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Tail Value-at-Risk (aka Expected Shortfall)

• The Value-at-Risk (VaR) of X at probability level α is

VaRα(X) = F−1
X (α) = inf{t ∈ R|FX(t) ≥ α}.

• The Tail Value-at-Risk (TVaR) at probability level α is

TVaRα(X) :=
1

1− α

∫ 1

α
F−1
X (t) dt.

• In two recent consultative documents BCBS (2013, 2013),
the Basel Committee on Banking Supervision proposed to
take a move from VaR to TVaR for the measurement of
market risk in banking.



Tail Value-at-Risk is Coherent

• Translation invariant: for any constant c,

TVaRα(X + c) = TVaRα(X) + c

• Positive homogeneous: for any positive constant λ,

TVaRα(λX) = λTVaRα(X)

• Monotonic: if X ≤ Y ,

TVaRα(X) ≤ TVaRα(Y )

• Subadditive:

TVaRα(X + Y ) ≤ TVaRα(X) + TVaRα(Y )

Given a portfolio of risks X1, . . . , Xn with fixed marginals,

• The dependence structure among individual risks is difficult
to obtain from a statistical point of view, while the marginal
distributions of the individual risks may typically be easier to
model (Embrechts et al. (2013) and Bernard et al. (2014))

⇒ Dependence uncertainty in risk aggregation

• Objective 1 Find upper and lower bound of

TVaRα(X1 + · · ·+Xn)

• Objective 2 Identify corresponding dependence structures
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Outline

(Part 1) Review some classical results of extremal dependence
structures: comonotonicity (n ≥ 2) and counter-monotonicity
(n = 2)

(Part 2) Study a high-dimensional (n > 2) notion of counter-
monotonicity: generalized mutual exclusivity (GME)

(Part 3) Lower bounds of TVaR, Haezendonck-Goovaerts risk
measures and convex expectation of a sum

(Part 4) Mutual Exclusivity in the Tail (MET)

(Part 5) MET and TVaR Lower bounds



Part 1

Review some classical results of extremal dependence structures:
comonotonicity (n ≥ 2) and counter-monotonicity (n = 2)

Classical result I (Fréchet-Hoeffding bounds)

For any X inside the Fréchet space R(F1, . . . , Fn):

Wn(x1, . . . , xn) ≤ FX(x1, . . . , xn) ≤ Mn(x1, . . . , xn)

for all (x1, . . . , xn) ∈ R
n

Wn(x1, . . . , xn) :=
(∑n

i=1 Fi(xi)− n+1
)
+

Mn(x1, . . . , xn) := minFi(xi)

Recall: X ∈ R(F1, . . . , Fn) means that Xi ∼ Fi for all i



Classical result II (Fréchet-Hoeffding upper bound)

(a) Mn(x1, . . . , xn) := minFi(xi) is always a proper joint cdf

(b) FX = Mn ⇐⇒ X is comonotonic

Recall:

(1) X is comonotonic if

(Xi(ω)−Xi(ω
′))(Xj(ω)−Xj(ω

′)) ≥ 0

for any i, j, and any ω, ω′ outside a null set (the strongest positive
dependence structure)

(2) Comonotonicity ⇐⇒ Pairewise comonotonicity

Idea of comonotonicity

Comonotonic random variables are increasing functions of a com-
mon random variable

Examples

• Stock price ST and payoff of European call (ST −K)+

• Present value of the payments in the respective years for a
life annuity:

Y1 = v · 1{T>1}
Y2 = v2 · 1{T>2}
Y3 = v3 · 1{T>3}

...



