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Rogue waves are unexpectedly large and localized displacements from an equilibrium position or

an otherwise calm background. For the nonlinear Schr€odinger (NLS) model widely used in fluid

mechanics and optics, these waves can occur only when dispersion and nonlinearity are of the

same sign, a regime of modulation instability. For coupled NLS equations, rogue waves will arise

even if dispersion and nonlinearity are of opposite signs in each component as new regimes of

modulation instability will appear in the coupled system. The same phenomenon will be

demonstrated here for a coupled “AB” system, a wave-current interaction model describing baro-

clinic instability processes in geophysical flows. Indeed, the onset of modulation instability corre-

lates precisely with the existence criterion for rogue waves for this system. Transitions from

“elevation” rogue waves to “depression” rogue waves are elucidated analytically. The dispersion

relation as a polynomial of the fourth order may possess double pairs of complex roots, leading to

multiple configurations of rogue waves for a given set of input parameters. For special parameter

regimes, the dispersion relation reduces to a cubic polynomial, allowing the existence criterion for

rogue waves to be computed explicitly. Numerical tests correlating modulation instability and evo-

lution of rogue waves were conducted. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4931708]

In the oceans, abnormally large waves from a calm back-

ground or relatively tranquil wave train can occur and

have been termed “rogue waves”. These waves obviously

pose immense danger to shipping and offshore structures,

and have been known to sailors for nearly a century.

Systematic scientific studies in fluid mechanics started

only about twenty years ago. In the past few years, simi-

lar investigations have been pursued intensively in many

disciplines as “extreme and rare events in physics”, after

such surprisingly large waves were observed in an optical

fiber. The nonlinear Schr€odinger (NLS) equation is a

widely used model where the rogue waves are expressed

as an algebraic expression in space and time. The goal of

this work is to extend such considerations to a coupled

“wave envelope-mean flow” system relevant in geophysi-

cal flows. Similar to coupled NLS equations, the remark-

able feature here is that multiple wave packets can

induce additional regimes of modulation instability.

Nonlinear couplings thus permit new domains of exis-

tence of rogue waves, which are otherwise prohibited if

each waveguide is operating alone by itself.

I. INTRODUCTION

Rogue waves are unexpectedly large displacements

from an equilibrium position or an otherwise tranquil back-

ground, constituting a class of nonlinear waves1 localized in

both space and time. Sailors have been aware of such dan-

gerous waves for a long time. More than 20 large vessels

were lost at sea in the period 1969–1994 presumably due to

these large amplitude waves, resulting in significant casual-

ties.2 Systematic scientific studies in fluid mechanics only

started about 20 years ago, employing both deterministic and

probabilistic approaches.3–6 Many factors have been pro-

posed, e.g., soliton interactions, wave-current dynamics, geo-

metric focusing, and modulation instabilities. Rogue internal

waves utilizing long wave models have also been consid-

ered.7 An important milestone occurred when such abnormal

waves were measured experimentally using an optical fiber

as an waveguide.8 Since then there has been an explosion of

research activities looking into rogue waves in various physi-

cal settings, e.g., liquid helium, microwave cavities, and

plasmas.6

In many physical applications, e.g., fluid dynamics and

optics, the evolution of a slowly varying wave packet is typi-

cally governed by the NLS equation.9,10 For two or more

packets with the same group velocity, the corresponding

model is a system of coupled NLS equations.11,12 The NLS

model with one single component is

iWt þWxx þ dW2W� ¼ 0; d ¼ a real parameter; (1)

where the slowly varying envelope W is expressed in the ref-

erence frame moving with a group velocity frame (x). The

Peregrine breather

W¼mexp idm2tð Þ 1� 2 1þ2idm2tð Þ

dm2 x2þ2dm2t2þ 1

2dm2

� �
8><
>:

9>=
>;
; m real;

(2)
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localized algebraically both in x and t, is frequently used as a

model of a rogue wave.13 This rogue wave can be regarded

as a long wave (infinite wavelength) limit of a breather (a

pulsating mode).14 The Kuznetsov-Ma breather is periodic in

the direction of the propagation variable (t here), while the

Akhmediev breather is periodic in the transverse variable (x
here). Each will tend to the Peregrine breather in the limit of

an indefinitely large period.

