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OPEN

ORIGINAL ARTICLE

Dietary supplementation with n-3 fatty acids from weaning
limits brain biochemistry and behavioural changes elicited by
prenatal exposure to maternal inflammation in the
mouse model
Q Li1,2,3, YO Leung1, I Zhou4,5, LC Ho4,5, W Kong1, P Basil6, R Wei7, S Lam1, X Zhang8, ACK Law1, SE Chua1, PC Sham1,2,9,10,
EX Wu4,5 and GM McAlonan1,11

Prenatal exposure to maternal immune activation (MIA) increases the risk of schizophrenia and autism in the offspring. The MIA
rodent model provides a valuable tool to directly test the postnatal consequences of exposure to an early inflammatory insult; and
examine novel preventative strategies. Here we tested the hypotheses that behavioural differences in the MIA mouse model are
accompanied by in vivo and ex vivo alterations in brain biochemistry; and that these can be prevented by a post-weaning diet
enriched with n-3 polyunsaturated fatty acid (PUFA). The viral analogue PolyI:C (POL) or saline (SAL) was administered to pregnant
mice on gestation day 9. Half the resulting male offspring (POL= 21; SAL = 17) were weaned onto a conventional lab diet (n-6
PUFA); half were weaned onto n-3 PUFA-enriched diet. In vivo magnetic resonance spectroscopy measures were acquired prior to
behavioural tests; glutamic acid decarboxylase 67 (GAD67) and tyrosine hydroxylase protein levels were measured ex vivo. The main
findings were: (i) Adult MIA-exposed mice fed a standard diet had greater N-acetylaspartate/creatine (Cr) and lower myo-inositol/Cr
levels in the cingulate cortex in vivo. (ii) The extent of these metabolite differences was correlated with impairment in prepulse
inhibition. (iii) MIA-exposed mice on the control diet also had higher levels of anxiety and altered levels of GAD67 ex vivo. (iv) An n-3
PUFA diet prevented all the in vivo and ex vivo effects of MIA observed. Thus, n-3 PUFA dietary enrichment from early life may offer
a relatively safe and non-toxic approach to limit the otherwise persistent behavioural and biochemical consequences of prenatal
exposure to inflammation. This result may have translational importance.

Translational Psychiatry (2015) 5, e641; doi:10.1038/tp.2015.126; published online 22 September 2015

INTRODUCTION
Schizophrenia and autism spectrum conditions are highly
heritable, but environmental factors, such as exposure to maternal
immune activation (MIA) in prenatal life, are thought to increase
risk.1–4 This epidemiological evidence has lead to the develop-
ment of animal models and we, and others, have reported that
MIA triggered by the viral analogue PolyI:C (POL) precipitates a
brain and behavioural phenotype in rodent offspring which
mirrors that observed in schizophrenia and related neurodevelop-
mental conditions such as autism.5–10

Although the MIA model is a well-established experimental
manipulation, behaviour testing is generally the only in vivo
measure acquired and the underlying biochemical alterations in
this model are inferred largely from ex vivo study. Proton magnetic
resonance spectroscopy (1H MRS), however, permits the potential
relationship between brain metabolites and behaviour to be
studied in the same living animal. Although MRS studies in patient

populations have yielded much information about brain chemistry
in the living brain, it is not known whether prenatal inflammation
is a risk factor for such changes. Therefore, we first wished to
establish whether indeed in vivo changes in brain metabolites
similar to those reported in the clinical condition are caused by
prenatal inflammation; and then asked if these are correlated with
behavioural differences.
Second, the MIA model provides a practical means to

investigate adult outcomes of early life interventions, as rodents
have a much shorter life span than people. Therefore, in this study
we also took the opportunity to test the hypothesis that early
dietary supplementation with n-3 polyunsaturated fatty acid
(PUFA) from weaning would prevent emergence of adult
biochemical and behavioural differences triggered by MIA. We
selected n-3 PUFA because these fats are essential for the
development of the central nervous system11 and they have
robust anti-inflammatory properties.12 In particular, n-3 PUFA
inhibits production of interleukin-6,12 which is a key driver of

1Department of Psychiatry, The University of Hong Kong, Hong Kong, China; 2State Key Laboratory for Cognitive and Brain Sciences, The University of Hong Kong, Hong Kong,
China; 3HKU-SIRI, The University of Hong Kong, Hong Kong, China; 4Laboratory of Biomedical Imaging and Signal Processing, The University of Hong Kong, Hong Kong, China;
5Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China; 6Division of Diabetes, Endocrinology and Metabolism, Department of
Medicine, Baylor College of Medicine, Houston, TX, USA; 7Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, China; 8Department of Neurology, Tongji
Medical College, Huazhong University of Science and Technology, Wuhan, China; 9Centre for Reproduction, Development and Growth, The University of Hong Kong, Hong Kong,
China; 10Genome Research Centre, The University of Hong Kong, Hong Kong, China and 11Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry,
Psychology and Neuroscience, King's College, London, UK. Correspondence: Dr GM McAlonan, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry,
Psychology and Neuroscience, King’s College, London SE5 8AZ, UK.
E-mail: Grainne.mcalonan@kcl.ac.uk
Received 18 March 2015; revised 2 July 2015; accepted 22 July 2015

