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SUMMARY

The PI3K enhancer PIKE links PI3K catalytic sub-
units to group 1 metabotropic glutamate receptors
(mGlu1/5) and activates PI3K signaling. The roles of
PIKE in synaptic plasticity and the etiology of mental
disorders are unknown. Here,we show that increased
PIKE expression is a keymediator of impairedmGlu1/
5-dependent neuronal plasticity in mouse and fly
models of the inherited intellectual disability fragile X
syndrome (FXS). Normalizing elevated PIKE protein
levels in FXS mice reversed deficits in molecular and
cellular plasticity and improved behavior. Notably,
PIKE reduction rescued PI3K-dependent and -inde-
pendent neuronal defects in FXS. We further show
that PI3K signaling is increased in a fly model of FXS
and that genetic reduction of the Drosophila ortholog
of PIKE, CenG1A rescued excessive PI3K signaling,
mushroom body defects, and impaired short-term
memory in these flies. Our results demonstrate a
crucial role of increased PIKE expression in exagger-
ated mGlu1/5 signaling causing neuronal defects
in FXS.

INTRODUCTION

Dysregulated signaling throughphosphoinositide-3 kinase (PI3K)

has been recognized as a common pathological mechanism un-

derlyingdiversebrain disorders, suchas epilepsy, schizophrenia,

intellectual disability, and autism (Hoeffer and Klann, 2010; Law

et al., 2012; Schick et al., 2007; Gross and Bassell 2014). Recep-

tor-mediated PI3K/mTORsignaling plays an essential role in syn-
aptic plasticity andneuronal function (Bankoet al., 2006;Houand

Klann, 2004). Analyzing the neuronal functions of proteins that

directly mediate receptor-induced activation of PI3K signaling

is therefore of particular interest in order to understandmolecular

defects leading to mental diseases.

The PI3K enhancer PIKE (Centg1, a.k.a. Agap2) is an impor-

tant regulator of receptor-mediated PI3K activity. PIKE binds

and activates PI3K and Akt and plays roles in many different

cellular functions, such as apoptosis, migration, and receptor

trafficking (Chan and Ye, 2010). In the brain, PIKE-mediated

PI3K activity downstream of group 1metabotropic glutamate re-

ceptors (mGlu1/5) is essential for neuronal survival, leading to

reduced neuronal density and decreased dendritic complexity

in the neocortex of Centg1 knockout (Centg1KO) mice (Chan

et al., 2011b; Rong et al., 2003). PIKE’s role in mGlu1/5-depen-

dent synaptic plasticity and possible implication for the etiology

of mental disorders is unknown.

The inherited intellectual disability and autism spectrum

disorder fragile X syndrome (FXS) is characterized by increased

and stimulus-insensitive signaling through mGlu1/5 (Bear et al.,

2004), but the underlying mechanisms are unknown. Recent

phase 3 clinical trials in patients with FXS using mGlu5-negative

modulators have been unsuccessful to improve the outcome

measures in behavior, corroborating the critical need to better

understand the mechanisms underlying dysregulated mGlu1/5

signaling in FXS. The detailed analysis of these mechanisms

might reveal alternative therapeutic strategies in FXS.

FXS is causedby lossof function of the fragile Xmental retarda-

tion protein (FMRP), an mRNA-binding protein that binds to

numerous mRNA targets and often represses their translation

(Bhakar et al., 2012). Previous studies showed that Centg1

mRNA associates with FMRP (Darnell et al., 2011; Gross et al.,

2010; Sharma et al., 2010), leading to increased PIKE protein

levels in Fmr1 knockout (Fmr1KO) mice, a mouse model of FXS
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Figure 1. Genetic Reduction of PIKE Ex-

pression Decreases Elevated PI3K Activity

in the Cortex of Fmr1KO Mice

(A) Centg1 heterozygosity reduces PIKE-L protein

levels in both Fmr1WT and Fmr1KO background

(two-way ANOVA; significant effect of Centg1

heterozygosity on PIKE-L protein levels [F(1,37) =

29.9; p < 0.001]; no effect of Fmr1KO [F(1,37) = 3.5;

p = 0.071], no interaction [F(1,37) = 0.12;

p = 0.727]). Representative western blots are

shown at the left. Protein levels were normalized

to a-tubulin. Also see Figure S1A for breeding

scheme and Figures S1B and S1C for quantifica-

tion of PIKE mRNA levels in Centg1 heterozygous

mice.

(B–D) Increased p110b- and mGlu5-associated

PI3K activity is reduced to WT levels in cortical

synaptic fractions (p110b) or cortical lysates

(mGlu5) from Centg1 heterozygous Fmr1KO mice,

whereas IRS2-associated PI3K activity is not

affected by Fmr1 or Centg1 genotype. PI3K

enzymatic activity of p110b-, mGlu5-, or IRS-2-

specific immunoprecipitates was measured by

ELISA (B) two-way ANOVA, p(Fmr1) = 0.079,

F(1,36) = 3.3; p(Centg1) = 0.053, F(1,36) = 4.0;

p(interaction) = 0.011, F(1,36) = 7.3; *p = 0.015,

#p = 0.011; (C) two-way ANOVA, p(Fmr1) = 0.08,

F(1,27) = 3.3; p(Centg1) = 0.018, F(1,27) = 6.4;

p(interaction) = 0.036, F(1,27) = 4.9; *p = 0.042,

#p = 0.017; and (D) two-way ANOVA, p(Fmr1) =

0.115, F(1,27) = 2.7, p(Centg1) = 0.228, F(1,27) = 1.5; p(interaction) = 0.947, F(1,27) = 0.01.

(E) Elevated PIP3/PIP2 ratios in Fmr1KO hippocampus are significantly decreased by genetic reduction of Centg1 (two-way ANOVA, p(Fmr1) = 0.023, F(1,25) =

5.9; p(Centg1) = 0.040, F(1,25) = 4.7; p(interaction) = 0.028, F(1,25) = 5.5; *p = 0.018, #p = 0.022).

Error bars represent SEM; n represents individual mice from at least five litters; n indicated in each figure.
(Gross et al., 2010; Sharma et al., 2010).Whether elevated PIKE is

necessary for FXS-associated phenotypes has not been studied.

