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Introduction

Nasopharyngeal carcinoma (NPC) is a unique malignancy 
that arises from the epithelium of the nasopharynx and has 
a restricted prevalence in certain regions of the world. NPC 
shows the highest incidence rate in the Southeast China, 
Southeast Asia, North Africa, Middle East, and the Arctic 
regions, but it is rare in most other parts of the world (1).  
NPC patients are relatively young at diagnosis, when 
compared to other cancer types that usually are diagnosed 
at 65 years of age or older, while NPC has a median age at 
diagnosis of around 50.

Previous studies suggested that there are several cofactors 
that are associated with NPC development. They are the 
dietary factors, infection with an oncovirus, Epstein-Barr 
virus (EBV), and genetic predisposition. NPC is associated 
with genetic alterations on particular chromosomal regions 
and genes, harboring of specific cancer-associating single 

nucleotide polymorphisms (SNPs), and familial aggregation. 
Interestingly, recent studies confirm that epigenetic 
alterations, including the promoter hypermethylation (2), 
are also one of the crucial factors that are highly associated 
with NPC.

Previous reviews suggested the multi-step progression 
model for NPC. Lo et al. proposed that the loss of 
chromosomes 3p and 9p regions is an early event for the 
transformation of the normal nasopharyngeal epithelium (3). 
During the transformation process, the inactivation of the 
p16 gene on chromosome 9 and RASSF1 on chromosome 3, 
and/or the over-expression of the cyclin D1 or amplification 
of particular regions on chromosome 11 are followed by the 
EBV latent infection and multiple genetic and epigenetic 
changes. The subsequent loss of chromosomes 11q, 13q, 
14q, and 16q regions and promoter hypermethylation 
of numerous tumor suppressor genes (TSGs), including 
E-cadherin, finally result in NPC (3). This model proposes 
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a critical role of the genetic and epigenetic factors in the 

pathogenesis of NPC. In this review, we summarize the 

genetic and epigenetic changes in NPC, as seen in Figure 1, 

and focus discussions on these critical events that contribute 

to the initiation and progression of this EBV-associated 

tumor, as well as the potential use of these findings as 

biomarkers for NPC diagnosis and prognosis.

Genetic alterations in NPC

In 2014, the first genomic landscape study of NPC was 
published using the whole-exome sequencing (WES), 
targeted deep sequencing, and SNP array analysis 
approaches to characterize NPC genetic alterations (4). 
This integrated study revealed the enrichment of genetic 
lesions affecting several important cellular processes and 

Figure 1 Summary of genetic and epigenetic changes in NPC by Circos plot. Circles from outer to inner direction show loci with 
hypermethylation, somatic mutations, amplifications and deletions in NPC tumors. Rearrangements between two genes are linked by grey 
lines. Important regions and genes are labeled according to their genomic locations. The large genomic regions with copy number gains 
reported previously, such as 4q12–q21, 6q14–q22, and 8q11.2-q23, are not presented on the graph. NPC, nasopharyngeal carcinoma.

UBR5-ZNF423

14q32.33

14q24

14q12−13

CRIP2

LTBP2

MIPOL1

17q2517q21TP5316q21

AKT2

A
R

ID
1A

1q
21

−2
2

1q
31

2q24−31

3p25.2−26.3

3p14−21.3

3q26

PIK3CA

FBXW7

TH
Y1

13q12

C
C

N
D1

W
IF1

TS
LC

1

YA
P1

-M
AM

L2

9
10

11
12

13

14
15

16

17

18

19

20

21

22

x
y

1

2

3

4
5

6

8

7

6p21.3

6q25.1

7q21

SP
3-

PT
K

2

D
LC

1

8p11.2−12

 1
2q

13
, 1

2q
21

12
p1

1,
 1

2p
13

.3

11
q2

2−
23

11
q1

3

M
Y

C
JA

K
2

9p21
D

A
P

K
1

C
D

K
N

2A
, C

D
K

N
2B

FBLN2

ADAMTS9, P
TPRG, M

LH1, B
LU

DLEC1, R
ASSF1, B

AP1, LT
F

Methylation
Somatic mutations
Amplifications
Deletions
Oncogenes
Tumor suppressor genes



Chinese Clinical Oncology, Vol 5, No 2 April 2016

© Chinese Clinical Oncology. All rights reserved. Chin Clin Oncol 2016;5(2):16cco.amegroups.com

Page 3 of 13

pathways including chromatin modification, ERBB-PI3K 
signaling, and autophagy machinery.

