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OPEN

Review

Mesenchymal stem cells and immunomodulation:
current status and future prospects

F Gao1,5, SM Chiu2,5, DAL Motan1, Z Zhang1, L Chen1, H-L Ji3, H-F Tse2, Q-L Fu*,4 and Q Lian*,1,2

The unique immunomodulatory properties of mesenchymal stem cells (MSCs) make them an invaluable cell type for the repair of
tissue/ organ damage caused by chronic inflammation or autoimmune disorders. Although they hold great promise in the
treatment of immune disorders such as graft versus host disease (GvHD) and allergic disorders, there remain many challenges to
overcome before their widespread clinical application. An understanding of the biological properties of MSCs will clarify the
mechanisms of MSC-based transplantation for immunomodulation. In this review, we summarize the preclinical and clinical
studies of MSCs from different adult tissues, discuss the current hurdles to their use and propose the future development of
pluripotent stem cell-derived MSCs as an approach to immunomodulation therapy.
Cell Death and Disease (2016) 7, e2062; doi:10.1038/cddis.2015.327; published online 21 January 2016

Facts

� Mesenchymal stem cells (MSCs) are multipotent stem cells
that can differentiate into a variety of cell types, and be
isolated and expanded easily in vitro.

� Preclinical and clinical studies show that MSCs have anti-
inflammatory and immune-privilege potential.

� Several MSC products have been approved for clinical
application: Cartistem for degenerative arthritis, Cupistem
for anal fistula in Korea and Prochymal for acute GvHD in
Canada and New Zealand

Unresolved Issues

� An understanding of the mechanisms of MSC-based
immunomodulation remains incomplete.

� The possible reasons for the mixed results of MSC
immunomodulation therapies in clinical trials require further
scientific clarification.

� There remain challenges to the future development of
MSCs for immunomodulation and a need for improved
quality control.

MSCs and Immunomodulation

Mesenchymal stem cells (MSCs) are multipotent stem cells
that can differentiate into a variety of cell types, including

adipocytes, osteoblasts, chondrocytes, myocytes, β-pancrea-
tic islets cells and, potentially, neuronal cells. In addition to
their differentiation potential, MSCs have been reported
to regulate the immune response in many diseases.1–8

Numerous reports have shown that adult MSCs can affect
the immune T- and B-cell response: (1) adult MSCs suppress
T-cell proliferation, cytokine secretion and cytotoxicity and
regulate the balance of Th1/Th2;3,9,10 (2) adult MSCs regulate
the functions of regulatory T cells (Tregs);11(3) MSCs increase
B-cell viability but also may inhibit their proliferation and arrest
the cell cycle; in addition, MSCs affect the secretion of
antibodies and production of co-stimulatory molecules of B
cells;12(4) MSCs inhibit the maturation, activation and antigen
presentation of dendritic cells;13,14 and (5) adult MSCs also
inhibit interleukin-2 (IL-2)-induced natural killer (NK) cell
activation.15

Similar to adult MSCs, pluripotent stem cell-derived MSCs
such as embryonic stem cells (ESCs) or induced pluripotent
stem cells (iPSCs), that is, ESC-MSCs or iPSC-MSCs,
also demonstrate strong potential for immunomodulation by
inhibition of lymphocyte proliferation16–18 and NK cells.18

Furthermore, ESC-MSCs suppress proliferation of responder
T lymphocytes, including CD4+ or CD8+ T cells.16,17 They also
suppress the cytotoxic effects of activated NK cells and
downregulate NK-activating receptors.17 Our recent studies
have shown that iPSC-MSCs can inhibit phytohemagglutinin-
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stimulated lymphocyte proliferation in a dose-dependent
manner.19

Interestingly, current evidence suggests that MSCs exert
variable immunomodulatory effects on the same types of
immune cell depending on the local microenvironment or
disease status. For example, MSCs decrease the Th1
response in patients with acute graft versus host disease
(GvHD)20 and autoimmune diseases such as systemic lupus
erythematosus (SLE).21 However, bone marrow (BM)-derived
MSCs (BM-MSC) lead to a shift from Th2 to Th1 responses in
airway allergic inflammatory diseases, including allergic
rhinitis22,23 and asthma.24–27 Inflammatory conditions also
have been proven to change immunomudulatory gene
expression in MSCs or promote the cell–cell contact effect,
resulting in an enhanced immunosuppressive response.28–30

These observations suggest that MSCs are capable of
switching their effects to protect the body from disease in
different situations.