Classical result III (Fréchet-Hoeffding lower bound, n = 2)

(a) W2(x1, x2) := (F1(x1)+ F2(x2)− 1)+ is always a joint cdf in
R(F1, F2)

(b)FX = W2 ⇐⇒ X is counter-monotonic

Recall: (X1, X2) is counter-monotonic if

(X1(ω)−X1(ω
′))(X2(ω)−X2(ω

′)) ≤ 0

for any ω, ω′ outside a null set (the strongest negative dependence
structure)

Remark: Counter-monotonicity is a two-dimensional concept

Idea of counter-comonotonicity

Two random variables are counter-comonotonicity if one is an
increasing function and the other is a decreasing function of a
common random variable

Example

PVRV of an n-year term life vT · 1{T≤n} (decreasing in T )

and

PVRV of an n-year pure endowment vn ·1{T>n} (increasing in T )



Classical result III (Fréchet-Hoeffding lower bound, n ≥ 3,

Dall’Aglio (1972)))

Wn(x1, . . . , xn) :=
(∑n

i=1 Fi(xi)− n+1
)
+

is a joint cdf in

R(F1, . . . , Fn) iff either

(i)
∑n

i=1 Fi(xi) ≤ 1 for all x with 0 < Fi(xi) < 1, i = 1,2, . . . , n; or

(ii)
∑n

i=1 Fi(xi) ≥ n−1 for all x with 0 < Fi(xi) < 1, i = 1,2, . . . , n.

Meaning of the two conditions (assuming non-degeneracy):

(i)
∑n

i=1 Fi(xi) ≤ 1 for all x with 0 < Fi(xi) < 1, i = 1,2, . . . , n

Meaning:

P(Xi = ess sup Xi) > 0 for all i∑
P(Xi = ess sup Xi) ≥ n− 1

(ii)
∑n

i=1 Fi(xi) ≥ n−1 for all x with 0 < Fi(xi) < 1, i = 1,2, . . . , n

Meaning:

P(Xi = ess inf Xi) > 0 for all i∑
P(Xi = ess inf Xi) ≥ n− 1



n ≥ 2: FX = Mn(upper bound) ⇐⇒ X is comonotonic

n = 2: FX = W2(lower bound) ⇐⇒ X is counter-monotonic

Questions: For n ≥ 3, what is the behavior of X if FX = Wn?
Higher-dimensional notion of counter-monotonicity?

A partial solution (Dhaene and Denuit (1999))

Non-negative random variables X1, . . . , Xn are said to be mutu-

ally exclusive (ME) if

P(Xi > 0, Xj > 0) = 0 for all i 	= j.

Non-negative random variables X1, . . . , Xn are ME if they are
concentrated on the positive axes

∪n
i=1{0} × · · · × [0,∞)︸ ︷︷ ︸

ith

× · · · × {0}

Existence: R(F1, . . . , Fn) of non-negative distributions supports
a ME random vector iff

∑n
i=1(1− Fi(0)) ≤ 1



Classical result IV (mutually exclusive variables)

X∗ is a non-negative random vector in R(F1, . . . , Fn).

(a) X∗ is ME ⇐⇒ FX∗ = Wn

(b) If X∗ is ME, then
n∑

i=1

X∗
i ≤cx

n∑
i=1

Xi ∀ (X1, . . . , Xn) ∈ R(F1, . . . , Fn)

Convex order: W ≤cx Y ⇐⇒ Eφ(W ) ≤ Eφ(Y ) for any convex φ

Questions:

(1) Can we remove “non-negative” to obtain a general description
of random vector whose joint cdf = Wn?

(2) Is (b) a defining property for ME random vectors? Are there
other ways to characterize ME random vectors?

(3) What is the relationship between ME and counter-monotonicity?



Classical result V (characterization of (counter)-comonotonicity)

(a) (Cheung (2008, 2010)) X∗,Xc have the same marginals, Xc

is comonotonic
n∑

i=1

X∗
i

d
=

n∑
i=1

Xc
i ⇐⇒ X∗ is comonotonic

(b) (Cheung et al. (2013)) X∗,Xc have the same marginals, Xc

is counter-monotonic

X∗
1 +X∗

2
d
= Xc

1 +Xc
2 ⇐⇒ X∗ is counter-monotonic

Question: Generalization of (b) to higher dimensions?