The Peregrine breather has a maximum amplitude of

three times the background, and occurs only in the regime

where nonlinearity and dispersion are of the same sign

(d> 0). This regime also defines the domain of modulation

instability, where a small disturbance on a plane (or contin-

uous) wave can grow exponentially as a result of the inter-

play between nonlinearity and dispersion. This intimate

connection between existence of rogue waves and onset of

modulation instabilities has been recognized by research-

ers, using NLS,15 derivative NLS,16 and Korteweg-de

Vries17 equations as models. For coupled NLS equations,

from the perspective of applications in fluid dynamics, the

roles and relevance of non-symmetric wave pattern10 and

oblique wave packets propagation can be considered, espe-

cially from the perspective of rogue wave formation.11,12

From the viewpoint of nonlinear science, coupled equa-

tions tend to bring additional degrees of freedom and

intriguing dynamical behavior.18 For coupled NLS equa-

tions, new modulation instabilities can indeed occur even

if dispersion and nonlinearity are of opposite signs in each

component, leading to the existence of rogue waves.19 The

main goal of this work is to consider a similar coupled sys-

tem arising from evolution of wave packets in geophysical

fluid dynamics.

The remarkable feature of all these studies is that ele-

gant theoretical techniques allow analytical solutions to be

found with potential physical significance, and these local-

ized waves may be verified in a laboratory setting. Indeed,

the Peregrine breather could be observed in a wave tank.20

However, higher order nonlinear effects, modeled by the

Dysthe equation, will destroy the recurrence character of the

breather through the asymmetric broadening of the spec-

trum.20 Higher order (“super”) rogue waves with amplitude

five times the background have also been detected in an

experiment.21

The structure of the present paper is as follows. First,

the formulation of the AB system as documented in the lit-

erature will be presented in Section II. This system is made

up of one single slowly varying envelope and a wave-

induced mean flow arising in a geophysical fluid dynamics

setting as a model for baroclinic instability. In this paper,

our contribution is to investigate an extension of this model

where the system contains two short wave envelopes. The

presence of multiple short wave envelopes leads to new

regimes of modulation instability, and hence new domains

of existence of rogue waves, similar to the situation for

coupled NLS equations.19 Novel features of rogue waves

regarding transitions between “elevation” modes and

“depression” modes are elucidated in Section III. Further

features of nonlinear dynamics, e.g., multiple eigenvalues

and special parameter regimes, are presented in Section IV.

Remarkably, we show in Section V that the criterion for the

existence of rogue waves for this system matches precisely

with the condition of onset of modulation instability. We

conclude in Section VI.

II. FORMULATION

The so-called “AB” system as studied earlier in the liter-

ature arises as an asymptotic reduction of special classes of

two-layer geophysical flows which support baroclinic insta-

bility processes through appropriate vertical shear. In this

formulation, A is a complex valued envelope and B0 is the

wave-induced modification of the basic flow by the wave

packet. The governing system is22–24

@

@T
þ c1

@

@X

� �
@

@T
þ c2

@

@X

� �
A ¼ n1A� n2AB0;

@

@T
þ c2

@

@X

� �
B0 ¼

@

@T
þ c1

@

@X

� �
jAj2; (3)

where c1 and c2 are the respective group velocities; T and X
are time and space, respectively, and n1 and n2 are real pa-

rameters. Extension to continuous shear and stratification

profiles is feasible.23 Next we change to characteristic coor-

dinates and rescale

x ¼ X � c1T; t ¼ T � X

c2

; n2c2B0 ¼ c1 � c2ð Þ2B; (4)

and hence the AB system occurring in the recent literature is

Axt ¼ kA� AB; Bx ¼ r jAj2
� �

t;

k ¼ n1c2

c1 � c2ð Þ2
; r ¼ n2

c1 � c2ð Þ2
; (5)

where k, r are real constants. When A is real valued, a reduc-

tion to the integrable sine-Gordon equation can be made.