Due to PIKE’s prominent role as a mediator of mGlu1/5-depen-

dentPI3Kactivationandgiven thewell-described, but not fully un-

derstood, defect in mGlu1/5-mediated signaling and synaptic

plasticity in FXS, we hypothesized that elevated PIKE expression

due to loss of FMRP-mediated repression may contribute to

impaired signaling, synaptic function, and behavior in FXS.

To test our hypothesis that correcting PIKE expression can

rescue FXS-associated phenotypes, we genetically reduced

PIKE in two different animal models of FXS: Centg1 heterozy-

gous Fmr1KO mice and centaurin gamma-1A (CenG1A; the

invertebrate Centg1 homolog) heterozygous dFmr1 mutant

Drosophila. Reducing PIKE, a direct target of FMRP, restored

mGlu1/5-dependent molecular and cellular plasticity and

rescued behavioral and cognitive defects in both animal models.

Our study uncovers a role for elevated expression of PIKE, a

confirmed FMRP target, as a crucial contributor to mGlu1/5-

mediated PI3K-dependent and -independent synaptic and

behavioral impairments that underlie FXS.

RESULTS

Genetic Reduction of Centg1 Decreases PIKE Protein
Levels and Excessive PI3K Activity in Fmr1KO Mice
PIKE protein levels in the mouse brain are increased in the

absence of FMRP (Gross et al., 2010; Sharma et al., 2010). To
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evaluate the functional impact of increased PIKE levels in FXS,

we chose a strategy to genetically reduce, but not to delete,

PIKE in the FXS mouse model by breeding female Fmr1 hetero-

zygous (Fmr1HET) mice with male mice heterozygous for Centg1

(Chan et al., 2010). Male offspring of the following genotypes

were analyzed: Fmr1WT/Centg1WT; Fmr1KO/Centg1WT; Fmr1WT/

Centg1HET; and Fmr1KO/Centg1HET (Figure S1A). Western blot

analyses validated that Centg1 heterozygosity reduced the

expression of PIKE-L protein in the cortex of Fmr1KO and Fmr1WT

mice (Figure 1A).

Previous studies have shown that both PIKE-S and PIKE-L

isoforms are elevated in Fmr1KOmice (Gross et al., 2010; Sharma

et al., 2010). Due to an unspecific band at ca. 100 kDa produced

by the PIKE-L/S antibody available, which covered the PIKE-S-

specific signals on the western blot, we were only able to

quantify reduced protein levels of PIKE-L (�150 kDa), the

relevant isoform that links mGlu1/5 receptors to PI3K, in Centg1

heterozygous mice (Figure 1A). To further confirm that Centg1

heterozygous mice have reduced levels of all PIKE isoforms,

we performed qRT-PCR analyses with primers detecting PIKE-

A, -S, and -L isoforms. All PIKE mRNA isoforms were signifi-

cantly reduced in Centg1 heterozygous mouse cortices (Figures

S1B and S1C), suggesting that likewise all protein isoforms were

reduced.

We have previously shown that activity of the PI3K catalytic

subunit p110b is increased in the absence of FMRP (Gross and

Bassell, 2012; Gross et al., 2010). Here, we show that Centg1



heterozygosity reduced p110b-associated PI3K activity in

Fmr1KO cortical synaptic fractions to wild-type levels (Figure 1B).

PIKE-L links PI3K catalytic subunits to mGlu1/5 receptors via

the scaffolding protein Homer (Rong et al., 2003). We thus hy-

pothesized that elevated PIKE results in increased mGlu5-asso-

ciated PI3K activity in Fmr1KO mice. In contrast, PI3K activity

associated with PIKE-L-independent receptors, such as insulin

receptor substrate 2 (IRS-2) complexes, may be unaffected.

Using mGlu5-specific immunoprecipitation, we showed that

mGlu5-associated PI3K activity was significantly increased in

Fmr1KO cortex and was reduced by Centg1 heterozygosity (Fig-

ure 1C). We did not observe any significant changes in IRS-2-

associated PI3K activity in Fmr1KO cortex, and PIKE reduction

had no significant effect on IRS-2-associated PI3K activity

(Figure 1D).

We have previously reported that the levels of the PI3K

product phosphatidylinositol-(3,4,5)-trisphosphate (PIP3) are

increased at Fmr1KO synapses (Gross et al., 2010). Here, we

show that the ratio of PIP3 and the PI3K substrate phosphatidy-

linositol-(4,5)-bisphosphate (PIP2) in hippocampal acidophilic

lipid fractions is increased in Fmr1KO mice. The increased

PIP3/PIP2 ratio was normalized to wild-type levels by Centg1

heterozygosity (Figure 1E). Heterozygosity for Centg1 had no

effect on PI3K activity or PIP3/PIP2 ratios in wild-type mice.

Genetic Reduction of Centg1 Restores Stimulus-
Induced Activation of PI3K and Protein Synthesis in
Fmr1KO Mice
A hallmark of FXS in the mouse model is loss of stimulus-

induced signaling and protein synthesis (Gross et al., 2010; Os-

terweil et al., 2010; Ronesi and Huber, 2008; Sharma et al.,

2010; Weiler et al., 2004), which is believed to contribute to

impaired synaptic plasticity and neuronal function in FXS. To

test whether reducing PIKE protein might restore this molecular

plasticity in FXS, we analyzed activity-regulated PI3K function

and synaptic protein synthesis in Fmr1KO/Centg1HET mice.

Centg1 heterozygosity restored mGlu1/5-mediated activation

of p110b-associated PI3K activity after treatment with the

mGlu1/5 agonist DHPG in Fmr1KO cortical synaptic fractions

(Figure 2A), reduced excess basal protein synthesis rates (Fig-

ure 2B), and reinstated mGlu1/5-evoked stimulation of protein

synthesis rates (Figure 2C). In wild-type, DHPG-induced stimu-

lation of both PI3K activity and protein synthesis was reduced

by Centg1 heterozygosity, corroborating the important func-

tion of PIKE in mediating mGlu1/5-dependent downstream

signaling.