Somatic mutations

The somatic mutation rate in NPC is relatively low 
compared to other types of cancers, with a median of one 
somatic mutation per megabase (Figure 2). Interestingly, 
TP53 is the most frequently mutated gene in NPC. Most 
of the earlier studies using the single-strand conformation 
polymorphism (SSCP) method to screen for mutations 
reported infrequent TP53 mutations in NPC biopsies 
(6,7). Using a sensitive yeast screening assay developed by 
Flaman et al. (8), that covers both the exons and introns of 
p53, Lung et al. (9) were able to detect up to 27% mutated 
p53 in a small number of NPC biopsies, indicating that 
the SSCP methods were inadequate to detect many of the 
p53 mutations harbored in NPC. Now with sensitive WES 
approaches, higher TP53 mutation frequencies of 8.5% 
were observed in a Singapore study (4), as well as in 7.3% 
of our NPC biopsies in a Hong Kong study (manuscript in 
revision).

Most well-known oncogenes are rarely mutated in 

NPC. Mutation hotspots in EGFR, PIK3CA, KRAS, HRAS, 
NRAS, BRAF, KIT, ABL1, AKT1, AKT2, CDK4, ERBB2, 
FGFR1, FGFR3, FLT3, JAK2, MET, RET, and PDGFRA 
were screened using SNaPshot or OncoCarta panel assays 
in 70 and 160 NPC patients, respectively. In each study, 
most genes were mutated in less than three NPC samples 
at the mutation hotspots in each study, except for KIT, 
which was reported to be mutated in 10% (7/70) and 2% 
(3/160) of NPC samples (10,11). WES identified mutations 
in multiple members of the ERBB-PI3K pathway including 
PIK3CA (1.7%), ERBB2 (1.7%), ERBB3 (1.7%), FGFR2 
(2.6%), KRAS (1.7%), and NRAS (0.9%) (4). In another 
study PIK3CA was shown to be mutated in 9.6% (7/73) 
of NPC cases using polymerase chain reaction (PCR)-
sequencing methods (12).

Both the published WES study (4), as well as our 
WES data, show that epigenetic regulators are frequently 
mutated in NPC, including ARID1A, BAP1, KMT2B, 
KMT2C, KMT2D, TSHZ3, HDAC4, PAXIP1, and others. 
Other mutated genes identified by WES include cadherin 
members (FAT1, FAT2, FAT3), Notch family members 
(NOTCH1, NOTCH2, NOTCH3), and autophagy-related 
genes (ATG2A, ATG7, ATG13) (4).

Figure 2 The somatic mutation prevalence and the percentage of differential methylation across human cancer types. Top: somatic mutation 
rates in NPC were calculated based on two WES studies of NPC by Lin et al. (4) and our study (manuscript in revision). Somatic mutation 
rates of other cancers were adapted from Alexandrov et al. (5). Somatic mutations rates in exomes were calculated based on the identified 
mutations in protein-coding genes (including synonymous mutations) and assuming that an average exome has 30 Mb in protein-coding 
genes with sufficient coverage. Somatic mutations rates in whole genomes were calculated based on all identified mutations and assuming 
that an average whole genome has 2.8 gigabases with sufficient coverage; Bottom: percentage of hypermethylated and hypomethylated CpG 
sites identified by LIMMA analysis with FDR <0.001 in NPC and other types of solid tumours. hypo, hypomethylated CpG sites; hyper, 
hypermethylated CpG sites. The graph is adapted from previous methylome study by Dai et al. (2). NPC, nasopharyngeal carcinoma; WES, 
whole-exome sequencing; LIMMA, linear models for microarray and RNA-Seq data; FDR, false discovery rate.
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Copy number gains

