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Exotic Haldane Superfluid Phase of Soft-Core Bosons in Optical Lattices
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We propose to realize an exotic Haldane superfluid (HSF) phase in an extended Bose-Hubbard
model on the two-leg ladder (i.e., a two-species mixture of interacting bosons). The proposal is
confirmed by means of large-scale quantum Monte Carlo simulations, with a significant part of the
ground-state phase diagram being revealed. Most remarkably, the newly discovered HSF phase
features both superfluidity and the non-local topological Haldane order. The effects induced by
varying the number of legs are furthermore explored. Our results shed light on how topological
superfluid emerges in bosonic systems.

PACS numbers: 74.20.Rp, 03.65.Vf, 03.75.Hh, 67.60.Bc

I. INTRODUCTION

Searching for novel topological phase is at the frontier
of condensed matter research1. Recently, apart from sig-
nificant interests on topological insulators2,3 and topo-
logical metals including semimetals4,5, topological su-
perfluid (TSF) phase, as an exotic quantum phase, has
also been attracting more and more attention. The
TSF is not only of fundamental importance but also has
potential applications for topological quantum comput-
ing6,7. A variety of schemes have been proposed to re-
alize fermionic TSFs8–18. However, an idea to realize
bosonic TSF, which is rather distinct from the fermionic
one, and how to probe it in a controllable way are still
badly awaited.

An ideal experimental platform to quantum-simulate
a nontrivial condensed matter model is an optical lat-
tice loaded with cold atoms, which has successfully
emulated Bose-Hubbard Hamiltonian and demonstrated
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FIG. 1: (Color online) An illustration of present proposal
[Hamiltonian (1)]. The bosons interact via a nearest-neighbor
repulsion along chains (V‖), a repulsion across chains (V⊥),
an onsite repulsion (U), and can hop to nearest-neighbor sites
along chains with the energy −t. The bosons on two chains (of
two species) are coloured in magenta and cyan, respectively.
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FIG. 2: (Color online) The ground-state phase diagram of
Model (1) with V‖/U = 3/4. Quantum phases on the phase
diagram include charge density wave (CDW), Haldane insu-
lator (HI), Haldane superfluid (HSF), and superfluid (SF).
The dotted green path is described in Fig. 3, while the blue
one is discussed in Figs. 4, 5, and 6; the extensions to multi-
leg ladders, corresponding to the two colored circles, are also
illustrated in Fig. 6.

superfluid-Mott insulator (SF-MI) transition19. This ex-
perimental achievement has led to the renewed interest
for Bose-Hubbard-like models20,21.
It was recently indicated that Haldane insulator (HI)

can appear in one-dimensional bosonic systems22–27. The
bosonic HI phase was initially found for dipolar bosons22

and later in the extended Bose-Hubbard model which in-
cludes a nearest-neighbor boson-boson repulsion23,24,26.
These HIs were determined in the case of unity filling,
where dominant occupation numbers are 0, 1 and 2.
The bosonic HI is therefore a reminiscent of the Hal-
dane phase conjectured for spin-1 systems whose local
spin variables are −1, 0 and 128. In a topological aspect,
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the Haldane phase is protected by the lattice inversion
symmetry and can be classified as a symmetry-protected
topological phase29,30.
A paradigmatic example of fermionic TSF is the inho-

mogeneous topological superfluidity which features mod-
ulated particle density and inhomogeneous SF on one-
dimensional lattices31. Recall that the single-chain ex-
tended Bose-Hubbard model hosts a homogenous SF
phase23–26. When two such SF chains are coupled by
an onsite repulsive interaction, the particle density mod-
ulation may arise along each chain. The superfluidity
thus becomes inhomogeneous and is possibly compati-
ble with the non-local Haldane order. As a result, a
novel bosonic TSF phase, which we call Haldane super-
fluid (HSF) phase, may emerge.
The structure of the paper is as follows. Section II in-

troduces the model Hamiltonian. Numerical method and
physical observables are described in Sec. III. Section IV
presents numerical results, and a brief discussion is given
in Sec. V.