Mechanisms of MSC-mediated immunomodulation.
Although the underlying mechanisms of MSC immuno-
modulation have yet to be elucidated, they are likely mediated
by soluble factors and cell contact-dependent mechanisms in
response to immune cells (Figure 1). We and others have
shown that MSCs regulate the adaptive and innate immune
systems by suppression of T cells and maturation of dendritic
cells, reducing B-cell activation and proliferation and inhibiting
proliferation and cytotoxicity of NK cells, and promote the
generation of regulatory T cells via soluble factors or cell–cell
contact mechanisms.19,31–33

Immunomodulation by soluble factors: Several soluble fac-
tors have been proposed to mediate the immunosuppressive

effect, including transforming growth factor-β1 (TGF-β1),
prostaglandin E2 (PGE2), hepatocyte growth factor (HGF),
indoleamine-pyrrole 2,3-dioxygenase (IDO), nitric oxide (NO)
and interleukin-10 (IL-10). Extensive data show that the
proinflammatory cytokine interferon-γ (IFN-γ), alone or in
combination with tumor necrosis factor-α (TNF-α), IL-1α or
IL-1β, induces MSCs to secrete various enzymes and soluble
factors such as cyclooxygenase 2 (COX-2), PGE2 and IDO
that mediate immunosuppressive activity.34–37 PGE2, which
is dramatically upregulated after co-culture of MSCs with
peripheral blood mononuclear cells,38 has been shown to
inhibit T-cell proliferation.39 IDO, by catalyzing the conversion
of tryptophan to kynurenine, is able to inhibit the growth and
function of immune cells.39 Secretion of IDO by MSCs has
been shown to inhibit allogeneic T-cell responses and induce
kidney allograft tolerance,40 although IDO-expressing
dendritic cells have also been shown to mediate the inhibitory
effect of MSCs on T-cell proliferation.41 NO is another soluble
factor known to inhibit T-cell proliferation.42,43 It has been
shown that MSC-produced NO is one of the major mediators
of T-cell suppression by MSCs.44 Ren et al.37 established that
BM-MSCs dramatically upregulated inducible nitric oxide
synthase (iNOS) and chemokines in response to a combina-
tion of IFN-γ and proinflammatory cytokines. They further
found that MSCs attenuated delayed-type hypersensitivity
and prevented the development of GvHD through a mechan-
ism that required TNF-α and iNOS.37 Nemeth et al.25 showed
that BM-MSCs significantly suppressed allergic responses in
a mouse model of ragweed-induced asthma by TGF-β. In
addition to the above mentioned factors, several reports
suggest that other soluble factors such as IL-6,43

galectins45,46 and leukemia inhibitory factor47 can regulate
immunomodulation of MSCs.

Figure 1 Immunomodulatory effects of MSCs on immune cells. Immunomodulatory effects of MSCs include suppression of B- and T-cell proliferation, induction and regulation
of regulatory T cells, inhibition of NK cell function and inhibiting dendritic cell maturation and activation. The immunosuppressive effects of MSCs are mediated by soluble factors
and cell–cell contact
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Althoughmore than a dozen soluble factors are known to be
involved in the immunomodulation of MSCs, their relationship
remains unclear. The effect of soluble factors on the activity of
MSCs may vary depending on the origin of the MSCs, target
cells and the microenvironment. Though it is indisputable that
MSC therapy contributes to immunosuppression, further
elucidation of the detailed biological mechanisms involved in
this process is required. At the same time, it must be noted that
some cytokines or chemokines released from MSCs may be
harmful, such as TNF-α and IL-6 that promote an inflammatory
response.48 Therefore, the regulation mechanism of MSCs to
produce beneficial soluble factors and how such factors can
modulate immune cells are key issues that underlie the
successful immunomodulation effects of MSCs.