Multiple chromosomal abnormalities and gene copy 
number alterations have been identified in NPC by various 
approaches including comparative genomic hybridization 
(CGH), microsatellite marker analysis, karyotyping, array-
based CGH (aCGH), and SNP array. Chromosomes 1q, 
2q, 3q, 4q, 6q, 7q, 8p, 8q, 11q, 12p, 12q, and 17q frequently 
have copy number gains in NPC (13-17). Cyclin D1 
(CCND1), located at 11q13, has the highest frequency of 
copy number changes in NPC, with a reported frequency 
ranging from 9.6% (5/52 using SNP array) to 61.9% (13/21 
using aCGH) (4,18). Another oncogene related to G1/S  
transition, MYC, located in 8q24, was also amplified in 
5.8% (3/52 by SNP array) to 62% (21/34 by FISH) of NPC 
tumors (4,19).

Multiple members of the ERBB-PI3K pathway also 
have copy number gains apart from somatic mutations. 
SNP array and aCGH analysis revealed amplifications in 
PIK3CA (75%, 24/32 with aCGH and FISH), AKT2 (5.8%, 
3/52 with SNP array), and JAK2 (3.8%, 2/52 with SNP 
array) (4,20). Mutations and amplifications were frequently 
observed in the ERBB-PI3K pathway regulators, indicating 
the importance of this pathway in NPC.

Other frequent amplifications identified by CGH include 
LTBR at 12p13, TERC at 3q26.3, and ESR at 6q25.1 (21,22).

Copy number losses and loss of heterozygosity (LOH)

Previous studies suggested the loss of chromosomes 1p, 
3p, 9p, 9q, 11q, 13q, 14q, and 16q regions are common 
events in NPC (13-17,23-25). Functional complementation 
studies were performed by utilizing the microcell-mediated 
chromosome transfer (MMCT) approach to transfer intact 
or truncated chromosomes to identify the critical regions 
(CRs) that are important for tumor suppression in NPC 
cells, including 3p21.3, 14q12, 14q13.2–13.3, 14q24.1, 
14q32.33, 11q13, and 11q22–23 (26-32). The 3p21.3 
region contains several important TSGs. BLU/ZMYND10, 
PTPRG, RASSF1A, and FBLN2, mapped to or next to 
this CR, were identified by MMCT, cDNA microarray 
assay, tissue microarray staining, and NotI chromosome 
3 genomic microarray analysis (33-36). Other candidate 
TSGs located in 3p include ADAMTS9, CACNA2D3, 
GNAT1, LTF, LARS2, RBMS3, and CHL1 (13,37). Several 
TSGs on chromosome 14, including the MIPOL1, CRIP2, 
and LTBP2, showed significant in vitro and in vivo tumor-
suppressive effects (26,38-40). CRs on chromosome 11, 

11q13, and 11q22–23, harbored TSGs including TSLC1/
CADM1 (41), THY1 (42), and CRYAB (27).

Frequent chromosome 9p losses were found in 
histologically normal nasopharyngeal epithelia and, 
thus, were considered as a critical early event in NPC 
tumorigenesis (23). Homozygous deletions of the 9p21.3 
region containing CDKN2A (p16) and CDKN2B (p15) 
were found in NPC xenografts and primary tumors (43). 
Consistently, the genomic landscape study showed the 
most frequent deletion occurs in the 9p21 region spanning 
CDKN2A and CDKN2B (4).

Apart from somatic mutations, SNP array analysis 
revealed several chromatin modification regulators that also 
harbor frequent number losses in NPC, including ARID1A 
(15.4%), BAP1 (1.9%), and TET1 (3.8 %), which further 
emphasized the importance of this pathway. TP53, which 
is the most frequently mutated gene in NPC, was also 
reported to be deleted in 15.4% of NPC cases (8/52) (4).