II. MODEL HAMILTONIAN

As a test bed for the aforementioned conjectures, we
consider an extended Hubbard model of soft-core bosons
on two-leg ladder (shown in Fig. 1), which is described
by

H = − t
∑

〈ij〉‖

(a†iaj + aia
†
j) +

U

2

∑

i

ni(ni − 1)

+ V‖

∑

〈ij〉‖

ninj + V⊥

∑

〈ij〉⊥

ninj . (1)

Where t represents the hopping amplitude along either
chain of the ladder, U is onsite repulsion, V‖ and V⊥

are nearest neighbor repulsions respectively along and

perpendicular to the chains. Operator a†i (ai) denotes

bosonic creation (annihilation) operator, and ni = a†iai
is particle-number operator. It is noteworthy that the
system can be known as a Bose-Bose mixture in the sense
that each chain hosts a species32–36.
Here we focus on the case of unity filling where the

Haldane string order can be stable. The main findings are
summarized as a ground-state phase diagram for V‖/U =
3/4, shown in Fig. 2. In the phase diagramwe confirm the
existence of topological phases, HSF and HI, in a broad
parameter region. In the following, we present Monte
Carlo results to demonstrate the existence of HSF and
HI phases and explore how they behave.

III. NUMERICAL METHOD AND PHYSICAL

OBSERVABLES

We perform large-scale Monte Carlo simulations for
Model (1), using a unbiased algorithm of worm-type up-
date that works in continuous imaginary time37–39. This

TABLE I: The classification of quantum ordered phases —
CDW, SF, HI, MI, HSF and SS — via the robustness of mea-
sured observables as L → ∞ and β → ∞.

ρs Oc(Lmax) Os(Lmax) Op(Lmax)

CDW = 0 6= 0 6= 0 6= 0

SF 6= 0 = 0 = 0 = 0

HI = 0 = 0 6= 0 = 0

MI = 0 = 0 = 0 6= 0

HSF 6= 0 = 0 6= 0 = 0

SS 6= 0 6= 0 6= 0 6= 0

algorithm is still efficient in rather difficult cases40. Our
simulations are carried out in canonical ensemble with
a broad range of chain length, L ∈ [64, 512]. To guar-
antee that the ground-state information is obtained, we
decrease temperature until its effect is negligible. The
lowest temperature we use to check every conclusion is
lower than β = 512.
The following observables are sampled to reveal

ground-state properties. Superfluid density is evaluated
via winding number fluctuations41

ρs =
L2−d〈W 2〉

2βt
, (2)

where W represents winding number of a worldline con-
figuration and d = 1 is the effective dimension. We also
measure correlation functions that reveal crystalline or-
der, Haldane string order and parity, which are respec-
tively defined as:

Oc(|i − j|) = (−1)|i−j| < δniδnj >,

Os(|i − j|) = < δnie
iθΣ

j−1

k=i
δnkδnj >,

Op(|i − j|) = < eiθΣ
j−1

k=i
δnk > . (3)

Where δni = ni−n̄ represents the particle number fluctu-
ation from average filling n̄ (this work focuses on n̄ = 1);
θ = π denotes the topological angle, corresponding to
the maximum of Os(θ), in Haldane phase of spin-1 sys-
tem that is analogous to the present model42. The mea-
surements are taken along the chains, and the symbol
|i−j| denotes the distance between two lattice sites along
the chains. To explore long-range correlations, we pay
special attention to Oc(Lmax), Os(Lmax) and Op(Lmax),
with Lmax the maximum horizontal distance between two
sites. Our simulations are carried out on periodic lattices
such that Lmax = L/2. Table I illustrates how these
observables are used to distinguish among the quantum
ordered phases.