Citation: Transl Psychiatry (2015) 5, e641; doi:10.1038/tp.2015.126

www.nature.com/tp

mailto:Grainne.mcalonan@kcl.ac.uk
http://www.nature.com/tp


pathology in the MIA model.13 Finally, n-3 PUFA shows some initial
promise in the clinical setting—it reduces symptoms in young
people with ‘subthreshold’ schizophrenia14—but direct experi-
mental evidence is needed.
Therefore, we used in vivo MRS to quantify anterior cingulate

cortex biochemistry in adult mice exposed to either MIA or saline
(SAL) in prenatal life. A priori, we predicted that MIA exposure
would alter levels of N-acetylaspartate (NAA) and myo-inositol
(mIns), as differences in these neuronal and astrocytic markers,
respectively, have been linked to neurodevelopmental disorders.
We also examined the relationship between these metabolites
and behaviour in the same animals. Finally we measured ex vivo
levels of the GABA marker, glutamic acid decarboxylase 67
(GAD67) and the dopamine marker, tyrosine hydroxylase (TH), as
both have been reported to be altered in neurodevelopmental
conditions.15–21 Half the animals in each group (MIA or SAL)
received an n-3 PUFA diet post weaning. We predicted that an n-3
PUFA dietary intervention would limit the behavioural and
biochemical consequences of prenatal MIA.

MATERIALS AND METHODS
Female and male C57BL6/N mice were bred and mated by The University
of Hong Kong, Laboratory Animal Unit. Timed-pregnant mice were held in
a normal light–dark cycle (light on at 0700 hours), and temperature and
humidity-controlled animal vivarium. All animal procedures were approved
by the Committee on the Use of Live Animals in Teaching and Research
(CULATR) at The University of Hong Kong.
The MIA model was generated following procedures previously

reported.7,10 The estimation of sample size for this study was based on
the data from exploratory studies of behaviour. Allowing for randomized
block analysis of variance power analysis with alpha= 0.05 and power =
0.80 using PASS software (NCSS, Kaysville, UT, USA) indicated that eight
mice should be assigned to each group. A dose of 5 mg kg− 1 POL in an
injection volume 5ml kg− 1, prepared on the day of injection was
administered to pregnant mice on gestation day 9 via the tail vein under
mild physical constraint. Control animals received an injection of 5 ml kg− 1

0.9% SAL. The resulting male offspring (POL n= 21; SAL n= 17) from six
litters were weaned on postnatal day 25, then randomly divided into two

groups. Half were fed on diets enriched with n-3 PUFAs and half were fed a
standard (control) lab diet until the end of the study. (See details in Table 1
and Figure 1). The latter ‘n-6 PUFA’ control diet had the same calorific value
and total fat content as the n-3 PUFA diet. The diets were custom prepared
and supplied by Harlan Laboratories (Madison, WI, USA). The n-6 and n-3
PUFAs were derived from corn oil or menhaden fish oil, respectively. The
n-6 PUFA control diet, was based on the standard AIN-93G rodent laboratory
diet,22 and contained 65 g kg−1 corn oil and 5 g kg− 1

fish oil with an
approximate (n6)/(n3) ratio of 13:1. The n-3 PUFA diet contained 35 g kg− 1

corn oil and 35 g kg−1
fish oil with an approximate (n6)/(n3) ratio of 1:1.23

1H-MRS acquisition
The MRS procedure followed that described in detail in our previous
report.24 Twelve-week-old mice were scanned using a 7 T scanner with a
maximum gradient of 360mTm− 1 (70/16 PharmaScan, Bruker Biospin,
Ettlingen, Germany) and a four channel mouse brain surface coil. Animals
were anaesthetised during scanning with isoflurane/air mixture at 3% for
induction and 1.5% for maintenance via a nose cone. Three T2-weighted
scout images were first acquired with a rapid acquisition relaxation
enhanced sequence (repetition time/echo time=4200/36ms, rapid
acquisition relaxation enhanced factor =8, spatial resolution=0.109×0.109×
0.48mm3) for the localisation of the voxel-of-interest. A 1.2 × 2.6 × 2.5-mm3

voxel-of-interest was placed over the cingulate cortex (Figure 2a). The
voxel used was necessarily larger than the actual mouse anterior cingulate
cortex and included part of the motor cortex, but the majority of the
scanned volume was cingulate cortex.24 After first- and second-order
localised shimming with a FieldMap-based procedure, a full-width half-
maximum linewidth of water signal of ⩽ 15 Hz was achieved. The water
signal was suppressed by VAPOR (variable RF pulses with optimised
relaxation delays). A point-resolved spectroscopy sequence combined with
outer volume suppression was used for spectrum acquisition using
repetition time/echo time= 2500/14ms, spectral bandwidth= 4 kHz, 2048
data points and 256 averages. Research staff involved in MRS scan and
data collection were ‘blinded’ to the group assignment.