Classical result VI (TVaR)

(a) TVaRε(X1 + · · ·+Xn) ≤ TVaRε(X1) + · · ·+ TVaRε(Xn)

(b) Equality holds for all ε ∈ (0,1) ⇐⇒ X is comonotonic

Questions:

(1) inf{TVaRε(X1 + · · ·+Xn) | (X1, . . . , Xn) ∈ R(F1, . . . , Fn)} =?

(2) Is the infimum attainable? By what kind of dependence
structure?

(3) Lower bound of TVaRα(X1 + · · ·+Xn)?



Part 2

Generalized mutual exclusivity - characterization and properties

Definition (Generalized mutual exclusivity (GME))

li := ess infXi, ui := ess supXi

X1, . . . , Xn are said to be

(a) mutually exclusive from below (MEB) if

P(Xi > li,Xj > lj) = 0, i 	= j

(b) mutually exclusive from above (MEA) if

P(Xi < ui,Xj < uj) = 0, i 	= j



Lemma (existence of GME variables)

R(F1, . . . , Fn) accommodates GME random variables iff either

(a)
∑n

i=1 Fi(li) ≥ n− 1

(in this case, MEB random variables are supported)

or

(b)
∑n

i=1(1− Fi(ui−)) ≥ n− 1

(in this case, MEA random variables are supported)

Assumption (A) = condition of this lemma

Lemma (Condition (A))

n ≥ 3: for R(F1, . . . , Fn),

Condition (A) ⇐⇒ Wn is a proper joint cdf

∴ R(F1, . . . , Fn) accommodates GME random variables
⇐⇒ Wn is a proper joint cdf

Remark:

W2 is always a joint cdf



Theorem (GME and Fréchet-Hoeffding lower bound)

n ≥ 3: X is GME ⇐⇒ FX = Wn

Remarks:

(1) “⇒” is also true for n = 2

(2) “⇐” does not hold for n = 2 in general: X1, X2 can be
counter-monotonic without being mutually exclusive

Definition (pairwise counter-monotonicity (PCM))

X is PCM if (Xi,Xj) is counter-monotonic whenever i 	= j



Theorem (GME and PCM)

n ≥ 3: X is GME ⇐⇒ X is PCM

Remarks:

(1) “⇒” is trivial, also true for n = 2

(2) “⇐” does not hold for n = 2

(3) “GME ⇐ PCM + Condition (A)” is simple

(4) “Condition (A) ⇐ GME ⇐ PCM” is difficult

Theorem (GME and convex order)

Suppose that R(F1, . . . , Fn) satisfies Condition (A).

X∗ ∈ R(F1, . . . , Fn) is GME

⇐⇒
n∑

i=1

X∗
i ≤cx

n∑
i=1

Xi ∀(X1, . . . , Xn) ∈ R(F1, . . . , Fn)

Remarks

(1) “⇐” is not always true if R(F1, . . . , Fn) does not satisfy Con-
dition (A)

(2) “⇒” is always true, even without Condition (A)



Example

Let F ∼ Bin(m, p/n), where m ≥ 2 and p, n ∈ N. By Wang and
Wang (2011), F is n-completely mixable: ∃X∗ = (X∗

1, . . . , X
∗
n) ∈

R(F, . . . , F ) such that X∗
1 + · · · + X∗

n is almost surely constant.
By Jensen’s inequality,

X∗
1 + · · ·+X∗

n ≤cx X1 + · · ·+Xn

for all (X1, . . . , Xn) ∈ R(F, . . . , F ). However,
n∑

i=1

P(X∗
i = 0) < n− 1 and

n∑
i=1

P(X∗
i = m) < n− 1,

so Condition (A) is violated: X∗ cannot be mutually exclusive.

Theorem (GME and variance order)

Suppose that R(F1, . . . , Fn) satisfies Condition (A). All marginals
are square integrable.