Various solutions can then be found, e.g., periodic patterns

have been evaluated in closed form.24 Breathers (pulsating

modes) have been calculated by generalized Darboux trans-

formations.25 Rogue waves have been derived using similar

techniques, in a parameter regime where rogue waves are

assumed implicitly to exist.26

In our opinion, it will be useful and illuminating to elu-

cidate the existence condition of rogue waves in terms of pa-

rameters of the differential equations, and also in terms of

the physical mechanisms relating to their existence, e.g.,

modulation instability.

Along the line of reasoning introduced earlier, our main

contribution in this work is to enrich the nonlinear dynamics

by considering two propagating wave packets. The resulting

coupled evolution equations are

ðA1Þxt ¼ kA1 – A1B; (6a)

ðA2Þxt ¼ kA2 – A2B; (6b)
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Bx ¼ rðjA1j2 þ jA2j2Þt; (6c)

where A1 and A2 are the packets of short waves and B is the

mean flow. We have assumed that the coefficients of A1B,

A2B in Eqs. (6a) and (6b) are identical, otherwise the equa-

tions might not be integrable. Eqs. (6a)–(6c) constitute the

main focus of this work. Instead of the Darboux transforma-

tion, the Hirota bilinear method27,28 will be applied, as the

latter has been demonstrated to be useful in the derivation of

multi-soliton for integrable systems over the past 40 years.28

This bilinear method will also be shown here to be effective

in the calculation of rogue waves.29

It will be instructive to elucidate the contrast with the

intensively studied integrable coupled NLS or Manakov

equations. In terms of theoretical techniques, both the

Darboux transformation30 and the Hirota bilinear method31

have been applied for the Manakov case, but only the

Darboux technique has been utilized for the AB system.25,26

Our contribution is to apply the Hirota bilinear method to

such AB system.

In terms of physics, situations where the self phase mod-

ulation (SPM) and cross phase modulation (XPM) coeffi-

cients are of the same or opposite signs have been studied

for the generalized coupled NLS equations,32 but our present

effort focuses on the case where the intensity terms jA1j2,

jA2j2 are of the same sign. Indeed, there are differences

between the coupled NLS system and the coupled AB sys-

tem. Cubic nonlinearity occurs in coupled NLS system, and

the system is integrable only if the SPM and XPM coeffi-

cients are equal in magnitude (Manakov equations). As cubic

terms are absent in Eq. (6), one can always scale the ampli-

tude such that the coefficients of the intensity terms jA1j2,

jA2j2 are equal in magnitude.

To initiate the bilinear method, we first implement the

dependent transformations to rewrite Eq. (6)

A1 ¼
g

f
; A2 ¼

h

f
; B ¼ 2 log fð Þxt; g; h complex; f real;

(7)

ðDxDt – kÞg : f ¼ 0; ðDxDt–kÞh : f ¼ 0;

ðDx
2 – CÞf : f ¼ rðgg� þ hh�Þ; C ¼ constant;

where the bilinear operator is defined by27,28

Dm
x Dn

t g:f ¼ @

@x
� @

@x0

� �m
@

@t
� @

@t0

� �n

g x; tð Þf x0; t0ð Þjx0¼x;t0¼t:

The appropriate expansion to obtain breathers is

g ¼ q exp ½iðax–kt=aÞ�f1þ a1 exp ðpx – Xtþ g1Þ
þ a2 exp ðp�x–X�tþ g2Þ þMa1a2 exp½ðpþ p�Þx
– ðXþ X�Þtþ g1 þ g2�g; (8a)

h ¼ q exp½iðbx–kt=bÞ�f1þ b1 expðpx – Xtþ g1Þ
þ b2 expðp�x – X�tþ g2Þ
þMb1b2 exp½ðpþ p�Þx – ðXþ X�Þtþ g1 þ g2�g; (8b)

f ¼ 1þ expðpx – Xtþ g1Þ þ expðp�x – X�tþ g2Þ
þM exp½ðpþ p�Þx – ðXþ X�Þtþ g1 þ g2�g; (8c)

with a1, a2, b1, b2, p, X being complex, a, b, M being real,

and g1, g2 being arbitrary complex phase factors. From the

bilinear equations,

a1 ¼
i aXþ pk=að Þ � pX
i aXþ pk=að Þ þ pX

; a2 ¼
1

a
�
1

; (8d)

b1 ¼
i bXþ pk=bð Þ � pX
i bXþ pk=bð Þ þ pX

; b2 ¼
1

b
�
1

; (8e)

M ¼ k p
�
X� pX

�� �2 � pp
�
XX

�
p� p

�� �
X� X

�ð Þ

k p�X� pX
�� �2 � pp�XX

�
pþ p�ð Þ Xþ X

�ð Þ
: (8f)

The dispersion relation for X in terms of p is

a2b2 þ 2rq2 þ p2
� �

a2þb2 þ p2
� �

þ 2rq2p2
h i

X4

þ2 a2þb2 þ 2p2 þ 4rq2
� �

kpX3

þ a2þb2 þ p2 þ 2rq2
� � 1

a2
þ 1

b2

� �
þ 2

� �
k2p2X2

þ2
1

a2
þ 1

b2

� �
k3p3Xþ k4p4

a2b2
¼ 0: (9)

From earlier studies,29 only the long wave regime (p! 0) is

significant, and hence we write

X ¼ p½X0 þ OðpÞ� (10)

with X0 satisfying

a2b2 þ 2rq2 a2þb2
� �� 	

X4
0 þ 2 a2þb2 þ 4rq2

� �
kX3

0

þ a2þb2 þ 2rq2
� � 1

a2
þ 1

b2

� �
þ 2

� �
k2X2

0

þ2
1

a2
þ 1

b2

� �
k3X0 þ

k4

a2b2
¼ 0: (11)

With the choice exp(g1)¼ exp(g2)¼�1 and a Taylor expan-

sion of Eq. (6) for small p, we obtain rogue waves for the

coupled AB system as

A1 ¼ q exp iax� ikt

a

� �
g2

f2

;

A2 ¼ q exp ibx� ikt

b

� �
h2

f2
;

B ¼ 2 log f2ð Þxt; (12)

where
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f2 ¼ M2 þ x� atð Þ2 þ b2t2;

g2 ¼
4½i a2a3 þ b2a3 þ aakð Þx� ia a2 þ b2ð Þ aa2 þ kð Þt� a2 a2 þ b2ð Þ�

aa2 þ kð Þ2 þ b2a4
þ f2;

h2 ¼
4½i a2b3 þ b2b3 þ abk
� �

x� ib a2 þ b2ð Þ ab2 þ k
� �

t� b2 a2 þ b2ð Þ�
ab2 þ k
� �2 þ b2b4

þ f2;

M2 ¼ �
a a2 þ b2ð Þ

b2k
;

X0 ¼ aþ ib: (13)

The real and imaginary parts of the complex frequency X0 (a
and b, respectively) must be determined (usually numeri-

cally) from the dispersion relation Eq. (11) (a fourth order

polynomial), after the properties of the system (r, k of Eq.

(6)) and the input wavenumbers (a, b) are given. Special

cases outlined in Section IV will permit a reduction to a

cubic equation. As usual, a rogue wave here is algebraically

localized in both x and t, similar to the NLS equation and

other intensively studied models.

