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Abstract

This study examines the cellular automata traffic flow model, which considers

the heterogeneity of vehicle acceleration and the delay probability of vehicles.

Computer simulations are used to identify three typical phases in the model:

free-flow, synchronized flow, and wide moving traffic jam. In the synchronized

flow region of the fundamental diagram, the low and high velocity vehicles com-

pete with each other and play an important role in the evolution of the system.

The analysis shows that there are two types of bistable phases. However, in

the original Nagel and Schreckenberg cellular automata traffic model, there are

only two kinds of traffic conditions, namely, free-flow and traffic jams. The

synchronized flow phase and bistable phase have not been found.

Keywords: Traffic flow, cellular automata, heterogeneity, acceleration, delay

probability

1. Introduction

Traffic science examines the fundamental laws and properties of transporta-

tion systems. The traffic dynamic behavior of vehicular traffic is complex and
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has diverse, interesting, non-equilibrium features such as collective behavior,

self-organization, coexisting phases, etc.[1, 2, 3, 4, 5, 6, 7].

Freeway traffic flow is a very complex spatiotemporal nonlinear dynamic

process [1]. For this reason, empirical traffic pattern features are not fully un-

derstood. The three-phase traffic flow theory can explain empirical spatiotem-

poral traffic patterns better than earlier traffic flow theories [8, 9, 10]. Previous

experimental studies have shown that the complexity in traffic flow is linked to

diverse space-time transitions between three basically different kinds of traffic:

free traffic flow, synchronized traffic flow, and traffic jams [11]. Many existing

cellular automata traffic flow models are based on Kerner’s three-phase traffic

flow theory [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29].

The cellular automata (CA) model is useful for simulating large systems and

a variety of CA models have been proposed [3, 30, 31, 32, 33, 29, 34, 35, 36, 37].

Nagel and Schreckenberg (NS) [36] proposed a model of gradually increasing

velocity, in which a vehicle may increase by only one unit per time step. In

the Fukui-Ishibashi (FI) model [37], vehicles can move only m sites in one time

step, and only if they are not blocked by vehicles in front. The notation m,

which denotes the maximum velocity of vehicles, must be a positive integer. It

is evident that these two popular one-dimensional traffic flow models are based

on different vehicle accelerations. In real traffic, vehicle acceleration depends

on their own current velocity, vehicle performance, driving habits, and so on;

therefore, real acceleration must be a random number somewhere between 0 and

the maximum velocity of vehicles.

The randomization of update rules of the NS and FI models [36, 37] can pro-

vide the key to modeling the formation of spontaneously emerging traffic jams

and natural speed fluctuations caused by human behavior or varying external

conditions. In the NS model, if the velocities of vehicles are greater than zero,

all vehicles have the same delay probability [36]. The FI model [37] has similar

results if the velocities are equal to 5. However, Brilon and Wu argued that this

rule has no theoretical basis and is in fact heuristic [38]. Randomization occurs

inevitably in actual traffic and it is evident that different drivers have different
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delay probabilities under various velocities, external conditions, etc.

The heterogeneity of vehicular traffic is an important feature in traffic flow

studies. Different types of driver’s individual property and/or vehicles (e.g.,

vehicles with different maximal velocity, length, and so on) have been considered

in some studies [39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 49].

Unlike these studies, this study establishes a new cellular automata traffic flow

model that considers the heterogeneity in the acceleration and delay probability

of vehicles. Our model can reproduce some common characteristics of the real

traffic, such as the start-and-stop waves, and present the synchronized flow phase

and bistable phase. The fundamental diagram of the model shows quantitative

coincidence of maximum flow with values taken from real traffic measurements.

2. Definition of the CA traffic model

For the sake of completeness, we now briefly define the NS model. In the

NS model, a road is composed of L cells of equal size, and every single cell can

be empty or occupied by a single vehicle. The velocity of each vehicle can be

one of the vmax + 1 allowed integer values, i.e., v = 0, 1, . . . , vmax. Here,

vmax (the notation vmax is a positive integer) denotes the maximum velocities of

vehicles. Let vmax be 5 in this study. Below, the periodic boundary conditions

are adopted and no vehicle is allowed to overtake on the road.

As cellular automata are dynamic systems that are discrete in nature, the

acceleration of each vehicle must be a random integer. However, the acceleration

values of vehicles can be no larger than their maximum velocities. Thus, the

acceleration of each vehicle is also one of the vmax + 1 allowed integer values,

v = 0, 1, . . . , vmax.