Genetic Reduction of Centg1 Rescues Excess Dendritic
Spine Density and Exaggerated mGlu5-Mediated LTD in
Fmr1KO Mice
Analyses of Golgi staining in the hippocampal CA1 region of

adult mice showed that Centg1 heterozygosity reduced the

elevated dendritic spine density typical for the FXS phenotype

to wild-type levels (Figures 2D, 2E, S2A, and S2B). Moreover,

exaggerated mGlu1/5-dependent long-term depression (LTD)

in the hippocampus, a hallmark of impaired mGlu1/5-dependent

synaptic plasticity in FXS, was rescued to wild-type levels in

Fmr1KO mice heterozygous for Centg1 (Figures 2F and 2G).
Centg1 Heterozygosity Reduces Neocortical
Hyperactivity in Fmr1KO Mice
FXS mice display enhanced neocortical circuit activity, which

can be rescued by mGlu5-negative allosteric modulators or ge-

netic reduction of mGlu5 (Gibson et al., 2008; Gonçalves et al.,

2013; Hays et al., 2011). Here, we analyzed whether reduction

of PIKE, which is associated with mGlu1/5 via Homer proteins,

reduces neocortical activity in Fmr1KO mice. We measured the

duration of UP states (a type of persistent activity state), which

are prolonged in Fmr1KO thalamocortical slices and may reflect

network hyperexcitability in the absence of FMRP (Hays et al.,

2011). Duration of UP states in Fmr1KO was significantly

reduced to wild-type levels by Centg1 heterozygosity (Figures

3A and 3B). Prolonged UP states do not depend on protein

synthesis (Hays et al., 2011), and we thus speculated that

PIKE might also be mediating PI3K/mTOR-independent func-

tions downstream of mGlu1/5. In line with this hypothesis,

pre-treatment with the broad spectrum PI3K inhibitor Wortman-

nin did not affect UP state duration in thalamocortical slices

from Fmr1WT or Fmr1KO mice (Figures S3A and S3B).

Decreased PIKE levels also significantly reduced susceptibility

to audiogenic seizures in Fmr1KO mice (Figure 3C).

Genetic Reduction of Centg1 Reduces Repetitive
Behavior in Fmr1KO Mice and Improves Nest Building
FXS is the most-common monogenic cause of autism. To test

the influence of increased PIKE levels on autistic-like behaviors

in the FXS mouse model, we analyzed marble burying and nest

building. As reported previously, Fmr1KO mice buried more mar-

bles in a given time window than their wild-type littermates,

which was normalized to wild-type levels by Centg1 heterozy-

gosity (Figure 3D). Similarly, impaired nest building was im-

proved by Centg1 heterozygosity as measured by the amount

of unused nestlet after 24 and 72 hr and by using a nest scoring

system as described previously (Deacon, 2006) (Figures 3E, 3F,

and S3C–S3E). Interestingly, in contrast to most other pheno-

types, in which Centg1 heterozygosity did not have an effect

on wild-type, Centg1 heterozygosity also improved nest building

in wild-type mice.

Genetic Reduction of CenG1A, the Drosophila Ortholog
of Centg1, Rescues Increased PI3K Signaling,
Mushroom Body Defects, and Impaired Short-Term
Memory in dFmr1 Mutant Flies
Previous studies have shown that Drosophila models of FXS,

produced bymutations in theDrosophila dFmr1 gene, are a valid

tool to analyze molecular, cellular, and behavioral deficits in FXS

(McBride et al., 2013). Here, we show that, similarly as in the hip-

pocampus of Fmr1KO mice, PI3K signaling was elevated in flies

homozygous for the strong loss-of-function allele Fmr1D50

(Zhang et al., 2001). Both PIP3/PIP2 ratios and PI3K downstream

signaling, as shown by phosphorylation of S6K and Akt, were

increased in dFmr1 mutant fly heads (Figures 4A–4C). To

examine whether, similarly as in the mouse model, reducing

the gene dosage of CenG1A, the fly ortholog of Centg1, de-

creases PI3K signaling and reverses neuronal phenotypes

observed in dFmr1mutant flies, we generated flies homozygous

for Fmr1D50 that were heterozygous for a mutant allele of
Cell Reports 11, 727–736, May 5, 2015 ª2015 The Authors 729



Figure 2. Genetic Reduction ofCentg1Res-

cues Dysregulated mGlu5-Mediated PI3K

Activity and Protein Synthesis, Increased

Dendritic Spine Density, and Impaired Syn-

aptic Plasticity in Fmr1KO Mice

(A) Genetic reduction of Centg1 restores the

mGlu1/5-induced increase in p110b enzymatic

activity in cortical synaptic fractions (100mMDHPG

for 10 min; two-way ANOVA, p(Fmr1) = 0.052,

F(1,36) = 4.0; p(Centg1) = 0.15, F(1,36) = 2.2;

p(interaction) = 0.001, F(1,36) = 12.4; *p = 0.002,

#p = 0.006).

(B) Increased basal protein synthesis rates in

Fmr1KO cortical synaptic fractions, as measured

by incorporation of radiolabeled amino acids,

were significantly reduced to wild-type levels by

genetic reduction of Centg1 (two-way ANOVA,

p(Fmr1) = 0.28, F(1,36) = 1.2; p(Centg1) = 0.043,

F(1,36) = 4.4; p(interaction) = 0.011, F(1,36) = 7.1;

*p = 0.053, #p = 0.009).

(C) Genetic reduction of Centg1 restores the

mGlu1/5-induced increase in protein synthesis

rates in Fmr1KO cortical synaptic fractions (50 mM

DHPG for 20 min; two-way ANOVA, p(Fmr1) =

0.001, F(1,36) = 18.6; p(Centg1) = 0.011, F(1,36) =

7.1; p(interaction) < 0.001, F(1,36) = 27.1; *p <

0.001, #p < 0.001).

Error bars represent SEM; n represents individual

mice from at least five different litters.

(D and E) Genetic reduction of Centg1 normalizes

dendritic spine density in CA1 apical dendrites

to wild-type levels (two-way ANOVA, p(Fmr1) <

0.001, F(1,99) = 32.4; p(Centg1) < 0.001,

F(1,99) = 27.0; p(interaction) < 0.001, F(1,99) =

33.1; *p < 0.001, #p < 0.001). Example images are

shown in (D); quantification of number of dendritic

spines per 10 mm is shown in (E). n indicates

number of secondary dendrites analyzed (60–

100 mm length each, starting from the primary

shaft), three to five mice/genotype, four to eight

neurons/mouse, one dendrite/neuron. See Fig-

ure S2 for additional analyses. The scale bar rep-

resents 3 mm.

