as the elderly 365 366 and those with chronic medical conditions. More studies are warranted to further investigate this research question. We found significant effects on mortalities from 367 overall respiratory diseases and pneumonia, while no significant effect was detected 368 369 for COPD. The underlying reasons remained unclear; it was possible that people with COPD had relatively fewer outdoor activities and were less affected by variation in 370 ambient PM_{2.5} concentrations. More studies are warranted to further investigate the 371 underlying mechanisms. 372

This study had several strengths. Firstly, this study calls for consideration of daily variation of air pollution in future studies; based on a long time series data in Hong Kong, our study found a significant association between daily standard deviation of PM_{2.5} and respiratory mortality, which has not been reported. Secondly,

377	we proposed a novel and easy method to differentiate the effects of two correlated
378	factors, which is often one concern in environmental epidemiological studies. Thirdly,
379	this study explored the interactive effects of $PM_{2.5}$ mean and standard deviation on the
380	risk of respiratory mortality, which further improved our understanding of the
381	association between $PM_{2.5}$ and respiratory mortality. More importantly, findings from
382	this study have some important public health implications. The variation of $PM_{2.5}$
383	concentrations should be considered as an important indicator in the future air
384	pollution management and health protection measures. Practically, to reduce the daily
385	variation of $PM_{2.5}$ concentrations, the air pollution controlling policies should pay
386	more attention to vehicle emissions, which produced common cause of peak
387	concentrations of $PM_{2.5}$ in Hong Kong (Cheng et al. 2006).
388	We suggest more studies to investigate possible effects of PM _{2.5} variation on
388 389	We suggest more studies to investigate possible effects of $PM_{2.5}$ variation on other health outcomes and their interaction with $PM_{2.5}$ mean concentration in different
388 389 390	We suggest more studies to investigate possible effects of $PM_{2.5}$ variation on other health outcomes and their interaction with $PM_{2.5}$ mean concentration in different environmental conditions.
388 389 390 391	We suggest more studies to investigate possible effects of $PM_{2.5}$ variation on other health outcomes and their interaction with $PM_{2.5}$ mean concentration in different environmental conditions. At the same time, a few limitations should be noted. First, the ecological design
388 389 390 391 392	We suggest more studies to investigate possible effects of PM _{2.5} variation on other health outcomes and their interaction with PM _{2.5} mean concentration in different environmental conditions. At the same time, a few limitations should be noted. First, the ecological design of our study did not allow us to investigate the PM-mortality association at the
388 389 390 391 392 393	We suggest more studies to investigate possible effects of PM _{2.5} variation on other health outcomes and their interaction with PM _{2.5} mean concentration in different environmental conditions. At the same time, a few limitations should be noted. First, the ecological design of our study did not allow us to investigate the PM-mortality association at the individual level, thus hindering causal inference. Second, we used ambient air
 388 389 390 391 392 393 394 	We suggest more studies to investigate possible effects of PM _{2.5} variation on other health outcomes and their interaction with PM _{2.5} mean concentration in different environmental conditions. At the same time, a few limitations should be noted. First, the ecological design of our study did not allow us to investigate the PM-mortality association at the individual level, thus hindering causal inference. Second, we used ambient air pollution data from fixed air monitoring stations to represent the population exposure,
 388 389 390 391 392 393 394 395 	We suggest more studies to investigate possible effects of PM _{2.5} variation on other health outcomes and their interaction with PM _{2.5} mean concentration in different environmental conditions. At the same time, a few limitations should be noted. First, the ecological design of our study did not allow us to investigate the PM-mortality association at the individual level, thus hindering causal inference. Second, we used ambient air pollution data from fixed air monitoring stations to represent the population exposure, which might have resulted in exposure misclassification. Misclassification in causes
 388 389 390 391 392 393 394 395 396 	We suggest more studies to investigate possible effects of PM _{2.5} variation on other health outcomes and their interaction with PM _{2.5} mean concentration in different environmental conditions. At the same time, a few limitations should be noted. First, the ecological design of our study did not allow us to investigate the PM-mortality association at the individual level, thus hindering causal inference. Second, we used ambient air pollution data from fixed air monitoring stations to represent the population exposure, which might have resulted in exposure misclassification. Misclassification in causes of death were also possible due to diagnostic and coding transition, but there is
 388 389 390 391 392 393 394 395 396 397 	We suggest more studies to investigate possible effects of PM _{2.5} variation on other health outcomes and their interaction with PM _{2.5} mean concentration in different environmental conditions. At the same time, a few limitations should be noted. First, the ecological design of our study did not allow us to investigate the PM-mortality association at the individual level, thus hindering causal inference. Second, we used ambient air pollution data from fixed air monitoring stations to represent the population exposure, which might have resulted in exposure misclassification. Misclassification in causes of death were also possible due to diagnostic and coding transition, but there is evidence that the accuracy of diagnoses and causes of death certificates was high in