Immunomodulation by cell–cell contact: Several reports on
culture systems have shown that cell–cell contact is a key
factor involved in the immunomodulatory effects of MSCs.
Han et al.49 found that BM-MSCs not only decrease the
survival and proliferation of T cells by contact-dependent
mechanisms, but they also increase the proportion of Tregs.
Krampera et al.50 reported that the inhibitory effect of MSCs
on T cells requires the presence of MSCs in culture and
MSC–T-cell contact. In addition, it has previously been found
that direct contact between MSCs and purified T cells is
required for Treg induction.51 Cell adhesion molecules

secreted by MSCs, such as CD274 (also known as
Programmed death ligand 1), vascular cell adhesion
molecule-1 and galectin-1, could be upregulated by IFN-γ
that not only can support cell–cell contact but also promote
the immunomodulation capacity of MSCs.29,30,52–54 The
interaction between cells and the action or counteraction of
several factors involved in the immune function of MSCs is a
complex network. In order to provide pleiotropic immunomo-
dulation that is responsive to different stimulants such as
chemokines and that targets different immune cells, MSCs
are likely to employ both direct contact and soluble factors
that work together for diverse and strong regulation.

Preclinical studies of MSCs in immunomodulation.
MSCs derived from BM or fat tissues or other tissues have
been employed in the treatment for experimental animal
models of inflammatory and immune disorder diseases
(Table 1). Autologous, allogeneic and even xenogeneic MSCs
have shown great promise in the treatment. In mouse models
of chronic or severe asthma, systemic administration of
MSCs reduces allergen-specific IgE and Th2 cytokines IL-4,
IL-5 or IL-13 in bronchial fluid and inhibits airway inflamma-
tion and pathology remodeling.55,56 A decrease in serum NO
levels following administration of MSCs was also observed.57

In experimental disease models including colitis,58 radiation
proctitis,59 immune thrombocytopenia60 and autoimmune

Table 1 Immunomodulation of MSCs in animal model

Model Animals MSCs Reference

Source Effect Mechanism

Allergic rhinitis Balb/c mice Balb/c mice adipose tissue MSCs Y / 22

Asthma Balb/c mice and C57BL/6 mice C57BL/6 mice BM-MSCs Y IFN-γ dependent 24

Asthma C57BL/6J mice Balb/c mice BM-MSCs Y TGF-β 25

Chronic asthma
Balb/c mice Human BM-MSCs Y / 26

Allergic rhinitis Balb/c mice Human BM-MSCs Y / 27

Autoimmune hearing loss Balb/c mice Human adipose tissue MSCs Y IL-10 150

Severe asthma Balb/c mice S.D. rats BM-MSCs Y / 55

Asthma Balb/c mice Balb/c mice BM-MSCs Y / 56

Chronic asthma Balb/c mice Balb/c mice BM-MSCs Y / 57

Experimental colitis C57BL/6J mice Human gingival-MSCs Y IL-10, IDO 58

Radiation proctitis SD rats SD rat BM-MSCs Y Glucocorticoid 59

Immune thrombocytopenia Balb/c mice Human adipose tissue MSCs Y T helper cells 60

Experimental autoimmune
encephalomyelitis

C57BL/6 mice C57BL/6J mice BM-MSCs Y IFN-γ 61

Experimental arthritis DBA/1 LacJ mice Human adipose tissue MSCs Y / 62

Rheumatoid arthritis DBA/1 mice Human adipose tissue MSCs Y Inducing Treg cells 63