(F and G) Exaggerated DHPG-induced mGluR-LTD in Fmr1KO hippocampal slices is rescued by Centg1 heterozygosity. (F) Shown are mean field excitatory

postsynaptic potentials (fEPSPs) normalized to baseline as a function of time (Fmr1WT: n = 7; Fmr1KO: n = 8; Fmr1KO/Centg1HET: n = 9; repeated-measures two-

way ANOVA [genotype 3 time], n(genotype) = 3, n(time points) = 26, p(genotype) = 0.001, F(2,21) = 9.3; p(time) < 0.001, F(15,525) = 13; p(interaction) < 0.001,

F(50,525) = 2.3; Tukey’s post hoc tests: *p = 0.019, #p = 0.001, pns(Fmr1wt/Centg1WT- Fmr1KO/Centg1HET) = 0.595). (G) Average fEPSPs at different time points

before and after DHPG treatment shows significantly lower fEPSPs in Fmr1KO 60 and 90 min post-DHPG compared to both Fmr1WT and Fmr1KO/Centg1HET,

whereas Fmr1WT and Fmr1KO/Centg1HET were not different from each other (one-way ANOVAs;�30min: p = 0.106, F(2,21) = 2.5; 21 min: p = 0.055, F(2,21) = 3.3;

60 min: p < 0.001, F(2,21) = 13.5, *p = 0.002, #p < 0.001; 90min: [n different than previous time points: Fmr1WT: n = 4, Fmr1KO: n = 4, Fmr1KO/Centg1HET: n = 5] p =

0.005, F(2,10) = 9.4, *p = 0.017, #p = 0.006).

Error bars represent SEM.
CenG1A (CenG1AEY01217). Heterozygosity of CenG1AEY01217

significantly reduced PIP3/PIP2 ratios and PI3K downstream

signaling to or below wild-type levels (Figures 4A–4C). Cen-

G1AEY01217 also increased viability of dFmr1 mutant flies (Fig-

ure 4D). Offspring from Fmr1D50/TM6B X Fmr1D50/TM6B cross-

ings or CenG1A EY0127/CyO;Fmr1D50/TM6B X Fmr1D50/TM6B,

respectively, were genotyped and counted at P0 or P1 following

eclosion. The values shown are percentages of flies homozy-

gous for the dFmr1-null gene generated by these crossings.

dFmr1 mutant mushroom bodies, which are bilaterally sym-

metric axonal projections from Kenyon neurons, show a high
730 Cell Reports 11, 727–736, May 5, 2015 ª2015 The Authors
rate of b-lobe fusion across the midline (Michel et al., 2004).

Heterozygosity for the CenG1AEY01217 allele rescued this

developmental defect in the dFmr1 mutant background but

did not affect gross mushroom body morphology in wild-type

(Figure 4E).

Next, we tested whether CenG1A heterozygosity improved

the impairment in short-term memory in dFmr1 mutant flies.

When exposed to an unreceptive (previously mated) female,

male wild-type flies learn to reduce mating behavior and retain

this memory over 2 or 3 hr. As shown previously (McBride

et al., 2005), dFmr1 mutant flies had impaired short-term



Figure 3. Genetic Reduction of Centg1 Reduces Neocortical

Hyperactivity and Repetitive Behaviors and Improves Nest Building

in Fmr1KO Mice

(A andB) Genetic reduction ofCentg1 decreases duration of UP states in acute

thalamocortical slices from Fmr1KO mice. Example traces for each genotype

are shown in (A) and quantification in (B) (two-way ANOVA, p(Fmr1) < 0.001,

F(1,148) = 15.4; p(Centg1) = 0.002, F(1,148) = 9.8; p(interaction) = 0.131,

F(1,148) = 2.3; data square root transformed twice to achieve normal distri-

bution). Also see Figures S3A and S3B, showing that UP states in Fmr1WT and

Fmr1KO thalamocortical slices are independent of PI3K signaling.

(C) Genetic reduction of Centg1 reduces increased susceptibility to audio-

genic seizures in Fmr1KO mice (Fisher’s exact tests; *p < 0.001; #p = 0.008;

p(Fmr1WT/Centg1WT-Fmr1KO/Centg1HET) = 0.213).

(D) Genetic reduction of Centg1 rescues increased marble burying in Fmr1KO

mice. Shown are number of marbles buried more than 50% after 15 min (two-

way ANOVA, p(Fmr1) = 0.037, F(1,33) = 4.7; p(Centg1) = 0.106, F(1,33) = 2.8;

p(interaction) = 0.039, F(1,33) = 4.6; *p = 0.021).

(E and F) Impaired nesting behavior is improved in Fmr1WT and Fmr1KO mice

by genetic reduction of Centg1. Shown are the nest score (E) and the

average amount of unused nestlet after 24 hr (F). (E) Two-way

ANOVA, p(Fmr1) = 0.003, F(1,35) = 16.1; p(Centg1) = 0.003, F(1,35) = 10.0;

p(interaction) = 0.418, F(1,35) = 0.7; (F), two-way ANOVA, p(Fmr1) = 0.015,
memory of courtship suppression, and CenG1A EY01217 hetero-

zygosity rescued this cognitive defect (Figures 4F and S4B).

Notably, CenG1A EY01217 heterozygous flies had impaired

short-term memory as well, suggesting that this type of memory

in flies is dosage sensitive to PIKE.

DISCUSSION

The goal of this study was to test the hypothesis that increased

expression of the PI3K enhancer PIKE, which is translationally

regulated by FMRP and an important regulator of mGlu1/5-

dependent PI3K activity, contributes to dysregulated mGlu1/5-

dependent synaptic plasticity and neuronal function underlying

the pathogenesis of FXS. To this end, we used genetic

approaches in a mouse and a fly model to reduce PIKE levels

in FXS. Previous studies have genetically reduced or deleted

components upstream and downstream of the PI3K-signaling

complex, but these were not direct mRNA targets of FMRP,

nor were they shown to be translated in excess in FXS (Bhatta-

charya et al., 2012; Dölen et al., 2007, Ronesi et al., 2012). More-

over, in most cases, the approach taken thus far has been to

delete a gene of interest, hence an advantage of the genetic

reduction approach taken here is to compensate for loss of

translational repression of FMRP-associated mRNAs in FXS.