1H-MRS spectral analysis
MR spectra were processed using the jMRUI software (http://www.mrui.
uab.es/mrui/). The raw data were apodized with a 15-Hz Gaussian filter and
phase corrected. The residual water signal was filtered out using the

Table 1. Sample size of each experimental condition and the sequence of different experiments in male offspring

Experiments n6-SAL n6-POL n3-SAL n3-POL Age (days)

Neuroimaging MRS 10 7 6 8 84–89
Behavioural tests (order of the tests) Prepulse inhibition 13 9 8 8 98–105

Elevated plus maze 13 9 8 8 112–119
Open field test and amphetamine-induced locomotor activity 13 9 8 8 119–126

Physiological test Body mass 13 9 8 8 133
Neurochemical test Western blot 13 9 8 8 133

Abbreviation: MRS, magnetic resonance spectroscopy; n6-POL, prenatal PolyI:C-exposed offspring treated with n-6 PUFA; n3-SAL, prenatal saline-exposed
offspring treated with n-3 PUFA; n6-SAL, prenatal saline-exposed offspring treated with n6-polyunsaturated fatty acids (n-6 PUFA) control diet; PUFA,
polyunsaturated fatty acids; Sal, saline.

Figure 1. Experimental design. AMPH, amphetamine; EPM, elevated plus maze; GD, gestation day; MIA, maternal immune activation; OF, open
field; PND, postnatal day; POL, PolyI:C; PPI, prepulse inhibition; PUFA, polyunsaturated fatty acids; SAL, saline. Groups: n3-POL, prenatal PolyI:C-
exposed offspring treated with n-3 PUFA; n6-POL, prenatal PolyI:C-exposed offspring treated with n-6 PUFA; n3-SAL, prenatal saline-exposed
offspring treated with n-3 PUFA; n6-SAL, prenatal saline-exposed offspring treated with n6-polyunsaturated fatty acids (n-6 PUFA) control diet.
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Hackel–Lanczos singular value decomposition (HLSVD) algorithm. Chemi-
cal shifts of peaks were assigned with reference to the CH3-group of NAA
at 2.02 p.p.m. Metabolite area under the peak was quantified by quantum
estimation method with subtraction approach for background modelling.
The metabolite parameters were decorrelated from the background with
truncation of initial data points, given that macromolecules and lipids
signals decay rapidly across the time-domain. The numerical time-domain

model functions of 11 metabolites, including choline (Cho), creatine (Cr),
glutamate (Glu)+glutamine=Glx, glycine (Gly), lactate (Lac), mIns, com-
bined NAA Peak (NAA+N-acetylaspartylglutamate: NAAG) and taurine
(Tau), were used as prior knowledge in quantum estimation (Figure 2b).
These metabolite model signals were quantum mechanically simulated in
nuclear magnetic resonance spectra calculation using operators (NMR-
SCOPE). Errors in measurement of noise and inadequate modelling of the
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Figure 2. Representative MRS voxel-of-interest (VOI) and MRS metabolite levels in adult offspring exposed to prenatal inflammation or saline,
with or without n-3 PUFA intervention in peri-adolescence. Representative MRS voxel-of-interest (VOI) and spectra acquired in adult offspring:
(a) Voxel-of-interest with the size of 1.2 × 2.6 × 2.5 mm3 was positioned in the anterior cingulate of each mouse. Mouse atlas reference of VOI is
from Allen Institute:25 (b) Representative in vivo 1H spectra with quantum estimation (QUEST) fitting from the anterior cingulate in each group.
MRS raw spectrum is shown in black; estimate fitting is shown in red. MRS metabolite levels: (c) Greater N-acetylaspartate (NAA)/creatine (Cr)
in n-6 PolyI:C-exposured group compared with all other groups (*Po0.05, **P⩽ 0.01); n-3 PUFA prevents the rise in NAA/Cr caused by prenatal
PolyI:C exposure. (d) Lower myo-inositol (mIns)/Cr in PolyI:C-exposed group compared with Saline group. Groups: n3-POL, prenatal PolyI:C-
exposed offspring treated with n-3 PUFA; n6-POL, prenatal PolyI:C-exposed offspring treated with n-6 PUFA; n3-SAL, prenatal saline-exposed
offspring treated with n-3 PUFA; n6-SAL, prenatal saline-exposed offspring treated with n6-polyunsaturated fatty acids (n-6 PUFA) control diet.
MRS, magnetic resonance spectroscopy; POL, PolyI:C; PUFA, polyunsaturated fatty acids; SAL, saline.
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overlapping background signal were calculated by the Cramér–Rao lower
bounds, which were used to assess the reliability of metabolite
quantitation. The quantification was considered appropriate only when
the corresponding bound was below 25%.24,26,27 Total Cr (creatine and
phosphocreatine) was used as the internal spectral reference. There is a
narrow spectral gap between NAA and NAAG (2.04 p.p.m.), therefore the
combined signals of NAA and NAAG are conventionally interpreted as
representing NAA in both preclinical and human studies.24,28 Group
differences in NAA/Cr, Cho/Cr, Glx/Cr, mIns/Cr, Gly/Cr Lac/Cr and Tau/Cr
ratios were analysed.

