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ABSTRACT 

Breathers and rogue waves as exact solutions of a nonlocal partial differential 

equation of the third order are derived by a bilinear transformation. Breathers 

denote families of pulsating modes and can occur for both continuous and 

discrete systems. Rogue waves are localized in both space and time, and are 

obtained theoretically as a limiting case of breathers with indefinitely large 

periods. Both entities are demonstrated analytically to exist for special classes of 

nonlocal equations relevant to optical waveguides.  
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1. Introduction 

Nonlocal equations refer here broadly to classes of partial differential 

equations where the spatial rates of change of a function at any point, as well as 

its time evolution, are related to values at a finite distance from the point under 

investigation. Such equations have been studied frequently in applied disciplines, 

e.g. spatiotemporal solitary waves [1] and Hermite-Gaussian beams [2] are 

considered in nonlocal optical media.  

Theoretically, many equations in the theory of nonlinear waves and solitons 

can be studied through the perspective of nonlocal equations. As illustrative 

examples, a coupled system of Burgers equations can be rewritten as a single 

component differential-integral Burgers equation with a translational kernel [3]. 

Similarly, Boussinesq equations with rational nonlinearity can also be formulated 

as a single component nonlocal form and soliton expressions are deduced [4]. 

Indeed many cases studied consist of a diffusion or Schrödinger type differential 

equation combined with an integral operator with a translational kernel, e.g. (A = 

complex valued envelope), 

iAt + Axx + N(I)A = 0,  I = intensity = |A|2, N(I)A = A ∫ R(x’ – x)I(x’)dx’ ,            (1)   

where R(x) is a response function. If R(x) = δ(x) (a delta function), this nonlinear 

term will reduce to a local evolution model, the conventional nonlinear 

Schrödinger equation,  
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iAt + Axx + |A|2A = 0.                                                                                              (2) 

Eq. (1) and its variants occur in many applications, e.g. in life science phenomena 

where the emergence and evolution of biological species are critical issues [5].  

The focus here is on a class of nonlocal nonlinear Schrödinger equations. The 

goal in earlier works is to examine collapse prevention and soliton stabilization 

[6]. Recently the attention tends to be placed on equations with ‘parity-time 

symmetry’ [7]. These ‘PT-symmetric’ systems are important as theoretically the 

self-induced potential is then invariant. In terms of applications, wave 

propagation in symmetric waveguides and photonic lattices has been 

demonstrated experimentally [7]. An external potential can also be incorporated 

[8]. A general framework for coupled nonlinear Schrödinger equations can be 

formulated [9]. Finally, this whole idea can be extended to equations with two or 

more spatial variables [10]. 

The objective here is to show that both breathers and rogue waves, intensively 

studied topics recently, can be derived analytically for these nonlocal nonlinear 

Schrödinger equations. Breathers are pulsating modes and rogue waves are 

unexpectedly large amplitude displacements from a tranquil background [11]. 

Rogue waves were first noted in the oceans by sailors and researchers in fluid 

mechanics, but are now being pursued in optics and other fields as well [12]. The 

Darboux transformations have been frequently used for computing rogue waves 
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for many models [13], e.g. the Hirota equation, a member from the nonlinear 

Schrödinger family with third order dispersion [14]. Recently, the bilinear method 

has also been shown to be applicable as well, e.g. for the derivative nonlinear 

Schrödinger equation [15]. 

The structure of this paper can now be explained. The new nonlocal, third 

order partial differential equation is formulated and the background for the 

bilinear transformation is reviewed (Section 2). The expansion scheme for a 

breather is given and the rogue wave mode is derived by taking a long wave limit 

(Section 3). The analogy with other evolution equations exhibiting rogue wave 

modes is highlighted and conclusions are drawn (Section 4).   

 

2. A nonlocal third order nonlinear Schrödinger equation  

    Consider the nonlocal equation 

( ) [ ]* *, 3 ( , ) 0,t x xx xxx xiA icA A A A x t A i A i A A x t A+ + + σ − + λ + λ σ − =            (3) 

where A is a complex valued wave envelope, the parameters λ, σ, and c are real 

and ‘*’ denotes the complex conjugate. If c = λ = 0, Eq. (3) reduces to a nonlocal 

equation studied earlier [7]: 

iAt + Axx + σA[A(–x, t)]*A = 0,                                                                              (4) 

which possesses the usual appealing features of soliton equations, e.g. a Lax pair 

and an infinite number of conservation laws. Furthermore, the elegant mechanism 
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of inverse scattering is also applicable to Eq. (4). The conventional (local) 

nonlinear Schrödinger equation is recovered if –x is replaced by x in Eq. (4). 