III. WAVE PROFILES

For genuinely complex X0, f is generally nonzero (and

hence nonsingular rogue wave exists) if M2 is positive.

There exists an invariant of motionð
½rðA1A

�

1 þ A2A
�

2Þ
2=2� ðA1ÞxðA

�

1Þx � ðA2ÞxðA
�

2Þx�dx

as the time derivative of this quantity vanishes (integral being

taken over the entire spatial domain with vanishing boundary

conditions in the far field). Consequently, similar to the sce-

nario for the intensively studied coupled nonlinear Schr€odinger

(Manakov) equations, “elevations” above the mean level must

be accompanied by “depressions” to conserve the integral for

r< 0. For r> 0, this feature remains broadly true for all the

numerical cases we have tested. In terms of wave profiles, the

AB system exhibits some similarities with the Manakov equa-

tions. The rogue wave of the single component AB system

TABLE I. Complex angular frequencies X0 for typical values of input wave

numbers and positive values of r.

a b k r X0 M2

2 1 2 1 �0.946 6 0.845i 1.0667

2 1 2 2 �0.841 6 0.744i 0.958

4 2 4 1 �0.699 6 0.440i 0.615

4 2 4 2 �0.574 6 0.454i 0.373

TABLE II. Complex angular frequencies X0 for typical values of input

wave numbers and negative values of r.

a b k r X0 M2

2 1 2 �1 �0.840 6 0.410i 2.186

2 1 2 �2 �0.816 6 0.488i 1.548

4 2 4 �1 No complex roots

4 2 4 �2 �0.440 6 0.145i 1.115

FIG. 1. Rogue waves (jA1j in the top

panel, jA2j in the bottom panel) and the

corresponding contour plots as given

in Eqs. (12) and (13) with a¼ 2, b¼ 1,

k¼ 2, r¼ 1, q¼ 1, and X0¼�0.946

6 0.845i. jA1j displays a four-petal

configuration, while jA2j will be

termed an elevation rogue wave in this

context.
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possesses one maximum with an amplification ratio of three,26

while the coupled case studied in this paper displays eleva-

tions, depressions, and four-petal configurations.11,31

A. Coupling induced existence regimes for rogue
waves

It will be instructive to consider first the degenerate case

a¼ b, which will imply A1¼A2. The dispersion relation (11)

becomes

ðaX0 þ k=aÞ2½ðaX0 þ k=aÞ2 þ 4rq2X0
2� ¼ 0:

This will yield complex roots for real a and k only if the dis-

criminant of the second quadratic expression is negative, i.e.,

r> 0. Even for a 6¼ b (A1 6¼ A2), complex roots (and hence

rogue waves) will continue to exist for r> 0. This can

indeed be verified numerically (Table I) with p¼ 1.

For the regime r < 0, rogue waves would not exist for

the single component case, but coupling will nevertheless
give rise to these waves. This can again be checked numeri-

cally (Table II) with p¼ 1.

B. Wave profiles

Wave profiles can typically be classified geometrically

as one of the following shapes:

(a) one elevation accompanied by two depressions (Figure

1, lower panel) or one depression flanked by two

elevations;

(b) a four-petal configuration which resembles the shape

of a flower (Figure 1, upper panel).

New rogue waves produced by coupling for the case

r< 0 are illustrated in Figure 2.

C. Modifications of the wave profiles and a “black”
rogue wave

The wave profiles of the component wave packets An,

n¼ 1, 2, can display an intriguing sequence of changes on

modifying the carrier wave number a. A typical example is

illustrated in Figure 3, where A1, A2 are displayed in the left,

FIG. 2. Rogue waves as given in Eqs. (12) and (13) with a¼ 2, b¼ 1, k¼ 2,

r ¼�1, q¼ 1, and X0¼�0.840 6 0.410i. The parameter r is negative, and

hence each waveguide alone will not permit the existence of a rogue wave.