X∗ ∈ R(F1, . . . , Fn) is GME

⇐⇒ Var

⎛
⎝ n∑
i=1

X∗
i

⎞
⎠ ≤ Var

⎛
⎝ n∑
i=1

Xi

⎞
⎠ ∀(X1, . . . , Xn) ∈ R(F1, . . . , Fn)



Theorem (GME and sum)

X∗,XM ∈ R(F1, . . . , Fn), XM is GME

X∗ is GME ⇐⇒
n∑

i=1

X∗
i

d
=

n∑
i=1

XM
i

⇐⇒ Eφ

⎛
⎝ n∑
i=1

X∗
i

⎞
⎠ = Eφ

⎛
⎝ n∑
i=1

XM
i

⎞
⎠

⇐⇒ Var

⎛
⎝ n∑
i=1

X∗
i

⎞
⎠ = Var

⎛
⎝ n∑
i=1

XM
i

⎞
⎠

φ: any strictly convex function

Theorem (Distributional representation of GME variables)

Suppose R(F1, . . . , Fn) satisfies Condition (A).

(a) If XM is MEB, then

XM d
=

(
F−1
1 (U∗

1), . . . , F
−1
n (U∗

n)
)
,

where, for i = 1, . . . , n,

U∗
i := (1− U)1{

U≥∑i
j=1 qj

} +

⎛
⎝U +1−

i∑
j=1

qj

⎞
⎠1{

U<
∑i

j=1 qj

}
and

F−1
i (U∗

i ) =

⎧⎨
⎩F−1

i

(
U +1−∑i

j=1 qj
)
,

∑i−1
j=1 qj ≤ U <

∑i
j=1 qj,

li, otherwise



Theorem (Distributional representation of GME variables), cont.

(b) If XM is MEA, then

XM d
=

(
F−1
1 (U∗

1), . . . , F
−1
n (U∗

n)
)
,

where, for i = 1, . . . , n,

U∗
i := (1−U)1{

U∈
[∑i

j=1 pj,1
)}+

⎛
⎝U +1−

i∑
j=1

pj

⎞
⎠1{

U∈(0,∑i
j=1 pj)

}
and

F−1
i (U∗

i ) =

⎧⎨
⎩F−1

i

(
U +1−∑i

j=1 pj
)
,

∑i−1
j=1 pj ≤ U <

∑i
j=1 pj,

ui, otherwise

Theorem (CF of mutually exclusive sum)

Assume l1, . . . , ln = 0 or u1, . . . , un = 0.

XM
1 , . . . , XM

n are ME =⇒ ϕSM(t) =
n∑

i=1

ϕXi
(t)− (n− 1)

Furthermore, if
n∑

i=1

ϕXi
(t)− (n− 1)

is a valid CF, then R(F1, . . . , Fn) supports GME random vectors.



Application (mutually exclusive sum of mixture distributions)

Yi: strictly positive

XM
i

d
=

⎧⎨
⎩0, with probability pi,

Yi, with probability 1− pi,

XM
1 , . . . , XM

n : MEB (requires
∑n

i=1 pi ≥ n− 1)

XM
1 + · · ·+XM

n
d
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, with probability
∑n

i=1 pi − (n− 1),

Y1, with probability 1− p1,
... ...
Yn, with probability 1− pn.

Application (mutually exclusive sum of compound distributions)

Si
d
=

∑Ni
j=1Xij, Xij ∼ FX

(a) MEB (NM
1 , . . . , NM

n ) exists ⇒ MEB (SM
1 , . . . , SM

n ) exists

(b) SM
1 + · · ·+ SM

n has a compound distribution

primary: NM
1 + · · ·+NM

n , secondary: X



Part 3

Lower bounds of TVaR, Haezendonck-Goovaerts risk measures
and convex expectation of a sum

(1) inf{TVaRε(X1 + · · ·+Xn) | (X1, . . . , Xn) ∈ R(F1, . . . , Fn)} =?

(2) Is the infimum attainable? By what kind of dependence
structure?