Gene translocations and rearrangements

Only a few structural variants were reported in NPC. A 
fusion of ubiquitin protein ligase E3 component n-recognin 
5 (UBR5) on 8q22.3 and zinc finger protein 423 (ZNF423) 
on 16q12.1 was first identified by whole-transcriptome 
sequencing from the C666 cell line and later was recurrently 
detected in 8.3% (12/144) of primary tumors (44). 
Functional analysis demonstrated that the fusion protein 
affected cell proliferation and colony-forming ability in vitro 
and promoted tumor formation in vivo (44). Another study 
developed a new algorithm to detect structural variants from 
high-throughput sequencing from long-insert paired-end 
DNA libraries of NPC, and identified gene fusions at YAP1-
MAML2, PTPLB-RSRC1, and SP3-PTK2. FISH analysis 
of an additional 196 cases identified more rearrangements 
at MAML2 (two cases), PTK2 (six cases), and SP3 (three  
cases) (45).

Epigenetic alterations in NPC

Multiple factors including host genetics, viral infection, and 
environmental factors contribute to NPC tumorigenesis, 
which all play integral roles in modulating the epigenetic 
changes, ultimately leading to the critical gene expression 
alterations. Aberrant epigenetic alterations, particularly 
DNA methylation, have been frequently reported in NPC. 
In our recent comparative methylome study, we found NPC 
had the highest hypermethylation frequency, as compared 
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to nine other cancer types including liver, head and neck, 
colon, lung, thyroid, kidney, breast, pancreatic, and prostate 
cancers (2) (Figure 2). A number of tumor suppressors 
were found to be downregulated by promoter methylation. 
Aberrant methylation of tumor suppressors RASSF1 and 
CDKN2A was considered as important early events in 
NPC tumorigenesis. Promoter methylation of RASSF1 
and CDKN2A was found in 49–83% and 16–66% of NPC 
patients, respectively. Moreover, we identified a number 
of novel tumor suppressors including ADAMTS9 (37),  
PTPRG (34), ZMYND10 (33), FBLN2 (35), CRYAB (27), 
CADM1 (41), THY1 (42), MMP19 (46), DUSP6 (47), 
MIPOL1 (26), and LTBP2 (39) by MMCT studies in NPC; 
the majority of these tumor suppressors were downregulated 
in NPC by promoter methylation (48). Important DNA 
methylation changes are frequently reported in several CRs 
such as 3p21.3, 9p21, and 6p21.3 regions as summarized in 
Table 1.

3p21.3 region

Promoter methylation at multiple 3p21.3 genes has been 
reported in NPC. The most important epigenetic event 
was RASSF1 promoter methylation, which was originally 
reported in NPC xenografts, cell lines, and in primary 
tumors, but not in the normal nasopharyngeal epithelia (55).  
These results were further confirmed by several studies 
carried out at the single gene or genome-wide levels 
(2,49,50,52,55-63), while somatic mutations at this gene 
were detected at only low frequencies (9.5%) in primary 
tumors and were not observed in recent somatic landscape 
studies with the Singapore cohort (4) and in our Hong 
Kong study (manuscript in revision). Besides RASSF1, 
promoter methylation was also detected in MLH1 (50), 
DLEC1 (53,64), LARS2 (65), SLC6A20 (2), LTF (2), and 
ZMYND10 (BLU) (52-54) from the 3p21.3 region in NPC 
patients, suggesting DNA methylation plays an important 
role in regulating the expression of the genes in this region.

6p22.1−6p21.3 region

The human major histocompatibility complex (MHC) 
locus is located at the 6p22.1–6p21.3 region. In NPC, 
the association between human leukocyte antigen (HLA) 
polymorphisms with NPC genetic susceptibility was 
confirmed by genome-wide association study (GWAS). 
Interestingly, the methylome study using the Illumina 
Infinium assay on HumanMethylation450 BeadChip reveals 