Rheumatoid arthritis DBA/1 mice Human umbilical cord-MSCs Y IL-10, IDO, TGF-β 64

SLE MRL/lpr mice C3H/HeJ mice BM-MSCs Y / 65

SLE NZB/W F1 mice Human umbilical cord-MSCs Y / 66

SLE MRL/lpr mice Human umbilical cord-MSCs Y / 68

GvHD DBA/2 mice Human umbilical cord-MSCs Y IDO, TGF-β 69

Experimental autoimmune
encephalomyelitis

Lewis rats Lewis rats BM-MSCs Y TGF-β, IL-6 72

Autoimmune thyroiditis C57BL/6 mice Human adipose tissue MSCs Y / 73

Autoimmune myasthenia C57BL/6 mice Human BM-MSCs Y / 74

Contact dermatitis Balb/c mice Human gingival-MSCs Y PGE2 151

Asthma Balb/c OlaHsd mice FV/BN mice BM-MSCs Y Inducing Treg cells 152

Asthma C57BL/6 mice C57BL/6J mice BM-MSCs Y / 153

Asthma Balb/c mice Balb/c mice adipose tissue MSCs Y / 154

Abbreviations: BM-MSC, bone marrow-derived mesenchymal stem cell; SLE, systemic lupus erythematosus; IFN-γ, interferon-γ; IL-10/6, interleukin-10/6; IDO,
indoleamine 2,3-dioxygenase; iPS-MSC, induced pluripotent stem cell-derived mesenchymal stem cell; OVA, ovalbumin; PGE2, prostaglandin E2; TGF-β,
transforming growth factor-β; Treg cell, regulatory T cell; Y, effect was shown
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encephalomyelitis,61 MSCs reduce T-cell proliferation, sup-
press the inflammatory infiltrates and cytokines and express
anti-inflammatory cytokines. Similarly, prominent immuno-
suppressive effects of MSCs for animal immune disorder
models of arthritis,62–64 SLE,65–68 GvHD69 and multiple
sclerosis70–72 have been well documented. In the treatment
of SLE, both allogeneic BM-MSCs65 and xenogeneic
umbilical cord blood derived-MSCs from humans66,68 sig-
nificantly delay the development of proteinuria, reconstruct
the BM osteoblastic niche and effectively reverse multiorgan
dysfunction. MSCs also seem to confer protective effects in
other immune diseases including autoimmune thyroiditis,73

autoimmune myasthenia gravis,74 hearing loss75 and primary
biliary cirrhosis.76

Notably, human MSCs demonstrated effective immuno-
modulation in mouse models of immune disorders.26,27,58,60

As human MSCs are well tolerated in murine disease models,
it suggests that human MSCs can favorably change
the outcome of inflammatory reactions while avoiding the
pathology associated with cross-species application.27,60

Human ESC/iPSC-MSCs act as new cell types have
also been investigated in immunoregulation and showed
encouraging results.19,77–79 Human ESC-MSCs exhibited
better engraftment and immunomodulation effect than human
BM-MSCs in mouse pulmonary arterial hypertension model.79

Another study demonstrated the immunomodulatory proper-
ties of human iPSC-MSCs in a mouse model of allergic
inflammation in both the upper and lower airways.33 Systemic
administration of human iPSC-MSCs significantly inhibited
inflammatory infiltration in both the bronchoalveolar and nasal
lavage, and serum levels of IgE and Th2 cytokines (IL-4, IL-5 or
IL-13) were also significantly decreased. Interestingly, com-
paredwith adultMSCs, humanESC/iPSC-MSCsare insensitive
to IFN-γ-induced human leukocyte antigen-II (HLA-II) and have
better cell survival and engraftment rate after transplantation.79,80

These advantages of ESC/iPSC-MSCs indicate that pluripo-
tent stem cell-derived MSCs can serve as an alternative to
adult MSCs in the future treatment of these diseases.