Behavioural tests
PPI of the acoustic startle response. The procedures and testing
parameters for evaluation of prepulse inhibition (PPI) have been fully
described previously.7 In brief, the PPI paradigm was conducted using
startle chambers for mice (San Diego Instruments, San Diego, CA, USA). In a
test session, a mix of pulse-alone (100, 110 and 120 dBA), prepulse-plus-
pulse (3 prepulse options × 3 pulse options), prepulse-alone (71, 77 and
83 dBA) and no-stimulus (background noise, 65 dBA) trials were presented.
PPI was calculated by the following formula: 100%× [1-(mean reactivity on
prepulse-plus-pulse trials/mean reactivity on pulse-alone trials)] and the
mean %PPI across all three prepulse and three pulse conditions was
examined. Thereafter, group contrasts in individual prepulse/pulse
conditions were explored if appropriate.

Elevated plus maze. The elevated plus maze test is based on the aversion
of mice to open and high spaces, and is used for measurement of
anxiety.29 The plus maze consisted of four 30-cm-long arms radiating out
from a central square measuring 5 × 5 cm. Two ‘closed’ arms were enclosed
by 14-cm-high opaque walls from all sides except the side adjoining the
central square. The other two ‘open’ arms were exposed, and the outer rim
of each arm was guarded by a perimeter border of 1 mm. The maze was
located in a dimly lit behaviour test room and was elevated at a height of
70 cm above floor level.30 The mice were gently placed in the centre of the
maze facing one of the open arms. It was allowed to move freely for
10min. The dependent measures were: (a) duration of time spent in the
open arms, (b) frequency of open arm entries, and (c) duration of time
spent, and frequency of entries into, the open arms as a percentage of the
total duration and total arm entries. A digital camera was mounted above
the maze and images were analysed using Ethovision tracking system
(VersionXT 7.1, Noldus, Wageningen, The Netherlands).

Locomotor response to amphetamine. The apparatus comprised four
identical cubes made of Plexiglas with a white opaque bottom, each
measuring 40 × 40 × 40 cm. In the middle of the floor, a central arena
(13.5 cm×13.5 cm) was demarcated by a red line.31 Mice received 0.9%
NaCl i.p., to control for injection stress, and were returned to the open field
for 30min. Afterwards, they were carefully removed, given an i.p. injection
of amphetamine, and returned to the open field for a further 90min.
Amphetamine sulphate (Sigma, St Louis, MO, USA), was dissolved in 0.9%
NaCl solution on the day of testing to obtain 2.5 mg kg− 1, in a volume of
5 ml kg− 1. Locomotor activity was recorded after SAL and amphetamine
injection using Ethovision tracking system. The dependent measures were
the total distance travelled during four time blocks: SAL (30 min),
amphetamine (Amph)-block 1 (30min), Amph-block2 (30min) and
Amph-block3 (30 min).

Body mass
Measurements of body weight, lean tissue, body fat and body fluid were
acquired after behavioural tests using the minispec LF90 (Bruker optics,
Billerica, MA, USA), an NMR analyser for whole body composition assay of
live, unanesthetized mice.

Western blot
Medial prefrontal cortex (mPFC), caudate putamen (CP) and nucleus
accumbens (NAc) were harvested from mice 1 week after amphetamine
challenge to minimise residual pharmacological effects on brain. Brain
slices were obtained using a mouse brain matrix, and tissue was taken
using fine forceps. Samples were homogenised in RIPA buffer with
protease inhibitor cocktail (Sigma, P 8340) and protein concentration was
determined by Thermo protein assay (Thermo Scientific, Waltham, MA,
USA, 22660). All the samples were equalized to 20 μg. Procedures for

western blot followed those described previously.32,33 The primary
antibodies to the following proteins: TH (1:1000, sc-14007, Santa Cruz,
Dallas, TX, USA), GAD67 (1:1000, ab52249, Abcam, Cambridge, UK), and
β-actin (horseradish peroxidase) (1:30 000, ab49900, Abcam) were incu-
bated with the membrane in the antibody dilution buffer with gentle
agitation overnight at 4 °C, then incubated with the secondary antibody
(1:2000 dilution, P044801, Dako, Glostrup, Denmark) for 1 h at room
temperature. The signal was revealed by a chemiluminescent detection
method (ECL, Amersham, Buckinghamshire, UK). The intensities of the
bands were quantified using ImageJ (NIH, Bethesda, MD, USA).33 Research
staff involved in experimental performance and analysis were ‘blinded’ to
the group assignment.