significant methylation changes in this region in NPC (2). 
A number of genes including B3GALT4, FLOT1, PXT1, 
TNXB, TRIM31, LY6G5C, PPP1R18, GNL1, IER3, and 
NKAPL in this region were hypermethylated in tumors 
compared to non-tumor tissues, indicating the importance 
of DNA methylation in regulating gene expression. 
Although none of the MHC class I HLA genes was found 
significantly methylated in NPC, previous study using gene 
expression profiling microarrays showed the inhibition 
of the expression of the MHC class I genes in NPC by 
EBV (78). It is likely that epigenetic changes have a role 
in regulating the transcription of HLA genes in NPC. 
Further investigation of aberrant methylation in this region 
in a larger patient cohort is necessary. Although next-
generation sequencing (NGS)-based bisulfite sequencing 
has emerged as a powerful method to characterize the 
methylation changes in high resolution, MHC is a highly 
polymorphic region, which limits the utility of NGS-based 
methods, since the complexity of the DNA sequence is 
greatly reduced after bisulfite conversion. An alignment and 
methylation analysis pipeline specifically designed for the 
MHC region having adequate sequencing depth is required 
to improve the accuracy of methylation assessment in this 
region.

9p21 region

Homozygous deletion of the 9p21.3 region containing 
CDKN2A (p16) and CDKN2B (p15) was found in NPC. In 
addition to genomic alterations, inactivation of both genes 
by promoter methylation was reported in 16–66% and 
21–50% of the tumors, respectively (50,53,58,60,62). These 
results emphasize the importance of integrating the genetic 
and epigenetic changes to provide a comprehensive view of 
molecular changes in NPC.

Signaling pathways deregulated by DNA methylation  
in NPC

Two genome-wide methylome studies consistently 
identified a few important signaling pathways and functions 
often deregulated by DNA methylation in NPC, including 
the Wnt, MAPK, Hedgehog, and TGF-β signaling 
pathways and focal adhesion (2,49). In the Wnt signaling 
pathway, a number of Wnt inhibitors including DKK1, 
WIF1, SFRP1, SFRP2, SFRP4, and SFRP5 are silenced 
by promoter methylation in NPC. Inactivation of these 
inhibitors may lead to the aberrant activation of Wnt 
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Table 1 Tumor suppressor genes frequently altered by epigenetic and genetic mechanisms in NPC

Gene Location Full name
Mechanisms of 

silencing
Function References

TP73 1p36.3 Tumor protein p73 Hypermethylation Cell cycle, DNA damage (49,50)

CASP8 2q33–q34 Caspase 8, apoptosis-related 

cysteine peptidase

Hypermethylation Apoptosis (50)

ADAMTS9 3p14.1 ADAM metallopeptidase with 

thrombospondin type 1 motif, 9

Hypermethylation Angiogenesis (37)

FHIT 3p14.2 Fragile histidine triad Hypermethylation/

allelic deletion

Cell cycle, DNA damage response (51)

ZMYND10 3p21.3 Zinc finger, MYND-type 

containing 10

Hypermethylation Angiogenesis (33,52-54)

RASSF1 3p21.3 Ras association (RalGDS/AF-6) 

domain family member 1

Hypermethylation Cell growth, proliferation (2,49,50, 

52,55-63)

DLEC1 3p21.3 Deleted in lung and esophageal 

cancer 1

Hypermethylation Cell communication, signaling 

transduction

(53,64)

MLH1 3p21.3 MutL homolog 1 Hypermethylation Mismatch repair (50)

LARS2 3p21.3 Leucyl-tRNA synthetase 2, 

mitochondrial

Hypermethylation/

allelic deletion

Aminoacyl-tRNA synthetase, 

mitochondrial leucyl-tRNA 

synthetase

(65)

PTPRG 3p21–p14 Protein tyrosine phosphatase, 

receptor type, G

Hypermethylation Cell cycle (34)

RARB 3p24.2 Retinoic acid receptor, beta Hypermethylation Hormone receptor, transcriptional 

regulator, retinoic acid signalling

(60,66)

FBLN2 3p25.1 Fibulin 2 Hypermethylation/

allelic deletion

Cell growth, angiogenesis, migration (35)

UCHL1 4p14 Ubiquitin carboxyl-terminal 

esterase L1 (ubiquitin 

thiolesterase)

Hypermethylation Deubiquitination (58,67)

PCDH10 4q28.3 Protocadherin 10 Hypermethylation Protocadherin, cell-cell adhesion, 

apoptosis, cell signalling

(68)

IER3 6p21.3 Immediate early response 3 Hypermethylation DNA damage/repair, apoptosis (2)