- 428 Curriero, F. C., Heiner, K. S., Samet, J. M., Zeger, S. L., Strug, L. and Patz, J. A.
- (2002). Temperature and mortality in 11 cities of the eastern United States. American
 Journal of Epidemiology 155(1): 80-87.
- 431 Darrow, L. A., Klein, M., Sarnat, J. A., Mulholland, J. A., Strickland, M. J., Sarnat, S.
- 432 E., Russell, A. G. and Tolbert, P. E. (2009). The use of alternative pollutant metrics in
- time-series studies of ambient air pollution and respiratory emergency department
 visits. Journal of Exposure Science and Environmental Epidemiology 21(1): 10-19.
- 435 Dominici, F., Peng, R. D., Bell, M. L., Pham, L., McDermott, A., Zeger, S. L. and
- 436 Samet, J. M. (2006). Fine particulate air pollution and hospital admission for
- 437 cardiovascular and respiratory diseases. JAMA: The Journal of the American Medical
- 438 Association **295**(10): 1127-1134.
- Johannson, K. A., Balmes, J. R. and Collard, H. R. (2015). Air pollution exposure: a
 novel environmental risk factor for interstitial lung disease? CHEST Journal 147(4):
 1161-1167.
- 442 Kan, H., London, S. J., Chen, G., Zhang, Y., Song, G., Zhao, N., Jiang, L. and Chen, B.
- 443 (2007). Differentiating the effects of fine and coarse particles on daily mortality in
 444 Shanghai, China. Environ Int. 33(3): 376-384.
- Lin, H., Tao, J., Du, Y., Liu, T., Qian, Z., Tian, L., Di, Q., Rutherford, S., Guo, L.,
- Zeng, W., Xiao, J., Li, X., He, Z., Xu, Y. and Ma, W. (2016). Particle size and
 chemical constituents of ambient particulate pollution associated with cardiovascular
 mortality in Guangzhou, China. Environmental Pollution 208, Part B: 758-766.
- Lin, H., Zhang, Y., Xu, Y., Xu, X., Liu, T., Luo, Y., Xiao, J., Wu, W. and Ma, W.
- 450 (2013). Temperature Changes between Neighboring Days and Mortality in Summer: A
 451 Distributed Lag Non-Linear Time Series Analysis. PloS One 8(6): e66403.
- 452 Lundberg, M., Fredlund, P., Hallqvist, J. and Diderichsen, F. (1996). A SAS program
- 453 calculating three measures of interaction with confidence intervals. Epidemiology 454 7(6): 655-656.
- 455 Madsen, C., Rosland, P., Hoff, D. A., Nystad, W., Nafstad, P. and Næss, Ø. E. (2012).
- The short-term effect of 24-h average and peak air pollution on mortality in Oslo, Norway. European journal of epidemiology **27**(9): 717-727.
- 458 Mills, N. L., Törnqvist, H., Robinson, S. D., Gonzalez, M., Darnley, K., MacNee, W.,
- Boon, N. A., Donaldson, K., Blomberg, A. and Sandstrom, T. (2005). Diesel exhaust
 inhalation causes vascular dysfunction and impaired endogenous fibrinolysis.
 Circulation 112(25): 3930-3936.
- 462 Peng, R. D., Chang, H. H., Bell, M. L., McDermott, A., Zeger, S. L., Samet, J. M. and
- Dominici, F. (2008). Coarse particulate matter air pollution and hospital admissions
 for cardiovascular and respiratory diseases among Medicare patients. JAMA: The
- Journal of the American Medical Association **299**(18): 2172.
- 466 Qiu, H., Yu, I. T., Tian, L., Wang, X., Tse, L. A., Tam, W. and Wong, T. W. (2012).
- Effects of Coarse Particulate Matter on Emergency Hospital Admissions for
 Respiratory Diseases: A Time Series Analysis in Hong Kong. Environmental Health
- 469 Perspectives **120**(4): 572-576.
- 470 Ren, C., Williams, G. M. and Tong, S. (2006). Does particulate matter modify the
- association between temperature and cardiorespiratory diseases? Environmental