Clinical studies of MSCs in immunomodulation. A pro-
gressive understanding of the biology of MSCs has led to
their approval and use in clinical trials as an immunomodu-
lator in the treatment of diseases such as GvHD, organ
transplantation, diabetes, multiple sclerosis and Crohn’s
disease. Detailed information is summarized in Table 2. To
date, more than 400 studies to explore the therapeutic effects
of MSCs have been registered on the clinical trial database
(www.clinicaltrials.gov).
Severe GvHD is a life-threatening complication following

allogeneic transplantation of hematopoietic stem cells in many
malignant and nonmalignant disorders. Steroids are currently
the first-line treatment for GvHD. Nonetheless, the outcome for
patients with severe, steroid-resistant or acute GvHD is poor.
In a phase II study, Le Blanc et al.81 injected allogeneic
BM-MSCs into 55 patients with grade 2–4 GvHD: a complete
or partial response was achieved in 30 and 9 patients,
respectively. More importantly, the total and transplantation-
related mortality in those with a complete response was
significantly lower than in those with a partial or no response,
and no patients experienced major adverse effects following

infusion of MSCs. In another phase I/II clinical trial of the
therapeutic effects of MSCs on acute (10 patients) and chronic
(8 patients) GvHD,82 a complete response was achieved in 1
patient with acute GvHD and 1 with chronic GvHD; a partial
response was observed in 6 patients with acute GvHD and 3
patients with chronic GvHD. No major adverse event was
observed following MSC therapy. In pediatric patients with
chronic GvHD following allogeneic stem cell transplantation,
one of three patients showed slight improvement following
allogeneic BM-MSC infusion.83 Allogeneic BM-MSCs have
also been shown by other clinical trials to be beneficial in
GvHD.84–88 Recently, Health Canada has approved the
clinical application of MSCs in patients with GvHD.
Phase I/II clinical trials have evaluated the application of

MSCs in patients with multiple sclerosis.89–92 In a phase I/II
open-safety clinical trial, Karussis et al.91 showed that trans-
plantation of MSCs in patients with multiple sclerosis and
amyotrophic lateral sclerosis could induce immediate immuno-
modulatory effects and was a safe and clinically feasible
procedure. Another open-label phase II study of autologous
MSCs for the treatment of secondary progressive multiple
sclerosis demonstrated improved visual acuity and visual
evoked response latency with no serious adverse effects.90

The therapeutic effects of MSC transplantation have been
investigated in patients following kidney transplantation, and in
those with SLE,93–95 diabetes,96 Crohn’s disease,97,98 ulcera-
tive colitis and osteoarthritis.99 Of particular note, a study by
Perico et al.100 showed that pretransplant infusion of autologous
MSCs can protect the transplanted kidney from graft dysfunc-
tion. All studies except the one in Crohn’s disease98 showed
some clinical benefit of MSC treatment. Based on these initial
encouraging results, further investigations are in progress to
improve the safety and efficacy of MSC therapy.
Mohamadnejad et al.101 and Kharaziha et al.102 have

carried out successful phase I trials in liver failure and
cirrhosis, respectively. Transplantation of autologous MSCs
remarkably improved patients’ quality of life and improved liver
function. Another two phase II studies also demonstrated that
infusion of MSCs increased serum albumin, reduced serum
bilirubin and improved Mayo end-stage liver disease score in
patients with liver failure.103,104

Until now, clinical trials are mostly focused on BM-MSCs, and
this may be because it is the earliest and traditional investigated
cell type. With the further exploration of MSCs from other tissue
origins and the progress got from preclinical studies, more
types of MSCs will be learned in clinical studies and provide
multiple cell-type choice for immunomodulation therapy.

