
Title Habitat restoration: Early signs and extent of faunal recovery
relative to seagrass recovery

Author(s) McSkimming, C; Connell, SD; Russell, BD; Tanner, JE

Citation Estuarine, Coastal and Shelf Science, 2016, v. 171, p. 51-57

Issued Date 2016

URL http://hdl.handle.net/10722/226565

Rights This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/45606995?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1 

 

Habitat restoration: early signs and extent of faunal recovery relative to seagrass 

recovery 

 

Chloe McSkimming1, Sean D. Connell1, Bayden D. Russell1,2, Jason E. Tanner1,3,* 

 

1 Southern Seas Ecology Laboratories, School of Biological Sciences, University of Adelaide, 

South Australia 5005, Australia 

2 Current address: Swire Institute of Marine Science and School of Biological Sciences, The 

University of Hong Kong, Hong Kong SAR, China 

3SARDI Aquatic Sciences, PO Box 120, Henley Beach, South Australia 5022, Australia 

 

Corresponding author:  

*Jason Tanner 

SARDI Aquatic Sciences, PO Box 120, Henley Beach, South Australia 5022, Australia 

Email: jason.tanner@sa.gov.au 

Phone: +61 8 8207 5489 

 

Manuscript submission category: Research paper 

 

Word count: 5,781  

mailto:sean.connell@adelaide.edu.au


2 

 

Abstract 

The overall intent of restoration is often not only to restore the habitat per se, but to restore 

the ecosystem services it supplies, and particularly to encourage the return of fauna.  Seagrass 

meadows act as habitat for some of the most diverse and abundant animal life, and as the 

global loss of seagrass continues, managers have sought to restore lost meadows.  We tested 

how quickly the epifaunal richness, abundances and community composition of experimental 

restoration plots recovered to that in an adjacent natural seagrass meadow relative to the 

recovery of seagrass per se.  Seagrass structure in the restoration plots took three years to 

become similar to a nearby natural meadow.  The recovery of epifaunal richness and total 

abundance, however, occurred within one year.  These results suggest that although 

recovering habitats may not be structurally similar to undisturbed habitats, they can support 

similar richness and abundances of epifauna, and thus have greater economic and social value 

than otherwise might have been expected.  Nevertheless, whilst epifaunal richness and total 

abundance recovered prior to the recovery of seagrass structure, full recovery of seagrass was 

required before the composition and relative abundances of the epifaunal community 

matched that of the natural seagrass meadow. 

 

Key words: Amphibolis antarctica, Ecosystem function, Motile epifauna, Recovery, 

Seagrass restoration.  

 

1. Introduction 

Habitat restoration can help to alleviate habitat loss or re-establish ecosystem structure and 

function (Elliott et al. 2007; Reynolds et al. 2013).  Often, a primary motivation for habitat 

restoration is to restore the richness and abundance of fauna associated with the lost habitats 
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(e.g. Muotka et al. 2002; Ruiz-Jaén & Aide 2005).  However, restoration success varies, due 

to the inherent difficulties involved in restoring complex environments (Elliott et al. 2007; 

Irving et al. 2010).  Further, ecosystems are not stable through time, meaning the “baseline” 

that should be used for restoration targets is often uncertain.  Therefore, setting goals for 

restoration success based solely on compositional or structural attributes that were 

characteristic of the system prior to disturbance can be problematic (Hobbs & Harris 2001).  

 

Restoration success is often most reliably assessed by comparing structural and functional 

attributes of the restoration site to those of a neighbouring undegraded habitat or reference 

site (Hobbs & Harris 2001; Ruiz-Jaén & Aide 2005; Benayas et al. 2009).  A general element 

of structural restoration is the replenishment of plant species which provide the physical 

structure of an ecosystem (McCay et al. 2003).  Recovery of structure, however, does not 

necessarily lead to the return of ecosystem function (Zedler & Lindig-Cisneros 2000).  For 

example, arthropod diversity in restored coastal sage scrub was lower than in undisturbed 

habitat after 15 years, even though vegetation was structurally similar (Longcore 2003). 