The rogue wave results from modulation instability induced due to coupling.

FIG. 3. Stages of transition from depression, four-petal to elevation rogue

waves, b¼ k¼r¼q ¼ 1, with values of a and X0 given for each individual

figures. The values of parameters from top to bottom are as follows. (a):

a¼ 0.408, X0¼�0.309 6 0.490i; (b): a¼ 0.508, X0¼�0.289 6 0.494i; (c):

a¼ 0.608, X0 ¼ �0.263 6 0.491i; (d): a¼ 0.708, X0¼�0.237 6 0.476i;
(e): a¼ 0.808, X0¼�0.218 6 0.453i; and (f): a¼ 0.908, X0¼�0.206 6

0.426i.

103113-5 Wu et al. Chaos 25, 103113 (2015)



right column, respectively. Starting from a parameter regime

where A1, A2 exhibit a “depression” and an “elevation” rogue

wave (Figure 3(a)), changing a would deepen the depression

until the “intensity” jA1j2 reaches zero, i.e., a “black” rogue

wave (Figure 3(b)).

On further changing the wave number a, the minimum

at x¼ 0, t¼ 0 is converted to a saddle point. Physically, this

minimum is split into two smaller minima (Figure 3(c)). In

the next stage, the two maxima now approach each other

and merge into a single maximum (Figures 3(d) and 3(e)).

Finally, a scenario with two elevation rogue waves is

attained (Figure 3(f)).

IV. FURTHER NONLINEAR DYNAMICS

A. Multiple wave configurations

Distinct (or multiple) configurations of rogue wave

profiles for the same input parameters are possible when

there are two distinct (or multiple) pairs of complex roots

for the dispersion relation. An illustrative example is given

in Table III with p¼ 1.

The first possible configuration is illustrated in Figure 1

(a four-petal for jA1j and an elevation for jA2j), but the sec-

ond complex root of the dispersion relation gives

X0¼�0.340 6 0.250i, yielding a completely different wave

profile (elevation, depression for jA1j, jA2j, Figure 4).

B. Simplification of the dispersion relation

Although the dispersion relation defined by a polyno-

mial of the fourth order can be solved analytically in princi-

ple, the resulting expressions are usually complicated.

Consequently, we shall instead examine a special case where

the dispersion relation reduces to a cubic expression. This

simplification is achieved for amplitude q and parameter r
satisfying the condition,

rq2 ¼ –a2b2=½2ða2 þ b2Þ�:

It proves to be convenient to define

z ¼ b2X0=k; r0 ¼ rq2=b2; c ¼ a=b:

The dispersion relation then simplifies to

2c2ðc4þ1Þz3þ½c2ðc2þ2Þ2þ1�z2þ2ðc2þ1Þ2zþ1þc2¼0:

Roots of a cubic equation are dictated by a discriminant

which reduces in this case to

D ¼ 4c2ðc4– 1Þ2ðc8– 7c6 þ 11c4– 7c2 þ 1Þ:

The necessary and sufficient condition for complex conju-

gate wave numbers to occur is D< 0, i.e., c2 6¼ 1 falling

within the interval

�w0 þ
ffiffiffiffiffi
13
p

þ 7
� �

4
;

w0 þ
ffiffiffiffiffi
13
p

þ 7
� �

4

� �
;

w0 ¼ 2 23þ 7
ffiffiffiffiffi
13
p� �

=2

h i1=2

or c2 belonging to the range (0.196, 5.107). Rogue waves

will always exist then as we can prove that M2 is always pos-

itive under such conditions. For z ¼ a1 þ ib1 with a1, b1 real,

we have

TABLE III. Distinct pairs of complex conjugate roots for the dispersion

relation.