Statistical analysis
MRS: A 2 × 2 [Prenatal treatment (SAL and POL) ×Diet (n-3 or n-6 PUFA)]
multivariate general linear model (GLM) using SPSS 20 was applied
followed by post hoc t-tests. Metabolites that had a Cramér–Rao lower
bound value 425% were excluded from analysis. Based on this criterium,
one mouse from n6-POL group and two mice from n3-SAL group were
excluded. Thus the final numbers for MRS analysis were: PolyI:C group
n= 15 (n6-POL = 7; n3-POL= 8); Saline group n=16 (n6-SAL= 10; n3-
SAL= 6). Levene’s test was applied to test for equality of variance. Results
were considered to be significant at Po0.05.
Body mass and western blot were analysed using a 2 (prenatal

treatment) × 2 (diet) GLM.
Behavioural video data analysis and data collection were done by

research staff ‘blinded’ to the group assignment of each animal.
Behavioural data was analysed using either GLM for normal distributions
and Kruskal–Wallis nonparametric one-way analysis of variance otherwise.
Depending on the distribution of the data, post hoc analyses were
performed using Mann-Whitney comparisons or Fisher’s least significant
difference post hoc comparisons wherever appropriate. Levene’s test was
applied to test for equality of variance wherever appropriate. Results were
considered to be significant at Po0.05.
One-tailed partial linear correlation analyses controlling for groups were

planned to evaluate predicted relationships between MRS metabolites and
behavioural indices shown to have significant group differences (when
normally distributed).

RESULTS
Brain metabolites measured by 1H-MRS
There was a significant main effect of prenatal treatment on NAA/
Cr (F(1, 27) = 8.109, β= 0.8132, Po0.01); and a significant main
effect of diet on NAA/Cr (F(1, 27) = 9.059, β= 0.8548, Po0.01). Post
hoc t-tests confirmed that NAA/Cr in n-6 POL group was
significantly higher than the n6-SAL group (Po0.05); NAA/Cr
levels in n3-POL were significantly lower than n6-POL (P= 0.01)
and not different from n3-SAL (P= 0.151). Thus, n-3 PUFA diet
prevented a POL-induced elevation of NAA/Cr. See Figure 2c.
There was a significant effect of prenatal treatment on mIns/Cr

(F(1, 27) = 5.425, β= 0.6355, Po0.05); MIA exposure lowered mIns/
Cr and this was most prominent in n6-POL when compared with
n6-SAL. However, this contrast did not reach statistical significance
post hoc (P= 0.096) and should therefore be treated with caution.
There were no differences in n3-POL animals and n3-SAL, again
suggesting n-3 PUFA diet limited a lowering of mIns in MIA-
exposed animals (Figure 2d).
There were no statistically significant differences in the concen-

trations of other MRS metabolites sampled (see Supplementary
Table 1).

Behavioural tests
PPI of the acoustic startle response. There were no significant
differences in baseline pulse- or prepulse-elicited reactivity
(Supplementary Figure 1).
The main effect of diet on mean %PPI approached significance

(F(1, 34) = 3.85, P= 0.058) and there was a significant interaction
between diet and prenatal treatment (F(1, 34) = 6.95, Po0.05).
Post hoc comparisons indicated that this was explained by
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significantly impaired PPI in the n6-POL group (Po0.01), but
‘improved’ PPI in the n3-POL group (Po0.05) (Figure 3). There was
no relationship between body weight and %PPI. Thus n-3 PUFA
diet prevented PPI impairment caused by MIA exposure.

Elevated plus maze. Elevated plus maze data in open arms
expressed as medians and interquartile ranges is shown in Table 2.
Kruskal–Wallis analysis of variance revealed a significant group
(n6-SAL, n6-POL, n3-SAL, n3-POL) difference of percentage (%)
time spent on open arms (χ2 = 8.264, df = 3, Po0.05). The main
effect of group on % of entries into open arms just failed to reach
significance (χ2 = 7.418, df = 3, P= 0.06). Post hoc Mann-Whitney
comparisons confirmed that, compared with n6-SAL, n6-POL mice
spent less time in the open arms (P⩽ 0.05) (Table 2), which
suggested MIA-exposed mice were ‘anxious’. However, there was
no difference between n3-SAL and n3-POL groups on these
measures, indicating that n3-PUFA diet attenuated ‘anxiety’ in the
MIA-exposed group.

Locomotor response to SAL and amphetamine. As expected,
amphetamine increased locomotion in each group (n6-SAL,
n6-POL, n3-SAL and n3-POL) (F(3, 102) = 5.868, Po0.01), (See
Supplementary Figure 2). Post hoc comparisons confirmed a
maximal response to amphetamine after 30 min in all groups
(Po0.05). However, there were no differences between groups in
the response to amphetamine (Supplementary Figure 2).

Body mass
POL-exposed animals were smaller than SAL-exposed controls
(F(1, 34) = 7.024, Po0.05). n-3 PUFA diet increased weight and
body mass (lean and fluid) in both groups, as shown by a main
effect of diet on weight (F(1, 34) = 6.725, Po0.05), lean body mass
(F(1, 34) = 12.587, P= 0.001) and fluid mass (F(1, 34) = 6.862,
Po0.05). Post hoc t-test comparisons confirmed that n3-SAL mice
gained more weight and body mass when compared with
n6-SAL (weight P= 0.001, lean Po0.001, fluid Po0.0001) or
when compared with n3-POL (weight Po0.01, lean Po0.01, fluid
Po0.01). (Table 3).