 

In marine systems, seagrass meadows form ecologically and economically important coastal 

habitats (Short & Wyllie-Echeverria 1996; Beck et al. 2001; Duarte 2002; Orth et al. 2006).  

Due to their coastal location, seagrass meadows are highly susceptible to disturbance from 

natural and anthropogenic sources (Short & Wyllie-Echeverria 1996; Ralph et al. 2006), and 

approximately 29% of the world’s seagrass habitat has been lost (Waycott et al. 2009).  As a 

consequence, seagrass restoration has become an element of coastal management, with early 

research primarily focused on establishing the most effective techniques of transplantation 

(Van Keulen et al. 2003; Bell et al. 2008; Cunha et al. 2012). 
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The success of seagrass restoration projects has, however, been limited, with only 30 % of 

studies reporting success (Fonseca et al. 1998), which is thought to be primarily due to poor 

site selection (Fonseca 2011).  Restoration success can be defined by a lack of detectable 

differences in structure (e.g. shoot density) between recovering treatments and undisturbed 

treatments.  Studies that do report ‘success’, generally do so based on short-term monitoring 

(<1year), and hence long-term success is often not known (Cunha et al. 2012).  Increasing the 

length of restoration monitoring may increase the ability to identify successful restortion.  For 

example, long-term monitoring of seagrass restoration near Tampa Bay, Florida, showed the 

recovery of seagrass to be slow during the first 3 years, followed by rapid recovery 4-7 years 

after restoration was implemented (Bell et al. 2014).  Further, the recovery of ecosystem 

function rather than structure, is only infrequently used to assess restoration success (e.g. Bell 

et al. 1993; Fonseca et al. 1996; Sheridan et al. 2003).  As functional diversity, being the 

varying functional characterists of the organims residing in an ecosystem, is thought to have 

the greatest influence on ecosystem function (Tilman et al. 1997; Dı́az & Cabido 2001), it 

may provide a measurable index of the restoration of ecosystem function.  However, in 

systems where little is known about the functional characteristics of the organisims present, 

other measures such as species richness may be used as an indicator (Tilman 2001).  For 

restoration to be successful, restored seagrass patches should persist and recover similar 

ecosystem function, such as the recovery of fauna due to the provision of habitat, to that of a 

natural undisturbed seagrass meadow (Fonseca et al. 1998).  

 

Wear et al. (2010) developed a novel seagrass restoration technique, using biodegradable 

hessian (burlap) bags to stabilize the sediment and facilitate the natural recruitment of 

Amphibolis antarctica seedlings, with the overall intention of re-establishing an extensive 

continuous seagrass meadow, which was present in the area prior to substantial seagrass loss 
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(> 5,200 ha) (Neverauskas 1987; Nayar et al. 2012).  This technique has allowed A. 

antarctica seedlings to become established and create new patches (Irving et al. 2013), which 

have persisted for > 5 years (Tanner 2014).  Amphibolis is a large perennial structure-forming 

seagrass that grows in similar environments to Posidonia (Shepherd & Womersley 1981; 

Bryars & Rowling 2009).  Unlike many other large seagrasses, most of the biomass is above-

ground (Paling & McComb 2000), and it has long, wiry vertical stems that support clusters of 

small leaves (rather similar to a bottlebrush in appearance), rather than long strap-like leaves.  

It is also unusual in being viviparous, with seedlings released from the parent plant in winter 

and drifting until they encounter a suitable attachment point (Cambridge 1975; Ducker et al. 

1977).  Attachment is via a comb-like rosette at the base of the seedling that entangles in 

features such as Posidonia root mat (Kirkman 1999; Rivers et al. 2011), and it is this feature 

that allows it to attach readily to hessian bags (Wear et al. 2010).  