Here, we show that this strategy rescued FXS-associated phe-

notypes on several functional levels, from signaling mechanisms

to synaptic plasticity and memory, including PI3K- and protein

synthesis-dependent and -independent neuronal functions. We

further corroborate the importance of PIKE dysregulation for

the etiology of FXS by showing that PI3K signaling is increased

in a fly model of FXS and that reducing the Drosophila ortholog

of PIKE, CenG1A in FXS flies rescues molecular, morphological,

and cognitive defects. Taken together, our study suggests that

gain of function of a critical molecular linker of the mGlu5-

PI3K-signaling complex contributes to FXS-associated defects

in neuronal and behavioral function.

Receptor-Specific PI3K Signaling Defects in FXS
Numerous studies have reported exaggerated signaling of

mGlu1/5 receptors in FXS animal models (Dölen et al., 2007;

Huber et al., 2002; Muddashetty et al., 2007; Osterweil et al.,

2010; Ronesi et al., 2012), and mGlu5 negative allosteric modu-

lators have been shown to rescue many FXS-associated pheno-

types (McBride et al., 2005; Michalon et al., 2012; Yan et al.,

2005). Several recent studies have begun to analyze the

molecular mechanisms of dysregulated mGlu1/5 signaling in

FXS by genetically reducing or deleting mGlu1/5-signaling com-

plex components or downstream regulators of protein synthesis

(Bhattacharya et al., 2012; Dölen et al., 2007; Ronesi et al., 2012),

but the detailed underlying molecular mechanisms are still un-

known. In this study, we show that the PI3K enzymatic activity

of the mGlu5 protein complex is increased in Fmr1KO cortex
F(1,35) = 6.6; p(Centg1) = 0.039, F(1,35) = 4.6; p(interaction) = 0.699, F(1,35) =

0.15. Representative pictures of nests and analyses after 72 hr are shown in

Figures S3C–S3E.

Error bars represent SEM. n indicates number of slices for (B) and individual

mice from at least five different litters for (C)–(F).
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Figure 4. Genetic Reduction of CenG1A Rescues Excessive PI3K Activity and Neuronal Defects in a Drosophila Model of FXS

(A) Significantly increased PIP3/PIP2 ratio in dFmr1D50 mutant fly heads is decreased by CenG1A EY01217 heterozygosity (two-way ANOVA, p(dFmr1) = 0.025,

F(1,15) = 6.2; p(CenG1A) = 0.001, F(1,15) = 16.7; p(interaction) = 0.372; F(1,15) = 0.8). Also see Figure S4A for confirmation of loss of dFMR1 expression in the

dFmr1 mutant flies.

(B and C)Western blot analyses suggest that increased S6K1 phosphorylation (B) and increased Akt phosphorylation (C) in dFmr1D50 mutant fly heads is reduced

by genetic reduction ofCenG1A. (B) Related samples Friedman’s test by ranks, p = 0.034;Wilcoxon signed rank post hoc analyses: *p = 0.008, p(n.s.) = 0.257; (C),

two-way ANOVA p(dFmr1) = 0.194, F(1,12) = 1.9; p(CenG1A) = 0.088, F(1,12) = 3.5; p(interaction) = 0.061, F(1,12) = 4.3.

(D) Viability of dFmr1D50 mutant flies is increased (to or above Mendelian ratios) by CenG1AEY01217 heterozygosity (n(dFmr1D50) = 339; n(Cen-

G1AEY01217;dFmr1D50) = 331, Fisher’s exact test p < 0.001).

(E) Heterozygosity for the CenG1AEY01217 allele rescues b-lobe fusion in mushroom bodies of dFmr1D50 mutant flies. Example images of Fasciclin II-stained

mushroom bodies are shown as merged z stack projections (left) and single optical sections through the transverse midline (right; Fisher’s exact tests: p(wt-

dFmr1 D50) < 0.001, p(wt-CenG1AEY) = 1, p(dFmr1D50-CenG1AEY;dFmr1D50) = 0.006, p(wt-CenG1AEY;dFmr1D50) = 0.477). The scale bar represents 50 mm.

(F) Heterozygosity for the CenG1AEY01217 allele rescues loss of courtship short-term memory in dFmr1 mutant flies and impairs courtship memory in wild-

type background (one-way ANOVA with Sidak’s multiple comparison; p < 0.001, F(7,227) = 16.5, *p = 0.010, #p = 0.001. n.s.p > 0.9; n(naive, trained):

WT(48,23);dFmr1 D50(30,17);CenG1AEY(33,24);CenG1AEY;dFmr1D50(36,24)). Data are presented asmemory index, i.e., the relative difference between themean

courtship index (CI) of trained and naive flies ((CI(naive)-CI(trained))/CI(naive)), average CI ± SEM are shown in Figure S4B.

Error bars are SEM; n indicated in the figure. n represents individual experiments pooling 15–30 fly heads per condition in (A)–(C) and individual flies in (D)–(F).
and rescued by Centg1 heterozygosity (Figure 1C), which pro-

vides direct evidence for a link between impaired mGlu1/5

signaling, excessive PI3K activity, and loss of translational con-

trol of FMRP target mRNAs in FXS. In contrast, IRS-2-associated

PI3K activity is not significantly altered in Fmr1KO mice (Fig-

ure 1D). This supports a direct role of the mGlu1/5-PI3K-

signaling complex in mediating neuronal defects in FXS (Ronesi

et al., 2012) and gives rise to the hypothesis that FMRP is not a

regulator of general PI3K signaling but controls a specific subset

or network of the PI3K-signaling complex in neurons via regula-

tion of proteins that tether PI3K activity to certain receptors

(Figure 5).
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Reducing PIKE Rescues Impairments in Stimulus-
Induced Signaling and Protein Synthesis, Dendritic
Spine Morphology, and Synaptic Plasticity in Fmr1KO

Mice
The capability of a neuron to adjust intracellular signaling and

synthesize new proteins in response to external stimuli is

essential for enduring forms of synaptic plasticity underlying

behavior and cognition (Sutton and Schuman, 2006). In FMRP-

deficient neurons, basal activity of the PI3K subunit p110b and

general protein synthesis are increased and stimulus insensitive

(Gross et al., 2010; Osterweil et al., 2010; Weiler et al., 2004).