SFRP1 8p11.21 Secreted frizzled-related  

protein 1

Hypermethylation Inhibitor of Wnt/β-catenin signaling 

pathway

(49)

DLC1 8p22 DLC1 Rho GTPase activating 

protein

Hypermethylation/

allelic deletion

Cell cytoskeleton organization, 

GTPase activator, signal 

transduction, cell adhesion, invasion

(64,69)

CDKN2A 9p21 Cyclin-dependent kinase 

inhibitor 2A

Hypermethylation/

allelic deletion

Cell cycle (31,53,58,60, 

62,70-74)

CDKN2B 9p21 Cyclin-dependent kinase 

inhibitor 2B (p15, inhibits CDK4)

Hypermethylation/

allelic deletion

Cell cycle (60,70,72)

DAPK1 9q21.33 Death-associated protein  

kinase 1

Hypermethylation Cell cycle (57,58,62,72)

MGMT 10q26 O-6-methylguanine-DNA 

methyltransferase

Hypermethylation DNA repair, cell cycle, genomic 

stability

(50,60)

Table 1 (continued)
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Table 1 (continued)

Gene Location Full name
Mechanisms of 

silencing
Function References

CRYAB 11q22.3–

q23.1

Crystallin, alpha B Hypermethylation/

allelic deletion

Epithelial-mesenchymal transition 

(EMT)

(27)

CADM1 11q23.2 Cell adhesion molecule 1 Hypermethylation Cell growth, apoptosis (41)

THY1 11q23.3 Thy-1 cell surface antigen Hypermethylation Cell invasion, cell growth (42)

MMP19 12q14 Matrix metallopeptidase 19 Hypermethylation/

allelic deletion

Angiogenesis (46)

WIF1 12q14.3 WNT inhibitory factor 1 Hypermethylation Inhibitor of Wnt signaling pathway (57,62,75)

DUSP6 12q22–

q23

Dual specificity phosphatase 6 Hypermethylation/

allelic deletion

Migration, invasion, cell growth, 

EMT

(47)

CHFR 12q24.33 Checkpoint with fork head and 

ring finger domains, E3 ubiquitin 

protein ligase

Hypermethylation Cell cycle (76,77)

MIPOL1 14q13.3 Mirror-image polydactyly 1 Hypermethylation/

allelic deletion

Cell cycle (26)

LTBP2 14q24 Latent transforming growth 

factor beta binding protein 2

Hypermethylation/

histone 

deacetylation

Cell mobility, invasiveness (39)

NPC, nasopharyngeal carcinoma.

signaling and transcription of its downstream targets. 
Gene expression profiling of primary tumors shows the 
differential expression of several components of the Wnt 
canonical signaling pathway (79). These data suggested the 
important involvement of aberrant Wnt signaling in NPC 
tumorigenesis.

Methylation status as biomarkers for NPC diagnosis and 
prognosis

Given the widespread aberrant methylation often observed 
in NPC, we and others have evaluated the usefulness of 
methylation biomarker panels for NPC early detection, 
using tumor biopsies and non-invasive biological specimens 
as summarized in Table 2 (57-60,62,64,70-72). For example, 
Wong and his colleagues examined the methylation of 
CDH1, DAPK1, CDKN2B, RASSF1, and CDKN2A in 
plasma samples from 41 NPC patients before treatment and 
43 normal individuals by real-time quantitative PCR after 
bisulfite conversion; they found aberrant methylation in at 
least one of the five genes was detectable in 71% plasma of 
NPC patients with a specificity of 91% (72). Methylation 
of five tumor suppressors (RASSF1, CDKN2A, DLEC1, 
DAPK1, UCHL1) in serum samples was investigated in 40 