The conventional nonlinear Schrödinger equation has an ‘integrable’ higher 

order extension which incorporates a third order derivative, commonly known as 

the Hirota equation, after the equation was first proposed by R. Hirota in 1973 

[16]: 

iAt + Axx + σAA*A + iλ(Axxx + 3σAA*Ax) = 0.                                                        (5) 

It will be natural to search for the nonlocal extension of Eq. (5) and we propose 

that Eq. (3) will be the ideal candidate. It will be illuminating to demonstrate that 

breathers and rogue wave modes also exist for this class of nonlocal evolution 

equations with peculiar x, t symmetry. Future works will focus on attempts to 

establish the existence of an infinite number of conservation laws and other 

benchmarks of ‘integrability’. Searching for an inverse scattering transform will 

also be highly beneficial [7]. A Lax pair, i.e. a compatible pair of linear equations, 

will identify the eigenfunctions to correlate initial data with scattering data, and 

will confirm the ‘integrability’ of the system.   

An effective method to find multi-soliton solutions as shown over the years is 

the bilinear method [17]. We shall prove here that this bilinear method is also 

applicable to obtain the breathers and rogue waves for nonlocal equations. A 



7 
 

dependent variable transformation in rational form is first implemented (ρ = a real 

amplitude parameter, ω = real angular frequency): 

A =ρ exp(–iωt)g/f ,   g complex and f real.                                                       (6) 

As two independent variables, g and f, are introduced to solve for one 

unknown (A), one can impose without loss of generality that  

( , ) ( , )f x t f x t− = .                                                                                              (7) 

The evolution model Eq. (3) is now rewritten as bilinear equations 

2 2 3[ ( 3 ) ] 0,t x x xiD i c D D i D g f+ + λσρ + + λ ⋅ =                                                     (8a) 

2 2 * 2( ) ,xD f f gg x f ⋅ = σρ − −         2 ,ω= −σρ                        (8b) 

where D is the bilinear operator: 

' , '. ( , ) ( ', ') | .
' '

m n
m n
x t x x t tD D g f g x t f x t

x x t t = =
∂ ∂ ∂ ∂   = − −   ∂ ∂ ∂ ∂   

                                 (9) 

Breathers localized in time (t) but periodic in space (x) will be generated in the 

next section. 

 

3. Breathers and rogue waves 

    Following our earlier works [15] in the literature, a family of analytical 

solutions termed breathers (pulsating modes) can typically be obtained through an 

expansion scheme (ζ(1), ζ(2) being arbitrary complex phase factors): 
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(1) (2) (1) (2)
1 2 1 21 exp( ) exp( ) exp( 2 )g a ipx t a ipx t Ma a t= + −Ω + ζ + − −Ω + ζ + − Ω + ζ + ζ ,  (10a) 

(1) (2) (1) (2)1 exp( ) exp( ) exp( 2 )f ipx t ipx t M t= + −Ω + ζ + − −Ω + ζ + − Ω + ζ + ζ .       (10b) 

Due to the special nonlocal nature of Eq. (3) one must restrict the parameters p, Ω 

to be real. The parameters a1, a2 (complex) and c, M (real) are given by 

2 2( 3 )c p= λ − σρ ,                                                                                               (11) 

2

1 2 2 ,p ia a
p i

− Ω
= = −

+ Ω

2

2 2

2 .
2

M
p

σρ
=

σρ −
                                                               (12) 

Hence one concludes that 1 2 1,a a= =  and the connection between Ω and p, i.e. 

the dispersion relation, is then 

2 2 2 2(2 )p pΩ = σρ − .                                           (13) 

The constraint 2σρ2 > p2 must hold for Ω to be real and M > 1. The breather can 

also be expressed in terms of hyperbolic and trigonometric functions as (g1 

complex, f1 real and as illustrative example here ζ(1) = ζ(2) = ζ (real)) 

A =ρ exp(–iωt)g1/f1 ,   f1 = M1/2 coshΘ  + cos(px), 

g1 = M1/2 [ cos2β coshΘ + sin2β sinhΘ + i cosβ sinβ (coshΘ – sinhΘ)]  

    + cos(px) (cosβ + i sinβ), where β, Θ, t0 are defined by 

a1 = exp(iβ), Θ = Ω(t – t0), exp(Ωt0) = M1/2 exp(ζ) . 