Issues of MSCs in Immunomodulation Therapies

In the majority of completed early pilot clinical trials, recipients
of MSC therapy demonstrated good tolerance and improved
clinical symptoms.105 Although results from these clinical trials
indicate that MSC-based therapy is a promising strategy for
immunomodulation, there remain many challenges to be
overcome.
In 2009, Osiris therapeutics, Inc., reported their preliminary

results for prochymal phase III GvHD trials (http://clinicaltrials.
gov/show/NCT00366145; http://investor.osiris.com/release-
detail.cfm?ReleaseID=407404) in 192 patients with GvHD.
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Unfortunately, there was no significant difference in clinical
outcomes between the placebo control and allogeneic MSC
groups. Conflicting results of MSC therapy have also been
reported in the treatment of other conditions. For example,
Duijvestein et al.106 reported that in six patients who received
MSC infusions to treat Crohn’s disease, only three exhibited
decreased disease activity and in three the diseaseworsened.
Similarly, Wang et al.93 showed that 12.5 and 16.7% of
patients with SLE had disease relapse at 9 and 12 months
respectively following MSC therapy. This suggests that repeat
MSC transplantation might be required for a therapeutic effect.
Of even more concern is the report of an association between
MSC transplantation and a higher recurrence rate in patients
with hematologic malignancy.107

Mixed results of MSCs in immunomodulation therapies.
In order to adequately assess the benefit of MSCs as
immunomodulation therapy, a significant amount of scientific
data is required. Nonetheless, most published studies involve
only small numbers of patients, and are fraught with a variety
of differences in terms of MSC origin, preparation and
delivery methods. The current widespread application of
MSCs also makes it difficult to compare and contextualize the
results generated by various trials. Although paracrine
signaling by MSCs for immunosuppression is a well-
established concept, the molecular mechanisms that regulate
the secretion of soluble factors remain a matter for debate.
Hence, the signaling networks between MSCs and immune
cells, which are key issues in modulating the immune
response, require further mechanistic investigation. The
modest immunosuppressive and short-term effects of MSC
transplantation also need to be improved. Here we address
the issues related to cell preparation and infusion.

Variability of MSCs derived from different sources and
ages: As mentioned above, BM, adipose tissue and cord
blood are the most common cell sources for MSC therapy.108

Nonetheless, MSCs that are employed in immunomodulation
therapies may also be isolated from dental pulp, thymus,
gingiva, saphenous vein58,108–110 and even fetal tissue or
derived from pluripotent stem cells.16,111,112 For immunomo-
dulation, the optimal source(s) of MSCs have not been
conclusively determined.
MSCs derived from different tissues display distinct

differentiation tendencies, paracrine potential and immune
properties. Several studies have aimed to compare the
immunomodulation actions of different MSCs. Ribeiro
et al.113 compared the capacity of MSCs from umbilical cord
matrix, adipose tissue and BM to suppress peripheral blood B,
T and NK cells. Their results showed that although adipose
tissue-derived MSCs had a stronger inhibitory effect, umbilical
cord matrix-derived MSCs had little effect on B and NK cells.
Moreover, there was significant heterogeneity in the differ-
entiating potential of MSCs from different sources and this
may also influence their clinical application.114 Unfortunately,
systematic evaluation of different kinds of MSCs in immuno-
modulation are lacking.
The age of MSCs may also have a major impact on their

therapeutic efficacy. MSCs derived from old donors have
shown altered membrane glycerophospholipid composition

and functionality.115 The differentiation potential of cells also
decreases with age.116 MSCs derived from young donors
show a higher proliferation rate with lower oxidative damage
and cell senescence.117

Inconsistent protocols for isolation method, cell culture,
expansion conditions and cryopreservation: Different inves-
tigators have their own distinct methods for isolation and
culturing of MSCs.105 It has been shown that culture
conditions, such as fetal bovine serum, human supplements,
cell seeding density and oxygen conditions, can all influence
the quality, proliferation, senescence and the immunomodu-
lation ability of the cells.118–123 In addition, clinical trials have
used large amounts of MSCs that were cryopreserved and
thawed before infusion, whereas preclinical trials have used
growing MSCs in the logarithmic phase. This may have led to
the diverse results: cryopreserved cells will have low viability
or experience a heat shock response that reduces their
immunosuppressive capacity.124,125 Even when cell pheno-
types are similar, flawed MSCs may have a lower therapeutic
effect than fresh MSCs because of functional defects. It is
therefore critical to have a uniform standard when MSCs are
cultured and expanded in vitro if cell damage is to be limited.