NPC patients and 41 age- and gender-matched healthy 
subjects using the methylation-specific PCR approach (58).  
Combination of four markers including CDKN2A , 
DLEC1, DAPK1, and UCHL1 has the highest sensitivity 
and specificity for detecting NPC. Circulating EBV copy 
number changes have emerged as a promising biomarker to 
aid NPC diagnosis (80). We examined a methylation panel 
including RASSF1, WIF1, DAPK1, and RARB2 using high-
resolution melting curve analysis and EBV copy number 
changes in 220 plasma samples from NPC patients and 
found this methylation panel can be used as a supplementary 
test to the EBV copy number test for increased detection 
of early-stage NPC (57). Combinations of both the four-
gene methylation panel and EBV DNA test can detect 
63.6%, 86.7%, 88%, and 96.5% of the patients with stages I,  
II, III, and IV tumors, respectively, with a specificity of 
88%. In addition to hypermethylation mainly at promoter 
CpG islands, global hypomethylation predominantly in 
the repetitive elements and gene body, is another feature 
of cancer. Chan et al. explored the usage of genome-wide 
hypomethylation and copy number aberrations in plasma 
DNA by bisulfite sequencing in multiple types of cancers 
including NPC with a sensitivity of 74% and a specificity 
of 94% (81). However, this NGS-based method is costly 
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and further evaluation in a larger patient cohort is necessary 
prior to clinical use.

NPC local recurrence and distant metastasis contribute 
to treatment failure and NPC mortality. Therefore, 
identification of biomarkers for detecting the recurrence 
and metastasis and predicting the patient prognosis is 
extremely important for improving the treatment success 
in NPC. In our methylation biomarker study carried out in 
plasma samples, a combination of the four-gene methylation 
panel and EBV DNA tests has a sensitivity as high as 
94.3% and 93.5% for detection of the metastasis and local 
recurrence, respectively, suggesting the combination testing 
has great potential for monitoring disease progression. 
Recently, a genome-wide methylation study identified a 
panel of prognostic methylation biomarkers comprising six 
hypermethylated genes WIF1, CCNA1, UCHL1, RASSF1, 
TP73, and SFRP1 (56). The study was carried out in two 

stages including the training and validation cohorts. In the 
training cohort (n=150), the patients with high methylation 
levels had poorer disease-free survival (DFS) [HR, 2.26; 
95% confidence interval (CI), 1.28–4.01; P=0.005] and 
overall survival (OS) [HR, 2.47; 95% CI, 1.30–4.71; 
P=0.006] than those with low methylation. The association 
of the methylation panel with survival was independent 
of stage. The prognostic value was further validated in 
two independent cohorts including 150 and 153 NPC 
patients, respectively. The patients with low methylation 
had a favorable response to concurrent chemotherapy with 
an improved DFS and OS, whereas patients with high 
methylation did not benefited a present chemotherapy. 
This study demonstrated the potential usefulness of a 
methylation panel as a prognostic and predictive tool  
in NPC.

Table 2 Summary of the studies using a panel of genes as methylation biomarkers for detecting NPC

Methylation panel Sample type Method # patients # controls
Specificity 

(%)

Sensitivity 

(%)
References

RASSF1, RARB2, DAPK1, 

CDKN2A, CDKN2B, MGMT, 

GSTP1

Tumor tissue MSP 39 6 100 100 (60)

RASSF1, DAPK1, CDKN2A NP brushing MSP 28 26 79 100 (71)

DAPK1, CDH1, RASSF1, 

CDKN2B

NP brushing MSP 30 37 80 100 (70)

Rinsing fluid MSP 30 43 90 98

Plasma MSP 30 43 10 95

Buffy coat MSP 30 43 41 93

CDH1, CDKN2A, DPAK1, 

CDKN2B, RASSF1

Plasma Real-time quantitative 

PCR after bisulfite 

conversion

41 43 71 91 (72)

UCHL1, KIF1A, DLEC Tumor biopsy Quantitative MSP 50 28 84 92 (64)

CHFR, RIZ1, WIF1, CDKN2A, 

RASSF1

NP brushing MSP 53 25 98 96 (62)

RASSF1, DAPK1, two EBV 

markers

NP brushing MMSP 49 20 98 100 (59)

CDKN2A, DLEC1, DAPK1, 

UCHL1

Serum MSP 40 41 85 66 (58)

RASSF1, WIF1, DAPK1, RARB2 Plasma MS-HRM 220 50 73 96 (57)