 

Here, we explicitly seek to estimate the early signs and extent of motile epifaunal recovery 

relative to seagrass recovery of the series of small-scale experimental seagrass restoration 

patches described by Tanner (2014).  We define motile epifauna as non-sedentary small 

invertebrates which are directly associated with aboveground seagrass structure.  To estimate 

the early signs and extent of recovery, we compare initially small and expanding patches of 

restored seagrass to an adjacent continuous natural seagrass meadow.  We consider this to be 

the gold standard for recovery in this situation, as this meadow is well established (hundreds 

if not thousands of years), large, and not subject to fragmentation, and therefore best reflects 

the natural situation.  Additionally, we tested whether the time scale of epifaunal recovery in 

these restoration patches matched the time scale of seagrass recovery.  If epifaunal recovery 

occurs before seagrass recovery, then demonstrating this may assist managers by showing 

early signs of achievement, thus justifying continued investment in restoration. 
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2.  Materials and methods  

2.1. Restoration site and sampling design 

Structural recovery and epifaunal use were examined in an experimental seagrass restoration 

site located just inshore of a large, naturally occurring A. antarctica meadow, in 

approximately 8 m water depth, along the Adelaide metropolitan coast, South Australia 

(35° 1’ S, 138° 18’ E).  The natural A. antarctica meadow consists of a dense continuous 

canopy, with the edge of the meadow being an abrupt change from dense seagrass to bare 

sand.  The current edge of the natural seagrass meadow marks the margin of seaward retreat 

of inshore seagrass at this site due to eutrophication (Westphalen et al. 2005).  In recent 

years, extensive effort has been invested in improving water quality, allowing a small amount 

of natural seagrass recovery in deeper waters (Bryars & Neverauskas 2004), and prompted 

initial studies on restoration. 

 

Restoration trials at this site began in 2007 by deploying hessian bags to promote the 

recruitment of A. antarctica seedlings, which are released from the adjacent natural meadow.  

Hessian bags (area 0.35 m2 per bag) were deployed approximately bimonthly, from 

September 2007 to October 2009 and again from January 2011 to March 2013.  On each 

deployment, ten replicate bags, which represent a restoration plot, were filled with ~ 25 kg of 

clean play pit sand to anchor them and deployed on sandy substrate, shoreward of and 

parallel to the natural meadow.  Bags were placed end-to-end in a double row by divers 

~ 0.5 – 1 m apart, making restoration plots rectangular in shape.  Each bimonthly deployment 

was separated by ~ 2 to 3 m and there was a minimum distance of 10 m between restoration 

plots deployed in different years.  All bags were deployed within 50 m of the natural 
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meadow, and extended over a distance of ~ 100 m (Fig. S1).  The variation in recruitment of 

A. antarctica seedlings with distance from the natural meadow has previously been tested at 

this site, and bags located within ~ 80 m of the natural meadow effectively recruit A. 

antarctica seedlings (Irving et al. 2013).  While not formally measured due to the small size 

of the entire site (~ 2 km between the edge of the seagrass and shoreline, Wear et al. 2010) 

there were no obvious environmental gradients present.  Importantly, there was no 

measurable difference in water depth between the offshore and inshore margin of the 

restoration site (~ 8 m water depth).  In addition, previous measurements showed that 

seafloor light intensities at this site averaged 15 – 18 % of surface irradiance (86.83 ± 22.71 

µmol m2 s-1) (Irving et al. 2010). 

 

We used a space-for-time substitution approach (also known as a chronosequence) to 

establish the time scale for the recovery of the restoration site.  Space-for-time substitution 

(SFT) has long been used in ecology, particularly as a standard method for looking at 

successional theory, where time-scales are generally sufficiently long that standard replicated 

experimental designs are not feasible (Pickett 1989).  This technique has allowed us to assess 

the time scale and extent of epifaunal recovery by taking a series of samples from restoration 

plots of known ages, representing a “single snapshot” of succession, instead of sampling the 

one site multiple times.  A. antarctica samples with associated epifauna were collected from 

three restoration plots of known ages (based on year and month of bag deployment), 1 year 

(July 2011 deployment), 3 years (February 2009 deployment) and 5 years (September 2007 

deployment).  Seagrass within the 1 year old restoration plot was still constrained within the 

boundaries of the bags, whereas vegetative expansion of seagrass had occurred within the 3 

year old (~ 10 cm from the bags) and 5 year old (coalescence between bags) restoration plots 