Here, we show that genetic reduction of Centg1 restored



Figure 5. Proposed Simplified Model of PIKE’s Role in Dysregulated mGlu5-Dependent Neuronal Functions in FXS

(A) mGlu5 receptors mediate activation of PI3K catalytic subunits (p110) through either Homer-PIKE scaffolds or through heterotrimeric G proteins (GbGg). FMRP

directly regulates expression levels of PIKE and thus provides crucial control of mGlu5-dependent functions, including PI3K/mTOR-dependent downstream

signaling and activity-regulated protein synthesis (1) as well as PI3K- and protein-synthesis-independent functions (2).

(B) In the absence of FMRP-mediated translational repression, PIKE levels are elevated (1). This contributes to increased mGlu5-mediated activation of PI3K

catalytic subunits (2). Increased PIKE levels may also cause receptor-independent, PIKE-mediated PI3K activation (3), which could contribute to the overall

increase in PIP3/PIP2 ratios. Together, this contributes to increased mGlu1/5-mediated PI3K/mTOR signaling, causing defects in protein synthesis and synaptic

plasticity (4). In addition, increased PIKE contributes to impairments in other mGlu5-dependent but protein-synthesis- and PI3K-independent neuronal functions,

such as prolonged neocortical UP states (5). Our study suggests that reduction of PIKE in Fmr1KO animal models limits excessive mGlu1/5-dependent down-

stream signaling, both PI3K-dependent and -independent, leading to normalized signal transduction, protein synthesis, neuronal structure, and function.
mGlu1/5-induced increases in protein synthesis and p110b ac-

tivity in Fmr1KO mice (Figures 2A–2C). Our observations suggest

that PIKE is a keymediator of FMRP’s function to control activity-

mediated neuronal signaling and protein synthesis and thus

synaptic plasticity. Further corroborating these results, Centg1

heterozygosity rescued exaggerated mGluR-LTD in Fmr1KO hip-

pocampus (Figures 2F and 2G) and reduced the increased den-

dritic spine density in hippocampal CA1 neurons from Fmr1KO

mice (Figures 2D and 2E).

We noticed that, for most of the tested molecular, cellular, or

behavioral phenotypes, Centg1 heterozygosity had no signifi-

cant effects in wild-type mice, although PIKE protein levels

were reduced. We speculate that, in wild-type, reduced levels

of PIKE are compensated by other knownmodes of PI3K activa-

tion, for example, heterotrimeric G proteins (Guillermet-Guibert

et al., 2008). However, neurons seem vulnerable to elevated

and unregulated PIKE in the absence of FMRP, suggesting

that increased PIKE plays an important and specific role in

FXS-associated phenotypes.

A Role for Increased Expression of PIKE in
PI3K-Independent Neocortical Hyperactivity
and in Impaired Behavior in Fmr1KO Mice
Loss of FMRP in patients and animal models leads to increased

susceptibility to epileptic seizures, increased neuronal network

activity, and general neuronal hyperexcitability (Gonçalves

et al., 2013; Hays et al., 2011). Here, we show that genetic reduc-

tion of PIKE reduces the prolonged duration of bursts of sponta-

neous neocortical activity (UP states; Figures 3A and 3B) that are

observed in Fmr1KO mice (Hays et al., 2011). Notably, whereas

UP states are sensitive to mGlu5 inhibition, they do not depend
on new protein synthesis (Hays et al., 2011) or on PI3K signaling

(Figures S3A and S3B), suggesting additional roles of PIKE in

mGlu1/5 function apart from PI3K/mTOR-mediated protein syn-

thesis, for example, through PIKE-L association with Homer and

regulation of Homer scaffolds, which are dysregulated in FXS

(Ronesi et al., 2012). Moreover, PIKE isoforms were shown to

have other roles apart from PI3K activation, which could also

contribute to the observed rescue of UP states, such as direct

binding of PIKE-L to GluA2 and GRIP2 (Chan et al., 2011a).

Centg1 heterozygosity also significantly reduces the sus-

ceptibility to audiogenic seizures in Fmr1KO mice (Figure 3C).

Absence of PIKE in Centg1KO mice leads to higher susceptibility

to kainic-acid-induced excitotoxicity and seizures (Chan et al.,

2012). Our results suggest that Centg1 heterozygosity reduces

neuronal excitability also in wild-type, although none of the ef-

fects were significant. Reduced PIKE levels may thus protect

neurons from hyperactivity in these experimental settings.

Genetic reduction of Centg1 rescued impaired nesting

behavior and obsessive marble burying in Fmr1KO mice (Figures

3D–3F), suggesting a role of increased PIKE in autistic-like

behavior. Increased PI3K/mTOR signaling has been implicated

in autism, but the Centg1 gene has not been previously associ-

ated with autism susceptibility.

Improvement of Neuronal Function by Genetic
Reduction of PIKE in FXS Is Conserved across Species
Here, we show that increased PI3K signaling occurs in a

Drosophila model of FXS and can also be genetically targeted

to correct phenotypes. Genetic reduction of the Drosophila

Centg1 ortholog CenG1A reduced excess PI3K signaling

and rescued lethality, axonal overgrowth, as well as impaired
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short-term memory caused by the absence of dFMR1 (Figure 4).

These findings in the fly model are similar to observations in

Fmr1KO mice and thus suggest a conserved function of FMRP

to regulate PIKE and PI3K signaling. However, as of now, it is

not known whether CenG1AmRNA is a target of dFMR1 in flies,

andmorework is needed to identify dFMR1mRNA targets in flies

that are translationally dysregulated in dFmr1 mutant flies.

Whereas PIP3/PIP2 ratios in CenG1A heterozygous flies

were reduced in both wild-type and dFmr1 mutant background,

downstream signaling and gross mushroom body morphology

were not affected in wild-type. However, CenG1A heterozygous

flies were impaired in courtship memory, suggesting a PIKE

dosage-sensitive regulation of this type of cognition. Given

these results and the importance of PI3K signaling in axonal

growth and guidance in the Drosophila visual system (Song

et al., 2003), we speculate that CenG1a heterozygosity could

have caused some more-subtle defects in mushroom body

morphology in wild-type flies that were not detected by our

assessment of FXS-typical fusion of b-lobes. Our results

showing a dosage sensitivity of memory function to PIKE and

PI3K activity are in line with earlier reports showing that learning

in flies is dosage sensitive to the cAMP-signaling pathway: both

the dunce mutant, which is impaired in cAMP phosphodies-

terase, as well as the rutabaga mutant, which has a gene defect

in Ca2+/calmodulin-dependent adenylate cyclase, are impaired

in associative learning (Tully and Quinn, 1985). These observa-

tions suggest that, similarly as in the case of PIKE and PI3K ac-

tivity, either too much or too little cAMP signaling can have

adverse effects on cognitive function.