RASSF1, WIF1, DAPK1, RARB2 

and EBV DNA test

Plasma MS-HRM 220 50 89 88

RASSF1, WIF1, DAPK1, RARB2 NP brushing MS-HRM 96 43 96 67

NPC, nasopharyngeal carcinoma; MSP, methylation-specific PCR; MMSP, multiplex methylation-specific PCR; MS-HRM, 

methylation-sensitive high resolution melting.
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Aberrant histone modifications in NPC

In the genomic landscape study in NPC, somatic mutations 
were identified in a number of histone modifiers, suggesting 
the importance of aberrant histone modification in NPC 
tumorigenesis. Consistently, our methylome study reveals 
that the aberrantly methylated genes often have bivalent 
markers, H3K4me3 mark for active transcription and 
H3K27me3 for repressive transcription, indicating DNA 
methylation functions together with histone modification 
for regulating gene expression in NPC tumorigenesis (2). 
The enrichment of the genes with homeobox domain 
in the aberrantly methylated genes in NPC indicates 
these aberrantly methylated genes are often polycomb 
complex targets. Many studies have demonstrated that the 
polycomb repressive complex genes encoding epigenetic 
gene-silencing proteins contribute to the oncogenesis 
of various cancers. Over-expression of the polycomb 
complex genes BIM1 and EZH2 was demonstrated in NPC 
tumors (82,83). Importantly, ectopic expression of BMI1 
is sufficient to immortalize the normal nasopharyngeal 
epithelial (NPE) cells (83). EZH2 encodes a histone-
lysine N-methyltransferase, responsible for H3K27 
methylation. The important roles of EZH2 in NPC cell 
migration/invasion, cell survival, and angiogenesis have 
been demonstrated in vitro in several studies (84-86).  
Cai et al. examined the H3K27me3 level in the NPC 
tumors and normal NPE tissues by Western blotting 
and immunohistochemistry (IHC). They found 60.8% 
of NPC and only 16% of normal NPE tissues have high 
level of H3K27me3 marks and the H3K27me3 level is 
associated with patient prognosis and chemoradiotherapy  
response (87).

EBV and epigenetic alterations

In NPC, EBV is harbored in a latent stage with restricted 
viral gene expression of LMP1/2, EBNA1, EBER1/2, and 
BARTs. LMP1 can activate cellular DNA methyltransferase 
via c-Jun NH2-terminal kinase signaling (88) and 
upregulate BMI1 expression (89), which is associated with 
epigenetic changes in NPC. On the other hand, latent 
episomal EBV genomes are subject to host cell-dependent 
epigenetic modifications including DNA methylation and 
histone modifications, which are important for maintenance 
of EBV latent infection (90).

In addition to NPC, extensive methylation changes are 
also often observed in the EBV-associated gastric cancer (91). 

Previous studies suggested that the EBV-infected cells 
acquire extensive methylation to silence multiple TSGs 
and to transform cells into cancer cells (92). Although the 
initial step of virus infection in the epithelial cell and the 
methylation mechanism induced by EBV infection has not 
been fully elucidated, it was proposed that EBV infection is 
an epigenetic driver in tumorigenesis (92).

Conclusions and future directions

NPC is a complex disease that involves host genetics, viral 
infection, and environmental factors. It is characterized by a 
comparatively low mutation rate, extensive hypermethylation, 
as well as frequent chromosomal abnormalities and 
copy number alterations. Although the high-throughput 
characterization methods, such as massive parallel sequencing, 
SNP, and methylation assays, has resulted in a greater 
understanding of NPC biology, yet much remains to be 
uncovered. Moreover, integration of the whole-exome and 
whole-genome sequencing data, transcriptome, proteomics, 
and methylome data in more NPC patients, together 
with well-documented clinical outcome information, will 
aid us to further understand the importance of molecular 
alterations and their clinical relevance. Study of additional 
NPC patients will enhance our ability to identify the less 
frequent, but critical, genetic and epigenetic events in 
the pathogenesis of NPC. These insights will lead to the 
identification of powerful biomarkers for NPC diagnosis 
and prognosis and evaluation of novel and existing targeted 
therapies to improve the treatment success.
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