(J Tanner, per obs).  A. antarctica samples were also collected from two plots within the 
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adjacent natural meadow, the edge (defined as within 0.5 m of the abrupt boundary that 

divides seagrass and bare sand) and the interior (~ 20 m into the natural meadow, n = 5 per 

site).  Restoration samples were collected from the centre of five randomly selected bags 

from each of the three restoration plots (1 year, 3 years and 5 years), while a 20 cm x 20 cm 

quadrat was haphazardly thrown five times and a sample was taken from the centre of the 

quadrat for the natural meadow (the quadrat was rethrown if it did not land within 0.5 m of 

the edge for edge samples).  Samples were collected from the centre of the bag in order to 

keep the sampling methods consistent across the restoration plots.  All samples were 

collected in July 2012, using a 9.0 cm internal diameter (area of 64 cm2) PVC corer attached 

to a fine mesh bag (mesh size 0.5 mm).  This sampling method targets small invertebrates 

which are directly associated with aboveground seagrass and does not sample fish or larger 

invertebrates.  The corer was carefully placed over the seagrass, flush with the sediment 

surface.  The seagrass was then cut at the substrate surface using a serrated knife and the 

mesh bag was tied closed to prevent the escape of motile epifauna.  Samples were then 

drained into the mesh bag and preserved in 10% formalin solution until sorted. 

 

2.2. Response variables  

All samples were sieved using a 1 mm mesh screen and sorted under magnification in the 

laboratory.  Motile epifauna were removed, counted and identified to the highest taxonomic 

resolution possible, for most taxa family, except for some rare or poorly known taxa which 

could only be reliably identified to phylum or class.  In addition, the seagrass structure itself 

was quantified as aboveground seagrass biomass (g dry weight of stems, branches and leaves 

[DW] m-2), stem length (cm) and density (no. m-2), leaf cluster density (no. m-2) and stem and 

leaf epiphyte biomass (g dry weight [DW] m-2).  A. antarctica has wiry stems and branches 
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that are topped by clusters of 5-10 leaves ~5 cm long (Ducker et al. 1977).  Stem length was 

measured from the base of the stem to the top of the most distal leaf cluster.  All epiphytes 

were carefully scraped from the seagrass using a scalpel blade.  Epiphytes and epiphyte-free 

seagrass were then placed in separate pre-weighed aluminium foil trays and dried to a 

constant weight at 60° C for 72 hours.  

 

2.3. Data analysis  

To establish whether the physical structure and epifaunal composition of A. antarctica varied 

between the restoration plots of  known ages and the natural meadow, one-way permutational 

multivariate analyses of variances (PERMANOVA), followed by pairwise tests, were used.  

Euclidean distance was used for the physical structure analysis, while the Bray-Curtis 

similarity measure was used with fourth root transformed data for the epifaunal composition.  

When the PERMANOVA was significant (p < 0.05), separate univariate analyses using 

Euclidean distance, followed by pairwise tests, were run on each of the individual seagrass 

structural variables.  Univariate analyses were also used to determine whether epifaunal 

richness and abundance varied between the restoration plots and the natural meadow.  

Epifauna were then grouped into the three most abundant classes (amphipods, gastropods and 

polychaetes) and analyzed similarly. All multivariate and univariate analyses were carried out 

in PRIMER (version 6) with the PERMANOVA + add-on (PRIMER-E Ltd, Plymouth).  

 

3.  Results 

The physical structure of A. antarctica differed between the restoration plots and the natural 

meadow (PERMANOVA: F4, 20 = 4.534, p = 0.005), with pairwise tests showing the structure 

of the 1 year old restoration plot being different to the older restoration plots (3 and 5 years 
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old) and the natural meadow (edge and interior).  The older plots did not differ from the 

natural meadow.  Patch age had a clear effect on above-ground biomass, leaf cluster density, 

stem epiphytic biomass and leaf epiphytic biomass (Table 1 a, d, e and f, Fig. 1 a, d, e and f), 

with 1 year old plots having significantly lower values than all other restoration plots and the 

natural meadow.  Stem length was significantly shorter in the restoration plots (1 year, 3 

years and 5 years) than the natural meadow (edge and interior) (Table 1 b and Fig. 1 b).  Stem 

length also differed significantly within the natural meadow; seagrass in the interior of the 

meadow was significantly shorter than at the edge of the natural meadow.  There was no 

difference in stem density between the three restoration plots and the natural meadow (Table 

1 c and Fig.1 c). 