a b k r X0 M2

2 1 2 1 �0.946 6 0.845i 1.067

2 1 2 1 �0.340 6 0.250i 0.484

FIG. 4. Distinct rogue wave configura-

tions corresponding to double (or mul-

tiple) eigenvalues of Eqs. (12) and

(13): Same parameter values as those

of Figure 1, i.e., a¼ 2, b¼ 1, k¼ 2,

r¼ 1, q¼ 1, but with a different

X0¼�0.340 6 0.250i. Hence, the

wave profiles are different (jA1j in the

top panel, jA2j in the bottom panel).
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M2 ¼ �
a1 a1

2 þ b1
2ð Þ

b2b1
2

;

a1 ¼ �
1

12 c6 þ c2ð Þ 2 c6 þ 4c4 þ 4c2 þ 1
� �

þ ðc
6 � 2c4 � 2c2 þ 1Þ2ffiffiffiffiffiffiffiffiffi

R cð Þ3
p þ

ffiffiffiffiffiffiffiffiffi
R cð Þ3

q" #
;

R cð Þ ¼ � c18 þ 6c16 � 6c14 þ 35c12 � 30c10 � 30c8 þ 35c6 � 6c4 þ 6c2

þ 6
ffiffiffi
3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�c6 c8 � 1ð Þ2 c8 � 7c6 þ 11c4 � 7c2 þ 1ð Þ
q

� 1:

One may check readily that, for c2 6¼ 1 falling within the

above interval, R(c) is positive, which implies that a1 is neg-

ative. Consequently, M2 is always positive and nonsingular

rogue waves exist.

V. MODULATION INSTABILITIES

A plane or continuous wave solution with distinct back-

ground amplitudes (q and v) of the coupled system (6) is

given by

A1 ¼ q exp ½iðax – kt=aÞ�; A2 ¼ v exp ½iðbx – kt=bÞ�;B ¼ 0:

(14)

Imposing small perturbations and searching for modes pro-

portional to exp[i(rx – st)] will give the frequency s in terms

of the wavenumber r. We focus on the long wave regime

(r, s! 0), with s/r¼ c being of order unity, and we find that

ðacþ k=aÞ2ðbcþ k=bÞ2 þ 2rc2½q2ðacþ k=aÞ2

þ v2ðbcþ k=bÞ2� ¼ 0: (15)

However, in searching for modulation instability, the

perturbation needs to be expressed in the original space and

time variables, so that on using (4), rx – st¼KX – fT where

K¼ r þ s/c2, f¼ c1r þ s. Modulation instability arises when

f is complex-valued for a real wavenumber K, and hence

c¼ s/r is also complex-valued. Equation (15) is a quartic

equation for c, and if r> 0, there are no real solutions for c
and all four solutions for c are complex, indicating the pres-

ence of modulation instability (or existence of rogue waves).

For r< 0 and a¼ b (which imply A2 proportion to A1) in the

plane wave solution Eq. (14), all solutions for c are real and

there is no modulation instability. However, for r< 0 and

a 6¼ b, then two complex roots for c can be found, and modu-

lation instability arises, consistent with the existence of

rogue waves in this case.

Furthermore, for the special case of equal background

amplitude (q¼ v), Eq. (15) for the onset of modulation insta-

bility degenerates to

ðacþ k=aÞ2ðbcþ k=bÞ2

þ 2rq2c2½ðacþ k=aÞ2 þ ðbcþ k=bÞ2� ¼ 0;

which remarkably is exactly Eq. (11), i.e., the existence con-

dition of rogue waves. Physically, this confirms again the

intimate relation between the onset of modulation instability

and the existence criterion for rogue waves. Regarding the

FIG. 5. (a) Numerical marching forward in time for A1 with the exact solu-

tion Eq. (13) as the boundary and initial conditions, a¼ 0.408, b¼ 1, k¼ 1,

r¼ 1, q¼ 1, a¼�0.309, and b¼ 0.490, maximum normalized modulation

instability growth rate Eq. (15) (imaginary part of c)¼ 2.020. (b) Evolution

of the depression rogue wave with a noise of 0.1% at the boundary. (c):

Evolution of the depression rogue wave with a noise of 1% at the boundary.