Cell dose, cell modification and injection frequency: There is
great variation among clinical trials in the injected dosage of
MSCs (ranging from 0.5 ×106 to 10×106/kg of the recipients
or even higher)105 as well as the frequency (single versus
multiple injections).81,88,126,127 Although MSCs are thought to
be immunoprivileged, repeated infusion of mismatched
MSCs has been reported to lead to alloimmunization and
subsequent refractoriness in mice.128,129 These issues need
to be addressed in the future design of clinical trials.
The modification of MSCs with cytokines or drugs (environ-

ment engineering) may improve their therapeutic efficacy. In
GvHD therapy, MSCs pretreated with IFN-γ were more
effective than nontreated MSCs in suppressing GvHD and
preventingmortality, even if their number was fivefold lower.130

It has also been shown that dexamethasone treatment can
affect cytokine expression and inhibit the immunomodulation
effect of MSCs.131 Therefore, the therapeutic potential of
modified MSCs requires further exploration.

Cell transfusion pattern: MSCs used in GvHD therapy are
administrated by systemic infusion.81,126,127,132 Contrary to
this, administration has been more targeted in other disease
conditions. For example, Yamout et al.92 and others treated
multiple sclerosis patients with intrathecal MSC injections.133

Based on these findings, and in the further investigation of
immune disorders, the curative effect of MSCs may be
improved if they are delivered to patients via a more targeted
approach, especially in the treatment of solid organ disease.

Future Prospects in the Development of MSCs for
Immunomodulation

Clinical grade of MSCs derived from human pluripotent
stem cells. Despite the availability of MSCs from adult/
newborn tissue,134,135 they have limited proliferative capacity,
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a large variability in cell quality derived from different donors
and quickly lose their differentiation potential when cultured
in vitro.116,136 All these factors limit their therapeutic
benefit.137,138 Prochymal (BM-MSCs) has yet to be granted
approval from US FDA, partly because of inconsistent
immunosuppression results. These controversial outcomes
are thought to be largely attributed to wide variation in BM-
MSC preparations acquired from different donors. To over-
come these disadvantages, MSCs have been derived from
alternative sources such as fat, dental pulp, umbilical cord,
placenta and human ESCs or iPSCs. Among these alter-
natives, human ESCs/iPSCs are the most valuable sources
for MSC production with considerable advantages.
When compared with adult tissue-derived MSCs, human

ESC/iPSC-MSCs reveal similar morphology and in vitro
differentiation potential,139 but have marked differences in
their age-related DNA methylation level. This means that
human ESC/iPSC-MSCs have a higher proliferation and
regenerative capacity.140 Studies have also shown that
single cell colony-derived MSC lines from human pluripotent
stem cells are not only as functional as BM-MSCs in
terms of phenotype, tissue repair capability79,141 and anti-
inflammation,33 but also have less batch-to-batch variation
and can be expanded for 4120 population doublings without
any obvious senescence or risk of transformation,142 thus
offering an ideal source for mass production of MSCs.
Besides, human ESC/iPSC-MSCs have been proved to have
the similar or even stronger immunomodulation effect
compared with the adult MSCs.16,19,33,79 More importantly,
human ESCs/iPSC-MSCs are less sensitive to pro-
inflammatory IFN-γ-induced HLA-II expression and have
a stronger immune privilege for cell survival after
transplantation,79,80 making them more effective and durable

in clinical immunomodulation. Clinical grade human ESCs
have been generated in GMP (good manufacturing practices)
facilities,143 and several human ESC-derived therapeutic cells
have been approved for clinical trials by the US FDA. Quality
consistent and reproducible MSC generation from human
ESCs has been established and can be well controlled and
manipulated in culture conditions. Hence, human ESCs offer
an unlimited and homogenous source for noninvasive
production of MSCs.144 As for iPSCs, researchers from Japan
have already applied them in human trials (http://www.nature.
com/news/next-generation-stem-cells-cleared-for-human-
trial-1.15897), and this means that they can be produced and
serve as the next generation of clinical stem cells. Subse-
quently, many researchers have started exploring therapy-
grade iPSC-MSC differentiation and culture conditions.145