A popular method to derive the rogue waves theoretically is the Darboux 

transformation [14], but Eqs. (6–10) have demonstrated that the bilinear method 
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is a feasible scheme in computing breathers (and subsequently rogue waves). This 

alternative is especially valuable as most soliton systems possess bilinear forms. 

The breather is given analytically as a combination of Eqs. (6, 10a, 10b, 11, 12, 

13), and is illustrated in Fig. 1: 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Breather solution as given in Eqs. (6, 10a, 10b, 11, 12, 13) with σ =1, ρ = 1, 
λ = 1, p = 1. The amplitude is periodic in x but localized in t. 

 

To generate the rogue waves, a long wave limit (p tending to zero) is now 

taken with the provision 

exp(ζ(1)) = exp(ζ(2)) = –1.  
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The rogue wave mode as an exact solution of Eq. (3) is given by 

2
2

2 2 2 2
2

2(1 2 )exp( ) 1
12

2

i tA i t
x t

 
 + ρ σ = ρ σρ × −

  ρ σ + ρ σ +  ρ σ  

. (14) 

This exact solution is structurally very similar to the Peregrine breather / rogue 

wave of the intensively studied nonlinear Schrödinger equation, and is localized 

in both space and time (Fig. 2): 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Rogue waves as given in Eq. (14) with σ = ρ = 1 
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The main contrast with the nonlinear Schrödinger equation (NLSE), in terms of 

properties of breathers and rogue waves, is that the expansion scheme of breathers 

for NLSE permits arbitrary complex wavenumbers and frequencies, whereas p 

and Ω must be real for the present nonlocal equation (Eqs. (10a, 10b)).  

Properties of the rogue wave in terms of the input parameters 

Similar to the scenario for the local nonlinear Schrödinger equation (Eq. (2)), 

Eq. (14) is nonsingular only for σ > 0. This constraint also guarantees a real Ω in 

the limit p tending to zero in Eq. (13), consistent with our earlier assumption. The 

amplification ratio, the ratio of the maximum displacement to the background 

plane wave, is three again [12]. The parameter c usually denotes physically a 

measure of the group velocity of the wave packet. Eq. (11) then implies that a 

constraint must exist between the sign of the cubic nonlinearity (σ), the third 

order dispersion (λ), the group velocity (c) and the background amplitude (ρ) for 

the rogue wave to exist. Unlike many similar studies for rogue waves, one cannot 

draw a direct link between the existence of rogue wave modes and the condition 

of instability of the plane wave (modulation instability) [15, 18].  

 

4. Discussion and conclusion 

Breathers in both continuous and discrete settings are intensively studied in 

many fields, e.g. optical lattices, Josephson junctions and Bose-Einstein 
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condensates [19]. For a discussion on terminology, t in Eqs. (2, 3) will be termed 

the ‘propagation variable’ here while x will be known as the ‘transverse variable’. 

The associations of t, x with time and space might be confusing, as they take up 

different roles in fluid mechanics and optics. Indeed t will be slow time / spatial 

variable, while x will denote group velocity coordinate / retarded time in fluid 

mechanics / optics respectively [20, 21].  In the literature, a breather periodic in 

the ‘transverse variable’ is termed an ‘Akhmediev’ breather [22], and thus the 

solution in this paper belongs to the category of ‘Akhmediev’ breather. Because 

of the nonlocal nature of the governing system as defined by Eq. (3), a 

Kuznetsov-Ma breather periodic in the ‘propagation variable’ is not possible [22].  

 Both breathers and rogue wave modes for a class of nonlocal, third order 

partial differential equation equations are derived by the bilinear method. These 

equations arise as counterparts of intensively studied evolution models in soliton 

theory which satisfy certain symmetry requirements of the independent variables. 

The motivation of the present work comes from the search for new families of 

nonlocal equations which permit analytical treatment. Further directions of 

research will hinge on deriving nonlocal derivative nonlinear Schrödinger and 

higher dimensional (Davey-Stewartson) equations. Previous studies of nonlocal 

equations have proven their values for analytical topics in physics like modeling 
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radiating gas and optical waveguides. Hence studying these nonlocal nonlinear 

Schrödinger models will definitely be fruitful directions in applied mathematics.  
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