Western blot quantification of GAD67

NAc: there was a significant prenatal treatment × diet interaction
in GAD67 levels (F(1, 34) = 11.763, Po0.01). Post hoc t-tests
confirmed that this was due to lower GAD67 in n6-POL compared
with n6-SAL (Po0.0001). Importantly, n-3 PUFA diet significantly
increased GAD67 in the n3-POL group compared with the n6-POL
group (Po0.05). Thus, n-3 PUFA diet effectively restored GAD67 to
‘control’ levels, as there was no statistical difference between n3-
POL and n3-SAL groups. However, diet lowered GAD67 in n3-SAL
relative to n6-SAL (Po0.01).
The pattern of differences in GAD67 levels was similar in the CP,

though these differences did not quite reach statistical signifi-
cance: main effect of prenatal treatment (F(1, 34) = 3.492, P= 0.07);
diet × prenatal treatment (F(1, 34) = 3.556, P= 0.068). Post hoc
testing, however, confirmed a lower level of GAD67 in n6-POL
compared with n6-SAL (Po0.01).
In the mPFC region, the pattern of findings was in the opposite

direction. There was a significant diet × prenatal treatment

Table 2. Summary of the offspring’s performance in the EPM in adulthood in MIA mice with or without n-3 PUFA interventions in peri-adolescence

Groups Time spent on open arms (s) Open arm entries % Time spent on open arms % Entries of open arms

n6-SAL 6.51 (3.4–24.7)** 5 (3–9) 1.11 (0.6–4.2)** 7.81 (5.6–13.8)
n6-POL 1.4 (0.3–2.8)** 2 (0.5–4) 0.24 (0.05–0.5)** 3.28 (1–5.4)
n3-SAL 7.71 (3.3–11.3) 6 (3.5–6.8) 1.3 (0.5–1.9) 9.94 (6.8–12.9)
n3-POL 12.9 (1.6–49.6) 4 (1.3–10.3) 2.18 (0.3–8.4) 5.92 (1.9–15.7)

Abbreviations: EPM, elevated plus maze; MIA, maternal immune activation; n6-POL, prenatal PolyI:C-exposed offspring treated with n-6 PUFA; n3-SAL, prenatal
saline-exposed offspring treated with n-3 PUFA; n6-SAL, prenatal saline-exposed offspring treated with n6-polyunsaturated fatty acids (n-6 PUFA) control diet;
PUFA, polyunsaturated fatty acids; Sal, saline. **P⩽ 0.01. All values are median (25–75 percentiles).

Table 3. Weight and body mass measurements in adulthood in MIA mice with or without n-3 PUFA diet interventions in peri-adolescence

Groups Weight (g) Fat (g) % Fat Lean (g) % Lean Fluid (g) % Fluid

n6-SAL 38.6± 1.77** 11.3± 0.78 29.2± 1.2 19.3± 0.87** 50± 1.41 3.9± 0.24** 10.1± 0.46
n6-POL 38.3± 2.22** 11.0± 0.96 28.7± 1.61 19.6± 1.29** 51.1± 1.89 4.0± 0.27** 10.4± 0.53
n3-SAL 41.8± 1.66** 12.1± 1.05 28.9± 1.86 21.4± 0.87** 51.2± 1.82 4.3± 0.16** 10.4± 0.45
n3-POL 38.6± 2.31** 11.3± 0.86 29.3± 0.68 19.9± 1.03** 51.6± 0.89 4.0± 0.26** 10.3± 0.54

Abbreviations: MIA, maternal immune activation; n6-POL, prenatal PolyI:C-exposed offspring treated with n-6 PUFA; n3-SAL, prenatal saline-exposed offspring
treated with n-3 PUFA; n6-SAL, prenatal saline-exposed offspring treated with n6-polyunsaturated fatty acids (n-6 PUFA) control diet; PUFA, polyunsaturated
fatty acids; Sal, saline. **Po0.01 % Fat (fat/weight), % lean (lean/weight), % fluid (fluid/weight). All values are mean± s.d.
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Figure 3. Mean percentage prepulse inhibition (%PPI). The bar plot
represents mean %PPI across all prepulse and pulse stimuli. All
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prenatal saline-exposed offspring treated with n-3 PUFA; n6-SAL,
prenatal saline-exposed offspring treated with n6-polyunsaturated
fatty acids (n-6 PUFA) control diet.
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interaction (F(1, 34) = 10.518, Po0.01) which was explained by
greater GAD67 in n6-POL compared with n6-SAL; n3-PUFA diet
‘reversed’ this abnormal elevation in the n3-POL group compared
with n6-POL (Po0.01) (Figure 4).
The level of TH in NAc, CP and mPFC was not altered by MIA

exposure, nor by dietary intervention. (Supplementary Figure 3).