As mentioned above, we only consider the effect of velocity on the delay

probability of vehicles. The delay probability of each vehicle exists when the

value of its possible velocity equals the value of its corresponding gap, and the

probability varies with the size of the corresponding gap. We assume that the

delay probability of each vehicle increases linearly with its velocity. As Table 1
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shows, p(v) = 0 where v(t) = 1. In other words, the vehicle does not need to

slow down if v(t) = gap = 1, which is similar to the conditions in [30].

The state of the road at time t + 1 can be obtained from time step t by

simultaneously applying the following rules to all vehicles (parallel dynam-

ics): (i) the randomization parameter of acceleration a is determined by a =

rand()/(vmax+1), where rand() function is a random function that can generate

random numbers. (ii) acceleration, velocity is vi(t+1) → min(vi(t) + a, Vmax);

(iii) deceleration due to other vehicles, velocity is vi(t+1) → min(vi(t+1), gap),

where gap is the number of empty cells in front of the ith vehicle; (iv) the pa-

rameter of the delay probability is determined by p = p(v); (v) randomization

with probability p if vi(t + 1) = gap, vi(t + 1) → max(vi(t + 1) − 1, 0); and

(vi) vehicle movement is xi(t + 1) → xi(t) + vi(t + 1), where vi(t) and xi(t)

are the velocity and the position of the ith vehicle at the current t time step,

respectively.

In computer simulations, the length of each cell is set to 7.5 m. System size

L is assumed to be 2000, which corresponds to an actual road length of around

15 km. One time step approximately corresponds to 1 s in real time. Thus, the

maximum velocity vmax = 5 corresponds to 135 km/h in real traffic.

Table 1: Delay probability depends on the velocities of the vehicles

v(t) = gap 1 2 3 4 5 · · · Linear function expression

p(v) 0 0.1 0.2 0.3 0.4 · · · p(v) = [v(t)− 1]/2vmax

3. Rich behavior of the present model

The fundamental diagrams (FD) of the present model and the NS model are

presented in Figure 1(a). There are only two kinds of traffic conditions, namely,

free- flow and traffic jam in the NS model [33]. However, in the present model,

there are three phases: (i) free-flow, (ii) synchronized flow, and (iii) wide moving

jam. Moreover, from Figure 1(a), the maximum flow of the present model is
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Figure 1: (a) Fundamental diagram (FD) of the present model and the NS model. (b)

Magnified sections of the FD of the present model in Fig. 1(a)

0.675, which is closer to the measurement value of 0.69, in comparison with

0.32 of the NS model. Compared with the NS model, the system of the present

model reaches the maximum flow under a higher density, and then this system

still maintains a higher flow within a wider density range. Based on these results,

the transit capacity of the present model is more realistic which is superior to

the NS model. In the following sections, we will discuss the specific feature of

three phases for the present model.

In the free-flow region (0 < d < dFSF ), shown in Fig. 1(b), the delay

probability does not work for all vehicles. Vehicles in the system move at the

maximum velocity because they can self-organize, and gap > vmax holds for all

vehicles. Let us look at the structure of the free flow in the present model. As

shown in Fig. 2(a), the trajectory of each vehicle must be a straight line (red

line) in the time and space plots.

The jamming region (dSJB < d < 1) in Fig. 1(b), presented in detail in

Fig. 2(b), shows the typical spatiotemporal structure of a wide moving jam

(the black band). This black band grows wider as traffic density increases and

finally becomes a completely compact jam when density d = 1. In the black

band internal, the wide moving jam is completely compact and the density of

vehicles is 1. All of the vehicles are at a standstill, bumper to bumper, until the
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Figure 2: The space-time plots of the present model, where (a) d = 0.12 and (b)d = 0.40. The

vehicles are moving from the left to the right, and the vertical direction (down) is (increasing)

time, as shown by the two black arrows.
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Figure 3: Evolution of the spatiotemporal pattern of vehicle velocity in the simulation of

synchronized flow where (a) d = 0.15, (b)d = 0.20, and (c) d = 0.25.

downstream front of the jam moves forward.

The synchronized flow region (dFSB < d < dSJF ) of Fig. 1(b), presented in

detail in Fig. 3, shows the typical spatiotemporal distribution plots of velocity.

Black pixel points indicate that the vehicles have velocities equal to zero. There

are no black pixel points in Fig. 3, indicating that all of these vehicles are

moving forward. Vehicles with the same velocity gather together and form

many small teams. These features reflect the characteristics of a synchronous

flow. Moreover, Fig. 3 shows that with an increase in density, there are fewer

and fewer blue pixel points (a blue pixel point indicates a vehicles with a velocity

equal to 5), and more red pixel points (a red pixel point indicates a vehicle with

a velocity equal to 1). The red pixel points gather together and form many small

teams. There are similar examples of other color pixel points such as yellow,
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Figure 4: Statistical distribution plots of velocity for synchronized flow where (a) d = 0.15,

(b)d = 0.20, and (c) d = 0.25. Black bars denote the case where v(t) = gap. Red bars denote

the case where v(t) < gap. Blue bars denote the case where the sum of v(t) = gap and

v(t) < gap.

green, and so on, because the average temporal headway (gap) shortens with

an increase in density, leading to more low-velocity vehicles.