(3) Lower bound of TVaRα(X1 + · · ·+Xn)?

(4) Other more general risk measures? Convex expectation?



Theorem (for bounded below risks)

X1, . . . , Xn ∈ L1 with ess inf Xi = li > −∞ for all i.

S := X1 + · · ·+Xn.

(a) For any ε ∈ (0,1),

TVaR1−ε(S) ≥
n∑

i=1

li + max
(ε1,...,εn)∈S(ε)

n∑
i=1

εi
ε

(
TVaR1−εi(Xi)− li

)

(lower bound denoted by LB(1− ε))

Theorem (for bounded below risks), cont.

(b) TVaR1−ε(S) = LB(1− ε) for all ε ∈ (0,1) ⇐⇒ X1, . . . , Xn are
MEB

(GME is characterized by the minimality of the TVaR of the
sum)



Theorem (for bounded above risks)

X1, . . . , Xn ∈ L1 with ess sup Xi = ui < ∞ for all i.

S := X1 + · · ·+Xn.

(a) For any ε ∈ (0,1),

TVaRε(S) ≥
n∑

i=1

ui + max
(ε1,...,εn)∈S(ε)

n∑
i=1

1− εi
1− ε

(
TVaRεi(Xi)− ui

)

(lower bound denoted by LA(ε))

(b) TVaRε(S) = LA(ε) for all ε ∈ (0,1) ⇐⇒ X1, . . . , Xn are MEA.

Proof:

Use the previous theorem, and the following identity:

E(X) = (1− α)TVaRα(X)− αTVaR1−α(−X)



Theorem (for general risks)

X1, . . . , Xn ∈ L1, S := X1 + · · ·+Xn.

For any ε ∈ (0,1),

TVaRε(S) ≥ max
(ε1,...,εn)∈S(ε)

n∑
i=1

1

1− ε

∫ 1−ε+εi

εi
F−1
Xi

(t) dt

(lower bound denoted by LG(ε))

Sketch of proof:

Step 1:

TVaRε(S) ≥ TVaRε(X1 ∧ c1 + · · ·+Xn ∧ cn)

for any c1, . . . , cn

Step 2:

TVaRε(X1 ∧ c1 + · · ·+Xn ∧ cn)

≥
n∑

i=1

ci + max
(ε1,...,εn)∈S(ε)

n∑
i=1

1− εi
1− ε

(
TVaRεi(Xi ∧ ci)− ci

)

≥
n∑

i=1

ci +
n∑

i=1

1− εi
1− ε

(
TVaRεi(Xi ∧ ci)− ci

)

for any (ε1, . . . , εn) ∈ S(ε)



Step 3:

fi(ci, εi) := ci +
1− εi
1− ε

(
TVaRεi(Xi ∧ ci)− ci

)

⇒ TVaRε(S) ≥ sup
(ε1,...,εn)∈S(ε)

sup
c1,...,cn

n∑
i=1

fi(ci, εi)

Step 4:

For any fixed εi ∈ [0, ε],

sup
ci

fi(ci, εi) =
1

1− ε

∫ 1−ε+εi

εi
F−1
Xi

(t) dt

∴∵ TVaRε(S) ≥ max
(ε1,...,εn)∈S(ε)

n∑
i=1

1

1− ε

∫ 1−ε+εi

εi
F−1
Xi

(t) dt

Summary I

For risks that are bounded from below:

TVaRε(S) ≥
n∑

i=1

li + max
(ε1,...,εn)∈S(1−ε)

n∑
i=1

εi
1− ε

(
TVaR1−εi(Xi)− li

)

Notation: LB(ε)



Summary II

For risks that are bounded from above:

TVaRε(S) ≥
n∑

i=1

ui + max
(ε1,...,εn)∈S(ε)

n∑
i=1

1− εi
1− ε

(
TVaRεi(Xi)− ui

)

Notation: LA(ε)

Summary III

For general risks:

TVaRε(S) ≥ max
(ε1,...,εn)∈S(ε)

n∑
i=1

1

1− ε

∫ 1−ε+εi

εi
F−1
Xi

(t) dt

Notation: LG(ε)



Observation (for risks that are bounded from below)

TVaRε(S) =
1

1− ε
{E(S) + εTVaR1−ε(−S)}

≥ 1

1− ε

⎧⎨
⎩E(S) + max

(ε1,...,εn)∈S(1−ε)

n∑
i=1

∫ ε+εi

εi
F−1
−Xi

(t) dt

⎫⎬
⎭

=
1

1− ε
max

(ε1,...,εn)∈S(1−ε)

n∑
i=1

{∫ 1−εi−ε

0
+

∫ 1

1−εi
F−1
Xi

(t) dt

}

“≥” by LG(1− ε)

−→ a new lower bound LB′(ε)

Refinement 1 (for risks that are bounded from below)

LB′(ε) ≥ LB(ε), i.e., LB′(ε) is a better lower bound

Refinement 2 (for risks that are bounded from above)

Recall: TVaRε(S) ≥ LA(ε) and TVaRε(S) ≥ LG(ε)

LG(ε) ≥ LA(ε), i.e., LG(ε) is a better lower bound



Haezendonck-Goovaerts risk measures

Given X non-negative, Φ : [0,∞) → [0,∞) convex and strictly
increasing with Φ(0) = 0, Φ(1) = 1 and limx→∞Φ(x) = ∞.
Define H1−ε(X) implicitly by

E

[
Φ

(
X

H1−ε(X)

)]
= ε.

The HG risk measure of X is defined as

π1−ε(X) := inf
x∈R

{
x+H1−ε[(X − x)+]

}
.

(Haezendonck and Goovaerts (1982), further investigated in Bellini
and Gianin (2008, 2012), Goovaerts et al. (2012), Tang and
Yang (2012))

Haezendonck-Goovaerts risk measures

Remarks:

(1) No closed-form for π1−ε(X) in general

(2) If Φ(x) = x, then π1−ε(X) = TVaR1−ε(X)

(3) The infimum, denoted by x∗1−ε,X, is always attained for all
ε ∈ (0,1); it can be negative even if X is non-negative



Theorem (lower bound for HG risk measures)

X1, . . . , Xn: non-negative

Suppose that the minimizer x∗1−ε,S is non-negative. Then

π1−ε(S) ≥ max
(ε1,...,εn)∈S(ε)

min
1≤i≤n

π1−εi(Xi)

Furthermore, if Φ is strictly convex and equality prevails, then
X1, . . . , Xn are mutually exclusive.

Remark: A mutually exclusive sum may not attain the lower
bound!

Lower bound of convex expectation

Problem of interest:

inf
Xi∼Fi

E[f(X1 + · · ·+Xn)]

where f is convex



Theorem (convex lower bound)

X1, . . . , Xn are non-negative, f is convex

(i)

E[f(S)] ≥
n∑

i=1

E[f(Xi)]− (n− 1)f(0)

(ii) If f is strictly convex, then equality holds iff X1, . . . , Xn are
mutually exclusive random variables.

Remarks:

(1) Other convex lower bounds have been proposed (e.g. Wang
and Wang (2011), Bernard et al. (2014)), but they all require
strong assumptions on the marginals.

(2) Our lower bound is considerably simpler, more general and its
sharpness can be characterized easily even in the heterogeneous
case.

(3) As noted in Bernard et al. (2014), a universal solution,
which applies to any marginals and any convex f , is not available.
This explains why the convex lower bound problem has been
intractable for a very long time.