IV. MONTE CARLO RESULTS

We concentrate on a typical ratio of intrachain
nearest-neighbour repulsion and onsite repulsion, the
same as that in Ref.24, V‖/U = 3/4. At V⊥ = 0
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FIG. 3: (Color online) Quantities ρs, Oc(Lmax), Os(Lmax)
and Op(Lmax) versus V⊥/U at V‖/U = 3/4 and t/U = 1/4.

Model (1) reduces to the single-chain extended Bose-
Hubbard model which hosts a bosonic Haldane insulating
phase22–26. Our results consist with those in Ref.24: as t
increases there appear in order CDW, HI and SF phases,
separated by a CDW-HI transition at t/U = 0.21(1) and
a HI-SF transition at t/U = 0.32(1). In the following,
we shall consider the cases that interchain repulsions are
turned on, i.e., V⊥ > 0.

First, we explore the stability of HI against interchain
interaction. Figure 3 shows the Monte Carlo results for
t/U = 1/4 to reveal whether and when the HI disappears.
For each considered values of V⊥/U , we find in the ther-
modynamic limit that ρs = 0. Therefore the system is
always insulating. As V⊥/U increases, a phase transition
occurs at V⊥/U ≈ 0.022 beyond which the bosons form
a CDW phase. This transition is reflected by a sharp in-
crease of Oc(Lmax) from 0 to a finite value. Furthermore,
the Haldane string order is robust under weak inter-
chain interactions and persists for 0 ≤ V⊥/U < 0.022(4).
Therefore, the HI phase is stable under weak interchain
interactions.

As interchain repulsions are present, the topological
HSF phase emerges. As shown in the phase diagram
(Fig. 2), the HSF phase is sandwiched between HI and
SF phases. It is crucial to analyze the effects induced by
strengthening the hopping of the bosons which are in a
HI phase, and to see how they become SF. As demon-
strated in Fig. 4 for V⊥/U = 1/25, we determine four
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FIG. 4: (Color online) Quantities ρs, Os(Lmax) andOc(Lmax)
versus t/U at V‖/U = 3/4 and V⊥/U = 1/25. The inset of
lower panel is for scaled string order parameter LOs(Lmax)
and focuses on HSF-SF transition.

quantum ordered phases: as t increases, the CDW, HI,
HSF and SF phases appear sequently, and are separated
by three transitions. The CDW-HI phase transition oc-
curs at t/U = 0.27(1). While Os(Lmax) is robust in both
sides of the transition point, the crystalline order param-
eter Oc(Lmax) vanishes in HI phase and remains robust
in CDW phase. The transition point can be determined
via the sudden decrease of Oc(Lmax). The superfluid-
ity emerges at t/U ≈ 0.33 which is estimated via the
evaluation on where the variation of ρs is most drastic.
Surprisingly, the Haldane string order does not vanish
immediately. The existence of both string order and su-
perfluidity reveals a novel topological phase which we
term as HSF. As t/U further increases, the string order
finally vanishes while SF density persists, and the sys-
tem becomes SF. The precise determination of HSF-SF
transition point is difficult since the amplitude of string
correlation in HSF phase is already weak (but finite).
Here we employ a similar treatment as that in Ref.25,
and plot LOs(Lmax) for different lattice sizes. In the SF
side and as L → ∞, one expect Os(Lmax) ∝ L−1. There-
fore, the LOs(Lmax) curves of different sizes become to
merge together at transition point, which is estimated to
be t/U = 0.42(1). Correspondingly, a more or less useful
signal can be found from ρs data: in the SF side ρs is
almost a constant as t/U changes while in the HSF side
it varies more quickly. These evidences together indicate
a HSF-SF transition, occurring at t/U = 0.42(1).