Our study reveals that genetically reducing PIKE, a confirmed

FMRP target, can rescue diverse FXS-associated phenotypes at

the molecular, physiological, and behavioral levels in animal

models. These findings provide insight into the mechanisms of

dysregulated mGlu1/5 signaling in the absence of FMRP by

showing that reducing the increased expression of PIKE, a crit-

ical mediator of mGlu1/5-dependent downstream signaling, res-

cues FXS-associated neuronal impairments on multiple levels.

Notably, this strategy rescues protein-synthesis-dependent

(LTD) and -independent neuronal defects (UP states) in FXS,

suggesting that increased PIKE is not just amediator of dysregu-

lated protein synthesis but plays additional roles in mTOR- and

protein-synthesis-independent dysfunctions of the mGlu1/5

complex in the absence of FMRP (Figure 5). So far, it is unknown

whether the observed rescue is mediated mainly by reduction of

the long isoform of PIKE that tethers mGlu1/5 to downstream

PI3K signaling or whether the overall reduction of all PIKE iso-

forms underlies the improvement of FXS-associated pheno-

types. In the future, to further test the mGluR theory of FXS, it

will be interesting to explore whether targeting specifically the

long isoform of PIKE, e.g., through blocking interactions of

PIKEwithmGlu1/5 receptor complexes, may also rescue pheno-

types in the FXS mouse model.
EXPERIMENTAL PROCEDURES

Mice and Flies

Mice were generated by crossing female Fmr1HET mice (The Jackson Labora-

tory) with male Centg1 heterozygous mice (Chan et al., 2010) and were geno-
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typed by PCR. The animal protocol was approved by the Institutional Animal

Care and Use Committees of Emory University, UT Southwestern, NYU, and

CCHMC and complied with the Guide for the Care and Use of Laboratory An-

imals. Flies were maintained at 25�C under standard conditions. Wild-typeOr-

egon-R, wild-type w1118 (for behavioral analyses), dFmr1 (dFmr1D50M/TM6B;

Zhang et al., 2001), and CenG1A (CenG1AEY01217/CyO) alleles were obtained

from the Bloomington Drosophila Stock Center. For details, see the Supple-

mental Experimental Procedures.

Antibodies

The following antibodies were used: rabbit polyclonal anti-FMRP (Sigma;

F4055); mouse monoclonal anti-a�tubulin (clone DM1A; Sigma); rabbit poly-

clonal anti-p110b (Millipore; 09-482); rabbit polyclonal anti-PIKE-L/S (Milli-

pore; 07-675); rabbit polyclonal anti-mGlu5 (Millipore; AB5675); mouse

monoclonal anti-dFMR1 (clone 6A15; Abcam); and mouse monoclonal anti-

fasciclin II (clone 1D4; NeuroMab). The following rabbit monoclonal anti-

bodies from Cell Signaling Technology were used: phospho-Akt(Thr308)

(no. 4056); phospho-Drosophila p70 S6 Kinase (Thr398) (no. 9209); and

IRS-2 (no. 4502).

Drugs and Reagents

(S)-3,5-dihydroxyphenylglycine (DHPG) was obtained from Tocris Bioscience

and dissolved in water or ACSF for LTD experiments. 50 mM stock solutions

were kept in aliquots at �80�C, except for LTD experiments (prepared freshly

on the day of the experiment). Wortmannin (Tocris Bioscience) was dissolved

in DMSO (10 mM) and kept in aliquots at �80�C. For metabolic labeling,

EXPRE35S35S Protein Labeling Mix (PerkinElmer) was used.

Immunoprecipitation and Western Blotting

IRS-2- and mGlu5-specific protein complexes were immunoprecipitated

from cortical lysates, and p110b complexes were immunoprecipitated from

synaptoneurosome preparations (Gross et al., 2010) for PI3K activity ELISAs,

using IRS-2-, mGlu5-, or p110b-selective antibodies. Briefly, for mGlu5-, IRS-

2-, and p110b-IPs, fresh or snap-frozen cortices or freshly prepared synaptic

fractions, respectively, were homogenized in PI3K assay lysis buffer as

described previously (Gross et al., 2010), and equal amounts of protein were

incubated with antibody or IgG 5 hr or overnight rotating at 4�C. Antibody com-

plexes were pulled down using protein A-agarose, washed in lysis buffer, and

subjected to PI3K assays. For western blotting, proteins were resolved on

SDS-polyacrylamide gels, transferred to PVDF membranes, and detected

using horseradish-peroxidase-coupled secondary antibodies and enhanced

chemiluminescence.

PI3K Assays and PIP2/PIP3 Mass ELISAs

PI3K activity was measured using PI3-Kinase Activity ELISA: Pico (Echelon

Biosciences), and PIP2 and PIP3 contents of acidophilic lipids were quantified

using PI(3,4,5)P3 and PI(4,5)P2 mass ELISA kits (Echelon Biosciences)

following the manufacturer’s protocol. For details, see the Supplemental

Experimental Procedures.

Metabolic Labeling

Protein synthesis rates were quantified in synaptoneurosomes using 35-S-

methionine metabolic labeling under basal conditions or following mGlu1/5

stimulation (20 min DHPG; 100 mM at 37�C) as described in Gross et al.

(2010). For details, see the Supplemental Experimental Procedures.

Dendritic Spine Analysis

Brains from mice at postnatal days 58–62 were Golgi stained using the FD

Rapid GolgiStain Kit (FD NeuroTechnologies) according to the manufacturer’s

protocol. Briefly, brains were dissected on ice and then immersed for 14–

18 days in impregnation solution, with one solution change within the first

24 hr. Brains were cut in 160-mm slices using a Leica vibratome, mounted

on coverslips, and stained according to the manufacturer’s protocol. Second-

ary, apical dendrites from pyramidal CA1 neurons were imaged using a 603 oil

DIC objective for a minimum length of 60 mm, starting from their origin at the

primary dendritic shaft. In most cases, z stacks were taken to ensure tracing

of the dendrite throughout the entire length. Dendritic spines were counted



and recorded as a function of 10-mm segments on the dendrites using Fiji Im-

aging software. Dendrites were between 60 and 120 mm in length.We analyzed

three to five brains per genotype, four to eight neurons per brain, and one

dendrite per neuron.