Part 4

Mutual exclusivity in the tail

Brief summary, for n ≥ 3:

• If each Xi has an essential infimum of 0, then

TVaR1−ε(X1 + · · ·+Xn) ≥ max∑
εi=ε

n∑
i=1

εi

ε
TVaR1−εi

(Xi) =: LB

• This lower bound is attained iff X1, . . . , Xn are mutually exclusive (ME)

Pr [Xi > 0, Xj > 0] = 0 for all i 	=j

• ME random variables exist when and only when

F1(0) + · · ·+ Fn(0) ≥ n− 1 (∗)



Difficulty

The existence of ME random variables in R(F1, . . . , Fn) requires
n∑

i=1

Fi(0) ≥ n− 1 (∗)

- rather stringent

Objectives

(A) Is LB still tight without the validity of (*)?

(B) How to relax (*) to maintain the tightness of LB at least
for probability level close to one? What is the corresponding
dependence structure?

Definition

A random vector X = (X1, . . . , Xn) ∈ R(F1, . . . , Fn) is said to be
mutually exclusive in the tail, abbreviated as MET, if there exists
a probability vector p = (p1, . . . , pn) ∈ (0,1)n such that

Pr[Xi > F−1
i (pi), Xj > 0] = 0 for any i 	= j

X is also called p-mutually exclusive, abbreviated as p-ME

“0” can be replaced by ess inf Xi



Support of a p-ME random vector

X ∈ R(F1, . . . , Fn) is p-ME if and only if it is supported by the
box

{x ∈ R
n | 0 ≤ xi ≤ F−1

i (pi) for all i}
and the half lines

{x ∈ R
n | xi > F−1

i (pi), xj = 0 for j 	= i}, i = 1, . . . , n

Support of a p-ME random vector

F−1
i (pi)

F−1
j (pj)

Xi

Xj



Some observations

• if X is p-ME and if p′ ≥ p, then X is p′-ME too

⇒ one can always increase the probability level pi without
destroying the MET structure.

• X = (X1, . . . , Xn) ∈ R(F1, . . . , Fn) is p-ME if and only if it is
p′-ME, where pi

′ = Fi(F
−1
i (pi))

⇒ under this convention, pi ≥ Fi(0) for all i

• if pi = Fi(0) for all i, X is p-ME if and only if it is ME in the
classical sense

Proposition (properties of MET)

Suppose that X = (X1, . . . , Xn) ∈ R(F1, . . . , Fn) is p-ME.

(i) The random vector

((X1 − F−1
1 (p1))+, . . . , (Xn − F−1

n (pn))+)

is mutually exclusive.

(ii) For i = 1, . . . , n, let fi : [0,∞) → [0,∞) be increasing, left-
continuous, and satisfying fi(0) = 0. Then (f1(X1), . . . , fn(Xn))

is also p-ME.



Proposition (existence)

(i) Suppose that pi ≥ mi := Fi(0) for all i. There exists a p-ME
random vector in R(F1, . . . , Fn) if and only if

n∑
i=1

(1− pi) + max
1≤i≤n

(pi −mi) ≤ 1.

In this case, mi > 0 for all i.

(ii) There exists a MET random vector in R(F1, . . . , Fn) if and
only if mi > 0 for all i.

Proposition (construction)

Step 1 Define Δ = maxi(pi −mi) and R = 1−∑n
i=1(1− pi)−Δ

Step 2 Let L,K,K1, . . . ,Kn be disjoint open intervals in (0,1)

with |L| = Δ, |K| = R, and |Ki| = 1− pi

Step 3 Fix any U ∼ U(0,1), and let Ui ∼ U(0,1) be obtained
from a shuffling of U according to the following rules:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
Ui ∈ (pi,1) ⇔ U ∈ Ki

Ui ∈ (pi −Δ, pi) ⇔ U ∈ L

Ui ∈ (0, pi −Δ) ⇔ U ∈
( (

∪j 	=iKj

)
∪K

)

Step 4 Define Xi := F−1
i (Ui) for all i ⇒ (X1, . . . , Xn) is p-ME



An explicit way to construct U1, . . . , Un in Step 3:

Let

s0 := R and si = R+
i∑

j=1

(1− pj), i = 1, . . . , n.