The rogue wave is severely distorted.
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actual growth rates, coupling generally produces a higher

amplification ratio than that of the single component system.

Verification by numerical studies

This intrinsic presence of modulation instability might

also lead to the growth of background noise, as wavenum-

bers corresponding to a whole unstable band might amplify.

To examine this idea, we simulate the evolution of a rogue

wave directly. Finite difference schemes were developed for

Eq. (6). Our focus will be placed on the evolution of the

rogue waves, and a computational domain in the (x, t)-plane

containing the rogue wave is chosen. Random noise is added

to the boundary condition and the evolution of the amplitude

is marched forward in space/time coordinates numerically.

This evolution will be compared with that of a control simu-

lation without background noise.

(a) The evolution of the exact solution for one component

say, A1 is illustrated in Figure 5(a), where a depression

rogue wave is observed.

• If a very weak (extremely small amplitude) noise of

0.1% is imposed, the rogue wave is basically unaf-

fected (Figure 5(b)).
• If a moderate noise of 1% is imposed, the shape of

the rogue wave is severely distorted (Figure 5(c)).

(b) We also consider a different set of parameters where

the growth rate from modulation instability is less sub-

stantial (Figure 6(a) for the exact solution). Under per-

turbations with a 1% noise, the bulk shape of the rogue

wave can still be observed, but the growth of the per-

turbation noise can be detected in the background

(Figure 6(b)). We expect the degree of distortion of the

rogue wave to increase with the magnitude of the

intrinsic modulation instability.

VI. DISCUSSION AND CONCLUSIONS

A nonlinear evolution system modeling geophysical

flows describing baroclinic instability processes is studied.

By incorporating two (or in general multiple) packets of

short waves, new regimes of modulation instabilities and

rogue waves will arise. From a theoretical perspective, the

onset of modulation instabilities correlates in this system

precisely with the existence criterion for rogue waves.

Indeed the present dynamical system might serve as another

analytically tractable model for coupled waveguides in addi-

tion to the existing few, intensively studied ones, e.g., the

coupled NLS (Manakov) equations. More precisely, features

illustrative of the nonlinear dynamics are

• The transitions among elevation, depression, and four-

petal configurations of rogue waves are elucidated analyti-

cally. Geometrically these transitions are similar to those

exhibited by the coupled NLS (Manakov) equations.33

• Two distinct pairs of complex conjugate roots are possible

for the dispersion relation in the long wave limits, result-

ing in different rogue wave configurations for the same

input parameters physically.

In terms of future work, further theoretical works can be

pursued along these lines:

• Higher order rogue waves can be calculated using a multi-

ple breather asymptotic expansion as the starting point,

followed by taking a long wave limit.
• Further tests on the structural stability of the rogue waves

need to be investigated by numerical simulations.34,35

• Finally, the physical implications and verifications of these

theoretical predictions should be examined. The amplitude

and time scale of these rogue waves in terms of actual nu-

merical values should be compared with field data.

Further fruitful results await future efforts of researchers.
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FIG. 6. (a) Numerical marching forward in time for A1 with the exact solu-

tion Eq. (13) as the boundary and initial conditions, but with a different set

of parameters from Figure 5(a), and hence a different modulation instability

growth rate: a¼ 0.9, b¼ 1.45, k¼ 0.5, r¼ 1, q¼ 1, a¼�0.111, and

b¼ 0.134. (b) Evolution of the rogue wave with a noise of 1% at the bound-

ary. This smaller growth rate of 0.198 compared with 2.020 of Figure 5(a)

implies that the competition from background noise is less severe, and the

rogue wave is more prominent, but the growth of the perturbation noise can

be observed in the background.
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