Correlation analyses of in vivo measures
The level of NAA/Cr in the prefrontal cortex was significantly
negatively correlated with PPI (γ=− 0.365, df = 28, Po0.05); that
is, abnormal elevation of NAA in the prefrontal cortex was
associated with greater PPI impairment (Figure 5a). In addition, the
level of mIns/Cr in the prefrontal cortex was significantly positively
correlated with PPI impairment (γ= 0.355, df = 28, Po0.05); thus
abnormally low levels of mIns/Cr were associated with greater PPI
impairment (Figure 5b).

DISCUSSION
We believe this study provides the first evidence that postnatal
behavioural differences in offspring exposed to prenatal POL are
accompanied by metabolite differences in the cingulate cortex;
and that both the behavioural and metabolite sequelae can be
limited by an n-3 PUFA-enriched diet from adolescence. Specifi-
cally, NAA/Cr was higher and mIns/Cr was lower in adult mice
exposed to prenatal POL challenge, and the extent of these
differences was correlated with impairments in PPI. MIA-exposed
mice were also more anxious in the elevated plus maze. These
in vivo differences were accompanied by ex vivo differences in
GAD67—an increase in the prefrontal cortex and a decrease in the
striatum of mice exposed to MIA. However, an n-3 PUFA diet from

weaning attenuated both in vivo behavioural and metabolite
abnormalities and ex vivo biochemical differences caused by MIA.

In vivo MRS
NAA has been reported to be lower in the medial temporal
regions, hippocampus and the frontal lobe in people with
schizophrenia.35,36 However, these studies have often included
people in the chronic stages of illness and in receipt of
medication. More recent analyses suggest that NAA may not be
lower in first episode psychosis patients,37 or individuals at ultra-
high risk of schizophrenia;38 and NAAG or NAA/Cr may even be
higher in the ACC or dorsolateral prefrontal region of younger
individuals with schizophrenia or ultra-high risk.39,40 Thus, the
picture in schizophrenia may depend on the stage of illness
examined, as well as exposure to medication; NAA may be
elevated early in the illness or in adolescents or young adulthood,
but lowered in chronic stages. The advantage of the animal model
is that, in our young adult mice we can confidently say that the
metabolite differences observed are not due to disease ‘chronicity’
or medication exposure.
What higher NAA means is not completely clear. The synthesis

of NAA is exclusively carried out in mitochondria,41 but the
deacetylation of NAA (by aspartoacylase) takes place in
oligodendrocytes.42 Therefore, although NAA is often assumed
to reflect neuronal health,43,44 its levels may also be altered by
oligodendrocyte abnormalities.45 For example, myelin degenera-
tion due to aspartoacylase deficiency leads to an increase in NAA
levels in the leukodystrophy, Canavan’s Disease.46 Thus, NAA may
reflect disruption of the neuronal-oligodendrocyte unit and, in line
with this we and others have reported white matter structural and
gene expression anomalies in the MIA model10,47 that are

Figure 4. GAD67 protein levels. (a) GAD67 protein level in nucleus accumbens (NAc), (b) caudate putamen (CP) and (c) medial prefrontal
cortex (mPFC). β-actin is shown as a control for comparison. All values are mean± s.e.m. *Po0.05, **Po0.01. Histology panels represent
coronal mouse atlas reference from Allen Institute,34 indicating regions-of-interest dissected for analyses (A=NAc, B=CP, C=mPFC). Groups:
n6-POL, prenatal PolyI:C-exposed offspring treated with n-6 PUFA; n3-SAL, prenatal saline-exposed offspring treated with n-3 PUFA; n6-SAL,
prenatal saline-exposed offspring treated with n6-polyunsaturated fatty acids (n-6 PUFA) control diet.
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broadly similar to those found in schizophrenia and related
conditions.48–52

In addition to differences in NAA, we found lower mIns/Cr in
POL-exposed animals on the control diet. Myo-inositol is a marker
for astrocytes, and there is increasing evidence of astrocytic
dysfunction in psychiatric disorders, such as depression,53,54

schizophrenia55,56 or bipolar disorder.56 Astrocytic loss/dysfunc-
tion in the prefrontal cortex of rats has been reported to impair
cognitive function and this is thought to be consistent with a role
for astrocytes in psychiatric disorders.57 In addition, myo-inositol is
an important component of the phosphatidylinositol second
messenger system (PI-cycle), and alterations in PI-cycle activity
and oxidative stress58 have also been implicated in psychiatric
disorders.59 The action of n-3 PUFA diet as an antioxidant60 may
limit this pathology61,62 and may explain additional benefits of n-3
PUFA diet beyond the neuronal-oligodendrocyte unit.