 

Epifaunal composition differed significantly between plots (PERMANOVA: F4, 20  = 1.70, 

p = 0.002), with pairwise tests showing the 1 year old plot to be different to the older 

restoration plots (3 and 5 years old) and the natural meadow (edge and interior).  Epifaunal 

composition in the 3 and 5 year old restoration plots did not differ from the natural meadow.  

There was no difference in epifaunal richness between the three restoration plots of known 

ages (1, 3 and 5 years old) and the natural meadow (Fig. 2 a, PERMANOVA: F4, 20 = 2.509, 

p = 0.07).  Total epifaunal abundance differed significantly between the restoration plots 

(Fig. 2 b, PERMANOVA: F4, 20 = 3.09, p = 0.034), which was due to a lower abundance in 

the 1 year old plot than the 5 year old plot.  However, there was no difference in epifaunal 

abundance between any of the three restoration plots and the natural meadow (Fig. 2 b).  

There was no difference in gastropod and amphipod abundance between the restoration plots 

and natural meadow (Fig. 3 a, b, PERMANOVA: F4, 20 = 1.93, p = 0.139 and F4, 20 = 1.30, 

p = 0.296, respectively), however, polychaete abundance was lower in the 1 year old plot 
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than the 5 year old plot and the interior of the natural meadow (Fig. 3 c, PERMANOVA: 

F4, 20 = 2.175, p = 0.039).  

 

4.  Discussion 

The overall goal of restoration is often not only to restore the habitat per se, but to restore the 

ecosystem services it supplies, and particularly to encourage the return of fauna.  Here, we 

show that epifaunal richness and abundances were comparable to a natural meadow after one 

year, even though the seagrass structure had not fully recovered.  However, epifaunal 

composition did not recover until the seagrass had fully recovered after 3 to 5 years.  These 

results show that although recovering habitats may not look structurally similar to 

undisturbed habitats, they can in at least some circumstances support a similar richness and 

abundance of fauna.  However, full recovery of seagrass was required before the taxonomic 

composition of the epifauna matched that of the natural seagrass meadow.  

 

The rapid recovery of small invertebrate abundance before the recovery of seagrass structure 

in restored plots most likely reflects the greater proportional abundance of early successional 

species, which rapidly colonize new habitat patches due to the provision of physical structure.  

As restored seagrass patches are often isolated from natural meadows (Sheridan 2004), they 

provide structure which can attract actively dispersing fauna, such as amphipods, in what can 

be an otherwise un-vegetated environment.  Such rapid colonization of fauna due to the 

provision of structure has also been observed with the transplantation of other seagrass 

species (e.g. Fonseca et al. 1996; Bell et al. 1993).  For example, a 1.9 year old restored 

seagrass meadow in Galveston Bay, Texas had similar abundance and composition of fishes 

and shrimps to an adjacent natural seagrass meadow, and had greater faunal abundances than 
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a nearby unvegetated habitat (Fonseca et al. 1990).  The time scale for the recovery of fauna 

varies, however, and can exceed 5 years (Sheridan et al. 2003; Sheridan 2004).  To date, 

insufficient data is available to determine whether faunal recovery is linear, or whether it 

responds to thresholds in seagrass structure, as suggested by Fonseca et al. (1996), who 

reported similar faunal abundance between restored and natural seagrass beds, even though 

shoot density of the restored bed was one third that of the natural meadow. 