Audiogenic Seizures

Mice were tested in a plastic chamber covered with a Styrofoam lid containing

a 120-dB personal security alarm as described in Ronesi et al. (2012). The

alarm was presented to the mice for 5 min. Mice were observed or videotaped

during the entire procedure, full tonic-clonic seizure (sometimes followed by

death caused by respiratory arrest) was counted as positive, and wild running

behavior was not counted as seizure.

UP States

UP states were performed as described previously (Hays et al., 2011). For de-

tails, see the Supplemental Experimental Procedures.

Hippocampal mGluR-LTD

DHPG-induced mGluR-LTD on brain slices was performed as described pre-

viously (Bhattacharya et al., 2012). For details, see the Supplemental Experi-

mental Procedures.

Nest-Building Behavior

Nest building was assessed as described in Deacon (2006). Briefly, male mice

at postnatal day 30 were placed in a fresh cage with standard bedding supple-

mented with 3 g of fresh nestlet between 4 and 6 p.m. at the start of the exper-

iment. 72 hr later, nests were assessed using the score proposed by Deacon

(2006), unused nestlet was weighed, and all nestlet material was replaced by

3 g of fresh nestlet. After 24 hr, nests were assessed as described above.

Marble Burying

Marble burying was assessed as described previously (Bhattacharya et al.,

2012), with the following modifications. Twenty dark blue small glass beads

were placed in a 5 3 4 grid on fresh 8-cm deep bedding. Mice were left in

the cage for 15 min. Marbles covered 50% or more were scored as ‘‘buried.’’

Mice were always tested between 12 and 3 p.m. Mice were tested in nesting

behavior prior to the marble-burying assay.

Analysis of Drosophila Mushroom Body Morphology

Flies were collected at days 0–2 post-eclosion. For western blot analyses

and PIP3/PIP2 quantifications, fly heads were dissected on dry ice and

stored at �80�C until further processing. For mushroom body analyses, fly

brains were dissected and immediately fixed in 4% PFA, processed for

anti-Fasciclin II staining (Wu and Luo, 2006), and mounted on microscope

slides using VectaMount AQ aqueous mounting medium (Vector Labora-

tories). Sections were imaged using a Zeiss LSM 710 confocal or a Leica

SP8 Multi Photon microscope and processed using ImageJ (NIH). Brains

were analyzed for b-lobe fusion across the midline as described previously

(Michel et al., 2004).

Analysis of Drosophila Courtship Behavior

Courtship short-term memory was assessed as described previously

(McBride et al., 2005). Briefly, virgin male flies were collected within 4 hr of

eclosion, aged for 5–7 days, and transferred to fresh food in individual small

food tubes the night before testing. Virgin females were collected within 2 hr

of eclosion and kept in groups of 10–15. Mated females were observed to

mate with a male the night before training. The courtship index (CI) was calcu-

lated as the percentage of time spent courting during the observation time,

which was either 10 min or until successful copulation (Siegel and Hall,

1979). Memory index was calculated as the relative difference between the

mean CI of trained and naive flies ((CI(naive)-CI(trained))/CI(naive); Keleman

et al., 2012).

Western Blot Quantification

For western blot analyses, equal amounts of protein were loaded and western

blots were quantified densitometrically using ImageJ (NIH) and normalized to

a-tubulin.
Data Acquisition and Statistical Analyses

Experimenters were blind to the genotype at the time of the experiments. All

statistics were performed with SigmaStat v.3.1, GraphPad Prism6, or SPSS

using the appropriate tests as indicated in each figure. For details, see the

Supplemental Experimental Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and four figures and can be found with this article online at http://dx.doi.org/

10.1016/j.celrep.2015.03.060.
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Bhakar, A.L., Dölen, G., and Bear, M.F. (2012). The pathophysiology of fragile X

(and what it teaches us about synapses). Annu. Rev. Neurosci. 35, 417–443.

Bhattacharya, A., Kaphzan, H., Alvarez-Dieppa, A.C., Murphy, J.P., Pierre, P.,

and Klann, E. (2012). Genetic removal of p70 S6 kinase 1 corrects molecular,

synaptic, and behavioral phenotypes in fragile X syndrome mice. Neuron 76,

325–337.

Chan, C.B., and Ye, K. (2010). Multiple functions of phosphoinositide-3 kinase

enhancer (PIKE). ScientificWorldJournal 10, 613–623.

Chan, C.B., Liu, X., Ensslin, M.A., Dillehay, D.L., Ormandy, C.J., Sohn, P.,

Serra, R., and Ye, K. (2010). PIKE-A is required for prolactin-mediated STAT5a

activation in mammary gland development. EMBO J. 29, 956–968.

Chan, C.B., Chen, Y., Liu, X., Tang, X., Lee, C.W., Mei, L., and Ye, K. (2011a).

PIKE-mediated PI3-kinase activity is required for AMPA receptor surface

expression. EMBO J. 30, 4274–4286.
Cell Reports 11, 727–736, May 5, 2015 ª2015 The Authors 735

http://dx.doi.org/10.1016/j.celrep.2015.03.060
http://dx.doi.org/10.1016/j.celrep.2015.03.060


Chan, C.B., Liu, X., Pradoldej, S., Hao, C., An, J., Yepes, M., Luo, H.R., and Ye,

K. (2011b). Phosphoinositide 3-kinase enhancer regulates neuronal dendrito-

genesis and survival in neocortex. J. Neurosci. 31, 8083–8092.

Chan, C.B., Chen, Y., Liu, X., Papale, L., Escayg, A., Mei, L., and Ye, K. (2012).

Essential role of PIKE GTPases in neuronal protection against excitotoxic in-

sults. Adv Biol Regul 52, 66–76.

Darnell, J.C., Van Driesche, S.J., Zhang, C., Hung, K.Y., Mele, A., Fraser, C.E.,

Stone, E.F., Chen, C., Fak, J.J., Chi, S.W., et al. (2011). FMRP stalls ribosomal

translocation on mRNAs linked to synaptic function and autism. Cell 146,

247–261.

Deacon, R.M. (2006). Assessing nest building in mice. Nat. Protoc. 1, 1117–

1119.
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