Let U be a uniform(0,1) random variable, and define

Ui = U + (1− si)1{si−1<U<si} − (1− pi)1{U>si}, i = 1, . . . , n.

Proposition (characterization in terms of cdf)

Let X ∈ R(F1, . . . , Fn), with pi ≥ Fi(0) for all i. Then X is p-ME
if and only if

FX(x) =
n∑

i=1
(Fi(xi)− pi)+ + FX(x ∧ a), for any x ≥ 0,

where a := (F−1
1 (p1), . . . , F

−1
n (pn)).



Proposition (decomposition of survival function)

Let X∗ be MET, and S∗ := X1 + · · · + Xn. Then there exists
some φ s.t.

Pr[S∗ > t] =
n∑

i=1

Pr[X∗
i > t] for any t ≥ φ.

If X∗ is ME, then

Pr[S∗ > t] =
n∑

i=1

Pr[X∗
i > t] for any t ≥ 0.

Corollary (decomposition of stop-loss premium)

Let X∗ be MET, and S∗ := X1 + · · · + Xn. Then there exists
some φ such that

E

[(
S∗ − d

)
+

]
=

n∑
i=1

E

[(
X∗

i − d
)
+

]
for any d ≥ φ.



Tail convex order (Cheung and Vanduffel (2013))

X is said to precede Y in the tail convex order, denoted as
X ≤tcx Y , if there exists a real number k such that Pr[Y > k] > 0

and E[(X − d)+] ≤ E[(Y − d)+] for all d ≥ k.

Corollary (minimal tail convex order)

Let X∗ be MET. For any random vector X with the same
marginals,

n∑
i=1

X∗
i ≤tcx

n∑
i=1

Xi.

Part 5

MET and TVaR Lower bounds



Theorem (tightness of LB)

Suppose that

(i) Fi(0) > 0 for all i, and

(ii) Fi(t) 	= 1 for all t, for at least one i.

Then, there exist a MET random vector (X∗
1, . . . , X

∗
n) ∈ R(F1, . . . , Fn)

and some probability level ε∗ ∈ (0,1) such that

TVaRε

⎛
⎝ n∑
i=1

X∗
i

⎞
⎠ = min

X∈R(F1,...,Fn)
TVaRε

⎛
⎝ n∑
i=1

Xi

⎞
⎠

= max∑
εi=1−ε

n∑
i=1

εi
1− ε

TVaR1−εi(X
∗
i )

for any ε > ε∗.

The Theorem above means that under the two stated hypothe-
ses on the marginal distributions, the TVaR lower bound LB is
reachable in R(F1, . . . , Fn) when the probability level is higher
than some threshold ε∗, and mutual exclusivity in the tail is the
corresponding dependence structure.

With slightly more effort, one can dispense with the assumption
that Fi(0) > 0 for all i and show that the lower bound LB is
asymptotically tight. The only required condition is that at least
one of the risks is unbounded above.



Theorem (asymptotic tightness of LB)

If Fi(t) 	= 1 for all t for at least one i, then

lim
ε→0

⎧⎨
⎩ inf
Yi∼Fi

TVaR1−ε

⎛
⎝ n∑
i=1

Yi

⎞
⎠− max∑

εi=ε

n∑
i=1

εi
ε
TVaR1−εi(Fi)

⎫⎬
⎭ = 0.

In other words,

inf
Yi∼Fi

TVaR1−ε

⎛
⎝ n∑
i=1

Yi

⎞
⎠ and max∑

εi=ε

n∑
i=1

εi
ε
TVaR1−εi(Fi)

can be made arbitrarily close when ε is sufficiently close to 1.

Recall:

The expression

max∑
εi=ε

n∑
i=1

εi
ε
TVaR1−εi(Fi)

is the TVaR of an MET random vector in R(F1, . . . , Fn)

Conclusion:

Under the very mild condition that Fi(t) 	= 1 for all t for at least
one i, the dependence structure mutual exclusivity in the tail
gives rise to an asymptotic TVaR lower bound
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