 

Epifauna inhabiting Amphibolis meadows respond directly to changes in habitat complexity 

and can be divided into two groups: leaf- associated, being fauna that respond directly to the 

presence of seagrass leaves; and epiphyte-associated, being fauna that respond to epiphytic 

biomass (Edgar & Robertson 1992).  In this study, the most prevalent taxa (amphipods, 

nereidid and nephtyid polychaetes) are known to be associated with the epiphytic algae that 

they consume, or to consume faunal species that are associated with epiphytic algae 

(Fauchald & Jumars 1979; Duffy & Hay 2000; Caron et al. 2004).  Although epiphytes were 

present throughout the restoration plots and natural meadow, epiphyte biomass was 

significantly lower in the 1 year old restoration plot.  As expected based on this low epiphyte 

biomass, polychaetes were relatively less abundant in the 1 year old restoration plot.  

Unexpectedly, amphipod abundance was similar in the 1 year old restoration plot to that in 

the natural meadow, and so this group does not appear to be responding to total epiphyte 

biomass. 

 

Patterns of colonization may also reflect the mobility of fauna (Virnstein & Curran 1986; 

Russell et al. 2005).  Relatively motile fauna such as amphipods can actively select habitat 

that provides increased refuge from predators and food resources (Stoner 1980; Bell & 

Westoby 1986).  Amphipod movement can be further enhanced through passive dispersal via 
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tidal currents (Virnstein & Curran 1986), and they are therefore good dispersers with early 

opportunity for colonization of restoration plots, explaining their high relative abundance in 

the 1 year old plot.  

 

The proximity of restored seagrass patches to the natural meadow may influence faunal 

abundance (Sheridan et al. 2003), with restored patches close to natural meadows having a 

greater probability of attracting or entraining dispersing fauna.  Importantly, the closer 

habitats are to each other, the more likely, motile organisms are to encounter them in their 

daily movements (Russell et al. 2005), lowering the likelihood of dispersal related mortality, 

such as encountering a predator.  Furthermore, in seagrass beds, hydrodynamic conditions 

change with distance from the habitat edge, with flow rate decreasing towards the habitat 

interior (Fonseca et al. 1982), resulting in the accumulation of fauna along the seagrass edge 

(Bologna & Heck 1999; Tanner 2005).  It is likely that the small sizes of the restoration plots 

sampled here mean that they are made up entirely of patch edge.  These influences would 

actually bias our study away from finding recovery, as we would expect that at some stage as 

plots get smaller and more isolated, the epifaunal composition would change as a result of 

those factors alone.  Although this study found no natural edge effects, small restoration plots 

may more rapidly accumulate fauna, as the increased amount of habitat edge relative to the 

plot size may increase the relative encounter rates of fauna dispersing passively (Boström et 

al. 2006).  

 

In the majority of systems that we study, the life spans of the plants and animals exceed that 

of several generations of scientific careers, which means that progress in testing recovery 

theory is challenging.  Seagrass systems, therefore, open an opportunity to test these ideas 

because the structure and function (in terms of recovery of composition and relative 
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abundance of epifauna) of these systems often return relatively quickly after restoration 

commences (e.g. Fonseca et al. 1996; Sheridan 2004).  Whilst epifauna recovered to similar 

levels as the natural patch, further work is required in order to determine the composition and 

abundance of fish species using the restoration plots as habitat for shelter or foraging activity.  

Nevertheless, this study demonstrates that the recovery of restored patches can be remarkably 

quick, with epifaunal richness and abundance taking as little as one year and seagrass 

structure and epifaunal composition taking three years to resemble adjacent natural systems.  

Further trials are now being undertaken in order to access the potential use of hessian bags for 

the restoration of seagrass species that have different life history strategies to Amphibolis.  

 

Restoration of this site began as a trial of new techniques to facilitate the natural recruitment 

of A. antarctica seedlings, with the overall intention of re-establishing an extensive 

continuous seagrass meadow (see Irving et al. 2010; Wear et al. 2010; Irving et al. 2013; 

Tanner 2014).  As a result, restoration plots are replicated temporally rather than spatially.  

