
Title Determination of action potential wavelength restitution in
Scn5a+/－ mouse hearts modelling human Brugada syndrome

Author(s) Tse, G; Wong, ST; Tse, V; Yeo, JM

Citation Journal of Geriatric Cardiology, 2017, v. 14 n. 9, p. 595-596

Issued Date 2017

URL http://hdl.handle.net/10722/227124

Rights This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/45607514?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 Journal of Geriatric Cardiology (2017) 14: 595596 
 ©2017 JGC All rights reserved; www.jgc301.com 
  

http://www.jgc301.com; jgc@jgc301.com | Journal of Geriatric Cardiology 

Letter to the Editor  Open Access  
 

Determination of action potential wavelength restitution in Scn5a+/− mouse 
hearts modelling human Brugada syndrome 
 

Gary Tse1,*, Sheung Ting Wong2, Vivian Tse3, Jie Ming Yeo2 
1School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China 
2Faculty of Medicine, Imperial College, London, UK 
3Department of Physiology, McGill University, Canada 

 

J Geriatr Cardiol 2017; 14: 595596. doi:10.11909/j.issn.1671-5411.2017.09.011 

Keywords: Action potential duration; Conduction; Depolarization; Restitution; Repolarization; Wavelength 

 
 
Brugada syndrome is a primary electrical disorder of the 

heart, predisposing affected individuals to potentially lethal, 
ventricular tachy-arrhythmias.[1–7] A number of mechanisms 
have been identified as being important increasing the risk 
of these rhythms.[8] Wavelength (λ) restitution has been 
suggested to predict the onset of action potential duration 
(APD) alternans in mouse Scn5a+/− hearts modelling Bru-
gada syndrome.[9] Classical APD restitution analysis yielded 
mixed success in its ability to predict the onset of APD al-
ternans and arrhythmogenicity. APD restitution relates APD 
to the previous diastolic interval (DI). APD restitution gra-
dients > 1 is associated with the emergence of APD alter-
nans,[10] and increased arrhythmogenicity in a number of 
different genetic and pharmacological mouse models, such 
as Brugada syndrome, long QT syndrome type 3 and hypo-
kalaemia.[11–13] Matthews and colleagues previously demon-
strated a non-linear relationship between APD alternans and 
APD restitution gradient and underestimated the extent of 
APD alternans, suggesting that it may partly underlie its 
lack of success in predicting arrhythmogenicity.[14] Another 
reason is that effective refractory period (ERP) can be al-
tered independently of APD.[15]  

The lack of predictive power of APD restitution led 
Matthews and colleagues to devise a novel λ restitution 
analysis by recording monophasic action potential (MAP) 
recordings in wild-type and Scn5a+/− hearts during dynamic 
pacing, which introduced a stepwise increase in pacing 
rate.[9] The MAP method is an ex vivo recording technique 
that has widely been used to study whole heart electro-
physiology in Langendorff systems. Activation latencies 
and APDs were derived from the MAPs obtained from the 
ventricles, with conduction velocity (θ) approximated by the 
reciprocal of activation latency, θ’. This in turn enabled the 
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calculation of λ’, which was approximated by θ’  APD, 
with the explicit assumption that ERP was equal to APD.  

Whilst we do not doubt the important role of wavelength 
in determining arrhythmogenicity, the method chosen by 
Matthews and colleagues may not be accurate in estimating 
wavelength for the following reasons. Firstly, the discor-
dance between APD and ERP are apparent from the data 
generated by the authors’ own group, but this has not been 
highlighted. Specifically, Martin and colleagues showed that 
APD is longer than ERP in wild-type hearts, whereas it is 
shorter than ERP Scn5a+/− hearts.[16]  

Secondly, estimation of wavelength using the authors’ 
method requires accurate measurements of APD. Yet, the 
group’s data on APD values have been highly discrepant, as 
can be seen in their own studies on Brugada syndrome.[17,18] 
For example, in the left ventricular (LV) epicardium, APD70 
and APD50 were not significantly altered by quinidine.[17] 
However, the authors later found that these were increased 
by quinidine.[18] In the LV endocardium, APD90, APD70 and 
APD50 were decreased by quinidine.[17] Their later study 
found that these were increased by quinidine.[18] Given these 
discrepancies, λ did not appear to be accurately determined. 

Together, the current evidence clearly shows that λ re-
duction,[19] and increased APD restitution[20] are important 
mechanism by which cardiac arrhythmias are generated and 
maintained. However, the role of λ restitution is unclear, but 
more accurate methods of determining this parameter ex-
perimentally need to be devised before a more definite con-
clusion can be reached. 
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