Fig. 3 only presents one sample with a given density, and other cases are

not discussed. Fig. 4 shows the statistical distributions of velocity; and all of

the values are an average of 50 samples. As in Fig. 4, there are no vehicles

with a velocity equal to zero. The blue bars in the histograms indicate that the

percentage of vehicles in the system with velocity 5 decreases quickly from 75%

to 21% with increasing density, as shown in Fig. 4. However, the percentage of

vehicles traveling at other velocities increases with density. The percentage of

vehicles traveling at velocity 1 increases from 12% to 45%. No matter whether

density is high or low, vehicles with velocities 1 and 5 always have a strong effect
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Figure 5: The space-time plot of synchronized flow in the present model, where d = 0.20. The

vehicles are moving from the left to the right, and the vertical direction (down) is (increasing)

time as shown by the two black arrows.

on synchronized flow. Moreover, for v(t) = 1, 2, or 3, the number of vehicles for

the case of v(t) = gap is greater than for v(t) < gap. However, this is reversed

for v(t) = 4 or 5. Furthermore, there is a typical “stop-and-go” phenomenon,

as shown in Fig. 5, which is obviously induced by vehicles with velocities equal

to 1.

Fig. 6 shows that there are two different types of bistable phases: FS and SJ.

For the bistable state phase FS (dFSF ≤ d ≤ dFSB), after a sufficiently long pe-

riod of time, the system evolves into a free flow under some initial configurations,

but under other initial configurations, the system evolves into a synchronized

flow. In the bistable state phase SJ (dSJF ≤ d ≤ dSJB), the system evolves into

a synchronized flow under some initial configurations, but under other initial

configurations, the system evolves into a wide moving jam. Changes in system

size do not affect the bistability.
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sections near dSJF and dSJB given in Fig. 1(b).

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
(a)

Fl
ow

Density
0.120 0.125 0.130 0.135 0.140

0.40

0.45

0.50

0.55

0.60

0.65

0.70

dFJ B
dFJ F

(b)

Bistable phase FJ

Fl
ow

Density

Figure 7: (a) Fundamental diagram of the present model in Table 2. (b) Magnified sections

of the FD given in Fig. 7(a)

10



Table 2: Values of the delay probability depend on the velocities of vehicles

v(t) = gap 1 2 3 4 5 · · · Linear function expression

p(v) 0.1 0.2 0.3 0.4 0.5 · · · p(v) = v(t)/2vmax

4. Conclusions and Discussions

To summarize, this study examines the heterogeneity of acceleration and

delay probability of vehicles in the cellular automata traffic flow model. For all

vehicles, if their velocity is the same as the velocity of the corresponding gaps, a

random delay is possible, and the value of the delay probability increases linearly

with velocity according to the equation p(v) = [v(t)−1]/2vmax. The acceleration

of each vehicle is a random integer between zero and the maximum velocity. The

computer simulations identify three typical phases in the fundamental diagram

of the present model: free flow, synchronized flow, and wide moving jam. In the

synchronized flow region, vehicles with low and high velocities play an important

role. As density increases, the number of low velocity vehicles increases, and the

number of high velocity vehicles decreases. Furthermore, there are two types of

bistable phases depending on the initial distribution of the vehicles. The system

eventually evolves into one of two configurations after a sufficient period of time.

Moreover, as Table 2 shows, if we set p(v) = 0.1, where v(t) = 1, then, as

shown in Fig. 7(a), there are only two typical phases: free flow and traffic jams.

It is evident that the delay probability does not exist for vehicles with a velocity

of 1 and this is the key factor in the synchronized flow region in the FD of the

present model. Moreover, as shown in Fig. 7(b), we have identified a new type

of bistable phase, FJ. Under some initial configurations, the system will evolve

into free flow ; In other initial configurations, the system will evolve into a traffic

jam.

In real traffic, the delay probability of each vehicle is influenced by many

factors such as driver’s individual aspects, vehicle type, etc. This study only

considers the delay probability of each vehicle that depends on its velocity in

11



the linear functional form. In our future work, the delay probability of vehicles

with nonlinear functional form, and the consideration of other relevant factors

will be further investigated.
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