- 472 Health Perspectives **114**(11): 1690.
- 473 Schwartz, J. and Morris, R. (1995). Air pollution and hospital admissions for
 474 cardiovascular disease in Detroit, Michigan. American Journal of Epidemiology
 475 142(1): 23.
- Stieb, D. M., Szyszkowicz, M., Rowe, B. H. and Leech, J. A. (2009). Air pollution
 and emergency department visits for cardiac and respiratory conditions: a multi-city
 time-series analysis. Environmental Health 8: 25.
- 479 Thach, T. Q., Wong, C. M., Chan, K. P., Chau, Y. K., Neil Thomas, G., Ou, C. Q.,
- Yang, L., Peiris, J. S., Lam, T. H. and Hedley, A. J. (2010). Air pollutants and health
 outcomes: Assessment of confounding by influenza. Atmospheric Environment 44(11):
- 482 1437-1442.
- Tian, L., Ho, K. f., Wang, T., Qiu, H., Pun, V. C., Chan, C. S., Louie, P. K. and
 Ignatius, T. (2014). Ambient Carbon Monoxide and the Risk of Hospitalization Due to
- 485 Chronic Obstructive Pulmonary Disease. American journal of epidemiology: kwu248.
- Tian, L., Qiu, H., Pun, V. C., Lin, H., Ge, E., Chan, J. C., Louie, P. K., Ho, K. F. and Yu, I. T. (2013). Ambient Carbon Monoxide Associated with Reduced Risk of
- Hospital Admissions for Respiratory Tract Infections. Am J Respir Crit Care Med
 188(10): 1240-1245.
- 490 Wong, C.-M., Atkinson, R. W., Anderson, H. R., Hedley, A. J., Ma, S., Chau, P. Y.-K.
- and Lam, T.-H. (2002). A tale of two cities: effects of air pollution on hospital
 admissions in Hong Kong and London compared. Environmental health perspectives
 110(1): 67.
- Wordley, J., Walters, S. and Ayres, J. G. (1997). Short term variations in hospital admissions and mortality and particulate air pollution. Occupational and environmental medicine **54**(2): 108-116.
- Xu, Z., Hu, W., Wang, X., Huang, C. and Tong, S. (2014). The Impact of Temperature
 Variability on Years of Life Lost. Epidemiology 25(2): 313-314
 310.1097/EDE.0000000000066.
- Yamazaki, S., Nitta, H., Ono, M., Green, J. and Fukuhara, S. (2007). Intracerebral
 haemorrhage associated with hourly concentration of ambient particulate matter:
 case-crossover analysis. Occupational and Environmental Medicine 64(1): 17-24.
- Zanobetti, A., O'Neill, M. S., Gronlund, C. J. and Schwartz, J. D. (2012). Summer
 temperature variability and long-term survival among elderly people with chronic
 disease. Proceedings of the National Academy of Sciences 109(17): 6608-6613.
- Zanobetti, A. and Schwartz, J. (2008). Mortality Displacement in the Association of
 Ozone with Mortality. American journal of respiratory and critical care medicine
 177(2): 184-189.
- 509 Zhang, Z., Xie, X., Chen, X., Li, Y., Lu, Y., Mei, S., Liao, Y. and Lin, H. (2016).
- 510 Short-term effects of meteorological factors on hand, foot and mouth disease among
- 511 children in Shenzhen, China: Non-linearity, threshold and interaction. Science of The
- 512 Total Environment **539**: 576-582.
- 513
- 514

Fig. 1. Map of Hong Kong showing the locations of the air pollution monitoringstations.

518

519	Fig. 2 . Percentage change in respiratory mortalities for per 10 ug/m ³ increase in daily
520	mean and standard deviation of PM _{2.5} at different lag days in single-pollutant models.
521	

522 Fig. 3. Exposure-response curves for daily mean and standard deviation of $PM_{2.5}$ and

523 mortalities for overall respiratory diseases and pneumonia. A natural spline smoother

524 with 3 df was applied.

525

526 Fig. s1. Time series of daily mean and standard deviation of $PM_{2.5}$ concentration in

527 Hong Kong, 1998-2011.