Behaviour
PPI of the acoustic startle response is widely used to investigate
sensorimotor gating and information processing across
species.63,64 This study confirmed the impact of prenatal immune
activation on sensorimotor gating function7,31 and anxiety-like
behaviour,65 and these behavioural impairments were thought to
mimic those reported in neurodevelopmental disorders.63,66–70

Critically, we found that early administration of n-3 PUFA from
peri-adolescence, not only limited metabolite alterations in mice
exposed to MIA, but also attenuated behavioural abnormalities in
adulthood. This adds to the evidence that omega-3 improves
sensorimotor gating function in a pharmacological and genetic
rodent model of schizophrenia,60,71 and that long-term n-3 PUFA
administration can suppress anxiety-like behaviour.72

PPI impairment was most evident in animals with highest levels
of NAA/Cr. NAA has been shown to cause oxidative damage
following intracerebroventricular injection,73 and a disruption of
oxidative metabolism has been implicated in PPI impairment.74

n-3 PUFA diet may therefore prevent PPI deficit by ‘protecting’
against on-going oxidative stress in the MIA model.
PPI impairment was also a feature of animals with lowest levels

of mIns. This fits with evidence linking Inositol monophosphatase 1
(Impa1) gene—a regulator of myo-inositol synthesis—to PPI;75 and
a report that lithium, an inhibitor of Impal, alters measures of

auditory gating.76 Taken together, n-3 PUFA diet may prevent PPI
deficit by additional effects on the metabolism of mIns.
However, in contrast to others,31,77 we did not observe

hypersensitivity to amphetamine in this MIA mice model. This
may be a consequence of our choice of strain—the C57BL6/N
mice used here have been reported to have lower baseline activity
compared with the C57BL6/J mouse strain used in those other
studies.78 In addition, we elected to use a relatively low dose
amphetamine challenge (2.5 mg kg− 1) to avoid potential con-
founds of stereotypy. We cannot exclude the possibility that a
higher dose of amphetamine would have revealed greater
separation between the groups.

GAD67/TH
POL exposure lowered ex vivo GAD67 protein levels in the NAc and
CP, consistent with postmortem findings in schizphrenia;79 and
n-3 PUFA supplementation prevented this. GABA inhibitory
interneuron dysfunction is thought to arise from oxidative
damage during development80 and certainly prenatal MIA
represents one possible trigger. In contrast, n-3 PUFA is known
to protect neurons from oxidative stress,27 and this
may contribute to its beneficial action here. The GABAergic
abnormalities observed here likely contribute to the pattern of
behavioural differences. For example, it is well-established that
striatal GABAergic neurotransmission is involved in PPI 81,82 and
anxiety-like behaviour.82

Neither MIA or diet altered TH, a marker for dopamine synthesis.
However, we emphasise that the western blot findings, particu-
larly for TH, should be interpreted with caution. Clinical evidence
shows altered dopaminergic abnormalities during the early stages
of schizophrenia, which can be present even in ultra-high risk
subjects.83 Besides, others have reported effects of MIA on
dopaminergic system in drug-naive animals.34,84–86 One possible
explanation for our contradictory findings may be the exposure of
our animals to a single administration of amphetamine. Although
we ensured a 1 week ‘wash-out’ period before death, a single
administration of amphetamine (at identical or similar doses) can
induce dopaminergic sensitization,87,88 which may have masked
the effects of MIA or diet on the dopamine system.

Figure 5. Metabolite and behaviour correlation. Mean %PPI and NAA/Cr correlation (a); Mean %PPI and mIns/Cr correlation (b). □,○,△,+ refer
to n6-SAL, n6-POL, n3-SAL and n3-POL, respectively. Groups: n6-POL, prenatal PolyI:C-exposed offspring treated with n-6 PUFA; n3-SAL,
prenatal saline-exposed offspring treated with n-3 PUFA; n6-SAL, prenatal saline-exposed offspring treated with n6-polyunsaturated fatty
acids (n-6 PUFA) control diet.
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Overall metabolism
MIA exposure led to smaller offspring, suggesting this prenatal
insult had a systemic impact. Similar findings have been reported
in POL-exposed rats.89 These are preliminary data but we suggest
they should prompt more detailed studies of metabolic function in
offspring exposed to MIA, as a wide range of metabolic abnorma-
lities have been identified in patients with psychiatric conditions.90

In this study, n-3 PUFA improved weight in MIA-exposed mice, but it
also increased weight and body mass (lean and fluid) in the control
mice. However, we cannot say whether the effect in control animals
is a positive or negative influence on overall health.

Limitations
We first acknowledge that the sample size of current study is
modest. That said, the effect sizes observed were large and
mulitimodal measures acquired from the same animals allowed
exploration of relationships between behaviour and biochemistry,
which were consistent with predictions. Second, we examined
only adult male offspring in the current study. The decision to
direct finite experimental resources to males was made because
males with neurodevelopmental disorders such as autism out-
number females; and there is evidence that the male foetus is
more vulnerable to environmental exposures such as inflamma-
tion in prenatal life.91,92

CONCLUSIONS
To the best of our knowledge, these experiments provide the first
direct experimental evidence that in vivo metabolic changes and
the behaviour effects of MIA are linked. They also support a
beneficial effect of n-3 PUFA diet from weaning in this animal
model of neurodevelopmental disorders. We suggest that further
study of the protective effects of n-3 PUFA diet is warranted as it
may open new avenues for prevention in neurodevelopmental
psychiatric disorders.
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