Although this design has enabled us to quantify the recovery of epifaunal inhabitants and 

seagrass structure over time, it has resulted in a sampling design that was unavoidably 

pseudo-replicated.  This is typical of many such space-for-time substitutions, which are often 

used to study ecological processes that occur on time scales that are too long to be amenable 

to the application of properly replicated experiments (Pickett 1989).  However, due to the 

small size of the entire restoration site, we consider that the sampling design had no influence 

on the interpretation of the results, as there were no obvious environmental gradients present 

that could affect the recruitment of seagrass or epifauna.  Furthermore, more detailed analysis 

of data on stem length and density on all 240 bags deployed during the study (Tanner 2014) 

confirms our results for these two variables.  The seemingly logical progression in our results 
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from 1 to 3 to 5 year old restoration plots also suggests that these results are robust against 

this pseudo-replication. 

 

To conclude, recovering habitats may not be structurally similar to undisturbed habitats, but 

they can support similar components of composition (e.g. epifaunal richness and total 

epifaunal abundance), suggesting that whilst habitats may not appear fully recovered they can 

act as equivalents for some aspects of richness and abundance.  If such faunal recovery 

occurs before full recovery of the habitat, then the intention of restoring the function of the 

lost habitat may assist managers by showing early signs of achievement of pressing goals 

towards full habitat recovery per se.  
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Table 1.  The structural characteristics of A. antarctica (aboveground biomass, stem length, 

stem density, leaf clusters, stem epiphytic biomass and leaf epiphytic biomass) as a function 

of site, as determined by one-factor PERMANOVAs.  

Source   df     MS        F   P 

 

(a) Aboveground biomass  

            Site 4 

 

394600 

 

3.732 

 

0.026 

     Residual 20 

 

105720 

 
 

 
 

(b) Stem length         

     Site 4  878.180  37.224  0.001 

     Residual 20  23.592     

(c) Stem density 

            Site 4 

 

374510 

 

1.013 

 

0.437 

     Residual 20 

 

369630 

 
 

 
 

(d) Leaf clusters 

            Site 4 

 

59688000 

 

4.984 

 

0.006 

     Residual 20 
 

11976000 

 
 

 
 

(e) Stem epiphytic biomass 
      

      Site 4 

 

31558 

 

2.711 

 

0.041 

      Residual 20 

 

11641 

    (f) Leaf epiphytic biomass 

            Site 4 

 

9506.8 

 

3.781 

 

0.021 

      Residual 20   2514.6         
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Fig. 1. Structural characteristics of Amphibolis antarctica at the three restoration plots of  

known ages: 1 year, 3 years, 5 years and the two natural meadow plots: edge and interior, 

including (a) aboveground biomass (g DW m-2 ), (b) stem length (cm), (c) stem density (no. 

m-2), (d) leaf cluster density (no. m-2), (e) stem epiphytic biomass (g DW m-2 ) and (f) leaf 

epiphytic biomass (g DW m-2 ). Values are mean ± S.E. (n = 5). Within each panel, plots with 

the same letter are not significantly different according to pairwise tests. 
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Fig. 2. Epifaunal richness (a) and epifaunal abundance (b) at the three restoration plots of 

known ages: 1 year, 3 years, 5 years and the two natural meadow plots: edge and interior. 

Values are mean ± S.E. (n = 5). Within each panel, plots with the same letter are not 

significantly different according to pairwise tests.  
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Fig. 3. Gastropod abundance (a), amphipod abundance (b) and polychaete abundance (c) at 

the three restoration plots of known ages: 1 year, 3 years, 5 years and the two natural meadow 

plots: edge and interior. Values are mean ± S.E. (n = 5). Within each panel, plots with the 

same letter are not significantly different according to pairwise tests.  
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Graphical abstract.  Scatter plot of Bray-Curtis similarity measures of seagrass structure (x-

axis) and epifaunal composition (y-axis) showing the convergence between all replicate 

samples within the three restoration plots (1, 3 and 5 years) and natural meadow (edge), to the 

interior of the natural meadow. Similarity coefficient = 100 if two samples are completely 

similar, 0 if two samples are completely dissimilar.   
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Fig. S1. Map showing the natural meadow (line), the restoration site (boxes), the date of 

deployment of each plot and the location of the three restoration plots sampled (yellow 

boxes).  The distance between the natural seagrass meadow and the furthest deployment is 

< 50 m and the length of the site is ~ 100 m. Please note: the positions of the restoration plots 

have not been precisely mapped.   
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