To further confirm the existence of the HSF phase and
the HSF-SF transition, we perform finite-size scaling on
ρs and Os(Lmax) at low temperatures, for different t/U
that are not far away from the estimated HSF-SF transi-
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FIG. 5: (Color online) Finite-size scalings of ρs and Os(Lmax)
at different t/U , with V‖/U = 3/4 and V⊥/U = 1/25. The
main (inset) panels are for β = 512 (256). The t/U ratios are
0.38 (HSF), 0.4 (HSF), 0.46 (SF) and 0.48 (SF). Dotted lines
indicate extrapolations to the infinite chain.

tion point. As illustrated in Fig. 5 for both HSF and SF
phases, we confirm a finite SF density as L → ∞. When
L is large enough, a good linear fit betweenOs(Lmax) and
1/L is achieved in the SF phase. In HSF phase, however,
Os(Lmax) extrapolates to a finite value as L → ∞. In
all these scalings the temperature effects are negligible,
indicating that ground-state information is already ob-
tained. In short, the existence of HSF and SF phases are
confirmed respectively in different sides of t/U = 0.42(1),
which is therefore a reliable estimate of transition point.
We then discuss the underlying picture of HSF phase.

To address the possibility of phase separation, we col-
lect equal-time snapshots of worldline configurations in
deep HSF phases, using different initial states and ran-
dom number seeds in the simulations. In none of the
snapshots we find phase separation which can be signaled
by separated regions of Haldane string order. One can
imagine two scenarios on interchain correlations: (i), the
symmetry between the chains is broken and the bosons
on one chain become SF and on the other form HI; (ii),
superfluidity and Haldane string order are both present
in either chain. To distinguish between these possibilities
and get an in-depth understanding of HSF, we calculate
two types of interchain correlations:

CW = 〈(WTWB)
2〉,

Cc(|i− j|) = 〈δnT,iδnT,jδnB,iδnB,j〉. (4)

Where we set |i − j| = Lmax = L/2; the symbols T and
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FIG. 6: (a) Correlations CW and Cc(Lmax) in HSF region
with V‖/U = 3/4 and V⊥/U = 1/25. Quantities Os(Lmax)
and Oc(Lmax) versus chain number in (b) HI at V‖/U = 3/4,
V⊥/U = 0.01 and t/U = 1/4, and (c) HSF at V‖/U = 3/4,
V⊥/U = 1/25 and t/U = 0.36.

B indicate that the measurements are taken on top and
bottom chains, respectively. As shown in Fig. 6(a) for a
HSF regime that CW > 0 and Cc(Lmax) > 0, which hold
as L increases. Thus, in the HSF phase the interchain
correlations stabilize both non-diagonal and diagonal or-
ders. These findings indicate that both chains exhibit a
robust superfluidity as well as a finite non-local Haldane
order. Scenario (ii) is therefore validated and what we
find on each chain is a stable HSF phase.

V. SUMMARY AND DISCUSSIONS

We have mapped out the significant part of the
ground-state phase diagram of a weakly coupled chains of
extended Bose-Hubbard model. In particular, we iden-
tified a novel topological phase, the HSF phase, which
has both non-local Haldane order and superfluidity. As
shown in Figs. 6(b) and (c), we demonstrate how the non-
local Haldane order and the CDW order vary as the chain
number increases. It is found that the non-local orders in
HI and HSF phases are both stable and nearly unchanged
within the uncertainties indicated by error bars.
Our proposal serves as a rather controllable approach

to realize the TSF, without any involvement of spin-orbit
coupling and Zeeman field. The existence of the HSF
is directly testable by cold bosons in a two-leg optical
ladder, where boson-boson interactions can be tuned via
Feshbach resonances. Further, as indicated in Ref.43, the
non-local characteristics of cold bosons can be measured
on either leg of an optical ladder. The other realization
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of the present Hamiltonian may be the bosonic mixture
on an optical lattice, which is achievable within state-of-
the-art experimental capabilities45,46.
Finally, we wish to remark that there are rare examples

of coexisting diagonal and off-diagonal orders in many-
body systems. A paradigm is the SS phase on a lat-
tice, which hosts both crystalline order and superfluidity,
mostly induced by simultaneously broken translational
and gauge symmetries, respectively44. The HSF phase,
a quantum phase that has both non-local Haldane string
order and superfluidity, is a new paradigm.
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