Therefore, it is feasible to establish clinical grade human ESC/
iPSC-MSCs using GMPas the universal cell source for clinical
immunomodulation therapy. These pluripotent cell-derived
MSCs are advantageous as they offer the possibility for mass
production of cells that can be prepared as an ‘off -the-shelf’
format and as a ‘stem cell drug’ product for clinical and
industrial applications.
In contrast to an academic setting, for clinical and industrial

use, human ESC/iPSC-MSCs must be produced to a clinical
grade standard. Clinical grade MSC production necessitates
adhering to GMP to ensure that the ‘cell drug’ is safe,
reproducible and efficient when it is delivered to patients. All
parts of the process must be defined: the starting material
(tissue origin, separation or enrichment procedures), cell
culture density and medium (fetal calf serum or human serum,
cytokines with serum-free medium for target). To reach the
GMP standard, cells must be cultured in as close to a closed
system as possible.

Figure 2 Establishing clinical grade hESC-MSC lines under cGMP facilities and protocols. All parts of the process must be defined and operated by professionals: the cell
lines, the starting materials, cell culture density and medium. Cells must be cultured under the GMP standard. Phenotype, functional potential and microbiological safety of each
batch of hESC-MSCs are tested. Scientific, rigorous and complete quality control of cells should be done before infusion
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For clinical trials, in order to get comparable therapeutic
effects, the injected cells should be of similar condition. Quality
control of cells is thus essential before infusion. We must
consider the phenotype, functional potential and microbiolo-
gical safety of the cells and ensure that cultured cells remain
untransformed. In addition, quality assurance system proce-
dures specific to the production of MSCs as a ‘cell drug’ must
be determined and implemented. In summary, MSC therapy
for immunomodulation necessitates ideal and universal cell
sources, such as human ESC/iPSC-MSCs, and cells must be
produced under GMP with scientific, rigorous and complete
quality control (Figure 2).

Modification of MSCs. Preconditioning or genetic engi-
neering of MSCs can promote the immunomodulation effect
of MSC therapies.146–148 For the preconditioning of MSCs,
IFN-γ pretreatment enhances the immunomodulatory effect
of MSCs by improving the cell–cell contact and the secretion
of soluble factors related to immunosuppression.36,52,130

Other interesting approach is the induction of homing the
MSC to the targeted site. Expression of the chemokine
receptor 7 (CCR7) gene in MSCs can enhance their
migration into secondary lymphoid organs, all major niches
for generating immune responses or tolerance. Indeed,
CCR7 gene engineering of MSCs has been shown to
improve their immunomodulatory effect when used as
therapy for GvHD.149 Nevertheless, the safety of gene
vectors used in modification should be optimized to
minimize their impact on the function of MSCs. If safety is
guaranteed, MSCs can be conditioned or genetically
modified before administration to achieve better effects.

Conclusion

MSCs are excellent candidates for therapeutic use as cellular
therapies that can potentially revolutionize the current
pharmaceutical landscape. Although they show great promise
in the treatment of many immune disorders, the large
variability in cell quality derived from different donors and
tissues, inconsistent protocols, varying dosages and differing
transfusion patterns can limit their therapeutic benefit. To
overcome these hurdles, a careful evaluation of appropriate
cell sources, more scientific data and a better mechanistic
understanding of immunosuppression of MSCs is necessary.
In the future, it is feasible to establish a clinical grade of human
ESC /iPSC-MSCs using GMP to serve as the universal cell
source for clinical immunomodulation therapy. Nonetheless,
before this can be implemented, standardized protocols for
cell culture, differentiation, expansion and cryopreservation as
well as robust quality control systems need to be in place.
These factors in combination with safely preconditioned and
genetically modified MSCs may pave the way for the
development of an effective cellular therapy for countless
human immune disorders.
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